xref: /openbmc/qemu/linux-user/elfload.c (revision 80adf54e)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
85 
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
90 
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA        ELFDATA2MSB
93 #else
94 #define ELF_DATA        ELFDATA2LSB
95 #endif
96 
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong      target_elf_greg_t;
99 #define tswapreg(ptr)   tswap64(ptr)
100 #else
101 typedef abi_ulong       target_elf_greg_t;
102 #define tswapreg(ptr)   tswapal(ptr)
103 #endif
104 
105 #ifdef USE_UID16
106 typedef abi_ushort      target_uid_t;
107 typedef abi_ushort      target_gid_t;
108 #else
109 typedef abi_uint        target_uid_t;
110 typedef abi_uint        target_gid_t;
111 #endif
112 typedef abi_int         target_pid_t;
113 
114 #ifdef TARGET_I386
115 
116 #define ELF_PLATFORM get_elf_platform()
117 
118 static const char *get_elf_platform(void)
119 {
120     static char elf_platform[] = "i386";
121     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122     if (family > 6)
123         family = 6;
124     if (family >= 3)
125         elf_platform[1] = '0' + family;
126     return elf_platform;
127 }
128 
129 #define ELF_HWCAP get_elf_hwcap()
130 
131 static uint32_t get_elf_hwcap(void)
132 {
133     X86CPU *cpu = X86_CPU(thread_cpu);
134 
135     return cpu->env.features[FEAT_1_EDX];
136 }
137 
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
140 
141 #define ELF_CLASS      ELFCLASS64
142 #define ELF_ARCH       EM_X86_64
143 
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145 {
146     regs->rax = 0;
147     regs->rsp = infop->start_stack;
148     regs->rip = infop->entry;
149 }
150 
151 #define ELF_NREG    27
152 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
153 
154 /*
155  * Note that ELF_NREG should be 29 as there should be place for
156  * TRAPNO and ERR "registers" as well but linux doesn't dump
157  * those.
158  *
159  * See linux kernel: arch/x86/include/asm/elf.h
160  */
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
162 {
163     (*regs)[0] = env->regs[15];
164     (*regs)[1] = env->regs[14];
165     (*regs)[2] = env->regs[13];
166     (*regs)[3] = env->regs[12];
167     (*regs)[4] = env->regs[R_EBP];
168     (*regs)[5] = env->regs[R_EBX];
169     (*regs)[6] = env->regs[11];
170     (*regs)[7] = env->regs[10];
171     (*regs)[8] = env->regs[9];
172     (*regs)[9] = env->regs[8];
173     (*regs)[10] = env->regs[R_EAX];
174     (*regs)[11] = env->regs[R_ECX];
175     (*regs)[12] = env->regs[R_EDX];
176     (*regs)[13] = env->regs[R_ESI];
177     (*regs)[14] = env->regs[R_EDI];
178     (*regs)[15] = env->regs[R_EAX]; /* XXX */
179     (*regs)[16] = env->eip;
180     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181     (*regs)[18] = env->eflags;
182     (*regs)[19] = env->regs[R_ESP];
183     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190 }
191 
192 #else
193 
194 #define ELF_START_MMAP 0x80000000
195 
196 /*
197  * This is used to ensure we don't load something for the wrong architecture.
198  */
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200 
201 /*
202  * These are used to set parameters in the core dumps.
203  */
204 #define ELF_CLASS       ELFCLASS32
205 #define ELF_ARCH        EM_386
206 
207 static inline void init_thread(struct target_pt_regs *regs,
208                                struct image_info *infop)
209 {
210     regs->esp = infop->start_stack;
211     regs->eip = infop->entry;
212 
213     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214        starts %edx contains a pointer to a function which might be
215        registered using `atexit'.  This provides a mean for the
216        dynamic linker to call DT_FINI functions for shared libraries
217        that have been loaded before the code runs.
218 
219        A value of 0 tells we have no such handler.  */
220     regs->edx = 0;
221 }
222 
223 #define ELF_NREG    17
224 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
225 
226 /*
227  * Note that ELF_NREG should be 19 as there should be place for
228  * TRAPNO and ERR "registers" as well but linux doesn't dump
229  * those.
230  *
231  * See linux kernel: arch/x86/include/asm/elf.h
232  */
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
234 {
235     (*regs)[0] = env->regs[R_EBX];
236     (*regs)[1] = env->regs[R_ECX];
237     (*regs)[2] = env->regs[R_EDX];
238     (*regs)[3] = env->regs[R_ESI];
239     (*regs)[4] = env->regs[R_EDI];
240     (*regs)[5] = env->regs[R_EBP];
241     (*regs)[6] = env->regs[R_EAX];
242     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246     (*regs)[11] = env->regs[R_EAX]; /* XXX */
247     (*regs)[12] = env->eip;
248     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249     (*regs)[14] = env->eflags;
250     (*regs)[15] = env->regs[R_ESP];
251     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252 }
253 #endif
254 
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE       4096
257 
258 #endif
259 
260 #ifdef TARGET_ARM
261 
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
264 
265 #define ELF_START_MMAP 0x80000000
266 
267 #define ELF_ARCH        EM_ARM
268 #define ELF_CLASS       ELFCLASS32
269 
270 static inline void init_thread(struct target_pt_regs *regs,
271                                struct image_info *infop)
272 {
273     abi_long stack = infop->start_stack;
274     memset(regs, 0, sizeof(*regs));
275 
276     regs->uregs[16] = ARM_CPU_MODE_USR;
277     if (infop->entry & 1) {
278         regs->uregs[16] |= CPSR_T;
279     }
280     regs->uregs[15] = infop->entry & 0xfffffffe;
281     regs->uregs[13] = infop->start_stack;
282     /* FIXME - what to for failure of get_user()? */
283     get_user_ual(regs->uregs[2], stack + 8); /* envp */
284     get_user_ual(regs->uregs[1], stack + 4); /* envp */
285     /* XXX: it seems that r0 is zeroed after ! */
286     regs->uregs[0] = 0;
287     /* For uClinux PIC binaries.  */
288     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289     regs->uregs[10] = infop->start_data;
290 }
291 
292 #define ELF_NREG    18
293 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
294 
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
296 {
297     (*regs)[0] = tswapreg(env->regs[0]);
298     (*regs)[1] = tswapreg(env->regs[1]);
299     (*regs)[2] = tswapreg(env->regs[2]);
300     (*regs)[3] = tswapreg(env->regs[3]);
301     (*regs)[4] = tswapreg(env->regs[4]);
302     (*regs)[5] = tswapreg(env->regs[5]);
303     (*regs)[6] = tswapreg(env->regs[6]);
304     (*regs)[7] = tswapreg(env->regs[7]);
305     (*regs)[8] = tswapreg(env->regs[8]);
306     (*regs)[9] = tswapreg(env->regs[9]);
307     (*regs)[10] = tswapreg(env->regs[10]);
308     (*regs)[11] = tswapreg(env->regs[11]);
309     (*regs)[12] = tswapreg(env->regs[12]);
310     (*regs)[13] = tswapreg(env->regs[13]);
311     (*regs)[14] = tswapreg(env->regs[14]);
312     (*regs)[15] = tswapreg(env->regs[15]);
313 
314     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
316 }
317 
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE       4096
320 
321 enum
322 {
323     ARM_HWCAP_ARM_SWP       = 1 << 0,
324     ARM_HWCAP_ARM_HALF      = 1 << 1,
325     ARM_HWCAP_ARM_THUMB     = 1 << 2,
326     ARM_HWCAP_ARM_26BIT     = 1 << 3,
327     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328     ARM_HWCAP_ARM_FPA       = 1 << 5,
329     ARM_HWCAP_ARM_VFP       = 1 << 6,
330     ARM_HWCAP_ARM_EDSP      = 1 << 7,
331     ARM_HWCAP_ARM_JAVA      = 1 << 8,
332     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
333     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
334     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
335     ARM_HWCAP_ARM_NEON      = 1 << 12,
336     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
337     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
338     ARM_HWCAP_ARM_TLS       = 1 << 15,
339     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
340     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
341     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
342     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
343     ARM_HWCAP_ARM_LPAE      = 1 << 20,
344     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
345 };
346 
347 enum {
348     ARM_HWCAP2_ARM_AES      = 1 << 0,
349     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
350     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
351     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
352     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
353 };
354 
355 /* The commpage only exists for 32 bit kernels */
356 
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359  * Return 0 if the proposed guest space isn't suitable, but another
360  * address space should be tried.
361  * Return -1 if there is no way the proposed guest space can be
362  * valid regardless of the base.
363  * The guest code may leave a page mapped and populate it if the
364  * address is suitable.
365  */
366 static int validate_guest_space(unsigned long guest_base,
367                                 unsigned long guest_size)
368 {
369     unsigned long real_start, test_page_addr;
370 
371     /* We need to check that we can force a fault on access to the
372      * commpage at 0xffff0fxx
373      */
374     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
375 
376     /* If the commpage lies within the already allocated guest space,
377      * then there is no way we can allocate it.
378      */
379     if (test_page_addr >= guest_base
380         && test_page_addr <= (guest_base + guest_size)) {
381         return -1;
382     }
383 
384     /* Note it needs to be writeable to let us initialise it */
385     real_start = (unsigned long)
386                  mmap((void *)test_page_addr, qemu_host_page_size,
387                      PROT_READ | PROT_WRITE,
388                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
389 
390     /* If we can't map it then try another address */
391     if (real_start == -1ul) {
392         return 0;
393     }
394 
395     if (real_start != test_page_addr) {
396         /* OS didn't put the page where we asked - unmap and reject */
397         munmap((void *)real_start, qemu_host_page_size);
398         return 0;
399     }
400 
401     /* Leave the page mapped
402      * Populate it (mmap should have left it all 0'd)
403      */
404 
405     /* Kernel helper versions */
406     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
407 
408     /* Now it's populated make it RO */
409     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410         perror("Protecting guest commpage");
411         exit(-1);
412     }
413 
414     return 1; /* All good */
415 }
416 
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
419 
420 static uint32_t get_elf_hwcap(void)
421 {
422     ARMCPU *cpu = ARM_CPU(thread_cpu);
423     uint32_t hwcaps = 0;
424 
425     hwcaps |= ARM_HWCAP_ARM_SWP;
426     hwcaps |= ARM_HWCAP_ARM_HALF;
427     hwcaps |= ARM_HWCAP_ARM_THUMB;
428     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
429 
430     /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447      * to our VFP_FP16 feature bit.
