xref: /openbmc/qemu/linux-user/elfload.c (revision 7f750efc)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
25 
26 #ifdef _ARCH_PPC64
27 #undef ARCH_DLINFO
28 #undef ELF_PLATFORM
29 #undef ELF_HWCAP
30 #undef ELF_HWCAP2
31 #undef ELF_CLASS
32 #undef ELF_DATA
33 #undef ELF_ARCH
34 #endif
35 
36 #define ELF_OSABI   ELFOSABI_SYSV
37 
38 /* from personality.h */
39 
40 /*
41  * Flags for bug emulation.
42  *
43  * These occupy the top three bytes.
44  */
45 enum {
46     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
47     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
48                                            descriptors (signal handling) */
49     MMAP_PAGE_ZERO =    0x0100000,
50     ADDR_COMPAT_LAYOUT = 0x0200000,
51     READ_IMPLIES_EXEC = 0x0400000,
52     ADDR_LIMIT_32BIT =  0x0800000,
53     SHORT_INODE =       0x1000000,
54     WHOLE_SECONDS =     0x2000000,
55     STICKY_TIMEOUTS =   0x4000000,
56     ADDR_LIMIT_3GB =    0x8000000,
57 };
58 
59 /*
60  * Personality types.
61  *
62  * These go in the low byte.  Avoid using the top bit, it will
63  * conflict with error returns.
64  */
65 enum {
66     PER_LINUX =         0x0000,
67     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
68     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
69     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
75     PER_BSD =           0x0006,
76     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
77     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78     PER_LINUX32 =       0x0008,
79     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
80     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83     PER_RISCOS =        0x000c,
84     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
85     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
87     PER_HPUX =          0x0010,
88     PER_MASK =          0x00ff,
89 };
90 
91 /*
92  * Return the base personality without flags.
93  */
94 #define personality(pers)       (pers & PER_MASK)
95 
96 int info_is_fdpic(struct image_info *info)
97 {
98     return info->personality == PER_LINUX_FDPIC;
99 }
100 
101 /* this flag is uneffective under linux too, should be deleted */
102 #ifndef MAP_DENYWRITE
103 #define MAP_DENYWRITE 0
104 #endif
105 
106 /* should probably go in elf.h */
107 #ifndef ELIBBAD
108 #define ELIBBAD 80
109 #endif
110 
111 #if TARGET_BIG_ENDIAN
112 #define ELF_DATA        ELFDATA2MSB
113 #else
114 #define ELF_DATA        ELFDATA2LSB
115 #endif
116 
117 #ifdef TARGET_ABI_MIPSN32
118 typedef abi_ullong      target_elf_greg_t;
119 #define tswapreg(ptr)   tswap64(ptr)
120 #else
121 typedef abi_ulong       target_elf_greg_t;
122 #define tswapreg(ptr)   tswapal(ptr)
123 #endif
124 
125 #ifdef USE_UID16
126 typedef abi_ushort      target_uid_t;
127 typedef abi_ushort      target_gid_t;
128 #else
129 typedef abi_uint        target_uid_t;
130 typedef abi_uint        target_gid_t;
131 #endif
132 typedef abi_int         target_pid_t;
133 
134 #ifdef TARGET_I386
135 
136 #define ELF_HWCAP get_elf_hwcap()
137 
138 static uint32_t get_elf_hwcap(void)
139 {
140     X86CPU *cpu = X86_CPU(thread_cpu);
141 
142     return cpu->env.features[FEAT_1_EDX];
143 }
144 
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147 
148 #define ELF_CLASS      ELFCLASS64
149 #define ELF_ARCH       EM_X86_64
150 
151 #define ELF_PLATFORM   "x86_64"
152 
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155     regs->rax = 0;
156     regs->rsp = infop->start_stack;
157     regs->rip = infop->entry;
158 }
159 
160 #define ELF_NREG    27
161 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
162 
163 /*
164  * Note that ELF_NREG should be 29 as there should be place for
165  * TRAPNO and ERR "registers" as well but linux doesn't dump
166  * those.
167  *
168  * See linux kernel: arch/x86/include/asm/elf.h
169  */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172     (*regs)[0] = tswapreg(env->regs[15]);
173     (*regs)[1] = tswapreg(env->regs[14]);
174     (*regs)[2] = tswapreg(env->regs[13]);
175     (*regs)[3] = tswapreg(env->regs[12]);
176     (*regs)[4] = tswapreg(env->regs[R_EBP]);
177     (*regs)[5] = tswapreg(env->regs[R_EBX]);
178     (*regs)[6] = tswapreg(env->regs[11]);
179     (*regs)[7] = tswapreg(env->regs[10]);
180     (*regs)[8] = tswapreg(env->regs[9]);
181     (*regs)[9] = tswapreg(env->regs[8]);
182     (*regs)[10] = tswapreg(env->regs[R_EAX]);
183     (*regs)[11] = tswapreg(env->regs[R_ECX]);
184     (*regs)[12] = tswapreg(env->regs[R_EDX]);
185     (*regs)[13] = tswapreg(env->regs[R_ESI]);
186     (*regs)[14] = tswapreg(env->regs[R_EDI]);
187     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
188     (*regs)[16] = tswapreg(env->eip);
189     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
190     (*regs)[18] = tswapreg(env->eflags);
191     (*regs)[19] = tswapreg(env->regs[R_ESP]);
192     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
193     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
194     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
195     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
196     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
197     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
198     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
199 }
200 
201 #if ULONG_MAX > UINT32_MAX
202 #define INIT_GUEST_COMMPAGE
203 static bool init_guest_commpage(void)
204 {
205     /*
206      * The vsyscall page is at a high negative address aka kernel space,
207      * which means that we cannot actually allocate it with target_mmap.
208      * We still should be able to use page_set_flags, unless the user
209      * has specified -R reserved_va, which would trigger an assert().
210      */
211     if (reserved_va != 0 &&
212         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
213         error_report("Cannot allocate vsyscall page");
214         exit(EXIT_FAILURE);
215     }
216     page_set_flags(TARGET_VSYSCALL_PAGE,
217                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
218                    PAGE_EXEC | PAGE_VALID);
219     return true;
220 }
221 #endif
222 #else
223 
224 #define ELF_START_MMAP 0x80000000
225 
226 /*
227  * This is used to ensure we don't load something for the wrong architecture.
228  */
229 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
230 
231 /*
232  * These are used to set parameters in the core dumps.
233  */
234 #define ELF_CLASS       ELFCLASS32
235 #define ELF_ARCH        EM_386
236 
237 #define ELF_PLATFORM get_elf_platform()
238 #define EXSTACK_DEFAULT true
239 
240 static const char *get_elf_platform(void)
241 {
242     static char elf_platform[] = "i386";
243     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
244     if (family > 6) {
245         family = 6;
246     }
247     if (family >= 3) {
248         elf_platform[1] = '0' + family;
249     }
250     return elf_platform;
251 }
252 
253 static inline void init_thread(struct target_pt_regs *regs,
254                                struct image_info *infop)
255 {
256     regs->esp = infop->start_stack;
257     regs->eip = infop->entry;
258 
259     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
260        starts %edx contains a pointer to a function which might be
261        registered using `atexit'.  This provides a mean for the
262        dynamic linker to call DT_FINI functions for shared libraries
263        that have been loaded before the code runs.
264 
265        A value of 0 tells we have no such handler.  */
266     regs->edx = 0;
267 }
268 
269 #define ELF_NREG    17
270 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
271 
272 /*
273  * Note that ELF_NREG should be 19 as there should be place for
274  * TRAPNO and ERR "registers" as well but linux doesn't dump
275  * those.
276  *
277  * See linux kernel: arch/x86/include/asm/elf.h
278  */
279 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
280 {
281     (*regs)[0] = tswapreg(env->regs[R_EBX]);
282     (*regs)[1] = tswapreg(env->regs[R_ECX]);
283     (*regs)[2] = tswapreg(env->regs[R_EDX]);
284     (*regs)[3] = tswapreg(env->regs[R_ESI]);
285     (*regs)[4] = tswapreg(env->regs[R_EDI]);
286     (*regs)[5] = tswapreg(env->regs[R_EBP]);
287     (*regs)[6] = tswapreg(env->regs[R_EAX]);
288     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
289     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
290     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
291     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
292     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
293     (*regs)[12] = tswapreg(env->eip);
294     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
295     (*regs)[14] = tswapreg(env->eflags);
296     (*regs)[15] = tswapreg(env->regs[R_ESP]);
297     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
298 }
299 #endif
300 
301 #define USE_ELF_CORE_DUMP
302 #define ELF_EXEC_PAGESIZE       4096
303 
304 #endif
305 
306 #ifdef TARGET_ARM
307 
308 #ifndef TARGET_AARCH64
309 /* 32 bit ARM definitions */
310 
311 #define ELF_START_MMAP 0x80000000
312 
313 #define ELF_ARCH        EM_ARM
314 #define ELF_CLASS       ELFCLASS32
315 #define EXSTACK_DEFAULT true
316 
317 static inline void init_thread(struct target_pt_regs *regs,
318                                struct image_info *infop)
319 {
320     abi_long stack = infop->start_stack;
321     memset(regs, 0, sizeof(*regs));
322 
323     regs->uregs[16] = ARM_CPU_MODE_USR;
324     if (infop->entry & 1) {
325         regs->uregs[16] |= CPSR_T;
326     }
327     regs->uregs[15] = infop->entry & 0xfffffffe;
328     regs->uregs[13] = infop->start_stack;
329     /* FIXME - what to for failure of get_user()? */
330     get_user_ual(regs->uregs[2], stack + 8); /* envp */
331     get_user_ual(regs->uregs[1], stack + 4); /* envp */
332     /* XXX: it seems that r0 is zeroed after ! */
333     regs->uregs[0] = 0;
334     /* For uClinux PIC binaries.  */
335     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
336     regs->uregs[10] = infop->start_data;
337 
338     /* Support ARM FDPIC.  */
339     if (info_is_fdpic(infop)) {
340         /* As described in the ABI document, r7 points to the loadmap info
341          * prepared by the kernel. If an interpreter is needed, r8 points
342          * to the interpreter loadmap and r9 points to the interpreter
343          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
344          * r9 points to the main program PT_DYNAMIC info.
345          */
346         regs->uregs[7] = infop->loadmap_addr;
347         if (infop->interpreter_loadmap_addr) {
348             /* Executable is dynamically loaded.  */
349             regs->uregs[8] = infop->interpreter_loadmap_addr;
350             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
351         } else {
352             regs->uregs[8] = 0;
353             regs->uregs[9] = infop->pt_dynamic_addr;
354         }
355     }
356 }
357 
358 #define ELF_NREG    18
359 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
360 
361 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
362 {
363     (*regs)[0] = tswapreg(env->regs[0]);
364     (*regs)[1] = tswapreg(env->regs[1]);
365     (*regs)[2] = tswapreg(env->regs[2]);
366     (*regs)[3] = tswapreg(env->regs[3]);
367     (*regs)[4] = tswapreg(env->regs[4]);
368     (*regs)[5] = tswapreg(env->regs[5]);
369     (*regs)[6] = tswapreg(env->regs[6]);
370     (*regs)[7] = tswapreg(env->regs[7]);
371     (*regs)[8] = tswapreg(env->regs[8]);
372     (*regs)[9] = tswapreg(env->regs[9]);
373     (*regs)[10] = tswapreg(env->regs[10]);
374     (*regs)[11] = tswapreg(env->regs[11]);
375     (*regs)[12] = tswapreg(env->regs[12]);
376     (*regs)[13] = tswapreg(env->regs[13]);
377     (*regs)[14] = tswapreg(env->regs[14]);
378     (*regs)[15] = tswapreg(env->regs[15]);
379 
380     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
381     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
382 }
383 
384 #define USE_ELF_CORE_DUMP
385 #define ELF_EXEC_PAGESIZE       4096
386 
387 enum
388 {
389     ARM_HWCAP_ARM_SWP       = 1 << 0,
390     ARM_HWCAP_ARM_HALF      = 1 << 1,
391     ARM_HWCAP_ARM_THUMB     = 1 << 2,
392     ARM_HWCAP_ARM_26BIT     = 1 << 3,
393     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
394     ARM_HWCAP_ARM_FPA       = 1 << 5,
395     ARM_HWCAP_ARM_VFP       = 1 << 6,
396     ARM_HWCAP_ARM_EDSP      = 1 << 7,
397     ARM_HWCAP_ARM_JAVA      = 1 << 8,
398     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
399     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
400     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
401     ARM_HWCAP_ARM_NEON      = 1 << 12,
402     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
403     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
404     ARM_HWCAP_ARM_TLS       = 1 << 15,
405     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
406     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
407     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
408     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
409     ARM_HWCAP_ARM_LPAE      = 1 << 20,
410     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
411 };
412 
413 enum {
414     ARM_HWCAP2_ARM_AES      = 1 << 0,
415     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
416     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
417     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
418     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
419 };
420 
421 /* The commpage only exists for 32 bit kernels */
422 
423 #define HI_COMMPAGE (intptr_t)0xffff0f00u
424 
425 static bool init_guest_commpage(void)
426 {
427     abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size;
428     void *want = g2h_untagged(commpage);
429     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
430                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
431 
432     if (addr == MAP_FAILED) {
433         perror("Allocating guest commpage");
434         exit(EXIT_FAILURE);
435     }
436     if (addr != want) {
437         return false;
438     }
439 
440     /* Set kernel helper versions; rest of page is 0.  */
441     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
442 
443     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
444         perror("Protecting guest commpage");
445         exit(EXIT_FAILURE);
446     }
447 
448     page_set_flags(commpage, commpage | ~qemu_host_page_mask,
449                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
450     return true;
451 }
452 
453 #define ELF_HWCAP get_elf_hwcap()
454 #define ELF_HWCAP2 get_elf_hwcap2()
455 
456 static uint32_t get_elf_hwcap(void)
457 {
458     ARMCPU *cpu = ARM_CPU(thread_cpu);
459     uint32_t hwcaps = 0;
460 
461     hwcaps |= ARM_HWCAP_ARM_SWP;
462     hwcaps |= ARM_HWCAP_ARM_HALF;
463     hwcaps |= ARM_HWCAP_ARM_THUMB;
464     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
465 
466     /* probe for the extra features */
467 #define GET_FEATURE(feat, hwcap) \
468     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
469 
470 #define GET_FEATURE_ID(feat, hwcap) \
471     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
472 
473     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
474     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
475     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
476     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
477     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
478     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
479     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
480     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
481     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
482     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
483 
484     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
485         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
486         hwcaps |= ARM_HWCAP_ARM_VFPv3;
487         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
488             hwcaps |= ARM_HWCAP_ARM_VFPD32;
489         } else {
490             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
491         }
492     }
493     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
494 
495     return hwcaps;
496 }
497 
498 static uint32_t get_elf_hwcap2(void)
499 {
500     ARMCPU *cpu = ARM_CPU(thread_cpu);
501     uint32_t hwcaps = 0;
502 
503     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
504     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
505     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
506     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
507     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
508     return hwcaps;
509 }
510 
511 #undef GET_FEATURE
512 #undef GET_FEATURE_ID
513 
514 #define ELF_PLATFORM get_elf_platform()
515 
516 static const char *get_elf_platform(void)
517 {
518     CPUARMState *env = thread_cpu->env_ptr;
519 
520 #if TARGET_BIG_ENDIAN
521 # define END  "b"
522 #else
523 # define END  "l"
524 #endif
525 
526     if (arm_feature(env, ARM_FEATURE_V8)) {
527         return "v8" END;
528     } else if (arm_feature(env, ARM_FEATURE_V7)) {
529         if (arm_feature(env, ARM_FEATURE_M)) {
530             return "v7m" END;
531         } else {
532             return "v7" END;
533         }
534     } else if (arm_feature(env, ARM_FEATURE_V6)) {
535         return "v6" END;
536     } else if (arm_feature(env, ARM_FEATURE_V5)) {
537         return "v5" END;
538     } else {
539         return "v4" END;
540     }
541 
542 #undef END
543 }
544 
545 #else
546 /* 64 bit ARM definitions */
547 #define ELF_START_MMAP 0x80000000
548 
549 #define ELF_ARCH        EM_AARCH64
550 #define ELF_CLASS       ELFCLASS64
551 #if TARGET_BIG_ENDIAN
552 # define ELF_PLATFORM    "aarch64_be"
553 #else
554 # define ELF_PLATFORM    "aarch64"
555 #endif
556 
557 static inline void init_thread(struct target_pt_regs *regs,
558                                struct image_info *infop)
559 {
560     abi_long stack = infop->start_stack;
561     memset(regs, 0, sizeof(*regs));
562 
563     regs->pc = infop->entry & ~0x3ULL;
564     regs->sp = stack;
565 }
566 
567 #define ELF_NREG    34
568 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
569 
570 static void elf_core_copy_regs(target_elf_gregset_t *regs,
571                                const CPUARMState *env)
572 {
573     int i;
574 
575     for (i = 0; i < 32; i++) {
576         (*regs)[i] = tswapreg(env->xregs[i]);
577     }
578     (*regs)[32] = tswapreg(env->pc);
579     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
580 }
581 
582 #define USE_ELF_CORE_DUMP
583 #define ELF_EXEC_PAGESIZE       4096
584 
585 enum {
586     ARM_HWCAP_A64_FP            = 1 << 0,
587     ARM_HWCAP_A64_ASIMD         = 1 << 1,
588     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
589     ARM_HWCAP_A64_AES           = 1 << 3,
590     ARM_HWCAP_A64_PMULL         = 1 << 4,
591     ARM_HWCAP_A64_SHA1          = 1 << 5,
592     ARM_HWCAP_A64_SHA2          = 1 << 6,
593     ARM_HWCAP_A64_CRC32         = 1 << 7,
594     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
595     ARM_HWCAP_A64_FPHP          = 1 << 9,
596     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
597     ARM_HWCAP_A64_CPUID         = 1 << 11,
598     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
599     ARM_HWCAP_A64_JSCVT         = 1 << 13,
600     ARM_HWCAP_A64_FCMA          = 1 << 14,
601     ARM_HWCAP_A64_LRCPC         = 1 << 15,
602     ARM_HWCAP_A64_DCPOP         = 1 << 16,
603     ARM_HWCAP_A64_SHA3          = 1 << 17,
604     ARM_HWCAP_A64_SM3           = 1 << 18,
605     ARM_HWCAP_A64_SM4           = 1 << 19,
606     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
607     ARM_HWCAP_A64_SHA512        = 1 << 21,
608     ARM_HWCAP_A64_SVE           = 1 << 22,
609     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
610     ARM_HWCAP_A64_DIT           = 1 << 24,
611     ARM_HWCAP_A64_USCAT         = 1 << 25,
612     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
613     ARM_HWCAP_A64_FLAGM         = 1 << 27,
614     ARM_HWCAP_A64_SSBS          = 1 << 28,
