1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 /* this flag is uneffective under linux too, should be deleted */ 82 #ifndef MAP_DENYWRITE 83 #define MAP_DENYWRITE 0 84 #endif 85 86 /* should probably go in elf.h */ 87 #ifndef ELIBBAD 88 #define ELIBBAD 80 89 #endif 90 91 #ifdef TARGET_WORDS_BIGENDIAN 92 #define ELF_DATA ELFDATA2MSB 93 #else 94 #define ELF_DATA ELFDATA2LSB 95 #endif 96 97 #ifdef TARGET_ABI_MIPSN32 98 typedef abi_ullong target_elf_greg_t; 99 #define tswapreg(ptr) tswap64(ptr) 100 #else 101 typedef abi_ulong target_elf_greg_t; 102 #define tswapreg(ptr) tswapal(ptr) 103 #endif 104 105 #ifdef USE_UID16 106 typedef abi_ushort target_uid_t; 107 typedef abi_ushort target_gid_t; 108 #else 109 typedef abi_uint target_uid_t; 110 typedef abi_uint target_gid_t; 111 #endif 112 typedef abi_int target_pid_t; 113 114 #ifdef TARGET_I386 115 116 #define ELF_PLATFORM get_elf_platform() 117 118 static const char *get_elf_platform(void) 119 { 120 static char elf_platform[] = "i386"; 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 122 if (family > 6) 123 family = 6; 124 if (family >= 3) 125 elf_platform[1] = '0' + family; 126 return elf_platform; 127 } 128 129 #define ELF_HWCAP get_elf_hwcap() 130 131 static uint32_t get_elf_hwcap(void) 132 { 133 X86CPU *cpu = X86_CPU(thread_cpu); 134 135 return cpu->env.features[FEAT_1_EDX]; 136 } 137 138 #ifdef TARGET_X86_64 139 #define ELF_START_MMAP 0x2aaaaab000ULL 140 141 #define ELF_CLASS ELFCLASS64 142 #define ELF_ARCH EM_X86_64 143 144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 145 { 146 regs->rax = 0; 147 regs->rsp = infop->start_stack; 148 regs->rip = infop->entry; 149 } 150 151 #define ELF_NREG 27 152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 153 154 /* 155 * Note that ELF_NREG should be 29 as there should be place for 156 * TRAPNO and ERR "registers" as well but linux doesn't dump 157 * those. 158 * 159 * See linux kernel: arch/x86/include/asm/elf.h 160 */ 161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 162 { 163 (*regs)[0] = env->regs[15]; 164 (*regs)[1] = env->regs[14]; 165 (*regs)[2] = env->regs[13]; 166 (*regs)[3] = env->regs[12]; 167 (*regs)[4] = env->regs[R_EBP]; 168 (*regs)[5] = env->regs[R_EBX]; 169 (*regs)[6] = env->regs[11]; 170 (*regs)[7] = env->regs[10]; 171 (*regs)[8] = env->regs[9]; 172 (*regs)[9] = env->regs[8]; 173 (*regs)[10] = env->regs[R_EAX]; 174 (*regs)[11] = env->regs[R_ECX]; 175 (*regs)[12] = env->regs[R_EDX]; 176 (*regs)[13] = env->regs[R_ESI]; 177 (*regs)[14] = env->regs[R_EDI]; 178 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 179 (*regs)[16] = env->eip; 180 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 181 (*regs)[18] = env->eflags; 182 (*regs)[19] = env->regs[R_ESP]; 183 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 184 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 185 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 186 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 187 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 188 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 189 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 190 } 191 192 #else 193 194 #define ELF_START_MMAP 0x80000000 195 196 /* 197 * This is used to ensure we don't load something for the wrong architecture. 198 */ 199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 200 201 /* 202 * These are used to set parameters in the core dumps. 203 */ 204 #define ELF_CLASS ELFCLASS32 205 #define ELF_ARCH EM_386 206 207 static inline void init_thread(struct target_pt_regs *regs, 208 struct image_info *infop) 209 { 210 regs->esp = infop->start_stack; 211 regs->eip = infop->entry; 212 213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 214 starts %edx contains a pointer to a function which might be 215 registered using `atexit'. This provides a mean for the 216 dynamic linker to call DT_FINI functions for shared libraries 217 that have been loaded before the code runs. 218 219 A value of 0 tells we have no such handler. */ 220 regs->edx = 0; 221 } 222 223 #define ELF_NREG 17 224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 225 226 /* 227 * Note that ELF_NREG should be 19 as there should be place for 228 * TRAPNO and ERR "registers" as well but linux doesn't dump 229 * those. 230 * 231 * See linux kernel: arch/x86/include/asm/elf.h 232 */ 233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 234 { 235 (*regs)[0] = env->regs[R_EBX]; 236 (*regs)[1] = env->regs[R_ECX]; 237 (*regs)[2] = env->regs[R_EDX]; 238 (*regs)[3] = env->regs[R_ESI]; 239 (*regs)[4] = env->regs[R_EDI]; 240 (*regs)[5] = env->regs[R_EBP]; 241 (*regs)[6] = env->regs[R_EAX]; 242 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 243 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 244 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 245 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 246 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 247 (*regs)[12] = env->eip; 248 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 249 (*regs)[14] = env->eflags; 250 (*regs)[15] = env->regs[R_ESP]; 251 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 252 } 253 #endif 254 255 #define USE_ELF_CORE_DUMP 256 #define ELF_EXEC_PAGESIZE 4096 257 258 #endif 259 260 #ifdef TARGET_ARM 261 262 #ifndef TARGET_AARCH64 263 /* 32 bit ARM definitions */ 264 265 #define ELF_START_MMAP 0x80000000 266 267 #define ELF_ARCH EM_ARM 268 #define ELF_CLASS ELFCLASS32 269 270 static inline void init_thread(struct target_pt_regs *regs, 271 struct image_info *infop) 272 { 273 abi_long stack = infop->start_stack; 274 memset(regs, 0, sizeof(*regs)); 275 276 regs->uregs[16] = ARM_CPU_MODE_USR; 277 if (infop->entry & 1) { 278 regs->uregs[16] |= CPSR_T; 279 } 280 regs->uregs[15] = infop->entry & 0xfffffffe; 281 regs->uregs[13] = infop->start_stack; 282 /* FIXME - what to for failure of get_user()? */ 283 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 284 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 285 /* XXX: it seems that r0 is zeroed after ! */ 286 regs->uregs[0] = 0; 287 /* For uClinux PIC binaries. */ 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 289 regs->uregs[10] = infop->start_data; 290 } 291 292 #define ELF_NREG 18 293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 294 295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 296 { 297 (*regs)[0] = tswapreg(env->regs[0]); 298 (*regs)[1] = tswapreg(env->regs[1]); 299 (*regs)[2] = tswapreg(env->regs[2]); 300 (*regs)[3] = tswapreg(env->regs[3]); 301 (*regs)[4] = tswapreg(env->regs[4]); 302 (*regs)[5] = tswapreg(env->regs[5]); 303 (*regs)[6] = tswapreg(env->regs[6]); 304 (*regs)[7] = tswapreg(env->regs[7]); 305 (*regs)[8] = tswapreg(env->regs[8]); 306 (*regs)[9] = tswapreg(env->regs[9]); 307 (*regs)[10] = tswapreg(env->regs[10]); 308 (*regs)[11] = tswapreg(env->regs[11]); 309 (*regs)[12] = tswapreg(env->regs[12]); 310 (*regs)[13] = tswapreg(env->regs[13]); 311 (*regs)[14] = tswapreg(env->regs[14]); 312 (*regs)[15] = tswapreg(env->regs[15]); 313 314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 316 } 317 318 #define USE_ELF_CORE_DUMP 319 #define ELF_EXEC_PAGESIZE 4096 320 321 enum 322 { 323 ARM_HWCAP_ARM_SWP = 1 << 0, 324 ARM_HWCAP_ARM_HALF = 1 << 1, 325 ARM_HWCAP_ARM_THUMB = 1 << 2, 326 ARM_HWCAP_ARM_26BIT = 1 << 3, 327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 328 ARM_HWCAP_ARM_FPA = 1 << 5, 329 ARM_HWCAP_ARM_VFP = 1 << 6, 330 ARM_HWCAP_ARM_EDSP = 1 << 7, 331 ARM_HWCAP_ARM_JAVA = 1 << 8, 332 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 333 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 334 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 335 ARM_HWCAP_ARM_NEON = 1 << 12, 336 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 338 ARM_HWCAP_ARM_TLS = 1 << 15, 339 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 340 ARM_HWCAP_ARM_IDIVA = 1 << 17, 341 ARM_HWCAP_ARM_IDIVT = 1 << 18, 342 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 343 ARM_HWCAP_ARM_LPAE = 1 << 20, 344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 345 }; 346 347 enum { 348 ARM_HWCAP2_ARM_AES = 1 << 0, 349 ARM_HWCAP2_ARM_PMULL = 1 << 1, 350 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 351 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 352 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 353 }; 354 355 /* The commpage only exists for 32 bit kernels */ 356 357 #define TARGET_HAS_VALIDATE_GUEST_SPACE 358 /* Return 1 if the proposed guest space is suitable for the guest. 359 * Return 0 if the proposed guest space isn't suitable, but another 360 * address space should be tried. 361 * Return -1 if there is no way the proposed guest space can be 362 * valid regardless of the base. 363 * The guest code may leave a page mapped and populate it if the 364 * address is suitable. 365 */ 366 static int validate_guest_space(unsigned long guest_base, 367 unsigned long guest_size) 368 { 369 unsigned long real_start, test_page_addr; 370 371 /* We need to check that we can force a fault on access to the 372 * commpage at 0xffff0fxx 373 */ 374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 375 376 /* If the commpage lies within the already allocated guest space, 377 * then there is no way we can allocate it. 378 */ 379 if (test_page_addr >= guest_base 380 && test_page_addr <= (guest_base + guest_size)) { 381 return -1; 382 } 383 384 /* Note it needs to be writeable to let us initialise it */ 385 real_start = (unsigned long) 386 mmap((void *)test_page_addr, qemu_host_page_size, 387 PROT_READ | PROT_WRITE, 388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 389 390 /* If we can't map it then try another address */ 391 if (real_start == -1ul) { 392 return 0; 393 } 394 395 if (real_start != test_page_addr) { 396 /* OS didn't put the page where we asked - unmap and reject */ 397 munmap((void *)real_start, qemu_host_page_size); 398 return 0; 399 } 400 401 /* Leave the page mapped 402 * Populate it (mmap should have left it all 0'd) 403 */ 404 405 /* Kernel helper versions */ 406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 407 408 /* Now it's populated make it RO */ 409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 410 perror("Protecting guest commpage"); 411 exit(-1); 412 } 413 414 return 1; /* All good */ 415 } 416 417 #define ELF_HWCAP get_elf_hwcap() 418 #define ELF_HWCAP2 get_elf_hwcap2() 419 420 static uint32_t get_elf_hwcap(void) 421 { 422 ARMCPU *cpu = ARM_CPU(thread_cpu); 423 uint32_t hwcaps = 0; 424 425 hwcaps |= ARM_HWCAP_ARM_SWP; 426 hwcaps |= ARM_HWCAP_ARM_HALF; 427 hwcaps |= ARM_HWCAP_ARM_THUMB; 428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 429 430 /* probe for the extra features */ 431 #define GET_FEATURE(feat, hwcap) \ 432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 447 * to our VFP_FP16 feature bit. 448 */ 449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 451 452 return hwcaps; 453 } 454 455 static uint32_t get_elf_hwcap2(void) 456 { 457 ARMCPU *cpu = ARM_CPU(thread_cpu); 458 uint32_t hwcaps = 0; 459 460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 465 return hwcaps; 466 } 467 468 #undef GET_FEATURE 469 470 #else 471 /* 64 bit ARM definitions */ 472 #define ELF_START_MMAP 0x80000000 473 474 #define ELF_ARCH EM_AARCH64 475 #define ELF_CLASS ELFCLASS64 476 #define ELF_PLATFORM "aarch64" 477 478 static inline void init_thread(struct target_pt_regs *regs, 479 struct image_info *infop) 480 { 481 abi_long stack = infop->start_stack; 482 memset(regs, 0, sizeof(*regs)); 