448      */
449     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
451 
452     return hwcaps;
453 }
454 
455 static uint32_t get_elf_hwcap2(void)
456 {
457     ARMCPU *cpu = ARM_CPU(thread_cpu);
458     uint32_t hwcaps = 0;
459 
460     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
461     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
462     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
464     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465     return hwcaps;
466 }
467 
468 #undef GET_FEATURE
469 
470 #else
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
473 
474 #define ELF_ARCH        EM_AARCH64
475 #define ELF_CLASS       ELFCLASS64
476 #define ELF_PLATFORM    "aarch64"
477 
478 static inline void init_thread(struct target_pt_regs *regs,
479                                struct image_info *infop)
480 {
481     abi_long stack = infop->start_stack;
482     memset(regs, 0, sizeof(*regs));
483 
484     regs->pc = infop->entry & ~0x3ULL;
485     regs->sp = stack;
486 }
487 
488 #define ELF_NREG    34
489 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
490 
491 static void elf_core_copy_regs(target_elf_gregset_t *regs,
492                                const CPUARMState *env)
493 {
494     int i;
495 
496     for (i = 0; i < 32; i++) {
497         (*regs)[i] = tswapreg(env->xregs[i]);
498     }
499     (*regs)[32] = tswapreg(env->pc);
500     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
501 }
502 
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE       4096
505 
506 enum {
507     ARM_HWCAP_A64_FP            = 1 << 0,
508     ARM_HWCAP_A64_ASIMD         = 1 << 1,
509     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
510     ARM_HWCAP_A64_AES           = 1 << 3,
511     ARM_HWCAP_A64_PMULL         = 1 << 4,
512     ARM_HWCAP_A64_SHA1          = 1 << 5,
513     ARM_HWCAP_A64_SHA2          = 1 << 6,
514     ARM_HWCAP_A64_CRC32         = 1 << 7,
515 };
516 
517 #define ELF_HWCAP get_elf_hwcap()
518 
519 static uint32_t get_elf_hwcap(void)
520 {
521     ARMCPU *cpu = ARM_CPU(thread_cpu);
522     uint32_t hwcaps = 0;
523 
524     hwcaps |= ARM_HWCAP_A64_FP;
525     hwcaps |= ARM_HWCAP_A64_ASIMD;
526 
527     /* probe for the extra features */
528 #define GET_FEATURE(feat, hwcap) \
529     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
530     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
531     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
532     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
533     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
534     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
535 #undef GET_FEATURE
536 
537     return hwcaps;
538 }
539 
540 #endif /* not TARGET_AARCH64 */
541 #endif /* TARGET_ARM */
542 
543 #ifdef TARGET_UNICORE32
544 
545 #define ELF_START_MMAP          0x80000000
546 
547 #define ELF_CLASS               ELFCLASS32
548 #define ELF_DATA                ELFDATA2LSB
549 #define ELF_ARCH                EM_UNICORE32
550 
551 static inline void init_thread(struct target_pt_regs *regs,
552         struct image_info *infop)
553 {
554     abi_long stack = infop->start_stack;
555     memset(regs, 0, sizeof(*regs));
556     regs->UC32_REG_asr = 0x10;
557     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
558     regs->UC32_REG_sp = infop->start_stack;
559     /* FIXME - what to for failure of get_user()? */
560     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
561     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
562     /* XXX: it seems that r0 is zeroed after ! */
563     regs->UC32_REG_00 = 0;
564 }
565 
566 #define ELF_NREG    34
567 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
568 
569 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
570 {
571     (*regs)[0] = env->regs[0];
572     (*regs)[1] = env->regs[1];
573     (*regs)[2] = env->regs[2];
574     (*regs)[3] = env->regs[3];
575     (*regs)[4] = env->regs[4];
576     (*regs)[5] = env->regs[5];
577     (*regs)[6] = env->regs[6];
578     (*regs)[7] = env->regs[7];
579     (*regs)[8] = env->regs[8];
580     (*regs)[9] = env->regs[9];
581     (*regs)[10] = env->regs[10];
582     (*regs)[11] = env->regs[11];
583     (*regs)[12] = env->regs[12];
584     (*regs)[13] = env->regs[13];
585     (*regs)[14] = env->regs[14];
586     (*regs)[15] = env->regs[15];
587     (*regs)[16] = env->regs[16];
588     (*regs)[17] = env->regs[17];
589     (*regs)[18] = env->regs[18];
590     (*regs)[19] = env->regs[19];
591     (*regs)[20] = env->regs[20];
592     (*regs)[21] = env->regs[21];
593     (*regs)[22] = env->regs[22];
594     (*regs)[23] = env->regs[23];
595     (*regs)[24] = env->regs[24];
596     (*regs)[25] = env->regs[25];
597     (*regs)[26] = env->regs[26];
598     (*regs)[27] = env->regs[27];
599     (*regs)[28] = env->regs[28];
600     (*regs)[29] = env->regs[29];
601     (*regs)[30] = env->regs[30];
602     (*regs)[31] = env->regs[31];
603 
604     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
605     (*regs)[33] = env->regs[0]; /* XXX */
606 }
607 
608 #define USE_ELF_CORE_DUMP
609 #define ELF_EXEC_PAGESIZE               4096
610 
611 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
612 
613 #endif
614 
615 #ifdef TARGET_SPARC
616 #ifdef TARGET_SPARC64
617 
618 #define ELF_START_MMAP 0x80000000
619 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
620                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
621 #ifndef TARGET_ABI32
622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
623 #else
624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
625 #endif
626 
627 #define ELF_CLASS   ELFCLASS64
628 #define ELF_ARCH    EM_SPARCV9
629 
630 #define STACK_BIAS              2047
631 
632 static inline void init_thread(struct target_pt_regs *regs,
633                                struct image_info *infop)
634 {
635 #ifndef TARGET_ABI32
636     regs->tstate = 0;
637 #endif
638     regs->pc = infop->entry;
639     regs->npc = regs->pc + 4;
640     regs->y = 0;
641 #ifdef TARGET_ABI32
642     regs->u_regs[14] = infop->start_stack - 16 * 4;
643 #else
644     if (personality(infop->personality) == PER_LINUX32)
645         regs->u_regs[14] = infop->start_stack - 16 * 4;
646     else
647         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
648 #endif
649 }
650 
651 #else
652 #define ELF_START_MMAP 0x80000000
653 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654                     | HWCAP_SPARC_MULDIV)
655 
656 #define ELF_CLASS   ELFCLASS32
657 #define ELF_ARCH    EM_SPARC
658 
659 static inline void init_thread(struct target_pt_regs *regs,
660                                struct image_info *infop)
661 {
662     regs->psr = 0;
663     regs->pc = infop->entry;
664     regs->npc = regs->pc + 4;
665     regs->y = 0;
666     regs->u_regs[14] = infop->start_stack - 16 * 4;
667 }
668 
669 #endif
670 #endif
671 
672 #ifdef TARGET_PPC
673 
674 #define ELF_MACHINE    PPC_ELF_MACHINE
675 #define ELF_START_MMAP 0x80000000
676 
677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
678 
679 #define elf_check_arch(x) ( (x) == EM_PPC64 )
680 
681 #define ELF_CLASS       ELFCLASS64
682 
683 #else
684 
685 #define ELF_CLASS       ELFCLASS32
686 
687 #endif
688 
689 #define ELF_ARCH        EM_PPC
690 
691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
692    See arch/powerpc/include/asm/cputable.h.  */
693 enum {
694     QEMU_PPC_FEATURE_32 = 0x80000000,
695     QEMU_PPC_FEATURE_64 = 0x40000000,
696     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
697     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
698     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
699     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
700     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
701     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
702     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
703     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
704     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
705     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
706     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
707     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
708     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
709     QEMU_PPC_FEATURE_CELL = 0x00010000,
710     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
711     QEMU_PPC_FEATURE_SMT = 0x00004000,
712     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
713     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
714     QEMU_PPC_FEATURE_PA6T = 0x00000800,
715     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
716     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
717     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
718     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
719     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
720 
721     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
722     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
723 
724     /* Feature definitions in AT_HWCAP2.  */
725     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
726     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
727     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
728     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
729     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
730     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
731 };
732 
733 #define ELF_HWCAP get_elf_hwcap()
734 
735 static uint32_t get_elf_hwcap(void)
736 {
737     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
738     uint32_t features = 0;
739 
740     /* We don't have to be terribly complete here; the high points are
741        Altivec/FP/SPE support.  Anything else is just a bonus.  */
742 #define GET_FEATURE(flag, feature)                                      \
743     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
744 #define GET_FEATURE2(flags, feature) \
745     do { \
746         if ((cpu->env.insns_flags2 & flags) == flags) { \
747             features |= feature; \
748         } \
749     } while (0)
750     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
751     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
752     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
753     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
754     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
755     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
756     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
757     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
758     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
759     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
760     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
761                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
762                   QEMU_PPC_FEATURE_ARCH_2_06);
763 #undef GET_FEATURE
764 #undef GET_FEATURE2
765 
766     return features;
767 }
768 
769 #define ELF_HWCAP2 get_elf_hwcap2()
770 
771 static uint32_t get_elf_hwcap2(void)
772 {
773     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
774     uint32_t features = 0;
775 
776 #define GET_FEATURE(flag, feature)                                      \
777     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778 #define GET_FEATURE2(flag, feature)                                      \
779     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
780 
781     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
782     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
783     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
784                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
785 
786 #undef GET_FEATURE
787 #undef GET_FEATURE2
788 
789     return features;
790 }
791 
792 /*
793  * The requirements here are:
794  * - keep the final alignment of sp (sp & 0xf)
795  * - make sure the 32-bit value at the first 16 byte aligned position of
796  *   AUXV is greater than 16 for glibc compatibility.
797  *   AT_IGNOREPPC is used for that.
798  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
799  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
800  */
801 #define DLINFO_ARCH_ITEMS       5
802 #define ARCH_DLINFO                                     \
803     do {                                                \
804         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
805         /*                                              \
806          * Handle glibc compatibility: these magic entries must \
807          * be at the lowest addresses in the final auxv.        \
808          */                                             \
809         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
810         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
811         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
812         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
813         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
814     } while (0)
815 
816 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
817 {
818     _regs->gpr[1] = infop->start_stack;
819 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
820     if (get_ppc64_abi(infop) < 2) {
821         uint64_t val;
822         get_user_u64(val, infop->entry + 8);
823         _regs->gpr[2] = val + infop->load_bias;
824         get_user_u64(val, infop->entry);
825         infop->entry = val + infop->load_bias;
826     } else {
827         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
828     }
829 #endif
830     _regs->nip = infop->entry;
831 }
832 
833 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
834 #define ELF_NREG 48
835 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
836 
837 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
838 {
839     int i;
840     target_ulong ccr = 0;
841 
842     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
843         (*regs)[i] = tswapreg(env->gpr[i]);
844     }
845 
846     (*regs)[32] = tswapreg(env->nip);
847     (*regs)[33] = tswapreg(env->msr);
848     (*regs)[35] = tswapreg(env->ctr);
849     (*regs)[36] = tswapreg(env->lr);
850     (*regs)[37] = tswapreg(env->xer);
851 
852     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
853         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
854     }
855     (*regs)[38] = tswapreg(ccr);
856 }
857 
858 #define USE_ELF_CORE_DUMP
859 #define ELF_EXEC_PAGESIZE       4096
860 
861 #endif
862 
863 #ifdef TARGET_MIPS
864 
865 #define ELF_START_MMAP 0x80000000
866 
867 #ifdef TARGET_MIPS64
868 #define ELF_CLASS   ELFCLASS64
869 #else
870 #define ELF_CLASS   ELFCLASS32
871 #endif
872 #define ELF_ARCH    EM_MIPS
873 
874 static inline void init_thread(struct target_pt_regs *regs,
875                                struct image_info *infop)
876 {
877     regs->cp0_status = 2 << CP0St_KSU;
878     regs->cp0_epc = infop->entry;
879     regs->regs[29] = infop->start_stack;
880 }
881 
882 /* See linux kernel: arch/mips/include/asm/elf.h.  */
883 #define ELF_NREG 45
884 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
885 
886 /* See linux kernel: arch/mips/include/asm/reg.h.  */
887 enum {
888 #ifdef TARGET_MIPS64
889     TARGET_EF_R0 = 0,
890 #else
891     TARGET_EF_R0 = 6,
892 #endif
893     TARGET_EF_R26 = TARGET_EF_R0 + 26,
894     TARGET_EF_R27 = TARGET_EF_R0 + 27,
895     TARGET_EF_LO = TARGET_EF_R0 + 32,
896     TARGET_EF_HI = TARGET_EF_R0 + 33,
897     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
898     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
899     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
900     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
901 };
902 
903 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
904 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
905 {
906     int i;
907 
908     for (i = 0; i < TARGET_EF_R0; i++) {
909         (*regs)[i] = 0;
910     }
911     (*regs)[TARGET_EF_R0] = 0;
912 
913     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
914         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
915     }
916 
917     (*regs)[TARGET_EF_R26] = 0;
918     (*regs)[TARGET_EF_R27] = 0;
