1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/path.h" 11 #include "qemu/queue.h" 12 #include "qemu/guest-random.h" 13 #include "qemu/units.h" 14 #include "qemu/selfmap.h" 15 16 #ifdef _ARCH_PPC64 17 #undef ARCH_DLINFO 18 #undef ELF_PLATFORM 19 #undef ELF_HWCAP 20 #undef ELF_HWCAP2 21 #undef ELF_CLASS 22 #undef ELF_DATA 23 #undef ELF_ARCH 24 #endif 25 26 #define ELF_OSABI ELFOSABI_SYSV 27 28 /* from personality.h */ 29 30 /* 31 * Flags for bug emulation. 32 * 33 * These occupy the top three bytes. 34 */ 35 enum { 36 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 37 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 38 descriptors (signal handling) */ 39 MMAP_PAGE_ZERO = 0x0100000, 40 ADDR_COMPAT_LAYOUT = 0x0200000, 41 READ_IMPLIES_EXEC = 0x0400000, 42 ADDR_LIMIT_32BIT = 0x0800000, 43 SHORT_INODE = 0x1000000, 44 WHOLE_SECONDS = 0x2000000, 45 STICKY_TIMEOUTS = 0x4000000, 46 ADDR_LIMIT_3GB = 0x8000000, 47 }; 48 49 /* 50 * Personality types. 51 * 52 * These go in the low byte. Avoid using the top bit, it will 53 * conflict with error returns. 54 */ 55 enum { 56 PER_LINUX = 0x0000, 57 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 58 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 59 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 60 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 61 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 62 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 63 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 64 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 65 PER_BSD = 0x0006, 66 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 67 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 68 PER_LINUX32 = 0x0008, 69 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 70 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 71 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 72 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 73 PER_RISCOS = 0x000c, 74 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 75 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 76 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 77 PER_HPUX = 0x0010, 78 PER_MASK = 0x00ff, 79 }; 80 81 /* 82 * Return the base personality without flags. 83 */ 84 #define personality(pers) (pers & PER_MASK) 85 86 int info_is_fdpic(struct image_info *info) 87 { 88 return info->personality == PER_LINUX_FDPIC; 89 } 90 91 /* this flag is uneffective under linux too, should be deleted */ 92 #ifndef MAP_DENYWRITE 93 #define MAP_DENYWRITE 0 94 #endif 95 96 /* should probably go in elf.h */ 97 #ifndef ELIBBAD 98 #define ELIBBAD 80 99 #endif 100 101 #ifdef TARGET_WORDS_BIGENDIAN 102 #define ELF_DATA ELFDATA2MSB 103 #else 104 #define ELF_DATA ELFDATA2LSB 105 #endif 106 107 #ifdef TARGET_ABI_MIPSN32 108 typedef abi_ullong target_elf_greg_t; 109 #define tswapreg(ptr) tswap64(ptr) 110 #else 111 typedef abi_ulong target_elf_greg_t; 112 #define tswapreg(ptr) tswapal(ptr) 113 #endif 114 115 #ifdef USE_UID16 116 typedef abi_ushort target_uid_t; 117 typedef abi_ushort target_gid_t; 118 #else 119 typedef abi_uint target_uid_t; 120 typedef abi_uint target_gid_t; 121 #endif 122 typedef abi_int target_pid_t; 123 124 #ifdef TARGET_I386 125 126 #define ELF_PLATFORM get_elf_platform() 127 128 static const char *get_elf_platform(void) 129 { 130 static char elf_platform[] = "i386"; 131 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 132 if (family > 6) 133 family = 6; 134 if (family >= 3) 135 elf_platform[1] = '0' + family; 136 return elf_platform; 137 } 138 139 #define ELF_HWCAP get_elf_hwcap() 140 141 static uint32_t get_elf_hwcap(void) 142 { 143 X86CPU *cpu = X86_CPU(thread_cpu); 144 145 return cpu->env.features[FEAT_1_EDX]; 146 } 147 148 #ifdef TARGET_X86_64 149 #define ELF_START_MMAP 0x2aaaaab000ULL 150 151 #define ELF_CLASS ELFCLASS64 152 #define ELF_ARCH EM_X86_64 153 154 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 155 { 156 regs->rax = 0; 157 regs->rsp = infop->start_stack; 158 regs->rip = infop->entry; 159 } 160 161 #define ELF_NREG 27 162 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 163 164 /* 165 * Note that ELF_NREG should be 29 as there should be place for 166 * TRAPNO and ERR "registers" as well but linux doesn't dump 167 * those. 168 * 169 * See linux kernel: arch/x86/include/asm/elf.h 170 */ 171 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 172 { 173 (*regs)[0] = env->regs[15]; 174 (*regs)[1] = env->regs[14]; 175 (*regs)[2] = env->regs[13]; 176 (*regs)[3] = env->regs[12]; 177 (*regs)[4] = env->regs[R_EBP]; 178 (*regs)[5] = env->regs[R_EBX]; 179 (*regs)[6] = env->regs[11]; 180 (*regs)[7] = env->regs[10]; 181 (*regs)[8] = env->regs[9]; 182 (*regs)[9] = env->regs[8]; 183 (*regs)[10] = env->regs[R_EAX]; 184 (*regs)[11] = env->regs[R_ECX]; 185 (*regs)[12] = env->regs[R_EDX]; 186 (*regs)[13] = env->regs[R_ESI]; 187 (*regs)[14] = env->regs[R_EDI]; 188 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 189 (*regs)[16] = env->eip; 190 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 191 (*regs)[18] = env->eflags; 192 (*regs)[19] = env->regs[R_ESP]; 193 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 194 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 195 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 196 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 197 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 198 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 199 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 200 } 201 202 #else 203 204 #define ELF_START_MMAP 0x80000000 205 206 /* 207 * This is used to ensure we don't load something for the wrong architecture. 208 */ 209 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 210 211 /* 212 * These are used to set parameters in the core dumps. 213 */ 214 #define ELF_CLASS ELFCLASS32 215 #define ELF_ARCH EM_386 216 217 static inline void init_thread(struct target_pt_regs *regs, 218 struct image_info *infop) 219 { 220 regs->esp = infop->start_stack; 221 regs->eip = infop->entry; 222 223 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 224 starts %edx contains a pointer to a function which might be 225 registered using `atexit'. This provides a mean for the 226 dynamic linker to call DT_FINI functions for shared libraries 227 that have been loaded before the code runs. 228 229 A value of 0 tells we have no such handler. */ 230 regs->edx = 0; 231 } 232 233 #define ELF_NREG 17 234 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 235 236 /* 237 * Note that ELF_NREG should be 19 as there should be place for 238 * TRAPNO and ERR "registers" as well but linux doesn't dump 239 * those. 240 * 241 * See linux kernel: arch/x86/include/asm/elf.h 242 */ 243 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 244 { 245 (*regs)[0] = env->regs[R_EBX]; 246 (*regs)[1] = env->regs[R_ECX]; 247 (*regs)[2] = env->regs[R_EDX]; 248 (*regs)[3] = env->regs[R_ESI]; 249 (*regs)[4] = env->regs[R_EDI]; 250 (*regs)[5] = env->regs[R_EBP]; 251 (*regs)[6] = env->regs[R_EAX]; 252 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 253 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 254 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 255 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 256 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 257 (*regs)[12] = env->eip; 258 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 259 (*regs)[14] = env->eflags; 260 (*regs)[15] = env->regs[R_ESP]; 261 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 262 } 263 #endif 264 265 #define USE_ELF_CORE_DUMP 266 #define ELF_EXEC_PAGESIZE 4096 267 268 #endif 269 270 #ifdef TARGET_ARM 271 272 #ifndef TARGET_AARCH64 273 /* 32 bit ARM definitions */ 274 275 #define ELF_START_MMAP 0x80000000 276 277 #define ELF_ARCH EM_ARM 278 #define ELF_CLASS ELFCLASS32 279 280 static inline void init_thread(struct target_pt_regs *regs, 281 struct image_info *infop) 282 { 283 abi_long stack = infop->start_stack; 284 memset(regs, 0, sizeof(*regs)); 285 286 regs->uregs[16] = ARM_CPU_MODE_USR; 287 if (infop->entry & 1) { 288 regs->uregs[16] |= CPSR_T; 289 } 290 regs->uregs[15] = infop->entry & 0xfffffffe; 291 regs->uregs[13] = infop->start_stack; 292 /* FIXME - what to for failure of get_user()? */ 293 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 294 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 295 /* XXX: it seems that r0 is zeroed after ! */ 296 regs->uregs[0] = 0; 297 /* For uClinux PIC binaries. */ 298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 299 regs->uregs[10] = infop->start_data; 300 301 /* Support ARM FDPIC. */ 302 if (info_is_fdpic(infop)) { 303 /* As described in the ABI document, r7 points to the loadmap info 304 * prepared by the kernel. If an interpreter is needed, r8 points 305 * to the interpreter loadmap and r9 points to the interpreter 306 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 307 * r9 points to the main program PT_DYNAMIC info. 308 */ 309 regs->uregs[7] = infop->loadmap_addr; 310 if (infop->interpreter_loadmap_addr) { 311 /* Executable is dynamically loaded. */ 312 regs->uregs[8] = infop->interpreter_loadmap_addr; 313 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 314 } else { 315 regs->uregs[8] = 0; 316 regs->uregs[9] = infop->pt_dynamic_addr; 317 } 318 } 319 } 320 321 #define ELF_NREG 18 322 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 323 324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 325 { 326 (*regs)[0] = tswapreg(env->regs[0]); 327 (*regs)[1] = tswapreg(env->regs[1]); 328 (*regs)[2] = tswapreg(env->regs[2]); 329 (*regs)[3] = tswapreg(env->regs[3]); 330 (*regs)[4] = tswapreg(env->regs[4]); 331 (*regs)[5] = tswapreg(env->regs[5]); 332 (*regs)[6] = tswapreg(env->regs[6]); 333 (*regs)[7] = tswapreg(env->regs[7]); 334 (*regs)[8] = tswapreg(env->regs[8]); 335 (*regs)[9] = tswapreg(env->regs[9]); 336 (*regs)[10] = tswapreg(env->regs[10]); 337 (*regs)[11] = tswapreg(env->regs[11]); 338 (*regs)[12] = tswapreg(env->regs[12]); 339 (*regs)[13] = tswapreg(env->regs[13]); 340 (*regs)[14] = tswapreg(env->regs[14]); 341 (*regs)[15] = tswapreg(env->regs[15]); 342 343 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 344 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 345 } 346 347 #define USE_ELF_CORE_DUMP 348 #define ELF_EXEC_PAGESIZE 4096 349 350 enum 351 { 352 ARM_HWCAP_ARM_SWP = 1 << 0, 353 ARM_HWCAP_ARM_HALF = 1 << 1, 354 ARM_HWCAP_ARM_THUMB = 1 << 2, 355 ARM_HWCAP_ARM_26BIT = 1 << 3, 356 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 357 ARM_HWCAP_ARM_FPA = 1 << 5, 358 ARM_HWCAP_ARM_VFP = 1 << 6, 359 ARM_HWCAP_ARM_EDSP = 1 << 7, 360 ARM_HWCAP_ARM_JAVA = 1 << 8, 361 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 362 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 363 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 364 ARM_HWCAP_ARM_NEON = 1 << 12, 365 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 366 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 367 ARM_HWCAP_ARM_TLS = 1 << 15, 368 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 369 ARM_HWCAP_ARM_IDIVA = 1 << 17, 370 ARM_HWCAP_ARM_IDIVT = 1 << 18, 371 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 372 ARM_HWCAP_ARM_LPAE = 1 << 20, 373 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 374 }; 375 376 enum { 377 ARM_HWCAP2_ARM_AES = 1 << 0, 378 ARM_HWCAP2_ARM_PMULL = 1 << 1, 379 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 380 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 381 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 382 }; 383 384 /* The commpage only exists for 32 bit kernels */ 385 386 #define ARM_COMMPAGE (intptr_t)0xffff0f00u 387 388 static bool init_guest_commpage(void) 389 { 390 void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size); 391 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 392 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 393 394 if (addr == MAP_FAILED) { 395 perror("Allocating guest commpage"); 396 exit(EXIT_FAILURE); 397 } 398 if (addr != want) { 399 return false; 400 } 401 402 /* Set kernel helper versions; rest of page is 0. */ 403 __put_user(5, (uint32_t *)g2h(0xffff0ffcu)); 404 405 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 406 perror("Protecting guest commpage"); 407 exit(EXIT_FAILURE); 408 } 409 return true; 410 } 411 412 #define ELF_HWCAP get_elf_hwcap() 413 #define ELF_HWCAP2 get_elf_hwcap2() 414 415 static uint32_t get_elf_hwcap(void) 416 { 417 ARMCPU *cpu = ARM_CPU(thread_cpu); 418 uint32_t hwcaps = 0; 419 420 hwcaps |= ARM_HWCAP_ARM_SWP; 421 hwcaps |= ARM_HWCAP_ARM_HALF; 422 hwcaps |= ARM_HWCAP_ARM_THUMB; 423 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 424 425 /* probe for the extra features */ 426 #define GET_FEATURE(feat, hwcap) \ 427 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 428 429 #define GET_FEATURE_ID(feat, hwcap) \ 430 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 431 432 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 433 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 434 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 435 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 436 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 437 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 438 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 439 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 440 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 441 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 442 443 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 444 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 445 hwcaps |= ARM_HWCAP_ARM_VFPv3; 446 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 447 hwcaps |= ARM_HWCAP_ARM_VFPD32; 448 } else { 449 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 450 } 451 } 452 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 453 454 return hwcaps; 455 } 456 457 static uint32_t get_elf_hwcap2(void) 458 { 459 ARMCPU *cpu = ARM_CPU(thread_cpu); 460 uint32_t hwcaps = 0; 461 462 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 463 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 464 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 465 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 466 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 467 return hwcaps; 468 } 469 470 #undef GET_FEATURE 471 #undef GET_FEATURE_ID 472 473 #define ELF_PLATFORM