483 484 regs->pc = infop->entry & ~0x3ULL; 485 regs->sp = stack; 486 } 487 488 #define ELF_NREG 34 489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 490 491 static void elf_core_copy_regs(target_elf_gregset_t *regs, 492 const CPUARMState *env) 493 { 494 int i; 495 496 for (i = 0; i < 32; i++) { 497 (*regs)[i] = tswapreg(env->xregs[i]); 498 } 499 (*regs)[32] = tswapreg(env->pc); 500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 501 } 502 503 #define USE_ELF_CORE_DUMP 504 #define ELF_EXEC_PAGESIZE 4096 505 506 enum { 507 ARM_HWCAP_A64_FP = 1 << 0, 508 ARM_HWCAP_A64_ASIMD = 1 << 1, 509 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 510 ARM_HWCAP_A64_AES = 1 << 3, 511 ARM_HWCAP_A64_PMULL = 1 << 4, 512 ARM_HWCAP_A64_SHA1 = 1 << 5, 513 ARM_HWCAP_A64_SHA2 = 1 << 6, 514 ARM_HWCAP_A64_CRC32 = 1 << 7, 515 }; 516 517 #define ELF_HWCAP get_elf_hwcap() 518 519 static uint32_t get_elf_hwcap(void) 520 { 521 ARMCPU *cpu = ARM_CPU(thread_cpu); 522 uint32_t hwcaps = 0; 523 524 hwcaps |= ARM_HWCAP_A64_FP; 525 hwcaps |= ARM_HWCAP_A64_ASIMD; 526 527 /* probe for the extra features */ 528 #define GET_FEATURE(feat, hwcap) \ 529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 535 #undef GET_FEATURE 536 537 return hwcaps; 538 } 539 540 #endif /* not TARGET_AARCH64 */ 541 #endif /* TARGET_ARM */ 542 543 #ifdef TARGET_UNICORE32 544 545 #define ELF_START_MMAP 0x80000000 546 547 #define ELF_CLASS ELFCLASS32 548 #define ELF_DATA ELFDATA2LSB 549 #define ELF_ARCH EM_UNICORE32 550 551 static inline void init_thread(struct target_pt_regs *regs, 552 struct image_info *infop) 553 { 554 abi_long stack = infop->start_stack; 555 memset(regs, 0, sizeof(*regs)); 556 regs->UC32_REG_asr = 0x10; 557 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 558 regs->UC32_REG_sp = infop->start_stack; 559 /* FIXME - what to for failure of get_user()? */ 560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 562 /* XXX: it seems that r0 is zeroed after ! */ 563 regs->UC32_REG_00 = 0; 564 } 565 566 #define ELF_NREG 34 567 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 568 569 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 570 { 571 (*regs)[0] = env->regs[0]; 572 (*regs)[1] = env->regs[1]; 573 (*regs)[2] = env->regs[2]; 574 (*regs)[3] = env->regs[3]; 575 (*regs)[4] = env->regs[4]; 576 (*regs)[5] = env->regs[5]; 577 (*regs)[6] = env->regs[6]; 578 (*regs)[7] = env->regs[7]; 579 (*regs)[8] = env->regs[8]; 580 (*regs)[9] = env->regs[9]; 581 (*regs)[10] = env->regs[10]; 582 (*regs)[11] = env->regs[11]; 583 (*regs)[12] = env->regs[12]; 584 (*regs)[13] = env->regs[13]; 585 (*regs)[14] = env->regs[14]; 586 (*regs)[15] = env->regs[15]; 587 (*regs)[16] = env->regs[16]; 588 (*regs)[17] = env->regs[17]; 589 (*regs)[18] = env->regs[18]; 590 (*regs)[19] = env->regs[19]; 591 (*regs)[20] = env->regs[20]; 592 (*regs)[21] = env->regs[21]; 593 (*regs)[22] = env->regs[22]; 594 (*regs)[23] = env->regs[23]; 595 (*regs)[24] = env->regs[24]; 596 (*regs)[25] = env->regs[25]; 597 (*regs)[26] = env->regs[26]; 598 (*regs)[27] = env->regs[27]; 599 (*regs)[28] = env->regs[28]; 600 (*regs)[29] = env->regs[29]; 601 (*regs)[30] = env->regs[30]; 602 (*regs)[31] = env->regs[31]; 603 604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 605 (*regs)[33] = env->regs[0]; /* XXX */ 606 } 607 608 #define USE_ELF_CORE_DUMP 609 #define ELF_EXEC_PAGESIZE 4096 610 611 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 612 613 #endif 614 615 #ifdef TARGET_SPARC 616 #ifdef TARGET_SPARC64 617 618 #define ELF_START_MMAP 0x80000000 619 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 621 #ifndef TARGET_ABI32 622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 623 #else 624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 625 #endif 626 627 #define ELF_CLASS ELFCLASS64 628 #define ELF_ARCH EM_SPARCV9 629 630 #define STACK_BIAS 2047 631 632 static inline void init_thread(struct target_pt_regs *regs, 633 struct image_info *infop) 634 { 635 #ifndef TARGET_ABI32 636 regs->tstate = 0; 637 #endif 638 regs->pc = infop->entry; 639 regs->npc = regs->pc + 4; 640 regs->y = 0; 641 #ifdef TARGET_ABI32 642 regs->u_regs[14] = infop->start_stack - 16 * 4; 643 #else 644 if (personality(infop->personality) == PER_LINUX32) 645 regs->u_regs[14] = infop->start_stack - 16 * 4; 646 else 647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 648 #endif 649 } 650 651 #else 652 #define ELF_START_MMAP 0x80000000 653 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 654 | HWCAP_SPARC_MULDIV) 655 656 #define ELF_CLASS ELFCLASS32 657 #define ELF_ARCH EM_SPARC 658 659 static inline void init_thread(struct target_pt_regs *regs, 660 struct image_info *infop) 661 { 662 regs->psr = 0; 663 regs->pc = infop->entry; 664 regs->npc = regs->pc + 4; 665 regs->y = 0; 666 regs->u_regs[14] = infop->start_stack - 16 * 4; 667 } 668 669 #endif 670 #endif 671 672 #ifdef TARGET_PPC 673 674 #define ELF_MACHINE PPC_ELF_MACHINE 675 #define ELF_START_MMAP 0x80000000 676 677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 678 679 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 680 681 #define ELF_CLASS ELFCLASS64 682 683 #else 684 685 #define ELF_CLASS ELFCLASS32 686 687 #endif 688 689 #define ELF_ARCH EM_PPC 690 691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 692 See arch/powerpc/include/asm/cputable.h. */ 693 enum { 694 QEMU_PPC_FEATURE_32 = 0x80000000, 695 QEMU_PPC_FEATURE_64 = 0x40000000, 696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 705 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 706 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 707 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 709 QEMU_PPC_FEATURE_CELL = 0x00010000, 710 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 711 QEMU_PPC_FEATURE_SMT = 0x00004000, 712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 714 QEMU_PPC_FEATURE_PA6T = 0x00000800, 715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 720 721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 723 724 /* Feature definitions in AT_HWCAP2. */ 725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 731 }; 732 733 #define ELF_HWCAP get_elf_hwcap() 734 735 static uint32_t get_elf_hwcap(void) 736 { 737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 738 uint32_t features = 0; 739 740 /* We don't have to be terribly complete here; the high points are 741 Altivec/FP/SPE support. Anything else is just a bonus. */ 742 #define GET_FEATURE(flag, feature) \ 743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 744 #define GET_FEATURE2(flags, feature) \ 745 do { \ 746 if ((cpu->env.insns_flags2 & flags) == flags) { \ 747 features |= feature; \ 748 } \ 749 } while (0) 750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 762 QEMU_PPC_FEATURE_ARCH_2_06); 763 #undef GET_FEATURE 764 #undef GET_FEATURE2 765 766 return features; 767 } 768 769 #define ELF_HWCAP2 get_elf_hwcap2() 770 771 static uint32_t get_elf_hwcap2(void) 772 { 773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 774 uint32_t features = 0; 775 776 #define GET_FEATURE(flag, feature) \ 777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 778 #define GET_FEATURE2(flag, feature) \ 779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 780 781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 785 786 #undef GET_FEATURE 787 #undef GET_FEATURE2 788 789 return features; 790 } 791 792 /* 793 * The requirements here are: 794 * - keep the final alignment of sp (sp & 0xf) 795 * - make sure the 32-bit value at the first 16 byte aligned position of 796 * AUXV is greater than 16 for glibc compatibility. 797 * AT_IGNOREPPC is used for that. 798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 800 */ 801 #define DLINFO_ARCH_ITEMS 5 802 #define ARCH_DLINFO \ 803 do { \ 804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 805 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 806 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 807 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 808 /* \ 809 * Now handle glibc compatibility. \ 810 */ \ 811 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 812 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 813 } while (0) 814 815 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 816 { 817 _regs->gpr[1] = infop->start_stack; 818 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 819 if (get_ppc64_abi(infop) < 2) { 820 uint64_t val; 821 get_user_u64(val, infop->entry + 8); 822 _regs->gpr[2] = val + infop->load_bias; 823 get_user_u64(val, infop->entry); 824 infop->entry = val + infop->load_bias; 825 } else { 826 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 827 } 828 #endif 829 _regs->nip = infop->entry; 830 } 831 832 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 833 #define ELF_NREG 48 834 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 835 836 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 837 { 838 int i; 839 target_ulong ccr = 0; 840 841 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 842 (*regs)[i] = tswapreg(env->gpr[i]); 843 } 844 845 (*regs)[32] = tswapreg(env->nip); 846 (*regs)[33] = tswapreg(env->msr); 847 (*regs)[35] = tswapreg(env->ctr); 848 (*regs)[36] = tswapreg(env->lr); 849 (*regs)[37] = tswapreg(env->xer); 850 851 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 852 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 853 } 854 (*regs)[38] = tswapreg(ccr); 855 } 856 857 #define USE_ELF_CORE_DUMP 858 #define ELF_EXEC_PAGESIZE 4096 859 860 #endif 861 862 #ifdef TARGET_MIPS 863 864 #define ELF_START_MMAP 0x80000000 865 866 #ifdef TARGET_MIPS64 867 #define ELF_CLASS ELFCLASS64 868 #else 869 #define ELF_CLASS ELFCLASS32 870 #endif 871 #define ELF_ARCH EM_MIPS 872 873 static inline void init_thread(struct target_pt_regs *regs, 874 struct image_info *infop) 875 { 876 regs->cp0_status = 2 << CP0St_KSU; 877 regs->cp0_epc = infop->entry; 878 regs->regs[29] = infop->start_stack; 879 } 880 881 /* See linux kernel: arch/mips/include/asm/elf.h. */ 882 #define ELF_NREG 45 883 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 884 885 /* See linux kernel: arch/mips/include/asm/reg.h. */ 886 enum { 887 #ifdef TARGET_MIPS64 888 TARGET_EF_R0 = 0, 889 #else 890 TARGET_EF_R0 = 6, 891 #endif 892 TARGET_EF_R26 = TARGET_EF_R0 + 26, 893 TARGET_EF_R27 = TARGET_EF_R0 + 27, 894 TARGET_EF_LO = TARGET_EF_R0 + 32, 895 TARGET_EF_HI = TARGET_EF_R0 + 33, 896 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 897 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 898 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 899 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 900 }; 901 902 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 903 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 904 { 905 int i; 906 907 for (i = 0; i < TARGET_EF_R0; i++) { 908 (*regs)[i] = 0; 909 } 910 (*regs)[TARGET_EF_R0] = 0; 911 912 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 913 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 914 } 915 916 (*regs)[TARGET_EF_R26] = 0; 917 (*regs)[TARGET_EF_R27] = 0; 918 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 919 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 920 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 921 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 922 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 923 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 924 } 925 926 #define USE_ELF_CORE_DUMP 927 #define ELF_EXEC_PAGESIZE 4096 928 929 #endif /* TARGET_MIPS */ 