919     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
920     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
921     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
922     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
923     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
924     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
925 }
926 
927 #define USE_ELF_CORE_DUMP
928 #define ELF_EXEC_PAGESIZE        4096
929 
930 #endif /* TARGET_MIPS */
931 
932 #ifdef TARGET_MICROBLAZE
933 
934 #define ELF_START_MMAP 0x80000000
935 
936 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
937 
938 #define ELF_CLASS   ELFCLASS32
939 #define ELF_ARCH    EM_MICROBLAZE
940 
941 static inline void init_thread(struct target_pt_regs *regs,
942                                struct image_info *infop)
943 {
944     regs->pc = infop->entry;
945     regs->r1 = infop->start_stack;
946 
947 }
948 
949 #define ELF_EXEC_PAGESIZE        4096
950 
951 #define USE_ELF_CORE_DUMP
952 #define ELF_NREG 38
953 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
954 
955 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
956 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
957 {
958     int i, pos = 0;
959 
960     for (i = 0; i < 32; i++) {
961         (*regs)[pos++] = tswapreg(env->regs[i]);
962     }
963 
964     for (i = 0; i < 6; i++) {
965         (*regs)[pos++] = tswapreg(env->sregs[i]);
966     }
967 }
968 
969 #endif /* TARGET_MICROBLAZE */
970 
971 #ifdef TARGET_NIOS2
972 
973 #define ELF_START_MMAP 0x80000000
974 
975 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
976 
977 #define ELF_CLASS   ELFCLASS32
978 #define ELF_ARCH    EM_ALTERA_NIOS2
979 
980 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
981 {
982     regs->ea = infop->entry;
983     regs->sp = infop->start_stack;
984     regs->estatus = 0x3;
985 }
986 
987 #define ELF_EXEC_PAGESIZE        4096
988 
989 #define USE_ELF_CORE_DUMP
990 #define ELF_NREG 49
991 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
992 
993 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
994 static void elf_core_copy_regs(target_elf_gregset_t *regs,
995                                const CPUNios2State *env)
996 {
997     int i;
998 
999     (*regs)[0] = -1;
1000     for (i = 1; i < 8; i++)    /* r0-r7 */
1001         (*regs)[i] = tswapreg(env->regs[i + 7]);
1002 
1003     for (i = 8; i < 16; i++)   /* r8-r15 */
1004         (*regs)[i] = tswapreg(env->regs[i - 8]);
1005 
1006     for (i = 16; i < 24; i++)  /* r16-r23 */
1007         (*regs)[i] = tswapreg(env->regs[i + 7]);
1008     (*regs)[24] = -1;    /* R_ET */
1009     (*regs)[25] = -1;    /* R_BT */
1010     (*regs)[26] = tswapreg(env->regs[R_GP]);
1011     (*regs)[27] = tswapreg(env->regs[R_SP]);
1012     (*regs)[28] = tswapreg(env->regs[R_FP]);
1013     (*regs)[29] = tswapreg(env->regs[R_EA]);
1014     (*regs)[30] = -1;    /* R_SSTATUS */
1015     (*regs)[31] = tswapreg(env->regs[R_RA]);
1016 
1017     (*regs)[32] = tswapreg(env->regs[R_PC]);
1018 
1019     (*regs)[33] = -1; /* R_STATUS */
1020     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1021 
1022     for (i = 35; i < 49; i++)    /* ... */
1023         (*regs)[i] = -1;
1024 }
1025 
1026 #endif /* TARGET_NIOS2 */
1027 
1028 #ifdef TARGET_OPENRISC
1029 
1030 #define ELF_START_MMAP 0x08000000
1031 
1032 #define ELF_ARCH EM_OPENRISC
1033 #define ELF_CLASS ELFCLASS32
1034 #define ELF_DATA  ELFDATA2MSB
1035 
1036 static inline void init_thread(struct target_pt_regs *regs,
1037                                struct image_info *infop)
1038 {
1039     regs->pc = infop->entry;
1040     regs->gpr[1] = infop->start_stack;
1041 }
1042 
1043 #define USE_ELF_CORE_DUMP
1044 #define ELF_EXEC_PAGESIZE 8192
1045 
1046 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1047 #define ELF_NREG 34 /* gprs and pc, sr */
1048 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1049 
1050 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1051                                const CPUOpenRISCState *env)
1052 {
1053     int i;
1054 
1055     for (i = 0; i < 32; i++) {
1056         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1057     }
1058     (*regs)[32] = tswapreg(env->pc);
1059     (*regs)[33] = tswapreg(cpu_get_sr(env));
1060 }
1061 #define ELF_HWCAP 0
1062 #define ELF_PLATFORM NULL
1063 
1064 #endif /* TARGET_OPENRISC */
1065 
1066 #ifdef TARGET_SH4
1067 
1068 #define ELF_START_MMAP 0x80000000
1069 
1070 #define ELF_CLASS ELFCLASS32
1071 #define ELF_ARCH  EM_SH
1072 
1073 static inline void init_thread(struct target_pt_regs *regs,
1074                                struct image_info *infop)
1075 {
1076     /* Check other registers XXXXX */
1077     regs->pc = infop->entry;
1078     regs->regs[15] = infop->start_stack;
1079 }
1080 
1081 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1082 #define ELF_NREG 23
1083 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1084 
1085 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1086 enum {
1087     TARGET_REG_PC = 16,
1088     TARGET_REG_PR = 17,
1089     TARGET_REG_SR = 18,
1090     TARGET_REG_GBR = 19,
1091     TARGET_REG_MACH = 20,
1092     TARGET_REG_MACL = 21,
1093     TARGET_REG_SYSCALL = 22
1094 };
1095 
1096 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1097                                       const CPUSH4State *env)
1098 {
1099     int i;
1100 
1101     for (i = 0; i < 16; i++) {
1102         (*regs)[i] = tswapreg(env->gregs[i]);
1103     }
1104 
1105     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1106     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1107     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1108     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1109     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1110     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1111     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1112 }
1113 
1114 #define USE_ELF_CORE_DUMP
1115 #define ELF_EXEC_PAGESIZE        4096
1116 
1117 enum {
1118     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1119     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1120     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1121     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1122     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1123     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1124     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1125     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1126     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1127     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1128 };
1129 
1130 #define ELF_HWCAP get_elf_hwcap()
1131 
1132 static uint32_t get_elf_hwcap(void)
1133 {
1134     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1135     uint32_t hwcap = 0;
1136 
1137     hwcap |= SH_CPU_HAS_FPU;
1138 
1139     if (cpu->env.features & SH_FEATURE_SH4A) {
1140         hwcap |= SH_CPU_HAS_LLSC;
1141     }
1142 
1143     return hwcap;
1144 }
1145 
1146 #endif
1147 
1148 #ifdef TARGET_CRIS
1149 
1150 #define ELF_START_MMAP 0x80000000
1151 
1152 #define ELF_CLASS ELFCLASS32
1153 #define ELF_ARCH  EM_CRIS
1154 
1155 static inline void init_thread(struct target_pt_regs *regs,
1156                                struct image_info *infop)
1157 {
1158     regs->erp = infop->entry;
1159 }
1160 
1161 #define ELF_EXEC_PAGESIZE        8192
1162 
1163 #endif
1164 
1165 #ifdef TARGET_M68K
1166 
1167 #define ELF_START_MMAP 0x80000000
1168 
1169 #define ELF_CLASS       ELFCLASS32
1170 #define ELF_ARCH        EM_68K
1171 
1172 /* ??? Does this need to do anything?
1173    #define ELF_PLAT_INIT(_r) */
1174 
1175 static inline void init_thread(struct target_pt_regs *regs,
1176                                struct image_info *infop)
1177 {
1178     regs->usp = infop->start_stack;
1179     regs->sr = 0;
1180     regs->pc = infop->entry;
1181 }
1182 
1183 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1184 #define ELF_NREG 20
1185 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1186 
1187 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1188 {
1189     (*regs)[0] = tswapreg(env->dregs[1]);
1190     (*regs)[1] = tswapreg(env->dregs[2]);
1191     (*regs)[2] = tswapreg(env->dregs[3]);
1192     (*regs)[3] = tswapreg(env->dregs[4]);
1193     (*regs)[4] = tswapreg(env->dregs[5]);
1194     (*regs)[5] = tswapreg(env->dregs[6]);
1195     (*regs)[6] = tswapreg(env->dregs[7]);
1196     (*regs)[7] = tswapreg(env->aregs[0]);
1197     (*regs)[8] = tswapreg(env->aregs[1]);
1198     (*regs)[9] = tswapreg(env->aregs[2]);
1199     (*regs)[10] = tswapreg(env->aregs[3]);
1200     (*regs)[11] = tswapreg(env->aregs[4]);
1201     (*regs)[12] = tswapreg(env->aregs[5]);
1202     (*regs)[13] = tswapreg(env->aregs[6]);
1203     (*regs)[14] = tswapreg(env->dregs[0]);
1204     (*regs)[15] = tswapreg(env->aregs[7]);
1205     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1206     (*regs)[17] = tswapreg(env->sr);
1207     (*regs)[18] = tswapreg(env->pc);
1208     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1209 }
1210 
1211 #define USE_ELF_CORE_DUMP
1212 #define ELF_EXEC_PAGESIZE       8192
1213 
1214 #endif
1215 
1216 #ifdef TARGET_ALPHA
1217 
1218 #define ELF_START_MMAP (0x30000000000ULL)
1219 
1220 #define ELF_CLASS      ELFCLASS64
1221 #define ELF_ARCH       EM_ALPHA
1222 
1223 static inline void init_thread(struct target_pt_regs *regs,
1224                                struct image_info *infop)
1225 {
1226     regs->pc = infop->entry;
1227     regs->ps = 8;
1228     regs->usp = infop->start_stack;
1229 }
1230 
1231 #define ELF_EXEC_PAGESIZE        8192
1232 
1233 #endif /* TARGET_ALPHA */
1234 
1235 #ifdef TARGET_S390X
1236 
1237 #define ELF_START_MMAP (0x20000000000ULL)
1238 
1239 #define ELF_CLASS	ELFCLASS64
1240 #define ELF_DATA	ELFDATA2MSB
1241 #define ELF_ARCH	EM_S390
1242 
1243 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1244 {
1245     regs->psw.addr = infop->entry;
1246     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1247     regs->gprs[15] = infop->start_stack;
1248 }
1249 
1250 #endif /* TARGET_S390X */
1251 
1252 #ifdef TARGET_TILEGX
1253 
1254 /* 42 bits real used address, a half for user mode */
1255 #define ELF_START_MMAP (0x00000020000000000ULL)
1256 
1257 #define elf_check_arch(x) ((x) == EM_TILEGX)
1258 
1259 #define ELF_CLASS   ELFCLASS64
1260 #define ELF_DATA    ELFDATA2LSB
1261 #define ELF_ARCH    EM_TILEGX
1262 
1263 static inline void init_thread(struct target_pt_regs *regs,
1264                                struct image_info *infop)
1265 {
1266     regs->pc = infop->entry;
1267     regs->sp = infop->start_stack;
1268 
1269 }
1270 
1271 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1272 
1273 #endif /* TARGET_TILEGX */
1274 
1275 #ifdef TARGET_HPPA
1276 
1277 #define ELF_START_MMAP  0x80000000
1278 #define ELF_CLASS       ELFCLASS32
1279 #define ELF_ARCH        EM_PARISC
1280 #define ELF_PLATFORM    "PARISC"
1281 #define STACK_GROWS_DOWN 0
1282 #define STACK_ALIGNMENT  64
1283 
1284 static inline void init_thread(struct target_pt_regs *regs,
1285                                struct image_info *infop)
1286 {
1287     regs->iaoq[0] = infop->entry;
1288     regs->iaoq[1] = infop->entry + 4;
1289     regs->gr[23] = 0;
1290     regs->gr[24] = infop->arg_start;
1291     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1292     /* The top-of-stack contains a linkage buffer.  */
1293     regs->gr[30] = infop->start_stack + 64;
1294     regs->gr[31] = infop->entry;
1295 }
1296 
1297 #endif /* TARGET_HPPA */
1298 
1299 #ifndef ELF_PLATFORM
1300 #define ELF_PLATFORM (NULL)
1301 #endif
1302 
1303 #ifndef ELF_MACHINE
1304 #define ELF_MACHINE ELF_ARCH
1305 #endif
1306 
1307 #ifndef elf_check_arch
1308 #define elf_check_arch(x) ((x) == ELF_ARCH)
1309 #endif
1310 
1311 #ifndef ELF_HWCAP
1312 #define ELF_HWCAP 0
1313 #endif
1314 
1315 #ifndef STACK_GROWS_DOWN
1316 #define STACK_GROWS_DOWN 1
1317 #endif
1318 
1319 #ifndef STACK_ALIGNMENT
1320 #define STACK_ALIGNMENT 16
1321 #endif
1322 
1323 #ifdef TARGET_ABI32
1324 #undef ELF_CLASS
1325 #define ELF_CLASS ELFCLASS32
1326 #undef bswaptls
1327 #define bswaptls(ptr) bswap32s(ptr)
1328 #endif
1329 
1330 #include "elf.h"
1331 
1332 struct exec
1333 {
1334     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1335     unsigned int a_text;   /* length of text, in bytes */
1336     unsigned int a_data;   /* length of data, in bytes */
1337     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1338     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1339     unsigned int a_entry;  /* start address */
1340     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1341     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1342 };
1343 
1344 
1345 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1346 #define OMAGIC 0407
1347 #define NMAGIC 0410
1348 #define ZMAGIC 0413
1349 #define QMAGIC 0314
1350 
1351 /* Necessary parameters */
1352 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1353 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1354                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1355 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1356 
1357 #define DLINFO_ITEMS 14
1358 
1359 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1360 {
1361     memcpy(to, from, n);
1362 }
1363 
1364 #ifdef BSWAP_NEEDED
1365 static void bswap_ehdr(struct elfhdr *ehdr)
1366 {
1367     bswap16s(&ehdr->e_type);            /* Object file type */
1368     bswap16s(&ehdr->e_machine);         /* Architecture */
1369     bswap32s(&ehdr->e_version);         /* Object file version */
1370     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1371     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1372     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1373     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1374     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1375     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1376     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1377     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1378     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1379     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1380 }
1381 
1382 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1383 {
1384     int i;
1385     for (i = 0; i < phnum; ++i, ++phdr) {
1386         bswap32s(&phdr->p_type);        /* Segment type */
1387         bswap32s(&phdr->p_flags);       /* Segment flags */
1388         bswaptls(&phdr->p_offset);      /* Segment file offset */
1389         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1390         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1391         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1392         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1393         bswaptls(&phdr->p_align);       /* Segment alignment */
1394     }
1395 }
1396 
1397 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1398 {
1399     int i;
1400     for (i = 0; i < shnum; ++i, ++shdr) {
1401         bswap32s(&shdr->sh_name);
1402         bswap32s(&shdr->sh_type);
1403         bswaptls(&shdr->sh_flags);
1404         bswaptls(&shdr->sh_addr);
1405         bswaptls(&shdr->sh_offset);
1406         bswaptls(&shdr->sh_size);
1407         bswap32s(&shdr->sh_link);
1408         bswap32s(&shdr->sh_info);
1409         bswaptls(&shdr->sh_addralign);
1410         bswaptls(&shdr->sh_entsize);
1411     }
1412 }
1413 
1414 static void bswap_sym(struct elf_sym *sym)
1415 {
1416     bswap32s(&sym->st_name);
1417     bswaptls(&sym->st_value);
1418     bswaptls(&sym->st_size);
1419     bswap16s(&sym->st_shndx);
1420 }
1421 #else
1422 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1423 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1424 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1425 static inline void bswap_sym(struct elf_sym *sym) { }
1426 #endif
1427 
1428 #ifdef USE_ELF_CORE_DUMP
1429 static int elf_core_dump(int, const CPUArchState *);
1430 #endif /* USE_ELF_CORE_DUMP */
1431 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1432 
1433 /* Verify the portions of EHDR within E_IDENT for the target.
