xref: /openbmc/qemu/linux-user/elfload.c (revision 835fde4a)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
17 
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27 
28 #define ELF_OSABI   ELFOSABI_SYSV
29 
30 /* from personality.h */
31 
32 /*
33  * Flags for bug emulation.
34  *
35  * These occupy the top three bytes.
36  */
37 enum {
38     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
39     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
40                                            descriptors (signal handling) */
41     MMAP_PAGE_ZERO =    0x0100000,
42     ADDR_COMPAT_LAYOUT = 0x0200000,
43     READ_IMPLIES_EXEC = 0x0400000,
44     ADDR_LIMIT_32BIT =  0x0800000,
45     SHORT_INODE =       0x1000000,
46     WHOLE_SECONDS =     0x2000000,
47     STICKY_TIMEOUTS =   0x4000000,
48     ADDR_LIMIT_3GB =    0x8000000,
49 };
50 
51 /*
52  * Personality types.
53  *
54  * These go in the low byte.  Avoid using the top bit, it will
55  * conflict with error returns.
56  */
57 enum {
58     PER_LINUX =         0x0000,
59     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
60     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
61     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
67     PER_BSD =           0x0006,
68     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
69     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_LINUX32 =       0x0008,
71     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
72     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75     PER_RISCOS =        0x000c,
76     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
77     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
79     PER_HPUX =          0x0010,
80     PER_MASK =          0x00ff,
81 };
82 
83 /*
84  * Return the base personality without flags.
85  */
86 #define personality(pers)       (pers & PER_MASK)
87 
88 int info_is_fdpic(struct image_info *info)
89 {
90     return info->personality == PER_LINUX_FDPIC;
91 }
92 
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
97 
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
102 
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA        ELFDATA2MSB
105 #else
106 #define ELF_DATA        ELFDATA2LSB
107 #endif
108 
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong      target_elf_greg_t;
111 #define tswapreg(ptr)   tswap64(ptr)
112 #else
113 typedef abi_ulong       target_elf_greg_t;
114 #define tswapreg(ptr)   tswapal(ptr)
115 #endif
116 
117 #ifdef USE_UID16
118 typedef abi_ushort      target_uid_t;
119 typedef abi_ushort      target_gid_t;
120 #else
121 typedef abi_uint        target_uid_t;
122 typedef abi_uint        target_gid_t;
123 #endif
124 typedef abi_int         target_pid_t;
125 
126 #ifdef TARGET_I386
127 
128 #define ELF_PLATFORM get_elf_platform()
129 
130 static const char *get_elf_platform(void)
131 {
132     static char elf_platform[] = "i386";
133     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134     if (family > 6)
135         family = 6;
136     if (family >= 3)
137         elf_platform[1] = '0' + family;
138     return elf_platform;
139 }
140 
141 #define ELF_HWCAP get_elf_hwcap()
142 
143 static uint32_t get_elf_hwcap(void)
144 {
145     X86CPU *cpu = X86_CPU(thread_cpu);
146 
147     return cpu->env.features[FEAT_1_EDX];
148 }
149 
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
152 
153 #define ELF_CLASS      ELFCLASS64
154 #define ELF_ARCH       EM_X86_64
155 
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157 {
158     regs->rax = 0;
159     regs->rsp = infop->start_stack;
160     regs->rip = infop->entry;
161 }
162 
163 #define ELF_NREG    27
164 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
165 
166 /*
167  * Note that ELF_NREG should be 29 as there should be place for
168  * TRAPNO and ERR "registers" as well but linux doesn't dump
169  * those.
170  *
171  * See linux kernel: arch/x86/include/asm/elf.h
172  */
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
174 {
175     (*regs)[0] = env->regs[15];
176     (*regs)[1] = env->regs[14];
177     (*regs)[2] = env->regs[13];
178     (*regs)[3] = env->regs[12];
179     (*regs)[4] = env->regs[R_EBP];
180     (*regs)[5] = env->regs[R_EBX];
181     (*regs)[6] = env->regs[11];
182     (*regs)[7] = env->regs[10];
183     (*regs)[8] = env->regs[9];
184     (*regs)[9] = env->regs[8];
185     (*regs)[10] = env->regs[R_EAX];
186     (*regs)[11] = env->regs[R_ECX];
187     (*regs)[12] = env->regs[R_EDX];
188     (*regs)[13] = env->regs[R_ESI];
189     (*regs)[14] = env->regs[R_EDI];
190     (*regs)[15] = env->regs[R_EAX]; /* XXX */
191     (*regs)[16] = env->eip;
192     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193     (*regs)[18] = env->eflags;
194     (*regs)[19] = env->regs[R_ESP];
195     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202 }
203 
204 #else
205 
206 #define ELF_START_MMAP 0x80000000
207 
208 /*
209  * This is used to ensure we don't load something for the wrong architecture.
210  */
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212 
213 /*
214  * These are used to set parameters in the core dumps.
215  */
216 #define ELF_CLASS       ELFCLASS32
217 #define ELF_ARCH        EM_386
218 
219 static inline void init_thread(struct target_pt_regs *regs,
220                                struct image_info *infop)
221 {
222     regs->esp = infop->start_stack;
223     regs->eip = infop->entry;
224 
225     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226        starts %edx contains a pointer to a function which might be
227        registered using `atexit'.  This provides a mean for the
228        dynamic linker to call DT_FINI functions for shared libraries
229        that have been loaded before the code runs.
230 
231        A value of 0 tells we have no such handler.  */
232     regs->edx = 0;
233 }
234 
235 #define ELF_NREG    17
236 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
237 
238 /*
239  * Note that ELF_NREG should be 19 as there should be place for
240  * TRAPNO and ERR "registers" as well but linux doesn't dump
241  * those.
242  *
243  * See linux kernel: arch/x86/include/asm/elf.h
244  */
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
246 {
247     (*regs)[0] = env->regs[R_EBX];
248     (*regs)[1] = env->regs[R_ECX];
249     (*regs)[2] = env->regs[R_EDX];
250     (*regs)[3] = env->regs[R_ESI];
251     (*regs)[4] = env->regs[R_EDI];
252     (*regs)[5] = env->regs[R_EBP];
253     (*regs)[6] = env->regs[R_EAX];
254     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258     (*regs)[11] = env->regs[R_EAX]; /* XXX */
259     (*regs)[12] = env->eip;
260     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261     (*regs)[14] = env->eflags;
262     (*regs)[15] = env->regs[R_ESP];
263     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264 }
265 #endif
266 
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE       4096
269 
270 #endif
271 
272 #ifdef TARGET_ARM
273 
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
276 
277 #define ELF_START_MMAP 0x80000000
278 
279 #define ELF_ARCH        EM_ARM
280 #define ELF_CLASS       ELFCLASS32
281 
282 static inline void init_thread(struct target_pt_regs *regs,
283                                struct image_info *infop)
284 {
285     abi_long stack = infop->start_stack;
286     memset(regs, 0, sizeof(*regs));
287 
288     regs->uregs[16] = ARM_CPU_MODE_USR;
289     if (infop->entry & 1) {
290         regs->uregs[16] |= CPSR_T;
291     }
292     regs->uregs[15] = infop->entry & 0xfffffffe;
293     regs->uregs[13] = infop->start_stack;
294     /* FIXME - what to for failure of get_user()? */
295     get_user_ual(regs->uregs[2], stack + 8); /* envp */
296     get_user_ual(regs->uregs[1], stack + 4); /* envp */
297     /* XXX: it seems that r0 is zeroed after ! */
298     regs->uregs[0] = 0;
299     /* For uClinux PIC binaries.  */
300     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301     regs->uregs[10] = infop->start_data;
302 
303     /* Support ARM FDPIC.  */
304     if (info_is_fdpic(infop)) {
305         /* As described in the ABI document, r7 points to the loadmap info
306          * prepared by the kernel. If an interpreter is needed, r8 points
307          * to the interpreter loadmap and r9 points to the interpreter
308          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309          * r9 points to the main program PT_DYNAMIC info.
310          */
311         regs->uregs[7] = infop->loadmap_addr;
312         if (infop->interpreter_loadmap_addr) {
313             /* Executable is dynamically loaded.  */
314             regs->uregs[8] = infop->interpreter_loadmap_addr;
315             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316         } else {
317             regs->uregs[8] = 0;
318             regs->uregs[9] = infop->pt_dynamic_addr;
319         }
320     }
321 }
322 
323 #define ELF_NREG    18
324 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
325 
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
327 {
328     (*regs)[0] = tswapreg(env->regs[0]);
329     (*regs)[1] = tswapreg(env->regs[1]);
330     (*regs)[2] = tswapreg(env->regs[2]);
331     (*regs)[3] = tswapreg(env->regs[3]);
332     (*regs)[4] = tswapreg(env->regs[4]);
333     (*regs)[5] = tswapreg(env->regs[5]);
334     (*regs)[6] = tswapreg(env->regs[6]);
335     (*regs)[7] = tswapreg(env->regs[7]);
336     (*regs)[8] = tswapreg(env->regs[8]);
337     (*regs)[9] = tswapreg(env->regs[9]);
338     (*regs)[10] = tswapreg(env->regs[10]);
339     (*regs)[11] = tswapreg(env->regs[11]);
340     (*regs)[12] = tswapreg(env->regs[12]);
341     (*regs)[13] = tswapreg(env->regs[13]);
342     (*regs)[14] = tswapreg(env->regs[14]);
343     (*regs)[15] = tswapreg(env->regs[15]);
344 
345     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
347 }
348 
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE       4096
351 
352 enum
353 {
354     ARM_HWCAP_ARM_SWP       = 1 << 0,
355     ARM_HWCAP_ARM_HALF      = 1 << 1,
356     ARM_HWCAP_ARM_THUMB     = 1 << 2,
357     ARM_HWCAP_ARM_26BIT     = 1 << 3,
358     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359     ARM_HWCAP_ARM_FPA       = 1 << 5,
360     ARM_HWCAP_ARM_VFP       = 1 << 6,
361     ARM_HWCAP_ARM_EDSP      = 1 << 7,
362     ARM_HWCAP_ARM_JAVA      = 1 << 8,
363     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
364     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
365     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
366     ARM_HWCAP_ARM_NEON      = 1 << 12,
367     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
368     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
369     ARM_HWCAP_ARM_TLS       = 1 << 15,
370     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
371     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
372     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
373     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
374     ARM_HWCAP_ARM_LPAE      = 1 << 20,
375     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
376 };
377 
378 enum {
379     ARM_HWCAP2_ARM_AES      = 1 << 0,
380     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
381     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
382     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
383     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
384 };
385 
386 /* The commpage only exists for 32 bit kernels */
387 
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
389 
390 static bool init_guest_commpage(void)
391 {
392     void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
393     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
395 
396     if (addr == MAP_FAILED) {
397         perror("Allocating guest commpage");
398         exit(EXIT_FAILURE);
399     }
400     if (addr != want) {
401         return false;
402     }
403 
404     /* Set kernel helper versions; rest of page is 0.  */
405     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
406 
407     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408         perror("Protecting guest commpage");
409         exit(EXIT_FAILURE);
410     }
411     return true;
412 }
413 
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
416 
417 static uint32_t get_elf_hwcap(void)
418 {
419     ARMCPU *cpu = ARM_CPU(thread_cpu);
420     uint32_t hwcaps = 0;
421 
422     hwcaps |= ARM_HWCAP_ARM_SWP;
423     hwcaps |= ARM_HWCAP_ARM_HALF;
424     hwcaps |= ARM_HWCAP_ARM_THUMB;
425     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
426 
427     /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
430 
431 #define GET_FEATURE_ID(feat, hwcap) \
432     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433 
434     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444 
445     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447         hwcaps |= ARM_HWCAP_ARM_VFPv3;
448         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449             hwcaps |= ARM_HWCAP_ARM_VFPD32;
450         } else {
451             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452         }
453     }
454     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
455 
456     return hwcaps;
457 }
458 
459 static uint32_t get_elf_hwcap2(void)
460 {
461     ARMCPU *cpu = ARM_CPU(thread_cpu);
462     uint32_t hwcaps = 0;
463 
464     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469     return hwcaps;
470 }
471 
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
474 
475 #define ELF_PLATFORM get_elf_platform()
476 
477 static const char *get_elf_platform(void)
478 {
479     CPUARMState *env = thread_cpu->env_ptr;
480 
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END  "b"
483 #else
484 # define END  "l"
485 #endif
486 
487     if (arm_feature(env, ARM_FEATURE_V8)) {
488         return "v8" END;
489     } else if (arm_feature(env, ARM_FEATURE_V7)) {
490         if (arm_feature(env, ARM_FEATURE_M)) {
491             return "v7m" END;
492         } else {
493             return "v7" END;
494         }
495     } else if (arm_feature(env, ARM_FEATURE_V6)) {
496         return "v6" END;
497     } else if (arm_feature(env, ARM_FEATURE_V5)) {
498         return "v5" END;
499     } else {
500         return "v4" END;
501     }
502 
503 #undef END
504 }
505 
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
509 
510 #define ELF_ARCH        EM_AARCH64
511 #define ELF_CLASS       ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM    "aarch64_be"
514 #else
515 # define ELF_PLATFORM    "aarch64"
516 #endif
517 
518 static inline void init_thread(struct target_pt_regs *regs,
519                                struct image_info *infop)
520 {
521     abi_long stack = infop->start_stack;
522     memset(regs, 0, sizeof(*regs));
523 
524     regs->pc = infop->entry & ~0x3ULL;
525     regs->sp = stack;
526 }
527 
528 #define ELF_NREG    34
529 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
530 
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532                                const CPUARMState *env)
533 {
534     int i;
535 
536     for (i = 0; i < 32; i++) {
537         (*regs)[i] = tswapreg(env->xregs[i]);
538     }
539     (*regs)[32] = tswapreg(env->pc);
540     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541 }
542 
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE       4096
545 
546 enum {
547     ARM_HWCAP_A64_FP            = 1 << 0,
548     ARM_HWCAP_A64_ASIMD         = 1 << 1,
549     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
550     ARM_HWCAP_A64_AES           = 1 << 3,
551     ARM_HWCAP_A64_PMULL         = 1 << 4,
552     ARM_HWCAP_A64_SHA1          = 1 << 5,
553     ARM_HWCAP_A64_SHA2          = 1 << 6,
554     ARM_HWCAP_A64_CRC32         = 1 << 7,
555     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
556     ARM_HWCAP_A64_FPHP          = 1 << 9,
557     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
558     ARM_HWCAP_A64_CPUID         = 1 << 11,
559     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
560     ARM_HWCAP_A64_JSCVT         = 1 << 13,
561     ARM_HWCAP_A64_FCMA          = 1 << 14,
562     ARM_HWCAP_A64_LRCPC         = 1 << 15,
563     ARM_HWCAP_A64_DCPOP         = 1 << 16,
564     ARM_HWCAP_A64_SHA3          = 1 << 17,
565     ARM_HWCAP_A64_SM3           = 1 << 18,
566     ARM_HWCAP_A64_SM4           = 1 << 19,
567     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
568     ARM_HWCAP_A64_SHA512        = 1 << 21,
569     ARM_HWCAP_A64_SVE           = 1 << 22,
570     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
571     ARM_HWCAP_A64_DIT           = 1 << 24,
572     ARM_HWCAP_A64_USCAT         = 1 << 25,
573     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
574     ARM_HWCAP_A64_FLAGM         = 1 << 27,
575     ARM_HWCAP_A64_SSBS          = 1 << 28,
576     ARM_HWCAP_A64_SB            = 1 << 29,
577     ARM_HWCAP_A64_PACA          = 1 << 30,
578     ARM_HWCAP_A64_PACG          = 1UL << 31,
579 
580     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
581     ARM_HWCAP2_A64_SVE2         = 1 << 1,
582     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
583     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
584     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
585     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
586     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
587     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
588     ARM_HWCAP2_A64_FRINT        = 1 << 8,
589 };
590 
591 #define ELF_HWCAP   get_elf_hwcap()
592 #define ELF_HWCAP2  get_elf_hwcap2()
593 
594 #define GET_FEATURE_ID(feat, hwcap) \
595     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
596 
597 static uint32_t get_elf_hwcap(void)
598 {
599     ARMCPU *cpu = ARM_CPU(thread_cpu);
600     uint32_t hwcaps = 0;
601 
602     hwcaps |= ARM_HWCAP_A64_FP;
603     hwcaps |= ARM_HWCAP_A64_ASIMD;
604     hwcaps |= ARM_HWCAP_A64_CPUID;
605 
606     /* probe for the extra features */
607 
608     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
609     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
610     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
611     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
612     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
613     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