930 931 #ifdef TARGET_MICROBLAZE 932 933 #define ELF_START_MMAP 0x80000000 934 935 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 936 937 #define ELF_CLASS ELFCLASS32 938 #define ELF_ARCH EM_MICROBLAZE 939 940 static inline void init_thread(struct target_pt_regs *regs, 941 struct image_info *infop) 942 { 943 regs->pc = infop->entry; 944 regs->r1 = infop->start_stack; 945 946 } 947 948 #define ELF_EXEC_PAGESIZE 4096 949 950 #define USE_ELF_CORE_DUMP 951 #define ELF_NREG 38 952 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 953 954 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 955 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 956 { 957 int i, pos = 0; 958 959 for (i = 0; i < 32; i++) { 960 (*regs)[pos++] = tswapreg(env->regs[i]); 961 } 962 963 for (i = 0; i < 6; i++) { 964 (*regs)[pos++] = tswapreg(env->sregs[i]); 965 } 966 } 967 968 #endif /* TARGET_MICROBLAZE */ 969 970 #ifdef TARGET_NIOS2 971 972 #define ELF_START_MMAP 0x80000000 973 974 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 975 976 #define ELF_CLASS ELFCLASS32 977 #define ELF_ARCH EM_ALTERA_NIOS2 978 979 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 980 { 981 regs->ea = infop->entry; 982 regs->sp = infop->start_stack; 983 regs->estatus = 0x3; 984 } 985 986 #define ELF_EXEC_PAGESIZE 4096 987 988 #define USE_ELF_CORE_DUMP 989 #define ELF_NREG 49 990 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 991 992 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 993 static void elf_core_copy_regs(target_elf_gregset_t *regs, 994 const CPUNios2State *env) 995 { 996 int i; 997 998 (*regs)[0] = -1; 999 for (i = 1; i < 8; i++) /* r0-r7 */ 1000 (*regs)[i] = tswapreg(env->regs[i + 7]); 1001 1002 for (i = 8; i < 16; i++) /* r8-r15 */ 1003 (*regs)[i] = tswapreg(env->regs[i - 8]); 1004 1005 for (i = 16; i < 24; i++) /* r16-r23 */ 1006 (*regs)[i] = tswapreg(env->regs[i + 7]); 1007 (*regs)[24] = -1; /* R_ET */ 1008 (*regs)[25] = -1; /* R_BT */ 1009 (*regs)[26] = tswapreg(env->regs[R_GP]); 1010 (*regs)[27] = tswapreg(env->regs[R_SP]); 1011 (*regs)[28] = tswapreg(env->regs[R_FP]); 1012 (*regs)[29] = tswapreg(env->regs[R_EA]); 1013 (*regs)[30] = -1; /* R_SSTATUS */ 1014 (*regs)[31] = tswapreg(env->regs[R_RA]); 1015 1016 (*regs)[32] = tswapreg(env->regs[R_PC]); 1017 1018 (*regs)[33] = -1; /* R_STATUS */ 1019 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1020 1021 for (i = 35; i < 49; i++) /* ... */ 1022 (*regs)[i] = -1; 1023 } 1024 1025 #endif /* TARGET_NIOS2 */ 1026 1027 #ifdef TARGET_OPENRISC 1028 1029 #define ELF_START_MMAP 0x08000000 1030 1031 #define ELF_ARCH EM_OPENRISC 1032 #define ELF_CLASS ELFCLASS32 1033 #define ELF_DATA ELFDATA2MSB 1034 1035 static inline void init_thread(struct target_pt_regs *regs, 1036 struct image_info *infop) 1037 { 1038 regs->pc = infop->entry; 1039 regs->gpr[1] = infop->start_stack; 1040 } 1041 1042 #define USE_ELF_CORE_DUMP 1043 #define ELF_EXEC_PAGESIZE 8192 1044 1045 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1046 #define ELF_NREG 34 /* gprs and pc, sr */ 1047 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1048 1049 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1050 const CPUOpenRISCState *env) 1051 { 1052 int i; 1053 1054 for (i = 0; i < 32; i++) { 1055 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1056 } 1057 (*regs)[32] = tswapreg(env->pc); 1058 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1059 } 1060 #define ELF_HWCAP 0 1061 #define ELF_PLATFORM NULL 1062 1063 #endif /* TARGET_OPENRISC */ 1064 1065 #ifdef TARGET_SH4 1066 1067 #define ELF_START_MMAP 0x80000000 1068 1069 #define ELF_CLASS ELFCLASS32 1070 #define ELF_ARCH EM_SH 1071 1072 static inline void init_thread(struct target_pt_regs *regs, 1073 struct image_info *infop) 1074 { 1075 /* Check other registers XXXXX */ 1076 regs->pc = infop->entry; 1077 regs->regs[15] = infop->start_stack; 1078 } 1079 1080 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1081 #define ELF_NREG 23 1082 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1083 1084 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1085 enum { 1086 TARGET_REG_PC = 16, 1087 TARGET_REG_PR = 17, 1088 TARGET_REG_SR = 18, 1089 TARGET_REG_GBR = 19, 1090 TARGET_REG_MACH = 20, 1091 TARGET_REG_MACL = 21, 1092 TARGET_REG_SYSCALL = 22 1093 }; 1094 1095 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1096 const CPUSH4State *env) 1097 { 1098 int i; 1099 1100 for (i = 0; i < 16; i++) { 1101 (*regs[i]) = tswapreg(env->gregs[i]); 1102 } 1103 1104 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1105 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1106 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1107 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1108 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1109 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1110 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1111 } 1112 1113 #define USE_ELF_CORE_DUMP 1114 #define ELF_EXEC_PAGESIZE 4096 1115 1116 enum { 1117 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1118 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1119 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1120 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1121 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1122 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1123 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1124 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1125 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1126 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1127 }; 1128 1129 #define ELF_HWCAP get_elf_hwcap() 1130 1131 static uint32_t get_elf_hwcap(void) 1132 { 1133 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1134 uint32_t hwcap = 0; 1135 1136 hwcap |= SH_CPU_HAS_FPU; 1137 1138 if (cpu->env.features & SH_FEATURE_SH4A) { 1139 hwcap |= SH_CPU_HAS_LLSC; 1140 } 1141 1142 return hwcap; 1143 } 1144 1145 #endif 1146 1147 #ifdef TARGET_CRIS 1148 1149 #define ELF_START_MMAP 0x80000000 1150 1151 #define ELF_CLASS ELFCLASS32 1152 #define ELF_ARCH EM_CRIS 1153 1154 static inline void init_thread(struct target_pt_regs *regs, 1155 struct image_info *infop) 1156 { 1157 regs->erp = infop->entry; 1158 } 1159 1160 #define ELF_EXEC_PAGESIZE 8192 1161 1162 #endif 1163 1164 #ifdef TARGET_M68K 1165 1166 #define ELF_START_MMAP 0x80000000 1167 1168 #define ELF_CLASS ELFCLASS32 1169 #define ELF_ARCH EM_68K 1170 1171 /* ??? Does this need to do anything? 1172 #define ELF_PLAT_INIT(_r) */ 1173 1174 static inline void init_thread(struct target_pt_regs *regs, 1175 struct image_info *infop) 1176 { 1177 regs->usp = infop->start_stack; 1178 regs->sr = 0; 1179 regs->pc = infop->entry; 1180 } 1181 1182 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1183 #define ELF_NREG 20 1184 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1185 1186 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1187 { 1188 (*regs)[0] = tswapreg(env->dregs[1]); 1189 (*regs)[1] = tswapreg(env->dregs[2]); 1190 (*regs)[2] = tswapreg(env->dregs[3]); 1191 (*regs)[3] = tswapreg(env->dregs[4]); 1192 (*regs)[4] = tswapreg(env->dregs[5]); 1193 (*regs)[5] = tswapreg(env->dregs[6]); 1194 (*regs)[6] = tswapreg(env->dregs[7]); 1195 (*regs)[7] = tswapreg(env->aregs[0]); 1196 (*regs)[8] = tswapreg(env->aregs[1]); 1197 (*regs)[9] = tswapreg(env->aregs[2]); 1198 (*regs)[10] = tswapreg(env->aregs[3]); 1199 (*regs)[11] = tswapreg(env->aregs[4]); 1200 (*regs)[12] = tswapreg(env->aregs[5]); 1201 (*regs)[13] = tswapreg(env->aregs[6]); 1202 (*regs)[14] = tswapreg(env->dregs[0]); 1203 (*regs)[15] = tswapreg(env->aregs[7]); 1204 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1205 (*regs)[17] = tswapreg(env->sr); 1206 (*regs)[18] = tswapreg(env->pc); 1207 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1208 } 1209 1210 #define USE_ELF_CORE_DUMP 1211 #define ELF_EXEC_PAGESIZE 8192 1212 1213 #endif 1214 1215 #ifdef TARGET_ALPHA 1216 1217 #define ELF_START_MMAP (0x30000000000ULL) 1218 1219 #define ELF_CLASS ELFCLASS64 1220 #define ELF_ARCH EM_ALPHA 1221 1222 static inline void init_thread(struct target_pt_regs *regs, 1223 struct image_info *infop) 1224 { 1225 regs->pc = infop->entry; 1226 regs->ps = 8; 1227 regs->usp = infop->start_stack; 1228 } 1229 1230 #define ELF_EXEC_PAGESIZE 8192 1231 1232 #endif /* TARGET_ALPHA */ 1233 1234 #ifdef TARGET_S390X 1235 1236 #define ELF_START_MMAP (0x20000000000ULL) 1237 1238 #define ELF_CLASS ELFCLASS64 1239 #define ELF_DATA ELFDATA2MSB 1240 #define ELF_ARCH EM_S390 1241 1242 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1243 { 1244 regs->psw.addr = infop->entry; 1245 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1246 regs->gprs[15] = infop->start_stack; 1247 } 1248 1249 #endif /* TARGET_S390X */ 1250 1251 #ifdef TARGET_TILEGX 1252 1253 /* 42 bits real used address, a half for user mode */ 1254 #define ELF_START_MMAP (0x00000020000000000ULL) 1255 1256 #define elf_check_arch(x) ((x) == EM_TILEGX) 1257 1258 #define ELF_CLASS ELFCLASS64 1259 #define ELF_DATA ELFDATA2LSB 1260 #define ELF_ARCH EM_TILEGX 1261 1262 static inline void init_thread(struct target_pt_regs *regs, 1263 struct image_info *infop) 1264 { 1265 regs->pc = infop->entry; 1266 regs->sp = infop->start_stack; 1267 1268 } 1269 1270 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1271 1272 #endif /* TARGET_TILEGX */ 1273 1274 #ifdef TARGET_HPPA 1275 1276 #define ELF_START_MMAP 0x80000000 1277 #define ELF_CLASS ELFCLASS32 1278 #define ELF_ARCH EM_PARISC 1279 #define ELF_PLATFORM "PARISC" 1280 #define STACK_GROWS_DOWN 0 1281 #define STACK_ALIGNMENT 64 1282 1283 static inline void init_thread(struct target_pt_regs *regs, 1284 struct image_info *infop) 1285 { 1286 regs->iaoq[0] = infop->entry; 1287 regs->iaoq[1] = infop->entry + 4; 1288 regs->gr[23] = 0; 1289 regs->gr[24] = infop->arg_start; 1290 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1291 /* The top-of-stack contains a linkage buffer. */ 1292 regs->gr[30] = infop->start_stack + 64; 1293 regs->gr[31] = infop->entry; 1294 } 1295 1296 #endif /* TARGET_HPPA */ 1297 1298 #ifndef ELF_PLATFORM 1299 #define ELF_PLATFORM (NULL) 1300 #endif 1301 1302 #ifndef ELF_MACHINE 1303 #define ELF_MACHINE ELF_ARCH 1304 #endif 1305 1306 #ifndef elf_check_arch 1307 #define elf_check_arch(x) ((x) == ELF_ARCH) 1308 #endif 1309 1310 #ifndef ELF_HWCAP 1311 #define ELF_HWCAP 0 1312 #endif 1313 1314 #ifndef STACK_GROWS_DOWN 1315 #define STACK_GROWS_DOWN 1 1316 #endif 1317 1318 #ifndef STACK_ALIGNMENT 1319 #define STACK_ALIGNMENT 16 1320 #endif 1321 1322 #ifdef TARGET_ABI32 1323 #undef ELF_CLASS 1324 #define ELF_CLASS ELFCLASS32 1325 #undef bswaptls 1326 #define bswaptls(ptr) bswap32s(ptr) 1327 #endif 1328 1329 #include "elf.h" 1330 1331 struct exec 1332 { 1333 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1334 unsigned int a_text; /* length of text, in bytes */ 1335 unsigned int a_data; /* length of data, in bytes */ 1336 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1337 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1338 unsigned int a_entry; /* start address */ 1339 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1340 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1341 }; 1342 1343 1344 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1345 #define OMAGIC 0407 1346 #define NMAGIC 0410 1347 #define ZMAGIC 0413 1348 #define QMAGIC 0314 1349 1350 /* Necessary parameters */ 1351 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1352 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1353 