1434    This can be performed before bswapping the entire header.  */
1435 static bool elf_check_ident(struct elfhdr *ehdr)
1436 {
1437     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1438             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1439             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1440             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1441             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1442             && ehdr->e_ident[EI_DATA] == ELF_DATA
1443             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1444 }
1445 
1446 /* Verify the portions of EHDR outside of E_IDENT for the target.
1447    This has to wait until after bswapping the header.  */
1448 static bool elf_check_ehdr(struct elfhdr *ehdr)
1449 {
1450     return (elf_check_arch(ehdr->e_machine)
1451             && ehdr->e_ehsize == sizeof(struct elfhdr)
1452             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1453             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1454 }
1455 
1456 /*
1457  * 'copy_elf_strings()' copies argument/envelope strings from user
1458  * memory to free pages in kernel mem. These are in a format ready
1459  * to be put directly into the top of new user memory.
1460  *
1461  */
1462 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1463                                   abi_ulong p, abi_ulong stack_limit)
1464 {
1465     char *tmp;
1466     int len, i;
1467     abi_ulong top = p;
1468 
1469     if (!p) {
1470         return 0;       /* bullet-proofing */
1471     }
1472 
1473     if (STACK_GROWS_DOWN) {
1474         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1475         for (i = argc - 1; i >= 0; --i) {
1476             tmp = argv[i];
1477             if (!tmp) {
1478                 fprintf(stderr, "VFS: argc is wrong");
1479                 exit(-1);
1480             }
1481             len = strlen(tmp) + 1;
1482             tmp += len;
1483 
1484             if (len > (p - stack_limit)) {
1485                 return 0;
1486             }
1487             while (len) {
1488                 int bytes_to_copy = (len > offset) ? offset : len;
1489                 tmp -= bytes_to_copy;
1490                 p -= bytes_to_copy;
1491                 offset -= bytes_to_copy;
1492                 len -= bytes_to_copy;
1493 
1494                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1495 
1496                 if (offset == 0) {
1497                     memcpy_to_target(p, scratch, top - p);
1498                     top = p;
1499                     offset = TARGET_PAGE_SIZE;
1500                 }
1501             }
1502         }
1503         if (p != top) {
1504             memcpy_to_target(p, scratch + offset, top - p);
1505         }
1506     } else {
1507         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1508         for (i = 0; i < argc; ++i) {
1509             tmp = argv[i];
1510             if (!tmp) {
1511                 fprintf(stderr, "VFS: argc is wrong");
1512                 exit(-1);
1513             }
1514             len = strlen(tmp) + 1;
1515             if (len > (stack_limit - p)) {
1516                 return 0;
1517             }
1518             while (len) {
1519                 int bytes_to_copy = (len > remaining) ? remaining : len;
1520 
1521                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1522 
1523                 tmp += bytes_to_copy;
1524                 remaining -= bytes_to_copy;
1525                 p += bytes_to_copy;
1526                 len -= bytes_to_copy;
1527 
1528                 if (remaining == 0) {
1529                     memcpy_to_target(top, scratch, p - top);
1530                     top = p;
1531                     remaining = TARGET_PAGE_SIZE;
1532                 }
1533             }
1534         }
1535         if (p != top) {
1536             memcpy_to_target(top, scratch, p - top);
1537         }
1538     }
1539 
1540     return p;
1541 }
1542 
1543 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1544  * argument/environment space. Newer kernels (>2.6.33) allow more,
1545  * dependent on stack size, but guarantee at least 32 pages for
1546  * backwards compatibility.
1547  */
1548 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1549 
1550 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1551                                  struct image_info *info)
1552 {
1553     abi_ulong size, error, guard;
1554 
1555     size = guest_stack_size;
1556     if (size < STACK_LOWER_LIMIT) {
1557         size = STACK_LOWER_LIMIT;
1558     }
1559     guard = TARGET_PAGE_SIZE;
1560     if (guard < qemu_real_host_page_size) {
1561         guard = qemu_real_host_page_size;
1562     }
1563 
1564     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1565                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1566     if (error == -1) {
1567         perror("mmap stack");
1568         exit(-1);
1569     }
1570 
1571     /* We reserve one extra page at the top of the stack as guard.  */
1572     if (STACK_GROWS_DOWN) {
1573         target_mprotect(error, guard, PROT_NONE);
1574         info->stack_limit = error + guard;
1575         return info->stack_limit + size - sizeof(void *);
1576     } else {
1577         target_mprotect(error + size, guard, PROT_NONE);
1578         info->stack_limit = error + size;
1579         return error;
1580     }
1581 }
1582 
1583 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1584    after the data section (i.e. bss).  */
1585 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1586 {
1587     uintptr_t host_start, host_map_start, host_end;
1588 
1589     last_bss = TARGET_PAGE_ALIGN(last_bss);
1590 
1591     /* ??? There is confusion between qemu_real_host_page_size and
1592        qemu_host_page_size here and elsewhere in target_mmap, which
1593        may lead to the end of the data section mapping from the file
1594        not being mapped.  At least there was an explicit test and
1595        comment for that here, suggesting that "the file size must
1596        be known".  The comment probably pre-dates the introduction
1597        of the fstat system call in target_mmap which does in fact
1598        find out the size.  What isn't clear is if the workaround
1599        here is still actually needed.  For now, continue with it,
1600        but merge it with the "normal" mmap that would allocate the bss.  */
1601 
1602     host_start = (uintptr_t) g2h(elf_bss);
1603     host_end = (uintptr_t) g2h(last_bss);
1604     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1605 
1606     if (host_map_start < host_end) {
1607         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1608                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1609         if (p == MAP_FAILED) {
1610             perror("cannot mmap brk");
1611             exit(-1);
1612         }
1613     }
1614 
1615     /* Ensure that the bss page(s) are valid */
1616     if ((page_get_flags(last_bss-1) & prot) != prot) {
1617         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1618     }
1619 
1620     if (host_start < host_map_start) {
1621         memset((void *)host_start, 0, host_map_start - host_start);
1622     }
1623 }
1624 
1625 #ifdef CONFIG_USE_FDPIC
1626 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1627 {
1628     uint16_t n;
1629     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1630 
1631     /* elf32_fdpic_loadseg */
1632     n = info->nsegs;
1633     while (n--) {
1634         sp -= 12;
1635         put_user_u32(loadsegs[n].addr, sp+0);
1636         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1637         put_user_u32(loadsegs[n].p_memsz, sp+8);
1638     }
1639 
1640     /* elf32_fdpic_loadmap */
1641     sp -= 4;
1642     put_user_u16(0, sp+0); /* version */
1643     put_user_u16(info->nsegs, sp+2); /* nsegs */
1644 
1645     info->personality = PER_LINUX_FDPIC;
1646     info->loadmap_addr = sp;
1647 
1648     return sp;
1649 }
1650 #endif
1651 
1652 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1653                                    struct elfhdr *exec,
1654                                    struct image_info *info,
1655                                    struct image_info *interp_info)
1656 {
1657     abi_ulong sp;
1658     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1659     int size;
1660     int i;
1661     abi_ulong u_rand_bytes;
1662     uint8_t k_rand_bytes[16];
1663     abi_ulong u_platform;
1664     const char *k_platform;
1665     const int n = sizeof(elf_addr_t);
1666 
1667     sp = p;
1668 
1669 #ifdef CONFIG_USE_FDPIC
1670     /* Needs to be before we load the env/argc/... */
1671     if (elf_is_fdpic(exec)) {
1672         /* Need 4 byte alignment for these structs */
1673         sp &= ~3;
1674         sp = loader_build_fdpic_loadmap(info, sp);
1675         info->other_info = interp_info;
1676         if (interp_info) {
1677             interp_info->other_info = info;
1678             sp = loader_build_fdpic_loadmap(interp_info, sp);
1679         }
1680     }
1681 #endif
1682 
1683     u_platform = 0;
1684     k_platform = ELF_PLATFORM;
1685     if (k_platform) {
1686         size_t len = strlen(k_platform) + 1;
1687         if (STACK_GROWS_DOWN) {
1688             sp -= (len + n - 1) & ~(n - 1);
1689             u_platform = sp;
1690             /* FIXME - check return value of memcpy_to_target() for failure */
1691             memcpy_to_target(sp, k_platform, len);
1692         } else {
1693             memcpy_to_target(sp, k_platform, len);
1694             u_platform = sp;
1695             sp += len + 1;
1696         }
1697     }
1698 
1699     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1700      * the argv and envp pointers.
1701      */
1702     if (STACK_GROWS_DOWN) {
1703         sp = QEMU_ALIGN_DOWN(sp, 16);
1704     } else {
1705         sp = QEMU_ALIGN_UP(sp, 16);
1706     }
1707 
1708     /*
1709      * Generate 16 random bytes for userspace PRNG seeding (not
1710      * cryptically secure but it's not the aim of QEMU).