614     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
615     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
616     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
617     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
618     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
619     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
620     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
621     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
622     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
623     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
624     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
625     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
626     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
627     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
628     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
629     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
630     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
631 
632     return hwcaps;
633 }
634 
635 static uint32_t get_elf_hwcap2(void)
636 {
637     ARMCPU *cpu = ARM_CPU(thread_cpu);
638     uint32_t hwcaps = 0;
639 
640     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
641     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
642     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
643 
644     return hwcaps;
645 }
646 
647 #undef GET_FEATURE_ID
648 
649 #endif /* not TARGET_AARCH64 */
650 #endif /* TARGET_ARM */
651 
652 #ifdef TARGET_SPARC
653 #ifdef TARGET_SPARC64
654 
655 #define ELF_START_MMAP 0x80000000
656 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
657                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
658 #ifndef TARGET_ABI32
659 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
660 #else
661 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
662 #endif
663 
664 #define ELF_CLASS   ELFCLASS64
665 #define ELF_ARCH    EM_SPARCV9
666 
667 #define STACK_BIAS              2047
668 
669 static inline void init_thread(struct target_pt_regs *regs,
670                                struct image_info *infop)
671 {
672 #ifndef TARGET_ABI32
673     regs->tstate = 0;
674 #endif
675     regs->pc = infop->entry;
676     regs->npc = regs->pc + 4;
677     regs->y = 0;
678 #ifdef TARGET_ABI32
679     regs->u_regs[14] = infop->start_stack - 16 * 4;
680 #else
681     if (personality(infop->personality) == PER_LINUX32)
682         regs->u_regs[14] = infop->start_stack - 16 * 4;
683     else
684         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
685 #endif
686 }
687 
688 #else
689 #define ELF_START_MMAP 0x80000000
690 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
691                     | HWCAP_SPARC_MULDIV)
692 
693 #define ELF_CLASS   ELFCLASS32
694 #define ELF_ARCH    EM_SPARC
695 
696 static inline void init_thread(struct target_pt_regs *regs,
697                                struct image_info *infop)
698 {
699     regs->psr = 0;
700     regs->pc = infop->entry;
701     regs->npc = regs->pc + 4;
702     regs->y = 0;
703     regs->u_regs[14] = infop->start_stack - 16 * 4;
704 }
705 
706 #endif
707 #endif
708 
709 #ifdef TARGET_PPC
710 
711 #define ELF_MACHINE    PPC_ELF_MACHINE
712 #define ELF_START_MMAP 0x80000000
713 
714 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
715 
716 #define elf_check_arch(x) ( (x) == EM_PPC64 )
717 
718 #define ELF_CLASS       ELFCLASS64
719 
720 #else
721 
722 #define ELF_CLASS       ELFCLASS32
723 
724 #endif
725 
726 #define ELF_ARCH        EM_PPC
727 
728 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
729    See arch/powerpc/include/asm/cputable.h.  */
730 enum {
731     QEMU_PPC_FEATURE_32 = 0x80000000,
732     QEMU_PPC_FEATURE_64 = 0x40000000,
733     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
734     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
735     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
736     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
737     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
738     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
739     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
740     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
741     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
742     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
743     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
744     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
745     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
746     QEMU_PPC_FEATURE_CELL = 0x00010000,
747     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
748     QEMU_PPC_FEATURE_SMT = 0x00004000,
749     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
750     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
751     QEMU_PPC_FEATURE_PA6T = 0x00000800,
752     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
753     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
754     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
755     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
756     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
757 
758     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
759     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
760 
761     /* Feature definitions in AT_HWCAP2.  */
762     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
763     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
764     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
765     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
766     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
767     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
768     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
769     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
770     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
771     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
772     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
773     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
774     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
775 };
776 
777 #define ELF_HWCAP get_elf_hwcap()
778 
779 static uint32_t get_elf_hwcap(void)
780 {
781     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
782     uint32_t features = 0;
783 
784     /* We don't have to be terribly complete here; the high points are
785        Altivec/FP/SPE support.  Anything else is just a bonus.  */
786 #define GET_FEATURE(flag, feature)                                      \
787     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
788 #define GET_FEATURE2(flags, feature) \
789     do { \
790         if ((cpu->env.insns_flags2 & flags) == flags) { \
791             features |= feature; \
792         } \
793     } while (0)
794     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
795     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
796     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
797     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
798     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
799     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
800     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
801     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
802     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
803     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
804     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
805                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
806                   QEMU_PPC_FEATURE_ARCH_2_06);
807 #undef GET_FEATURE
808 #undef GET_FEATURE2
809 
810     return features;
811 }
812 
813 #define ELF_HWCAP2 get_elf_hwcap2()
814 
815 static uint32_t get_elf_hwcap2(void)
816 {
817     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
818     uint32_t features = 0;
819 
820 #define GET_FEATURE(flag, feature)                                      \
821     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
822 #define GET_FEATURE2(flag, feature)                                      \
823     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
824 
825     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
826     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
827     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
828                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
829                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
830     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
831                  QEMU_PPC_FEATURE2_DARN);
832 
833 #undef GET_FEATURE
834 #undef GET_FEATURE2
835 
836     return features;
837 }
838 
839 /*
840  * The requirements here are:
841  * - keep the final alignment of sp (sp & 0xf)
842  * - make sure the 32-bit value at the first 16 byte aligned position of
843  *   AUXV is greater than 16 for glibc compatibility.
844  *   AT_IGNOREPPC is used for that.
845  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
846  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
847  */
848 #define DLINFO_ARCH_ITEMS       5
849 #define ARCH_DLINFO                                     \
850     do {                                                \
851         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
852         /*                                              \
853          * Handle glibc compatibility: these magic entries must \
854          * be at the lowest addresses in the final auxv.        \
855          */                                             \
856         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
857         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
858         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
859         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
860         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
861     } while (0)
862 
863 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
864 {
865     _regs->gpr[1] = infop->start_stack;
866 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
867     if (get_ppc64_abi(infop) < 2) {
868         uint64_t val;
869         get_user_u64(val, infop->entry + 8);
870         _regs->gpr[2] = val + infop->load_bias;
871         get_user_u64(val, infop->entry);
872         infop->entry = val + infop->load_bias;
873     } else {
874         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
875     }
876 #endif
877     _regs->nip = infop->entry;
878 }
879 
880 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
881 #define ELF_NREG 48
882 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
883 
884 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
885 {
886     int i;
887     target_ulong ccr = 0;
888 
889     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
890         (*regs)[i] = tswapreg(env->gpr[i]);
891     }
892 
893     (*regs)[32] = tswapreg(env->nip);
894     (*regs)[33] = tswapreg(env->msr);
895     (*regs)[35] = tswapreg(env->ctr);
896     (*regs)[36] = tswapreg(env->lr);
897     (*regs)[37] = tswapreg(env->xer);
898 
899     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
900         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
901     }
902     (*regs)[38] = tswapreg(ccr);
903 }
904 
905 #define USE_ELF_CORE_DUMP
906 #define ELF_EXEC_PAGESIZE       4096
907 
908 #endif
909 
910 #ifdef TARGET_MIPS
911 
912 #define ELF_START_MMAP 0x80000000
913 
914 #ifdef TARGET_MIPS64
915 #define ELF_CLASS   ELFCLASS64
916 #else
917 #define ELF_CLASS   ELFCLASS32
918 #endif
919 #define ELF_ARCH    EM_MIPS
920 
921 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
922 
923 #ifdef TARGET_ABI_MIPSN32
924 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
925 #else
926 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
927 #endif
928 
929 static inline void init_thread(struct target_pt_regs *regs,
930                                struct image_info *infop)
931 {
932     regs->cp0_status = 2 << CP0St_KSU;
933     regs->cp0_epc = infop->entry;
934     regs->regs[29] = infop->start_stack;
935 }
936 
937 /* See linux kernel: arch/mips/include/asm/elf.h.  */
938 #define ELF_NREG 45
939 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
940 
941 /* See linux kernel: arch/mips/include/asm/reg.h.  */
942 enum {
943 #ifdef TARGET_MIPS64
944     TARGET_EF_R0 = 0,
945 #else
946     TARGET_EF_R0 = 6,
947 #endif
948     TARGET_EF_R26 = TARGET_EF_R0 + 26,
949     TARGET_EF_R27 = TARGET_EF_R0 + 27,
950     TARGET_EF_LO = TARGET_EF_R0 + 32,
951     TARGET_EF_HI = TARGET_EF_R0 + 33,
952     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
953     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
954     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
955     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
956 };
957 
958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
959 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
960 {
961     int i;
962 
963     for (i = 0; i < TARGET_EF_R0; i++) {
964         (*regs)[i] = 0;
965     }
966     (*regs)[TARGET_EF_R0] = 0;
967 
968     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
969         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
970     }
971 
972     (*regs)[TARGET_EF_R26] = 0;
973     (*regs)[TARGET_EF_R27] = 0;
974     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
975     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
976     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
977     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
978     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
979     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
980 }
981 
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE        4096
984 
985 /* See arch/mips/include/uapi/asm/hwcap.h.  */
986 enum {
987     HWCAP_MIPS_R6           = (1 << 0),
988     HWCAP_MIPS_MSA          = (1 << 1),
989     HWCAP_MIPS_CRC32        = (1 << 2),
990     HWCAP_MIPS_MIPS16       = (1 << 3),
991     HWCAP_MIPS_MDMX         = (1 << 4),
992     HWCAP_MIPS_MIPS3D       = (1 << 5),
993     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
994     HWCAP_MIPS_DSP          = (1 << 7),
995     HWCAP_MIPS_DSP2         = (1 << 8),
996     HWCAP_MIPS_DSP3         = (1 << 9),
997     HWCAP_MIPS_MIPS16E2     = (1 << 10),
998     HWCAP_LOONGSON_MMI      = (1 << 11),
999     HWCAP_LOONGSON_EXT      = (1 << 12),
1000     HWCAP_LOONGSON_EXT2     = (1 << 13),
1001     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1002 };
1003 
1004 #define ELF_HWCAP get_elf_hwcap()
1005 
1006 #define GET_FEATURE_INSN(_flag, _hwcap) \
1007     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1008 
1009 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1010     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1011 
1012 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1013     do { \
1014         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1015             hwcaps |= _hwcap; \
1016         } \
1017     } while (0)
1018 
1019 static uint32_t get_elf_hwcap(void)
1020 {
1021     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1022     uint32_t hwcaps = 0;
1023 
1024     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1025                         2, HWCAP_MIPS_R6);
1026     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1027     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1028     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1029 
1030     return hwcaps;
1031 }
1032 
1033 #undef GET_FEATURE_REG_EQU
1034 #undef GET_FEATURE_REG_SET
1035 #undef GET_FEATURE_INSN
1036 
1037 #endif /* TARGET_MIPS */
1038 
1039 #ifdef TARGET_MICROBLAZE
1040 
1041 #define ELF_START_MMAP 0x80000000
1042 
1043 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1044 
1045 #define ELF_CLASS   ELFCLASS32
1046 #define ELF_ARCH    EM_MICROBLAZE
1047 
1048 static inline void init_thread(struct target_pt_regs *regs,
1049                                struct image_info *infop)
1050 {
1051     regs->pc = infop->entry;
1052     regs->r1 = infop->start_stack;
1053 
1054 }
1055 
1056 #define ELF_EXEC_PAGESIZE        4096
1057 
1058 #define USE_ELF_CORE_DUMP
1059 #define ELF_NREG 38
1060 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1061 
1062 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1063 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1064 {
1065     int i, pos = 0;
1066 
1067     for (i = 0; i < 32; i++) {
1068         (*regs)[pos++] = tswapreg(env->regs[i]);
1069     }
1070 
1071     (*regs)[pos++] = tswapreg(env->pc);
1072     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1073     (*regs)[pos++] = 0;
1074     (*regs)[pos++] = tswapreg(env->ear);
1075     (*regs)[pos++] = 0;
1076     (*regs)[pos++] = tswapreg(env->esr);
1077 }
1078 
1079 #endif /* TARGET_MICROBLAZE */
1080 
1081 #ifdef TARGET_NIOS2
1082 
1083 #define ELF_START_MMAP 0x80000000
1084 
1085 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1086 
1087 #define ELF_CLASS   ELFCLASS32
1088 #define ELF_ARCH    EM_ALTERA_NIOS2
1089 
1090 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1091 {
1092     regs->ea = infop->entry;
1093     regs->sp = infop->start_stack;
1094     regs->estatus = 0x3;
1095 }
1096 
1097 #define ELF_EXEC_PAGESIZE        4096
1098 
1099 #define USE_ELF_CORE_DUMP
1100 #define ELF_NREG 49
1101 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1102 
1103 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1104 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1105                                const CPUNios2State *env)
1106 {
1107     int i;
1108 
1109     (*regs)[0] = -1;
1110     for (i = 1; i < 8; i++)    /* r0-r7 */
1111         (*regs)[i] = tswapreg(env->regs[i + 7]);
1112 
1113     for (i = 8; i < 16; i++)   /* r8-r15 */
1114         (*regs)[i] = tswapreg(env->regs[i - 8]);
1115 
1116     for (i = 16; i < 24; i++)  /* r16-r23 */
1117         (*regs)[i] = tswapreg(env->regs[i + 7]);
1118     (*regs)[24] = -1;    /* R_ET */
1119     (*regs)[25] = -1;    /* R_BT */
1120     (*regs)[26] = tswapreg(env->regs[R_GP]);
1121     (*regs)[27] = tswapreg(env->regs[R_SP]);
1122     (*regs)[28] = tswapreg(env->regs[R_FP]);
1123     (*regs)[29] = tswapreg(env->regs[R_EA]);