get_elf_platform() 474 475 static const char *get_elf_platform(void) 476 { 477 CPUARMState *env = thread_cpu->env_ptr; 478 479 #ifdef TARGET_WORDS_BIGENDIAN 480 # define END "b" 481 #else 482 # define END "l" 483 #endif 484 485 if (arm_feature(env, ARM_FEATURE_V8)) { 486 return "v8" END; 487 } else if (arm_feature(env, ARM_FEATURE_V7)) { 488 if (arm_feature(env, ARM_FEATURE_M)) { 489 return "v7m" END; 490 } else { 491 return "v7" END; 492 } 493 } else if (arm_feature(env, ARM_FEATURE_V6)) { 494 return "v6" END; 495 } else if (arm_feature(env, ARM_FEATURE_V5)) { 496 return "v5" END; 497 } else { 498 return "v4" END; 499 } 500 501 #undef END 502 } 503 504 #else 505 /* 64 bit ARM definitions */ 506 #define ELF_START_MMAP 0x80000000 507 508 #define ELF_ARCH EM_AARCH64 509 #define ELF_CLASS ELFCLASS64 510 #ifdef TARGET_WORDS_BIGENDIAN 511 # define ELF_PLATFORM "aarch64_be" 512 #else 513 # define ELF_PLATFORM "aarch64" 514 #endif 515 516 static inline void init_thread(struct target_pt_regs *regs, 517 struct image_info *infop) 518 { 519 abi_long stack = infop->start_stack; 520 memset(regs, 0, sizeof(*regs)); 521 522 regs->pc = infop->entry & ~0x3ULL; 523 regs->sp = stack; 524 } 525 526 #define ELF_NREG 34 527 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 528 529 static void elf_core_copy_regs(target_elf_gregset_t *regs, 530 const CPUARMState *env) 531 { 532 int i; 533 534 for (i = 0; i < 32; i++) { 535 (*regs)[i] = tswapreg(env->xregs[i]); 536 } 537 (*regs)[32] = tswapreg(env->pc); 538 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 539 } 540 541 #define USE_ELF_CORE_DUMP 542 #define ELF_EXEC_PAGESIZE 4096 543 544 enum { 545 ARM_HWCAP_A64_FP = 1 << 0, 546 ARM_HWCAP_A64_ASIMD = 1 << 1, 547 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 548 ARM_HWCAP_A64_AES = 1 << 3, 549 ARM_HWCAP_A64_PMULL = 1 << 4, 550 ARM_HWCAP_A64_SHA1 = 1 << 5, 551 ARM_HWCAP_A64_SHA2 = 1 << 6, 552 ARM_HWCAP_A64_CRC32 = 1 << 7, 553 ARM_HWCAP_A64_ATOMICS = 1 << 8, 554 ARM_HWCAP_A64_FPHP = 1 << 9, 555 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 556 ARM_HWCAP_A64_CPUID = 1 << 11, 557 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 558 ARM_HWCAP_A64_JSCVT = 1 << 13, 559 ARM_HWCAP_A64_FCMA = 1 << 14, 560 ARM_HWCAP_A64_LRCPC = 1 << 15, 561 ARM_HWCAP_A64_DCPOP = 1 << 16, 562 ARM_HWCAP_A64_SHA3 = 1 << 17, 563 ARM_HWCAP_A64_SM3 = 1 << 18, 564 ARM_HWCAP_A64_SM4 = 1 << 19, 565 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 566 ARM_HWCAP_A64_SHA512 = 1 << 21, 567 ARM_HWCAP_A64_SVE = 1 << 22, 568 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 569 ARM_HWCAP_A64_DIT = 1 << 24, 570 ARM_HWCAP_A64_USCAT = 1 << 25, 571 ARM_HWCAP_A64_ILRCPC = 1 << 26, 572 ARM_HWCAP_A64_FLAGM = 1 << 27, 573 ARM_HWCAP_A64_SSBS = 1 << 28, 574 ARM_HWCAP_A64_SB = 1 << 29, 575 ARM_HWCAP_A64_PACA = 1 << 30, 576 ARM_HWCAP_A64_PACG = 1UL << 31, 577 578 ARM_HWCAP2_A64_DCPODP = 1 << 0, 579 ARM_HWCAP2_A64_SVE2 = 1 << 1, 580 ARM_HWCAP2_A64_SVEAES = 1 << 2, 581 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 582 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 583 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 584 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 585 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 586 ARM_HWCAP2_A64_FRINT = 1 << 8, 587 }; 588 589 #define ELF_HWCAP get_elf_hwcap() 590 #define ELF_HWCAP2 get_elf_hwcap2() 591 592 #define GET_FEATURE_ID(feat, hwcap) \ 593 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 594 595 static uint32_t get_elf_hwcap(void) 596 { 597 ARMCPU *cpu = ARM_CPU(thread_cpu); 598 uint32_t hwcaps = 0; 599 600 hwcaps |= ARM_HWCAP_A64_FP; 601 hwcaps |= ARM_HWCAP_A64_ASIMD; 602 hwcaps |= ARM_HWCAP_A64_CPUID; 603 604 /* probe for the extra features */ 605 606 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 607 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 608 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 609 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 610 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 611 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 612 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 613 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 614 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 615 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 616 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 617 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 618 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 619 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 620 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 621 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 622 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 623 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 624 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 625 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 626 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 627 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 628 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 629 630 return hwcaps; 631 } 632 633 static uint32_t get_elf_hwcap2(void) 634 { 635 ARMCPU *cpu = ARM_CPU(thread_cpu); 636 uint32_t hwcaps = 0; 637 638 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 639 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 640 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 641 642 return hwcaps; 643 } 644 645 #undef GET_FEATURE_ID 646 647 #endif /* not TARGET_AARCH64 */ 648 #endif /* TARGET_ARM */ 649 650 #ifdef TARGET_SPARC 651 #ifdef TARGET_SPARC64 652 653 #define ELF_START_MMAP 0x80000000 654 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 655 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 656 #ifndef TARGET_ABI32 657 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 658 #else 659 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 660 #endif 661 662 #define ELF_CLASS ELFCLASS64 663 #define ELF_ARCH EM_SPARCV9 664 665 #define STACK_BIAS 2047 666 667 static inline void init_thread(struct target_pt_regs *regs, 668 struct image_info *infop) 669 { 670 #ifndef TARGET_ABI32 671 regs->tstate = 0; 672 #endif 673 regs->pc = infop->entry; 674 regs->npc = regs->pc + 4; 675 regs->y = 0; 676 #ifdef TARGET_ABI32 677 regs->u_regs[14] = infop->start_stack - 16 * 4; 678 #else 679 if (personality(infop->personality) == PER_LINUX32) 680 regs->u_regs[14] = infop->start_stack - 16 * 4; 681 else 682 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 683 #endif 684 } 685 686 #else 687 #define ELF_START_MMAP 0x80000000 688 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 689 | HWCAP_SPARC_MULDIV) 690 691 #define ELF_CLASS ELFCLASS32 692 #define ELF_ARCH EM_SPARC 693 694 static inline void init_thread(struct target_pt_regs *regs, 695 struct image_info *infop) 696 { 697 regs->psr = 0; 698 regs->pc = infop->entry; 699 regs->npc = regs->pc + 4; 700 regs->y = 0; 701 regs->u_regs[14] = infop->start_stack - 16 * 4; 702 } 703 704 #endif 705 #endif 706 707 #ifdef TARGET_PPC 708 709 #define ELF_MACHINE PPC_ELF_MACHINE 710 #define ELF_START_MMAP 0x80000000 711 712 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 713 714 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 715 716 #define ELF_CLASS ELFCLASS64 717 718 #else 719 720 #define ELF_CLASS ELFCLASS32 721 722 #endif 723 724 #define ELF_ARCH EM_PPC 725 726 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 727 See arch/powerpc/include/asm/cputable.h. */ 728 enum { 729 QEMU_PPC_FEATURE_32 = 0x80000000, 730 QEMU_PPC_FEATURE_64 = 0x40000000, 731 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 732 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 733 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 734 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 735 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 736 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 737 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 738 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 739 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 740 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 741 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 742 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 743 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 744 QEMU_PPC_FEATURE_CELL = 0x00010000, 745 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 746 QEMU_PPC_FEATURE_SMT = 0x00004000, 747 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 748 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 749 QEMU_PPC_FEATURE_PA6T = 0x00000800, 750 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 751 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 752 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 753 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 754 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 755 756 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 757 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 758 759 /* Feature definitions in AT_HWCAP2. */ 760 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 761 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 762 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 763 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 764 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 765 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 766 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 767 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 768 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 769 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 770 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 771 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 772 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 773 }; 774 775 #define ELF_HWCAP get_elf_hwcap() 776 777 static uint32_t get_elf_hwcap(void) 778 { 779 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 780 uint32_t features = 0; 781 782 /* We don't have to be terribly complete here; the high points are 783 Altivec/FP/SPE support. Anything else is just a bonus. */ 784 #define GET_FEATURE(flag, feature) \ 785 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 786 #define GET_FEATURE2(flags, feature) \ 787 do { \ 788 if ((cpu->env.insns_flags2 & flags) == flags) { \ 789 features |= feature; \ 790 } \ 791 } while (0) 792 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 793 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 794 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 795 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 796 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 797 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 798 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 799 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 800 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 801 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 802 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 803 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 804 QEMU_PPC_FEATURE_ARCH_2_06); 805 #undef GET_FEATURE 806 #undef GET_FEATURE2 807 808 return features; 809 } 810 811 #define ELF_HWCAP2 get_elf_hwcap2() 812 813 static uint32_t get_elf_hwcap2(void) 814 { 815 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 816 uint32_t features = 0; 817 818 #define GET_FEATURE(flag, feature) \ 819 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 820 #define GET_FEATURE2(flag, feature) \ 821 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 822 823 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 824 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 825 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 826 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 827 QEMU_PPC_FEATURE2_VEC_CRYPTO); 828 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 829 QEMU_PPC_FEATURE2_DARN); 830 831 #undef GET_FEATURE 832 #undef GET_FEATURE2 833 834 return features; 835 } 836 837 /* 838 * The requirements here are: 839 * - keep the final alignment of sp (sp & 0xf) 840 * - make sure the 32-bit value at the first 16 byte aligned position of 841 * AUXV is greater than 16 for glibc compatibility. 842 * AT_IGNOREPPC is used for that. 843 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 844 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 845 */ 846 #define DLINFO_ARCH_ITEMS 5 847 #define ARCH_DLINFO \ 848 do { \ 849 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 850 /* \ 851 * Handle glibc compatibility: these magic entries must \ 852 * be at the lowest addresses in the final auxv. \ 853 */ \ 854 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 855 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 856 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 857 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 858 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 859 } while (0) 860 861 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 862 { 863 _regs->gpr[1] = infop->start_stack; 864 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 865 if (get_ppc64_abi(infop) < 2) { 866 uint64_t val; 867 get_user_u64(val, infop->entry + 8); 868 _regs->gpr[2] = val + infop->load_bias; 869 get_user_u64(val, infop->entry); 870 infop->entry = val + infop->load_bias; 871 } else { 872 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 873 } 874 #endif 875 _regs->nip = infop->entry; 876 } 877 878 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 879 #define ELF_NREG 48 880 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 881 882 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 883 { 884 int i; 885 target_ulong ccr = 0; 886 887 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 888 (*regs)[i] = tswapreg(env->gpr[i]); 889 } 890 891 (*regs)[32] = tswapreg(env->nip); 892 (*regs)[33] = tswapreg(env->msr); 893 (*regs)[35] = tswapreg(env->ctr); 894 (*regs)[36] = tswapreg(env->lr); 895 (*regs)[37] = tswapreg(env->xer); 896 897 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 898 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 899 } 900 (*regs)[38] = tswapreg(ccr); 901 } 902 903 #define USE_ELF_CORE_DUMP 904 #define ELF_EXEC_PAGESIZE 4096 905 906 #endif 907 908 #ifdef TARGET_MIPS 909 910 #define ELF_START_MMAP 0x80000000 911 912 #ifdef TARGET_MIPS64 913 #define ELF_CLASS ELFCLASS64 914 #else 915 #define ELF_CLASS ELFCLASS32 916 #endif 917 #define