615     ARM_HWCAP_A64_SB            = 1 << 29,
616     ARM_HWCAP_A64_PACA          = 1 << 30,
617     ARM_HWCAP_A64_PACG          = 1UL << 31,
618 
619     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
620     ARM_HWCAP2_A64_SVE2         = 1 << 1,
621     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
622     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
623     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
624     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
625     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
626     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
627     ARM_HWCAP2_A64_FRINT        = 1 << 8,
628     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
629     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
630     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
631     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
632     ARM_HWCAP2_A64_I8MM         = 1 << 13,
633     ARM_HWCAP2_A64_BF16         = 1 << 14,
634     ARM_HWCAP2_A64_DGH          = 1 << 15,
635     ARM_HWCAP2_A64_RNG          = 1 << 16,
636     ARM_HWCAP2_A64_BTI          = 1 << 17,
637     ARM_HWCAP2_A64_MTE          = 1 << 18,
638     ARM_HWCAP2_A64_ECV          = 1 << 19,
639     ARM_HWCAP2_A64_AFP          = 1 << 20,
640     ARM_HWCAP2_A64_RPRES        = 1 << 21,
641     ARM_HWCAP2_A64_MTE3         = 1 << 22,
642     ARM_HWCAP2_A64_SME          = 1 << 23,
643     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
644     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
645     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
646     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
647     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
648     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
649     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
650 };
651 
652 #define ELF_HWCAP   get_elf_hwcap()
653 #define ELF_HWCAP2  get_elf_hwcap2()
654 
655 #define GET_FEATURE_ID(feat, hwcap) \
656     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
657 
658 static uint32_t get_elf_hwcap(void)
659 {
660     ARMCPU *cpu = ARM_CPU(thread_cpu);
661     uint32_t hwcaps = 0;
662 
663     hwcaps |= ARM_HWCAP_A64_FP;
664     hwcaps |= ARM_HWCAP_A64_ASIMD;
665     hwcaps |= ARM_HWCAP_A64_CPUID;
666 
667     /* probe for the extra features */
668 
669     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
670     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
671     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
672     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
673     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
674     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
675     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
676     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
677     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
678     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
679     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
680     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
681     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
682     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
683     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
684     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
685     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
686     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
687     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
688     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
689     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
690     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
691     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
692 
693     return hwcaps;
694 }
695 
696 static uint32_t get_elf_hwcap2(void)
697 {
698     ARMCPU *cpu = ARM_CPU(thread_cpu);
699     uint32_t hwcaps = 0;
700 
701     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
702     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
703     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
704     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
705     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
706     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
707     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
708     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
709     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
710     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
711     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
712     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
713     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
714     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
715     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
716     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
717     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
718     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
719     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
720                               ARM_HWCAP2_A64_SME_F32F32 |
721                               ARM_HWCAP2_A64_SME_B16F32 |
722                               ARM_HWCAP2_A64_SME_F16F32 |
723                               ARM_HWCAP2_A64_SME_I8I32));
724     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
725     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
726     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
727 
728     return hwcaps;
729 }
730 
731 #undef GET_FEATURE_ID
732 
733 #endif /* not TARGET_AARCH64 */
734 #endif /* TARGET_ARM */
735 
736 #ifdef TARGET_SPARC
737 #ifdef TARGET_SPARC64
738 
739 #define ELF_START_MMAP 0x80000000
740 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
741                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
742 #ifndef TARGET_ABI32
743 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
744 #else
745 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
746 #endif
747 
748 #define ELF_CLASS   ELFCLASS64
749 #define ELF_ARCH    EM_SPARCV9
750 #else
751 #define ELF_START_MMAP 0x80000000
752 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
753                     | HWCAP_SPARC_MULDIV)
754 #define ELF_CLASS   ELFCLASS32
755 #define ELF_ARCH    EM_SPARC
756 #endif /* TARGET_SPARC64 */
757 
758 static inline void init_thread(struct target_pt_regs *regs,
759                                struct image_info *infop)
760 {
761     /* Note that target_cpu_copy_regs does not read psr/tstate. */
762     regs->pc = infop->entry;
763     regs->npc = regs->pc + 4;
764     regs->y = 0;
765     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
766                         - TARGET_STACK_BIAS);
767 }
768 #endif /* TARGET_SPARC */
769 
770 #ifdef TARGET_PPC
771 
772 #define ELF_MACHINE    PPC_ELF_MACHINE
773 #define ELF_START_MMAP 0x80000000
774 
775 #if defined(TARGET_PPC64)
776 
777 #define elf_check_arch(x) ( (x) == EM_PPC64 )
778 
779 #define ELF_CLASS       ELFCLASS64
780 
781 #else
782 
783 #define ELF_CLASS       ELFCLASS32
784 #define EXSTACK_DEFAULT true
785 
786 #endif
787 
788 #define ELF_ARCH        EM_PPC
789 
790 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
791    See arch/powerpc/include/asm/cputable.h.  */
792 enum {
793     QEMU_PPC_FEATURE_32 = 0x80000000,
794     QEMU_PPC_FEATURE_64 = 0x40000000,
795     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
796     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
797     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
798     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
799     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
800     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
801     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
802     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
803     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
804     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
805     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
806     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
807     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
808     QEMU_PPC_FEATURE_CELL = 0x00010000,
809     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
810     QEMU_PPC_FEATURE_SMT = 0x00004000,
811     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
812     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
813     QEMU_PPC_FEATURE_PA6T = 0x00000800,
814     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
815     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
816     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
817     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
818     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
819 
820     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
821     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
822 
823     /* Feature definitions in AT_HWCAP2.  */
824     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
825     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
826     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
827     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
828     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
829     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
830     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
831     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
832     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
833     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
834     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
835     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
836     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
837     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
838     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
839 };
840 
841 #define ELF_HWCAP get_elf_hwcap()
842 
843 static uint32_t get_elf_hwcap(void)
844 {
845     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
846     uint32_t features = 0;
847 
848     /* We don't have to be terribly complete here; the high points are
849        Altivec/FP/SPE support.  Anything else is just a bonus.  */
850 #define GET_FEATURE(flag, feature)                                      \
851     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
852 #define GET_FEATURE2(flags, feature) \
853     do { \
854         if ((cpu->env.insns_flags2 & flags) == flags) { \
855             features |= feature; \
856         } \
857     } while (0)
858     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
859     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
860     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
861     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
862     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
863     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
864     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
865     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
866     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
867     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
868     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
869                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
870                   QEMU_PPC_FEATURE_ARCH_2_06);
871 #undef GET_FEATURE
872 #undef GET_FEATURE2
873 
874     return features;
875 }
876 
877 #define ELF_HWCAP2 get_elf_hwcap2()
878 
879 static uint32_t get_elf_hwcap2(void)
880 {
881     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
882     uint32_t features = 0;
883 
884 #define GET_FEATURE(flag, feature)                                      \
885     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
886 #define GET_FEATURE2(flag, feature)                                      \
887     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
888 
889     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
890     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
891     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
892                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
893                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
894     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
895                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
896     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
897                  QEMU_PPC_FEATURE2_MMA);
898 
899 #undef GET_FEATURE
900 #undef GET_FEATURE2
901 
902     return features;
903 }
904 
905 /*
906  * The requirements here are:
907  * - keep the final alignment of sp (sp & 0xf)
908  * - make sure the 32-bit value at the first 16 byte aligned position of
909  *   AUXV is greater than 16 for glibc compatibility.
910  *   AT_IGNOREPPC is used for that.
911  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
912  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
913  */
914 #define DLINFO_ARCH_ITEMS       5
915 #define ARCH_DLINFO                                     \
916     do {                                                \
917         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
918         /*                                              \
919          * Handle glibc compatibility: these magic entries must \
920          * be at the lowest addresses in the final auxv.        \
921          */                                             \
922         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
923         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
924         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
925         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
926         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
927     } while (0)
928 
929 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
930 {
931     _regs->gpr[1] = infop->start_stack;
932 #if defined(TARGET_PPC64)
933     if (get_ppc64_abi(infop) < 2) {
934         uint64_t val;
935         get_user_u64(val, infop->entry + 8);
936         _regs->gpr[2] = val + infop->load_bias;
937         get_user_u64(val, infop->entry);
938         infop->entry = val + infop->load_bias;
939     } else {
940         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
941     }
942 #endif
943     _regs->nip = infop->entry;
944 }
945 
946 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
947 #define ELF_NREG 48
948 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
949 
950 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
951 {
952     int i;
953     target_ulong ccr = 0;
954 
955     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
956         (*regs)[i] = tswapreg(env->gpr[i]);
957     }
958 
959     (*regs)[32] = tswapreg(env->nip);
960     (*regs)[33] = tswapreg(env->msr);
961     (*regs)[35] = tswapreg(env->ctr);
962     (*regs)[36] = tswapreg(env->lr);
963     (*regs)[37] = tswapreg(cpu_read_xer(env));
964 
965     ccr = ppc_get_cr(env);
966     (*regs)[38] = tswapreg(ccr);
967 }
968 
969 #define USE_ELF_CORE_DUMP
970 #define ELF_EXEC_PAGESIZE       4096
971 
972 #endif
973 
974 #ifdef TARGET_LOONGARCH64
975 
976 #define ELF_START_MMAP 0x80000000
977 
978 #define ELF_CLASS   ELFCLASS64
979 #define ELF_ARCH    EM_LOONGARCH
980 #define EXSTACK_DEFAULT true
981 
982 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
983 
984 static inline void init_thread(struct target_pt_regs *regs,
985                                struct image_info *infop)
986 {
987     /*Set crmd PG,DA = 1,0 */
988     regs->csr.crmd = 2 << 3;
989     regs->csr.era = infop->entry;
990     regs->regs[3] = infop->start_stack;
991 }
992 
993 /* See linux kernel: arch/loongarch/include/asm/elf.h */
994 #define ELF_NREG 45
995 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
996 
997 enum {
998     TARGET_EF_R0 = 0,
999     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1000     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1001 };
1002 
1003 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1004                                const CPULoongArchState *env)
1005 {
1006     int i;
1007 
1008     (*regs)[TARGET_EF_R0] = 0;
1009 
1010     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1011         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1012     }
1013 
1014     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1015     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1016 }
1017 
1018 #define USE_ELF_CORE_DUMP
1019 #define ELF_EXEC_PAGESIZE        4096
1020 
1021 #define ELF_HWCAP get_elf_hwcap()
1022 
1023 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1024 enum {
1025     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1026     HWCAP_LOONGARCH_LAM      = (1 << 1),
1027     HWCAP_LOONGARCH_UAL      = (1 << 2),
1028     HWCAP_LOONGARCH_FPU      = (1 << 3),
1029     HWCAP_LOONGARCH_LSX      = (1 << 4),
1030     HWCAP_LOONGARCH_LASX     = (1 << 5),
1031     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1032     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1033     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1034     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1035     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1036     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1037     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1038 };
1039 
1040 static uint32_t get_elf_hwcap(void)
1041 {
1042     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1043     uint32_t hwcaps = 0;
1044 
1045     hwcaps |= HWCAP_LOONGARCH_CRC32;
1046 
1047     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1048         hwcaps |= HWCAP_LOONGARCH_UAL;
1049     }
1050 
1051     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1052         hwcaps |= HWCAP_LOONGARCH_FPU;
1053     }
1054 
1055     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1056         hwcaps |= HWCAP_LOONGARCH_LAM;
1057     }
1058 
1059     return hwcaps;
1060 }
1061 
1062 #define ELF_PLATFORM "loongarch"
1063 
1064 #endif /* TARGET_LOONGARCH64 */
1065 
1066 #ifdef TARGET_MIPS
1067 
1068 #define ELF_START_MMAP 0x80000000
1069 
1070 #ifdef TARGET_MIPS64
1071 #define ELF_CLASS   ELFCLASS64
1072 #else
1073 #define ELF_CLASS   ELFCLASS32
1074 #endif
1075 #define ELF_ARCH    EM_MIPS
1076 #define EXSTACK_DEFAULT true
1077 
1078 #ifdef TARGET_ABI_MIPSN32
1079 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1080 #else
1081 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1082 #endif
1083 
1084 #define ELF_BASE_PLATFORM get_elf_base_platform()
1085 
1086 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1087     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1088     { return _base_platform; } } while (0)
1089 
1090 static const char *get_elf_base_platform(void)
1091 {
1092     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1093 
1094     /* 64 bit ISAs goes first */
1095     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1096     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1097     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1098     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1099     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1100     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1101     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1102 
1103     /* 32 bit ISAs */
1104     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1105     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1106     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1107     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1108     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1109 
1110     /* Fallback */
1111     return "mips";
1112 }
1113 #undef MATCH_PLATFORM_INSN
1114 
1115 static inline void init_thread(struct target_pt_regs *regs,
1116                                struct image_info *infop)
1117 {
1118     regs->cp0_status = 2 << CP0St_KSU;
1119     regs->cp0_epc = infop->entry;
1120     regs->regs[29] = infop->start_stack;
1121 }
1122 
1123 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1124 #define ELF_NREG 45