1124     (*regs)[30] = -1;    /* R_SSTATUS */
1125     (*regs)[31] = tswapreg(env->regs[R_RA]);
1126 
1127     (*regs)[32] = tswapreg(env->regs[R_PC]);
1128 
1129     (*regs)[33] = -1; /* R_STATUS */
1130     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1131 
1132     for (i = 35; i < 49; i++)    /* ... */
1133         (*regs)[i] = -1;
1134 }
1135 
1136 #endif /* TARGET_NIOS2 */
1137 
1138 #ifdef TARGET_OPENRISC
1139 
1140 #define ELF_START_MMAP 0x08000000
1141 
1142 #define ELF_ARCH EM_OPENRISC
1143 #define ELF_CLASS ELFCLASS32
1144 #define ELF_DATA  ELFDATA2MSB
1145 
1146 static inline void init_thread(struct target_pt_regs *regs,
1147                                struct image_info *infop)
1148 {
1149     regs->pc = infop->entry;
1150     regs->gpr[1] = infop->start_stack;
1151 }
1152 
1153 #define USE_ELF_CORE_DUMP
1154 #define ELF_EXEC_PAGESIZE 8192
1155 
1156 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1157 #define ELF_NREG 34 /* gprs and pc, sr */
1158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1159 
1160 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1161                                const CPUOpenRISCState *env)
1162 {
1163     int i;
1164 
1165     for (i = 0; i < 32; i++) {
1166         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1167     }
1168     (*regs)[32] = tswapreg(env->pc);
1169     (*regs)[33] = tswapreg(cpu_get_sr(env));
1170 }
1171 #define ELF_HWCAP 0
1172 #define ELF_PLATFORM NULL
1173 
1174 #endif /* TARGET_OPENRISC */
1175 
1176 #ifdef TARGET_SH4
1177 
1178 #define ELF_START_MMAP 0x80000000
1179 
1180 #define ELF_CLASS ELFCLASS32
1181 #define ELF_ARCH  EM_SH
1182 
1183 static inline void init_thread(struct target_pt_regs *regs,
1184                                struct image_info *infop)
1185 {
1186     /* Check other registers XXXXX */
1187     regs->pc = infop->entry;
1188     regs->regs[15] = infop->start_stack;
1189 }
1190 
1191 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1192 #define ELF_NREG 23
1193 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1194 
1195 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1196 enum {
1197     TARGET_REG_PC = 16,
1198     TARGET_REG_PR = 17,
1199     TARGET_REG_SR = 18,
1200     TARGET_REG_GBR = 19,
1201     TARGET_REG_MACH = 20,
1202     TARGET_REG_MACL = 21,
1203     TARGET_REG_SYSCALL = 22
1204 };
1205 
1206 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1207                                       const CPUSH4State *env)
1208 {
1209     int i;
1210 
1211     for (i = 0; i < 16; i++) {
1212         (*regs)[i] = tswapreg(env->gregs[i]);
1213     }
1214 
1215     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1216     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1217     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1218     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1219     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1220     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1221     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1222 }
1223 
1224 #define USE_ELF_CORE_DUMP
1225 #define ELF_EXEC_PAGESIZE        4096
1226 
1227 enum {
1228     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1229     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1230     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1231     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1232     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1233     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1234     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1235     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1236     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1237     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1238 };
1239 
1240 #define ELF_HWCAP get_elf_hwcap()
1241 
1242 static uint32_t get_elf_hwcap(void)
1243 {
1244     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1245     uint32_t hwcap = 0;
1246 
1247     hwcap |= SH_CPU_HAS_FPU;
1248 
1249     if (cpu->env.features & SH_FEATURE_SH4A) {
1250         hwcap |= SH_CPU_HAS_LLSC;
1251     }
1252 
1253     return hwcap;
1254 }
1255 
1256 #endif
1257 
1258 #ifdef TARGET_CRIS
1259 
1260 #define ELF_START_MMAP 0x80000000
1261 
1262 #define ELF_CLASS ELFCLASS32
1263 #define ELF_ARCH  EM_CRIS
1264 
1265 static inline void init_thread(struct target_pt_regs *regs,
1266                                struct image_info *infop)
1267 {
1268     regs->erp = infop->entry;
1269 }
1270 
1271 #define ELF_EXEC_PAGESIZE        8192
1272 
1273 #endif
1274 
1275 #ifdef TARGET_M68K
1276 
1277 #define ELF_START_MMAP 0x80000000
1278 
1279 #define ELF_CLASS       ELFCLASS32
1280 #define ELF_ARCH        EM_68K
1281 
1282 /* ??? Does this need to do anything?
1283    #define ELF_PLAT_INIT(_r) */
1284 
1285 static inline void init_thread(struct target_pt_regs *regs,
1286                                struct image_info *infop)
1287 {
1288     regs->usp = infop->start_stack;
1289     regs->sr = 0;
1290     regs->pc = infop->entry;
1291 }
1292 
1293 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1294 #define ELF_NREG 20
1295 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1296 
1297 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1298 {
1299     (*regs)[0] = tswapreg(env->dregs[1]);
1300     (*regs)[1] = tswapreg(env->dregs[2]);
1301     (*regs)[2] = tswapreg(env->dregs[3]);
1302     (*regs)[3] = tswapreg(env->dregs[4]);
1303     (*regs)[4] = tswapreg(env->dregs[5]);
1304     (*regs)[5] = tswapreg(env->dregs[6]);
1305     (*regs)[6] = tswapreg(env->dregs[7]);
1306     (*regs)[7] = tswapreg(env->aregs[0]);
1307     (*regs)[8] = tswapreg(env->aregs[1]);
1308     (*regs)[9] = tswapreg(env->aregs[2]);
1309     (*regs)[10] = tswapreg(env->aregs[3]);
1310     (*regs)[11] = tswapreg(env->aregs[4]);
1311     (*regs)[12] = tswapreg(env->aregs[5]);
1312     (*regs)[13] = tswapreg(env->aregs[6]);
1313     (*regs)[14] = tswapreg(env->dregs[0]);
1314     (*regs)[15] = tswapreg(env->aregs[7]);
1315     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1316     (*regs)[17] = tswapreg(env->sr);
1317     (*regs)[18] = tswapreg(env->pc);
1318     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1319 }
1320 
1321 #define USE_ELF_CORE_DUMP
1322 #define ELF_EXEC_PAGESIZE       8192
1323 
1324 #endif
1325 
1326 #ifdef TARGET_ALPHA
1327 
1328 #define ELF_START_MMAP (0x30000000000ULL)
1329 
1330 #define ELF_CLASS      ELFCLASS64
1331 #define ELF_ARCH       EM_ALPHA
1332 
1333 static inline void init_thread(struct target_pt_regs *regs,
1334                                struct image_info *infop)
1335 {
1336     regs->pc = infop->entry;
1337     regs->ps = 8;
1338     regs->usp = infop->start_stack;
1339 }
1340 
1341 #define ELF_EXEC_PAGESIZE        8192
1342 
1343 #endif /* TARGET_ALPHA */
1344 
1345 #ifdef TARGET_S390X
1346 
1347 #define ELF_START_MMAP (0x20000000000ULL)
1348 
1349 #define ELF_CLASS	ELFCLASS64
1350 #define ELF_DATA	ELFDATA2MSB
1351 #define ELF_ARCH	EM_S390
1352 
1353 #include "elf.h"
1354 
1355 #define ELF_HWCAP get_elf_hwcap()
1356 
1357 #define GET_FEATURE(_feat, _hwcap) \
1358     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1359 
1360 static uint32_t get_elf_hwcap(void)
1361 {
1362     /*
1363      * Let's assume we always have esan3 and zarch.
1364      * 31-bit processes can use 64-bit registers (high gprs).
1365      */
1366     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1367 
1368     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1369     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1370     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1371     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1372     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1373         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1374         hwcap |= HWCAP_S390_ETF3EH;
1375     }
1376     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1377 
1378     return hwcap;
1379 }
1380 
1381 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1382 {
1383     regs->psw.addr = infop->entry;
1384     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1385     regs->gprs[15] = infop->start_stack;
1386 }
1387 
1388 #endif /* TARGET_S390X */
1389 
1390 #ifdef TARGET_RISCV
1391 
1392 #define ELF_START_MMAP 0x80000000
1393 #define ELF_ARCH  EM_RISCV
1394 
1395 #ifdef TARGET_RISCV32
1396 #define ELF_CLASS ELFCLASS32
1397 #else
1398 #define ELF_CLASS ELFCLASS64
1399 #endif
1400 
1401 static inline void init_thread(struct target_pt_regs *regs,
1402                                struct image_info *infop)
1403 {
1404     regs->sepc = infop->entry;
1405     regs->sp = infop->start_stack;
1406 }
1407 
1408 #define ELF_EXEC_PAGESIZE 4096
1409 
1410 #endif /* TARGET_RISCV */
1411 
1412 #ifdef TARGET_HPPA
1413 
1414 #define ELF_START_MMAP  0x80000000
1415 #define ELF_CLASS       ELFCLASS32
1416 #define ELF_ARCH        EM_PARISC
1417 #define ELF_PLATFORM    "PARISC"
1418 #define STACK_GROWS_DOWN 0
1419 #define STACK_ALIGNMENT  64
1420 
1421 static inline void init_thread(struct target_pt_regs *regs,
1422                                struct image_info *infop)
1423 {
1424     regs->iaoq[0] = infop->entry;
1425     regs->iaoq[1] = infop->entry + 4;
1426     regs->gr[23] = 0;
1427     regs->gr[24] = infop->arg_start;
1428     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1429     /* The top-of-stack contains a linkage buffer.  */
1430     regs->gr[30] = infop->start_stack + 64;
1431     regs->gr[31] = infop->entry;
1432 }
1433 
1434 #endif /* TARGET_HPPA */
1435 
1436 #ifdef TARGET_XTENSA
1437 
1438 #define ELF_START_MMAP 0x20000000
1439 
1440 #define ELF_CLASS       ELFCLASS32
1441 #define ELF_ARCH        EM_XTENSA
1442 
1443 static inline void init_thread(struct target_pt_regs *regs,
1444                                struct image_info *infop)
1445 {
1446     regs->windowbase = 0;
1447     regs->windowstart = 1;
1448     regs->areg[1] = infop->start_stack;
1449     regs->pc = infop->entry;
1450 }
1451 
1452 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1453 #define ELF_NREG 128
1454 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1455 
1456 enum {
1457     TARGET_REG_PC,
1458     TARGET_REG_PS,
1459     TARGET_REG_LBEG,
1460     TARGET_REG_LEND,
1461     TARGET_REG_LCOUNT,
1462     TARGET_REG_SAR,
1463     TARGET_REG_WINDOWSTART,
1464     TARGET_REG_WINDOWBASE,
1465     TARGET_REG_THREADPTR,
1466     TARGET_REG_AR0 = 64,
1467 };
1468 
1469 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1470                                const CPUXtensaState *env)
1471 {
1472     unsigned i;
1473 
1474     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1475     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1476     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1477     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1478     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1479     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1480     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1481     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1482     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1483     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1484     for (i = 0; i < env->config->nareg; ++i) {
1485         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1486     }
1487 }
1488 
1489 #define USE_ELF_CORE_DUMP
1490 #define ELF_EXEC_PAGESIZE       4096
1491 
1492 #endif /* TARGET_XTENSA */
1493 
1494 #ifdef TARGET_HEXAGON
1495 
1496 #define ELF_START_MMAP 0x20000000
1497 
1498 #define ELF_CLASS       ELFCLASS32
1499 #define ELF_ARCH        EM_HEXAGON
1500 
1501 static inline void init_thread(struct target_pt_regs *regs,
1502                                struct image_info *infop)
1503 {
1504     regs->sepc = infop->entry;
1505     regs->sp = infop->start_stack;
1506 }
1507 
1508 #endif /* TARGET_HEXAGON */
1509 
1510 #ifndef ELF_PLATFORM
1511 #define ELF_PLATFORM (NULL)
1512 #endif
1513 
1514 #ifndef ELF_MACHINE
1515 #define ELF_MACHINE ELF_ARCH
1516 #endif
1517 
1518 #ifndef elf_check_arch
1519 #define elf_check_arch(x) ((x) == ELF_ARCH)
1520 #endif
1521 
1522 #ifndef elf_check_abi
1523 #define elf_check_abi(x) (1)
1524 #endif
1525 
1526 #ifndef ELF_HWCAP
1527 #define ELF_HWCAP 0
1528 #endif
1529 
1530 #ifndef STACK_GROWS_DOWN
1531 #define STACK_GROWS_DOWN 1
1532 #endif
1533 
1534 #ifndef STACK_ALIGNMENT
1535 #define STACK_ALIGNMENT 16
1536 #endif
1537 
1538 #ifdef TARGET_ABI32
1539 #undef ELF_CLASS
1540 #define ELF_CLASS ELFCLASS32
1541 #undef bswaptls
1542 #define bswaptls(ptr) bswap32s(ptr)
1543 #endif
1544 
1545 #include "elf.h"
1546 
1547 /* We must delay the following stanzas until after "elf.h". */
1548 #if defined(TARGET_AARCH64)
1549 
1550 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1551                                     const uint32_t *data,
1552                                     struct image_info *info,
1553                                     Error **errp)
1554 {
1555     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1556         if (pr_datasz != sizeof(uint32_t)) {
1557             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1558             return false;
1559         }
1560         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1561         info->note_flags = *data;
1562     }
1563     return true;
1564 }
1565 #define ARCH_USE_GNU_PROPERTY 1
1566 
1567 #else
1568 
1569 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1570                                     const uint32_t *data,
1571                                     struct image_info *info,
1572                                     Error **errp)
1573 {
1574     g_assert_not_reached();
1575 }
1576 #define ARCH_USE_GNU_PROPERTY 0
1577 
1578 #endif
1579 
1580 struct exec
1581 {
1582     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1583     unsigned int a_text;   /* length of text, in bytes */
1584     unsigned int a_data;   /* length of data, in bytes */
1585     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1586     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1587     unsigned int a_entry;  /* start address */
1588     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1589     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1590 };
1591 
1592 
1593 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1594 #define OMAGIC 0407
1595 #define NMAGIC 0410
1596 #define ZMAGIC 0413
1597 #define QMAGIC 0314
1598 
1599 /* Necessary parameters */
1600 #define TARGET_ELF_EXEC_PAGESIZE \
1601         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1602          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1603 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1604 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1605                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1606 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1607 
1608 #define DLINFO_ITEMS 16
1609 
1610 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1611 {
1612     memcpy(to, from, n);
1613 }
1614 
1615 #ifdef BSWAP_NEEDED
1616 static void bswap_ehdr(struct elfhdr *ehdr)
1617 {
1618     bswap16s(&ehdr->e_type);            /* Object file type */
1619     bswap16s(&ehdr->e_machine);         /* Architecture */
1620     bswap32s(&ehdr->e_version);         /* Object file version */
1621     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1622     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1623     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1624     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1625     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1626     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1627     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1628     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1629     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1630     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1631 }
1632 
1633 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1634 {
1635     int i;
1636     for (i = 0; i < phnum; ++i, ++phdr) {
1637         bswap32s(&phdr->p_type);        /* Segment type */
1638         bswap32s(&phdr->p_flags);       /* Segment flags */
1639         bswaptls(&phdr->p_offset);      /* Segment file offset */
1640         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1641         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1642         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1643         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1644         bswaptls(&phdr->p_align);       /* Segment alignment */
1645     }
1646 }
1647 
1648 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1649 {
1650     int i;
1651     for (i = 0; i < shnum; ++i, ++shdr) {
1652         bswap32s(&shdr->sh_name);
1653         bswap32s(&shdr->sh_type);
1654         bswaptls(&shdr->sh_flags);
1655         bswaptls(&shdr->sh_addr);
1656         bswaptls(&shdr->sh_offset);
1657         bswaptls(&shdr->sh_size);
1658         bswap32s(&shdr->sh_link);
1659         bswap32s(&shdr->sh_info);
1660         bswaptls(&shdr->sh_addralign);
1661         bswaptls(&shdr->sh_entsize);
1662     }
1663 }
1664 
1665 static void bswap_sym(struct elf_sym *sym)
1666 {
1667     bswap32s(&sym->st_name);
1668     bswaptls(&sym->st_value);
1669     bswaptls(&sym->st_size);
1670     bswap16s(&sym->st_shndx);
1671 }
1672 
1673 #ifdef TARGET_MIPS
1674 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1675 {
1676     bswap16s(&abiflags->version);
1677     bswap32s(&abiflags->ases);
1678     bswap32s(&abiflags->isa_ext);
1679     bswap32s(&abiflags->flags1);
1680     bswap32s(&abiflags->flags2);
1681 }
1682 #endif
1683 #else
1684 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1685 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1686 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1687 static inline void bswap_sym(struct elf_sym *sym) { }
1688 #ifdef TARGET_MIPS
1689 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1690 #endif
1691 #endif
1692 
1693 #ifdef USE_ELF_CORE_DUMP
1694 static int elf_core_dump(int, const CPUArchState *);
1695 #endif /* USE_ELF_CORE_DUMP */
1696 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1697 
1698 /* Verify the portions of EHDR within E_IDENT for the target.