ELF_ARCH EM_MIPS 918 919 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 920 921 static inline void init_thread(struct target_pt_regs *regs, 922 struct image_info *infop) 923 { 924 regs->cp0_status = 2 << CP0St_KSU; 925 regs->cp0_epc = infop->entry; 926 regs->regs[29] = infop->start_stack; 927 } 928 929 /* See linux kernel: arch/mips/include/asm/elf.h. */ 930 #define ELF_NREG 45 931 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 932 933 /* See linux kernel: arch/mips/include/asm/reg.h. */ 934 enum { 935 #ifdef TARGET_MIPS64 936 TARGET_EF_R0 = 0, 937 #else 938 TARGET_EF_R0 = 6, 939 #endif 940 TARGET_EF_R26 = TARGET_EF_R0 + 26, 941 TARGET_EF_R27 = TARGET_EF_R0 + 27, 942 TARGET_EF_LO = TARGET_EF_R0 + 32, 943 TARGET_EF_HI = TARGET_EF_R0 + 33, 944 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 945 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 946 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 947 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 948 }; 949 950 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 951 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 952 { 953 int i; 954 955 for (i = 0; i < TARGET_EF_R0; i++) { 956 (*regs)[i] = 0; 957 } 958 (*regs)[TARGET_EF_R0] = 0; 959 960 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 961 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 962 } 963 964 (*regs)[TARGET_EF_R26] = 0; 965 (*regs)[TARGET_EF_R27] = 0; 966 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 967 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 968 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 969 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 970 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 971 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 972 } 973 974 #define USE_ELF_CORE_DUMP 975 #define ELF_EXEC_PAGESIZE 4096 976 977 /* See arch/mips/include/uapi/asm/hwcap.h. */ 978 enum { 979 HWCAP_MIPS_R6 = (1 << 0), 980 HWCAP_MIPS_MSA = (1 << 1), 981 }; 982 983 #define ELF_HWCAP get_elf_hwcap() 984 985 static uint32_t get_elf_hwcap(void) 986 { 987 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 988 uint32_t hwcaps = 0; 989 990 #define GET_FEATURE(flag, hwcap) \ 991 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 992 993 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 994 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 995 996 #undef GET_FEATURE 997 998 return hwcaps; 999 } 1000 1001 #endif /* TARGET_MIPS */ 1002 1003 #ifdef TARGET_MICROBLAZE 1004 1005 #define ELF_START_MMAP 0x80000000 1006 1007 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1008 1009 #define ELF_CLASS ELFCLASS32 1010 #define ELF_ARCH EM_MICROBLAZE 1011 1012 static inline void init_thread(struct target_pt_regs *regs, 1013 struct image_info *infop) 1014 { 1015 regs->pc = infop->entry; 1016 regs->r1 = infop->start_stack; 1017 1018 } 1019 1020 #define ELF_EXEC_PAGESIZE 4096 1021 1022 #define USE_ELF_CORE_DUMP 1023 #define ELF_NREG 38 1024 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1025 1026 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1027 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1028 { 1029 int i, pos = 0; 1030 1031 for (i = 0; i < 32; i++) { 1032 (*regs)[pos++] = tswapreg(env->regs[i]); 1033 } 1034 1035 for (i = 0; i < 6; i++) { 1036 (*regs)[pos++] = tswapreg(env->sregs[i]); 1037 } 1038 } 1039 1040 #endif /* TARGET_MICROBLAZE */ 1041 1042 #ifdef TARGET_NIOS2 1043 1044 #define ELF_START_MMAP 0x80000000 1045 1046 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1047 1048 #define ELF_CLASS ELFCLASS32 1049 #define ELF_ARCH EM_ALTERA_NIOS2 1050 1051 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1052 { 1053 regs->ea = infop->entry; 1054 regs->sp = infop->start_stack; 1055 regs->estatus = 0x3; 1056 } 1057 1058 #define ELF_EXEC_PAGESIZE 4096 1059 1060 #define USE_ELF_CORE_DUMP 1061 #define ELF_NREG 49 1062 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1063 1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1065 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1066 const CPUNios2State *env) 1067 { 1068 int i; 1069 1070 (*regs)[0] = -1; 1071 for (i = 1; i < 8; i++) /* r0-r7 */ 1072 (*regs)[i] = tswapreg(env->regs[i + 7]); 1073 1074 for (i = 8; i < 16; i++) /* r8-r15 */ 1075 (*regs)[i] = tswapreg(env->regs[i - 8]); 1076 1077 for (i = 16; i < 24; i++) /* r16-r23 */ 1078 (*regs)[i] = tswapreg(env->regs[i + 7]); 1079 (*regs)[24] = -1; /* R_ET */ 1080 (*regs)[25] = -1; /* R_BT */ 1081 (*regs)[26] = tswapreg(env->regs[R_GP]); 1082 (*regs)[27] = tswapreg(env->regs[R_SP]); 1083 (*regs)[28] = tswapreg(env->regs[R_FP]); 1084 (*regs)[29] = tswapreg(env->regs[R_EA]); 1085 (*regs)[30] = -1; /* R_SSTATUS */ 1086 (*regs)[31] = tswapreg(env->regs[R_RA]); 1087 1088 (*regs)[32] = tswapreg(env->regs[R_PC]); 1089 1090 (*regs)[33] = -1; /* R_STATUS */ 1091 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1092 1093 for (i = 35; i < 49; i++) /* ... */ 1094 (*regs)[i] = -1; 1095 } 1096 1097 #endif /* TARGET_NIOS2 */ 1098 1099 #ifdef TARGET_OPENRISC 1100 1101 #define ELF_START_MMAP 0x08000000 1102 1103 #define ELF_ARCH EM_OPENRISC 1104 #define ELF_CLASS ELFCLASS32 1105 #define ELF_DATA ELFDATA2MSB 1106 1107 static inline void init_thread(struct target_pt_regs *regs, 1108 struct image_info *infop) 1109 { 1110 regs->pc = infop->entry; 1111 regs->gpr[1] = infop->start_stack; 1112 } 1113 1114 #define USE_ELF_CORE_DUMP 1115 #define ELF_EXEC_PAGESIZE 8192 1116 1117 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1118 #define ELF_NREG 34 /* gprs and pc, sr */ 1119 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1120 1121 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1122 const CPUOpenRISCState *env) 1123 { 1124 int i; 1125 1126 for (i = 0; i < 32; i++) { 1127 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1128 } 1129 (*regs)[32] = tswapreg(env->pc); 1130 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1131 } 1132 #define ELF_HWCAP 0 1133 #define ELF_PLATFORM NULL 1134 1135 #endif /* TARGET_OPENRISC */ 1136 1137 #ifdef TARGET_SH4 1138 1139 #define ELF_START_MMAP 0x80000000 1140 1141 #define ELF_CLASS ELFCLASS32 1142 #define ELF_ARCH EM_SH 1143 1144 static inline void init_thread(struct target_pt_regs *regs, 1145 struct image_info *infop) 1146 { 1147 /* Check other registers XXXXX */ 1148 regs->pc = infop->entry; 1149 regs->regs[15] = infop->start_stack; 1150 } 1151 1152 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1153 #define ELF_NREG 23 1154 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1155 1156 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1157 enum { 1158 TARGET_REG_PC = 16, 1159 TARGET_REG_PR = 17, 1160 TARGET_REG_SR = 18, 1161 TARGET_REG_GBR = 19, 1162 TARGET_REG_MACH = 20, 1163 TARGET_REG_MACL = 21, 1164 TARGET_REG_SYSCALL = 22 1165 }; 1166 1167 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1168 const CPUSH4State *env) 1169 { 1170 int i; 1171 1172 for (i = 0; i < 16; i++) { 1173 (*regs)[i] = tswapreg(env->gregs[i]); 1174 } 1175 1176 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1177 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1178 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1179 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1180 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1181 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1182 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1183 } 1184 1185 #define USE_ELF_CORE_DUMP 1186 #define ELF_EXEC_PAGESIZE 4096 1187 1188 enum { 1189 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1190 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1191 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1192 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1193 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1194 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1195 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1196 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1197 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1198 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1199 }; 1200 1201 #define ELF_HWCAP get_elf_hwcap() 1202 1203 static uint32_t get_elf_hwcap(void) 1204 { 1205 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1206 uint32_t hwcap = 0; 1207 1208 hwcap |= SH_CPU_HAS_FPU; 1209 1210 if (cpu->env.features & SH_FEATURE_SH4A) { 1211 hwcap |= SH_CPU_HAS_LLSC; 1212 } 1213 1214 return hwcap; 1215 } 1216 1217 #endif 1218 1219 #ifdef TARGET_CRIS 1220 1221 #define ELF_START_MMAP 0x80000000 1222 1223 #define ELF_CLASS ELFCLASS32 1224 #define ELF_ARCH EM_CRIS 1225 1226 static inline void init_thread(struct target_pt_regs *regs, 1227 struct image_info *infop) 1228 { 1229 regs->erp = infop->entry; 1230 } 1231 1232 #define ELF_EXEC_PAGESIZE 8192 1233 1234 #endif 1235 1236 #ifdef TARGET_M68K 1237 1238 #define ELF_START_MMAP 0x80000000 1239 1240 #define ELF_CLASS ELFCLASS32 1241 #define ELF_ARCH EM_68K 1242 1243 /* ??? Does this need to do anything? 1244 #define ELF_PLAT_INIT(_r) */ 1245 1246 static inline void init_thread(struct target_pt_regs *regs, 1247 struct image_info *infop) 1248 { 1249 regs->usp = infop->start_stack; 1250 regs->sr = 0; 1251 regs->pc = infop->entry; 1252 } 1253 1254 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1255 #define ELF_NREG 20 1256 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1257 1258 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1259 { 1260 (*regs)[0] = tswapreg(env->dregs[1]); 1261 (*regs)[1] = tswapreg(env->dregs[2]); 1262 (*regs)[2] = tswapreg(env->dregs[3]); 1263 (*regs)[3] = tswapreg(env->dregs[4]); 1264 (*regs)[4] = tswapreg(env->dregs[5]); 1265 (*regs)[5] = tswapreg(env->dregs[6]); 1266 (*regs)[6] = tswapreg(env->dregs[7]); 1267 (*regs)[7] = tswapreg(env->aregs[0]); 1268 (*regs)[8] = tswapreg(env->aregs[1]); 1269 (*regs)[9] = tswapreg(env->aregs[2]); 1270 (*regs)[10] = tswapreg(env->aregs[3]); 1271 (*regs)[11] = tswapreg(env->aregs[4]); 1272 (*regs)[12] = tswapreg(env->aregs[5]); 1273 (*regs)[13] = tswapreg(env->aregs[6]); 1274 (*regs)[14] = tswapreg(env->dregs[0]); 1275 (*regs)[15] = tswapreg(env->aregs[7]); 1276 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1277 (*regs)[17] = tswapreg(env->sr); 1278 (*regs)[18] = tswapreg(env->pc); 1279 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1280 } 1281 1282 #define USE_ELF_CORE_DUMP 1283 #define ELF_EXEC_PAGESIZE 8192 1284 1285 #endif 1286 1287 #ifdef TARGET_ALPHA 1288 1289 #define ELF_START_MMAP (0x30000000000ULL) 1290 1291 #define ELF_CLASS ELFCLASS64 1292 #define ELF_ARCH EM_ALPHA 1293 1294 static inline void init_thread(struct target_pt_regs *regs, 1295 struct image_info *infop) 1296 { 1297 regs->pc = infop->entry; 1298 regs->ps = 8; 1299 regs->usp = infop->start_stack; 1300 } 1301 1302 #define ELF_EXEC_PAGESIZE 8192 1303 1304 #endif /* TARGET_ALPHA */ 1305 1306 #ifdef TARGET_S390X 1307 1308 #define ELF_START_MMAP (0x20000000000ULL) 1309 1310 #define ELF_CLASS ELFCLASS64 1311 #define ELF_DATA ELFDATA2MSB 1312 #define ELF_ARCH EM_S390 1313 1314 #include "elf.h" 1315 1316 #define ELF_HWCAP get_elf_hwcap() 1317 1318 #define GET_FEATURE(_feat, _hwcap) \ 1319 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1320 1321 static uint32_t get_elf_hwcap(void) 1322 { 1323 /* 1324 * Let's assume we always have esan3 and zarch. 1325 * 31-bit processes can use 64-bit registers (high gprs). 1326 */ 1327 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1328 1329 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1330 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1331 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1332 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1333 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1334 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1335 hwcap |= HWCAP_S390_ETF3EH; 1336 } 1337 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1338 1339 return hwcap; 1340 } 1341 1342 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1343 { 1344 regs->psw.addr = infop->entry; 1345 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1346 regs->gprs[15] = infop->start_stack; 1347 } 1348 1349 #endif /* TARGET_S390X */ 1350 1351 #ifdef TARGET_TILEGX 1352 1353 /* 42 bits real used address, a half for user mode */ 1354 #define ELF_START_MMAP (0x00000020000000000ULL) 1355 1356 #define elf_check_arch(x) ((x) == EM_TILEGX) 1357 1358 #define ELF_CLASS ELFCLASS64 1359 #define ELF_DATA ELFDATA2LSB 1360 #define ELF_ARCH EM_TILEGX 1361 1362 static inline void init_thread(struct target_pt_regs *regs, 1363 struct image_info *infop) 1364 { 1365 regs->pc = infop->entry; 1366 regs->sp = infop->start_stack; 1367 1368 } 1369 1370 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1371 1372 #endif /* TARGET_TILEGX */ 1373 1374 #ifdef TARGET_RISCV 1375 1376 #define ELF_START_MMAP 0x80000000 1377 #define ELF_ARCH EM_RISCV 1378 1379 #ifdef TARGET_RISCV32 1380 #define ELF_CLASS ELFCLASS32 1381 #else 1382 #define ELF_CLASS ELFCLASS64 1383 #endif 1384 1385 static inline void init_thread(struct target_pt_regs *regs, 1386 struct image_info *infop) 1387 { 1388 regs->sepc = infop->entry; 1389 regs->sp = infop->start_stack; 1390 } 1391 1392 #define ELF_EXEC_PAGESIZE 4096 1393 1394 #endif /* TARGET_RISCV */ 1395 1396 #ifdef TARGET_HPPA 1397 1398 #define ELF_START_MMAP 0x80000000 1399 #define ELF_CLASS ELFCLASS32 1400 #define ELF_ARCH EM_PARISC 1401 #define ELF_PLATFORM "PARISC" 1402 #define STACK_GROWS_DOWN 0 1403 #define STACK_ALIGNMENT 64 1404 1405 static inline void init_thread(struct target_pt_regs *regs, 1406 struct image_info *infop) 1407 { 1408 regs->iaoq[0] = infop->entry; 1409 regs->iaoq[1] = infop->entry + 4; 1410 regs->gr[23] = 0; 1411 regs->gr[24] = infop->arg_start; 1412 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1413 /* The top-of-stack contains a linkage buffer. */ 1414 regs->gr[30] = infop->start_stack + 64; 1415 regs->gr[31] = infop->entry; 1416 } 1417 1418 #endif /* TARGET_HPPA */ 1419 1420 #ifdef TARGET_XTENSA 1421 1422 #define ELF_START_MMAP 0x20000000 1423 1424 #define ELF_CLASS ELFCLASS32 1425 #define ELF_ARCH EM_XTENSA 1426 1427 static inline void init_thread(struct target_pt_regs *regs, 1428 struct image_info *infop) 1429 { 1430 regs->windowbase = 0; 1431 regs->windowstart = 1; 1432 regs->areg[1] = infop->start_stack; 1433 regs->pc = infop->entry; 1434 } 1435 1436 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1437 #define ELF_NREG 128 1438 