1125 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1126 
1127 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1128 enum {
1129 #ifdef TARGET_MIPS64
1130     TARGET_EF_R0 = 0,
1131 #else
1132     TARGET_EF_R0 = 6,
1133 #endif
1134     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1135     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1136     TARGET_EF_LO = TARGET_EF_R0 + 32,
1137     TARGET_EF_HI = TARGET_EF_R0 + 33,
1138     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1139     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1140     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1141     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1142 };
1143 
1144 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1145 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1146 {
1147     int i;
1148 
1149     for (i = 0; i < TARGET_EF_R0; i++) {
1150         (*regs)[i] = 0;
1151     }
1152     (*regs)[TARGET_EF_R0] = 0;
1153 
1154     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1155         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1156     }
1157 
1158     (*regs)[TARGET_EF_R26] = 0;
1159     (*regs)[TARGET_EF_R27] = 0;
1160     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1161     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1162     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1163     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1164     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1165     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1166 }
1167 
1168 #define USE_ELF_CORE_DUMP
1169 #define ELF_EXEC_PAGESIZE        4096
1170 
1171 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1172 enum {
1173     HWCAP_MIPS_R6           = (1 << 0),
1174     HWCAP_MIPS_MSA          = (1 << 1),
1175     HWCAP_MIPS_CRC32        = (1 << 2),
1176     HWCAP_MIPS_MIPS16       = (1 << 3),
1177     HWCAP_MIPS_MDMX         = (1 << 4),
1178     HWCAP_MIPS_MIPS3D       = (1 << 5),
1179     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1180     HWCAP_MIPS_DSP          = (1 << 7),
1181     HWCAP_MIPS_DSP2         = (1 << 8),
1182     HWCAP_MIPS_DSP3         = (1 << 9),
1183     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1184     HWCAP_LOONGSON_MMI      = (1 << 11),
1185     HWCAP_LOONGSON_EXT      = (1 << 12),
1186     HWCAP_LOONGSON_EXT2     = (1 << 13),
1187     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1188 };
1189 
1190 #define ELF_HWCAP get_elf_hwcap()
1191 
1192 #define GET_FEATURE_INSN(_flag, _hwcap) \
1193     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1194 
1195 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1196     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1197 
1198 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1199     do { \
1200         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1201             hwcaps |= _hwcap; \
1202         } \
1203     } while (0)
1204 
1205 static uint32_t get_elf_hwcap(void)
1206 {
1207     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1208     uint32_t hwcaps = 0;
1209 
1210     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1211                         2, HWCAP_MIPS_R6);
1212     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1213     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1214     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1215 
1216     return hwcaps;
1217 }
1218 
1219 #undef GET_FEATURE_REG_EQU
1220 #undef GET_FEATURE_REG_SET
1221 #undef GET_FEATURE_INSN
1222 
1223 #endif /* TARGET_MIPS */
1224 
1225 #ifdef TARGET_MICROBLAZE
1226 
1227 #define ELF_START_MMAP 0x80000000
1228 
1229 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1230 
1231 #define ELF_CLASS   ELFCLASS32
1232 #define ELF_ARCH    EM_MICROBLAZE
1233 
1234 static inline void init_thread(struct target_pt_regs *regs,
1235                                struct image_info *infop)
1236 {
1237     regs->pc = infop->entry;
1238     regs->r1 = infop->start_stack;
1239 
1240 }
1241 
1242 #define ELF_EXEC_PAGESIZE        4096
1243 
1244 #define USE_ELF_CORE_DUMP
1245 #define ELF_NREG 38
1246 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1247 
1248 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1249 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1250 {
1251     int i, pos = 0;
1252 
1253     for (i = 0; i < 32; i++) {
1254         (*regs)[pos++] = tswapreg(env->regs[i]);
1255     }
1256 
1257     (*regs)[pos++] = tswapreg(env->pc);
1258     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1259     (*regs)[pos++] = 0;
1260     (*regs)[pos++] = tswapreg(env->ear);
1261     (*regs)[pos++] = 0;
1262     (*regs)[pos++] = tswapreg(env->esr);
1263 }
1264 
1265 #endif /* TARGET_MICROBLAZE */
1266 
1267 #ifdef TARGET_NIOS2
1268 
1269 #define ELF_START_MMAP 0x80000000
1270 
1271 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1272 
1273 #define ELF_CLASS   ELFCLASS32
1274 #define ELF_ARCH    EM_ALTERA_NIOS2
1275 
1276 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1277 {
1278     regs->ea = infop->entry;
1279     regs->sp = infop->start_stack;
1280 }
1281 
1282 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1283 
1284 static bool init_guest_commpage(void)
1285 {
1286     static const uint8_t kuser_page[4 + 2 * 64] = {
1287         /* __kuser_helper_version */
1288         [0x00] = 0x02, 0x00, 0x00, 0x00,
1289 
1290         /* __kuser_cmpxchg */
1291         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1292                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1293 
1294         /* __kuser_sigtramp */
1295         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1296                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1297     };
1298 
1299     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1300     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1301                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1302 
1303     if (addr == MAP_FAILED) {
1304         perror("Allocating guest commpage");
1305         exit(EXIT_FAILURE);
1306     }
1307     if (addr != want) {
1308         return false;
1309     }
1310 
1311     memcpy(addr, kuser_page, sizeof(kuser_page));
1312 
1313     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1314         perror("Protecting guest commpage");
1315         exit(EXIT_FAILURE);
1316     }
1317 
1318     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1319                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1320     return true;
1321 }
1322 
1323 #define ELF_EXEC_PAGESIZE        4096
1324 
1325 #define USE_ELF_CORE_DUMP
1326 #define ELF_NREG 49
1327 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1328 
1329 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1330 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1331                                const CPUNios2State *env)
1332 {
1333     int i;
1334 
1335     (*regs)[0] = -1;
1336     for (i = 1; i < 8; i++)    /* r0-r7 */
1337         (*regs)[i] = tswapreg(env->regs[i + 7]);
1338 
1339     for (i = 8; i < 16; i++)   /* r8-r15 */
1340         (*regs)[i] = tswapreg(env->regs[i - 8]);
1341 
1342     for (i = 16; i < 24; i++)  /* r16-r23 */
1343         (*regs)[i] = tswapreg(env->regs[i + 7]);
1344     (*regs)[24] = -1;    /* R_ET */
1345     (*regs)[25] = -1;    /* R_BT */
1346     (*regs)[26] = tswapreg(env->regs[R_GP]);
1347     (*regs)[27] = tswapreg(env->regs[R_SP]);
1348     (*regs)[28] = tswapreg(env->regs[R_FP]);
1349     (*regs)[29] = tswapreg(env->regs[R_EA]);
1350     (*regs)[30] = -1;    /* R_SSTATUS */
1351     (*regs)[31] = tswapreg(env->regs[R_RA]);
1352 
1353     (*regs)[32] = tswapreg(env->pc);
1354 
1355     (*regs)[33] = -1; /* R_STATUS */
1356     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1357 
1358     for (i = 35; i < 49; i++)    /* ... */
1359         (*regs)[i] = -1;
1360 }
1361 
1362 #endif /* TARGET_NIOS2 */
1363 
1364 #ifdef TARGET_OPENRISC
1365 
1366 #define ELF_START_MMAP 0x08000000
1367 
1368 #define ELF_ARCH EM_OPENRISC
1369 #define ELF_CLASS ELFCLASS32
1370 #define ELF_DATA  ELFDATA2MSB
1371 
1372 static inline void init_thread(struct target_pt_regs *regs,
1373                                struct image_info *infop)
1374 {
1375     regs->pc = infop->entry;
1376     regs->gpr[1] = infop->start_stack;
1377 }
1378 
1379 #define USE_ELF_CORE_DUMP
1380 #define ELF_EXEC_PAGESIZE 8192
1381 
1382 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1383 #define ELF_NREG 34 /* gprs and pc, sr */
1384 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1385 
1386 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1387                                const CPUOpenRISCState *env)
1388 {
1389     int i;
1390 
1391     for (i = 0; i < 32; i++) {
1392         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1393     }
1394     (*regs)[32] = tswapreg(env->pc);
1395     (*regs)[33] = tswapreg(cpu_get_sr(env));
1396 }
1397 #define ELF_HWCAP 0
1398 #define ELF_PLATFORM NULL
1399 
1400 #endif /* TARGET_OPENRISC */
1401 
1402 #ifdef TARGET_SH4
1403 
1404 #define ELF_START_MMAP 0x80000000
1405 
1406 #define ELF_CLASS ELFCLASS32
1407 #define ELF_ARCH  EM_SH
1408 
1409 static inline void init_thread(struct target_pt_regs *regs,
1410                                struct image_info *infop)
1411 {
1412     /* Check other registers XXXXX */
1413     regs->pc = infop->entry;
1414     regs->regs[15] = infop->start_stack;
1415 }
1416 
1417 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1418 #define ELF_NREG 23
1419 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1420 
1421 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1422 enum {
1423     TARGET_REG_PC = 16,
1424     TARGET_REG_PR = 17,
1425     TARGET_REG_SR = 18,
1426     TARGET_REG_GBR = 19,
1427     TARGET_REG_MACH = 20,
1428     TARGET_REG_MACL = 21,
1429     TARGET_REG_SYSCALL = 22
1430 };
1431 
1432 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1433                                       const CPUSH4State *env)
1434 {
1435     int i;
1436 
1437     for (i = 0; i < 16; i++) {
1438         (*regs)[i] = tswapreg(env->gregs[i]);
1439     }
1440 
1441     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1442     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1443     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1444     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1445     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1446     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1447     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1448 }
1449 
1450 #define USE_ELF_CORE_DUMP
1451 #define ELF_EXEC_PAGESIZE        4096
1452 
1453 enum {
1454     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1455     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1456     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1457     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1458     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1459     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1460     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1461     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1462     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1463     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1464 };
1465 
1466 #define ELF_HWCAP get_elf_hwcap()
1467 
1468 static uint32_t get_elf_hwcap(void)
1469 {
1470     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1471     uint32_t hwcap = 0;
1472 
1473     hwcap |= SH_CPU_HAS_FPU;
1474 
1475     if (cpu->env.features & SH_FEATURE_SH4A) {
1476         hwcap |= SH_CPU_HAS_LLSC;
1477     }
1478 
1479     return hwcap;
1480 }
1481 
1482 #endif
1483 
1484 #ifdef TARGET_CRIS
1485 
1486 #define ELF_START_MMAP 0x80000000
1487 
1488 #define ELF_CLASS ELFCLASS32
1489 #define ELF_ARCH  EM_CRIS
1490 
1491 static inline void init_thread(struct target_pt_regs *regs,
1492                                struct image_info *infop)
1493 {
1494     regs->erp = infop->entry;
1495 }
1496 
1497 #define ELF_EXEC_PAGESIZE        8192
1498 
1499 #endif
1500 
1501 #ifdef TARGET_M68K
1502 
1503 #define ELF_START_MMAP 0x80000000
1504 
1505 #define ELF_CLASS       ELFCLASS32
1506 #define ELF_ARCH        EM_68K
1507 
1508 /* ??? Does this need to do anything?
1509    #define ELF_PLAT_INIT(_r) */
1510 
1511 static inline void init_thread(struct target_pt_regs *regs,
1512                                struct image_info *infop)
1513 {
1514     regs->usp = infop->start_stack;
1515     regs->sr = 0;
1516     regs->pc = infop->entry;
1517 }
1518 
1519 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1520 #define ELF_NREG 20
1521 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1522 
1523 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1524 {
1525     (*regs)[0] = tswapreg(env->dregs[1]);
1526     (*regs)[1] = tswapreg(env->dregs[2]);
1527     (*regs)[2] = tswapreg(env->dregs[3]);
1528     (*regs)[3] = tswapreg(env->dregs[4]);
1529     (*regs)[4] = tswapreg(env->dregs[5]);
1530     (*regs)[5] = tswapreg(env->dregs[6]);
1531     (*regs)[6] = tswapreg(env->dregs[7]);
1532     (*regs)[7] = tswapreg(env->aregs[0]);
1533     (*regs)[8] = tswapreg(env->aregs[1]);
1534     (*regs)[9] = tswapreg(env->aregs[2]);
1535     (*regs)[10] = tswapreg(env->aregs[3]);
1536     (*regs)[11] = tswapreg(env->aregs[4]);
1537     (*regs)[12] = tswapreg(env->aregs[5]);
1538     (*regs)[13] = tswapreg(env->aregs[6]);
1539     (*regs)[14] = tswapreg(env->dregs[0]);
1540     (*regs)[15] = tswapreg(env->aregs[7]);
1541     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1542     (*regs)[17] = tswapreg(env->sr);
1543     (*regs)[18] = tswapreg(env->pc);
1544     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1545 }
1546 
1547 #define USE_ELF_CORE_DUMP
1548 #define ELF_EXEC_PAGESIZE       8192
1549 
1550 #endif
1551 
1552 #ifdef TARGET_ALPHA
1553 
1554 #define ELF_START_MMAP (0x30000000000ULL)
1555 
1556 #define ELF_CLASS      ELFCLASS64
1557 #define ELF_ARCH       EM_ALPHA
1558 
1559 static inline void init_thread(struct target_pt_regs *regs,
1560                                struct image_info *infop)
1561 {
1562     regs->pc = infop->entry;
1563     regs->ps = 8;
1564     regs->usp = infop->start_stack;
1565 }
1566 
1567 #define ELF_EXEC_PAGESIZE        8192
1568 
1569 #endif /* TARGET_ALPHA */
1570 
1571 #ifdef TARGET_S390X
1572 
1573 #define ELF_START_MMAP (0x20000000000ULL)
1574 
1575 #define ELF_CLASS	ELFCLASS64
1576 #define ELF_DATA	ELFDATA2MSB
1577 #define ELF_ARCH	EM_S390
1578 
1579 #include "elf.h"
1580 
1581 #define ELF_HWCAP get_elf_hwcap()
1582 
1583 #define GET_FEATURE(_feat, _hwcap) \
1584     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1585 
1586 uint32_t get_elf_hwcap(void)
1587 {
1588     /*
1589      * Let's assume we always have esan3 and zarch.
1590      * 31-bit processes can use 64-bit registers (high gprs).
1591      */
1592     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1593 
1594     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1595     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1596     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1597     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1598     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1599         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1600         hwcap |= HWCAP_S390_ETF3EH;
1601     }
1602     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1603     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1604 
1605     return hwcap;
1606 }
1607 
1608 const char *elf_hwcap_str(uint32_t bit)
1609 {
1610     static const char *hwcap_str[] = {
1611         [HWCAP_S390_ESAN3]     = "esan3",
1612         [HWCAP_S390_ZARCH]     = "zarch",
1613         [HWCAP_S390_STFLE]     = "stfle",
1614         [HWCAP_S390_MSA]       = "msa",
1615         [HWCAP_S390_LDISP]     = "ldisp",
1616         [HWCAP_S390_EIMM]      = "eimm",
1617         [HWCAP_S390_DFP]       = "dfp",
1618         [HWCAP_S390_HPAGE]     = "edat",
1619         [HWCAP_S390_ETF3EH]    = "etf3eh",
1620         [HWCAP_S390_HIGH_GPRS] = "highgprs",
1621         [HWCAP_S390_TE]        = "te",
1622         [HWCAP_S390_VXRS]      = "vx",
1623         [HWCAP_S390_VXRS_BCD]  = "vxd",
1624         [HWCAP_S390_VXRS_EXT]  = "vxe",
1625         [HWCAP_S390_GS]        = "gs",
1626         [HWCAP_S390_VXRS_EXT2] = "vxe2",
1627         [HWCAP_S390_VXRS_PDE]  = "vxp",
1628         [HWCAP_S390_SORT]      = "sort",
1629         [HWCAP_S390_DFLT]      = "dflt",
1630     };
1631 
1632     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1633 }
1634 
1635 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1636 {
1637     regs->psw.addr = infop->entry;
1638     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1639     regs->gprs[15] = infop->start_stack;
1640 }
1641 
1642 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1643 #define ELF_NREG 27
1644 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1645 
1646 enum {
1647     TARGET_REG_PSWM = 0,
1648     TARGET_REG_PSWA = 1,
1649     TARGET_REG_GPRS = 2,
1650     TARGET_REG_ARS = 18,
1651     TARGET_REG_ORIG_R2 = 26,
1652 };
1653 
1654 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1655                                const CPUS390XState *env)
1656 {
1657     int i;
1658     uint32_t *aregs;
1659 
1660     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1661     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1662     for (i = 0; i < 16; i++) {
1663         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1664     }
1665     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1666     for (i = 0; i < 16; i++) {
1667         aregs[i] = tswap32(env->aregs[i]);
1668     }
1669     (*regs)[TARGET_REG_ORIG_R2] = 0;
1670 }
1671 
1672 #define USE_ELF_CORE_DUMP
1673 #define ELF_EXEC_PAGESIZE 4096
1674 
1675 #endif /* TARGET_S390X */
1676 
1677 #ifdef TARGET_RISCV
1678 
1679 #define ELF_START_MMAP 0x80000000
1680 #define ELF_ARCH  EM_RISCV
1681 
1682 #ifdef TARGET_RISCV32
1683 #define ELF_CLASS ELFCLASS32
1684 #else
1685 #define ELF_CLASS ELFCLASS64
1686 #endif
1687 
1688 #define ELF_HWCAP get_elf_hwcap()
1689 
1690 static uint32_t get_elf_hwcap(void)
1691 {
1692 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1693     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1694     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1695                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1696 
1697     return cpu->env.misa_ext & mask;
1698 #undef MISA_BIT
1699 }
1700 
1701 static inline void init_thread(struct target_pt_regs *regs,
1702                                struct image_info *infop)
1703 {
1704     regs->sepc = infop->entry;
1705     regs->sp = infop->start_stack;
1706 }
1707 
1708 #define ELF_EXEC_PAGESIZE 4096
1709 
1710 #endif /* TARGET_RISCV */
1711 
1712 #ifdef TARGET_HPPA
1713 
1714 #define ELF_START_MMAP  0x80000000
1715 #define ELF_CLASS       ELFCLASS32
1716 #define ELF_ARCH        EM_PARISC
1717 #define ELF_PLATFORM    "PARISC"
1718 #define STACK_GROWS_DOWN 0
1719 #define STACK_ALIGNMENT  64
1720 
1721 static inline void init_thread(struct target_pt_regs *regs,
1722                                struct image_info *infop)
1723 {
1724     regs->iaoq[0] = infop->entry;
1725     regs->iaoq[1] = infop->entry + 4;
1726     regs->gr[23] = 0;
1727     regs->gr[24] = infop->argv;
1728     regs->gr[25] = infop->argc;
1729     /* The top-of-stack contains a linkage buffer.  */
1730     regs->gr[30] = infop->start_stack + 64;
1731     regs->gr[31] = infop->entry;
1732 }
1733 
1734 #define LO_COMMPAGE  0
1735 
1736 static bool init_guest_commpage(void)
1737 {
1738     void *want = g2h_untagged(LO_COMMPAGE);
1739     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1740                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1741 
1742     if (addr == MAP_FAILED) {
1743         perror("Allocating guest commpage");
1744         exit(EXIT_FAILURE);
1745     }
1746     if (addr != want) {
1747         return false;
1748     }
1749 
1750     /*
1751      * On Linux, page zero is normally marked execute only + gateway.