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1354 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1355 1356 #define DLINFO_ITEMS 14 1357 1358 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1359 { 1360 memcpy(to, from, n); 1361 } 1362 1363 #ifdef BSWAP_NEEDED 1364 static void bswap_ehdr(struct elfhdr *ehdr) 1365 { 1366 bswap16s(&ehdr->e_type); /* Object file type */ 1367 bswap16s(&ehdr->e_machine); /* Architecture */ 1368 bswap32s(&ehdr->e_version); /* Object file version */ 1369 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1370 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1371 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1372 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1373 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1374 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1375 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1376 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1377 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1378 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1379 } 1380 1381 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1382 { 1383 int i; 1384 for (i = 0; i < phnum; ++i, ++phdr) { 1385 bswap32s(&phdr->p_type); /* Segment type */ 1386 bswap32s(&phdr->p_flags); /* Segment flags */ 1387 bswaptls(&phdr->p_offset); /* Segment file offset */ 1388 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1389 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1390 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1391 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1392 bswaptls(&phdr->p_align); /* Segment alignment */ 1393 } 1394 } 1395 1396 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1397 { 1398 int i; 1399 for (i = 0; i < shnum; ++i, ++shdr) { 1400 bswap32s(&shdr->sh_name); 1401 bswap32s(&shdr->sh_type); 1402 bswaptls(&shdr->sh_flags); 1403 bswaptls(&shdr->sh_addr); 1404 bswaptls(&shdr->sh_offset); 1405 bswaptls(&shdr->sh_size); 1406 bswap32s(&shdr->sh_link); 1407 bswap32s(&shdr->sh_info); 1408 bswaptls(&shdr->sh_addralign); 1409 bswaptls(&shdr->sh_entsize); 1410 } 1411 } 1412 1413 static void bswap_sym(struct elf_sym *sym) 1414 { 1415 bswap32s(&sym->st_name); 1416 bswaptls(&sym->st_value); 1417 bswaptls(&sym->st_size); 1418 bswap16s(&sym->st_shndx); 1419 } 1420 #else 1421 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1422 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1423 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1424 static inline void bswap_sym(struct elf_sym *sym) { } 1425 #endif 1426 1427 #ifdef USE_ELF_CORE_DUMP 1428 static int elf_core_dump(int, const CPUArchState *); 1429 #endif /* USE_ELF_CORE_DUMP */ 1430 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1431 1432 /* Verify the portions of EHDR within E_IDENT for the target. 1433 This can be performed before bswapping the entire header. */ 1434 static bool elf_check_ident(struct elfhdr *ehdr) 1435 { 1436 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1437 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1438 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1439 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1440 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1441 && ehdr->e_ident[EI_DATA] == ELF_DATA 1442 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1443 } 1444 1445 /* Verify the portions of EHDR outside of E_IDENT for the target. 1446 This has to wait until after bswapping the header. */ 1447 static bool elf_check_ehdr(struct elfhdr *ehdr) 1448 { 1449 return (elf_check_arch(ehdr->e_machine) 1450 && ehdr->e_ehsize == sizeof(struct elfhdr) 1451 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1452 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1453 } 1454 1455 /* 1456 * 'copy_elf_strings()' copies argument/envelope strings from user 1457 * memory to free pages in kernel mem. These are in a format ready 1458 * to be put directly into the top of new user memory. 1459 * 1460 */ 1461 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1462 abi_ulong p, abi_ulong stack_limit) 1463 { 1464 char *tmp; 1465 int len, i; 1466 abi_ulong top = p; 1467 1468 if (!p) { 1469 return 0; /* bullet-proofing */ 1470 } 1471 1472 if (STACK_GROWS_DOWN) { 1473 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1474 for (i = argc - 1; i >= 0; --i) { 1475 tmp = argv[i]; 1476 if (!tmp) { 1477 fprintf(stderr, "VFS: argc is wrong"); 1478 exit(-1); 1479 } 1480 len = strlen(tmp) + 1; 1481 tmp += len; 1482 1483 if (len > (p - stack_limit)) { 1484 return 0; 1485 } 1486 while (len) { 1487 int bytes_to_copy = (len > offset) ? offset : len; 1488 tmp -= bytes_to_copy; 1489 p -= bytes_to_copy; 1490 offset -= bytes_to_copy; 1491 len -= bytes_to_copy; 1492 1493 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1494 1495 if (offset == 0) { 1496 memcpy_to_target(p, scratch, top - p); 1497 top = p; 1498 offset = TARGET_PAGE_SIZE; 1499 } 1500 } 1501 } 1502 if (p != top) { 1503 memcpy_to_target(p, scratch + offset, top - p); 1504 } 1505 } else { 1506 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1507 for (i = 0; i < argc; ++i) { 1508 tmp = argv[i]; 1509 if (!tmp) { 1510 fprintf(stderr, "VFS: argc is wrong"); 1511 exit(-1); 1512 } 1513 len = strlen(tmp) + 1; 1514 if (len > (stack_limit - p)) { 1515 return 0; 1516 } 1517 while (len) { 1518 int bytes_to_copy = (len > remaining) ? remaining : len; 1519 1520 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1521 1522 tmp += bytes_to_copy; 1523 remaining -= bytes_to_copy; 1524 p += bytes_to_copy; 1525 len -= bytes_to_copy; 1526 1527 if (remaining == 0) { 1528 memcpy_to_target(top, scratch, p - top); 1529 top = p; 1530 remaining = TARGET_PAGE_SIZE; 1531 } 1532 } 1533 } 1534 if (p != top) { 1535 memcpy_to_target(top, scratch, p - top); 1536 } 1537 } 1538 1539 return p; 1540 } 1541 1542 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1543 * argument/environment space. Newer kernels (>2.6.33) allow more, 1544 * dependent on stack size, but guarantee at least 32 pages for 1545 * backwards compatibility. 1546 */ 1547 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1548 1549 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1550 struct image_info *info) 1551 { 1552 abi_ulong size, error, guard; 1553 1554 size = guest_stack_size; 1555 if (size < STACK_LOWER_LIMIT) { 1556 size = STACK_LOWER_LIMIT; 1557 } 1558 guard = TARGET_PAGE_SIZE; 1559 if (guard < qemu_real_host_page_size) { 1560 guard = qemu_real_host_page_size; 1561 } 1562 1563 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1564 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1565 if (error == -1) { 1566 perror("mmap stack"); 1567 exit(-1); 1568 } 1569 1570 /* We reserve one extra page at the top of the stack as guard. */ 1571 if (STACK_GROWS_DOWN) { 1572 target_mprotect(error, guard, PROT_NONE); 1573 info->stack_limit = error + guard; 1574 return info->stack_limit + size - sizeof(void *); 1575 } else { 1576 target_mprotect(error + size, guard, PROT_NONE); 1577 info->stack_limit = error + size; 1578 return error; 1579 } 1580 } 1581 1582 /* Map and zero the bss. We need to explicitly zero any fractional pages 1583 after the data section (i.e. bss). */ 1584 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1585 { 1586 uintptr_t host_start, host_map_start, host_end; 1587 1588 last_bss = TARGET_PAGE_ALIGN(last_bss); 1589 1590 /* ??? There is confusion between qemu_real_host_page_size and 1591 qemu_host_page_size here and elsewhere in target_mmap, which 1592 may lead to the end of the data section mapping from the file 1593 not being mapped. At least there was an explicit test and 1594 comment for that here, suggesting that "the file size must 1595 be known". The comment probably pre-dates the introduction 1596 of the fstat system call in target_mmap which does in fact 1597 find out the size. What isn't clear is if the workaround 1598 here is still actually needed. For now, continue with it, 1599 but merge it with the "normal" mmap that would allocate the bss. */ 1600 1601 host_start = (uintptr_t) g2h(elf_bss); 1602 host_end = (uintptr_t) g2h(last_bss); 1603 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1604 1605 if (host_map_start < host_end) { 1606 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1607 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1608 if (p == MAP_FAILED) { 1609 perror("cannot mmap brk"); 1610 exit(-1); 1611 } 1612 } 1613 1614 /* Ensure that the bss page(s) are valid */ 1615 if ((page_get_flags(last_bss-1) & prot) != prot) { 1616 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1617 } 1618 1619 if (host_start < host_map_start) { 1620 memset((void *)host_start, 0, host_map_start - host_start); 1621 } 1622 } 1623 1624 #ifdef CONFIG_USE_FDPIC 1625 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1626 { 1627 uint16_t n; 1628 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1629 1630 /* elf32_fdpic_loadseg */ 1631 n = info->nsegs; 1632 while (n--) { 1633 sp -= 12; 1634 put_user_u32(loadsegs[n].addr, sp+0); 1635 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1636 put_user_u32(loadsegs[n].p_memsz, sp+8); 1637 } 1638 1639 /* elf32_fdpic_loadmap */ 1640 sp -= 4; 1641 put_user_u16(0, sp+0); /* version */ 1642 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1643 1644 info->personality = PER_LINUX_FDPIC; 1645 info->loadmap_addr = sp; 1646 1647 return sp; 1648 } 1649 #endif 1650 1651 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1652 struct elfhdr *exec, 1653 struct image_info *info, 1654 struct image_info *interp_info) 1655 { 1656 abi_ulong sp; 1657 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1658 int size; 1659 int i; 1660 abi_ulong u_rand_bytes; 1661 uint8_t k_rand_bytes[16]; 1662 abi_ulong u_platform; 1663 const char *k_platform; 1664 const int n = sizeof(elf_addr_t); 1665 1666 sp = p; 1667 1668 #ifdef CONFIG_USE_FDPIC 1669 /* Needs to be before we load the env/argc/... */ 1670 if (elf_is_fdpic(exec)) { 1671 /* Need 4 byte alignment for these structs */ 1672 sp &= ~3; 1673 sp = loader_build_fdpic_loadmap(info, sp); 1674 info->other_info = interp_info; 1675 if (interp_info) { 1676 interp_info->other_info = info; 1677 sp = loader_build_fdpic_loadmap(interp_info, sp); 1678 } 1679 } 1680 #endif 1681 1682 u_platform = 0; 1683 k_platform = ELF_PLATFORM; 1684 if (k_platform) { 1685 size_t len = strlen(k_platform) + 1; 1686 if (STACK_GROWS_DOWN) { 1687 sp -= (len + n - 1) & ~(n - 1); 1688 u_platform = sp; 1689 /* FIXME - check return value of memcpy_to_target() for failure */ 1690 memcpy_to_target(sp, k_platform, len); 1691 } else { 1692 memcpy_to_target(sp, k_platform, len); 1693 u_platform = sp; 1694 sp += len + 1; 1695 } 1696 } 1697 1698 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1699 * the argv and envp pointers. 1700 */ 1701 if (STACK_GROWS_DOWN) { 1702 sp = QEMU_ALIGN_DOWN(sp, 16); 1703 } else { 1704 sp = QEMU_ALIGN_UP(sp, 16); 1705 } 1706 1707 /* 1708 * Generate 16 random bytes for userspace PRNG seeding (not 1709 * cryptically secure but it's not the aim of QEMU). 