1699    This can be performed before bswapping the entire header.  */
1700 static bool elf_check_ident(struct elfhdr *ehdr)
1701 {
1702     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1703             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1704             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1705             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1706             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1707             && ehdr->e_ident[EI_DATA] == ELF_DATA
1708             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1709 }
1710 
1711 /* Verify the portions of EHDR outside of E_IDENT for the target.
1712    This has to wait until after bswapping the header.  */
1713 static bool elf_check_ehdr(struct elfhdr *ehdr)
1714 {
1715     return (elf_check_arch(ehdr->e_machine)
1716             && elf_check_abi(ehdr->e_flags)
1717             && ehdr->e_ehsize == sizeof(struct elfhdr)
1718             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1719             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1720 }
1721 
1722 /*
1723  * 'copy_elf_strings()' copies argument/envelope strings from user
1724  * memory to free pages in kernel mem. These are in a format ready
1725  * to be put directly into the top of new user memory.
1726  *
1727  */
1728 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1729                                   abi_ulong p, abi_ulong stack_limit)
1730 {
1731     char *tmp;
1732     int len, i;
1733     abi_ulong top = p;
1734 
1735     if (!p) {
1736         return 0;       /* bullet-proofing */
1737     }
1738 
1739     if (STACK_GROWS_DOWN) {
1740         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1741         for (i = argc - 1; i >= 0; --i) {
1742             tmp = argv[i];
1743             if (!tmp) {
1744                 fprintf(stderr, "VFS: argc is wrong");
1745                 exit(-1);
1746             }
1747             len = strlen(tmp) + 1;
1748             tmp += len;
1749 
1750             if (len > (p - stack_limit)) {
1751                 return 0;
1752             }
1753             while (len) {
1754                 int bytes_to_copy = (len > offset) ? offset : len;
1755                 tmp -= bytes_to_copy;
1756                 p -= bytes_to_copy;
1757                 offset -= bytes_to_copy;
1758                 len -= bytes_to_copy;
1759 
1760                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1761 
1762                 if (offset == 0) {
1763                     memcpy_to_target(p, scratch, top - p);
1764                     top = p;
1765                     offset = TARGET_PAGE_SIZE;
1766                 }
1767             }
1768         }
1769         if (p != top) {
1770             memcpy_to_target(p, scratch + offset, top - p);
1771         }
1772     } else {
1773         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1774         for (i = 0; i < argc; ++i) {
1775             tmp = argv[i];
1776             if (!tmp) {
1777                 fprintf(stderr, "VFS: argc is wrong");
1778                 exit(-1);
1779             }
1780             len = strlen(tmp) + 1;
1781             if (len > (stack_limit - p)) {
1782                 return 0;
1783             }
1784             while (len) {
1785                 int bytes_to_copy = (len > remaining) ? remaining : len;
1786 
1787                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1788 
1789                 tmp += bytes_to_copy;
1790                 remaining -= bytes_to_copy;
1791                 p += bytes_to_copy;
1792                 len -= bytes_to_copy;
1793 
1794                 if (remaining == 0) {
1795                     memcpy_to_target(top, scratch, p - top);
1796                     top = p;
1797                     remaining = TARGET_PAGE_SIZE;
1798                 }
1799             }
1800         }
1801         if (p != top) {
1802             memcpy_to_target(top, scratch, p - top);
1803         }
1804     }
1805 
1806     return p;
1807 }
1808 
1809 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1810  * argument/environment space. Newer kernels (>2.6.33) allow more,
1811  * dependent on stack size, but guarantee at least 32 pages for
1812  * backwards compatibility.
1813  */
1814 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1815 
1816 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1817                                  struct image_info *info)
1818 {
1819     abi_ulong size, error, guard;
1820 
1821     size = guest_stack_size;
1822     if (size < STACK_LOWER_LIMIT) {
1823         size = STACK_LOWER_LIMIT;
1824     }
1825     guard = TARGET_PAGE_SIZE;
1826     if (guard < qemu_real_host_page_size) {
1827         guard = qemu_real_host_page_size;
1828     }
1829 
1830     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1831                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1832     if (error == -1) {
1833         perror("mmap stack");
1834         exit(-1);
1835     }
1836 
1837     /* We reserve one extra page at the top of the stack as guard.  */
1838     if (STACK_GROWS_DOWN) {
1839         target_mprotect(error, guard, PROT_NONE);
1840         info->stack_limit = error + guard;
1841         return info->stack_limit + size - sizeof(void *);
1842     } else {
1843         target_mprotect(error + size, guard, PROT_NONE);
1844         info->stack_limit = error + size;
1845         return error;
1846     }
1847 }
1848 
1849 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1850    after the data section (i.e. bss).  */
1851 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1852 {
1853     uintptr_t host_start, host_map_start, host_end;
1854 
1855     last_bss = TARGET_PAGE_ALIGN(last_bss);
1856 
1857     /* ??? There is confusion between qemu_real_host_page_size and
1858        qemu_host_page_size here and elsewhere in target_mmap, which
1859        may lead to the end of the data section mapping from the file
1860        not being mapped.  At least there was an explicit test and
1861        comment for that here, suggesting that "the file size must
1862        be known".  The comment probably pre-dates the introduction
1863        of the fstat system call in target_mmap which does in fact
1864        find out the size.  What isn't clear is if the workaround
1865        here is still actually needed.  For now, continue with it,
1866        but merge it with the "normal" mmap that would allocate the bss.  */
1867 
1868     host_start = (uintptr_t) g2h_untagged(elf_bss);
1869     host_end = (uintptr_t) g2h_untagged(last_bss);
1870     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1871 
1872     if (host_map_start < host_end) {
1873         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1874                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1875         if (p == MAP_FAILED) {
1876             perror("cannot mmap brk");
1877             exit(-1);
1878         }
1879     }
1880 
1881     /* Ensure that the bss page(s) are valid */
1882     if ((page_get_flags(last_bss-1) & prot) != prot) {
1883         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1884     }
1885 
1886     if (host_start < host_map_start) {
1887         memset((void *)host_start, 0, host_map_start - host_start);
1888     }
1889 }
1890 
1891 #ifdef TARGET_ARM
1892 static int elf_is_fdpic(struct elfhdr *exec)
1893 {
1894     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1895 }
1896 #else
1897 /* Default implementation, always false.  */
1898 static int elf_is_fdpic(struct elfhdr *exec)
1899 {
1900     return 0;
1901 }
1902 #endif
1903 
1904 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1905 {
1906     uint16_t n;
1907     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1908 
1909     /* elf32_fdpic_loadseg */
1910     n = info->nsegs;
1911     while (n--) {
1912         sp -= 12;
1913         put_user_u32(loadsegs[n].addr, sp+0);
1914         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1915         put_user_u32(loadsegs[n].p_memsz, sp+8);
1916     }
1917 
1918     /* elf32_fdpic_loadmap */
1919     sp -= 4;
1920     put_user_u16(0, sp+0); /* version */
1921     put_user_u16(info->nsegs, sp+2); /* nsegs */
1922 
1923     info->personality = PER_LINUX_FDPIC;
1924     info->loadmap_addr = sp;
1925 
1926     return sp;
1927 }
1928 
1929 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1930                                    struct elfhdr *exec,
1931                                    struct image_info *info,
1932                                    struct image_info *interp_info)
1933 {
1934     abi_ulong sp;
1935     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1936     int size;
1937     int i;
1938     abi_ulong u_rand_bytes;
1939     uint8_t k_rand_bytes[16];
1940     abi_ulong u_platform;
1941     const char *k_platform;
1942     const int n = sizeof(elf_addr_t);
1943 
1944     sp = p;
1945 
1946     /* Needs to be before we load the env/argc/... */
1947     if (elf_is_fdpic(exec)) {
1948         /* Need 4 byte alignment for these structs */
1949         sp &= ~3;
1950         sp = loader_build_fdpic_loadmap(info, sp);
1951         info->other_info = interp_info;
1952         if (interp_info) {
1953             interp_info->other_info = info;
1954             sp = loader_build_fdpic_loadmap(interp_info, sp);
1955             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1956             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1957         } else {
1958             info->interpreter_loadmap_addr = 0;
1959             info->interpreter_pt_dynamic_addr = 0;
1960         }
1961     }
1962 
1963     u_platform = 0;
1964     k_platform = ELF_PLATFORM;
1965     if (k_platform) {
1966         size_t len = strlen(k_platform) + 1;
1967         if (STACK_GROWS_DOWN) {
1968             sp -= (len + n - 1) & ~(n - 1);
1969             u_platform = sp;
1970             /* FIXME - check return value of memcpy_to_target() for failure */
1971             memcpy_to_target(sp, k_platform, len);
1972         } else {
1973             memcpy_to_target(sp, k_platform, len);
1974             u_platform = sp;
1975             sp += len + 1;
1976         }
1977     }
1978 
1979     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1980      * the argv and envp pointers.
1981      */
1982     if (STACK_GROWS_DOWN) {
1983         sp = QEMU_ALIGN_DOWN(sp, 16);
1984     } else {
1985         sp = QEMU_ALIGN_UP(sp, 16);
1986     }
1987 
1988     /*
1989      * Generate 16 random bytes for userspace PRNG seeding.
1990      */
1991     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1992     if (STACK_GROWS_DOWN) {
1993         sp -= 16;
1994         u_rand_bytes = sp;
1995         /* FIXME - check return value of memcpy_to_target() for failure */
1996         memcpy_to_target(sp, k_rand_bytes, 16);
1997     } else {
1998         memcpy_to_target(sp, k_rand_bytes, 16);
1999         u_rand_bytes = sp;
2000         sp += 16;
2001     }
2002 
2003     size = (DLINFO_ITEMS + 1) * 2;
2004     if (k_platform)
2005         size += 2;
2006 #ifdef DLINFO_ARCH_ITEMS
2007     size += DLINFO_ARCH_ITEMS * 2;
2008 #endif
2009 #ifdef ELF_HWCAP2
2010     size += 2;
2011 #endif
2012     info->auxv_len = size * n;
2013 
2014     size += envc + argc + 2;
2015     size += 1;  /* argc itself */
2016     size *= n;
2017 
2018     /* Allocate space and finalize stack alignment for entry now.  */
2019     if (STACK_GROWS_DOWN) {
2020         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2021         sp = u_argc;
2022     } else {
2023         u_argc = sp;
2024         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2025     }
2026 
2027     u_argv = u_argc + n;
2028     u_envp = u_argv + (argc + 1) * n;
2029     u_auxv = u_envp + (envc + 1) * n;
2030     info->saved_auxv = u_auxv;
2031     info->arg_start = u_argv;
2032     info->arg_end = u_argv + argc * n;
2033 
2034     /* This is correct because Linux defines
2035      * elf_addr_t as Elf32_Off / Elf64_Off
2036      */
2037 #define NEW_AUX_ENT(id, val) do {               \
2038         put_user_ual(id, u_auxv);  u_auxv += n; \
2039         put_user_ual(val, u_auxv); u_auxv += n; \
2040     } while(0)
2041 
2042 #ifdef ARCH_DLINFO
2043     /*
2044      * ARCH_DLINFO must come first so platform specific code can enforce
2045      * special alignment requirements on the AUXV if necessary (eg. PPC).
2046      */
2047     ARCH_DLINFO;
2048 #endif
2049     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2050      * on info->auxv_len will trigger.
2051      */
2052     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2053     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2054     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2055     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2056         /* Target doesn't support host page size alignment */
2057         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2058     } else {
2059         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2060                                                qemu_host_page_size)));
2061     }
2062     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2063     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2064     NEW_AUX_ENT(AT_ENTRY, info->entry);
2065     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2066     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2067     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2068     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2069     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2070     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2071     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2072     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2073     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2074 
2075 #ifdef ELF_HWCAP2
2076     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2077 #endif
2078 
2079     if (u_platform) {
2080         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2081     }
2082     NEW_AUX_ENT (AT_NULL, 0);
2083 #undef NEW_AUX_ENT
2084 
2085     /* Check that our initial calculation of the auxv length matches how much
2086      * we actually put into it.