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1439 1440 enum { 1441 TARGET_REG_PC, 1442 TARGET_REG_PS, 1443 TARGET_REG_LBEG, 1444 TARGET_REG_LEND, 1445 TARGET_REG_LCOUNT, 1446 TARGET_REG_SAR, 1447 TARGET_REG_WINDOWSTART, 1448 TARGET_REG_WINDOWBASE, 1449 TARGET_REG_THREADPTR, 1450 TARGET_REG_AR0 = 64, 1451 }; 1452 1453 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1454 const CPUXtensaState *env) 1455 { 1456 unsigned i; 1457 1458 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1459 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1460 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1461 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1462 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1463 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1464 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1465 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1466 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1467 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1468 for (i = 0; i < env->config->nareg; ++i) { 1469 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1470 } 1471 } 1472 1473 #define USE_ELF_CORE_DUMP 1474 #define ELF_EXEC_PAGESIZE 4096 1475 1476 #endif /* TARGET_XTENSA */ 1477 1478 #ifndef ELF_PLATFORM 1479 #define ELF_PLATFORM (NULL) 1480 #endif 1481 1482 #ifndef ELF_MACHINE 1483 #define ELF_MACHINE ELF_ARCH 1484 #endif 1485 1486 #ifndef elf_check_arch 1487 #define elf_check_arch(x) ((x) == ELF_ARCH) 1488 #endif 1489 1490 #ifndef ELF_HWCAP 1491 #define ELF_HWCAP 0 1492 #endif 1493 1494 #ifndef STACK_GROWS_DOWN 1495 #define STACK_GROWS_DOWN 1 1496 #endif 1497 1498 #ifndef STACK_ALIGNMENT 1499 #define STACK_ALIGNMENT 16 1500 #endif 1501 1502 #ifdef TARGET_ABI32 1503 #undef ELF_CLASS 1504 #define ELF_CLASS ELFCLASS32 1505 #undef bswaptls 1506 #define bswaptls(ptr) bswap32s(ptr) 1507 #endif 1508 1509 #include "elf.h" 1510 1511 struct exec 1512 { 1513 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1514 unsigned int a_text; /* length of text, in bytes */ 1515 unsigned int a_data; /* length of data, in bytes */ 1516 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1517 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1518 unsigned int a_entry; /* start address */ 1519 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1520 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1521 }; 1522 1523 1524 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1525 #define OMAGIC 0407 1526 #define NMAGIC 0410 1527 #define ZMAGIC 0413 1528 #define QMAGIC 0314 1529 1530 /* Necessary parameters */ 1531 #define TARGET_ELF_EXEC_PAGESIZE \ 1532 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1533 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1534 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1535 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1536 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1537 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1538 1539 #define DLINFO_ITEMS 16 1540 1541 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1542 { 1543 memcpy(to, from, n); 1544 } 1545 1546 #ifdef BSWAP_NEEDED 1547 static void bswap_ehdr(struct elfhdr *ehdr) 1548 { 1549 bswap16s(&ehdr->e_type); /* Object file type */ 1550 bswap16s(&ehdr->e_machine); /* Architecture */ 1551 bswap32s(&ehdr->e_version); /* Object file version */ 1552 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1553 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1554 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1555 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1556 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1557 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1558 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1559 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1560 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1561 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1562 } 1563 1564 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1565 { 1566 int i; 1567 for (i = 0; i < phnum; ++i, ++phdr) { 1568 bswap32s(&phdr->p_type); /* Segment type */ 1569 bswap32s(&phdr->p_flags); /* Segment flags */ 1570 bswaptls(&phdr->p_offset); /* Segment file offset */ 1571 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1572 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1573 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1574 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1575 bswaptls(&phdr->p_align); /* Segment alignment */ 1576 } 1577 } 1578 1579 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1580 { 1581 int i; 1582 for (i = 0; i < shnum; ++i, ++shdr) { 1583 bswap32s(&shdr->sh_name); 1584 bswap32s(&shdr->sh_type); 1585 bswaptls(&shdr->sh_flags); 1586 bswaptls(&shdr->sh_addr); 1587 bswaptls(&shdr->sh_offset); 1588 bswaptls(&shdr->sh_size); 1589 bswap32s(&shdr->sh_link); 1590 bswap32s(&shdr->sh_info); 1591 bswaptls(&shdr->sh_addralign); 1592 bswaptls(&shdr->sh_entsize); 1593 } 1594 } 1595 1596 static void bswap_sym(struct elf_sym *sym) 1597 { 1598 bswap32s(&sym->st_name); 1599 bswaptls(&sym->st_value); 1600 bswaptls(&sym->st_size); 1601 bswap16s(&sym->st_shndx); 1602 } 1603 1604 #ifdef TARGET_MIPS 1605 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1606 { 1607 bswap16s(&abiflags->version); 1608 bswap32s(&abiflags->ases); 1609 bswap32s(&abiflags->isa_ext); 1610 bswap32s(&abiflags->flags1); 1611 bswap32s(&abiflags->flags2); 1612 } 1613 #endif 1614 #else 1615 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1616 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1617 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1618 static inline void bswap_sym(struct elf_sym *sym) { } 1619 #ifdef TARGET_MIPS 1620 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1621 #endif 1622 #endif 1623 1624 #ifdef USE_ELF_CORE_DUMP 1625 static int elf_core_dump(int, const CPUArchState *); 1626 #endif /* USE_ELF_CORE_DUMP */ 1627 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1628 1629 /* Verify the portions of EHDR within E_IDENT for the target. 1630 This can be performed before bswapping the entire header. */ 1631 static bool elf_check_ident(struct elfhdr *ehdr) 1632 { 1633 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1634 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1635 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1636 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1637 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1638 && ehdr->e_ident[EI_DATA] == ELF_DATA 1639 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1640 } 1641 1642 /* Verify the portions of EHDR outside of E_IDENT for the target. 1643 This has to wait until after bswapping the header. */ 1644 static bool elf_check_ehdr(struct elfhdr *ehdr) 1645 { 1646 return (elf_check_arch(ehdr->e_machine) 1647 && ehdr->e_ehsize == sizeof(struct elfhdr) 1648 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1649 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1650 } 1651 1652 /* 1653 * 'copy_elf_strings()' copies argument/envelope strings from user 1654 * memory to free pages in kernel mem. These are in a format ready 1655 * to be put directly into the top of new user memory. 1656 * 1657 */ 1658 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1659 abi_ulong p, abi_ulong stack_limit) 1660 { 1661 char *tmp; 1662 int len, i; 1663 abi_ulong top = p; 1664 1665 if (!p) { 1666 return 0; /* bullet-proofing */ 1667 } 1668 1669 if (STACK_GROWS_DOWN) { 1670 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1671 for (i = argc - 1; i >= 0; --i) { 1672 tmp = argv[i]; 1673 if (!tmp) { 1674 fprintf(stderr, "VFS: argc is wrong"); 1675 exit(-1); 1676 } 1677 len = strlen(tmp) + 1; 1678 tmp += len; 1679 1680 if (len > (p - stack_limit)) { 1681 return 0; 1682 } 1683 while (len) { 1684 int bytes_to_copy = (len > offset) ? offset : len; 1685 tmp -= bytes_to_copy; 1686 p -= bytes_to_copy; 1687 offset -= bytes_to_copy; 1688 len -= bytes_to_copy; 1689 1690 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1691 1692 if (offset == 0) { 1693 memcpy_to_target(p, scratch, top - p); 1694 top = p; 1695 offset = TARGET_PAGE_SIZE; 1696 } 1697 } 1698 } 1699 if (p != top) { 1700 memcpy_to_target(p, scratch + offset, top - p); 1701 } 1702 } else { 1703 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1704 for (i = 0; i < argc; ++i) { 1705 tmp = argv[i]; 1706 if (!tmp) { 1707 fprintf(stderr, "VFS: argc is wrong"); 1708 exit(-1); 1709 } 1710 len = strlen(tmp) + 1; 1711 if (len > (stack_limit - p)) { 1712 return 0; 1713 } 1714 while (len) { 1715 int bytes_to_copy = (len > remaining) ? remaining : len; 1716 1717 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1718 1719 tmp += bytes_to_copy; 1720 remaining -= bytes_to_copy; 1721 p += bytes_to_copy; 1722 len -= bytes_to_copy; 1723 1724 if (remaining == 0) { 1725 memcpy_to_target(top, scratch, p - top); 1726 top = p; 1727 remaining = TARGET_PAGE_SIZE; 1728 } 1729 } 1730 } 1731 if (p != top) { 1732 memcpy_to_target(top, scratch, p - top); 1733 } 1734 } 1735 1736 return p; 1737 } 1738 1739 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1740 * argument/environment space. Newer kernels (>2.6.33) allow more, 1741 * dependent on stack size, but guarantee at least 32 pages for 1742 * backwards compatibility. 1743 */ 1744 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1745 1746 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1747 struct image_info *info) 1748 { 1749 abi_ulong size, error, guard; 1750 1751 size = guest_stack_size; 1752 if (size < STACK_LOWER_LIMIT) { 1753 size = STACK_LOWER_LIMIT; 1754 } 1755 guard = TARGET_PAGE_SIZE; 1756 if (guard < qemu_real_host_page_size) { 1757 guard = qemu_real_host_page_size; 1758 } 1759 1760 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1761 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1762 if (error == -1) { 1763 perror("mmap stack"); 1764 exit(-1); 1765 } 1766 1767 /* We reserve one extra page at the top of the stack as guard. */ 1768 if (STACK_GROWS_DOWN) { 1769 target_mprotect(error, guard, PROT_NONE); 1770 info->stack_limit = error + guard; 1771 return info->stack_limit + size - sizeof(void *); 1772 } else { 1773 target_mprotect(error + size, guard, PROT_NONE); 1774 info->stack_limit = error + size; 1775 return error; 1776 } 1777 } 1778 1779 /* Map and zero the bss. We need to explicitly zero any fractional pages 1780 after the data section (i.e. bss). */ 1781 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1782 { 1783 uintptr_t host_start, host_map_start, host_end; 1784 1785 last_bss = TARGET_PAGE_ALIGN(last_bss); 1786 1787 /* ??? There is confusion between qemu_real_host_page_size and 1788 qemu_host_page_size here and elsewhere in target_mmap, which 1789 may lead to the end of the data section mapping from the file 1790 not being mapped. At least there was an explicit test and 1791 comment for that here, suggesting that "the file size must 1792 be known". The comment probably pre-dates the introduction 1793 of the fstat system call in target_mmap which does in fact 1794 find out the size. What isn't clear is if the workaround 1795 here is still actually needed. For now, continue with it, 1796 but merge it with the "normal" mmap that would allocate the bss. */ 1797 1798 host_start = (uintptr_t) g2h(elf_bss); 1799 host_end = (uintptr_t) g2h(last_bss); 1800 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1801 1802 if (host_map_start < host_end) { 1803 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1804 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1805 if (p == MAP_FAILED) { 1806 perror("cannot mmap brk"); 1807 exit(-1); 1808 } 1809 } 1810 1811 /* Ensure that the bss page(s) are valid */ 1812 if ((page_get_flags(last_bss-1) & prot) != prot) { 1813 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1814 } 1815 1816 if (host_start < host_map_start) { 1817 memset((void *)host_start, 0, host_map_start - host_start); 1818 } 1819 } 1820 1821 #ifdef TARGET_ARM 1822 static int elf_is_fdpic(struct elfhdr *exec) 1823 { 1824 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1825 } 1826 #else 1827 /* Default implementation, always false. */ 1828 static int elf_is_fdpic(struct elfhdr *exec) 1829 { 1830 return 0; 1831 } 1832 #endif 1833 1834 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1835 { 1836 uint16_t n; 1837 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1838 1839 /* elf32_fdpic_loadseg */ 1840 n = info->nsegs; 1841 while (n--) { 1842 sp -= 12; 1843 put_user_u32(loadsegs[n].addr, sp+0); 1844 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1845 put_user_u32(loadsegs[n].p_memsz, sp+8); 1846 } 1847 1848 /* elf32_fdpic_loadmap */ 1849 sp -= 4; 1850 put_user_u16(0, sp+0); /* version */ 1851 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1852 1853 info->personality = PER_LINUX_FDPIC; 1854 info->loadmap_addr = sp; 1855 1856 return sp; 1857 } 1858 1859 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1860 struct elfhdr *exec, 1861 struct image_info *info, 1862 struct image_info *interp_info) 1863 { 1864 abi_ulong sp; 1865 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1866 int size; 1867 int i; 1868 abi_ulong u_rand_bytes; 1869 uint8_t k_rand_bytes[16]; 1870 abi_ulong u_platform; 1871 const char *k_platform; 1872 const int n = sizeof(elf_addr_t); 1873 1874 sp = p; 1875 1876 /* Needs to be before we load the env/argc/... */ 1877 if (elf_is_fdpic(exec)) { 1878 /* Need 4 byte alignment for these structs */ 1879 sp &= ~3; 1880 sp = loader_build_fdpic_loadmap(info, sp); 1881 info->other_info = interp_info; 1882 if (interp_info) { 1883 interp_info->other_info = info; 1884 sp = loader_build_fdpic_loadmap(interp_info, sp); 1885 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1886 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1887 } else { 1888 info->interpreter_loadmap_addr = 0; 1889 info->interpreter_pt_dynamic_addr = 0; 1890 } 1891 } 1892 1893 u_platform = 0; 1894 k_platform = ELF_PLATFORM; 1895 if (k_platform) { 1896 size_t len = strlen(k_platform) + 1; 1897 if (STACK_GROWS_DOWN) { 1898 sp -= (len + n - 1) & ~(n - 1); 1899 u_platform = sp; 1900 /* FIXME - check return value of memcpy_to_target() for failure */ 1901 memcpy_to_target(sp, k_platform, len); 1902 } else { 1903 memcpy_to_target(sp, k_platform, len); 1904 u_platform = sp; 1905 sp += len + 1; 1906 } 1907 } 1908 1909 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1910 * the argv and envp pointers. 