1710 */ 1711 for (i = 0; i < 16; i++) { 1712 k_rand_bytes[i] = rand(); 1713 } 1714 if (STACK_GROWS_DOWN) { 1715 sp -= 16; 1716 u_rand_bytes = sp; 1717 /* FIXME - check return value of memcpy_to_target() for failure */ 1718 memcpy_to_target(sp, k_rand_bytes, 16); 1719 } else { 1720 memcpy_to_target(sp, k_rand_bytes, 16); 1721 u_rand_bytes = sp; 1722 sp += 16; 1723 } 1724 1725 size = (DLINFO_ITEMS + 1) * 2; 1726 if (k_platform) 1727 size += 2; 1728 #ifdef DLINFO_ARCH_ITEMS 1729 size += DLINFO_ARCH_ITEMS * 2; 1730 #endif 1731 #ifdef ELF_HWCAP2 1732 size += 2; 1733 #endif 1734 size += envc + argc + 2; 1735 size += 1; /* argc itself */ 1736 size *= n; 1737 1738 /* Allocate space and finalize stack alignment for entry now. */ 1739 if (STACK_GROWS_DOWN) { 1740 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1741 sp = u_argc; 1742 } else { 1743 u_argc = sp; 1744 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1745 } 1746 1747 u_argv = u_argc + n; 1748 u_envp = u_argv + (argc + 1) * n; 1749 u_auxv = u_envp + (envc + 1) * n; 1750 info->saved_auxv = u_auxv; 1751 info->arg_start = u_argv; 1752 info->arg_end = u_argv + argc * n; 1753 1754 /* This is correct because Linux defines 1755 * elf_addr_t as Elf32_Off / Elf64_Off 1756 */ 1757 #define NEW_AUX_ENT(id, val) do { \ 1758 put_user_ual(id, u_auxv); u_auxv += n; \ 1759 put_user_ual(val, u_auxv); u_auxv += n; \ 1760 } while(0) 1761 1762 /* There must be exactly DLINFO_ITEMS entries here. */ 1763 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1764 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1765 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1766 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1767 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1768 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1769 NEW_AUX_ENT(AT_ENTRY, info->entry); 1770 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1771 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1772 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1773 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1774 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1775 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1776 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1777 1778 #ifdef ELF_HWCAP2 1779 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1780 #endif 1781 1782 if (u_platform) { 1783 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1784 } 1785 #ifdef ARCH_DLINFO 1786 /* 1787 * ARCH_DLINFO must come last so platform specific code can enforce 1788 * special alignment requirements on the AUXV if necessary (eg. PPC). 1789 */ 1790 ARCH_DLINFO; 1791 #endif 1792 NEW_AUX_ENT (AT_NULL, 0); 1793 #undef NEW_AUX_ENT 1794 1795 info->auxv_len = u_argv - info->saved_auxv; 1796 1797 put_user_ual(argc, u_argc); 1798 1799 p = info->arg_strings; 1800 for (i = 0; i < argc; ++i) { 1801 put_user_ual(p, u_argv); 1802 u_argv += n; 1803 p += target_strlen(p) + 1; 1804 } 1805 put_user_ual(0, u_argv); 1806 1807 p = info->env_strings; 1808 for (i = 0; i < envc; ++i) { 1809 put_user_ual(p, u_envp); 1810 u_envp += n; 1811 p += target_strlen(p) + 1; 1812 } 1813 put_user_ual(0, u_envp); 1814 1815 return sp; 1816 } 1817 1818 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1819 /* If the guest doesn't have a validation function just agree */ 1820 static int validate_guest_space(unsigned long guest_base, 1821 unsigned long guest_size) 1822 { 1823 return 1; 1824 } 1825 #endif 1826 1827 unsigned long init_guest_space(unsigned long host_start, 1828 unsigned long host_size, 1829 unsigned long guest_start, 1830 bool fixed) 1831 { 1832 unsigned long current_start, real_start; 1833 int flags; 1834 1835 assert(host_start || host_size); 1836 1837 /* If just a starting address is given, then just verify that 1838 * address. */ 1839 if (host_start && !host_size) { 1840 if (validate_guest_space(host_start, host_size) == 1) { 1841 return host_start; 1842 } else { 1843 return (unsigned long)-1; 1844 } 1845 } 1846 1847 /* Setup the initial flags and start address. */ 1848 current_start = host_start & qemu_host_page_mask; 1849 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1850 if (fixed) { 1851 flags |= MAP_FIXED; 1852 } 1853 1854 /* Otherwise, a non-zero size region of memory needs to be mapped 1855 * and validated. */ 1856 while (1) { 1857 unsigned long real_size = host_size; 1858 1859 /* Do not use mmap_find_vma here because that is limited to the 1860 * guest address space. We are going to make the 1861 * guest address space fit whatever we're given. 1862 */ 1863 real_start = (unsigned long) 1864 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1865 if (real_start == (unsigned long)-1) { 1866 return (unsigned long)-1; 1867 } 1868 1869 /* Ensure the address is properly aligned. */ 1870 if (real_start & ~qemu_host_page_mask) { 1871 munmap((void *)real_start, host_size); 1872 real_size = host_size + qemu_host_page_size; 1873 real_start = (unsigned long) 1874 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1875 if (real_start == (unsigned long)-1) { 1876 return (unsigned long)-1; 1877 } 1878 real_start = HOST_PAGE_ALIGN(real_start); 1879 } 1880 1881 /* Check to see if the address is valid. */ 1882 if (!host_start || real_start == current_start) { 1883 int valid = validate_guest_space(real_start - guest_start, 1884 real_size); 1885 if (valid == 1) { 1886 break; 1887 } else if (valid == -1) { 1888 return (unsigned long)-1; 1889 } 1890 /* valid == 0, so try again. */ 1891 } 1892 1893 /* That address didn't work. Unmap and try a different one. 1894 * The address the host picked because is typically right at 1895 * the top of the host address space and leaves the guest with 1896 * no usable address space. Resort to a linear search. We 1897 * already compensated for mmap_min_addr, so this should not 1898 * happen often. Probably means we got unlucky and host 1899 * address space randomization put a shared library somewhere 1900 * inconvenient. 1901 */ 1902 munmap((void *)real_start, host_size); 1903 current_start += qemu_host_page_size; 1904 if (host_start == current_start) { 1905 /* Theoretically possible if host doesn't have any suitably 1906 * aligned areas. Normally the first mmap will fail. 1907 */ 1908 return (unsigned long)-1; 1909 } 1910 } 1911 1912 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 1913 1914 return real_start; 1915 } 1916 1917 static void probe_guest_base(const char *image_name, 1918 abi_ulong loaddr, abi_ulong hiaddr) 1919 { 1920 /* Probe for a suitable guest base address, if the user has not set 1921 * it explicitly, and set guest_base appropriately. 1922 * In case of error we will print a suitable message and exit. 1923 */ 1924 const char *errmsg; 1925 if (!have_guest_base && !reserved_va) { 1926 unsigned long host_start, real_start, host_size; 1927 1928 /* Round addresses to page boundaries. */ 1929 loaddr &= qemu_host_page_mask; 1930 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1931 1932 if (loaddr < mmap_min_addr) { 1933 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1934 } else { 1935 host_start = loaddr; 1936 if (host_start != loaddr) { 1937 errmsg = "Address overflow loading ELF binary"; 1938 goto exit_errmsg; 1939 } 1940 } 1941 host_size = hiaddr - loaddr; 1942 1943 /* Setup the initial guest memory space with ranges gleaned from 1944 * the ELF image that is being loaded. 1945 */ 1946 real_start = init_guest_space(host_start, host_size, loaddr, false); 1947 if (real_start == (unsigned long)-1) { 1948 errmsg = "Unable to find space for application"; 1949 goto exit_errmsg; 1950 } 1951 guest_base = real_start - loaddr; 1952 1953 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 1954 TARGET_ABI_FMT_lx " to 0x%lx\n", 1955 loaddr, real_start); 1956 } 1957 return; 1958 1959 exit_errmsg: 1960 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1961 exit(-1); 1962 } 1963 1964 1965 /* Load an ELF image into the address space. 1966 1967 IMAGE_NAME is the filename of the image, to use in error messages. 1968 IMAGE_FD is the open file descriptor for the image. 1969 1970 BPRM_BUF is a copy of the beginning of the file; this of course 1971 contains the elf file header at offset 0. It is assumed that this 1972 buffer is sufficiently aligned to present no problems to the host 1973 in accessing data at aligned offsets within the buffer. 1974 1975 On return: INFO values will be filled in, as necessary or available. */ 1976 1977 static void load_elf_image(const char *image_name, int image_fd, 1978 struct image_info *info, char **pinterp_name, 1979 char bprm_buf[BPRM_BUF_SIZE]) 1980 { 1981 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1982 struct elf_phdr *phdr; 1983 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1984 int i, retval; 1985 const char *errmsg; 1986 1987 /* First of all, some simple consistency checks */ 1988 errmsg = "Invalid ELF image for this architecture"; 1989 if (!elf_check_ident(ehdr)) { 1990 goto exit_errmsg; 1991 } 1992 bswap_ehdr(ehdr); 1993 if (!elf_check_ehdr(ehdr)) { 1994 goto exit_errmsg; 1995 } 1996 1997 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1998 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 1999 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2000 } else { 2001 phdr = (struct elf_phdr *) alloca(i); 2002 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2003 if (retval != i) { 2004 goto exit_read; 2005 } 2006 } 2007 bswap_phdr(phdr, ehdr->e_phnum); 2008 2009 #ifdef CONFIG_USE_FDPIC 2010 info->nsegs = 0; 2011 info->pt_dynamic_addr = 0; 2012 #endif 2013 2014 mmap_lock(); 2015 2016 /* Find the maximum size of the image and allocate an appropriate 2017 amount of memory to handle that. */ 2018 loaddr = -1, hiaddr = 0; 2019 for (i = 0; i < ehdr->e_phnum; ++i) { 2020 if (phdr[i].p_type == PT_LOAD) { 2021 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2022 if (a < loaddr) { 2023 loaddr = a; 2024 } 2025 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2026 if (a > hiaddr) { 2027 hiaddr = a; 2028 } 2029 #ifdef CONFIG_USE_FDPIC 2030 ++info->nsegs; 2031 #endif 2032 } 2033 } 2034 2035 load_addr = loaddr; 2036 if (ehdr->e_type == ET_DYN) { 2037 /* The image indicates that it can be loaded anywhere. Find a 2038 location that can hold the memory space required. If the 2039 image is pre-linked, LOADDR will be non-zero. Since we do 2040 not supply MAP_FIXED here we'll use that address if and 2041 only if it remains available. */ 2042 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2043 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2044 -1, 0); 2045 if (load_addr == -1) { 2046 goto exit_perror; 2047 } 2048 } else if (pinterp_name != NULL) { 2049 /* This is the main executable. Make sure that the low 2050 address does not conflict with MMAP_MIN_ADDR or the 2051 QEMU application itself. */ 2052 probe_guest_base(image_name, loaddr, hiaddr); 2053 } 2054 load_bias = load_addr - loaddr; 2055 2056 #ifdef CONFIG_USE_FDPIC 2057 { 2058 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2059 g_malloc(sizeof(*loadsegs) * info->nsegs); 2060 2061 for (i = 0; i < ehdr->e_phnum; ++i) { 2062 switch (phdr[i].p_type) { 2063 case PT_DYNAMIC: 2064 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2065 break; 2066 case PT_LOAD: 2067 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2068 loadsegs->p_vaddr = phdr[i].p_vaddr; 2069 loadsegs->p_memsz = phdr[i].p_memsz; 2070 ++loadsegs; 2071 break; 2072 } 2073 } 2074 } 2075 #endif 2076 2077 info->load_bias = load_bias; 2078 info->load_addr = load_addr; 2079 info->entry = ehdr->e_entry + load_bias; 2080 info->start_code = -1; 2081 info->end_code = 0; 2082 info->start_data = -1; 2083 info->end_data = 0; 2084 info->brk = 0; 2085 info->elf_flags = ehdr->e_flags; 2086 2087 for (i = 0; i < ehdr->e_phnum; i++) { 2088 struct elf_phdr *eppnt = phdr + i; 2089 if (eppnt->p_type == PT_LOAD) { 2090 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 2091 int elf_prot = 0; 2092 2093 