1752      * Normal read or write is supposed to fail (thus PROT_NONE above),
1753      * but specific offsets have kernel code mapped to raise permissions
1754      * and implement syscalls.  Here, simply mark the page executable.
1755      * Special case the entry points during translation (see do_page_zero).
1756      */
1757     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1758                    PAGE_EXEC | PAGE_VALID);
1759     return true;
1760 }
1761 
1762 #endif /* TARGET_HPPA */
1763 
1764 #ifdef TARGET_XTENSA
1765 
1766 #define ELF_START_MMAP 0x20000000
1767 
1768 #define ELF_CLASS       ELFCLASS32
1769 #define ELF_ARCH        EM_XTENSA
1770 
1771 static inline void init_thread(struct target_pt_regs *regs,
1772                                struct image_info *infop)
1773 {
1774     regs->windowbase = 0;
1775     regs->windowstart = 1;
1776     regs->areg[1] = infop->start_stack;
1777     regs->pc = infop->entry;
1778     if (info_is_fdpic(infop)) {
1779         regs->areg[4] = infop->loadmap_addr;
1780         regs->areg[5] = infop->interpreter_loadmap_addr;
1781         if (infop->interpreter_loadmap_addr) {
1782             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1783         } else {
1784             regs->areg[6] = infop->pt_dynamic_addr;
1785         }
1786     }
1787 }
1788 
1789 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1790 #define ELF_NREG 128
1791 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1792 
1793 enum {
1794     TARGET_REG_PC,
1795     TARGET_REG_PS,
1796     TARGET_REG_LBEG,
1797     TARGET_REG_LEND,
1798     TARGET_REG_LCOUNT,
1799     TARGET_REG_SAR,
1800     TARGET_REG_WINDOWSTART,
1801     TARGET_REG_WINDOWBASE,
1802     TARGET_REG_THREADPTR,
1803     TARGET_REG_AR0 = 64,
1804 };
1805 
1806 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1807                                const CPUXtensaState *env)
1808 {
1809     unsigned i;
1810 
1811     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1812     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1813     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1814     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1815     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1816     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1817     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1818     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1819     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1820     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1821     for (i = 0; i < env->config->nareg; ++i) {
1822         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1823     }
1824 }
1825 
1826 #define USE_ELF_CORE_DUMP
1827 #define ELF_EXEC_PAGESIZE       4096
1828 
1829 #endif /* TARGET_XTENSA */
1830 
1831 #ifdef TARGET_HEXAGON
1832 
1833 #define ELF_START_MMAP 0x20000000
1834 
1835 #define ELF_CLASS       ELFCLASS32
1836 #define ELF_ARCH        EM_HEXAGON
1837 
1838 static inline void init_thread(struct target_pt_regs *regs,
1839                                struct image_info *infop)
1840 {
1841     regs->sepc = infop->entry;
1842     regs->sp = infop->start_stack;
1843 }
1844 
1845 #endif /* TARGET_HEXAGON */
1846 
1847 #ifndef ELF_BASE_PLATFORM
1848 #define ELF_BASE_PLATFORM (NULL)
1849 #endif
1850 
1851 #ifndef ELF_PLATFORM
1852 #define ELF_PLATFORM (NULL)
1853 #endif
1854 
1855 #ifndef ELF_MACHINE
1856 #define ELF_MACHINE ELF_ARCH
1857 #endif
1858 
1859 #ifndef elf_check_arch
1860 #define elf_check_arch(x) ((x) == ELF_ARCH)
1861 #endif
1862 
1863 #ifndef elf_check_abi
1864 #define elf_check_abi(x) (1)
1865 #endif
1866 
1867 #ifndef ELF_HWCAP
1868 #define ELF_HWCAP 0
1869 #endif
1870 
1871 #ifndef STACK_GROWS_DOWN
1872 #define STACK_GROWS_DOWN 1
1873 #endif
1874 
1875 #ifndef STACK_ALIGNMENT
1876 #define STACK_ALIGNMENT 16
1877 #endif
1878 
1879 #ifdef TARGET_ABI32
1880 #undef ELF_CLASS
1881 #define ELF_CLASS ELFCLASS32
1882 #undef bswaptls
1883 #define bswaptls(ptr) bswap32s(ptr)
1884 #endif
1885 
1886 #ifndef EXSTACK_DEFAULT
1887 #define EXSTACK_DEFAULT false
1888 #endif
1889 
1890 #include "elf.h"
1891 
1892 /* We must delay the following stanzas until after "elf.h". */
1893 #if defined(TARGET_AARCH64)
1894 
1895 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1896                                     const uint32_t *data,
1897                                     struct image_info *info,
1898                                     Error **errp)
1899 {
1900     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1901         if (pr_datasz != sizeof(uint32_t)) {
1902             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1903             return false;
1904         }
1905         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1906         info->note_flags = *data;
1907     }
1908     return true;
1909 }
1910 #define ARCH_USE_GNU_PROPERTY 1
1911 
1912 #else
1913 
1914 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1915                                     const uint32_t *data,
1916                                     struct image_info *info,
1917                                     Error **errp)
1918 {
1919     g_assert_not_reached();
1920 }
1921 #define ARCH_USE_GNU_PROPERTY 0
1922 
1923 #endif
1924 
1925 struct exec
1926 {
1927     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1928     unsigned int a_text;   /* length of text, in bytes */
1929     unsigned int a_data;   /* length of data, in bytes */
1930     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1931     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1932     unsigned int a_entry;  /* start address */
1933     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1934     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1935 };
1936 
1937 
1938 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1939 #define OMAGIC 0407
1940 #define NMAGIC 0410
1941 #define ZMAGIC 0413
1942 #define QMAGIC 0314
1943 
1944 /* Necessary parameters */
1945 #define TARGET_ELF_EXEC_PAGESIZE \
1946         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1947          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1948 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1949 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1950                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1951 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1952 
1953 #define DLINFO_ITEMS 16
1954 
1955 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1956 {
1957     memcpy(to, from, n);
1958 }
1959 
1960 #ifdef BSWAP_NEEDED
1961 static void bswap_ehdr(struct elfhdr *ehdr)
1962 {
1963     bswap16s(&ehdr->e_type);            /* Object file type */
1964     bswap16s(&ehdr->e_machine);         /* Architecture */
1965     bswap32s(&ehdr->e_version);         /* Object file version */
1966     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1967     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1968     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1969     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1970     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1971     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1972     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1973     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1974     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1975     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1976 }
1977 
1978 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1979 {
1980     int i;
1981     for (i = 0; i < phnum; ++i, ++phdr) {
1982         bswap32s(&phdr->p_type);        /* Segment type */
1983         bswap32s(&phdr->p_flags);       /* Segment flags */
1984         bswaptls(&phdr->p_offset);      /* Segment file offset */
1985         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1986         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1987         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1988         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1989         bswaptls(&phdr->p_align);       /* Segment alignment */
1990     }
1991 }
1992 
1993 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1994 {
1995     int i;
1996     for (i = 0; i < shnum; ++i, ++shdr) {
1997         bswap32s(&shdr->sh_name);
1998         bswap32s(&shdr->sh_type);
1999         bswaptls(&shdr->sh_flags);
2000         bswaptls(&shdr->sh_addr);
2001         bswaptls(&shdr->sh_offset);
2002         bswaptls(&shdr->sh_size);
2003         bswap32s(&shdr->sh_link);
2004         bswap32s(&shdr->sh_info);
2005         bswaptls(&shdr->sh_addralign);
2006         bswaptls(&shdr->sh_entsize);
2007     }
2008 }
2009 
2010 static void bswap_sym(struct elf_sym *sym)
2011 {
2012     bswap32s(&sym->st_name);
2013     bswaptls(&sym->st_value);
2014     bswaptls(&sym->st_size);
2015     bswap16s(&sym->st_shndx);
2016 }
2017 
2018 #ifdef TARGET_MIPS
2019 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2020 {
2021     bswap16s(&abiflags->version);
2022     bswap32s(&abiflags->ases);
2023     bswap32s(&abiflags->isa_ext);
2024     bswap32s(&abiflags->flags1);
2025     bswap32s(&abiflags->flags2);
2026 }
2027 #endif
2028 #else
2029 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2030 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2031 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2032 static inline void bswap_sym(struct elf_sym *sym) { }
2033 #ifdef TARGET_MIPS
2034 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2035 #endif
2036 #endif
2037 
2038 #ifdef USE_ELF_CORE_DUMP
2039 static int elf_core_dump(int, const CPUArchState *);
2040 #endif /* USE_ELF_CORE_DUMP */
2041 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2042 
2043 /* Verify the portions of EHDR within E_IDENT for the target.
2044    This can be performed before bswapping the entire header.  */
2045 static bool elf_check_ident(struct elfhdr *ehdr)
2046 {
2047     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2048             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2049             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2050             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2051             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2052             && ehdr->e_ident[EI_DATA] == ELF_DATA
2053             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2054 }
2055 
2056 /* Verify the portions of EHDR outside of E_IDENT for the target.
2057    This has to wait until after bswapping the header.  */
2058 static bool elf_check_ehdr(struct elfhdr *ehdr)
2059 {
2060     return (elf_check_arch(ehdr->e_machine)
2061             && elf_check_abi(ehdr->e_flags)
2062             && ehdr->e_ehsize == sizeof(struct elfhdr)
2063             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2064             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2065 }
2066 
2067 /*
2068  * 'copy_elf_strings()' copies argument/envelope strings from user
2069  * memory to free pages in kernel mem. These are in a format ready
2070  * to be put directly into the top of new user memory.
2071  *
2072  */
2073 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2074                                   abi_ulong p, abi_ulong stack_limit)
2075 {
2076     char *tmp;
2077     int len, i;
2078     abi_ulong top = p;
2079 
2080     if (!p) {
2081         return 0;       /* bullet-proofing */
2082     }
2083 
2084     if (STACK_GROWS_DOWN) {
2085         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2086         for (i = argc - 1; i >= 0; --i) {
2087             tmp = argv[i];
2088             if (!tmp) {
2089                 fprintf(stderr, "VFS: argc is wrong");
2090                 exit(-1);
2091             }
2092             len = strlen(tmp) + 1;
2093             tmp += len;
2094 
2095             if (len > (p - stack_limit)) {
2096                 return 0;
2097             }
2098             while (len) {
2099                 int bytes_to_copy = (len > offset) ? offset : len;
2100                 tmp -= bytes_to_copy;
2101                 p -= bytes_to_copy;
2102                 offset -= bytes_to_copy;
2103                 len -= bytes_to_copy;
2104 
2105                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2106 
2107                 if (offset == 0) {
2108                     memcpy_to_target(p, scratch, top - p);
2109                     top = p;
2110                     offset = TARGET_PAGE_SIZE;
2111                 }
2112             }
2113         }
2114         if (p != top) {
2115             memcpy_to_target(p, scratch + offset, top - p);
2116         }
2117     } else {
2118         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2119         for (i = 0; i < argc; ++i) {
2120             tmp = argv[i];
2121             if (!tmp) {
2122                 fprintf(stderr, "VFS: argc is wrong");
2123                 exit(-1);
2124             }
2125             len = strlen(tmp) + 1;
2126             if (len > (stack_limit - p)) {
2127                 return 0;
2128             }
2129             while (len) {
2130                 int bytes_to_copy = (len > remaining) ? remaining : len;
2131 
2132                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2133 
2134                 tmp += bytes_to_copy;
2135                 remaining -= bytes_to_copy;
2136                 p += bytes_to_copy;
2137                 len -= bytes_to_copy;
2138 
2139                 if (remaining == 0) {
2140                     memcpy_to_target(top, scratch, p - top);
2141                     top = p;
2142                     remaining = TARGET_PAGE_SIZE;
2143                 }
2144             }
2145         }
2146         if (p != top) {
2147             memcpy_to_target(top, scratch, p - top);
2148         }
2149     }
2150 
2151     return p;
2152 }
2153 
2154 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2155  * argument/environment space. Newer kernels (>2.6.33) allow more,
2156  * dependent on stack size, but guarantee at least 32 pages for
2157  * backwards compatibility.
2158  */
2159 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2160 
2161 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2162                                  struct image_info *info)
2163 {
2164     abi_ulong size, error, guard;
2165     int prot;
2166 
2167     size = guest_stack_size;
2168     if (size < STACK_LOWER_LIMIT) {
2169         size = STACK_LOWER_LIMIT;
2170     }
2171 
2172     if (STACK_GROWS_DOWN) {
2173         guard = TARGET_PAGE_SIZE;
2174         if (guard < qemu_real_host_page_size()) {
2175             guard = qemu_real_host_page_size();
2176         }
2177     } else {
2178         /* no guard page for hppa target where stack grows upwards. */
2179         guard = 0;
2180     }
2181 
2182     prot = PROT_READ | PROT_WRITE;
2183     if (info->exec_stack) {
2184         prot |= PROT_EXEC;
2185     }
2186     error = target_mmap(0, size + guard, prot,
2187                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2188     if (error == -1) {
2189         perror("mmap stack");
2190         exit(-1);
2191     }
2192 
2193     /* We reserve one extra page at the top of the stack as guard.  */
2194     if (STACK_GROWS_DOWN) {
2195         target_mprotect(error, guard, PROT_NONE);
2196         info->stack_limit = error + guard;
2197         return info->stack_limit + size - sizeof(void *);
2198     } else {
2199         info->stack_limit = error + size;
2200         return error;
2201     }
2202 }
2203 
2204 /* Map and zero the bss.  We need to explicitly zero any fractional pages
2205    after the data section (i.e. bss).  */
2206 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
2207 {
2208     uintptr_t host_start, host_map_start, host_end;
2209 
2210     last_bss = TARGET_PAGE_ALIGN(last_bss);
2211 
2212     /* ??? There is confusion between qemu_real_host_page_size and
2213        qemu_host_page_size here and elsewhere in target_mmap, which
2214        may lead to the end of the data section mapping from the file
2215        not being mapped.  At least there was an explicit test and
2216        comment for that here, suggesting that "the file size must
2217        be known".  The comment probably pre-dates the introduction
2218        of the fstat system call in target_mmap which does in fact
2219        find out the size.  What isn't clear is if the workaround
2220        here is still actually needed.  For now, continue with it,
2221        but merge it with the "normal" mmap that would allocate the bss.  */
2222 
2223     host_start = (uintptr_t) g2h_untagged(elf_bss);
2224     host_end = (uintptr_t) g2h_untagged(last_bss);
2225     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
2226 
2227     if (host_map_start < host_end) {
2228         void *p = mmap((void *)host_map_start, host_end - host_map_start,
2229                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2230         if (p == MAP_FAILED) {
2231             perror("cannot mmap brk");
2232             exit(-1);
2233         }
2234     }
2235 
2236     /* Ensure that the bss page(s) are valid */
2237     if ((page_get_flags(last_bss-1) & prot) != prot) {
2238         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
2239                        prot | PAGE_VALID);
2240     }
2241 
2242     if (host_start < host_map_start) {
2243         memset((void *)host_start, 0, host_map_start - host_start);
2244     }
2245 }
2246 
2247 #if defined(TARGET_ARM)
2248 static int elf_is_fdpic(struct elfhdr *exec)
2249 {
2250     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2251 }
2252 #elif defined(TARGET_XTENSA)
2253 static int elf_is_fdpic(struct elfhdr *exec)
2254 {
2255     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2256 }
2257 #else
2258 /* Default implementation, always false.  */
2259 static int elf_is_fdpic(struct elfhdr *exec)
2260 {
2261     return 0;
2262 }
2263 #endif
2264 
2265 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2266 {
2267     uint16_t n;
2268     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2269 
2270     /* elf32_fdpic_loadseg */
2271     n = info->nsegs;
2272     while (n--) {
2273         sp -= 12;
2274         put_user_u32(loadsegs[n].addr, sp+0);
2275         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2276         put_user_u32(loadsegs[n].p_memsz, sp+8);
2277     }
2278 
2279     /* elf32_fdpic_loadmap */
2280     sp -= 4;
2281     put_user_u16(0, sp+0); /* version */
2282     put_user_u16(info->nsegs, sp+2); /* nsegs */
2283 
2284     info->personality = PER_LINUX_FDPIC;
2285     info->loadmap_addr = sp;
2286 
2287     return sp;
2288 }
2289 
2290 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2291                                    struct elfhdr *exec,
2292                                    struct image_info *info,
2293                                    struct image_info *interp_info)
2294 {
2295     abi_ulong sp;
2296     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2297     int size;
2298     int i;
2299     abi_ulong u_rand_bytes;
2300     uint8_t k_rand_bytes[16];
2301     abi_ulong u_platform, u_base_platform;
2302     const char *k_platform, *k_base_platform;
2303     const int n = sizeof(elf_addr_t);
2304 
2305     sp = p;
2306 
2307     /* Needs to be before we load the env/argc/... */
2308     if (elf_is_fdpic(exec)) {
2309         /* Need 4 byte alignment for these structs */
2310         sp &= ~3;
2311         sp = loader_build_fdpic_loadmap(info, sp);
2312         info->other_info = interp_info;
2313         if (interp_info) {
2314             interp_info->other_info = info;
2315             sp = loader_build_fdpic_loadmap(interp_info, sp);
2316             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2317             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2318         } else {
2319             info->interpreter_loadmap_addr = 0;
2320             info->interpreter_pt_dynamic_addr = 0;
2321         }
2322     }
2323 
2324     u_base_platform = 0;
2325     k_base_platform = ELF_BASE_PLATFORM;
2326     if (k_base_platform) {
2327         size_t len = strlen(k_base_platform) + 1;
2328         if (STACK_GROWS_DOWN) {
2329             sp -= (len + n - 1) & ~(n - 1);
2330             u_base_platform = sp;
2331             /* FIXME - check return value of memcpy_to_target() for failure */
2332             memcpy_to_target(sp, k_base_platform, len);
2333         } else {
2334             memcpy_to_target(sp, k_base_platform, len);
2335             u_base_platform = sp;
2336             sp += len + 1;
2337         }
2338     }
2339 
2340     u_platform = 0;
2341     k_platform = ELF_PLATFORM;
2342     if (k_platform) {
2343         size_t len = strlen(k_platform) + 1;
2344         if (STACK_GROWS_DOWN) {
2345             sp -= (len + n - 1) & ~(n - 1);
2346             u_platform = sp;
2347             /* FIXME - check return value of memcpy_to_target() for failure */
2348             memcpy_to_target(sp, k_platform, len);
2349         } else {
2350             memcpy_to_target(sp, k_platform, len);
2351             u_platform = sp;
2352             sp += len + 1;
2353         }
2354     }
2355 
2356     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2357      * the argv and envp pointers.