2087      */
2088     assert(info->auxv_len == u_auxv - info->saved_auxv);
2089 
2090     put_user_ual(argc, u_argc);
2091 
2092     p = info->arg_strings;
2093     for (i = 0; i < argc; ++i) {
2094         put_user_ual(p, u_argv);
2095         u_argv += n;
2096         p += target_strlen(p) + 1;
2097     }
2098     put_user_ual(0, u_argv);
2099 
2100     p = info->env_strings;
2101     for (i = 0; i < envc; ++i) {
2102         put_user_ual(p, u_envp);
2103         u_envp += n;
2104         p += target_strlen(p) + 1;
2105     }
2106     put_user_ual(0, u_envp);
2107 
2108     return sp;
2109 }
2110 
2111 #ifndef ARM_COMMPAGE
2112 #define ARM_COMMPAGE 0
2113 #define init_guest_commpage() true
2114 #endif
2115 
2116 static void pgb_fail_in_use(const char *image_name)
2117 {
2118     error_report("%s: requires virtual address space that is in use "
2119                  "(omit the -B option or choose a different value)",
2120                  image_name);
2121     exit(EXIT_FAILURE);
2122 }
2123 
2124 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2125                                 abi_ulong guest_hiaddr, long align)
2126 {
2127     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2128     void *addr, *test;
2129 
2130     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2131         fprintf(stderr, "Requested guest base %p does not satisfy "
2132                 "host minimum alignment (0x%lx)\n",
2133                 (void *)guest_base, align);
2134         exit(EXIT_FAILURE);
2135     }
2136 
2137     /* Sanity check the guest binary. */
2138     if (reserved_va) {
2139         if (guest_hiaddr > reserved_va) {
2140             error_report("%s: requires more than reserved virtual "
2141                          "address space (0x%" PRIx64 " > 0x%lx)",
2142                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2143             exit(EXIT_FAILURE);
2144         }
2145     } else {
2146 #if HOST_LONG_BITS < TARGET_ABI_BITS
2147         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2148             error_report("%s: requires more virtual address space "
2149                          "than the host can provide (0x%" PRIx64 ")",
2150                          image_name, (uint64_t)guest_hiaddr - guest_base);
2151             exit(EXIT_FAILURE);
2152         }
2153 #endif
2154     }
2155 
2156     /*
2157      * Expand the allocation to the entire reserved_va.
2158      * Exclude the mmap_min_addr hole.
2159      */
2160     if (reserved_va) {
2161         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2162                         : mmap_min_addr - guest_base);
2163         guest_hiaddr = reserved_va;
2164     }
2165 
2166     /* Reserve the address space for the binary, or reserved_va. */
2167     test = g2h_untagged(guest_loaddr);
2168     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2169     if (test != addr) {
2170         pgb_fail_in_use(image_name);
2171     }
2172 }
2173 
2174 /**
2175  * pgd_find_hole_fallback: potential mmap address
2176  * @guest_size: size of available space
2177  * @brk: location of break
2178  * @align: memory alignment
2179  *
2180  * This is a fallback method for finding a hole in the host address
2181  * space if we don't have the benefit of being able to access
2182  * /proc/self/map. It can potentially take a very long time as we can
2183  * only dumbly iterate up the host address space seeing if the
2184  * allocation would work.
2185  */
2186 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2187                                         long align, uintptr_t offset)
2188 {
2189     uintptr_t base;
2190 
2191     /* Start (aligned) at the bottom and work our way up */
2192     base = ROUND_UP(mmap_min_addr, align);
2193 
2194     while (true) {
2195         uintptr_t align_start, end;
2196         align_start = ROUND_UP(base, align);
2197         end = align_start + guest_size + offset;
2198 
2199         /* if brk is anywhere in the range give ourselves some room to grow. */
2200         if (align_start <= brk && brk < end) {
2201             base = brk + (16 * MiB);
2202             continue;
2203         } else if (align_start + guest_size < align_start) {
2204             /* we have run out of space */
2205             return -1;
2206         } else {
2207             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2208                 MAP_FIXED_NOREPLACE;
2209             void * mmap_start = mmap((void *) align_start, guest_size,
2210                                      PROT_NONE, flags, -1, 0);
2211             if (mmap_start != MAP_FAILED) {
2212                 munmap(mmap_start, guest_size);
2213                 if (mmap_start == (void *) align_start) {
2214                     return (uintptr_t) mmap_start + offset;
2215                 }
2216             }
2217             base += qemu_host_page_size;
2218         }
2219     }
2220 }
2221 
2222 /* Return value for guest_base, or -1 if no hole found. */
2223 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2224                                long align, uintptr_t offset)
2225 {
2226     GSList *maps, *iter;
2227     uintptr_t this_start, this_end, next_start, brk;
2228     intptr_t ret = -1;
2229 
2230     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2231 
2232     maps = read_self_maps();
2233 
2234     /* Read brk after we've read the maps, which will malloc. */
2235     brk = (uintptr_t)sbrk(0);
2236 
2237     if (!maps) {
2238         ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2239         return ret == -1 ? -1 : ret - guest_loaddr;
2240     }
2241 
2242     /* The first hole is before the first map entry. */
2243     this_start = mmap_min_addr;
2244 
2245     for (iter = maps; iter;
2246          this_start = next_start, iter = g_slist_next(iter)) {
2247         uintptr_t align_start, hole_size;
2248 
2249         this_end = ((MapInfo *)iter->data)->start;
2250         next_start = ((MapInfo *)iter->data)->end;
2251         align_start = ROUND_UP(this_start + offset, align);
2252 
2253         /* Skip holes that are too small. */
2254         if (align_start >= this_end) {
2255             continue;
2256         }
2257         hole_size = this_end - align_start;
2258         if (hole_size < guest_size) {
2259             continue;
2260         }
2261 
2262         /* If this hole contains brk, give ourselves some room to grow. */
2263         if (this_start <= brk && brk < this_end) {
2264             hole_size -= guest_size;
2265             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2266                 align_start += 1 * GiB;
2267             } else if (hole_size >= 16 * MiB) {
2268                 align_start += 16 * MiB;
2269             } else {
2270                 align_start = (this_end - guest_size) & -align;
2271                 if (align_start < this_start) {
2272                     continue;
2273                 }
2274             }
2275         }
2276 
2277         /* Record the lowest successful match. */
2278         if (ret < 0) {
2279             ret = align_start - guest_loaddr;
2280         }
2281         /* If this hole contains the identity map, select it. */
2282         if (align_start <= guest_loaddr &&
2283             guest_loaddr + guest_size <= this_end) {
2284             ret = 0;
2285         }
2286         /* If this hole ends above the identity map, stop looking. */
2287         if (this_end >= guest_loaddr) {
2288             break;
2289         }
2290     }
2291     free_self_maps(maps);
2292 
2293     return ret;
2294 }
2295 
2296 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2297                        abi_ulong orig_hiaddr, long align)
2298 {
2299     uintptr_t loaddr = orig_loaddr;
2300     uintptr_t hiaddr = orig_hiaddr;
2301     uintptr_t offset = 0;
2302     uintptr_t addr;
2303 
2304     if (hiaddr != orig_hiaddr) {
2305         error_report("%s: requires virtual address space that the "
2306                      "host cannot provide (0x%" PRIx64 ")",
2307                      image_name, (uint64_t)orig_hiaddr);
2308         exit(EXIT_FAILURE);
2309     }
2310 
2311     loaddr &= -align;
2312     if (ARM_COMMPAGE) {
2313         /*
2314          * Extend the allocation to include the commpage.
2315          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2316          * need to ensure there is space bellow the guest_base so we
2317          * can map the commpage in the place needed when the address
2318          * arithmetic wraps around.
2319          */
2320         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2321             hiaddr = (uintptr_t) 4 << 30;
2322         } else {
2323             offset = -(ARM_COMMPAGE & -align);
2324         }
2325     }
2326 
2327     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2328     if (addr == -1) {
2329         /*
2330          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2331          * that can satisfy both.  But as the normal arm32 link base address
2332          * is ~32k, and we extend down to include the commpage, making the
2333          * overhead only ~96k, this is unlikely.
2334          */
2335         error_report("%s: Unable to allocate %#zx bytes of "
2336                      "virtual address space", image_name,
2337                      (size_t)(hiaddr - loaddr));
2338         exit(EXIT_FAILURE);
2339     }
2340 
2341     guest_base = addr;
2342 }
2343 
2344 static void pgb_dynamic(const char *image_name, long align)
2345 {
2346     /*
2347      * The executable is dynamic and does not require a fixed address.
2348      * All we need is a commpage that satisfies align.
2349      * If we do not need a commpage, leave guest_base == 0.
2350      */
2351     if (ARM_COMMPAGE) {
2352         uintptr_t addr, commpage;
2353 
2354         /* 64-bit hosts should have used reserved_va. */
2355         assert(sizeof(uintptr_t) == 4);
2356 
2357         /*
2358          * By putting the commpage at the first hole, that puts guest_base
2359          * just above that, and maximises the positive guest addresses.
2360          */
2361         commpage = ARM_COMMPAGE & -align;
2362         addr = pgb_find_hole(commpage, -commpage, align, 0);
2363         assert(addr != -1);
2364         guest_base = addr;
2365     }
2366 }
2367 
2368 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2369                             abi_ulong guest_hiaddr, long align)
2370 {
2371     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2372     void *addr, *test;
2373 
2374     if (guest_hiaddr > reserved_va) {
2375         error_report("%s: requires more than reserved virtual "
2376                      "address space (0x%" PRIx64 " > 0x%lx)",
2377                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2378         exit(EXIT_FAILURE);
2379     }
2380 
2381     /* Widen the "image" to the entire reserved address space. */
2382     pgb_static(image_name, 0, reserved_va, align);
2383 
2384     /* osdep.h defines this as 0 if it's missing */
2385     flags |= MAP_FIXED_NOREPLACE;
2386 
2387     /* Reserve the memory on the host. */
2388     assert(guest_base != 0);
2389     test = g2h_untagged(0);
2390     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2391     if (addr == MAP_FAILED || addr != test) {
2392         error_report("Unable to reserve 0x%lx bytes of virtual address "
2393                      "space at %p (%s) for use as guest address space (check your"
2394                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2395                      "using -R option)", reserved_va, test, strerror(errno));
2396         exit(EXIT_FAILURE);
2397     }
2398 }
2399 
2400 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2401                       abi_ulong guest_hiaddr)
2402 {
2403     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2404     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2405 
2406     if (have_guest_base) {
2407         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2408     } else if (reserved_va) {
2409         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2410     } else if (guest_loaddr) {
2411         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2412     } else {
2413         pgb_dynamic(image_name, align);
2414     }
2415 
2416     /* Reserve and initialize the commpage. */
2417     if (!init_guest_commpage()) {
2418         /*
2419          * With have_guest_base, the user has selected the address and
2420          * we are trying to work with that.  Otherwise, we have selected
2421          * free space and init_guest_commpage must succeeded.
2422          */
2423         assert(have_guest_base);
2424         pgb_fail_in_use(image_name);
2425     }
2426 
2427     assert(QEMU_IS_ALIGNED(guest_base, align));
2428     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2429                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2430 }
2431 
2432 enum {
2433     /* The string "GNU\0" as a magic number. */
2434     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2435     NOTE_DATA_SZ = 1 * KiB,
2436     NOTE_NAME_SZ = 4,
2437     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2438 };
2439 
2440 /*
2441  * Process a single gnu_property entry.
2442  * Return false for error.
2443  */
2444 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2445                                struct image_info *info, bool have_prev_type,
2446                                uint32_t *prev_type, Error **errp)
2447 {
2448     uint32_t pr_type, pr_datasz, step;
2449 
2450     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2451         goto error_data;
2452     }
2453     datasz -= *off;
2454     data += *off / sizeof(uint32_t);
2455 
2456     if (datasz < 2 * sizeof(uint32_t)) {
2457         goto error_data;
2458     }
2459     pr_type = data[0];
2460     pr_datasz = data[1];
2461     data += 2;
2462     datasz -= 2 * sizeof(uint32_t);
2463     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2464     if (step > datasz) {
2465         goto error_data;
2466     }
2467 
2468     /* Properties are supposed to be unique and sorted on pr_type. */
2469     if (have_prev_type && pr_type <= *prev_type) {
2470         if (pr_type == *prev_type) {
2471             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2472         } else {
2473             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2474         }
2475         return false;
2476     }
2477     *prev_type = pr_type;
2478 
2479     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2480         return false;
2481     }
2482 
2483     *off += 2 * sizeof(uint32_t) + step;
2484     return true;
2485 
2486  error_data:
2487     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2488     return false;
2489 }
2490 
2491 /* Process NT_GNU_PROPERTY_TYPE_0. */
2492 static bool parse_elf_properties(int image_fd,
2493                                  struct image_info *info,
2494                                  const struct elf_phdr *phdr,
2495                                  char bprm_buf[BPRM_BUF_SIZE],
2496                                  Error **errp)
2497 {
2498     union {
2499         struct elf_note nhdr;
2500         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2501     } note;
2502 
2503     int n, off, datasz;
2504     bool have_prev_type;
2505     uint32_t prev_type;
2506 
2507     /* Unless the arch requires properties, ignore them. */
2508     if (!ARCH_USE_GNU_PROPERTY) {
2509         return true;
2510     }
2511 
2512     /* If the properties are crazy large, that's too bad. */
2513     n = phdr->p_filesz;
2514     if (n > sizeof(note)) {
2515         error_setg(errp, "PT_GNU_PROPERTY too large");
2516         return false;
2517     }
2518     if (n < sizeof(note.nhdr)) {
2519         error_setg(errp, "PT_GNU_PROPERTY too small");
2520         return false;
2521     }
2522 
2523     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2524         memcpy(&note, bprm_buf + phdr->p_offset, n);
2525     } else {
2526         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2527         if (len != n) {
2528             error_setg_errno(errp, errno, "Error reading file header");
2529             return false;
2530         }
2531     }
2532 
2533     /*
2534      * The contents of a valid PT_GNU_PROPERTY is a sequence
2535      * of uint32_t -- swap them all now.
2536      */
2537 #ifdef BSWAP_NEEDED
2538     for (int i = 0; i < n / 4; i++) {
2539         bswap32s(note.data + i);
2540     }
2541 #endif
2542 
2543     /*
2544      * Note that nhdr is 3 words, and that the "name" described by namesz
2545      * immediately follows nhdr and is thus at the 4th word.  Further, all
2546      * of the inputs to the kernel's round_up are multiples of 4.
2547      */
2548     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2549         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2550         note.data[3] != GNU0_MAGIC) {
2551         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2552         return false;
2553     }
2554     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2555 
2556     datasz = note.nhdr.n_descsz + off;
2557     if (datasz > n) {
2558         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2559         return false;
2560     }
2561 
2562     have_prev_type = false;
2563     prev_type = 0;
2564     while (1) {
2565         if (off == datasz) {
2566             return true;  /* end, exit ok */
2567         }
2568         if (!parse_elf_property(note.data, &off, datasz, info,
2569                                 have_prev_type, &prev_type, errp)) {
2570             return false;
2571         }
2572         have_prev_type = true;
2573     }
2574 }
2575 
2576 /* Load an ELF image into the address space.
2577 
2578    IMAGE_NAME is the filename of the image, to use in error messages.
2579    IMAGE_FD is the open file descriptor for the image.
2580 
2581    BPRM_BUF is a copy of the beginning of the file; this of course
2582    contains the elf file header at offset 0.  It is assumed that this
2583    buffer is sufficiently aligned to present no problems to the host
2584    in accessing data at aligned offsets within the buffer.