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2094 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2095 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2096 2097 vaddr = load_bias + eppnt->p_vaddr; 2098 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2099 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2100 2101 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 2102 elf_prot, MAP_PRIVATE | MAP_FIXED, 2103 image_fd, eppnt->p_offset - vaddr_po); 2104 if (error == -1) { 2105 goto exit_perror; 2106 } 2107 2108 vaddr_ef = vaddr + eppnt->p_filesz; 2109 vaddr_em = vaddr + eppnt->p_memsz; 2110 2111 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2112 if (vaddr_ef < vaddr_em) { 2113 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2114 } 2115 2116 /* Find the full program boundaries. */ 2117 if (elf_prot & PROT_EXEC) { 2118 if (vaddr < info->start_code) { 2119 info->start_code = vaddr; 2120 } 2121 if (vaddr_ef > info->end_code) { 2122 info->end_code = vaddr_ef; 2123 } 2124 } 2125 if (elf_prot & PROT_WRITE) { 2126 if (vaddr < info->start_data) { 2127 info->start_data = vaddr; 2128 } 2129 if (vaddr_ef > info->end_data) { 2130 info->end_data = vaddr_ef; 2131 } 2132 if (vaddr_em > info->brk) { 2133 info->brk = vaddr_em; 2134 } 2135 } 2136 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2137 char *interp_name; 2138 2139 if (*pinterp_name) { 2140 errmsg = "Multiple PT_INTERP entries"; 2141 goto exit_errmsg; 2142 } 2143 interp_name = malloc(eppnt->p_filesz); 2144 if (!interp_name) { 2145 goto exit_perror; 2146 } 2147 2148 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2149 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2150 eppnt->p_filesz); 2151 } else { 2152 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2153 eppnt->p_offset); 2154 if (retval != eppnt->p_filesz) { 2155 goto exit_perror; 2156 } 2157 } 2158 if (interp_name[eppnt->p_filesz - 1] != 0) { 2159 errmsg = "Invalid PT_INTERP entry"; 2160 goto exit_errmsg; 2161 } 2162 *pinterp_name = interp_name; 2163 } 2164 } 2165 2166 if (info->end_data == 0) { 2167 info->start_data = info->end_code; 2168 info->end_data = info->end_code; 2169 info->brk = info->end_code; 2170 } 2171 2172 if (qemu_log_enabled()) { 2173 load_symbols(ehdr, image_fd, load_bias); 2174 } 2175 2176 mmap_unlock(); 2177 2178 close(image_fd); 2179 return; 2180 2181 exit_read: 2182 if (retval >= 0) { 2183 errmsg = "Incomplete read of file header"; 2184 goto exit_errmsg; 2185 } 2186 exit_perror: 2187 errmsg = strerror(errno); 2188 exit_errmsg: 2189 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2190 exit(-1); 2191 } 2192 2193 static void load_elf_interp(const char *filename, struct image_info *info, 2194 char bprm_buf[BPRM_BUF_SIZE]) 2195 { 2196 int fd, retval; 2197 2198 fd = open(path(filename), O_RDONLY); 2199 if (fd < 0) { 2200 goto exit_perror; 2201 } 2202 2203 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2204 if (retval < 0) { 2205 goto exit_perror; 2206 } 2207 if (retval < BPRM_BUF_SIZE) { 2208 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2209 } 2210 2211 load_elf_image(filename, fd, info, NULL, bprm_buf); 2212 return; 2213 2214 exit_perror: 2215 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2216 exit(-1); 2217 } 2218 2219 static int symfind(const void *s0, const void *s1) 2220 { 2221 target_ulong addr = *(target_ulong *)s0; 2222 struct elf_sym *sym = (struct elf_sym *)s1; 2223 int result = 0; 2224 if (addr < sym->st_value) { 2225 result = -1; 2226 } else if (addr >= sym->st_value + sym->st_size) { 2227 result = 1; 2228 } 2229 return result; 2230 } 2231 2232 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2233 { 2234 #if ELF_CLASS == ELFCLASS32 2235 struct elf_sym *syms = s->disas_symtab.elf32; 2236 #else 2237 struct elf_sym *syms = s->disas_symtab.elf64; 2238 #endif 2239 2240 // binary search 2241 struct elf_sym *sym; 2242 2243 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2244 if (sym != NULL) { 2245 return s->disas_strtab + sym->st_name; 2246 } 2247 2248 return ""; 2249 } 2250 2251 /* FIXME: This should use elf_ops.h */ 2252 static int symcmp(const void *s0, const void *s1) 2253 { 2254 struct elf_sym *sym0 = (struct elf_sym *)s0; 2255 struct elf_sym *sym1 = (struct elf_sym *)s1; 2256 return (sym0->st_value < sym1->st_value) 2257 ? -1 2258 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2259 } 2260 2261 /* Best attempt to load symbols from this ELF object. */ 2262 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2263 { 2264 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2265 uint64_t segsz; 2266 struct elf_shdr *shdr; 2267 char *strings = NULL; 2268 struct syminfo *s = NULL; 2269 struct elf_sym *new_syms, *syms = NULL; 2270 2271 shnum = hdr->e_shnum; 2272 i = shnum * sizeof(struct elf_shdr); 2273 shdr = (struct elf_shdr *)alloca(i); 2274 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2275 return; 2276 } 2277 2278 bswap_shdr(shdr, shnum); 2279 for (i = 0; i < shnum; ++i) { 2280 if (shdr[i].sh_type == SHT_SYMTAB) { 2281 sym_idx = i; 2282 str_idx = shdr[i].sh_link; 2283 goto found; 2284 } 2285 } 2286 2287 /* There will be no symbol table if the file was stripped. */ 2288 return; 2289 2290 found: 2291 /* Now know where the strtab and symtab are. Snarf them. */ 2292 s = g_try_new(struct syminfo, 1); 2293 if (!s) { 2294 goto give_up; 2295 } 2296 2297 segsz = shdr[str_idx].sh_size; 2298 s->disas_strtab = strings = g_try_malloc(segsz); 2299 if (!strings || 2300 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2301 goto give_up; 2302 } 2303 2304 segsz = shdr[sym_idx].sh_size; 2305 syms = g_try_malloc(segsz); 2306 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2307 goto give_up; 2308 } 2309 2310 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2311 /* Implausibly large symbol table: give up rather than ploughing 2312 * on with the number of symbols calculation overflowing 2313 */ 2314 goto give_up; 2315 } 2316 nsyms = segsz / sizeof(struct elf_sym); 2317 for (i = 0; i < nsyms; ) { 2318 bswap_sym(syms + i); 2319 /* Throw away entries which we do not need. */ 2320 if (syms[i].st_shndx == SHN_UNDEF 2321 || syms[i].st_shndx >= SHN_LORESERVE 2322 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2323 if (i < --nsyms) { 2324 syms[i] = syms[nsyms]; 2325 } 2326 } else { 2327 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2328 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2329 syms[i].st_value &= ~(target_ulong)1; 2330 #endif 2331 syms[i].st_value += load_bias; 2332 i++; 2333 } 2334 } 2335 2336 /* No "useful" symbol. */ 2337 if (nsyms == 0) { 2338 goto give_up; 2339 } 2340 2341 /* Attempt to free the storage associated with the local symbols 2342 that we threw away. Whether or not this has any effect on the 2343 memory allocation depends on the malloc implementation and how 2344 many symbols we managed to discard. */ 2345 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2346 if (new_syms == NULL) { 2347 goto give_up; 2348 } 2349 syms = new_syms; 2350 2351 qsort(syms, nsyms, sizeof(*syms), symcmp); 2352 2353 s->disas_num_syms = nsyms; 2354 #if ELF_CLASS == ELFCLASS32 2355 s->disas_symtab.elf32 = syms; 2356 #else 2357 s->disas_symtab.elf64 = syms; 2358 #endif 2359 s->lookup_symbol = lookup_symbolxx; 2360 s->next = syminfos; 2361 syminfos = s; 2362 2363 return; 2364 2365 give_up: 2366 g_free(s); 2367 g_free(strings); 2368 g_free(syms); 2369 } 2370 2371 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2372 { 2373 struct image_info interp_info; 2374 struct elfhdr elf_ex; 2375 char *elf_interpreter = NULL; 2376 char *scratch; 2377 2378 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2379 2380 load_elf_image(bprm->filename, bprm->fd, info, 2381 &elf_interpreter, bprm->buf); 2382 2383 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2384 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2385 when we load the interpreter. */ 2386 elf_ex = *(struct elfhdr *)bprm->buf; 2387 2388 /* Do this so that we can load the interpreter, if need be. We will 2389 change some of these later */ 2390 bprm->p = setup_arg_pages(bprm, info); 2391 2392 scratch = g_new0(char, TARGET_PAGE_SIZE); 2393 if (STACK_GROWS_DOWN) { 2394 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2395 bprm->p, info->stack_limit); 2396 info->file_string = bprm->p; 2397 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2398 bprm->p, info->stack_limit); 2399 info->env_strings = bprm->p; 2400 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2401 bprm->p, info->stack_limit); 2402 info->arg_strings = bprm->p; 2403 } else { 2404 info->arg_strings = bprm->p; 2405 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2406 bprm->p, info->stack_limit); 2407 info->env_strings = bprm->p; 2408 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2409 bprm->p, info->stack_limit); 2410 info->file_string = bprm->p; 2411 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2412 bprm->p, info->stack_limit); 2413 } 2414 2415 g_free(scratch); 2416 2417 if (!bprm->p) { 2418 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2419 exit(-1); 2420 } 2421 2422 if (elf_interpreter) { 2423 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2424 2425 /* If the program interpreter is one of these two, then assume 2426 an iBCS2 image. Otherwise assume a native linux image. */ 2427 2428 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2429 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2430 info->personality = PER_SVR4; 2431 2432 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2433 and some applications "depend" upon this behavior. Since 2434 we do not have the power to recompile these, we emulate 2435 the SVr4 behavior. Sigh. */ 2436 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2437 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2438 } 2439 } 2440 2441 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2442 info, (elf_interpreter ? &interp_info : NULL)); 2443 info->start_stack = bprm->p; 2444 2445 /* If we have an interpreter, set that as the program's entry point. 2446 Copy the load_bias as well, to help PPC64 interpret the entry 2447 point as a function descriptor. Do this after creating elf tables 2448 so that we copy the original program entry point into the AUXV. */ 2449 if (elf_interpreter) { 2450 info->load_bias = interp_info.load_bias; 2451 info->entry = interp_info.entry; 2452 free(elf_interpreter); 2453 } 2454 2455 #ifdef USE_ELF_CORE_DUMP 2456 bprm->core_dump = &elf_core_dump; 2457 #endif 2458 2459 return 0; 2460 } 2461 2462 #ifdef USE_ELF_CORE_DUMP 2463 /* 2464 * Definitions to generate Intel SVR4-like core files. 2465 * These mostly have the same names as the SVR4 types with "target_elf_" 2466 * tacked on the front to prevent clashes with linux definitions, 2467 * and the typedef forms have been avoided. This is mostly like 2468 * the SVR4 structure, but more Linuxy, with things that Linux does 2469 * not support and which gdb doesn't really use excluded. 