1911 */ 1912 if (STACK_GROWS_DOWN) { 1913 sp = QEMU_ALIGN_DOWN(sp, 16); 1914 } else { 1915 sp = QEMU_ALIGN_UP(sp, 16); 1916 } 1917 1918 /* 1919 * Generate 16 random bytes for userspace PRNG seeding. 1920 */ 1921 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 1922 if (STACK_GROWS_DOWN) { 1923 sp -= 16; 1924 u_rand_bytes = sp; 1925 /* FIXME - check return value of memcpy_to_target() for failure */ 1926 memcpy_to_target(sp, k_rand_bytes, 16); 1927 } else { 1928 memcpy_to_target(sp, k_rand_bytes, 16); 1929 u_rand_bytes = sp; 1930 sp += 16; 1931 } 1932 1933 size = (DLINFO_ITEMS + 1) * 2; 1934 if (k_platform) 1935 size += 2; 1936 #ifdef DLINFO_ARCH_ITEMS 1937 size += DLINFO_ARCH_ITEMS * 2; 1938 #endif 1939 #ifdef ELF_HWCAP2 1940 size += 2; 1941 #endif 1942 info->auxv_len = size * n; 1943 1944 size += envc + argc + 2; 1945 size += 1; /* argc itself */ 1946 size *= n; 1947 1948 /* Allocate space and finalize stack alignment for entry now. */ 1949 if (STACK_GROWS_DOWN) { 1950 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1951 sp = u_argc; 1952 } else { 1953 u_argc = sp; 1954 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1955 } 1956 1957 u_argv = u_argc + n; 1958 u_envp = u_argv + (argc + 1) * n; 1959 u_auxv = u_envp + (envc + 1) * n; 1960 info->saved_auxv = u_auxv; 1961 info->arg_start = u_argv; 1962 info->arg_end = u_argv + argc * n; 1963 1964 /* This is correct because Linux defines 1965 * elf_addr_t as Elf32_Off / Elf64_Off 1966 */ 1967 #define NEW_AUX_ENT(id, val) do { \ 1968 put_user_ual(id, u_auxv); u_auxv += n; \ 1969 put_user_ual(val, u_auxv); u_auxv += n; \ 1970 } while(0) 1971 1972 #ifdef ARCH_DLINFO 1973 /* 1974 * ARCH_DLINFO must come first so platform specific code can enforce 1975 * special alignment requirements on the AUXV if necessary (eg. PPC). 1976 */ 1977 ARCH_DLINFO; 1978 #endif 1979 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1980 * on info->auxv_len will trigger. 1981 */ 1982 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1983 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1984 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1985 if ((info->alignment & ~qemu_host_page_mask) != 0) { 1986 /* Target doesn't support host page size alignment */ 1987 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1988 } else { 1989 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 1990 qemu_host_page_size))); 1991 } 1992 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1993 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1994 NEW_AUX_ENT(AT_ENTRY, info->entry); 1995 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1996 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1997 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1998 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1999 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2000 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2001 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2002 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2003 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2004 2005 #ifdef ELF_HWCAP2 2006 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2007 #endif 2008 2009 if (u_platform) { 2010 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2011 } 2012 NEW_AUX_ENT (AT_NULL, 0); 2013 #undef NEW_AUX_ENT 2014 2015 /* Check that our initial calculation of the auxv length matches how much 2016 * we actually put into it. 2017 */ 2018 assert(info->auxv_len == u_auxv - info->saved_auxv); 2019 2020 put_user_ual(argc, u_argc); 2021 2022 p = info->arg_strings; 2023 for (i = 0; i < argc; ++i) { 2024 put_user_ual(p, u_argv); 2025 u_argv += n; 2026 p += target_strlen(p) + 1; 2027 } 2028 put_user_ual(0, u_argv); 2029 2030 p = info->env_strings; 2031 for (i = 0; i < envc; ++i) { 2032 put_user_ual(p, u_envp); 2033 u_envp += n; 2034 p += target_strlen(p) + 1; 2035 } 2036 put_user_ual(0, u_envp); 2037 2038 return sp; 2039 } 2040 2041 #ifndef ARM_COMMPAGE 2042 #define ARM_COMMPAGE 0 2043 #define init_guest_commpage() true 2044 #endif 2045 2046 static void pgb_fail_in_use(const char *image_name) 2047 { 2048 error_report("%s: requires virtual address space that is in use " 2049 "(omit the -B option or choose a different value)", 2050 image_name); 2051 exit(EXIT_FAILURE); 2052 } 2053 2054 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2055 abi_ulong guest_hiaddr, long align) 2056 { 2057 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2058 void *addr, *test; 2059 2060 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2061 fprintf(stderr, "Requested guest base 0x%lx does not satisfy " 2062 "host minimum alignment (0x%lx)\n", 2063 guest_base, align); 2064 exit(EXIT_FAILURE); 2065 } 2066 2067 /* Sanity check the guest binary. */ 2068 if (reserved_va) { 2069 if (guest_hiaddr > reserved_va) { 2070 error_report("%s: requires more than reserved virtual " 2071 "address space (0x%" PRIx64 " > 0x%lx)", 2072 image_name, (uint64_t)guest_hiaddr, reserved_va); 2073 exit(EXIT_FAILURE); 2074 } 2075 } else { 2076 #if HOST_LONG_BITS < TARGET_ABI_BITS 2077 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2078 error_report("%s: requires more virtual address space " 2079 "than the host can provide (0x%" PRIx64 ")", 2080 image_name, (uint64_t)guest_hiaddr - guest_base); 2081 exit(EXIT_FAILURE); 2082 } 2083 #endif 2084 } 2085 2086 /* 2087 * Expand the allocation to the entire reserved_va. 2088 * Exclude the mmap_min_addr hole. 2089 */ 2090 if (reserved_va) { 2091 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2092 : mmap_min_addr - guest_base); 2093 guest_hiaddr = reserved_va; 2094 } 2095 2096 /* Reserve the address space for the binary, or reserved_va. */ 2097 test = g2h(guest_loaddr); 2098 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2099 if (test != addr) { 2100 pgb_fail_in_use(image_name); 2101 } 2102 } 2103 2104 /** 2105 * pgd_find_hole_fallback: potential mmap address 2106 * @guest_size: size of available space 2107 * @brk: location of break 2108 * @align: memory alignment 2109 * 2110 * This is a fallback method for finding a hole in the host address 2111 * space if we don't have the benefit of being able to access 2112 * /proc/self/map. It can potentially take a very long time as we can 2113 * only dumbly iterate up the host address space seeing if the 2114 * allocation would work. 2115 */ 2116 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2117 long align, uintptr_t offset) 2118 { 2119 uintptr_t base; 2120 2121 /* Start (aligned) at the bottom and work our way up */ 2122 base = ROUND_UP(mmap_min_addr, align); 2123 2124 while (true) { 2125 uintptr_t align_start, end; 2126 align_start = ROUND_UP(base, align); 2127 end = align_start + guest_size + offset; 2128 2129 /* if brk is anywhere in the range give ourselves some room to grow. */ 2130 if (align_start <= brk && brk < end) { 2131 base = brk + (16 * MiB); 2132 continue; 2133 } else if (align_start + guest_size < align_start) { 2134 /* we have run out of space */ 2135 return -1; 2136 } else { 2137 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | MAP_FIXED; 2138 void * mmap_start = mmap((void *) align_start, guest_size, 2139 PROT_NONE, flags, -1, 0); 2140 if (mmap_start != MAP_FAILED) { 2141 munmap((void *) align_start, guest_size); 2142 return (uintptr_t) mmap_start + offset; 2143 } 2144 base += qemu_host_page_size; 2145 } 2146 } 2147 } 2148 2149 /* Return value for guest_base, or -1 if no hole found. */ 2150 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2151 long align, uintptr_t offset) 2152 { 2153 GSList *maps, *iter; 2154 uintptr_t this_start, this_end, next_start, brk; 2155 intptr_t ret = -1; 2156 2157 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2158 2159 maps = read_self_maps(); 2160 2161 /* Read brk after we've read the maps, which will malloc. */ 2162 brk = (uintptr_t)sbrk(0); 2163 2164 if (!maps) { 2165 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2166 } 2167 2168 /* The first hole is before the first map entry. */ 2169 this_start = mmap_min_addr; 2170 2171 for (iter = maps; iter; 2172 this_start = next_start, iter = g_slist_next(iter)) { 2173 uintptr_t align_start, hole_size; 2174 2175 this_end = ((MapInfo *)iter->data)->start; 2176 next_start = ((MapInfo *)iter->data)->end; 2177 align_start = ROUND_UP(this_start + offset, align); 2178 2179 /* Skip holes that are too small. */ 2180 if (align_start >= this_end) { 2181 continue; 2182 } 2183 hole_size = this_end - align_start; 2184 if (hole_size < guest_size) { 2185 continue; 2186 } 2187 2188 /* If this hole contains brk, give ourselves some room to grow. */ 2189 if (this_start <= brk && brk < this_end) { 2190 hole_size -= guest_size; 2191 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2192 align_start += 1 * GiB; 2193 } else if (hole_size >= 16 * MiB) { 2194 align_start += 16 * MiB; 2195 } else { 2196 align_start = (this_end - guest_size) & -align; 2197 if (align_start < this_start) { 2198 continue; 2199 } 2200 } 2201 } 2202 2203 /* Record the lowest successful match. */ 2204 if (ret < 0) { 2205 ret = align_start - guest_loaddr; 2206 } 2207 /* If this hole contains the identity map, select it. */ 2208 if (align_start <= guest_loaddr && 2209 guest_loaddr + guest_size <= this_end) { 2210 ret = 0; 2211 } 2212 /* If this hole ends above the identity map, stop looking. */ 2213 if (this_end >= guest_loaddr) { 2214 break; 2215 } 2216 } 2217 free_self_maps(maps); 2218 2219 return ret; 2220 } 2221 2222 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2223 abi_ulong orig_hiaddr, long align) 2224 { 2225 uintptr_t loaddr = orig_loaddr; 2226 uintptr_t hiaddr = orig_hiaddr; 2227 uintptr_t offset = 0; 2228 uintptr_t addr; 2229 2230 if (hiaddr != orig_hiaddr) { 2231 error_report("%s: requires virtual address space that the " 2232 "host cannot provide (0x%" PRIx64 ")", 2233 image_name, (uint64_t)orig_hiaddr); 2234 exit(EXIT_FAILURE); 2235 } 2236 2237 loaddr &= -align; 2238 if (ARM_COMMPAGE) { 2239 /* 2240 * Extend the allocation to include the commpage. 2241 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2242 * need to ensure there is space bellow the guest_base so we 2243 * can map the commpage in the place needed when the address 2244 * arithmetic wraps around. 2245 */ 2246 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2247 hiaddr = (uintptr_t) 4 << 30; 2248 } else { 2249 offset = -(ARM_COMMPAGE & -align); 2250 } 2251 } 2252 2253 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2254 if (addr == -1) { 2255 /* 2256 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation 2257 * that can satisfy both. But as the normal arm32 link base address 2258 * is ~32k, and we extend down to include the commpage, making the 2259 * overhead only ~96k, this is unlikely. 2260 */ 2261 error_report("%s: Unable to allocate %#zx bytes of " 2262 "virtual address space", image_name, 2263 (size_t)(hiaddr - loaddr)); 2264 exit(EXIT_FAILURE); 2265 } 2266 2267 guest_base = addr; 2268 } 2269 2270 static void pgb_dynamic(const char *image_name, long align) 2271 { 2272 /* 2273 * The executable is dynamic and does not require a fixed address. 2274 * All we need is a commpage that satisfies align. 2275 * If we do not need a commpage, leave guest_base == 0. 2276 */ 2277 if (ARM_COMMPAGE) { 2278 uintptr_t addr, commpage; 2279 2280 /* 64-bit hosts should have used reserved_va. */ 2281 assert(sizeof(uintptr_t) == 4); 2282 2283 /* 2284 * By putting the commpage at the first hole, that puts guest_base 2285 * just above that, and maximises the positive guest addresses. 2286 */ 2287 commpage = ARM_COMMPAGE & -align; 2288 addr = pgb_find_hole(commpage, -commpage, align, 0); 2289 assert(addr != -1); 2290 guest_base = addr; 2291 } 2292 } 2293 2294 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2295 abi_ulong guest_hiaddr, long align) 2296 { 2297 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2298 void *addr, *test; 2299 2300 if (guest_hiaddr > reserved_va) { 2301 error_report("%s: requires more than reserved virtual " 2302 "address space (0x%" PRIx64 " > 0x%lx)", 2303 image_name, (uint64_t)guest_hiaddr, reserved_va); 2304 exit(EXIT_FAILURE); 2305 } 2306 2307 /* Widen the "image" to the entire reserved address space. */ 2308 pgb_static(image_name, 0, reserved_va, align); 2309 2310 #ifdef MAP_FIXED_NOREPLACE 2311 flags |= MAP_FIXED_NOREPLACE; 2312 #endif 2313 2314 /* Reserve the memory on the host. */ 2315 assert(guest_base != 0); 2316 test = g2h(0); 2317 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2318 if (addr == MAP_FAILED) { 2319 error_report("Unable to reserve 0x%lx bytes of virtual address " 2320 "space (%s) for use as guest address space (check your " 2321 "virtual memory ulimit setting or reserve less " 2322 "using -R option)", reserved_va, strerror(errno)); 2323 exit(EXIT_FAILURE); 2324 } 2325 assert(addr == test); 2326 } 2327 2328 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2329 abi_ulong guest_hiaddr) 2330 { 2331 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2332 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2333 2334 if (have_guest_base) { 2335 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2336 } else if (reserved_va) { 2337 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2338 } else if (guest_loaddr) { 2339 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2340 } else { 2341 pgb_dynamic(image_name, align); 2342 } 2343 2344 /* Reserve and initialize the commpage. */ 2345 if (!init_guest_commpage()) { 2346 /* 2347 * With have_guest_base, the user has selected the address and 2348 * we are trying to work with that. Otherwise, we have selected 2349 * free space and init_guest_commpage must succeeded. 2350 */ 2351 assert(have_guest_base); 2352 pgb_fail_in_use(image_name); 2353 } 2354 2355 assert(QEMU_IS_ALIGNED(guest_base, align)); 2356 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2357 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2358 } 2359 2360 /* Load an ELF image into the address space. 2361 2362 IMAGE_NAME is the filename of the image, to use in error messages. 2363 IMAGE_FD is the open file descriptor for the image. 2364 2365 BPRM_BUF is a copy of the beginning of the file; this of course 2366 contains the elf file header at offset 0. It is assumed that this 2367 buffer is sufficiently aligned to present no problems to the host 2368 in accessing data at aligned offsets within the buffer. 