1711      */
1712     for (i = 0; i < 16; i++) {
1713         k_rand_bytes[i] = rand();
1714     }
1715     if (STACK_GROWS_DOWN) {
1716         sp -= 16;
1717         u_rand_bytes = sp;
1718         /* FIXME - check return value of memcpy_to_target() for failure */
1719         memcpy_to_target(sp, k_rand_bytes, 16);
1720     } else {
1721         memcpy_to_target(sp, k_rand_bytes, 16);
1722         u_rand_bytes = sp;
1723         sp += 16;
1724     }
1725 
1726     size = (DLINFO_ITEMS + 1) * 2;
1727     if (k_platform)
1728         size += 2;
1729 #ifdef DLINFO_ARCH_ITEMS
1730     size += DLINFO_ARCH_ITEMS * 2;
1731 #endif
1732 #ifdef ELF_HWCAP2
1733     size += 2;
1734 #endif
1735     size += envc + argc + 2;
1736     size += 1;  /* argc itself */
1737     size *= n;
1738 
1739     /* Allocate space and finalize stack alignment for entry now.  */
1740     if (STACK_GROWS_DOWN) {
1741         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1742         sp = u_argc;
1743     } else {
1744         u_argc = sp;
1745         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1746     }
1747 
1748     u_argv = u_argc + n;
1749     u_envp = u_argv + (argc + 1) * n;
1750     u_auxv = u_envp + (envc + 1) * n;
1751     info->saved_auxv = u_auxv;
1752     info->arg_start = u_argv;
1753     info->arg_end = u_argv + argc * n;
1754 
1755     /* This is correct because Linux defines
1756      * elf_addr_t as Elf32_Off / Elf64_Off
1757      */
1758 #define NEW_AUX_ENT(id, val) do {               \
1759         put_user_ual(id, u_auxv);  u_auxv += n; \
1760         put_user_ual(val, u_auxv); u_auxv += n; \
1761     } while(0)
1762 
1763     /* There must be exactly DLINFO_ITEMS entries here.  */
1764 #ifdef ARCH_DLINFO
1765     /*
1766      * ARCH_DLINFO must come first so platform specific code can enforce
1767      * special alignment requirements on the AUXV if necessary (eg. PPC).
1768      */
1769     ARCH_DLINFO;
1770 #endif
1771     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1772     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1773     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1774     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1775     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1776     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1777     NEW_AUX_ENT(AT_ENTRY, info->entry);
1778     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1779     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1780     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1781     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1782     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1783     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1784     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1785 
1786 #ifdef ELF_HWCAP2
1787     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1788 #endif
1789 
1790     if (u_platform) {
1791         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1792     }
1793     NEW_AUX_ENT (AT_NULL, 0);
1794 #undef NEW_AUX_ENT
1795 
1796     info->auxv_len = u_argv - info->saved_auxv;
1797 
1798     put_user_ual(argc, u_argc);
1799 
1800     p = info->arg_strings;
1801     for (i = 0; i < argc; ++i) {
1802         put_user_ual(p, u_argv);
1803         u_argv += n;
1804         p += target_strlen(p) + 1;
1805     }
1806     put_user_ual(0, u_argv);
1807 
1808     p = info->env_strings;
1809     for (i = 0; i < envc; ++i) {
1810         put_user_ual(p, u_envp);
1811         u_envp += n;
1812         p += target_strlen(p) + 1;
1813     }
1814     put_user_ual(0, u_envp);
1815 
1816     return sp;
1817 }
1818 
1819 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1820 /* If the guest doesn't have a validation function just agree */
1821 static int validate_guest_space(unsigned long guest_base,
1822                                 unsigned long guest_size)
1823 {
1824     return 1;
1825 }
1826 #endif
1827 
1828 unsigned long init_guest_space(unsigned long host_start,
1829                                unsigned long host_size,
1830                                unsigned long guest_start,
1831                                bool fixed)
1832 {
1833     unsigned long current_start, real_start;
1834     int flags;
1835 
1836     assert(host_start || host_size);
1837 
1838     /* If just a starting address is given, then just verify that
1839      * address.  */
1840     if (host_start && !host_size) {
1841         if (validate_guest_space(host_start, host_size) == 1) {
1842             return host_start;
1843         } else {
1844             return (unsigned long)-1;
1845         }
1846     }
1847 
1848     /* Setup the initial flags and start address.  */
1849     current_start = host_start & qemu_host_page_mask;
1850     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1851     if (fixed) {
1852         flags |= MAP_FIXED;
1853     }
1854 
1855     /* Otherwise, a non-zero size region of memory needs to be mapped
1856      * and validated.  */
1857     while (1) {
1858         unsigned long real_size = host_size;
1859 
1860         /* Do not use mmap_find_vma here because that is limited to the
1861          * guest address space.  We are going to make the
1862          * guest address space fit whatever we're given.
1863          */
1864         real_start = (unsigned long)
1865             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1866         if (real_start == (unsigned long)-1) {
1867             return (unsigned long)-1;
1868         }
1869 
1870         /* Ensure the address is properly aligned.  */
1871         if (real_start & ~qemu_host_page_mask) {
1872             munmap((void *)real_start, host_size);
1873             real_size = host_size + qemu_host_page_size;
1874             real_start = (unsigned long)
1875                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1876             if (real_start == (unsigned long)-1) {
1877                 return (unsigned long)-1;
1878             }
1879             real_start = HOST_PAGE_ALIGN(real_start);
1880         }
1881 
1882         /* Check to see if the address is valid.  */
1883         if (!host_start || real_start == current_start) {
1884             int valid = validate_guest_space(real_start - guest_start,
1885                                              real_size);
1886             if (valid == 1) {
1887                 break;
1888             } else if (valid == -1) {
1889                 return (unsigned long)-1;
1890             }
1891             /* valid == 0, so try again. */
1892         }
1893 
1894         /* That address didn't work.  Unmap and try a different one.
1895          * The address the host picked because is typically right at
1896          * the top of the host address space and leaves the guest with
1897          * no usable address space.  Resort to a linear search.  We
1898          * already compensated for mmap_min_addr, so this should not
1899          * happen often.  Probably means we got unlucky and host
1900          * address space randomization put a shared library somewhere
1901          * inconvenient.
1902          */
1903         munmap((void *)real_start, host_size);
1904         current_start += qemu_host_page_size;
1905         if (host_start == current_start) {
1906             /* Theoretically possible if host doesn't have any suitably
1907              * aligned areas.  Normally the first mmap will fail.
1908              */
1909             return (unsigned long)-1;
1910         }
1911     }
1912 
1913     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1914 
1915     return real_start;
1916 }
1917 
1918 static void probe_guest_base(const char *image_name,
1919                              abi_ulong loaddr, abi_ulong hiaddr)
1920 {
1921     /* Probe for a suitable guest base address, if the user has not set
1922      * it explicitly, and set guest_base appropriately.
1923      * In case of error we will print a suitable message and exit.
1924      */
1925     const char *errmsg;
1926     if (!have_guest_base && !reserved_va) {
1927         unsigned long host_start, real_start, host_size;
1928 
1929         /* Round addresses to page boundaries.  */
1930         loaddr &= qemu_host_page_mask;
1931         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1932 
1933         if (loaddr < mmap_min_addr) {
1934             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1935         } else {
1936             host_start = loaddr;
1937             if (host_start != loaddr) {
1938                 errmsg = "Address overflow loading ELF binary";
1939                 goto exit_errmsg;
1940             }
1941         }
1942         host_size = hiaddr - loaddr;
1943 
1944         /* Setup the initial guest memory space with ranges gleaned from
1945          * the ELF image that is being loaded.
1946          */
1947         real_start = init_guest_space(host_start, host_size, loaddr, false);
1948         if (real_start == (unsigned long)-1) {
1949             errmsg = "Unable to find space for application";
1950             goto exit_errmsg;
1951         }
1952         guest_base = real_start - loaddr;
1953 
1954         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1955                       TARGET_ABI_FMT_lx " to 0x%lx\n",
1956                       loaddr, real_start);
1957     }
1958     return;
1959 
1960 exit_errmsg:
1961     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1962     exit(-1);
1963 }
1964 
1965 
1966 /* Load an ELF image into the address space.
1967 
1968    IMAGE_NAME is the filename of the image, to use in error messages.
1969    IMAGE_FD is the open file descriptor for the image.
1970 
1971    BPRM_BUF is a copy of the beginning of the file; this of course
1972    contains the elf file header at offset 0.  It is assumed that this
1973    buffer is sufficiently aligned to present no problems to the host
1974    in accessing data at aligned offsets within the buffer.
1975 
1976    On return: INFO values will be filled in, as necessary or available.  */
1977 
1978 static void load_elf_image(const char *image_name, int image_fd,
1979                            struct image_info *info, char **pinterp_name,
1980                            char bprm_buf[BPRM_BUF_SIZE])
1981 {
1982     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1983     struct elf_phdr *phdr;
1984     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1985     int i, retval;
1986     const char *errmsg;
1987 
1988     /* First of all, some simple consistency checks */
1989     errmsg = "Invalid ELF image for this architecture";
1990     if (!elf_check_ident(ehdr)) {
1991         goto exit_errmsg;
1992     }
1993     bswap_ehdr(ehdr);
1994     if (!elf_check_ehdr(ehdr)) {
1995         goto exit_errmsg;
1996     }
1997 
1998     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1999     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2000         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2001     } else {
2002         phdr = (struct elf_phdr *) alloca(i);
2003         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2004         if (retval != i) {
2005             goto exit_read;
2006         }
2007     }
2008     bswap_phdr(phdr, ehdr->e_phnum);
2009 
2010 #ifdef CONFIG_USE_FDPIC
2011     info->nsegs = 0;
2012     info->pt_dynamic_addr = 0;
2013 #endif
2014 
2015     mmap_lock();
2016 
2017     /* Find the maximum size of the image and allocate an appropriate
2018        amount of memory to handle that.  */
2019     loaddr = -1, hiaddr = 0;
2020     for (i = 0; i < ehdr->e_phnum; ++i) {
2021         if (phdr[i].p_type == PT_LOAD) {
2022             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2023             if (a < loaddr) {
2024                 loaddr = a;
2025             }
2026             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2027             if (a > hiaddr) {
2028                 hiaddr = a;
2029             }
2030 #ifdef CONFIG_USE_FDPIC
2031             ++info->nsegs;
2032 #endif
2033         }
2034     }
2035 
2036     load_addr = loaddr;
2037     if (ehdr->e_type == ET_DYN) {
2038         /* The image indicates that it can be loaded anywhere.  Find a
2039            location that can hold the memory space required.  If the
2040            image is pre-linked, LOADDR will be non-zero.  Since we do
2041            not supply MAP_FIXED here we'll use that address if and
2042            only if it remains available.  */
2043         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2044                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2045                                 -1, 0);
2046         if (load_addr == -1) {
2047             goto exit_perror;
2048         }
2049     } else if (pinterp_name != NULL) {
2050         /* This is the main executable.  Make sure that the low
2051            address does not conflict with MMAP_MIN_ADDR or the
2052            QEMU application itself.  */
2053         probe_guest_base(image_name, loaddr, hiaddr);
2054     }
2055     load_bias = load_addr - loaddr;
2056 
2057 #ifdef CONFIG_USE_FDPIC
2058     {
2059         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2060             g_malloc(sizeof(*loadsegs) * info->nsegs);
2061 
2062         for (i = 0; i < ehdr->e_phnum; ++i) {
2063             switch (phdr[i].p_type) {
2064             case PT_DYNAMIC:
2065                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2066                 break;
2067             case PT_LOAD:
2068                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2069                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2070                 loadsegs->p_memsz = phdr[i].p_memsz;
2071                 ++loadsegs;
2072                 break;
2073             }
2074         }
2075     }
2076 #endif
2077 
2078     info->load_bias = load_bias;
2079     info->load_addr = load_addr;
2080     info->entry = ehdr->e_entry + load_bias;
2081     info->start_code = -1;
2082     info->end_code = 0;
2083     info->start_data = -1;
2084     info->end_data = 0;
2085     info->brk = 0;
2086     info->elf_flags = ehdr->e_flags;
2087 
2088     for (i = 0; i < ehdr->e_phnum; i++) {
2089         struct elf_phdr *eppnt = phdr + i;
2090         if (eppnt->p_type == PT_LOAD) {
2091             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2092             int elf_prot = 0;
2093 
2094             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2095             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2096             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2097 