2470 * 2471 * Fields we don't dump (their contents is zero) in linux-user qemu 2472 * are marked with XXX. 2473 * 2474 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2475 * 2476 * Porting ELF coredump for target is (quite) simple process. First you 2477 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2478 * the target resides): 2479 * 2480 * #define USE_ELF_CORE_DUMP 2481 * 2482 * Next you define type of register set used for dumping. ELF specification 2483 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2484 * 2485 * typedef <target_regtype> target_elf_greg_t; 2486 * #define ELF_NREG <number of registers> 2487 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2488 * 2489 * Last step is to implement target specific function that copies registers 2490 * from given cpu into just specified register set. Prototype is: 2491 * 2492 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2493 * const CPUArchState *env); 2494 * 2495 * Parameters: 2496 * regs - copy register values into here (allocated and zeroed by caller) 2497 * env - copy registers from here 2498 * 2499 * Example for ARM target is provided in this file. 2500 */ 2501 2502 /* An ELF note in memory */ 2503 struct memelfnote { 2504 const char *name; 2505 size_t namesz; 2506 size_t namesz_rounded; 2507 int type; 2508 size_t datasz; 2509 size_t datasz_rounded; 2510 void *data; 2511 size_t notesz; 2512 }; 2513 2514 struct target_elf_siginfo { 2515 abi_int si_signo; /* signal number */ 2516 abi_int si_code; /* extra code */ 2517 abi_int si_errno; /* errno */ 2518 }; 2519 2520 struct target_elf_prstatus { 2521 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2522 abi_short pr_cursig; /* Current signal */ 2523 abi_ulong pr_sigpend; /* XXX */ 2524 abi_ulong pr_sighold; /* XXX */ 2525 target_pid_t pr_pid; 2526 target_pid_t pr_ppid; 2527 target_pid_t pr_pgrp; 2528 target_pid_t pr_sid; 2529 struct target_timeval pr_utime; /* XXX User time */ 2530 struct target_timeval pr_stime; /* XXX System time */ 2531 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2532 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2533 target_elf_gregset_t pr_reg; /* GP registers */ 2534 abi_int pr_fpvalid; /* XXX */ 2535 }; 2536 2537 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2538 2539 struct target_elf_prpsinfo { 2540 char pr_state; /* numeric process state */ 2541 char pr_sname; /* char for pr_state */ 2542 char pr_zomb; /* zombie */ 2543 char pr_nice; /* nice val */ 2544 abi_ulong pr_flag; /* flags */ 2545 target_uid_t pr_uid; 2546 target_gid_t pr_gid; 2547 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2548 /* Lots missing */ 2549 char pr_fname[16]; /* filename of executable */ 2550 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2551 }; 2552 2553 /* Here is the structure in which status of each thread is captured. */ 2554 struct elf_thread_status { 2555 QTAILQ_ENTRY(elf_thread_status) ets_link; 2556 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2557 #if 0 2558 elf_fpregset_t fpu; /* NT_PRFPREG */ 2559 struct task_struct *thread; 2560 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2561 #endif 2562 struct memelfnote notes[1]; 2563 int num_notes; 2564 }; 2565 2566 struct elf_note_info { 2567 struct memelfnote *notes; 2568 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2569 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2570 2571 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2572 #if 0 2573 /* 2574 * Current version of ELF coredump doesn't support 2575 * dumping fp regs etc. 2576 */ 2577 elf_fpregset_t *fpu; 2578 elf_fpxregset_t *xfpu; 2579 int thread_status_size; 2580 #endif 2581 int notes_size; 2582 int numnote; 2583 }; 2584 2585 struct vm_area_struct { 2586 target_ulong vma_start; /* start vaddr of memory region */ 2587 target_ulong vma_end; /* end vaddr of memory region */ 2588 abi_ulong vma_flags; /* protection etc. flags for the region */ 2589 QTAILQ_ENTRY(vm_area_struct) vma_link; 2590 }; 2591 2592 struct mm_struct { 2593 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2594 int mm_count; /* number of mappings */ 2595 }; 2596 2597 static struct mm_struct *vma_init(void); 2598 static void vma_delete(struct mm_struct *); 2599 static int vma_add_mapping(struct mm_struct *, target_ulong, 2600 target_ulong, abi_ulong); 2601 static int vma_get_mapping_count(const struct mm_struct *); 2602 static struct vm_area_struct *vma_first(const struct mm_struct *); 2603 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2604 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2605 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2606 unsigned long flags); 2607 2608 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2609 static void fill_note(struct memelfnote *, const char *, int, 2610 unsigned int, void *); 2611 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2612 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2613 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2614 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2615 static size_t note_size(const struct memelfnote *); 2616 static void free_note_info(struct elf_note_info *); 2617 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2618 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2619 static int core_dump_filename(const TaskState *, char *, size_t); 2620 2621 static int dump_write(int, const void *, size_t); 2622 static int write_note(struct memelfnote *, int); 2623 static int write_note_info(struct elf_note_info *, int); 2624 2625 #ifdef BSWAP_NEEDED 2626 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2627 { 2628 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2629 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2630 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2631 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2632 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2633 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2634 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2635 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2636 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2637 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2638 /* cpu times are not filled, so we skip them */ 2639 /* regs should be in correct format already */ 2640 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2641 } 2642 2643 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2644 { 2645 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2646 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2647 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2648 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2649 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2650 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2651 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2652 } 2653 2654 static void bswap_note(struct elf_note *en) 2655 { 2656 bswap32s(&en->n_namesz); 2657 bswap32s(&en->n_descsz); 2658 bswap32s(&en->n_type); 2659 } 2660 #else 2661 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2662 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2663 static inline void bswap_note(struct elf_note *en) { } 2664 #endif /* BSWAP_NEEDED */ 2665 2666 /* 2667 * Minimal support for linux memory regions. These are needed 2668 * when we are finding out what memory exactly belongs to 2669 * emulated process. No locks needed here, as long as 2670 * thread that received the signal is stopped. 2671 */ 2672 2673 static struct mm_struct *vma_init(void) 2674 { 2675 struct mm_struct *mm; 2676 2677 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2678 return (NULL); 2679 2680 mm->mm_count = 0; 2681 QTAILQ_INIT(&mm->mm_mmap); 2682 2683 return (mm); 2684 } 2685 2686 static void vma_delete(struct mm_struct *mm) 2687 { 2688 struct vm_area_struct *vma; 2689 2690 while ((vma = vma_first(mm)) != NULL) { 2691 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2692 g_free(vma); 2693 } 2694 g_free(mm); 2695 } 2696 2697 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2698 target_ulong end, abi_ulong flags) 2699 { 2700 struct vm_area_struct *vma; 2701 2702 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2703 return (-1); 2704 2705 vma->vma_start = start; 2706 vma->vma_end = end; 2707 vma->vma_flags = flags; 2708 2709 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2710 mm->mm_count++; 2711 2712 return (0); 2713 } 2714 2715 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2716 { 2717 return (QTAILQ_FIRST(&mm->mm_mmap)); 2718 } 2719 2720 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2721 { 2722 return (QTAILQ_NEXT(vma, vma_link)); 2723 } 2724 2725 static int vma_get_mapping_count(const struct mm_struct *mm) 2726 { 2727 return (mm->mm_count); 2728 } 2729 2730 /* 2731 * Calculate file (dump) size of given memory region. 2732 */ 2733 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2734 { 2735 /* if we cannot even read the first page, skip it */ 2736 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2737 return (0); 2738 2739 /* 2740 * Usually we don't dump executable pages as they contain 2741 * non-writable code that debugger can read directly from 2742 * target library etc. However, thread stacks are marked 2743 * also executable so we read in first page of given region 2744 * and check whether it contains elf header. If there is 2745 * no elf header, we dump it. 2746 */ 2747 if (vma->vma_flags & PROT_EXEC) { 2748 char page[TARGET_PAGE_SIZE]; 2749 2750 copy_from_user(page, vma->vma_start, sizeof (page)); 2751 if ((page[EI_MAG0] == ELFMAG0) && 2752 (page[EI_MAG1] == ELFMAG1) && 2753 (page[EI_MAG2] == ELFMAG2) && 2754 (page[EI_MAG3] == ELFMAG3)) { 2755 /* 2756 * Mappings are possibly from ELF binary. Don't dump 2757 * them. 2758 */ 2759 return (0); 2760 } 2761 } 2762 2763 return (vma->vma_end - vma->vma_start); 2764 } 2765 2766 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2767 unsigned long flags) 2768 { 2769 struct mm_struct *mm = (struct mm_struct *)priv; 2770 2771 vma_add_mapping(mm, start, end, flags); 2772 return (0); 2773 } 2774 2775 static void fill_note(struct memelfnote *note, const char *name, int type, 2776 unsigned int sz, void *data) 2777 { 2778 unsigned int namesz; 2779 2780 namesz = strlen(name) + 1; 2781 note->name = name; 2782 note->namesz = namesz; 2783 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2784 note->type = type; 2785 note->datasz = sz; 2786 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2787 2788 note->data = data; 2789 2790 /* 2791 * We calculate rounded up note size here as specified by 2792 * ELF document. 2793 */ 2794 note->notesz = sizeof (struct elf_note) + 2795 note->namesz_rounded + note->datasz_rounded; 2796 } 2797 2798 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2799 uint32_t flags) 2800 { 2801 (void) memset(elf, 0, sizeof(*elf)); 2802 2803 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2804 elf->e_ident[EI_CLASS] = ELF_CLASS; 2805 elf->e_ident[EI_DATA] = ELF_DATA; 2806 elf->e_ident[EI_VERSION] = EV_CURRENT; 2807 elf->e_ident[EI_OSABI] = ELF_OSABI; 2808 2809 elf->e_type = ET_CORE; 2810 elf->e_machine = machine; 2811 elf->e_version = EV_CURRENT; 2812 elf->e_phoff = sizeof(struct elfhdr); 2813 elf->e_flags = flags; 2814 elf->e_ehsize = sizeof(struct elfhdr); 2815 elf->e_phentsize = sizeof(struct elf_phdr); 2816 elf->e_phnum = segs; 2817 2818 bswap_ehdr(elf); 2819 } 2820 2821 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2822 { 2823 phdr->p_type = PT_NOTE; 2824 phdr->p_offset = offset; 2825 phdr->p_vaddr = 0; 2826 phdr->p_paddr = 0; 2827 phdr->p_filesz = sz; 2828 phdr->p_memsz = 0; 2829 phdr->p_flags = 0; 2830 phdr->p_align = 0; 2831 2832 bswap_phdr(phdr, 1); 2833 } 2834 2835 static size_t note_size(const struct memelfnote *note) 2836 { 2837 return (note->notesz); 2838 } 2839 2840 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2841 const TaskState *ts, int signr) 2842 { 2843 (void) memset(prstatus, 0, sizeof (*prstatus)); 2844 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2845 prstatus->pr_pid = ts->ts_tid; 2846 prstatus->pr_ppid = getppid(); 2847 prstatus->pr_pgrp = getpgrp(); 2848 prstatus->pr_sid = getsid(0); 2849 2850 bswap_prstatus(prstatus); 2851 } 2852 2853 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2854 { 2855 char *base_filename; 2856 unsigned int i, len; 2857 2858 (void) memset(psinfo, 0, sizeof (*psinfo)); 2859 2860 len = ts->info->arg_end - ts->info->arg_start; 2861 if (len >= ELF_PRARGSZ) 2862 len = ELF_PRARGSZ - 1; 2863 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2864 return -EFAULT; 2865 for (i = 0; i < len; i++) 2866 if (psinfo->pr_psargs[i] == 0) 2867 psinfo->pr_psargs[i] = ' '; 2868 psinfo->pr_psargs[len] = 0; 2869 2870 psinfo->pr_pid = getpid(); 2871 psinfo->pr_ppid = getppid(); 2872 psinfo->pr_pgrp = getpgrp(); 2873 psinfo->pr_sid = getsid(0); 2874 psinfo->pr_uid = getuid(); 2875 psinfo->pr_gid = getgid(); 2876 2877 base_filename = g_path_get_basename(ts->bprm->filename); 2878 /* 2879 * Using strncpy here is fine: at max-length, 2880 * this field is not NUL-terminated. 