2369 2370 On return: INFO values will be filled in, as necessary or available. */ 2371 2372 static void load_elf_image(const char *image_name, int image_fd, 2373 struct image_info *info, char **pinterp_name, 2374 char bprm_buf[BPRM_BUF_SIZE]) 2375 { 2376 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2377 struct elf_phdr *phdr; 2378 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2379 int i, retval; 2380 const char *errmsg; 2381 2382 /* First of all, some simple consistency checks */ 2383 errmsg = "Invalid ELF image for this architecture"; 2384 if (!elf_check_ident(ehdr)) { 2385 goto exit_errmsg; 2386 } 2387 bswap_ehdr(ehdr); 2388 if (!elf_check_ehdr(ehdr)) { 2389 goto exit_errmsg; 2390 } 2391 2392 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2393 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2394 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2395 } else { 2396 phdr = (struct elf_phdr *) alloca(i); 2397 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2398 if (retval != i) { 2399 goto exit_read; 2400 } 2401 } 2402 bswap_phdr(phdr, ehdr->e_phnum); 2403 2404 info->nsegs = 0; 2405 info->pt_dynamic_addr = 0; 2406 2407 mmap_lock(); 2408 2409 /* Find the maximum size of the image and allocate an appropriate 2410 amount of memory to handle that. */ 2411 loaddr = -1, hiaddr = 0; 2412 info->alignment = 0; 2413 for (i = 0; i < ehdr->e_phnum; ++i) { 2414 if (phdr[i].p_type == PT_LOAD) { 2415 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2416 if (a < loaddr) { 2417 loaddr = a; 2418 } 2419 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2420 if (a > hiaddr) { 2421 hiaddr = a; 2422 } 2423 ++info->nsegs; 2424 info->alignment |= phdr[i].p_align; 2425 } 2426 } 2427 2428 if (pinterp_name != NULL) { 2429 /* 2430 * This is the main executable. 2431 * 2432 * Reserve extra space for brk. 2433 * We hold on to this space while placing the interpreter 2434 * and the stack, lest they be placed immediately after 2435 * the data segment and block allocation from the brk. 2436 * 2437 * 16MB is chosen as "large enough" without being so large 2438 * as to allow the result to not fit with a 32-bit guest on 2439 * a 32-bit host. 2440 */ 2441 info->reserve_brk = 16 * MiB; 2442 hiaddr += info->reserve_brk; 2443 2444 if (ehdr->e_type == ET_EXEC) { 2445 /* 2446 * Make sure that the low address does not conflict with 2447 * MMAP_MIN_ADDR or the QEMU application itself. 2448 */ 2449 probe_guest_base(image_name, loaddr, hiaddr); 2450 } else { 2451 /* 2452 * The binary is dynamic, but we still need to 2453 * select guest_base. In this case we pass a size. 2454 */ 2455 probe_guest_base(image_name, 0, hiaddr - loaddr); 2456 } 2457 } 2458 2459 /* 2460 * Reserve address space for all of this. 2461 * 2462 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2463 * exactly the address range that is required. 2464 * 2465 * Otherwise this is ET_DYN, and we are searching for a location 2466 * that can hold the memory space required. If the image is 2467 * pre-linked, LOADDR will be non-zero, and the kernel should 2468 * honor that address if it happens to be free. 2469 * 2470 * In both cases, we will overwrite pages in this range with mappings 2471 * from the executable. 2472 */ 2473 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2474 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2475 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2476 -1, 0); 2477 if (load_addr == -1) { 2478 goto exit_perror; 2479 } 2480 load_bias = load_addr - loaddr; 2481 2482 if (elf_is_fdpic(ehdr)) { 2483 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2484 g_malloc(sizeof(*loadsegs) * info->nsegs); 2485 2486 for (i = 0; i < ehdr->e_phnum; ++i) { 2487 switch (phdr[i].p_type) { 2488 case PT_DYNAMIC: 2489 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2490 break; 2491 case PT_LOAD: 2492 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2493 loadsegs->p_vaddr = phdr[i].p_vaddr; 2494 loadsegs->p_memsz = phdr[i].p_memsz; 2495 ++loadsegs; 2496 break; 2497 } 2498 } 2499 } 2500 2501 info->load_bias = load_bias; 2502 info->code_offset = load_bias; 2503 info->data_offset = load_bias; 2504 info->load_addr = load_addr; 2505 info->entry = ehdr->e_entry + load_bias; 2506 info->start_code = -1; 2507 info->end_code = 0; 2508 info->start_data = -1; 2509 info->end_data = 0; 2510 info->brk = 0; 2511 info->elf_flags = ehdr->e_flags; 2512 2513 for (i = 0; i < ehdr->e_phnum; i++) { 2514 struct elf_phdr *eppnt = phdr + i; 2515 if (eppnt->p_type == PT_LOAD) { 2516 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2517 int elf_prot = 0; 2518 2519 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2520 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2521 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2522 2523 vaddr = load_bias + eppnt->p_vaddr; 2524 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2525 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2526 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2527 2528 /* 2529 * Some segments may be completely empty without any backing file 2530 * segment, in that case just let zero_bss allocate an empty buffer 2531 * for it. 2532 */ 2533 if (eppnt->p_filesz != 0) { 2534 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2535 MAP_PRIVATE | MAP_FIXED, 2536 image_fd, eppnt->p_offset - vaddr_po); 2537 2538 if (error == -1) { 2539 goto exit_perror; 2540 } 2541 } 2542 2543 vaddr_ef = vaddr + eppnt->p_filesz; 2544 vaddr_em = vaddr + eppnt->p_memsz; 2545 2546 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2547 if (vaddr_ef < vaddr_em) { 2548 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2549 } 2550 2551 /* Find the full program boundaries. */ 2552 if (elf_prot & PROT_EXEC) { 2553 if (vaddr < info->start_code) { 2554 info->start_code = vaddr; 2555 } 2556 if (vaddr_ef > info->end_code) { 2557 info->end_code = vaddr_ef; 2558 } 2559 } 2560 if (elf_prot & PROT_WRITE) { 2561 if (vaddr < info->start_data) { 2562 info->start_data = vaddr; 2563 } 2564 if (vaddr_ef > info->end_data) { 2565 info->end_data = vaddr_ef; 2566 } 2567 if (vaddr_em > info->brk) { 2568 info->brk = vaddr_em; 2569 } 2570 } 2571 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2572 char *interp_name; 2573 2574 if (*pinterp_name) { 2575 errmsg = "Multiple PT_INTERP entries"; 2576 goto exit_errmsg; 2577 } 2578 interp_name = malloc(eppnt->p_filesz); 2579 if (!interp_name) { 2580 goto exit_perror; 2581 } 2582 2583 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2584 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2585 eppnt->p_filesz); 2586 } else { 2587 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2588 eppnt->p_offset); 2589 if (retval != eppnt->p_filesz) { 2590 goto exit_perror; 2591 } 2592 } 2593 if (interp_name[eppnt->p_filesz - 1] != 0) { 2594 errmsg = "Invalid PT_INTERP entry"; 2595 goto exit_errmsg; 2596 } 2597 *pinterp_name = interp_name; 2598 #ifdef TARGET_MIPS 2599 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2600 Mips_elf_abiflags_v0 abiflags; 2601 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2602 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2603 goto exit_errmsg; 2604 } 2605 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2606 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2607 sizeof(Mips_elf_abiflags_v0)); 2608 } else { 2609 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2610 eppnt->p_offset); 2611 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2612 goto exit_perror; 2613 } 2614 } 2615 bswap_mips_abiflags(&abiflags); 2616 info->fp_abi = abiflags.fp_abi; 2617 #endif 2618 } 2619 } 2620 2621 if (info->end_data == 0) { 2622 info->start_data = info->end_code; 2623 info->end_data = info->end_code; 2624 info->brk = info->end_code; 2625 } 2626 2627 if (qemu_log_enabled()) { 2628 load_symbols(ehdr, image_fd, load_bias); 2629 } 2630 2631 mmap_unlock(); 2632 2633 close(image_fd); 2634 return; 2635 2636 exit_read: 2637 if (retval >= 0) { 2638 errmsg = "Incomplete read of file header"; 2639 goto exit_errmsg; 2640 } 2641 exit_perror: 2642 errmsg = strerror(errno); 2643 exit_errmsg: 2644 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2645 exit(-1); 2646 } 2647 2648 static void load_elf_interp(const char *filename, struct image_info *info, 2649 char bprm_buf[BPRM_BUF_SIZE]) 2650 { 2651 int fd, retval; 2652 2653 fd = open(path(filename), O_RDONLY); 2654 if (fd < 0) { 2655 goto exit_perror; 2656 } 2657 2658 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2659 if (retval < 0) { 2660 goto exit_perror; 2661 } 2662 if (retval < BPRM_BUF_SIZE) { 2663 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2664 } 2665 2666 load_elf_image(filename, fd, info, NULL, bprm_buf); 2667 return; 2668 2669 exit_perror: 2670 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2671 exit(-1); 2672 } 2673 2674 static int symfind(const void *s0, const void *s1) 2675 { 2676 target_ulong addr = *(target_ulong *)s0; 2677 struct elf_sym *sym = (struct elf_sym *)s1; 2678 int result = 0; 2679 if (addr < sym->st_value) { 2680 result = -1; 2681 } else if (addr >= sym->st_value + sym->st_size) { 2682 result = 1; 2683 } 2684 return result; 2685 } 2686 2687 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2688 { 2689 #if ELF_CLASS == ELFCLASS32 2690 struct elf_sym *syms = s->disas_symtab.elf32; 2691 #else 2692 struct elf_sym *syms = s->disas_symtab.elf64; 2693 #endif 2694 2695 // binary search 2696 struct elf_sym *sym; 2697 2698 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2699 if (sym != NULL) { 2700 return s->disas_strtab + sym->st_name; 2701 } 2702 2703 return ""; 2704 } 2705 2706 /* FIXME: This should use elf_ops.h */ 2707 static int symcmp(const void *s0, const void *s1) 2708 { 2709 struct elf_sym *sym0 = (struct elf_sym *)s0; 2710 struct elf_sym *sym1 = (struct elf_sym *)s1; 2711 return (sym0->st_value < sym1->st_value) 2712 ? -1 2713 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2714 } 2715 2716 /* Best attempt to load symbols from this ELF object. */ 2717 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2718 { 2719 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2720 uint64_t segsz; 2721 struct elf_shdr *shdr; 2722 char *strings = NULL; 2723 struct syminfo *s = NULL; 2724 struct elf_sym *new_syms, *syms = NULL; 2725 2726 shnum = hdr->e_shnum; 2727 i = shnum * sizeof(struct elf_shdr); 2728 shdr = (struct elf_shdr *)alloca(i); 2729 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2730 return; 2731 } 2732 2733 bswap_shdr(shdr, shnum); 2734 for (i = 0; i < shnum; ++i) { 2735 if (shdr[i].sh_type == SHT_SYMTAB) { 2736 sym_idx = i; 2737 str_idx = shdr[i].sh_link; 2738 goto found; 2739 } 2740 } 2741 2742 /* There will be no symbol table if the file was stripped. */ 2743 return; 2744 2745 found: 2746 /* Now know where the strtab and symtab are. Snarf them. */ 2747 s = g_try_new(struct syminfo, 1); 2748 if (!s) { 2749 goto give_up; 2750 } 2751 2752 segsz = shdr[str_idx].sh_size; 2753 s->disas_strtab = strings = g_try_malloc(segsz); 2754 if (!strings || 2755 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2756 goto give_up; 2757 } 2758 2759 segsz = shdr[sym_idx].sh_size; 2760 syms = g_try_malloc(segsz); 2761 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2762 goto give_up; 2763 } 2764 2765 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2766 /* Implausibly large symbol table: give up rather than ploughing 2767 * on with the number of symbols calculation overflowing 2768 */ 2769 goto give_up; 2770 } 2771 nsyms = segsz / sizeof(struct elf_sym); 2772 for (i = 0; i < nsyms; ) { 2773 bswap_sym(syms + i); 2774 /* Throw away entries which we do not need. */ 2775 if (syms[i].st_shndx == SHN_UNDEF 2776 || syms[i].st_shndx >= SHN_LORESERVE 2777 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2778 if (i < --nsyms) { 2779 syms[i] = syms[nsyms]; 2780 } 2781 } else { 2782 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2783 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2784 syms[i].st_value &= ~(target_ulong)1; 2785 #endif 2786 syms[i].st_value += load_bias; 2787 i++; 2788 } 2789 } 2790 2791 /* No "useful" symbol. */ 2792 if (nsyms == 0) { 2793 goto give_up; 2794 } 2795 2796 /* Attempt to free the storage associated with the local symbols 2797 that we threw away. Whether or not this has any effect on the 2798 memory allocation depends on the malloc implementation and how 2799 many symbols we managed to discard. */ 2800 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2801 if (new_syms == NULL) { 2802 goto give_up; 2803 } 2804 syms = new_syms; 2805 2806 qsort(syms, nsyms, sizeof(*syms), symcmp); 2807 2808 s->disas_num_syms = nsyms; 2809 #if ELF_CLASS == ELFCLASS32 2810 s->disas_symtab.elf32 = syms; 2811 #else 2812 s->disas_symtab.elf64 = syms; 2813 #endif 2814 s->lookup_symbol = lookup_symbolxx; 2815 s->next = syminfos; 2816 syminfos = s; 2817 2818 return; 2819 2820 give_up: 2821 g_free(s); 2822 g_free(strings); 2823 g_free(syms); 2824 } 2825 2826 uint32_t get_elf_eflags(int fd) 2827 { 2828 struct elfhdr ehdr; 2829 off_t offset; 2830 int ret; 2831 2832 /* Read ELF header */ 2833 offset = lseek(fd, 0, SEEK_SET); 2834 if (offset == (off_t) -1) { 2835 return 0; 2836 } 2837 ret = read(fd, &ehdr, sizeof(ehdr)); 2838 if (ret < sizeof(ehdr)) { 2839 return 0; 2840 } 2841 offset = lseek(fd, offset, SEEK_SET); 2842 if (offset == (off_t) -1) { 2843 return 0; 2844 } 2845 2846 /* Check ELF signature */ 2847 if (!elf_check_ident(&ehdr)) { 2848 return 0; 2849 } 2850 2851 /* check header */ 2852 bswap_ehdr(&ehdr); 2853 if (!elf_check_ehdr(&ehdr)) { 2854 return 0; 2855 } 2856 2857 /* return architecture id */ 2858 return ehdr.e_flags; 2859 } 2860 2861 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2862 { 2863 struct image_info interp_info; 2864 struct elfhdr elf_ex; 2865 char *elf_interpreter = NULL; 2866 char *scratch; 2867 2868 memset(&interp_info, 0, sizeof(interp_info)); 2869 #ifdef TARGET_MIPS 2870 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 2871 #endif 2872 2873 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2874 2875 load_elf_image(bprm->filename, bprm->fd, info, 2876 &elf_interpreter, bprm->buf); 2877 2878 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2879 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2880 when we load the interpreter. */ 2881 elf_ex = *(struct elfhdr *)bprm->buf; 2882 2883 /* Do this so that we can load the interpreter, if need be. We will 2884 change some of these later */ 2885 bprm->p = setup_arg_pages(bprm, info); 2886 2887 scratch = g_new0(char, TARGET_PAGE_SIZE); 2888 if (STACK_GROWS_DOWN) { 2889 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2890 bprm->p, info->stack_limit); 2891 info->file_string = bprm->p; 2892 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2893 bprm->p, info->stack_limit); 2894 info->env_strings = bprm->p; 2895 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2896 bprm->p, info->stack_limit); 2897 info->arg_strings = bprm->p; 2898 } else { 2899 info->arg_strings = bprm->p; 2900 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2901 bprm->p, info->stack_limit); 2902 info->env_strings = bprm->p; 2903 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2904 bprm->p, info->stack_limit); 2905 info->file_string = bprm->p; 2906 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2907 bprm->p, info->stack_limit); 2908 } 2909 2910 g_free(scratch); 2911 2912 if (!bprm->p) { 2913 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2914 exit(-1); 2915 } 2916 2917 if (elf_interpreter) { 2918 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2919 2920 /* If the program interpreter is one of these two, then assume 2921 an iBCS2 image. Otherwise assume a native linux image. */ 2922 2923 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2924 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2925 info->personality = PER_SVR4; 2926 2927 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2928 and some applications "depend" upon this behavior. Since 2929 we do not have the power to recompile these, we emulate 2930 the SVr4 behavior. Sigh. */ 2931 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2932 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2933 } 2934 #ifdef TARGET_MIPS 2935 info->interp_fp_abi = interp_info.fp_abi; 2936 #endif 2937 } 2938 2939 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2940 info, (elf_interpreter ? &interp_info : NULL)); 2941 info->start_stack = bprm->p; 2942 2943 /* If we have an interpreter, set that as the program's entry point. 