2358      */
2359     if (STACK_GROWS_DOWN) {
2360         sp = QEMU_ALIGN_DOWN(sp, 16);
2361     } else {
2362         sp = QEMU_ALIGN_UP(sp, 16);
2363     }
2364 
2365     /*
2366      * Generate 16 random bytes for userspace PRNG seeding.
2367      */
2368     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2369     if (STACK_GROWS_DOWN) {
2370         sp -= 16;
2371         u_rand_bytes = sp;
2372         /* FIXME - check return value of memcpy_to_target() for failure */
2373         memcpy_to_target(sp, k_rand_bytes, 16);
2374     } else {
2375         memcpy_to_target(sp, k_rand_bytes, 16);
2376         u_rand_bytes = sp;
2377         sp += 16;
2378     }
2379 
2380     size = (DLINFO_ITEMS + 1) * 2;
2381     if (k_base_platform)
2382         size += 2;
2383     if (k_platform)
2384         size += 2;
2385 #ifdef DLINFO_ARCH_ITEMS
2386     size += DLINFO_ARCH_ITEMS * 2;
2387 #endif
2388 #ifdef ELF_HWCAP2
2389     size += 2;
2390 #endif
2391     info->auxv_len = size * n;
2392 
2393     size += envc + argc + 2;
2394     size += 1;  /* argc itself */
2395     size *= n;
2396 
2397     /* Allocate space and finalize stack alignment for entry now.  */
2398     if (STACK_GROWS_DOWN) {
2399         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2400         sp = u_argc;
2401     } else {
2402         u_argc = sp;
2403         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2404     }
2405 
2406     u_argv = u_argc + n;
2407     u_envp = u_argv + (argc + 1) * n;
2408     u_auxv = u_envp + (envc + 1) * n;
2409     info->saved_auxv = u_auxv;
2410     info->argc = argc;
2411     info->envc = envc;
2412     info->argv = u_argv;
2413     info->envp = u_envp;
2414 
2415     /* This is correct because Linux defines
2416      * elf_addr_t as Elf32_Off / Elf64_Off
2417      */
2418 #define NEW_AUX_ENT(id, val) do {               \
2419         put_user_ual(id, u_auxv);  u_auxv += n; \
2420         put_user_ual(val, u_auxv); u_auxv += n; \
2421     } while(0)
2422 
2423 #ifdef ARCH_DLINFO
2424     /*
2425      * ARCH_DLINFO must come first so platform specific code can enforce
2426      * special alignment requirements on the AUXV if necessary (eg. PPC).
2427      */
2428     ARCH_DLINFO;
2429 #endif
2430     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2431      * on info->auxv_len will trigger.
2432      */
2433     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2434     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2435     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2436     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2437         /* Target doesn't support host page size alignment */
2438         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2439     } else {
2440         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2441                                                qemu_host_page_size)));
2442     }
2443     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2444     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2445     NEW_AUX_ENT(AT_ENTRY, info->entry);
2446     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2447     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2448     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2449     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2450     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2451     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2452     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2453     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2454     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2455 
2456 #ifdef ELF_HWCAP2
2457     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2458 #endif
2459 
2460     if (u_base_platform) {
2461         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2462     }
2463     if (u_platform) {
2464         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2465     }
2466     NEW_AUX_ENT (AT_NULL, 0);
2467 #undef NEW_AUX_ENT
2468 
2469     /* Check that our initial calculation of the auxv length matches how much
2470      * we actually put into it.
2471      */
2472     assert(info->auxv_len == u_auxv - info->saved_auxv);
2473 
2474     put_user_ual(argc, u_argc);
2475 
2476     p = info->arg_strings;
2477     for (i = 0; i < argc; ++i) {
2478         put_user_ual(p, u_argv);
2479         u_argv += n;
2480         p += target_strlen(p) + 1;
2481     }
2482     put_user_ual(0, u_argv);
2483 
2484     p = info->env_strings;
2485     for (i = 0; i < envc; ++i) {
2486         put_user_ual(p, u_envp);
2487         u_envp += n;
2488         p += target_strlen(p) + 1;
2489     }
2490     put_user_ual(0, u_envp);
2491 
2492     return sp;
2493 }
2494 
2495 #if defined(HI_COMMPAGE)
2496 #define LO_COMMPAGE -1
2497 #elif defined(LO_COMMPAGE)
2498 #define HI_COMMPAGE 0
2499 #else
2500 #define HI_COMMPAGE 0
2501 #define LO_COMMPAGE -1
2502 #ifndef INIT_GUEST_COMMPAGE
2503 #define init_guest_commpage() true
2504 #endif
2505 #endif
2506 
2507 static void pgb_fail_in_use(const char *image_name)
2508 {
2509     error_report("%s: requires virtual address space that is in use "
2510                  "(omit the -B option or choose a different value)",
2511                  image_name);
2512     exit(EXIT_FAILURE);
2513 }
2514 
2515 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2516                                 abi_ulong guest_hiaddr, long align)
2517 {
2518     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2519     void *addr, *test;
2520 
2521     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2522         fprintf(stderr, "Requested guest base %p does not satisfy "
2523                 "host minimum alignment (0x%lx)\n",
2524                 (void *)guest_base, align);
2525         exit(EXIT_FAILURE);
2526     }
2527 
2528     /* Sanity check the guest binary. */
2529     if (reserved_va) {
2530         if (guest_hiaddr > reserved_va) {
2531             error_report("%s: requires more than reserved virtual "
2532                          "address space (0x%" PRIx64 " > 0x%lx)",
2533                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2534             exit(EXIT_FAILURE);
2535         }
2536     } else {
2537 #if HOST_LONG_BITS < TARGET_ABI_BITS
2538         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2539             error_report("%s: requires more virtual address space "
2540                          "than the host can provide (0x%" PRIx64 ")",
2541                          image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
2542             exit(EXIT_FAILURE);
2543         }
2544 #endif
2545     }
2546 
2547     /*
2548      * Expand the allocation to the entire reserved_va.
2549      * Exclude the mmap_min_addr hole.
2550      */
2551     if (reserved_va) {
2552         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2553                         : mmap_min_addr - guest_base);
2554         guest_hiaddr = reserved_va;
2555     }
2556 
2557     /* Reserve the address space for the binary, or reserved_va. */
2558     test = g2h_untagged(guest_loaddr);
2559     addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
2560     if (test != addr) {
2561         pgb_fail_in_use(image_name);
2562     }
2563     qemu_log_mask(CPU_LOG_PAGE,
2564                   "%s: base @ %p for %" PRIu64 " bytes\n",
2565                   __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
2566 }
2567 
2568 /**
2569  * pgd_find_hole_fallback: potential mmap address
2570  * @guest_size: size of available space
2571  * @brk: location of break
2572  * @align: memory alignment
2573  *
2574  * This is a fallback method for finding a hole in the host address
2575  * space if we don't have the benefit of being able to access
2576  * /proc/self/map. It can potentially take a very long time as we can
2577  * only dumbly iterate up the host address space seeing if the
2578  * allocation would work.
2579  */
2580 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2581                                         long align, uintptr_t offset)
2582 {
2583     uintptr_t base;
2584 
2585     /* Start (aligned) at the bottom and work our way up */
2586     base = ROUND_UP(mmap_min_addr, align);
2587 
2588     while (true) {
2589         uintptr_t align_start, end;
2590         align_start = ROUND_UP(base, align);
2591         end = align_start + guest_size + offset;
2592 
2593         /* if brk is anywhere in the range give ourselves some room to grow. */
2594         if (align_start <= brk && brk < end) {
2595             base = brk + (16 * MiB);
2596             continue;
2597         } else if (align_start + guest_size < align_start) {
2598             /* we have run out of space */
2599             return -1;
2600         } else {
2601             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2602                 MAP_FIXED_NOREPLACE;
2603             void * mmap_start = mmap((void *) align_start, guest_size,
2604                                      PROT_NONE, flags, -1, 0);
2605             if (mmap_start != MAP_FAILED) {
2606                 munmap(mmap_start, guest_size);
2607                 if (mmap_start == (void *) align_start) {
2608                     qemu_log_mask(CPU_LOG_PAGE,
2609                                   "%s: base @ %p for %" PRIdPTR" bytes\n",
2610                                   __func__, mmap_start + offset, guest_size);
2611                     return (uintptr_t) mmap_start + offset;
2612                 }
2613             }
2614             base += qemu_host_page_size;
2615         }
2616     }
2617 }
2618 
2619 /* Return value for guest_base, or -1 if no hole found. */
2620 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2621                                long align, uintptr_t offset)
2622 {
2623     GSList *maps, *iter;
2624     uintptr_t this_start, this_end, next_start, brk;
2625     intptr_t ret = -1;
2626 
2627     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2628 
2629     maps = read_self_maps();
2630 
2631     /* Read brk after we've read the maps, which will malloc. */
2632     brk = (uintptr_t)sbrk(0);
2633 
2634     if (!maps) {
2635         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2636     }
2637 
2638     /* The first hole is before the first map entry. */
2639     this_start = mmap_min_addr;
2640 
2641     for (iter = maps; iter;
2642          this_start = next_start, iter = g_slist_next(iter)) {
2643         uintptr_t align_start, hole_size;
2644 
2645         this_end = ((MapInfo *)iter->data)->start;
2646         next_start = ((MapInfo *)iter->data)->end;
2647         align_start = ROUND_UP(this_start + offset, align);
2648 
2649         /* Skip holes that are too small. */
2650         if (align_start >= this_end) {
2651             continue;
2652         }
2653         hole_size = this_end - align_start;
2654         if (hole_size < guest_size) {
2655             continue;
2656         }
2657 
2658         /* If this hole contains brk, give ourselves some room to grow. */
2659         if (this_start <= brk && brk < this_end) {
2660             hole_size -= guest_size;
2661             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2662                 align_start += 1 * GiB;
2663             } else if (hole_size >= 16 * MiB) {
2664                 align_start += 16 * MiB;
2665             } else {
2666                 align_start = (this_end - guest_size) & -align;
2667                 if (align_start < this_start) {
2668                     continue;
2669                 }
2670             }
2671         }
2672 
2673         /* Record the lowest successful match. */
2674         if (ret < 0) {
2675             ret = align_start;
2676         }
2677         /* If this hole contains the identity map, select it. */
2678         if (align_start <= guest_loaddr &&
2679             guest_loaddr + guest_size <= this_end) {
2680             ret = 0;
2681         }
2682         /* If this hole ends above the identity map, stop looking. */
2683         if (this_end >= guest_loaddr) {
2684             break;
2685         }
2686     }
2687     free_self_maps(maps);
2688 
2689     if (ret != -1) {
2690         qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2691                       " for %" PRIuPTR " bytes\n",
2692                       __func__, ret, guest_size);
2693     }
2694 
2695     return ret;
2696 }
2697 
2698 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2699                        abi_ulong orig_hiaddr, long align)
2700 {
2701     uintptr_t loaddr = orig_loaddr;
2702     uintptr_t hiaddr = orig_hiaddr;
2703     uintptr_t offset = 0;
2704     uintptr_t addr;
2705 
2706     if (hiaddr != orig_hiaddr) {
2707         error_report("%s: requires virtual address space that the "
2708                      "host cannot provide (0x%" PRIx64 ")",
2709                      image_name, (uint64_t)orig_hiaddr + 1);
2710         exit(EXIT_FAILURE);
2711     }
2712 
2713     loaddr &= -align;
2714     if (HI_COMMPAGE) {
2715         /*
2716          * Extend the allocation to include the commpage.
2717          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2718          * need to ensure there is space bellow the guest_base so we
2719          * can map the commpage in the place needed when the address
2720          * arithmetic wraps around.
2721          */
2722         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2723             hiaddr = UINT32_MAX;
2724         } else {
2725             offset = -(HI_COMMPAGE & -align);
2726         }
2727     } else if (LO_COMMPAGE != -1) {
2728         loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2729     }
2730 
2731     addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
2732     if (addr == -1) {
2733         /*
2734          * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2735          * that can satisfy both.  But as the normal arm32 link base address
2736          * is ~32k, and we extend down to include the commpage, making the
2737          * overhead only ~96k, this is unlikely.
2738          */
2739         error_report("%s: Unable to allocate %#zx bytes of "
2740                      "virtual address space", image_name,
2741                      (size_t)(hiaddr - loaddr));
2742         exit(EXIT_FAILURE);
2743     }
2744 
2745     guest_base = addr;
2746 
2747     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2748                   __func__, addr, hiaddr - loaddr);
2749 }
2750 
2751 static void pgb_dynamic(const char *image_name, long align)
2752 {
2753     /*
2754      * The executable is dynamic and does not require a fixed address.
2755      * All we need is a commpage that satisfies align.
2756      * If we do not need a commpage, leave guest_base == 0.
2757      */
2758     if (HI_COMMPAGE) {
2759         uintptr_t addr, commpage;
2760 
2761         /* 64-bit hosts should have used reserved_va. */
2762         assert(sizeof(uintptr_t) == 4);
2763 
2764         /*
2765          * By putting the commpage at the first hole, that puts guest_base
2766          * just above that, and maximises the positive guest addresses.
2767          */
2768         commpage = HI_COMMPAGE & -align;
2769         addr = pgb_find_hole(commpage, -commpage, align, 0);
2770         assert(addr != -1);
2771         guest_base = addr;
2772     }
2773 }
2774 
2775 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2776                             abi_ulong guest_hiaddr, long align)
2777 {
2778     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2779     void *addr, *test;
2780 
2781     if (guest_hiaddr > reserved_va) {
2782         error_report("%s: requires more than reserved virtual "
2783                      "address space (0x%" PRIx64 " > 0x%lx)",
2784                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2785         exit(EXIT_FAILURE);
2786     }
2787 
2788     /* Widen the "image" to the entire reserved address space. */
2789     pgb_static(image_name, 0, reserved_va, align);
2790 
2791     /* osdep.h defines this as 0 if it's missing */
2792     flags |= MAP_FIXED_NOREPLACE;
2793 
2794     /* Reserve the memory on the host. */
2795     assert(guest_base != 0);
2796     test = g2h_untagged(0);
2797     addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
2798     if (addr == MAP_FAILED || addr != test) {
2799         error_report("Unable to reserve 0x%lx bytes of virtual address "
2800                      "space at %p (%s) for use as guest address space (check your "
2801                      "virtual memory ulimit setting, mmap_min_addr or reserve less "
2802                      "using qemu-user's -R option)",
2803                      reserved_va + 1, test, strerror(errno));
2804         exit(EXIT_FAILURE);
2805     }
2806 
2807     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2808                   __func__, addr, reserved_va + 1);
2809 }
2810 
2811 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2812                       abi_ulong guest_hiaddr)
2813 {
2814     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2815     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2816 
2817     if (have_guest_base) {
2818         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2819     } else if (reserved_va) {
2820         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2821     } else if (guest_loaddr) {
2822         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2823     } else {
2824         pgb_dynamic(image_name, align);
2825     }
2826 
2827     /* Reserve and initialize the commpage. */
2828     if (!init_guest_commpage()) {
2829         /*
2830          * With have_guest_base, the user has selected the address and
2831          * we are trying to work with that.  Otherwise, we have selected
2832          * free space and init_guest_commpage must succeeded.