2098             vaddr = load_bias + eppnt->p_vaddr;
2099             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2100             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2101 
2102             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2103                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2104                                 image_fd, eppnt->p_offset - vaddr_po);
2105             if (error == -1) {
2106                 goto exit_perror;
2107             }
2108 
2109             vaddr_ef = vaddr + eppnt->p_filesz;
2110             vaddr_em = vaddr + eppnt->p_memsz;
2111 
2112             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2113             if (vaddr_ef < vaddr_em) {
2114                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2115             }
2116 
2117             /* Find the full program boundaries.  */
2118             if (elf_prot & PROT_EXEC) {
2119                 if (vaddr < info->start_code) {
2120                     info->start_code = vaddr;
2121                 }
2122                 if (vaddr_ef > info->end_code) {
2123                     info->end_code = vaddr_ef;
2124                 }
2125             }
2126             if (elf_prot & PROT_WRITE) {
2127                 if (vaddr < info->start_data) {
2128                     info->start_data = vaddr;
2129                 }
2130                 if (vaddr_ef > info->end_data) {
2131                     info->end_data = vaddr_ef;
2132                 }
2133                 if (vaddr_em > info->brk) {
2134                     info->brk = vaddr_em;
2135                 }
2136             }
2137         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2138             char *interp_name;
2139 
2140             if (*pinterp_name) {
2141                 errmsg = "Multiple PT_INTERP entries";
2142                 goto exit_errmsg;
2143             }
2144             interp_name = malloc(eppnt->p_filesz);
2145             if (!interp_name) {
2146                 goto exit_perror;
2147             }
2148 
2149             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2150                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2151                        eppnt->p_filesz);
2152             } else {
2153                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2154                                eppnt->p_offset);
2155                 if (retval != eppnt->p_filesz) {
2156                     goto exit_perror;
2157                 }
2158             }
2159             if (interp_name[eppnt->p_filesz - 1] != 0) {
2160                 errmsg = "Invalid PT_INTERP entry";
2161                 goto exit_errmsg;
2162             }
2163             *pinterp_name = interp_name;
2164         }
2165     }
2166 
2167     if (info->end_data == 0) {
2168         info->start_data = info->end_code;
2169         info->end_data = info->end_code;
2170         info->brk = info->end_code;
2171     }
2172 
2173     if (qemu_log_enabled()) {
2174         load_symbols(ehdr, image_fd, load_bias);
2175     }
2176 
2177     mmap_unlock();
2178 
2179     close(image_fd);
2180     return;
2181 
2182  exit_read:
2183     if (retval >= 0) {
2184         errmsg = "Incomplete read of file header";
2185         goto exit_errmsg;
2186     }
2187  exit_perror:
2188     errmsg = strerror(errno);
2189  exit_errmsg:
2190     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2191     exit(-1);
2192 }
2193 
2194 static void load_elf_interp(const char *filename, struct image_info *info,
2195                             char bprm_buf[BPRM_BUF_SIZE])
2196 {
2197     int fd, retval;
2198 
2199     fd = open(path(filename), O_RDONLY);
2200     if (fd < 0) {
2201         goto exit_perror;
2202     }
2203 
2204     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2205     if (retval < 0) {
2206         goto exit_perror;
2207     }
2208     if (retval < BPRM_BUF_SIZE) {
2209         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2210     }
2211 
2212     load_elf_image(filename, fd, info, NULL, bprm_buf);
2213     return;
2214 
2215  exit_perror:
2216     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2217     exit(-1);
2218 }
2219 
2220 static int symfind(const void *s0, const void *s1)
2221 {
2222     target_ulong addr = *(target_ulong *)s0;
2223     struct elf_sym *sym = (struct elf_sym *)s1;
2224     int result = 0;
2225     if (addr < sym->st_value) {
2226         result = -1;
2227     } else if (addr >= sym->st_value + sym->st_size) {
2228         result = 1;
2229     }
2230     return result;
2231 }
2232 
2233 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2234 {
2235 #if ELF_CLASS == ELFCLASS32
2236     struct elf_sym *syms = s->disas_symtab.elf32;
2237 #else
2238     struct elf_sym *syms = s->disas_symtab.elf64;
2239 #endif
2240 
2241     // binary search
2242     struct elf_sym *sym;
2243 
2244     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2245     if (sym != NULL) {
2246         return s->disas_strtab + sym->st_name;
2247     }
2248 
2249     return "";
2250 }
2251 
2252 /* FIXME: This should use elf_ops.h  */
2253 static int symcmp(const void *s0, const void *s1)
2254 {
2255     struct elf_sym *sym0 = (struct elf_sym *)s0;
2256     struct elf_sym *sym1 = (struct elf_sym *)s1;
2257     return (sym0->st_value < sym1->st_value)
2258         ? -1
2259         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2260 }
2261 
2262 /* Best attempt to load symbols from this ELF object. */
2263 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2264 {
2265     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2266     uint64_t segsz;
2267     struct elf_shdr *shdr;
2268     char *strings = NULL;
2269     struct syminfo *s = NULL;
2270     struct elf_sym *new_syms, *syms = NULL;
2271 
2272     shnum = hdr->e_shnum;
2273     i = shnum * sizeof(struct elf_shdr);
2274     shdr = (struct elf_shdr *)alloca(i);
2275     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2276         return;
2277     }
2278 
2279     bswap_shdr(shdr, shnum);
2280     for (i = 0; i < shnum; ++i) {
2281         if (shdr[i].sh_type == SHT_SYMTAB) {
2282             sym_idx = i;
2283             str_idx = shdr[i].sh_link;
2284             goto found;
2285         }
2286     }
2287 
2288     /* There will be no symbol table if the file was stripped.  */
2289     return;
2290 
2291  found:
2292     /* Now know where the strtab and symtab are.  Snarf them.  */
2293     s = g_try_new(struct syminfo, 1);
2294     if (!s) {
2295         goto give_up;
2296     }
2297 
2298     segsz = shdr[str_idx].sh_size;
2299     s->disas_strtab = strings = g_try_malloc(segsz);
2300     if (!strings ||
2301         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2302         goto give_up;
2303     }
2304 
2305     segsz = shdr[sym_idx].sh_size;
2306     syms = g_try_malloc(segsz);
2307     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2308         goto give_up;
2309     }
2310 
2311     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2312         /* Implausibly large symbol table: give up rather than ploughing
2313          * on with the number of symbols calculation overflowing
2314          */
2315         goto give_up;
2316     }
2317     nsyms = segsz / sizeof(struct elf_sym);
2318     for (i = 0; i < nsyms; ) {
2319         bswap_sym(syms + i);
2320         /* Throw away entries which we do not need.  */
2321         if (syms[i].st_shndx == SHN_UNDEF
2322             || syms[i].st_shndx >= SHN_LORESERVE
2323             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2324             if (i < --nsyms) {
2325                 syms[i] = syms[nsyms];
2326             }
2327         } else {
2328 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2329             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2330             syms[i].st_value &= ~(target_ulong)1;
2331 #endif
2332             syms[i].st_value += load_bias;
2333             i++;
2334         }
2335     }
2336 
2337     /* No "useful" symbol.  */
2338     if (nsyms == 0) {
2339         goto give_up;
2340     }
2341 
2342     /* Attempt to free the storage associated with the local symbols
2343        that we threw away.  Whether or not this has any effect on the
2344        memory allocation depends on the malloc implementation and how
2345        many symbols we managed to discard.  */
2346     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2347     if (new_syms == NULL) {
2348         goto give_up;
2349     }
2350     syms = new_syms;
2351 
2352     qsort(syms, nsyms, sizeof(*syms), symcmp);
2353 
2354     s->disas_num_syms = nsyms;
2355 #if ELF_CLASS == ELFCLASS32
2356     s->disas_symtab.elf32 = syms;
2357 #else
2358     s->disas_symtab.elf64 = syms;
2359 #endif
2360     s->lookup_symbol = lookup_symbolxx;
2361     s->next = syminfos;
2362     syminfos = s;
2363 
2364     return;
2365 
2366 give_up:
2367     g_free(s);
2368     g_free(strings);
2369     g_free(syms);
2370 }
2371 
2372 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2373 {
2374     struct image_info interp_info;
2375     struct elfhdr elf_ex;
2376     char *elf_interpreter = NULL;
2377     char *scratch;
2378 
2379     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2380 
2381     load_elf_image(bprm->filename, bprm->fd, info,
2382                    &elf_interpreter, bprm->buf);
2383 
2384     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2385        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2386        when we load the interpreter.  */
2387     elf_ex = *(struct elfhdr *)bprm->buf;
2388 
2389     /* Do this so that we can load the interpreter, if need be.  We will
2390        change some of these later */
2391     bprm->p = setup_arg_pages(bprm, info);
2392 
2393     scratch = g_new0(char, TARGET_PAGE_SIZE);
2394     if (STACK_GROWS_DOWN) {
2395         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2396                                    bprm->p, info->stack_limit);
2397         info->file_string = bprm->p;
2398         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2399                                    bprm->p, info->stack_limit);
2400         info->env_strings = bprm->p;
2401         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2402                                    bprm->p, info->stack_limit);
2403         info->arg_strings = bprm->p;
2404     } else {
2405         info->arg_strings = bprm->p;
2406         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2407                                    bprm->p, info->stack_limit);
2408         info->env_strings = bprm->p;
2409         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2410                                    bprm->p, info->stack_limit);
2411         info->file_string = bprm->p;
2412         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2413                                    bprm->p, info->stack_limit);
2414     }
2415 
2416     g_free(scratch);
2417 
2418     if (!bprm->p) {
2419         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2420         exit(-1);
2421     }
2422 
2423     if (elf_interpreter) {
2424         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2425 
2426         /* If the program interpreter is one of these two, then assume
2427            an iBCS2 image.  Otherwise assume a native linux image.  */
2428 
2429         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2430             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2431             info->personality = PER_SVR4;
2432 
2433             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2434                and some applications "depend" upon this behavior.  Since
2435                we do not have the power to recompile these, we emulate
2436                the SVr4 behavior.  Sigh.  */
2437             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2438                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2439         }
2440     }
2441 
2442     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2443                                 info, (elf_interpreter ? &interp_info : NULL));
2444     info->start_stack = bprm->p;
2445 
2446     /* If we have an interpreter, set that as the program's entry point.
2447        Copy the load_bias as well, to help PPC64 interpret the entry
2448        point as a function descriptor.  Do this after creating elf tables
2449        so that we copy the original program entry point into the AUXV.  */
2450     if (elf_interpreter) {
2451         info->load_bias = interp_info.load_bias;
2452         info->entry = interp_info.entry;
2453         free(elf_interpreter);
2454     }
2455 
2456 #ifdef USE_ELF_CORE_DUMP
2457     bprm->core_dump = &elf_core_dump;
2458 #endif
2459 
2460     return 0;
2461 }
2462 
2463 #ifdef USE_ELF_CORE_DUMP
2464 /*
2465  * Definitions to generate Intel SVR4-like core files.
2466  * These mostly have the same names as the SVR4 types with "target_elf_"
2467  * tacked on the front to prevent clashes with linux definitions,
2468  * and the typedef forms have been avoided.  This is mostly like
2469  * the SVR4 structure, but more Linuxy, with things that Linux does
2470  * not support and which gdb doesn't really use excluded.
2471  *
2472  * Fields we don't dump (their contents is zero) in linux-user qemu
2473  * are marked with XXX.
2474  *
2475  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2476  *
2477  * Porting ELF coredump for target is (quite) simple process.  First you
2478  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2479  * the target resides):
2480  *
2481  * #define USE_ELF_CORE_DUMP
2482  *
2483  * Next you define type of register set used for dumping.  ELF specification
2484  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2485  *
2486  * typedef <target_regtype> target_elf_greg_t;
2487  * #define ELF_NREG <number of registers>
2488  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2489  *
2490  * Last step is to implement target specific function that copies registers
2491  * from given cpu into just specified register set.  Prototype is:
2492  *
2493  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2494  *                                const CPUArchState *env);
2495  *
2496  * Parameters:
2497  *     regs - copy register values into here (allocated and zeroed by caller)
2498  *     env - copy registers from here
2499  *
2500  * Example for ARM target is provided in this file.