2944 Copy the load_bias as well, to help PPC64 interpret the entry 2945 point as a function descriptor. Do this after creating elf tables 2946 so that we copy the original program entry point into the AUXV. */ 2947 if (elf_interpreter) { 2948 info->load_bias = interp_info.load_bias; 2949 info->entry = interp_info.entry; 2950 free(elf_interpreter); 2951 } 2952 2953 #ifdef USE_ELF_CORE_DUMP 2954 bprm->core_dump = &elf_core_dump; 2955 #endif 2956 2957 /* 2958 * If we reserved extra space for brk, release it now. 2959 * The implementation of do_brk in syscalls.c expects to be able 2960 * to mmap pages in this space. 2961 */ 2962 if (info->reserve_brk) { 2963 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 2964 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 2965 target_munmap(start_brk, end_brk - start_brk); 2966 } 2967 2968 return 0; 2969 } 2970 2971 #ifdef USE_ELF_CORE_DUMP 2972 /* 2973 * Definitions to generate Intel SVR4-like core files. 2974 * These mostly have the same names as the SVR4 types with "target_elf_" 2975 * tacked on the front to prevent clashes with linux definitions, 2976 * and the typedef forms have been avoided. This is mostly like 2977 * the SVR4 structure, but more Linuxy, with things that Linux does 2978 * not support and which gdb doesn't really use excluded. 2979 * 2980 * Fields we don't dump (their contents is zero) in linux-user qemu 2981 * are marked with XXX. 2982 * 2983 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2984 * 2985 * Porting ELF coredump for target is (quite) simple process. First you 2986 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2987 * the target resides): 2988 * 2989 * #define USE_ELF_CORE_DUMP 2990 * 2991 * Next you define type of register set used for dumping. ELF specification 2992 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2993 * 2994 * typedef <target_regtype> target_elf_greg_t; 2995 * #define ELF_NREG <number of registers> 2996 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2997 * 2998 * Last step is to implement target specific function that copies registers 2999 * from given cpu into just specified register set. Prototype is: 3000 * 3001 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3002 * const CPUArchState *env); 3003 * 3004 * Parameters: 3005 * regs - copy register values into here (allocated and zeroed by caller) 3006 * env - copy registers from here 3007 * 3008 * Example for ARM target is provided in this file. 3009 */ 3010 3011 /* An ELF note in memory */ 3012 struct memelfnote { 3013 const char *name; 3014 size_t namesz; 3015 size_t namesz_rounded; 3016 int type; 3017 size_t datasz; 3018 size_t datasz_rounded; 3019 void *data; 3020 size_t notesz; 3021 }; 3022 3023 struct target_elf_siginfo { 3024 abi_int si_signo; /* signal number */ 3025 abi_int si_code; /* extra code */ 3026 abi_int si_errno; /* errno */ 3027 }; 3028 3029 struct target_elf_prstatus { 3030 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3031 abi_short pr_cursig; /* Current signal */ 3032 abi_ulong pr_sigpend; /* XXX */ 3033 abi_ulong pr_sighold; /* XXX */ 3034 target_pid_t pr_pid; 3035 target_pid_t pr_ppid; 3036 target_pid_t pr_pgrp; 3037 target_pid_t pr_sid; 3038 struct target_timeval pr_utime; /* XXX User time */ 3039 struct target_timeval pr_stime; /* XXX System time */ 3040 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3041 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3042 target_elf_gregset_t pr_reg; /* GP registers */ 3043 abi_int pr_fpvalid; /* XXX */ 3044 }; 3045 3046 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3047 3048 struct target_elf_prpsinfo { 3049 char pr_state; /* numeric process state */ 3050 char pr_sname; /* char for pr_state */ 3051 char pr_zomb; /* zombie */ 3052 char pr_nice; /* nice val */ 3053 abi_ulong pr_flag; /* flags */ 3054 target_uid_t pr_uid; 3055 target_gid_t pr_gid; 3056 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3057 /* Lots missing */ 3058 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3059 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3060 }; 3061 3062 /* Here is the structure in which status of each thread is captured. */ 3063 struct elf_thread_status { 3064 QTAILQ_ENTRY(elf_thread_status) ets_link; 3065 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3066 #if 0 3067 elf_fpregset_t fpu; /* NT_PRFPREG */ 3068 struct task_struct *thread; 3069 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3070 #endif 3071 struct memelfnote notes[1]; 3072 int num_notes; 3073 }; 3074 3075 struct elf_note_info { 3076 struct memelfnote *notes; 3077 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3078 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3079 3080 QTAILQ_HEAD(, elf_thread_status) thread_list; 3081 #if 0 3082 /* 3083 * Current version of ELF coredump doesn't support 3084 * dumping fp regs etc. 3085 */ 3086 elf_fpregset_t *fpu; 3087 elf_fpxregset_t *xfpu; 3088 int thread_status_size; 3089 #endif 3090 int notes_size; 3091 int numnote; 3092 }; 3093 3094 struct vm_area_struct { 3095 target_ulong vma_start; /* start vaddr of memory region */ 3096 target_ulong vma_end; /* end vaddr of memory region */ 3097 abi_ulong vma_flags; /* protection etc. flags for the region */ 3098 QTAILQ_ENTRY(vm_area_struct) vma_link; 3099 }; 3100 3101 struct mm_struct { 3102 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3103 int mm_count; /* number of mappings */ 3104 }; 3105 3106 static struct mm_struct *vma_init(void); 3107 static void vma_delete(struct mm_struct *); 3108 static int vma_add_mapping(struct mm_struct *, target_ulong, 3109 target_ulong, abi_ulong); 3110 static int vma_get_mapping_count(const struct mm_struct *); 3111 static struct vm_area_struct *vma_first(const struct mm_struct *); 3112 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3113 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3114 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3115 unsigned long flags); 3116 3117 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3118 static void fill_note(struct memelfnote *, const char *, int, 3119 unsigned int, void *); 3120 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3121 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3122 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3123 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3124 static size_t note_size(const struct memelfnote *); 3125 static void free_note_info(struct elf_note_info *); 3126 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3127 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3128 static int core_dump_filename(const TaskState *, char *, size_t); 3129 3130 static int dump_write(int, const void *, size_t); 3131 static int write_note(struct memelfnote *, int); 3132 static int write_note_info(struct elf_note_info *, int); 3133 3134 #ifdef BSWAP_NEEDED 3135 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3136 { 3137 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3138 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3139 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3140 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3141 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3142 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3143 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3144 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3145 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3146 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3147 /* cpu times are not filled, so we skip them */ 3148 /* regs should be in correct format already */ 3149 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3150 } 3151 3152 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3153 { 3154 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3155 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3156 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3157 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3158 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3159 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3160 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3161 } 3162 3163 static void bswap_note(struct elf_note *en) 3164 { 3165 bswap32s(&en->n_namesz); 3166 bswap32s(&en->n_descsz); 3167 bswap32s(&en->n_type); 3168 } 3169 #else 3170 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3171 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3172 static inline void bswap_note(struct elf_note *en) { } 3173 #endif /* BSWAP_NEEDED */ 3174 3175 /* 3176 * Minimal support for linux memory regions. These are needed 3177 * when we are finding out what memory exactly belongs to 3178 * emulated process. No locks needed here, as long as 3179 * thread that received the signal is stopped. 3180 */ 3181 3182 static struct mm_struct *vma_init(void) 3183 { 3184 struct mm_struct *mm; 3185 3186 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3187 return (NULL); 3188 3189 mm->mm_count = 0; 3190 QTAILQ_INIT(&mm->mm_mmap); 3191 3192 return (mm); 3193 } 3194 3195 static void vma_delete(struct mm_struct *mm) 3196 { 3197 struct vm_area_struct *vma; 3198 3199 while ((vma = vma_first(mm)) != NULL) { 3200 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3201 g_free(vma); 3202 } 3203 g_free(mm); 3204 } 3205 3206 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3207 target_ulong end, abi_ulong flags) 3208 { 3209 struct vm_area_struct *vma; 3210 3211 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3212 return (-1); 3213 3214 vma->vma_start = start; 3215 vma->vma_end = end; 3216 vma->vma_flags = flags; 3217 3218 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3219 mm->mm_count++; 3220 3221 return (0); 3222 } 3223 3224 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3225 { 3226 return (QTAILQ_FIRST(&mm->mm_mmap)); 3227 } 3228 3229 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3230 { 3231 return (QTAILQ_NEXT(vma, vma_link)); 3232 } 3233 3234 static int vma_get_mapping_count(const struct mm_struct *mm) 3235 { 3236 return (mm->mm_count); 3237 } 3238 3239 /* 3240 * Calculate file (dump) size of given memory region. 3241 */ 3242 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3243 { 3244 /* if we cannot even read the first page, skip it */ 3245 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3246 return (0); 3247 3248 /* 3249 * Usually we don't dump executable pages as they contain 3250 * non-writable code that debugger can read directly from 3251 * target library etc. However, thread stacks are marked 3252 * also executable so we read in first page of given region 3253 * and check whether it contains elf header. If there is 3254 * no elf header, we dump it. 3255 */ 3256 if (vma->vma_flags & PROT_EXEC) { 3257 char page[TARGET_PAGE_SIZE]; 3258 3259 copy_from_user(page, vma->vma_start, sizeof (page)); 3260 if ((page[EI_MAG0] == ELFMAG0) && 3261 (page[EI_MAG1] == ELFMAG1) && 3262 (page[EI_MAG2] == ELFMAG2) && 3263 (page[EI_MAG3] == ELFMAG3)) { 3264 /* 3265 * Mappings are possibly from ELF binary. Don't dump 3266 * them. 3267 */ 3268 return (0); 3269 } 3270 } 3271 3272 return (vma->vma_end - vma->vma_start); 3273 } 3274 3275 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3276 unsigned long flags) 3277 { 3278 struct mm_struct *mm = (struct mm_struct *)priv; 3279 3280 vma_add_mapping(mm, start, end, flags); 3281 return (0); 3282 } 3283 3284 static void fill_note(struct memelfnote *note, const char *name, int type, 3285 unsigned int sz, void *data) 3286 { 3287 unsigned int namesz; 3288 3289 namesz = strlen(name) + 1; 3290 note->name = name; 3291 note->namesz = namesz; 3292 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3293 note->type = type; 3294 note->datasz = sz; 3295 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3296 3297 note->data = data; 3298 3299 /* 3300 * We calculate rounded up note size here as specified by 3301 * ELF document. 