2833          */
2834         assert(have_guest_base);
2835         pgb_fail_in_use(image_name);
2836     }
2837 
2838     assert(QEMU_IS_ALIGNED(guest_base, align));
2839     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2840                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2841 }
2842 
2843 enum {
2844     /* The string "GNU\0" as a magic number. */
2845     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2846     NOTE_DATA_SZ = 1 * KiB,
2847     NOTE_NAME_SZ = 4,
2848     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2849 };
2850 
2851 /*
2852  * Process a single gnu_property entry.
2853  * Return false for error.
2854  */
2855 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2856                                struct image_info *info, bool have_prev_type,
2857                                uint32_t *prev_type, Error **errp)
2858 {
2859     uint32_t pr_type, pr_datasz, step;
2860 
2861     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2862         goto error_data;
2863     }
2864     datasz -= *off;
2865     data += *off / sizeof(uint32_t);
2866 
2867     if (datasz < 2 * sizeof(uint32_t)) {
2868         goto error_data;
2869     }
2870     pr_type = data[0];
2871     pr_datasz = data[1];
2872     data += 2;
2873     datasz -= 2 * sizeof(uint32_t);
2874     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2875     if (step > datasz) {
2876         goto error_data;
2877     }
2878 
2879     /* Properties are supposed to be unique and sorted on pr_type. */
2880     if (have_prev_type && pr_type <= *prev_type) {
2881         if (pr_type == *prev_type) {
2882             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2883         } else {
2884             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2885         }
2886         return false;
2887     }
2888     *prev_type = pr_type;
2889 
2890     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2891         return false;
2892     }
2893 
2894     *off += 2 * sizeof(uint32_t) + step;
2895     return true;
2896 
2897  error_data:
2898     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2899     return false;
2900 }
2901 
2902 /* Process NT_GNU_PROPERTY_TYPE_0. */
2903 static bool parse_elf_properties(int image_fd,
2904                                  struct image_info *info,
2905                                  const struct elf_phdr *phdr,
2906                                  char bprm_buf[BPRM_BUF_SIZE],
2907                                  Error **errp)
2908 {
2909     union {
2910         struct elf_note nhdr;
2911         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2912     } note;
2913 
2914     int n, off, datasz;
2915     bool have_prev_type;
2916     uint32_t prev_type;
2917 
2918     /* Unless the arch requires properties, ignore them. */
2919     if (!ARCH_USE_GNU_PROPERTY) {
2920         return true;
2921     }
2922 
2923     /* If the properties are crazy large, that's too bad. */
2924     n = phdr->p_filesz;
2925     if (n > sizeof(note)) {
2926         error_setg(errp, "PT_GNU_PROPERTY too large");
2927         return false;
2928     }
2929     if (n < sizeof(note.nhdr)) {
2930         error_setg(errp, "PT_GNU_PROPERTY too small");
2931         return false;
2932     }
2933 
2934     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2935         memcpy(&note, bprm_buf + phdr->p_offset, n);
2936     } else {
2937         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2938         if (len != n) {
2939             error_setg_errno(errp, errno, "Error reading file header");
2940             return false;
2941         }
2942     }
2943 
2944     /*
2945      * The contents of a valid PT_GNU_PROPERTY is a sequence
2946      * of uint32_t -- swap them all now.
2947      */
2948 #ifdef BSWAP_NEEDED
2949     for (int i = 0; i < n / 4; i++) {
2950         bswap32s(note.data + i);
2951     }
2952 #endif
2953 
2954     /*
2955      * Note that nhdr is 3 words, and that the "name" described by namesz
2956      * immediately follows nhdr and is thus at the 4th word.  Further, all
2957      * of the inputs to the kernel's round_up are multiples of 4.
2958      */
2959     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2960         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2961         note.data[3] != GNU0_MAGIC) {
2962         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2963         return false;
2964     }
2965     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2966 
2967     datasz = note.nhdr.n_descsz + off;
2968     if (datasz > n) {
2969         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2970         return false;
2971     }
2972 
2973     have_prev_type = false;
2974     prev_type = 0;
2975     while (1) {
2976         if (off == datasz) {
2977             return true;  /* end, exit ok */
2978         }
2979         if (!parse_elf_property(note.data, &off, datasz, info,
2980                                 have_prev_type, &prev_type, errp)) {
2981             return false;
2982         }
2983         have_prev_type = true;
2984     }
2985 }
2986 
2987 /* Load an ELF image into the address space.
2988 
2989    IMAGE_NAME is the filename of the image, to use in error messages.
2990    IMAGE_FD is the open file descriptor for the image.
2991 
2992    BPRM_BUF is a copy of the beginning of the file; this of course
2993    contains the elf file header at offset 0.  It is assumed that this
2994    buffer is sufficiently aligned to present no problems to the host
2995    in accessing data at aligned offsets within the buffer.
2996 
2997    On return: INFO values will be filled in, as necessary or available.  */
2998 
2999 static void load_elf_image(const char *image_name, int image_fd,
3000                            struct image_info *info, char **pinterp_name,
3001                            char bprm_buf[BPRM_BUF_SIZE])
3002 {
3003     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3004     struct elf_phdr *phdr;
3005     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3006     int i, retval, prot_exec;
3007     Error *err = NULL;
3008 
3009     /* First of all, some simple consistency checks */
3010     if (!elf_check_ident(ehdr)) {
3011         error_setg(&err, "Invalid ELF image for this architecture");
3012         goto exit_errmsg;
3013     }
3014     bswap_ehdr(ehdr);
3015     if (!elf_check_ehdr(ehdr)) {
3016         error_setg(&err, "Invalid ELF image for this architecture");
3017         goto exit_errmsg;
3018     }
3019 
3020     i = ehdr->e_phnum * sizeof(struct elf_phdr);
3021     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3022         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
3023     } else {
3024         phdr = (struct elf_phdr *) alloca(i);
3025         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
3026         if (retval != i) {
3027             goto exit_read;
3028         }
3029     }
3030     bswap_phdr(phdr, ehdr->e_phnum);
3031 
3032     info->nsegs = 0;
3033     info->pt_dynamic_addr = 0;
3034 
3035     mmap_lock();
3036 
3037     /*
3038      * Find the maximum size of the image and allocate an appropriate
3039      * amount of memory to handle that.  Locate the interpreter, if any.
3040      */
3041     loaddr = -1, hiaddr = 0;
3042     info->alignment = 0;
3043     info->exec_stack = EXSTACK_DEFAULT;
3044     for (i = 0; i < ehdr->e_phnum; ++i) {
3045         struct elf_phdr *eppnt = phdr + i;
3046         if (eppnt->p_type == PT_LOAD) {
3047             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3048             if (a < loaddr) {
3049                 loaddr = a;
3050             }
3051             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3052             if (a > hiaddr) {
3053                 hiaddr = a;
3054             }
3055             ++info->nsegs;
3056             info->alignment |= eppnt->p_align;
3057         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3058             g_autofree char *interp_name = NULL;
3059 
3060             if (*pinterp_name) {
3061                 error_setg(&err, "Multiple PT_INTERP entries");
3062                 goto exit_errmsg;
3063             }
3064 
3065             interp_name = g_malloc(eppnt->p_filesz);
3066 
3067             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3068                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3069                        eppnt->p_filesz);
3070             } else {
3071                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3072                                eppnt->p_offset);
3073                 if (retval != eppnt->p_filesz) {
3074                     goto exit_read;
3075                 }
3076             }
3077             if (interp_name[eppnt->p_filesz - 1] != 0) {
3078                 error_setg(&err, "Invalid PT_INTERP entry");
3079                 goto exit_errmsg;
3080             }
3081             *pinterp_name = g_steal_pointer(&interp_name);
3082         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3083             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3084                 goto exit_errmsg;
3085             }
3086         } else if (eppnt->p_type == PT_GNU_STACK) {
3087             info->exec_stack = eppnt->p_flags & PF_X;
3088         }
3089     }
3090 
3091     if (pinterp_name != NULL) {
3092         /*
3093          * This is the main executable.
3094          *
3095          * Reserve extra space for brk.
3096          * We hold on to this space while placing the interpreter
3097          * and the stack, lest they be placed immediately after
3098          * the data segment and block allocation from the brk.
3099          *
3100          * 16MB is chosen as "large enough" without being so large as
3101          * to allow the result to not fit with a 32-bit guest on a
3102          * 32-bit host. However some 64 bit guests (e.g. s390x)
3103          * attempt to place their heap further ahead and currently
3104          * nothing stops them smashing into QEMUs address space.
3105          */
3106 #if TARGET_LONG_BITS == 64
3107         info->reserve_brk = 32 * MiB;
3108 #else
3109         info->reserve_brk = 16 * MiB;
3110 #endif
3111         hiaddr += info->reserve_brk;
3112 
3113         if (ehdr->e_type == ET_EXEC) {
3114             /*
3115              * Make sure that the low address does not conflict with
3116              * MMAP_MIN_ADDR or the QEMU application itself.
3117              */
3118             probe_guest_base(image_name, loaddr, hiaddr);
3119         } else {
3120             /*
3121              * The binary is dynamic, but we still need to
3122              * select guest_base.  In this case we pass a size.
3123              */
3124             probe_guest_base(image_name, 0, hiaddr - loaddr);
3125         }
3126     }
3127 
3128     /*
3129      * Reserve address space for all of this.
3130      *
3131      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3132      * exactly the address range that is required.
3133      *
3134      * Otherwise this is ET_DYN, and we are searching for a location
3135      * that can hold the memory space required.  If the image is
3136      * pre-linked, LOADDR will be non-zero, and the kernel should
3137      * honor that address if it happens to be free.
3138      *
3139      * In both cases, we will overwrite pages in this range with mappings
3140      * from the executable.
3141      */
3142     load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3143                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3144                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3145                             -1, 0);
3146     if (load_addr == -1) {
3147         goto exit_mmap;
3148     }
3149     load_bias = load_addr - loaddr;
3150 
3151     if (elf_is_fdpic(ehdr)) {
3152         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3153             g_malloc(sizeof(*loadsegs) * info->nsegs);
3154 
3155         for (i = 0; i < ehdr->e_phnum; ++i) {
3156             switch (phdr[i].p_type) {
3157             case PT_DYNAMIC:
3158                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3159                 break;
3160             case PT_LOAD:
3161                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3162                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3163                 loadsegs->p_memsz = phdr[i].p_memsz;
3164                 ++loadsegs;
3165                 break;
3166             }
3167         }
3168     }
3169 
3170     info->load_bias = load_bias;
3171     info->code_offset = load_bias;
3172     info->data_offset = load_bias;
3173     info->load_addr = load_addr;
3174     info->entry = ehdr->e_entry + load_bias;
3175     info->start_code = -1;
3176     info->end_code = 0;
3177     info->start_data = -1;
3178     info->end_data = 0;
3179     info->brk = 0;
3180     info->elf_flags = ehdr->e_flags;
3181 
3182     prot_exec = PROT_EXEC;
3183 #ifdef TARGET_AARCH64
3184     /*
3185      * If the BTI feature is present, this indicates that the executable
3186      * pages of the startup binary should be mapped with PROT_BTI, so that
3187      * branch targets are enforced.
3188      *
3189      * The startup binary is either the interpreter or the static executable.
3190      * The interpreter is responsible for all pages of a dynamic executable.
3191      *
3192      * Elf notes are backward compatible to older cpus.
3193      * Do not enable BTI unless it is supported.
3194      */
3195     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3196         && (pinterp_name == NULL || *pinterp_name == 0)
3197         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3198         prot_exec |= TARGET_PROT_BTI;
3199     }
3200 #endif
3201 
3202     for (i = 0; i < ehdr->e_phnum; i++) {
3203         struct elf_phdr *eppnt = phdr + i;
3204         if (eppnt->p_type == PT_LOAD) {
3205             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
3206             int elf_prot = 0;
3207 
3208             if (eppnt->p_flags & PF_R) {
3209                 elf_prot |= PROT_READ;
3210             }
3211             if (eppnt->p_flags & PF_W) {
3212                 elf_prot |= PROT_WRITE;
3213             }
3214             if (eppnt->p_flags & PF_X) {
3215                 elf_prot |= prot_exec;
3216             }
3217 
3218             vaddr = load_bias + eppnt->p_vaddr;
3219             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3220             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
3221 
3222             vaddr_ef = vaddr + eppnt->p_filesz;
3223             vaddr_em = vaddr + eppnt->p_memsz;
3224 
3225             /*
3226              * Some segments may be completely empty, with a non-zero p_memsz
3227              * but no backing file segment.
3228              */
3229             if (eppnt->p_filesz != 0) {
3230                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
3231                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3232                                     MAP_PRIVATE | MAP_FIXED,
3233                                     image_fd, eppnt->p_offset - vaddr_po);
3234 
3235                 if (error == -1) {
3236                     goto exit_mmap;
3237                 }
3238 
3239                 /*
3240                  * If the load segment requests extra zeros (e.g. bss), map it.