2501  */
2502 
2503 /* An ELF note in memory */
2504 struct memelfnote {
2505     const char *name;
2506     size_t     namesz;
2507     size_t     namesz_rounded;
2508     int        type;
2509     size_t     datasz;
2510     size_t     datasz_rounded;
2511     void       *data;
2512     size_t     notesz;
2513 };
2514 
2515 struct target_elf_siginfo {
2516     abi_int    si_signo; /* signal number */
2517     abi_int    si_code;  /* extra code */
2518     abi_int    si_errno; /* errno */
2519 };
2520 
2521 struct target_elf_prstatus {
2522     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2523     abi_short          pr_cursig;    /* Current signal */
2524     abi_ulong          pr_sigpend;   /* XXX */
2525     abi_ulong          pr_sighold;   /* XXX */
2526     target_pid_t       pr_pid;
2527     target_pid_t       pr_ppid;
2528     target_pid_t       pr_pgrp;
2529     target_pid_t       pr_sid;
2530     struct target_timeval pr_utime;  /* XXX User time */
2531     struct target_timeval pr_stime;  /* XXX System time */
2532     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2533     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2534     target_elf_gregset_t      pr_reg;       /* GP registers */
2535     abi_int            pr_fpvalid;   /* XXX */
2536 };
2537 
2538 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2539 
2540 struct target_elf_prpsinfo {
2541     char         pr_state;       /* numeric process state */
2542     char         pr_sname;       /* char for pr_state */
2543     char         pr_zomb;        /* zombie */
2544     char         pr_nice;        /* nice val */
2545     abi_ulong    pr_flag;        /* flags */
2546     target_uid_t pr_uid;
2547     target_gid_t pr_gid;
2548     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2549     /* Lots missing */
2550     char    pr_fname[16];           /* filename of executable */
2551     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2552 };
2553 
2554 /* Here is the structure in which status of each thread is captured. */
2555 struct elf_thread_status {
2556     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2557     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2558 #if 0
2559     elf_fpregset_t fpu;             /* NT_PRFPREG */
2560     struct task_struct *thread;
2561     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2562 #endif
2563     struct memelfnote notes[1];
2564     int num_notes;
2565 };
2566 
2567 struct elf_note_info {
2568     struct memelfnote   *notes;
2569     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2570     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2571 
2572     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2573 #if 0
2574     /*
2575      * Current version of ELF coredump doesn't support
2576      * dumping fp regs etc.
2577      */
2578     elf_fpregset_t *fpu;
2579     elf_fpxregset_t *xfpu;
2580     int thread_status_size;
2581 #endif
2582     int notes_size;
2583     int numnote;
2584 };
2585 
2586 struct vm_area_struct {
2587     target_ulong   vma_start;  /* start vaddr of memory region */
2588     target_ulong   vma_end;    /* end vaddr of memory region */
2589     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2590     QTAILQ_ENTRY(vm_area_struct) vma_link;
2591 };
2592 
2593 struct mm_struct {
2594     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2595     int mm_count;           /* number of mappings */
2596 };
2597 
2598 static struct mm_struct *vma_init(void);
2599 static void vma_delete(struct mm_struct *);
2600 static int vma_add_mapping(struct mm_struct *, target_ulong,
2601                            target_ulong, abi_ulong);
2602 static int vma_get_mapping_count(const struct mm_struct *);
2603 static struct vm_area_struct *vma_first(const struct mm_struct *);
2604 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2605 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2606 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2607                       unsigned long flags);
2608 
2609 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2610 static void fill_note(struct memelfnote *, const char *, int,
2611                       unsigned int, void *);
2612 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2613 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2614 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2615 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2616 static size_t note_size(const struct memelfnote *);
2617 static void free_note_info(struct elf_note_info *);
2618 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2619 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2620 static int core_dump_filename(const TaskState *, char *, size_t);
2621 
2622 static int dump_write(int, const void *, size_t);
2623 static int write_note(struct memelfnote *, int);
2624 static int write_note_info(struct elf_note_info *, int);
2625 
2626 #ifdef BSWAP_NEEDED
2627 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2628 {
2629     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2630     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2631     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2632     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2633     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2634     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2635     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2636     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2637     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2638     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2639     /* cpu times are not filled, so we skip them */
2640     /* regs should be in correct format already */
2641     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2642 }
2643 
2644 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2645 {
2646     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2647     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2648     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2649     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2650     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2651     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2652     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2653 }
2654 
2655 static void bswap_note(struct elf_note *en)
2656 {
2657     bswap32s(&en->n_namesz);
2658     bswap32s(&en->n_descsz);
2659     bswap32s(&en->n_type);
2660 }
2661 #else
2662 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2663 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2664 static inline void bswap_note(struct elf_note *en) { }
2665 #endif /* BSWAP_NEEDED */
2666 
2667 /*
2668  * Minimal support for linux memory regions.  These are needed
2669  * when we are finding out what memory exactly belongs to
2670  * emulated process.  No locks needed here, as long as
2671  * thread that received the signal is stopped.
2672  */
2673 
2674 static struct mm_struct *vma_init(void)
2675 {
2676     struct mm_struct *mm;
2677 
2678     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2679         return (NULL);
2680 
2681     mm->mm_count = 0;
2682     QTAILQ_INIT(&mm->mm_mmap);
2683 
2684     return (mm);
2685 }
2686 
2687 static void vma_delete(struct mm_struct *mm)
2688 {
2689     struct vm_area_struct *vma;
2690 
2691     while ((vma = vma_first(mm)) != NULL) {
2692         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2693         g_free(vma);
2694     }
2695     g_free(mm);
2696 }
2697 
2698 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2699                            target_ulong end, abi_ulong flags)
2700 {
2701     struct vm_area_struct *vma;
2702 
2703     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2704         return (-1);
2705 
2706     vma->vma_start = start;
2707     vma->vma_end = end;
2708     vma->vma_flags = flags;
2709 
2710     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2711     mm->mm_count++;
2712 
2713     return (0);
2714 }
2715 
2716 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2717 {
2718     return (QTAILQ_FIRST(&mm->mm_mmap));
2719 }
2720 
2721 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2722 {
2723     return (QTAILQ_NEXT(vma, vma_link));
2724 }
2725 
2726 static int vma_get_mapping_count(const struct mm_struct *mm)
2727 {
2728     return (mm->mm_count);
2729 }
2730 
2731 /*
2732  * Calculate file (dump) size of given memory region.
2733  */
2734 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2735 {
2736     /* if we cannot even read the first page, skip it */
2737     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2738         return (0);
2739 
2740     /*
2741      * Usually we don't dump executable pages as they contain
2742      * non-writable code that debugger can read directly from
2743      * target library etc.  However, thread stacks are marked
2744      * also executable so we read in first page of given region
2745      * and check whether it contains elf header.  If there is
2746      * no elf header, we dump it.
2747      */
2748     if (vma->vma_flags & PROT_EXEC) {
2749         char page[TARGET_PAGE_SIZE];
2750 
2751         copy_from_user(page, vma->vma_start, sizeof (page));
2752         if ((page[EI_MAG0] == ELFMAG0) &&
2753             (page[EI_MAG1] == ELFMAG1) &&
2754             (page[EI_MAG2] == ELFMAG2) &&
2755             (page[EI_MAG3] == ELFMAG3)) {
2756             /*
2757              * Mappings are possibly from ELF binary.  Don't dump
2758              * them.
2759              */
2760             return (0);
2761         }
2762     }
2763 
2764     return (vma->vma_end - vma->vma_start);
2765 }
2766 
2767 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2768                       unsigned long flags)
2769 {
2770     struct mm_struct *mm = (struct mm_struct *)priv;
2771 
2772     vma_add_mapping(mm, start, end, flags);
2773     return (0);
2774 }
2775 
2776 static void fill_note(struct memelfnote *note, const char *name, int type,
2777                       unsigned int sz, void *data)
2778 {
2779     unsigned int namesz;
2780 
2781     namesz = strlen(name) + 1;
2782     note->name = name;
2783     note->namesz = namesz;
2784     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2785     note->type = type;
2786     note->datasz = sz;
2787     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2788 
2789     note->data = data;
2790 
2791     /*
2792      * We calculate rounded up note size here as specified by
2793      * ELF document.
2794      */
2795     note->notesz = sizeof (struct elf_note) +
2796         note->namesz_rounded + note->datasz_rounded;
2797 }
2798 
2799 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2800                             uint32_t flags)
2801 {
2802     (void) memset(elf, 0, sizeof(*elf));
2803 
2804     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2805     elf->e_ident[EI_CLASS] = ELF_CLASS;
2806     elf->e_ident[EI_DATA] = ELF_DATA;
2807     elf->e_ident[EI_VERSION] = EV_CURRENT;
2808     elf->e_ident[EI_OSABI] = ELF_OSABI;
2809 
2810     elf->e_type = ET_CORE;
2811     elf->e_machine = machine;
2812     elf->e_version = EV_CURRENT;
2813     elf->e_phoff = sizeof(struct elfhdr);
2814     elf->e_flags = flags;
2815     elf->e_ehsize = sizeof(struct elfhdr);
2816     elf->e_phentsize = sizeof(struct elf_phdr);
2817     elf->e_phnum = segs;
2818 
2819     bswap_ehdr(elf);
2820 }
2821 
2822 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2823 {
2824     phdr->p_type = PT_NOTE;
2825     phdr->p_offset = offset;
2826     phdr->p_vaddr = 0;
2827     phdr->p_paddr = 0;
2828     phdr->p_filesz = sz;
2829     phdr->p_memsz = 0;
2830     phdr->p_flags = 0;
2831     phdr->p_align = 0;
2832 
2833     bswap_phdr(phdr, 1);
2834 }
2835 
2836 static size_t note_size(const struct memelfnote *note)
2837 {
2838     return (note->notesz);
2839 }
2840 
2841 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2842                           const TaskState *ts, int signr)
2843 {
2844     (void) memset(prstatus, 0, sizeof (*prstatus));
2845     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2846     prstatus->pr_pid = ts->ts_tid;
2847     prstatus->pr_ppid = getppid();
2848     prstatus->pr_pgrp = getpgrp();
2849     prstatus->pr_sid = getsid(0);
2850 
2851     bswap_prstatus(prstatus);
2852 }
2853 
2854 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2855 {
2856     char *base_filename;
2857     unsigned int i, len;
2858 
2859     (void) memset(psinfo, 0, sizeof (*psinfo));
2860 
2861     len = ts->info->arg_end - ts->info->arg_start;
2862     if (len >= ELF_PRARGSZ)
2863         len = ELF_PRARGSZ - 1;
2864     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2865         return -EFAULT;
2866     for (i = 0; i < len; i++)
2867         if (psinfo->pr_psargs[i] == 0)
2868             psinfo->pr_psargs[i] = ' ';
2869     psinfo->pr_psargs[len] = 0;
2870 
2871     psinfo->pr_pid = getpid();
2872     psinfo->pr_ppid = getppid();
2873     psinfo->pr_pgrp = getpgrp();
2874     psinfo->pr_sid = getsid(0);
2875     psinfo->pr_uid = getuid();
2876     psinfo->pr_gid = getgid();
2877 
2878     base_filename = g_path_get_basename(ts->bprm->filename);
2879     /*
2880      * Using strncpy here is fine: at max-length,
2881      * this field is not NUL-terminated.
2882      */
2883     (void) strncpy(psinfo->pr_fname, base_filename,
2884                    sizeof(psinfo->pr_fname));
2885 
2886     g_free(base_filename);
2887     bswap_psinfo(psinfo);
2888     return (0);
2889 }
2890 
2891 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2892 {
2893     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2894     elf_addr_t orig_auxv = auxv;
2895     void *ptr;
2896     int len = ts->info->auxv_len;
2897 
2898     /*
2899      * Auxiliary vector is stored in target process stack.  It contains
2900      * {type, value} pairs that we need to dump into note.  This is not
2901      * strictly necessary but we do it here for sake of completeness.