2585 
2586    On return: INFO values will be filled in, as necessary or available.  */
2587 
2588 static void load_elf_image(const char *image_name, int image_fd,
2589                            struct image_info *info, char **pinterp_name,
2590                            char bprm_buf[BPRM_BUF_SIZE])
2591 {
2592     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2593     struct elf_phdr *phdr;
2594     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2595     int i, retval, prot_exec;
2596     Error *err = NULL;
2597 
2598     /* First of all, some simple consistency checks */
2599     if (!elf_check_ident(ehdr)) {
2600         error_setg(&err, "Invalid ELF image for this architecture");
2601         goto exit_errmsg;
2602     }
2603     bswap_ehdr(ehdr);
2604     if (!elf_check_ehdr(ehdr)) {
2605         error_setg(&err, "Invalid ELF image for this architecture");
2606         goto exit_errmsg;
2607     }
2608 
2609     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2610     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2611         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2612     } else {
2613         phdr = (struct elf_phdr *) alloca(i);
2614         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2615         if (retval != i) {
2616             goto exit_read;
2617         }
2618     }
2619     bswap_phdr(phdr, ehdr->e_phnum);
2620 
2621     info->nsegs = 0;
2622     info->pt_dynamic_addr = 0;
2623 
2624     mmap_lock();
2625 
2626     /*
2627      * Find the maximum size of the image and allocate an appropriate
2628      * amount of memory to handle that.  Locate the interpreter, if any.
2629      */
2630     loaddr = -1, hiaddr = 0;
2631     info->alignment = 0;
2632     for (i = 0; i < ehdr->e_phnum; ++i) {
2633         struct elf_phdr *eppnt = phdr + i;
2634         if (eppnt->p_type == PT_LOAD) {
2635             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2636             if (a < loaddr) {
2637                 loaddr = a;
2638             }
2639             a = eppnt->p_vaddr + eppnt->p_memsz;
2640             if (a > hiaddr) {
2641                 hiaddr = a;
2642             }
2643             ++info->nsegs;
2644             info->alignment |= eppnt->p_align;
2645         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2646             g_autofree char *interp_name = NULL;
2647 
2648             if (*pinterp_name) {
2649                 error_setg(&err, "Multiple PT_INTERP entries");
2650                 goto exit_errmsg;
2651             }
2652 
2653             interp_name = g_malloc(eppnt->p_filesz);
2654 
2655             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2656                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2657                        eppnt->p_filesz);
2658             } else {
2659                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2660                                eppnt->p_offset);
2661                 if (retval != eppnt->p_filesz) {
2662                     goto exit_read;
2663                 }
2664             }
2665             if (interp_name[eppnt->p_filesz - 1] != 0) {
2666                 error_setg(&err, "Invalid PT_INTERP entry");
2667                 goto exit_errmsg;
2668             }
2669             *pinterp_name = g_steal_pointer(&interp_name);
2670         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2671             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2672                 goto exit_errmsg;
2673             }
2674         }
2675     }
2676 
2677     if (pinterp_name != NULL) {
2678         /*
2679          * This is the main executable.
2680          *
2681          * Reserve extra space for brk.
2682          * We hold on to this space while placing the interpreter
2683          * and the stack, lest they be placed immediately after
2684          * the data segment and block allocation from the brk.
2685          *
2686          * 16MB is chosen as "large enough" without being so large
2687          * as to allow the result to not fit with a 32-bit guest on
2688          * a 32-bit host.
2689          */
2690         info->reserve_brk = 16 * MiB;
2691         hiaddr += info->reserve_brk;
2692 
2693         if (ehdr->e_type == ET_EXEC) {
2694             /*
2695              * Make sure that the low address does not conflict with
2696              * MMAP_MIN_ADDR or the QEMU application itself.
2697              */
2698             probe_guest_base(image_name, loaddr, hiaddr);
2699         } else {
2700             /*
2701              * The binary is dynamic, but we still need to
2702              * select guest_base.  In this case we pass a size.
2703              */
2704             probe_guest_base(image_name, 0, hiaddr - loaddr);
2705         }
2706     }
2707 
2708     /*
2709      * Reserve address space for all of this.
2710      *
2711      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2712      * exactly the address range that is required.
2713      *
2714      * Otherwise this is ET_DYN, and we are searching for a location
2715      * that can hold the memory space required.  If the image is
2716      * pre-linked, LOADDR will be non-zero, and the kernel should
2717      * honor that address if it happens to be free.
2718      *
2719      * In both cases, we will overwrite pages in this range with mappings
2720      * from the executable.
2721      */
2722     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2723                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2724                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2725                             -1, 0);
2726     if (load_addr == -1) {
2727         goto exit_mmap;
2728     }
2729     load_bias = load_addr - loaddr;
2730 
2731     if (elf_is_fdpic(ehdr)) {
2732         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2733             g_malloc(sizeof(*loadsegs) * info->nsegs);
2734 
2735         for (i = 0; i < ehdr->e_phnum; ++i) {
2736             switch (phdr[i].p_type) {
2737             case PT_DYNAMIC:
2738                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2739                 break;
2740             case PT_LOAD:
2741                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2742                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2743                 loadsegs->p_memsz = phdr[i].p_memsz;
2744                 ++loadsegs;
2745                 break;
2746             }
2747         }
2748     }
2749 
2750     info->load_bias = load_bias;
2751     info->code_offset = load_bias;
2752     info->data_offset = load_bias;
2753     info->load_addr = load_addr;
2754     info->entry = ehdr->e_entry + load_bias;
2755     info->start_code = -1;
2756     info->end_code = 0;
2757     info->start_data = -1;
2758     info->end_data = 0;
2759     info->brk = 0;
2760     info->elf_flags = ehdr->e_flags;
2761 
2762     prot_exec = PROT_EXEC;
2763 #ifdef TARGET_AARCH64
2764     /*
2765      * If the BTI feature is present, this indicates that the executable
2766      * pages of the startup binary should be mapped with PROT_BTI, so that
2767      * branch targets are enforced.
2768      *
2769      * The startup binary is either the interpreter or the static executable.
2770      * The interpreter is responsible for all pages of a dynamic executable.
2771      *
2772      * Elf notes are backward compatible to older cpus.
2773      * Do not enable BTI unless it is supported.
2774      */
2775     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2776         && (pinterp_name == NULL || *pinterp_name == 0)
2777         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2778         prot_exec |= TARGET_PROT_BTI;
2779     }
2780 #endif
2781 
2782     for (i = 0; i < ehdr->e_phnum; i++) {
2783         struct elf_phdr *eppnt = phdr + i;
2784         if (eppnt->p_type == PT_LOAD) {
2785             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2786             int elf_prot = 0;
2787 
2788             if (eppnt->p_flags & PF_R) {
2789                 elf_prot |= PROT_READ;
2790             }
2791             if (eppnt->p_flags & PF_W) {
2792                 elf_prot |= PROT_WRITE;
2793             }
2794             if (eppnt->p_flags & PF_X) {
2795                 elf_prot |= prot_exec;
2796             }
2797 
2798             vaddr = load_bias + eppnt->p_vaddr;
2799             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2800             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2801 
2802             vaddr_ef = vaddr + eppnt->p_filesz;
2803             vaddr_em = vaddr + eppnt->p_memsz;
2804 
2805             /*
2806              * Some segments may be completely empty, with a non-zero p_memsz
2807              * but no backing file segment.
2808              */
2809             if (eppnt->p_filesz != 0) {
2810                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2811                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2812                                     MAP_PRIVATE | MAP_FIXED,
2813                                     image_fd, eppnt->p_offset - vaddr_po);
2814 
2815                 if (error == -1) {
2816                     goto exit_mmap;
2817                 }
2818 
2819                 /*
2820                  * If the load segment requests extra zeros (e.g. bss), map it.
2821                  */
2822                 if (eppnt->p_filesz < eppnt->p_memsz) {
2823                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2824                 }
2825             } else if (eppnt->p_memsz != 0) {
2826                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2827                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2828                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2829                                     -1, 0);
2830 
2831                 if (error == -1) {
2832                     goto exit_mmap;
2833                 }
2834             }
2835 
2836             /* Find the full program boundaries.  */
2837             if (elf_prot & PROT_EXEC) {
2838                 if (vaddr < info->start_code) {
2839                     info->start_code = vaddr;
2840                 }
2841                 if (vaddr_ef > info->end_code) {
2842                     info->end_code = vaddr_ef;
2843                 }
2844             }
2845             if (elf_prot & PROT_WRITE) {
2846                 if (vaddr < info->start_data) {
2847                     info->start_data = vaddr;
2848                 }
2849                 if (vaddr_ef > info->end_data) {
2850                     info->end_data = vaddr_ef;
2851                 }
2852             }
2853             if (vaddr_em > info->brk) {
2854                 info->brk = vaddr_em;
2855             }
2856 #ifdef TARGET_MIPS
2857         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2858             Mips_elf_abiflags_v0 abiflags;
2859             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2860                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2861                 goto exit_errmsg;
2862             }
2863             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2864                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2865                        sizeof(Mips_elf_abiflags_v0));
2866             } else {
2867                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2868                                eppnt->p_offset);
2869                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2870                     goto exit_read;
2871                 }
2872             }
2873             bswap_mips_abiflags(&abiflags);
2874             info->fp_abi = abiflags.fp_abi;
2875 #endif
2876         }
2877     }
2878 
2879     if (info->end_data == 0) {
2880         info->start_data = info->end_code;
2881         info->end_data = info->end_code;
2882     }
2883 
2884     if (qemu_log_enabled()) {
2885         load_symbols(ehdr, image_fd, load_bias);
2886     }
2887 
2888     mmap_unlock();
2889 
2890     close(image_fd);
2891     return;
2892 
2893  exit_read:
2894     if (retval >= 0) {
2895         error_setg(&err, "Incomplete read of file header");
2896     } else {
2897         error_setg_errno(&err, errno, "Error reading file header");
2898     }
2899     goto exit_errmsg;
2900  exit_mmap:
2901     error_setg_errno(&err, errno, "Error mapping file");
2902     goto exit_errmsg;
2903  exit_errmsg:
2904     error_reportf_err(err, "%s: ", image_name);
2905     exit(-1);
2906 }
2907 
2908 static void load_elf_interp(const char *filename, struct image_info *info,
2909                             char bprm_buf[BPRM_BUF_SIZE])
2910 {
2911     int fd, retval;
2912     Error *err = NULL;
2913 
2914     fd = open(path(filename), O_RDONLY);
2915     if (fd < 0) {
2916         error_setg_file_open(&err, errno, filename);
2917         error_report_err(err);
2918         exit(-1);
2919     }
2920 
2921     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2922     if (retval < 0) {
2923         error_setg_errno(&err, errno, "Error reading file header");
2924         error_reportf_err(err, "%s: ", filename);
2925         exit(-1);
2926     }
2927 
2928     if (retval < BPRM_BUF_SIZE) {
2929         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2930     }
2931 
2932     load_elf_image(filename, fd, info, NULL, bprm_buf);
2933 }
2934 
2935 static int symfind(const void *s0, const void *s1)
2936 {
2937     target_ulong addr = *(target_ulong *)s0;
2938     struct elf_sym *sym = (struct elf_sym *)s1;
2939     int result = 0;
2940     if (addr < sym->st_value) {
2941         result = -1;
2942     } else if (addr >= sym->st_value + sym->st_size) {
2943         result = 1;
2944     }
2945     return result;
2946 }
2947 
2948 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2949 {
2950 #if ELF_CLASS == ELFCLASS32
2951     struct elf_sym *syms = s->disas_symtab.elf32;
2952 #else
2953     struct elf_sym *syms = s->disas_symtab.elf64;
2954 #endif
2955 
2956     // binary search
2957     struct elf_sym *sym;
2958 
2959     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2960     if (sym != NULL) {
2961         return s->disas_strtab + sym->st_name;
2962     }
2963 
2964     return "";
2965 }
2966 
2967 /* FIXME: This should use elf_ops.h  */
2968 static int symcmp(const void *s0, const void *s1)
2969 {
2970     struct elf_sym *sym0 = (struct elf_sym *)s0;
2971     struct elf_sym *sym1 = (struct elf_sym *)s1;
2972     return (sym0->st_value < sym1->st_value)
2973         ? -1
2974         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2975 }
2976 
2977 /* Best attempt to load symbols from this ELF object. */
2978 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2979 {
2980     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2981     uint64_t segsz;
2982     struct elf_shdr *shdr;
2983     char *strings = NULL;
2984     struct syminfo *s = NULL;
2985     struct elf_sym *new_syms, *syms = NULL;
2986 
2987     shnum = hdr->e_shnum;
2988     i = shnum * sizeof(struct elf_shdr);
2989     shdr = (struct elf_shdr *)alloca(i);
2990     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2991         return;
2992     }
2993 
2994     bswap_shdr(shdr, shnum);
2995     for (i = 0; i < shnum; ++i) {
2996         if (shdr[i].sh_type == SHT_SYMTAB) {
2997             sym_idx = i;
2998             str_idx = shdr[i].sh_link;
2999             goto found;
3000         }
3001     }
3002 
3003     /* There will be no symbol table if the file was stripped.  */
3004     return;
3005 
3006  found:
3007     /* Now know where the strtab and symtab are.  Snarf them.  */
3008     s = g_try_new(struct syminfo, 1);
3009     if (!s) {
3010         goto give_up;
3011     }
3012 
3013     segsz = shdr[str_idx].sh_size;
3014     s->disas_strtab = strings = g_try_malloc(segsz);
3015     if (!strings ||
3016         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3017         goto give_up;
3018     }
3019 
3020     segsz = shdr[sym_idx].sh_size;
3021     syms = g_try_malloc(segsz);
3022     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3023         goto give_up;
3024     }
3025 
3026     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3027         /* Implausibly large symbol table: give up rather than ploughing
3028          * on with the number of symbols calculation overflowing
3029          */
3030         goto give_up;
3031     }
3032     nsyms = segsz / sizeof(struct elf_sym);
3033     for (i = 0; i < nsyms; ) {
3034         bswap_sym(syms + i);
3035         /* Throw away entries which we do not need.  */
3036         if (syms[i].st_shndx == SHN_UNDEF
3037             || syms[i].st_shndx >= SHN_LORESERVE
3038             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3039             if (i < --nsyms) {
3040                 syms[i] = syms[nsyms];
3041             }
3042         } else {
3043 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3044             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3045             syms[i].st_value &= ~(target_ulong)1;
3046 #endif
3047             syms[i].st_value += load_bias;
3048             i++;
3049         }
3050     }
3051 
3052     /* No "useful" symbol.  */
3053     if (nsyms == 0) {
3054         goto give_up;
3055     }
3056 
3057     /* Attempt to free the storage associated with the local symbols
3058        that we threw away.  Whether or not this has any effect on the
3059        memory allocation depends on the malloc implementation and how
3060        many symbols we managed to discard.  */
3061     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3062     if (new_syms == NULL) {
3063         goto give_up;
3064     }
3065     syms = new_syms;
3066 
3067     qsort(syms, nsyms, sizeof(*syms), symcmp);
3068 
3069     s->disas_num_syms = nsyms;
3070 #if ELF_CLASS == ELFCLASS32
3071     s->disas_symtab.elf32 = syms;
3072 #else
3073     s->disas_symtab.elf64 = syms;
3074 #endif
3075     s->lookup_symbol = lookup_symbolxx;
3076     s->next = syminfos;
3077     syminfos = s;
3078 
3079     return;
3080 
3081 give_up:
3082     g_free(s);
3083     g_free(strings);
3084     g_free(syms);
3085 }
3086 
3087 uint32_t get_elf_eflags(int fd)
3088 {
3089     struct elfhdr ehdr;
3090     off_t offset;
3091     int ret;
3092 
3093     /* Read ELF header */
3094     offset = lseek(fd, 0, SEEK_SET);
3095     if (offset == (off_t) -1) {
3096         return 0;
3097     }
3098     ret = read(fd, &ehdr, sizeof(ehdr));
3099     if (ret < sizeof(ehdr)) {
3100         return 0;
3101     }
3102     offset = lseek(fd, offset, SEEK_SET);
3103     if (offset == (off_t) -1) {
3104         return 0;
3105     }
3106 
3107     /* Check ELF signature */
3108     if (!elf_check_ident(&ehdr)) {
3109         return 0;
3110     }
3111 
3112     /* check header */
3113     bswap_ehdr(&ehdr);
3114     if (!elf_check_ehdr(&ehdr)) {
3115         return 0;
3116     }
3117 
3118     /* return architecture id */
3119     return ehdr.e_flags;
3120 }
3121 
3122 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3123 {
3124     struct image_info interp_info;
3125     struct elfhdr elf_ex;
3126     char *elf_interpreter = NULL;
3127     char *scratch;
3128 
3129     memset(&interp_info, 0, sizeof(interp_info));
3130 #ifdef TARGET_MIPS
3131     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3132 #endif
3133 
3134     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3135 
3136     load_elf_image(bprm->filename, bprm->fd, info,
3137                    &elf_interpreter, bprm->buf);
3138 
3139     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3140        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3141        when we load the interpreter.  */
3142     elf_ex = *(struct elfhdr *)bprm->buf;
3143 
3144     /* Do this so that we can load the interpreter, if need be.  We will
3145        change some of these later */
3146     bprm->p = setup_arg_pages(bprm, info);
3147 
3148     scratch = g_new0(char, TARGET_PAGE_SIZE);
3149     if (STACK_GROWS_DOWN) {
3150         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3151                                    bprm->p, info->stack_limit);
3152         info->file_string = bprm->p;
3153         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3154                                    bprm->p, info->stack_limit);
3155         info->env_strings = bprm->p;
3156         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3157                                    bprm->p, info->stack_limit);
3158         info->arg_strings = bprm->p;
3159     } else {
3160         info->arg_strings = bprm->p;
3161         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3162                                    bprm->p, info->stack_limit);
3163         info->env_strings = bprm->p;
3164         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3165                                    bprm->p, info->stack_limit);
3166         info->file_string = bprm->p;
3167         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3168                                    bprm->p, info->stack_limit);
3169     }
3170 
3171     g_free(scratch);
3172 
3173     if (!bprm->p) {
3174         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3175         exit(-1);
3176     }
3177 
3178     if (elf_interpreter) {
3179         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3180 
3181         /* If the program interpreter is one of these two, then assume
3182            an iBCS2 image.  Otherwise assume a native linux image.  */
3183 
3184         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3185             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3186             info->personality = PER_SVR4;
3187 
3188             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3189                and some applications "depend" upon this behavior.  Since
3190                we do not have the power to recompile these, we emulate
3191                the SVr4 behavior.  Sigh.  */
3192             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3193                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3194         }
3195 #ifdef TARGET_MIPS
3196         info->interp_fp_abi = interp_info.fp_abi;
3197 #endif
3198     }
3199 
3200     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3201                                 info, (elf_interpreter ? &interp_info : NULL));
3202     info->start_stack = bprm->p;
3203 
3204     /* If we have an interpreter, set that as the program's entry point.