3241                  */
3242                 if (eppnt->p_filesz < eppnt->p_memsz) {
3243                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
3244                 }
3245             } else if (eppnt->p_memsz != 0) {
3246                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3247                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3248                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3249                                     -1, 0);
3250 
3251                 if (error == -1) {
3252                     goto exit_mmap;
3253                 }
3254             }
3255 
3256             /* Find the full program boundaries.  */
3257             if (elf_prot & PROT_EXEC) {
3258                 if (vaddr < info->start_code) {
3259                     info->start_code = vaddr;
3260                 }
3261                 if (vaddr_ef > info->end_code) {
3262                     info->end_code = vaddr_ef;
3263                 }
3264             }
3265             if (elf_prot & PROT_WRITE) {
3266                 if (vaddr < info->start_data) {
3267                     info->start_data = vaddr;
3268                 }
3269                 if (vaddr_ef > info->end_data) {
3270                     info->end_data = vaddr_ef;
3271                 }
3272             }
3273             if (vaddr_em > info->brk) {
3274                 info->brk = vaddr_em;
3275             }
3276 #ifdef TARGET_MIPS
3277         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3278             Mips_elf_abiflags_v0 abiflags;
3279             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3280                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3281                 goto exit_errmsg;
3282             }
3283             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3284                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3285                        sizeof(Mips_elf_abiflags_v0));
3286             } else {
3287                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3288                                eppnt->p_offset);
3289                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3290                     goto exit_read;
3291                 }
3292             }
3293             bswap_mips_abiflags(&abiflags);
3294             info->fp_abi = abiflags.fp_abi;
3295 #endif
3296         }
3297     }
3298 
3299     if (info->end_data == 0) {
3300         info->start_data = info->end_code;
3301         info->end_data = info->end_code;
3302     }
3303 
3304     if (qemu_log_enabled()) {
3305         load_symbols(ehdr, image_fd, load_bias);
3306     }
3307 
3308     debuginfo_report_elf(image_name, image_fd, load_bias);
3309 
3310     mmap_unlock();
3311 
3312     close(image_fd);
3313     return;
3314 
3315  exit_read:
3316     if (retval >= 0) {
3317         error_setg(&err, "Incomplete read of file header");
3318     } else {
3319         error_setg_errno(&err, errno, "Error reading file header");
3320     }
3321     goto exit_errmsg;
3322  exit_mmap:
3323     error_setg_errno(&err, errno, "Error mapping file");
3324     goto exit_errmsg;
3325  exit_errmsg:
3326     error_reportf_err(err, "%s: ", image_name);
3327     exit(-1);
3328 }
3329 
3330 static void load_elf_interp(const char *filename, struct image_info *info,
3331                             char bprm_buf[BPRM_BUF_SIZE])
3332 {
3333     int fd, retval;
3334     Error *err = NULL;
3335 
3336     fd = open(path(filename), O_RDONLY);
3337     if (fd < 0) {
3338         error_setg_file_open(&err, errno, filename);
3339         error_report_err(err);
3340         exit(-1);
3341     }
3342 
3343     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3344     if (retval < 0) {
3345         error_setg_errno(&err, errno, "Error reading file header");
3346         error_reportf_err(err, "%s: ", filename);
3347         exit(-1);
3348     }
3349 
3350     if (retval < BPRM_BUF_SIZE) {
3351         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3352     }
3353 
3354     load_elf_image(filename, fd, info, NULL, bprm_buf);
3355 }
3356 
3357 static int symfind(const void *s0, const void *s1)
3358 {
3359     struct elf_sym *sym = (struct elf_sym *)s1;
3360     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3361     int result = 0;
3362 
3363     if (addr < sym->st_value) {
3364         result = -1;
3365     } else if (addr >= sym->st_value + sym->st_size) {
3366         result = 1;
3367     }
3368     return result;
3369 }
3370 
3371 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3372 {
3373 #if ELF_CLASS == ELFCLASS32
3374     struct elf_sym *syms = s->disas_symtab.elf32;
3375 #else
3376     struct elf_sym *syms = s->disas_symtab.elf64;
3377 #endif
3378 
3379     // binary search
3380     struct elf_sym *sym;
3381 
3382     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3383     if (sym != NULL) {
3384         return s->disas_strtab + sym->st_name;
3385     }
3386 
3387     return "";
3388 }
3389 
3390 /* FIXME: This should use elf_ops.h  */
3391 static int symcmp(const void *s0, const void *s1)
3392 {
3393     struct elf_sym *sym0 = (struct elf_sym *)s0;
3394     struct elf_sym *sym1 = (struct elf_sym *)s1;
3395     return (sym0->st_value < sym1->st_value)
3396         ? -1
3397         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3398 }
3399 
3400 /* Best attempt to load symbols from this ELF object. */
3401 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3402 {
3403     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3404     uint64_t segsz;
3405     struct elf_shdr *shdr;
3406     char *strings = NULL;
3407     struct syminfo *s = NULL;
3408     struct elf_sym *new_syms, *syms = NULL;
3409 
3410     shnum = hdr->e_shnum;
3411     i = shnum * sizeof(struct elf_shdr);
3412     shdr = (struct elf_shdr *)alloca(i);
3413     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3414         return;
3415     }
3416 
3417     bswap_shdr(shdr, shnum);
3418     for (i = 0; i < shnum; ++i) {
3419         if (shdr[i].sh_type == SHT_SYMTAB) {
3420             sym_idx = i;
3421             str_idx = shdr[i].sh_link;
3422             goto found;
3423         }
3424     }
3425 
3426     /* There will be no symbol table if the file was stripped.  */
3427     return;
3428 
3429  found:
3430     /* Now know where the strtab and symtab are.  Snarf them.  */
3431     s = g_try_new(struct syminfo, 1);
3432     if (!s) {
3433         goto give_up;
3434     }
3435 
3436     segsz = shdr[str_idx].sh_size;
3437     s->disas_strtab = strings = g_try_malloc(segsz);
3438     if (!strings ||
3439         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3440         goto give_up;
3441     }
3442 
3443     segsz = shdr[sym_idx].sh_size;
3444     syms = g_try_malloc(segsz);
3445     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3446         goto give_up;
3447     }
3448 
3449     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3450         /* Implausibly large symbol table: give up rather than ploughing
3451          * on with the number of symbols calculation overflowing
3452          */
3453         goto give_up;
3454     }
3455     nsyms = segsz / sizeof(struct elf_sym);
3456     for (i = 0; i < nsyms; ) {
3457         bswap_sym(syms + i);
3458         /* Throw away entries which we do not need.  */
3459         if (syms[i].st_shndx == SHN_UNDEF
3460             || syms[i].st_shndx >= SHN_LORESERVE
3461             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3462             if (i < --nsyms) {
3463                 syms[i] = syms[nsyms];
3464             }
3465         } else {
3466 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3467             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3468             syms[i].st_value &= ~(target_ulong)1;
3469 #endif
3470             syms[i].st_value += load_bias;
3471             i++;
3472         }
3473     }
3474 
3475     /* No "useful" symbol.  */
3476     if (nsyms == 0) {
3477         goto give_up;
3478     }
3479 
3480     /* Attempt to free the storage associated with the local symbols
3481        that we threw away.  Whether or not this has any effect on the
3482        memory allocation depends on the malloc implementation and how
3483        many symbols we managed to discard.  */
3484     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3485     if (new_syms == NULL) {
3486         goto give_up;
3487     }
3488     syms = new_syms;
3489 
3490     qsort(syms, nsyms, sizeof(*syms), symcmp);
3491 
3492     s->disas_num_syms = nsyms;
3493 #if ELF_CLASS == ELFCLASS32
3494     s->disas_symtab.elf32 = syms;
3495 #else
3496     s->disas_symtab.elf64 = syms;
3497 #endif
3498     s->lookup_symbol = lookup_symbolxx;
3499     s->next = syminfos;
3500     syminfos = s;
3501 
3502     return;
3503 
3504 give_up:
3505     g_free(s);
3506     g_free(strings);
3507     g_free(syms);
3508 }
3509 
3510 uint32_t get_elf_eflags(int fd)
3511 {
3512     struct elfhdr ehdr;
3513     off_t offset;
3514     int ret;
3515 
3516     /* Read ELF header */
3517     offset = lseek(fd, 0, SEEK_SET);
3518     if (offset == (off_t) -1) {
3519         return 0;
3520     }
3521     ret = read(fd, &ehdr, sizeof(ehdr));
3522     if (ret < sizeof(ehdr)) {
3523         return 0;
3524     }
3525     offset = lseek(fd, offset, SEEK_SET);
3526     if (offset == (off_t) -1) {
3527         return 0;
3528     }
3529 
3530     /* Check ELF signature */
3531     if (!elf_check_ident(&ehdr)) {
3532         return 0;
3533     }
3534 
3535     /* check header */
3536     bswap_ehdr(&ehdr);
3537     if (!elf_check_ehdr(&ehdr)) {
3538         return 0;
3539     }
3540 
3541     /* return architecture id */
3542     return ehdr.e_flags;
3543 }
3544 
3545 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3546 {
3547     struct image_info interp_info;
3548     struct elfhdr elf_ex;
3549     char *elf_interpreter = NULL;
3550     char *scratch;
3551 
3552     memset(&interp_info, 0, sizeof(interp_info));
3553 #ifdef TARGET_MIPS
3554     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3555 #endif
3556 
3557     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3558 
3559     load_elf_image(bprm->filename, bprm->fd, info,
3560                    &elf_interpreter, bprm->buf);
3561 
3562     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3563        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3564        when we load the interpreter.  */
3565     elf_ex = *(struct elfhdr *)bprm->buf;
3566 
3567     /* Do this so that we can load the interpreter, if need be.  We will
3568        change some of these later */
3569     bprm->p = setup_arg_pages(bprm, info);
3570 
3571     scratch = g_new0(char, TARGET_PAGE_SIZE);
3572     if (STACK_GROWS_DOWN) {
3573         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3574                                    bprm->p, info->stack_limit);
3575         info->file_string = bprm->p;
3576         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3577                                    bprm->p, info->stack_limit);
3578         info->env_strings = bprm->p;
3579         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3580                                    bprm->p, info->stack_limit);
3581         info->arg_strings = bprm->p;
3582     } else {
3583         info->arg_strings = bprm->p;
3584         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3585                                    bprm->p, info->stack_limit);
3586         info->env_strings = bprm->p;
3587         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3588                                    bprm->p, info->stack_limit);
3589         info->file_string = bprm->p;
3590         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3591                                    bprm->p, info->stack_limit);
3592     }
3593 
3594     g_free(scratch);
3595 
3596     if (!bprm->p) {
3597         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3598         exit(-1);
3599     }
3600 
3601     if (elf_interpreter) {
3602         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3603 
3604         /* If the program interpreter is one of these two, then assume
3605            an iBCS2 image.  Otherwise assume a native linux image.  */
3606 
3607         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3608             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3609             info->personality = PER_SVR4;
3610 
3611             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3612                and some applications "depend" upon this behavior.  Since
3613                we do not have the power to recompile these, we emulate
3614                the SVr4 behavior.  Sigh.  */
3615             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3616                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3617         }
3618 #ifdef TARGET_MIPS
3619         info->interp_fp_abi = interp_info.fp_abi;
3620 #endif
3621     }
3622 
3623     /*
3624      * TODO: load a vdso, which would also contain the signal trampolines.
3625      * Otherwise, allocate a private page to hold them.
3626      */
3627     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3628         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3629                                           PROT_READ | PROT_WRITE,
3630                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3631         if (tramp_page == -1) {
3632             return -errno;
3633         }
3634 
3635         setup_sigtramp(tramp_page);
3636         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3637     }
3638 
3639     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3640                                 info, (elf_interpreter ? &interp_info : NULL));
3641     info->start_stack = bprm->p;
3642 
3643     /* If we have an interpreter, set that as the program's entry point.
3644        Copy the load_bias as well, to help PPC64 interpret the entry
3645        point as a function descriptor.  Do this after creating elf tables
3646        so that we copy the original program entry point into the AUXV.  */
3647     if (elf_interpreter) {
3648         info->load_bias = interp_info.load_bias;
3649         info->entry = interp_info.entry;
3650         g_free(elf_interpreter);
3651     }
3652 
3653 #ifdef USE_ELF_CORE_DUMP
3654     bprm->core_dump = &elf_core_dump;
3655 #endif
3656 
3657     /*
3658      * If we reserved extra space for brk, release it now.
3659      * The implementation of do_brk in syscalls.c expects to be able
3660      * to mmap pages in this space.
3661      */
3662     if (info->reserve_brk) {
3663         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3664         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3665         target_munmap(start_brk, end_brk - start_brk);
3666     }
3667 
3668     return 0;
3669 }
3670 
3671 #ifdef USE_ELF_CORE_DUMP
3672 /*
3673  * Definitions to generate Intel SVR4-like core files.
3674  * These mostly have the same names as the SVR4 types with "target_elf_"
3675  * tacked on the front to prevent clashes with linux definitions,
3676  * and the typedef forms have been avoided.  This is mostly like
3677  * the SVR4 structure, but more Linuxy, with things that Linux does
3678  * not support and which gdb doesn't really use excluded.
3679  *
3680  * Fields we don't dump (their contents is zero) in linux-user qemu
3681  * are marked with XXX.
3682  *
3683  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3684  *
3685  * Porting ELF coredump for target is (quite) simple process.  First you
3686  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3687  * the target resides):
3688  *
3689  * #define USE_ELF_CORE_DUMP
3690  *
3691  * Next you define type of register set used for dumping.  ELF specification
3692  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3693  *
3694  * typedef <target_regtype> target_elf_greg_t;
3695  * #define ELF_NREG <number of registers>
3696  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3697  *
3698  * Last step is to implement target specific function that copies registers
3699  * from given cpu into just specified register set.  Prototype is:
3700  *
3701  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3702  *                                const CPUArchState *env);
3703  *
3704  * Parameters:
3705  *     regs - copy register values into here (allocated and zeroed by caller)
3706  *     env - copy registers from here
3707  *
3708  * Example for ARM target is provided in this file.
3709  */
3710 
3711 /* An ELF note in memory */
3712 struct memelfnote {
3713     const char *name;
3714     size_t     namesz;
3715     size_t     namesz_rounded;
3716     int        type;
3717     size_t     datasz;
3718     size_t     datasz_rounded;
3719     void       *data;
3720     size_t     notesz;
3721 };
3722 
3723 struct target_elf_siginfo {
3724     abi_int    si_signo; /* signal number */
3725     abi_int    si_code;  /* extra code */
3726     abi_int    si_errno; /* errno */
3727 };
3728 
3729 struct target_elf_prstatus {
3730     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3731     abi_short          pr_cursig;    /* Current signal */
3732     abi_ulong          pr_sigpend;   /* XXX */
3733     abi_ulong          pr_sighold;   /* XXX */
3734     target_pid_t       pr_pid;
3735     target_pid_t       pr_ppid;
3736     target_pid_t       pr_pgrp;
3737     target_pid_t       pr_sid;
3738     struct target_timeval pr_utime;  /* XXX User time */
3739     struct target_timeval pr_stime;  /* XXX System time */
3740     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3741     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3742     target_elf_gregset_t      pr_reg;       /* GP registers */
3743     abi_int            pr_fpvalid;   /* XXX */
3744 };
3745 
3746 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3747 
3748 struct target_elf_prpsinfo {
3749     char         pr_state;       /* numeric process state */
3750     char         pr_sname;       /* char for pr_state */
3751     char         pr_zomb;        /* zombie */
3752     char         pr_nice;        /* nice val */
3753     abi_ulong    pr_flag;        /* flags */
3754     target_uid_t pr_uid;
3755     target_gid_t pr_gid;
3756     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3757     /* Lots missing */
3758     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3759     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3760 };
3761 
3762 /* Here is the structure in which status of each thread is captured. */
3763 struct elf_thread_status {
3764     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3765     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3766 #if 0
3767     elf_fpregset_t fpu;             /* NT_PRFPREG */
3768     struct task_struct *thread;
3769     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3770 #endif
3771     struct memelfnote notes[1];
3772     int num_notes;
3773 };
3774 
3775 struct elf_note_info {
3776     struct memelfnote   *notes;
3777     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3778     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3779 
3780     QTAILQ_HEAD(, elf_thread_status) thread_list;
3781 #if 0
3782     /*
3783      * Current version of ELF coredump doesn't support
3784      * dumping fp regs etc.
3785      */
3786     elf_fpregset_t *fpu;
3787     elf_fpxregset_t *xfpu;
3788     int thread_status_size;
3789 #endif
3790     int notes_size;
3791     int numnote;
3792 };
3793 
3794 struct vm_area_struct {
3795     target_ulong   vma_start;  /* start vaddr of memory region */
3796     target_ulong   vma_end;    /* end vaddr of memory region */
3797     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3798     QTAILQ_ENTRY(vm_area_struct) vma_link;
3799 };
3800 
3801 struct mm_struct {
3802     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3803     int mm_count;           /* number of mappings */
3804 };
3805 
3806 static struct mm_struct *vma_init(void);
3807 static void vma_delete(struct mm_struct *);
3808 static int vma_add_mapping(struct mm_struct *, target_ulong,
3809                            target_ulong, abi_ulong);
3810 static int vma_get_mapping_count(const struct mm_struct *);
3811 static struct vm_area_struct *vma_first(const struct mm_struct *);
3812 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3813 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3814 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3815                       unsigned long flags);
3816 
3817 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3818 static void fill_note(struct memelfnote *, const char *, int,
3819                       unsigned int, void *);
3820 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3821 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3822 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3823 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3824 static size_t note_size(const struct memelfnote *);
3825 static void free_note_info(struct elf_note_info *);
3826 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3827 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3828 
3829 static int dump_write(int, const void *, size_t);
3830 static int write_note(struct memelfnote *, int);
3831 static int write_note_info(struct elf_note_info *, int);
3832 
3833 #ifdef BSWAP_NEEDED
3834 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3835 {
3836     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3837     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3838     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3839     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3840     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3841     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3842     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3843     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3844     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3845     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3846     /* cpu times are not filled, so we skip them */
3847     /* regs should be in correct format already */
3848     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3849 }
3850 
3851 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3852 {
3853     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3854     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3855     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3856     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3857     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3858     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3859     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3860 }
3861 
3862 static void bswap_note(struct elf_note *en)
3863 {
3864     bswap32s(&en->n_namesz);
3865     bswap32s(&en->n_descsz);
3866     bswap32s(&en->n_type);
3867 }
3868 #else
3869 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3870 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3871 static inline void bswap_note(struct elf_note *en) { }
3872 #endif /* BSWAP_NEEDED */
3873 
3874 /*
3875  * Minimal support for linux memory regions.  These are needed
3876  * when we are finding out what memory exactly belongs to
3877  * emulated process.  No locks needed here, as long as
3878  * thread that received the signal is stopped.
3879  */
3880 
3881 static struct mm_struct *vma_init(void)
3882 {
3883     struct mm_struct *mm;
3884 
3885     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3886         return (NULL);
3887 
3888     mm->mm_count = 0;
3889     QTAILQ_INIT(&mm->mm_mmap);
3890 
3891     return (mm);
3892 }
3893 
3894 static void vma_delete(struct mm_struct *mm)
3895 {
3896     struct vm_area_struct *vma;
3897 
3898     while ((vma = vma_first(mm)) != NULL) {
3899         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3900         g_free(vma);
3901     }
3902     g_free(mm);
3903 }
3904 
3905 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3906                            target_ulong end, abi_ulong flags)
3907 {
3908     struct vm_area_struct *vma;
3909 
3910     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3911         return (-1);
3912 
3913     vma->vma_start = start;
3914     vma->vma_end = end;
3915     vma->vma_flags = flags;
3916 
3917     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3918     mm->mm_count++;
3919 
3920     return (0);
3921 }
3922 
3923 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3924 {
3925     return (QTAILQ_FIRST(&mm->mm_mmap));
3926 }
3927 
3928 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3929 {
3930     return (QTAILQ_NEXT(vma, vma_link));
3931 }
3932 
3933 static int vma_get_mapping_count(const struct mm_struct *mm)
3934 {
3935     return (mm->mm_count);
3936 }
3937 
3938 /*
3939  * Calculate file (dump) size of given memory region.
3940  */
3941 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3942 {
3943     /* if we cannot even read the first page, skip it */
3944     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3945         return (0);
3946 
3947     /*
3948      * Usually we don't dump executable pages as they contain
3949      * non-writable code that debugger can read directly from
3950      * target library etc.  However, thread stacks are marked
3951      * also executable so we read in first page of given region
3952      * and check whether it contains elf header.  If there is
3953      * no elf header, we dump it.