2902      */
2903 
2904     /* read in whole auxv vector and copy it to memelfnote */
2905     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2906     if (ptr != NULL) {
2907         fill_note(note, "CORE", NT_AUXV, len, ptr);
2908         unlock_user(ptr, auxv, len);
2909     }
2910 }
2911 
2912 /*
2913  * Constructs name of coredump file.  We have following convention
2914  * for the name:
2915  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2916  *
2917  * Returns 0 in case of success, -1 otherwise (errno is set).
2918  */
2919 static int core_dump_filename(const TaskState *ts, char *buf,
2920                               size_t bufsize)
2921 {
2922     char timestamp[64];
2923     char *base_filename = NULL;
2924     struct timeval tv;
2925     struct tm tm;
2926 
2927     assert(bufsize >= PATH_MAX);
2928 
2929     if (gettimeofday(&tv, NULL) < 0) {
2930         (void) fprintf(stderr, "unable to get current timestamp: %s",
2931                        strerror(errno));
2932         return (-1);
2933     }
2934 
2935     base_filename = g_path_get_basename(ts->bprm->filename);
2936     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2937                     localtime_r(&tv.tv_sec, &tm));
2938     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2939                     base_filename, timestamp, (int)getpid());
2940     g_free(base_filename);
2941 
2942     return (0);
2943 }
2944 
2945 static int dump_write(int fd, const void *ptr, size_t size)
2946 {
2947     const char *bufp = (const char *)ptr;
2948     ssize_t bytes_written, bytes_left;
2949     struct rlimit dumpsize;
2950     off_t pos;
2951 
2952     bytes_written = 0;
2953     getrlimit(RLIMIT_CORE, &dumpsize);
2954     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2955         if (errno == ESPIPE) { /* not a seekable stream */
2956             bytes_left = size;
2957         } else {
2958             return pos;
2959         }
2960     } else {
2961         if (dumpsize.rlim_cur <= pos) {
2962             return -1;
2963         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2964             bytes_left = size;
2965         } else {
2966             size_t limit_left=dumpsize.rlim_cur - pos;
2967             bytes_left = limit_left >= size ? size : limit_left ;
2968         }
2969     }
2970 
2971     /*
2972      * In normal conditions, single write(2) should do but
2973      * in case of socket etc. this mechanism is more portable.
2974      */
2975     do {
2976         bytes_written = write(fd, bufp, bytes_left);
2977         if (bytes_written < 0) {
2978             if (errno == EINTR)
2979                 continue;
2980             return (-1);
2981         } else if (bytes_written == 0) { /* eof */
2982             return (-1);
2983         }
2984         bufp += bytes_written;
2985         bytes_left -= bytes_written;
2986     } while (bytes_left > 0);
2987 
2988     return (0);
2989 }
2990 
2991 static int write_note(struct memelfnote *men, int fd)
2992 {
2993     struct elf_note en;
2994 
2995     en.n_namesz = men->namesz;
2996     en.n_type = men->type;
2997     en.n_descsz = men->datasz;
2998 
2999     bswap_note(&en);
3000 
3001     if (dump_write(fd, &en, sizeof(en)) != 0)
3002         return (-1);
3003     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3004         return (-1);
3005     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3006         return (-1);
3007 
3008     return (0);
3009 }
3010 
3011 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3012 {
3013     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3014     TaskState *ts = (TaskState *)cpu->opaque;
3015     struct elf_thread_status *ets;
3016 
3017     ets = g_malloc0(sizeof (*ets));
3018     ets->num_notes = 1; /* only prstatus is dumped */
3019     fill_prstatus(&ets->prstatus, ts, 0);
3020     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3021     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3022               &ets->prstatus);
3023 
3024     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3025 
3026     info->notes_size += note_size(&ets->notes[0]);
3027 }
3028 
3029 static void init_note_info(struct elf_note_info *info)
3030 {
3031     /* Initialize the elf_note_info structure so that it is at
3032      * least safe to call free_note_info() on it. Must be
3033      * called before calling fill_note_info().
3034      */
3035     memset(info, 0, sizeof (*info));
3036     QTAILQ_INIT(&info->thread_list);
3037 }
3038 
3039 static int fill_note_info(struct elf_note_info *info,
3040                           long signr, const CPUArchState *env)
3041 {
3042 #define NUMNOTES 3
3043     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3044     TaskState *ts = (TaskState *)cpu->opaque;
3045     int i;
3046 
3047     info->notes = g_new0(struct memelfnote, NUMNOTES);
3048     if (info->notes == NULL)
3049         return (-ENOMEM);
3050     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3051     if (info->prstatus == NULL)
3052         return (-ENOMEM);
3053     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3054     if (info->prstatus == NULL)
3055         return (-ENOMEM);
3056 
3057     /*
3058      * First fill in status (and registers) of current thread
3059      * including process info & aux vector.
3060      */
3061     fill_prstatus(info->prstatus, ts, signr);
3062     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3063     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3064               sizeof (*info->prstatus), info->prstatus);
3065     fill_psinfo(info->psinfo, ts);
3066     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3067               sizeof (*info->psinfo), info->psinfo);
3068     fill_auxv_note(&info->notes[2], ts);
3069     info->numnote = 3;
3070 
3071     info->notes_size = 0;
3072     for (i = 0; i < info->numnote; i++)
3073         info->notes_size += note_size(&info->notes[i]);
3074 
3075     /* read and fill status of all threads */
3076     cpu_list_lock();
3077     CPU_FOREACH(cpu) {
3078         if (cpu == thread_cpu) {
3079             continue;
3080         }
3081         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3082     }
3083     cpu_list_unlock();
3084 
3085     return (0);
3086 }
3087 
3088 static void free_note_info(struct elf_note_info *info)
3089 {
3090     struct elf_thread_status *ets;
3091 
3092     while (!QTAILQ_EMPTY(&info->thread_list)) {
3093         ets = QTAILQ_FIRST(&info->thread_list);
3094         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3095         g_free(ets);
3096     }
3097 
3098     g_free(info->prstatus);
3099     g_free(info->psinfo);
3100     g_free(info->notes);
3101 }
3102 
3103 static int write_note_info(struct elf_note_info *info, int fd)
3104 {
3105     struct elf_thread_status *ets;
3106     int i, error = 0;
3107 
3108     /* write prstatus, psinfo and auxv for current thread */
3109     for (i = 0; i < info->numnote; i++)
3110         if ((error = write_note(&info->notes[i], fd)) != 0)
3111             return (error);
3112 
3113     /* write prstatus for each thread */
3114     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3115         if ((error = write_note(&ets->notes[0], fd)) != 0)
3116             return (error);
3117     }
3118 
3119     return (0);
3120 }
3121 
3122 /*
3123  * Write out ELF coredump.
3124  *
3125  * See documentation of ELF object file format in:
3126  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3127  *
3128  * Coredump format in linux is following:
3129  *
3130  * 0   +----------------------+         \
3131  *     | ELF header           | ET_CORE  |
3132  *     +----------------------+          |
3133  *     | ELF program headers  |          |--- headers
3134  *     | - NOTE section       |          |
3135  *     | - PT_LOAD sections   |          |
3136  *     +----------------------+         /
3137  *     | NOTEs:               |
3138  *     | - NT_PRSTATUS        |
3139  *     | - NT_PRSINFO         |
3140  *     | - NT_AUXV            |
3141  *     +----------------------+ <-- aligned to target page
3142  *     | Process memory dump  |
3143  *     :                      :
3144  *     .                      .
3145  *     :                      :
3146  *     |                      |
3147  *     +----------------------+
3148  *
3149  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3150  * NT_PRSINFO  -> struct elf_prpsinfo
3151  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3152  *
3153  * Format follows System V format as close as possible.  Current
3154  * version limitations are as follows:
3155  *     - no floating point registers are dumped
3156  *
3157  * Function returns 0 in case of success, negative errno otherwise.
3158  *
3159  * TODO: make this work also during runtime: it should be
3160  * possible to force coredump from running process and then
3161  * continue processing.  For example qemu could set up SIGUSR2
3162  * handler (provided that target process haven't registered
3163  * handler for that) that does the dump when signal is received.
3164  */
3165 static int elf_core_dump(int signr, const CPUArchState *env)
3166 {
3167     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3168     const TaskState *ts = (const TaskState *)cpu->opaque;
3169     struct vm_area_struct *vma = NULL;
3170     char corefile[PATH_MAX];
3171     struct elf_note_info info;
3172     struct elfhdr elf;
3173     struct elf_phdr phdr;
3174     struct rlimit dumpsize;
3175     struct mm_struct *mm = NULL;
3176     off_t offset = 0, data_offset = 0;
3177     int segs = 0;
3178     int fd = -1;
3179 
3180     init_note_info(&info);
3181 
3182     errno = 0;
3183     getrlimit(RLIMIT_CORE, &dumpsize);
3184     if (dumpsize.rlim_cur == 0)
3185         return 0;
3186 
3187     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3188         return (-errno);
3189 
3190     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3191                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3192         return (-errno);
3193 
3194     /*
3195      * Walk through target process memory mappings and
3196      * set up structure containing this information.  After
3197      * this point vma_xxx functions can be used.
3198      */
3199     if ((mm = vma_init()) == NULL)
3200         goto out;
3201 
3202     walk_memory_regions(mm, vma_walker);
3203     segs = vma_get_mapping_count(mm);
3204 
3205     /*
3206      * Construct valid coredump ELF header.  We also
3207      * add one more segment for notes.
3208      */
3209     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3210     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3211         goto out;
3212 
3213     /* fill in the in-memory version of notes */
3214     if (fill_note_info(&info, signr, env) < 0)
3215         goto out;
3216 
3217     offset += sizeof (elf);                             /* elf header */
3218     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3219 
3220     /* write out notes program header */
3221     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3222 
3223     offset += info.notes_size;
3224     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3225         goto out;
3226 
3227     /*
3228      * ELF specification wants data to start at page boundary so
3229      * we align it here.
3230      */
3231     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3232 
3233     /*
3234      * Write program headers for memory regions mapped in
3235      * the target process.
3236      */
3237     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3238         (void) memset(&phdr, 0, sizeof (phdr));
3239 
3240         phdr.p_type = PT_LOAD;
3241         phdr.p_offset = offset;
3242         phdr.p_vaddr = vma->vma_start;
3243         phdr.p_paddr = 0;
3244         phdr.p_filesz = vma_dump_size(vma);
3245         offset += phdr.p_filesz;
3246         phdr.p_memsz = vma->vma_end - vma->vma_start;
3247         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3248         if (vma->vma_flags & PROT_WRITE)
3249             phdr.p_flags |= PF_W;
3250         if (vma->vma_flags & PROT_EXEC)
3251             phdr.p_flags |= PF_X;
3252         phdr.p_align = ELF_EXEC_PAGESIZE;
3253 
3254         bswap_phdr(&phdr, 1);
3255         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3256             goto out;
3257         }
3258     }
3259 
3260     /*
3261      * Next we write notes just after program headers.  No
3262      * alignment needed here.
3263      */
3264     if (write_note_info(&info, fd) < 0)
3265         goto out;
3266 
3267     /* align data to page boundary */
3268     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3269         goto out;
3270 
3271     /*
3272      * Finally we can dump process memory into corefile as well.
3273      */
3274     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3275         abi_ulong addr;
3276         abi_ulong end;
3277 
3278         end = vma->vma_start + vma_dump_size(vma);
3279 
3280         for (addr = vma->vma_start; addr < end;
3281              addr += TARGET_PAGE_SIZE) {
3282             char page[TARGET_PAGE_SIZE];
3283             int error;
3284 
3285             /*
3286              *  Read in page from target process memory and
3287              *  write it to coredump file.
3288              */
3289             error = copy_from_user(page, addr, sizeof (page));
3290             if (error != 0) {
3291                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3292                                addr);
3293                 errno = -error;
3294                 goto out;
3295             }
3296             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3297                 goto out;
3298         }
3299     }
3300 
3301  out:
3302     free_note_info(&info);
3303     if (mm != NULL)
3304         vma_delete(mm);
3305     (void) close(fd);
3306 
3307     if (errno != 0)
3308         return (-errno);
3309     return (0);
3310 }
3311 #endif /* USE_ELF_CORE_DUMP */
3312 
3313 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3314 {
3315     init_thread(regs, infop);
3316 }
3317