3205        Copy the load_bias as well, to help PPC64 interpret the entry
3206        point as a function descriptor.  Do this after creating elf tables
3207        so that we copy the original program entry point into the AUXV.  */
3208     if (elf_interpreter) {
3209         info->load_bias = interp_info.load_bias;
3210         info->entry = interp_info.entry;
3211         g_free(elf_interpreter);
3212     }
3213 
3214 #ifdef USE_ELF_CORE_DUMP
3215     bprm->core_dump = &elf_core_dump;
3216 #endif
3217 
3218     /*
3219      * If we reserved extra space for brk, release it now.
3220      * The implementation of do_brk in syscalls.c expects to be able
3221      * to mmap pages in this space.
3222      */
3223     if (info->reserve_brk) {
3224         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3225         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3226         target_munmap(start_brk, end_brk - start_brk);
3227     }
3228 
3229     return 0;
3230 }
3231 
3232 #ifdef USE_ELF_CORE_DUMP
3233 /*
3234  * Definitions to generate Intel SVR4-like core files.
3235  * These mostly have the same names as the SVR4 types with "target_elf_"
3236  * tacked on the front to prevent clashes with linux definitions,
3237  * and the typedef forms have been avoided.  This is mostly like
3238  * the SVR4 structure, but more Linuxy, with things that Linux does
3239  * not support and which gdb doesn't really use excluded.
3240  *
3241  * Fields we don't dump (their contents is zero) in linux-user qemu
3242  * are marked with XXX.
3243  *
3244  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3245  *
3246  * Porting ELF coredump for target is (quite) simple process.  First you
3247  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3248  * the target resides):
3249  *
3250  * #define USE_ELF_CORE_DUMP
3251  *
3252  * Next you define type of register set used for dumping.  ELF specification
3253  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3254  *
3255  * typedef <target_regtype> target_elf_greg_t;
3256  * #define ELF_NREG <number of registers>
3257  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3258  *
3259  * Last step is to implement target specific function that copies registers
3260  * from given cpu into just specified register set.  Prototype is:
3261  *
3262  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3263  *                                const CPUArchState *env);
3264  *
3265  * Parameters:
3266  *     regs - copy register values into here (allocated and zeroed by caller)
3267  *     env - copy registers from here
3268  *
3269  * Example for ARM target is provided in this file.
3270  */
3271 
3272 /* An ELF note in memory */
3273 struct memelfnote {
3274     const char *name;
3275     size_t     namesz;
3276     size_t     namesz_rounded;
3277     int        type;
3278     size_t     datasz;
3279     size_t     datasz_rounded;
3280     void       *data;
3281     size_t     notesz;
3282 };
3283 
3284 struct target_elf_siginfo {
3285     abi_int    si_signo; /* signal number */
3286     abi_int    si_code;  /* extra code */
3287     abi_int    si_errno; /* errno */
3288 };
3289 
3290 struct target_elf_prstatus {
3291     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3292     abi_short          pr_cursig;    /* Current signal */
3293     abi_ulong          pr_sigpend;   /* XXX */
3294     abi_ulong          pr_sighold;   /* XXX */
3295     target_pid_t       pr_pid;
3296     target_pid_t       pr_ppid;
3297     target_pid_t       pr_pgrp;
3298     target_pid_t       pr_sid;
3299     struct target_timeval pr_utime;  /* XXX User time */
3300     struct target_timeval pr_stime;  /* XXX System time */
3301     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3302     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3303     target_elf_gregset_t      pr_reg;       /* GP registers */
3304     abi_int            pr_fpvalid;   /* XXX */
3305 };
3306 
3307 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3308 
3309 struct target_elf_prpsinfo {
3310     char         pr_state;       /* numeric process state */
3311     char         pr_sname;       /* char for pr_state */
3312     char         pr_zomb;        /* zombie */
3313     char         pr_nice;        /* nice val */
3314     abi_ulong    pr_flag;        /* flags */
3315     target_uid_t pr_uid;
3316     target_gid_t pr_gid;
3317     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3318     /* Lots missing */
3319     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3320     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3321 };
3322 
3323 /* Here is the structure in which status of each thread is captured. */
3324 struct elf_thread_status {
3325     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3326     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3327 #if 0
3328     elf_fpregset_t fpu;             /* NT_PRFPREG */
3329     struct task_struct *thread;
3330     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3331 #endif
3332     struct memelfnote notes[1];
3333     int num_notes;
3334 };
3335 
3336 struct elf_note_info {
3337     struct memelfnote   *notes;
3338     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3339     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3340 
3341     QTAILQ_HEAD(, elf_thread_status) thread_list;
3342 #if 0
3343     /*
3344      * Current version of ELF coredump doesn't support
3345      * dumping fp regs etc.
3346      */
3347     elf_fpregset_t *fpu;
3348     elf_fpxregset_t *xfpu;
3349     int thread_status_size;
3350 #endif
3351     int notes_size;
3352     int numnote;
3353 };
3354 
3355 struct vm_area_struct {
3356     target_ulong   vma_start;  /* start vaddr of memory region */
3357     target_ulong   vma_end;    /* end vaddr of memory region */
3358     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3359     QTAILQ_ENTRY(vm_area_struct) vma_link;
3360 };
3361 
3362 struct mm_struct {
3363     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3364     int mm_count;           /* number of mappings */
3365 };
3366 
3367 static struct mm_struct *vma_init(void);
3368 static void vma_delete(struct mm_struct *);
3369 static int vma_add_mapping(struct mm_struct *, target_ulong,
3370                            target_ulong, abi_ulong);
3371 static int vma_get_mapping_count(const struct mm_struct *);
3372 static struct vm_area_struct *vma_first(const struct mm_struct *);
3373 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3374 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3375 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3376                       unsigned long flags);
3377 
3378 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3379 static void fill_note(struct memelfnote *, const char *, int,
3380                       unsigned int, void *);
3381 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3382 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3383 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3384 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3385 static size_t note_size(const struct memelfnote *);
3386 static void free_note_info(struct elf_note_info *);
3387 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3388 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3389 static int core_dump_filename(const TaskState *, char *, size_t);
3390 
3391 static int dump_write(int, const void *, size_t);
3392 static int write_note(struct memelfnote *, int);
3393 static int write_note_info(struct elf_note_info *, int);
3394 
3395 #ifdef BSWAP_NEEDED
3396 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3397 {
3398     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3399     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3400     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3401     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3402     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3403     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3404     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3405     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3406     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3407     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3408     /* cpu times are not filled, so we skip them */
3409     /* regs should be in correct format already */
3410     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3411 }
3412 
3413 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3414 {
3415     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3416     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3417     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3418     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3419     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3420     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3421     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3422 }
3423 
3424 static void bswap_note(struct elf_note *en)
3425 {
3426     bswap32s(&en->n_namesz);
3427     bswap32s(&en->n_descsz);
3428     bswap32s(&en->n_type);
3429 }
3430 #else
3431 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3432 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3433 static inline void bswap_note(struct elf_note *en) { }
3434 #endif /* BSWAP_NEEDED */
3435 
3436 /*
3437  * Minimal support for linux memory regions.  These are needed
3438  * when we are finding out what memory exactly belongs to
3439  * emulated process.  No locks needed here, as long as
3440  * thread that received the signal is stopped.
3441  */
3442 
3443 static struct mm_struct *vma_init(void)
3444 {
3445     struct mm_struct *mm;
3446 
3447     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3448         return (NULL);
3449 
3450     mm->mm_count = 0;
3451     QTAILQ_INIT(&mm->mm_mmap);
3452 
3453     return (mm);
3454 }
3455 
3456 static void vma_delete(struct mm_struct *mm)
3457 {
3458     struct vm_area_struct *vma;
3459 
3460     while ((vma = vma_first(mm)) != NULL) {
3461         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3462         g_free(vma);
3463     }
3464     g_free(mm);
3465 }
3466 
3467 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3468                            target_ulong end, abi_ulong flags)
3469 {
3470     struct vm_area_struct *vma;
3471 
3472     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3473         return (-1);
3474 
3475     vma->vma_start = start;
3476     vma->vma_end = end;
3477     vma->vma_flags = flags;
3478 
3479     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3480     mm->mm_count++;
3481 
3482     return (0);
3483 }
3484 
3485 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3486 {
3487     return (QTAILQ_FIRST(&mm->mm_mmap));
3488 }
3489 
3490 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3491 {
3492     return (QTAILQ_NEXT(vma, vma_link));
3493 }
3494 
3495 static int vma_get_mapping_count(const struct mm_struct *mm)
3496 {
3497     return (mm->mm_count);
3498 }
3499 
3500 /*
3501  * Calculate file (dump) size of given memory region.
3502  */
3503 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3504 {
3505     /* if we cannot even read the first page, skip it */
3506     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3507         return (0);
3508 
3509     /*
3510      * Usually we don't dump executable pages as they contain
3511      * non-writable code that debugger can read directly from
3512      * target library etc.  However, thread stacks are marked
3513      * also executable so we read in first page of given region
3514      * and check whether it contains elf header.  If there is
3515      * no elf header, we dump it.
3516      */
3517     if (vma->vma_flags & PROT_EXEC) {
3518         char page[TARGET_PAGE_SIZE];
3519 
3520         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3521             return 0;
3522         }
3523         if ((page[EI_MAG0] == ELFMAG0) &&
3524             (page[EI_MAG1] == ELFMAG1) &&
3525             (page[EI_MAG2] == ELFMAG2) &&
3526             (page[EI_MAG3] == ELFMAG3)) {
3527             /*
3528              * Mappings are possibly from ELF binary.  Don't dump
3529              * them.
3530              */
3531             return (0);
3532         }
3533     }
3534 
3535     return (vma->vma_end - vma->vma_start);
3536 }
3537 
3538 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3539                       unsigned long flags)
3540 {
3541     struct mm_struct *mm = (struct mm_struct *)priv;
3542 
3543     vma_add_mapping(mm, start, end, flags);
3544     return (0);
3545 }
3546 
3547 static void fill_note(struct memelfnote *note, const char *name, int type,
3548                       unsigned int sz, void *data)
3549 {
3550     unsigned int namesz;
3551 
3552     namesz = strlen(name) + 1;
3553     note->name = name;
3554     note->namesz = namesz;
3555     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3556     note->type = type;
3557     note->datasz = sz;
3558     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3559 
3560     note->data = data;
3561 
3562     /*
3563      * We calculate rounded up note size here as specified by
3564      * ELF document.