3954      */
3955     if (vma->vma_flags & PROT_EXEC) {
3956         char page[TARGET_PAGE_SIZE];
3957 
3958         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3959             return 0;
3960         }
3961         if ((page[EI_MAG0] == ELFMAG0) &&
3962             (page[EI_MAG1] == ELFMAG1) &&
3963             (page[EI_MAG2] == ELFMAG2) &&
3964             (page[EI_MAG3] == ELFMAG3)) {
3965             /*
3966              * Mappings are possibly from ELF binary.  Don't dump
3967              * them.
3968              */
3969             return (0);
3970         }
3971     }
3972 
3973     return (vma->vma_end - vma->vma_start);
3974 }
3975 
3976 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3977                       unsigned long flags)
3978 {
3979     struct mm_struct *mm = (struct mm_struct *)priv;
3980 
3981     vma_add_mapping(mm, start, end, flags);
3982     return (0);
3983 }
3984 
3985 static void fill_note(struct memelfnote *note, const char *name, int type,
3986                       unsigned int sz, void *data)
3987 {
3988     unsigned int namesz;
3989 
3990     namesz = strlen(name) + 1;
3991     note->name = name;
3992     note->namesz = namesz;
3993     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3994     note->type = type;
3995     note->datasz = sz;
3996     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3997 
3998     note->data = data;
3999 
4000     /*
4001      * We calculate rounded up note size here as specified by
4002      * ELF document.
4003      */
4004     note->notesz = sizeof (struct elf_note) +
4005         note->namesz_rounded + note->datasz_rounded;
4006 }
4007 
4008 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4009                             uint32_t flags)
4010 {
4011     (void) memset(elf, 0, sizeof(*elf));
4012 
4013     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4014     elf->e_ident[EI_CLASS] = ELF_CLASS;
4015     elf->e_ident[EI_DATA] = ELF_DATA;
4016     elf->e_ident[EI_VERSION] = EV_CURRENT;
4017     elf->e_ident[EI_OSABI] = ELF_OSABI;
4018 
4019     elf->e_type = ET_CORE;
4020     elf->e_machine = machine;
4021     elf->e_version = EV_CURRENT;
4022     elf->e_phoff = sizeof(struct elfhdr);
4023     elf->e_flags = flags;
4024     elf->e_ehsize = sizeof(struct elfhdr);
4025     elf->e_phentsize = sizeof(struct elf_phdr);
4026     elf->e_phnum = segs;
4027 
4028     bswap_ehdr(elf);
4029 }
4030 
4031 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4032 {
4033     phdr->p_type = PT_NOTE;
4034     phdr->p_offset = offset;
4035     phdr->p_vaddr = 0;
4036     phdr->p_paddr = 0;
4037     phdr->p_filesz = sz;
4038     phdr->p_memsz = 0;
4039     phdr->p_flags = 0;
4040     phdr->p_align = 0;
4041 
4042     bswap_phdr(phdr, 1);
4043 }
4044 
4045 static size_t note_size(const struct memelfnote *note)
4046 {
4047     return (note->notesz);
4048 }
4049 
4050 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4051                           const TaskState *ts, int signr)
4052 {
4053     (void) memset(prstatus, 0, sizeof (*prstatus));
4054     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4055     prstatus->pr_pid = ts->ts_tid;
4056     prstatus->pr_ppid = getppid();
4057     prstatus->pr_pgrp = getpgrp();
4058     prstatus->pr_sid = getsid(0);
4059 
4060     bswap_prstatus(prstatus);
4061 }
4062 
4063 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4064 {
4065     char *base_filename;
4066     unsigned int i, len;
4067 
4068     (void) memset(psinfo, 0, sizeof (*psinfo));
4069 
4070     len = ts->info->env_strings - ts->info->arg_strings;
4071     if (len >= ELF_PRARGSZ)
4072         len = ELF_PRARGSZ - 1;
4073     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4074         return -EFAULT;
4075     }
4076     for (i = 0; i < len; i++)
4077         if (psinfo->pr_psargs[i] == 0)
4078             psinfo->pr_psargs[i] = ' ';
4079     psinfo->pr_psargs[len] = 0;
4080 
4081     psinfo->pr_pid = getpid();
4082     psinfo->pr_ppid = getppid();
4083     psinfo->pr_pgrp = getpgrp();
4084     psinfo->pr_sid = getsid(0);
4085     psinfo->pr_uid = getuid();
4086     psinfo->pr_gid = getgid();
4087 
4088     base_filename = g_path_get_basename(ts->bprm->filename);
4089     /*
4090      * Using strncpy here is fine: at max-length,
4091      * this field is not NUL-terminated.
4092      */
4093     (void) strncpy(psinfo->pr_fname, base_filename,
4094                    sizeof(psinfo->pr_fname));
4095 
4096     g_free(base_filename);
4097     bswap_psinfo(psinfo);
4098     return (0);
4099 }
4100 
4101 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4102 {
4103     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4104     elf_addr_t orig_auxv = auxv;
4105     void *ptr;
4106     int len = ts->info->auxv_len;
4107 
4108     /*
4109      * Auxiliary vector is stored in target process stack.  It contains
4110      * {type, value} pairs that we need to dump into note.  This is not
4111      * strictly necessary but we do it here for sake of completeness.
4112      */
4113 
4114     /* read in whole auxv vector and copy it to memelfnote */
4115     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4116     if (ptr != NULL) {
4117         fill_note(note, "CORE", NT_AUXV, len, ptr);
4118         unlock_user(ptr, auxv, len);
4119     }
4120 }
4121 
4122 /*
4123  * Constructs name of coredump file.  We have following convention
4124  * for the name:
4125  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4126  *
4127  * Returns the filename
4128  */
4129 static char *core_dump_filename(const TaskState *ts)
4130 {
4131     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4132     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4133     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4134 
4135     return g_strdup_printf("qemu_%s_%s_%d.core",
4136                            base_filename, nowstr, (int)getpid());
4137 }
4138 
4139 static int dump_write(int fd, const void *ptr, size_t size)
4140 {
4141     const char *bufp = (const char *)ptr;
4142     ssize_t bytes_written, bytes_left;
4143     struct rlimit dumpsize;
4144     off_t pos;
4145 
4146     bytes_written = 0;
4147     getrlimit(RLIMIT_CORE, &dumpsize);
4148     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4149         if (errno == ESPIPE) { /* not a seekable stream */
4150             bytes_left = size;
4151         } else {
4152             return pos;
4153         }
4154     } else {
4155         if (dumpsize.rlim_cur <= pos) {
4156             return -1;
4157         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4158             bytes_left = size;
4159         } else {
4160             size_t limit_left=dumpsize.rlim_cur - pos;
4161             bytes_left = limit_left >= size ? size : limit_left ;
4162         }
4163     }
4164 
4165     /*
4166      * In normal conditions, single write(2) should do but
4167      * in case of socket etc. this mechanism is more portable.
4168      */
4169     do {
4170         bytes_written = write(fd, bufp, bytes_left);
4171         if (bytes_written < 0) {
4172             if (errno == EINTR)
4173                 continue;
4174             return (-1);
4175         } else if (bytes_written == 0) { /* eof */
4176             return (-1);
4177         }
4178         bufp += bytes_written;
4179         bytes_left -= bytes_written;
4180     } while (bytes_left > 0);
4181 
4182     return (0);
4183 }
4184 
4185 static int write_note(struct memelfnote *men, int fd)
4186 {
4187     struct elf_note en;
4188 
4189     en.n_namesz = men->namesz;
4190     en.n_type = men->type;
4191     en.n_descsz = men->datasz;
4192 
4193     bswap_note(&en);
4194 
4195     if (dump_write(fd, &en, sizeof(en)) != 0)
4196         return (-1);
4197     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4198         return (-1);
4199     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4200         return (-1);
4201 
4202     return (0);
4203 }
4204 
4205 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4206 {
4207     CPUState *cpu = env_cpu((CPUArchState *)env);
4208     TaskState *ts = (TaskState *)cpu->opaque;
4209     struct elf_thread_status *ets;
4210 
4211     ets = g_malloc0(sizeof (*ets));
4212     ets->num_notes = 1; /* only prstatus is dumped */
4213     fill_prstatus(&ets->prstatus, ts, 0);
4214     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4215     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4216               &ets->prstatus);
4217 
4218     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4219 
4220     info->notes_size += note_size(&ets->notes[0]);
4221 }
4222 
4223 static void init_note_info(struct elf_note_info *info)
4224 {
4225     /* Initialize the elf_note_info structure so that it is at
4226      * least safe to call free_note_info() on it. Must be
4227      * called before calling fill_note_info().
4228      */
4229     memset(info, 0, sizeof (*info));
4230     QTAILQ_INIT(&info->thread_list);
4231 }
4232 
4233 static int fill_note_info(struct elf_note_info *info,
4234                           long signr, const CPUArchState *env)
4235 {
4236 #define NUMNOTES 3
4237     CPUState *cpu = env_cpu((CPUArchState *)env);
4238     TaskState *ts = (TaskState *)cpu->opaque;
4239     int i;
4240 
4241     info->notes = g_new0(struct memelfnote, NUMNOTES);
4242     if (info->notes == NULL)
4243         return (-ENOMEM);
4244     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4245     if (info->prstatus == NULL)
4246         return (-ENOMEM);
4247     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4248     if (info->prstatus == NULL)
4249         return (-ENOMEM);
4250 
4251     /*
4252      * First fill in status (and registers) of current thread
4253      * including process info & aux vector.
4254      */
4255     fill_prstatus(info->prstatus, ts, signr);
4256     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4257     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4258               sizeof (*info->prstatus), info->prstatus);
4259     fill_psinfo(info->psinfo, ts);
4260     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4261               sizeof (*info->psinfo), info->psinfo);
4262     fill_auxv_note(&info->notes[2], ts);
4263     info->numnote = 3;
4264 
4265     info->notes_size = 0;
4266     for (i = 0; i < info->numnote; i++)
4267         info->notes_size += note_size(&info->notes[i]);
4268 
4269     /* read and fill status of all threads */
4270     WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4271         CPU_FOREACH(cpu) {
4272             if (cpu == thread_cpu) {
4273                 continue;
4274             }
4275             fill_thread_info(info, cpu->env_ptr);
4276         }
4277     }
4278 
4279     return (0);
4280 }
4281 
4282 static void free_note_info(struct elf_note_info *info)
4283 {
4284     struct elf_thread_status *ets;
4285 
4286     while (!QTAILQ_EMPTY(&info->thread_list)) {
4287         ets = QTAILQ_FIRST(&info->thread_list);
4288         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4289         g_free(ets);
4290     }
4291 
4292     g_free(info->prstatus);
4293     g_free(info->psinfo);
4294     g_free(info->notes);
4295 }
4296 
4297 static int write_note_info(struct elf_note_info *info, int fd)
4298 {
4299     struct elf_thread_status *ets;
4300     int i, error = 0;
4301 
4302     /* write prstatus, psinfo and auxv for current thread */
4303     for (i = 0; i < info->numnote; i++)
4304         if ((error = write_note(&info->notes[i], fd)) != 0)
4305             return (error);
4306 
4307     /* write prstatus for each thread */
4308     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4309         if ((error = write_note(&ets->notes[0], fd)) != 0)
4310             return (error);
4311     }
4312 
4313     return (0);
4314 }
4315 
4316 /*
4317  * Write out ELF coredump.
4318  *
4319  * See documentation of ELF object file format in:
4320  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4321  *
4322  * Coredump format in linux is following:
4323  *
4324  * 0   +----------------------+         \
4325  *     | ELF header           | ET_CORE  |
4326  *     +----------------------+          |
4327  *     | ELF program headers  |          |--- headers
4328  *     | - NOTE section       |          |
4329  *     | - PT_LOAD sections   |          |
4330  *     +----------------------+         /
4331  *     | NOTEs:               |
4332  *     | - NT_PRSTATUS        |
4333  *     | - NT_PRSINFO         |
4334  *     | - NT_AUXV            |
4335  *     +----------------------+ <-- aligned to target page
4336  *     | Process memory dump  |
4337  *     :                      :
4338  *     .                      .
4339  *     :                      :
4340  *     |                      |
4341  *     +----------------------+
4342  *
4343  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4344  * NT_PRSINFO  -> struct elf_prpsinfo
4345  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4346  *
4347  * Format follows System V format as close as possible.  Current
4348  * version limitations are as follows:
4349  *     - no floating point registers are dumped
4350  *
4351  * Function returns 0 in case of success, negative errno otherwise.
4352  *
4353  * TODO: make this work also during runtime: it should be
4354  * possible to force coredump from running process and then
4355  * continue processing.  For example qemu could set up SIGUSR2
4356  * handler (provided that target process haven't registered
4357  * handler for that) that does the dump when signal is received.
4358  */
4359 static int elf_core_dump(int signr, const CPUArchState *env)
4360 {
4361     const CPUState *cpu = env_cpu((CPUArchState *)env);
4362     const TaskState *ts = (const TaskState *)cpu->opaque;
4363     struct vm_area_struct *vma = NULL;
4364     g_autofree char *corefile = NULL;
4365     struct elf_note_info info;
4366     struct elfhdr elf;
4367     struct elf_phdr phdr;
4368     struct rlimit dumpsize;
4369     struct mm_struct *mm = NULL;
4370     off_t offset = 0, data_offset = 0;
4371     int segs = 0;
4372     int fd = -1;
4373 
4374     init_note_info(&info);
4375 
4376     errno = 0;
4377     getrlimit(RLIMIT_CORE, &dumpsize);
4378     if (dumpsize.rlim_cur == 0)
4379         return 0;
4380 
4381     corefile = core_dump_filename(ts);
4382 
4383     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4384                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4385         return (-errno);
4386 
4387     /*
4388      * Walk through target process memory mappings and
4389      * set up structure containing this information.  After
4390      * this point vma_xxx functions can be used.
4391      */
4392     if ((mm = vma_init()) == NULL)
4393         goto out;
4394 
4395     walk_memory_regions(mm, vma_walker);
4396     segs = vma_get_mapping_count(mm);
4397 
4398     /*
4399      * Construct valid coredump ELF header.  We also
4400      * add one more segment for notes.
4401      */
4402     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4403     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4404         goto out;
4405 
4406     /* fill in the in-memory version of notes */
4407     if (fill_note_info(&info, signr, env) < 0)
4408         goto out;
4409 
4410     offset += sizeof (elf);                             /* elf header */
4411     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4412 
4413     /* write out notes program header */
4414     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4415 
4416     offset += info.notes_size;
4417     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4418         goto out;
4419 
4420     /*
4421      * ELF specification wants data to start at page boundary so
4422      * we align it here.
4423      */
4424     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4425 
4426     /*
4427      * Write program headers for memory regions mapped in
4428      * the target process.
4429      */
4430     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4431         (void) memset(&phdr, 0, sizeof (phdr));
4432 
4433         phdr.p_type = PT_LOAD;
4434         phdr.p_offset = offset;
4435         phdr.p_vaddr = vma->vma_start;
4436         phdr.p_paddr = 0;
4437         phdr.p_filesz = vma_dump_size(vma);
4438         offset += phdr.p_filesz;
4439         phdr.p_memsz = vma->vma_end - vma->vma_start;
4440         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4441         if (vma->vma_flags & PROT_WRITE)
4442             phdr.p_flags |= PF_W;
4443         if (vma->vma_flags & PROT_EXEC)
4444             phdr.p_flags |= PF_X;
4445         phdr.p_align = ELF_EXEC_PAGESIZE;
4446 
4447         bswap_phdr(&phdr, 1);
4448         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4449             goto out;
4450         }
4451     }
4452 
4453     /*
4454      * Next we write notes just after program headers.  No
4455      * alignment needed here.
4456      */
4457     if (write_note_info(&info, fd) < 0)
4458         goto out;
4459 
4460     /* align data to page boundary */
4461     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4462         goto out;
4463 
4464     /*
4465      * Finally we can dump process memory into corefile as well.
4466      */
4467     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4468         abi_ulong addr;
4469         abi_ulong end;
4470 
4471         end = vma->vma_start + vma_dump_size(vma);
4472 
4473         for (addr = vma->vma_start; addr < end;
4474              addr += TARGET_PAGE_SIZE) {
4475             char page[TARGET_PAGE_SIZE];
4476             int error;
4477 
4478             /*
4479              *  Read in page from target process memory and
4480              *  write it to coredump file.
4481              */
4482             error = copy_from_user(page, addr, sizeof (page));
4483             if (error != 0) {
4484                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4485                                addr);
4486                 errno = -error;
4487                 goto out;
4488             }
4489             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4490                 goto out;
4491         }
4492     }
4493 
4494  out:
4495     free_note_info(&info);
4496     if (mm != NULL)
4497         vma_delete(mm);
4498     (void) close(fd);
4499 
4500     if (errno != 0)
4501         return (-errno);
4502     return (0);
4503 }
4504 #endif /* USE_ELF_CORE_DUMP */
4505 
4506 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4507 {
4508     init_thread(regs, infop);
4509 }
4510