3302 */ 3303 note->notesz = sizeof (struct elf_note) + 3304 note->namesz_rounded + note->datasz_rounded; 3305 } 3306 3307 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3308 uint32_t flags) 3309 { 3310 (void) memset(elf, 0, sizeof(*elf)); 3311 3312 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3313 elf->e_ident[EI_CLASS] = ELF_CLASS; 3314 elf->e_ident[EI_DATA] = ELF_DATA; 3315 elf->e_ident[EI_VERSION] = EV_CURRENT; 3316 elf->e_ident[EI_OSABI] = ELF_OSABI; 3317 3318 elf->e_type = ET_CORE; 3319 elf->e_machine = machine; 3320 elf->e_version = EV_CURRENT; 3321 elf->e_phoff = sizeof(struct elfhdr); 3322 elf->e_flags = flags; 3323 elf->e_ehsize = sizeof(struct elfhdr); 3324 elf->e_phentsize = sizeof(struct elf_phdr); 3325 elf->e_phnum = segs; 3326 3327 bswap_ehdr(elf); 3328 } 3329 3330 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3331 { 3332 phdr->p_type = PT_NOTE; 3333 phdr->p_offset = offset; 3334 phdr->p_vaddr = 0; 3335 phdr->p_paddr = 0; 3336 phdr->p_filesz = sz; 3337 phdr->p_memsz = 0; 3338 phdr->p_flags = 0; 3339 phdr->p_align = 0; 3340 3341 bswap_phdr(phdr, 1); 3342 } 3343 3344 static size_t note_size(const struct memelfnote *note) 3345 { 3346 return (note->notesz); 3347 } 3348 3349 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3350 const TaskState *ts, int signr) 3351 { 3352 (void) memset(prstatus, 0, sizeof (*prstatus)); 3353 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3354 prstatus->pr_pid = ts->ts_tid; 3355 prstatus->pr_ppid = getppid(); 3356 prstatus->pr_pgrp = getpgrp(); 3357 prstatus->pr_sid = getsid(0); 3358 3359 bswap_prstatus(prstatus); 3360 } 3361 3362 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3363 { 3364 char *base_filename; 3365 unsigned int i, len; 3366 3367 (void) memset(psinfo, 0, sizeof (*psinfo)); 3368 3369 len = ts->info->arg_end - ts->info->arg_start; 3370 if (len >= ELF_PRARGSZ) 3371 len = ELF_PRARGSZ - 1; 3372 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3373 return -EFAULT; 3374 for (i = 0; i < len; i++) 3375 if (psinfo->pr_psargs[i] == 0) 3376 psinfo->pr_psargs[i] = ' '; 3377 psinfo->pr_psargs[len] = 0; 3378 3379 psinfo->pr_pid = getpid(); 3380 psinfo->pr_ppid = getppid(); 3381 psinfo->pr_pgrp = getpgrp(); 3382 psinfo->pr_sid = getsid(0); 3383 psinfo->pr_uid = getuid(); 3384 psinfo->pr_gid = getgid(); 3385 3386 base_filename = g_path_get_basename(ts->bprm->filename); 3387 /* 3388 * Using strncpy here is fine: at max-length, 3389 * this field is not NUL-terminated. 3390 */ 3391 (void) strncpy(psinfo->pr_fname, base_filename, 3392 sizeof(psinfo->pr_fname)); 3393 3394 g_free(base_filename); 3395 bswap_psinfo(psinfo); 3396 return (0); 3397 } 3398 3399 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3400 { 3401 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3402 elf_addr_t orig_auxv = auxv; 3403 void *ptr; 3404 int len = ts->info->auxv_len; 3405 3406 /* 3407 * Auxiliary vector is stored in target process stack. It contains 3408 * {type, value} pairs that we need to dump into note. This is not 3409 * strictly necessary but we do it here for sake of completeness. 3410 */ 3411 3412 /* read in whole auxv vector and copy it to memelfnote */ 3413 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3414 if (ptr != NULL) { 3415 fill_note(note, "CORE", NT_AUXV, len, ptr); 3416 unlock_user(ptr, auxv, len); 3417 } 3418 } 3419 3420 /* 3421 * Constructs name of coredump file. We have following convention 3422 * for the name: 3423 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3424 * 3425 * Returns 0 in case of success, -1 otherwise (errno is set). 3426 */ 3427 static int core_dump_filename(const TaskState *ts, char *buf, 3428 size_t bufsize) 3429 { 3430 char timestamp[64]; 3431 char *base_filename = NULL; 3432 struct timeval tv; 3433 struct tm tm; 3434 3435 assert(bufsize >= PATH_MAX); 3436 3437 if (gettimeofday(&tv, NULL) < 0) { 3438 (void) fprintf(stderr, "unable to get current timestamp: %s", 3439 strerror(errno)); 3440 return (-1); 3441 } 3442 3443 base_filename = g_path_get_basename(ts->bprm->filename); 3444 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3445 localtime_r(&tv.tv_sec, &tm)); 3446 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3447 base_filename, timestamp, (int)getpid()); 3448 g_free(base_filename); 3449 3450 return (0); 3451 } 3452 3453 static int dump_write(int fd, const void *ptr, size_t size) 3454 { 3455 const char *bufp = (const char *)ptr; 3456 ssize_t bytes_written, bytes_left; 3457 struct rlimit dumpsize; 3458 off_t pos; 3459 3460 bytes_written = 0; 3461 getrlimit(RLIMIT_CORE, &dumpsize); 3462 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3463 if (errno == ESPIPE) { /* not a seekable stream */ 3464 bytes_left = size; 3465 } else { 3466 return pos; 3467 } 3468 } else { 3469 if (dumpsize.rlim_cur <= pos) { 3470 return -1; 3471 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3472 bytes_left = size; 3473 } else { 3474 size_t limit_left=dumpsize.rlim_cur - pos; 3475 bytes_left = limit_left >= size ? size : limit_left ; 3476 } 3477 } 3478 3479 /* 3480 * In normal conditions, single write(2) should do but 3481 * in case of socket etc. this mechanism is more portable. 3482 */ 3483 do { 3484 bytes_written = write(fd, bufp, bytes_left); 3485 if (bytes_written < 0) { 3486 if (errno == EINTR) 3487 continue; 3488 return (-1); 3489 } else if (bytes_written == 0) { /* eof */ 3490 return (-1); 3491 } 3492 bufp += bytes_written; 3493 bytes_left -= bytes_written; 3494 } while (bytes_left > 0); 3495 3496 return (0); 3497 } 3498 3499 static int write_note(struct memelfnote *men, int fd) 3500 { 3501 struct elf_note en; 3502 3503 en.n_namesz = men->namesz; 3504 en.n_type = men->type; 3505 en.n_descsz = men->datasz; 3506 3507 bswap_note(&en); 3508 3509 if (dump_write(fd, &en, sizeof(en)) != 0) 3510 return (-1); 3511 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3512 return (-1); 3513 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3514 return (-1); 3515 3516 return (0); 3517 } 3518 3519 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3520 { 3521 CPUState *cpu = env_cpu((CPUArchState *)env); 3522 TaskState *ts = (TaskState *)cpu->opaque; 3523 struct elf_thread_status *ets; 3524 3525 ets = g_malloc0(sizeof (*ets)); 3526 ets->num_notes = 1; /* only prstatus is dumped */ 3527 fill_prstatus(&ets->prstatus, ts, 0); 3528 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3529 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3530 &ets->prstatus); 3531 3532 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3533 3534 info->notes_size += note_size(&ets->notes[0]); 3535 } 3536 3537 static void init_note_info(struct elf_note_info *info) 3538 { 3539 /* Initialize the elf_note_info structure so that it is at 3540 * least safe to call free_note_info() on it. Must be 3541 * called before calling fill_note_info(). 3542 */ 3543 memset(info, 0, sizeof (*info)); 3544 QTAILQ_INIT(&info->thread_list); 3545 } 3546 3547 static int fill_note_info(struct elf_note_info *info, 3548 long signr, const CPUArchState *env) 3549 { 3550 #define NUMNOTES 3 3551 CPUState *cpu = env_cpu((CPUArchState *)env); 3552 TaskState *ts = (TaskState *)cpu->opaque; 3553 int i; 3554 3555 info->notes = g_new0(struct memelfnote, NUMNOTES); 3556 if (info->notes == NULL) 3557 return (-ENOMEM); 3558 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3559 if (info->prstatus == NULL) 3560 return (-ENOMEM); 3561 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3562 if (info->prstatus == NULL) 3563 return (-ENOMEM); 3564 3565 /* 3566 * First fill in status (and registers) of current thread 3567 * including process info & aux vector. 3568 */ 3569 fill_prstatus(info->prstatus, ts, signr); 3570 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3571 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3572 sizeof (*info->prstatus), info->prstatus); 3573 fill_psinfo(info->psinfo, ts); 3574 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3575 sizeof (*info->psinfo), info->psinfo); 3576 fill_auxv_note(&info->notes[2], ts); 3577 info->numnote = 3; 3578 3579 info->notes_size = 0; 3580 for (i = 0; i < info->numnote; i++) 3581 info->notes_size += note_size(&info->notes[i]); 3582 3583 /* read and fill status of all threads */ 3584 cpu_list_lock(); 3585 CPU_FOREACH(cpu) { 3586 if (cpu == thread_cpu) { 3587 continue; 3588 } 3589 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3590 } 3591 cpu_list_unlock(); 3592 3593 return (0); 3594 } 3595 3596 static void free_note_info(struct elf_note_info *info) 3597 { 3598 struct elf_thread_status *ets; 3599 3600 while (!QTAILQ_EMPTY(&info->thread_list)) { 3601 ets = QTAILQ_FIRST(&info->thread_list); 3602 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3603 g_free(ets); 3604 } 3605 3606 g_free(info->prstatus); 3607 g_free(info->psinfo); 3608 g_free(info->notes); 3609 } 3610 3611 static int write_note_info(struct elf_note_info *info, int fd) 3612 { 3613 struct elf_thread_status *ets; 3614 int i, error = 0; 3615 3616 /* write prstatus, psinfo and auxv for current thread */ 3617 for (i = 0; i < info->numnote; i++) 3618 if ((error = write_note(&info->notes[i], fd)) != 0) 3619 return (error); 3620 3621 /* write prstatus for each thread */ 3622 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3623 if ((error = write_note(&ets->notes[0], fd)) != 0) 3624 return (error); 3625 } 3626 3627 return (0); 3628 } 3629 3630 /* 3631 * Write out ELF coredump. 3632 * 3633 * See documentation of ELF object file format in: 3634 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3635 * 3636 * Coredump format in linux is following: 3637 * 3638 * 0 +----------------------+ \ 3639 * | ELF header | ET_CORE | 3640 * +----------------------+ | 3641 * | ELF program headers | |--- headers 3642 * | - NOTE section | | 3643 * | - PT_LOAD sections | | 3644 * +----------------------+ / 3645 * | NOTEs: | 3646 * | - NT_PRSTATUS | 3647 * | - NT_PRSINFO | 3648 * | - NT_AUXV | 3649 * +----------------------+ <-- aligned to target page 3650 * | Process memory dump | 3651 * : : 3652 * . . 3653 * : : 3654 * | | 3655 * +----------------------+ 3656 * 3657 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3658 * NT_PRSINFO -> struct elf_prpsinfo 3659 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3660 * 3661 * Format follows System V format as close as possible. Current 3662 * version limitations are as follows: 3663 * - no floating point registers are dumped 3664 * 3665 * Function returns 0 in case of success, negative errno otherwise. 3666 * 3667 * TODO: make this work also during runtime: it should be 3668 * possible to force coredump from running process and then 3669 * continue processing. For example qemu could set up SIGUSR2 3670 * handler (provided that target process haven't registered 3671 * handler for that) that does the dump when signal is received. 3672 */ 3673 static int elf_core_dump(int signr, const CPUArchState *env) 3674 { 3675 const CPUState *cpu = env_cpu((CPUArchState *)env); 3676 const TaskState *ts = (const TaskState *)cpu->opaque; 3677 struct vm_area_struct *vma = NULL; 3678 char corefile[PATH_MAX]; 3679 struct elf_note_info info; 3680 struct elfhdr elf; 3681 struct elf_phdr phdr; 3682 struct rlimit dumpsize; 3683 struct mm_struct *mm = NULL; 3684 off_t offset = 0, data_offset = 0; 3685 int segs = 0; 3686 int fd = -1; 3687 3688 init_note_info(&info); 3689 3690 errno = 0; 3691 getrlimit(RLIMIT_CORE, &dumpsize); 3692 if (dumpsize.rlim_cur == 0) 3693 return 0; 3694 3695 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3696 return (-errno); 3697 3698 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3699 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3700 return (-errno); 3701 3702 /* 3703 * Walk through target process memory mappings and 3704 * set up structure containing this information. After 3705 * this point vma_xxx functions can be used. 3706 */ 3707 if ((mm = vma_init()) == NULL) 3708 goto out; 3709 3710 walk_memory_regions(mm, vma_walker); 3711 segs = vma_get_mapping_count(mm); 3712 3713 /* 3714 * Construct valid coredump ELF header. We also 3715 * add one more segment for notes. 3716 */ 3717 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3718 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3719 goto out; 3720 3721 /* fill in the in-memory version of notes */ 3722 if (fill_note_info(&info, signr, env) < 0) 3723 goto out; 3724 3725 offset += sizeof (elf); /* elf header */ 3726 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3727 3728 /* write out notes program header */ 3729 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3730 3731 offset += info.notes_size; 3732 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3733 goto out; 3734 3735 /* 3736 * ELF specification wants data to start at page boundary so 3737 * we align it here. 3738 */ 3739 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3740 3741 /* 3742 * Write program headers for memory regions mapped in 3743 * the target process. 3744 */ 3745 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3746 (void) memset(&phdr, 0, sizeof (phdr)); 3747 3748 phdr.p_type = PT_LOAD; 3749 phdr.p_offset = offset; 3750 phdr.p_vaddr = vma->vma_start; 3751 phdr.p_paddr = 0; 3752 phdr.p_filesz = vma_dump_size(vma); 3753 offset += phdr.p_filesz; 3754 phdr.p_memsz = vma->vma_end - vma->vma_start; 3755 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3756 if (vma->vma_flags & PROT_WRITE) 3757 phdr.p_flags |= PF_W; 3758 if (vma->vma_flags & PROT_EXEC) 3759 phdr.p_flags |= PF_X; 3760 phdr.p_align = ELF_EXEC_PAGESIZE; 3761 3762 bswap_phdr(&phdr, 1); 3763 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3764 goto out; 3765 } 3766 } 3767 3768 /* 3769 * Next we write notes just after program headers. No 3770 * alignment needed here. 3771 */ 3772 if (write_note_info(&info, fd) < 0) 3773 goto out; 3774 3775 /* align data to page boundary */ 3776 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3777 goto out; 3778 3779 /* 3780 * Finally we can dump process memory into corefile as well. 3781 */ 3782 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3783 abi_ulong addr; 3784 abi_ulong end; 3785 3786 end = vma->vma_start + vma_dump_size(vma); 3787 3788 for (addr = vma->vma_start; addr < end; 3789 addr += TARGET_PAGE_SIZE) { 3790 char page[TARGET_PAGE_SIZE]; 3791 int error; 3792 3793 /* 3794 * Read in page from target process memory and 3795 * write it to coredump file. 3796 */ 3797 error = copy_from_user(page, addr, sizeof (page)); 3798 if (error != 0) { 3799 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3800 addr); 3801 errno = -error; 3802 goto out; 3803 } 3804 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3805 goto out; 3806 } 3807 } 3808 3809 out: 3810 free_note_info(&info); 3811 if (mm != NULL) 3812 vma_delete(mm); 3813 (void) close(fd); 3814 3815 if (errno != 0) 3816 return (-errno); 3817 return (0); 3818 } 3819 #endif /* USE_ELF_CORE_DUMP */ 3820 3821 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3822 { 3823 init_thread(regs, infop); 3824 } 3825