3565      */
3566     note->notesz = sizeof (struct elf_note) +
3567         note->namesz_rounded + note->datasz_rounded;
3568 }
3569 
3570 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3571                             uint32_t flags)
3572 {
3573     (void) memset(elf, 0, sizeof(*elf));
3574 
3575     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3576     elf->e_ident[EI_CLASS] = ELF_CLASS;
3577     elf->e_ident[EI_DATA] = ELF_DATA;
3578     elf->e_ident[EI_VERSION] = EV_CURRENT;
3579     elf->e_ident[EI_OSABI] = ELF_OSABI;
3580 
3581     elf->e_type = ET_CORE;
3582     elf->e_machine = machine;
3583     elf->e_version = EV_CURRENT;
3584     elf->e_phoff = sizeof(struct elfhdr);
3585     elf->e_flags = flags;
3586     elf->e_ehsize = sizeof(struct elfhdr);
3587     elf->e_phentsize = sizeof(struct elf_phdr);
3588     elf->e_phnum = segs;
3589 
3590     bswap_ehdr(elf);
3591 }
3592 
3593 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3594 {
3595     phdr->p_type = PT_NOTE;
3596     phdr->p_offset = offset;
3597     phdr->p_vaddr = 0;
3598     phdr->p_paddr = 0;
3599     phdr->p_filesz = sz;
3600     phdr->p_memsz = 0;
3601     phdr->p_flags = 0;
3602     phdr->p_align = 0;
3603 
3604     bswap_phdr(phdr, 1);
3605 }
3606 
3607 static size_t note_size(const struct memelfnote *note)
3608 {
3609     return (note->notesz);
3610 }
3611 
3612 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3613                           const TaskState *ts, int signr)
3614 {
3615     (void) memset(prstatus, 0, sizeof (*prstatus));
3616     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3617     prstatus->pr_pid = ts->ts_tid;
3618     prstatus->pr_ppid = getppid();
3619     prstatus->pr_pgrp = getpgrp();
3620     prstatus->pr_sid = getsid(0);
3621 
3622     bswap_prstatus(prstatus);
3623 }
3624 
3625 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3626 {
3627     char *base_filename;
3628     unsigned int i, len;
3629 
3630     (void) memset(psinfo, 0, sizeof (*psinfo));
3631 
3632     len = ts->info->arg_end - ts->info->arg_start;
3633     if (len >= ELF_PRARGSZ)
3634         len = ELF_PRARGSZ - 1;
3635     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3636         return -EFAULT;
3637     for (i = 0; i < len; i++)
3638         if (psinfo->pr_psargs[i] == 0)
3639             psinfo->pr_psargs[i] = ' ';
3640     psinfo->pr_psargs[len] = 0;
3641 
3642     psinfo->pr_pid = getpid();
3643     psinfo->pr_ppid = getppid();
3644     psinfo->pr_pgrp = getpgrp();
3645     psinfo->pr_sid = getsid(0);
3646     psinfo->pr_uid = getuid();
3647     psinfo->pr_gid = getgid();
3648 
3649     base_filename = g_path_get_basename(ts->bprm->filename);
3650     /*
3651      * Using strncpy here is fine: at max-length,
3652      * this field is not NUL-terminated.
3653      */
3654     (void) strncpy(psinfo->pr_fname, base_filename,
3655                    sizeof(psinfo->pr_fname));
3656 
3657     g_free(base_filename);
3658     bswap_psinfo(psinfo);
3659     return (0);
3660 }
3661 
3662 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3663 {
3664     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3665     elf_addr_t orig_auxv = auxv;
3666     void *ptr;
3667     int len = ts->info->auxv_len;
3668 
3669     /*
3670      * Auxiliary vector is stored in target process stack.  It contains
3671      * {type, value} pairs that we need to dump into note.  This is not
3672      * strictly necessary but we do it here for sake of completeness.
3673      */
3674 
3675     /* read in whole auxv vector and copy it to memelfnote */
3676     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3677     if (ptr != NULL) {
3678         fill_note(note, "CORE", NT_AUXV, len, ptr);
3679         unlock_user(ptr, auxv, len);
3680     }
3681 }
3682 
3683 /*
3684  * Constructs name of coredump file.  We have following convention
3685  * for the name:
3686  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3687  *
3688  * Returns 0 in case of success, -1 otherwise (errno is set).
3689  */
3690 static int core_dump_filename(const TaskState *ts, char *buf,
3691                               size_t bufsize)
3692 {
3693     char timestamp[64];
3694     char *base_filename = NULL;
3695     struct timeval tv;
3696     struct tm tm;
3697 
3698     assert(bufsize >= PATH_MAX);
3699 
3700     if (gettimeofday(&tv, NULL) < 0) {
3701         (void) fprintf(stderr, "unable to get current timestamp: %s",
3702                        strerror(errno));
3703         return (-1);
3704     }
3705 
3706     base_filename = g_path_get_basename(ts->bprm->filename);
3707     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3708                     localtime_r(&tv.tv_sec, &tm));
3709     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3710                     base_filename, timestamp, (int)getpid());
3711     g_free(base_filename);
3712 
3713     return (0);
3714 }
3715 
3716 static int dump_write(int fd, const void *ptr, size_t size)
3717 {
3718     const char *bufp = (const char *)ptr;
3719     ssize_t bytes_written, bytes_left;
3720     struct rlimit dumpsize;
3721     off_t pos;
3722 
3723     bytes_written = 0;
3724     getrlimit(RLIMIT_CORE, &dumpsize);
3725     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3726         if (errno == ESPIPE) { /* not a seekable stream */
3727             bytes_left = size;
3728         } else {
3729             return pos;
3730         }
3731     } else {
3732         if (dumpsize.rlim_cur <= pos) {
3733             return -1;
3734         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3735             bytes_left = size;
3736         } else {
3737             size_t limit_left=dumpsize.rlim_cur - pos;
3738             bytes_left = limit_left >= size ? size : limit_left ;
3739         }
3740     }
3741 
3742     /*
3743      * In normal conditions, single write(2) should do but
3744      * in case of socket etc. this mechanism is more portable.
3745      */
3746     do {
3747         bytes_written = write(fd, bufp, bytes_left);
3748         if (bytes_written < 0) {
3749             if (errno == EINTR)
3750                 continue;
3751             return (-1);
3752         } else if (bytes_written == 0) { /* eof */
3753             return (-1);
3754         }
3755         bufp += bytes_written;
3756         bytes_left -= bytes_written;
3757     } while (bytes_left > 0);
3758 
3759     return (0);
3760 }
3761 
3762 static int write_note(struct memelfnote *men, int fd)
3763 {
3764     struct elf_note en;
3765 
3766     en.n_namesz = men->namesz;
3767     en.n_type = men->type;
3768     en.n_descsz = men->datasz;
3769 
3770     bswap_note(&en);
3771 
3772     if (dump_write(fd, &en, sizeof(en)) != 0)
3773         return (-1);
3774     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3775         return (-1);
3776     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3777         return (-1);
3778 
3779     return (0);
3780 }
3781 
3782 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3783 {
3784     CPUState *cpu = env_cpu((CPUArchState *)env);
3785     TaskState *ts = (TaskState *)cpu->opaque;
3786     struct elf_thread_status *ets;
3787 
3788     ets = g_malloc0(sizeof (*ets));
3789     ets->num_notes = 1; /* only prstatus is dumped */
3790     fill_prstatus(&ets->prstatus, ts, 0);
3791     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3792     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3793               &ets->prstatus);
3794 
3795     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3796 
3797     info->notes_size += note_size(&ets->notes[0]);
3798 }
3799 
3800 static void init_note_info(struct elf_note_info *info)
3801 {
3802     /* Initialize the elf_note_info structure so that it is at
3803      * least safe to call free_note_info() on it. Must be
3804      * called before calling fill_note_info().
3805      */
3806     memset(info, 0, sizeof (*info));
3807     QTAILQ_INIT(&info->thread_list);
3808 }
3809 
3810 static int fill_note_info(struct elf_note_info *info,
3811                           long signr, const CPUArchState *env)
3812 {
3813 #define NUMNOTES 3
3814     CPUState *cpu = env_cpu((CPUArchState *)env);
3815     TaskState *ts = (TaskState *)cpu->opaque;
3816     int i;
3817 
3818     info->notes = g_new0(struct memelfnote, NUMNOTES);
3819     if (info->notes == NULL)
3820         return (-ENOMEM);
3821     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3822     if (info->prstatus == NULL)
3823         return (-ENOMEM);
3824     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3825     if (info->prstatus == NULL)
3826         return (-ENOMEM);
3827 
3828     /*
3829      * First fill in status (and registers) of current thread
3830      * including process info & aux vector.
3831      */
3832     fill_prstatus(info->prstatus, ts, signr);
3833     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3834     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3835               sizeof (*info->prstatus), info->prstatus);
3836     fill_psinfo(info->psinfo, ts);
3837     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3838               sizeof (*info->psinfo), info->psinfo);
3839     fill_auxv_note(&info->notes[2], ts);
3840     info->numnote = 3;
3841 
3842     info->notes_size = 0;
3843     for (i = 0; i < info->numnote; i++)
3844         info->notes_size += note_size(&info->notes[i]);
3845 
3846     /* read and fill status of all threads */
3847     cpu_list_lock();
3848     CPU_FOREACH(cpu) {
3849         if (cpu == thread_cpu) {
3850             continue;
3851         }
3852         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3853     }
3854     cpu_list_unlock();
3855 
3856     return (0);
3857 }
3858 
3859 static void free_note_info(struct elf_note_info *info)
3860 {
3861     struct elf_thread_status *ets;
3862 
3863     while (!QTAILQ_EMPTY(&info->thread_list)) {
3864         ets = QTAILQ_FIRST(&info->thread_list);
3865         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3866         g_free(ets);
3867     }
3868 
3869     g_free(info->prstatus);
3870     g_free(info->psinfo);
3871     g_free(info->notes);
3872 }
3873 
3874 static int write_note_info(struct elf_note_info *info, int fd)
3875 {
3876     struct elf_thread_status *ets;
3877     int i, error = 0;
3878 
3879     /* write prstatus, psinfo and auxv for current thread */
3880     for (i = 0; i < info->numnote; i++)
3881         if ((error = write_note(&info->notes[i], fd)) != 0)
3882             return (error);
3883 
3884     /* write prstatus for each thread */
3885     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3886         if ((error = write_note(&ets->notes[0], fd)) != 0)
3887             return (error);
3888     }
3889 
3890     return (0);
3891 }
3892 
3893 /*
3894  * Write out ELF coredump.
3895  *
3896  * See documentation of ELF object file format in:
3897  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3898  *
3899  * Coredump format in linux is following:
3900  *
3901  * 0   +----------------------+         \
3902  *     | ELF header           | ET_CORE  |
3903  *     +----------------------+          |
3904  *     | ELF program headers  |          |--- headers
3905  *     | - NOTE section       |          |
3906  *     | - PT_LOAD sections   |          |
3907  *     +----------------------+         /
3908  *     | NOTEs:               |
3909  *     | - NT_PRSTATUS        |
3910  *     | - NT_PRSINFO         |
3911  *     | - NT_AUXV            |
3912  *     +----------------------+ <-- aligned to target page
3913  *     | Process memory dump  |
3914  *     :                      :
3915  *     .                      .
3916  *     :                      :
3917  *     |                      |
3918  *     +----------------------+
3919  *
3920  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3921  * NT_PRSINFO  -> struct elf_prpsinfo
3922  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3923  *
3924  * Format follows System V format as close as possible.  Current
3925  * version limitations are as follows:
3926  *     - no floating point registers are dumped
3927  *
3928  * Function returns 0 in case of success, negative errno otherwise.
3929  *
3930  * TODO: make this work also during runtime: it should be
3931  * possible to force coredump from running process and then
3932  * continue processing.  For example qemu could set up SIGUSR2
3933  * handler (provided that target process haven't registered
3934  * handler for that) that does the dump when signal is received.
3935  */
3936 static int elf_core_dump(int signr, const CPUArchState *env)
3937 {
3938     const CPUState *cpu = env_cpu((CPUArchState *)env);
3939     const TaskState *ts = (const TaskState *)cpu->opaque;
3940     struct vm_area_struct *vma = NULL;
3941     char corefile[PATH_MAX];
3942     struct elf_note_info info;
3943     struct elfhdr elf;
3944     struct elf_phdr phdr;
3945     struct rlimit dumpsize;
3946     struct mm_struct *mm = NULL;
3947     off_t offset = 0, data_offset = 0;
3948     int segs = 0;
3949     int fd = -1;
3950 
3951     init_note_info(&info);
3952 
3953     errno = 0;
3954     getrlimit(RLIMIT_CORE, &dumpsize);
3955     if (dumpsize.rlim_cur == 0)
3956         return 0;
3957 
3958     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3959         return (-errno);
3960 
3961     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3962                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3963         return (-errno);
3964 
3965     /*
3966      * Walk through target process memory mappings and
3967      * set up structure containing this information.  After
3968      * this point vma_xxx functions can be used.
3969      */
3970     if ((mm = vma_init()) == NULL)
3971         goto out;
3972 
3973     walk_memory_regions(mm, vma_walker);
3974     segs = vma_get_mapping_count(mm);
3975 
3976     /*
3977      * Construct valid coredump ELF header.  We also
3978      * add one more segment for notes.
3979      */
3980     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3981     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3982         goto out;
3983 
3984     /* fill in the in-memory version of notes */
3985     if (fill_note_info(&info, signr, env) < 0)
3986         goto out;
3987 
3988     offset += sizeof (elf);                             /* elf header */
3989     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3990 
3991     /* write out notes program header */
3992     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3993 
3994     offset += info.notes_size;
3995     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3996         goto out;
3997 
3998     /*
3999      * ELF specification wants data to start at page boundary so
4000      * we align it here.
4001      */
4002     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4003 
4004     /*
4005      * Write program headers for memory regions mapped in
4006      * the target process.
4007      */
4008     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4009         (void) memset(&phdr, 0, sizeof (phdr));
4010 
4011         phdr.p_type = PT_LOAD;
4012         phdr.p_offset = offset;
4013         phdr.p_vaddr = vma->vma_start;
4014         phdr.p_paddr = 0;
4015         phdr.p_filesz = vma_dump_size(vma);
4016         offset += phdr.p_filesz;
4017         phdr.p_memsz = vma->vma_end - vma->vma_start;
4018         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4019         if (vma->vma_flags & PROT_WRITE)
4020             phdr.p_flags |= PF_W;
4021         if (vma->vma_flags & PROT_EXEC)
4022             phdr.p_flags |= PF_X;
4023         phdr.p_align = ELF_EXEC_PAGESIZE;
4024 
4025         bswap_phdr(&phdr, 1);
4026         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4027             goto out;
4028         }
4029     }
4030 
4031     /*
4032      * Next we write notes just after program headers.  No
4033      * alignment needed here.
4034      */
4035     if (write_note_info(&info, fd) < 0)
4036         goto out;
4037 
4038     /* align data to page boundary */
4039     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4040         goto out;
4041 
4042     /*
4043      * Finally we can dump process memory into corefile as well.
4044      */
4045     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4046         abi_ulong addr;
4047         abi_ulong end;
4048 
4049         end = vma->vma_start + vma_dump_size(vma);
4050 
4051         for (addr = vma->vma_start; addr < end;
4052              addr += TARGET_PAGE_SIZE) {
4053             char page[TARGET_PAGE_SIZE];
4054             int error;
4055 
4056             /*
4057              *  Read in page from target process memory and
4058              *  write it to coredump file.
4059              */
4060             error = copy_from_user(page, addr, sizeof (page));
4061             if (error != 0) {
4062                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4063                                addr);
4064                 errno = -error;
4065                 goto out;
4066             }
4067             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4068                 goto out;
4069         }
4070     }
4071 
4072  out:
4073     free_note_info(&info);
4074     if (mm != NULL)
4075         vma_delete(mm);
4076     (void) close(fd);
4077 
4078     if (errno != 0)
4079         return (-errno);
4080     return (0);
4081 }
4082 #endif /* USE_ELF_CORE_DUMP */
4083 
4084 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4085 {
4086     init_thread(regs, infop);
4087 }
4088