2881 */ 2882 (void) strncpy(psinfo->pr_fname, base_filename, 2883 sizeof(psinfo->pr_fname)); 2884 2885 g_free(base_filename); 2886 bswap_psinfo(psinfo); 2887 return (0); 2888 } 2889 2890 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2891 { 2892 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2893 elf_addr_t orig_auxv = auxv; 2894 void *ptr; 2895 int len = ts->info->auxv_len; 2896 2897 /* 2898 * Auxiliary vector is stored in target process stack. It contains 2899 * {type, value} pairs that we need to dump into note. This is not 2900 * strictly necessary but we do it here for sake of completeness. 2901 */ 2902 2903 /* read in whole auxv vector and copy it to memelfnote */ 2904 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2905 if (ptr != NULL) { 2906 fill_note(note, "CORE", NT_AUXV, len, ptr); 2907 unlock_user(ptr, auxv, len); 2908 } 2909 } 2910 2911 /* 2912 * Constructs name of coredump file. We have following convention 2913 * for the name: 2914 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2915 * 2916 * Returns 0 in case of success, -1 otherwise (errno is set). 2917 */ 2918 static int core_dump_filename(const TaskState *ts, char *buf, 2919 size_t bufsize) 2920 { 2921 char timestamp[64]; 2922 char *base_filename = NULL; 2923 struct timeval tv; 2924 struct tm tm; 2925 2926 assert(bufsize >= PATH_MAX); 2927 2928 if (gettimeofday(&tv, NULL) < 0) { 2929 (void) fprintf(stderr, "unable to get current timestamp: %s", 2930 strerror(errno)); 2931 return (-1); 2932 } 2933 2934 base_filename = g_path_get_basename(ts->bprm->filename); 2935 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2936 localtime_r(&tv.tv_sec, &tm)); 2937 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2938 base_filename, timestamp, (int)getpid()); 2939 g_free(base_filename); 2940 2941 return (0); 2942 } 2943 2944 static int dump_write(int fd, const void *ptr, size_t size) 2945 { 2946 const char *bufp = (const char *)ptr; 2947 ssize_t bytes_written, bytes_left; 2948 struct rlimit dumpsize; 2949 off_t pos; 2950 2951 bytes_written = 0; 2952 getrlimit(RLIMIT_CORE, &dumpsize); 2953 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2954 if (errno == ESPIPE) { /* not a seekable stream */ 2955 bytes_left = size; 2956 } else { 2957 return pos; 2958 } 2959 } else { 2960 if (dumpsize.rlim_cur <= pos) { 2961 return -1; 2962 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2963 bytes_left = size; 2964 } else { 2965 size_t limit_left=dumpsize.rlim_cur - pos; 2966 bytes_left = limit_left >= size ? size : limit_left ; 2967 } 2968 } 2969 2970 /* 2971 * In normal conditions, single write(2) should do but 2972 * in case of socket etc. this mechanism is more portable. 2973 */ 2974 do { 2975 bytes_written = write(fd, bufp, bytes_left); 2976 if (bytes_written < 0) { 2977 if (errno == EINTR) 2978 continue; 2979 return (-1); 2980 } else if (bytes_written == 0) { /* eof */ 2981 return (-1); 2982 } 2983 bufp += bytes_written; 2984 bytes_left -= bytes_written; 2985 } while (bytes_left > 0); 2986 2987 return (0); 2988 } 2989 2990 static int write_note(struct memelfnote *men, int fd) 2991 { 2992 struct elf_note en; 2993 2994 en.n_namesz = men->namesz; 2995 en.n_type = men->type; 2996 en.n_descsz = men->datasz; 2997 2998 bswap_note(&en); 2999 3000 if (dump_write(fd, &en, sizeof(en)) != 0) 3001 return (-1); 3002 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3003 return (-1); 3004 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3005 return (-1); 3006 3007 return (0); 3008 } 3009 3010 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3011 { 3012 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3013 TaskState *ts = (TaskState *)cpu->opaque; 3014 struct elf_thread_status *ets; 3015 3016 ets = g_malloc0(sizeof (*ets)); 3017 ets->num_notes = 1; /* only prstatus is dumped */ 3018 fill_prstatus(&ets->prstatus, ts, 0); 3019 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3020 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3021 &ets->prstatus); 3022 3023 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3024 3025 info->notes_size += note_size(&ets->notes[0]); 3026 } 3027 3028 static void init_note_info(struct elf_note_info *info) 3029 { 3030 /* Initialize the elf_note_info structure so that it is at 3031 * least safe to call free_note_info() on it. Must be 3032 * called before calling fill_note_info(). 3033 */ 3034 memset(info, 0, sizeof (*info)); 3035 QTAILQ_INIT(&info->thread_list); 3036 } 3037 3038 static int fill_note_info(struct elf_note_info *info, 3039 long signr, const CPUArchState *env) 3040 { 3041 #define NUMNOTES 3 3042 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3043 TaskState *ts = (TaskState *)cpu->opaque; 3044 int i; 3045 3046 info->notes = g_new0(struct memelfnote, NUMNOTES); 3047 if (info->notes == NULL) 3048 return (-ENOMEM); 3049 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3050 if (info->prstatus == NULL) 3051 return (-ENOMEM); 3052 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3053 if (info->prstatus == NULL) 3054 return (-ENOMEM); 3055 3056 /* 3057 * First fill in status (and registers) of current thread 3058 * including process info & aux vector. 3059 */ 3060 fill_prstatus(info->prstatus, ts, signr); 3061 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3062 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3063 sizeof (*info->prstatus), info->prstatus); 3064 fill_psinfo(info->psinfo, ts); 3065 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3066 sizeof (*info->psinfo), info->psinfo); 3067 fill_auxv_note(&info->notes[2], ts); 3068 info->numnote = 3; 3069 3070 info->notes_size = 0; 3071 for (i = 0; i < info->numnote; i++) 3072 info->notes_size += note_size(&info->notes[i]); 3073 3074 /* read and fill status of all threads */ 3075 cpu_list_lock(); 3076 CPU_FOREACH(cpu) { 3077 if (cpu == thread_cpu) { 3078 continue; 3079 } 3080 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3081 } 3082 cpu_list_unlock(); 3083 3084 return (0); 3085 } 3086 3087 static void free_note_info(struct elf_note_info *info) 3088 { 3089 struct elf_thread_status *ets; 3090 3091 while (!QTAILQ_EMPTY(&info->thread_list)) { 3092 ets = QTAILQ_FIRST(&info->thread_list); 3093 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3094 g_free(ets); 3095 } 3096 3097 g_free(info->prstatus); 3098 g_free(info->psinfo); 3099 g_free(info->notes); 3100 } 3101 3102 static int write_note_info(struct elf_note_info *info, int fd) 3103 { 3104 struct elf_thread_status *ets; 3105 int i, error = 0; 3106 3107 /* write prstatus, psinfo and auxv for current thread */ 3108 for (i = 0; i < info->numnote; i++) 3109 if ((error = write_note(&info->notes[i], fd)) != 0) 3110 return (error); 3111 3112 /* write prstatus for each thread */ 3113 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3114 if ((error = write_note(&ets->notes[0], fd)) != 0) 3115 return (error); 3116 } 3117 3118 return (0); 3119 } 3120 3121 /* 3122 * Write out ELF coredump. 3123 * 3124 * See documentation of ELF object file format in: 3125 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3126 * 3127 * Coredump format in linux is following: 3128 * 3129 * 0 +----------------------+ \ 3130 * | ELF header | ET_CORE | 3131 * +----------------------+ | 3132 * | ELF program headers | |--- headers 3133 * | - NOTE section | | 3134 * | - PT_LOAD sections | | 3135 * +----------------------+ / 3136 * | NOTEs: | 3137 * | - NT_PRSTATUS | 3138 * | - NT_PRSINFO | 3139 * | - NT_AUXV | 3140 * +----------------------+ <-- aligned to target page 3141 * | Process memory dump | 3142 * : : 3143 * . . 3144 * : : 3145 * | | 3146 * +----------------------+ 3147 * 3148 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3149 * NT_PRSINFO -> struct elf_prpsinfo 3150 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3151 * 3152 * Format follows System V format as close as possible. Current 3153 * version limitations are as follows: 3154 * - no floating point registers are dumped 3155 * 3156 * Function returns 0 in case of success, negative errno otherwise. 3157 * 3158 * TODO: make this work also during runtime: it should be 3159 * possible to force coredump from running process and then 3160 * continue processing. For example qemu could set up SIGUSR2 3161 * handler (provided that target process haven't registered 3162 * handler for that) that does the dump when signal is received. 3163 */ 3164 static int elf_core_dump(int signr, const CPUArchState *env) 3165 { 3166 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3167 const TaskState *ts = (const TaskState *)cpu->opaque; 3168 struct vm_area_struct *vma = NULL; 3169 char corefile[PATH_MAX]; 3170 struct elf_note_info info; 3171 struct elfhdr elf; 3172 struct elf_phdr phdr; 3173 struct rlimit dumpsize; 3174 struct mm_struct *mm = NULL; 3175 off_t offset = 0, data_offset = 0; 3176 int segs = 0; 3177 int fd = -1; 3178 3179 init_note_info(&info); 3180 3181 errno = 0; 3182 getrlimit(RLIMIT_CORE, &dumpsize); 3183 if (dumpsize.rlim_cur == 0) 3184 return 0; 3185 3186 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3187 return (-errno); 3188 3189 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3190 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3191 return (-errno); 3192 3193 /* 3194 * Walk through target process memory mappings and 3195 * set up structure containing this information. After 3196 * this point vma_xxx functions can be used. 3197 */ 3198 if ((mm = vma_init()) == NULL) 3199 goto out; 3200 3201 walk_memory_regions(mm, vma_walker); 3202 segs = vma_get_mapping_count(mm); 3203 3204 /* 3205 * Construct valid coredump ELF header. We also 3206 * add one more segment for notes. 3207 */ 3208 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3209 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3210 goto out; 3211 3212 /* fill in the in-memory version of notes */ 3213 if (fill_note_info(&info, signr, env) < 0) 3214 goto out; 3215 3216 offset += sizeof (elf); /* elf header */ 3217 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3218 3219 /* write out notes program header */ 3220 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3221 3222 offset += info.notes_size; 3223 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3224 goto out; 3225 3226 /* 3227 * ELF specification wants data to start at page boundary so 3228 * we align it here. 3229 */ 3230 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3231 3232 /* 3233 * Write program headers for memory regions mapped in 3234 * the target process. 3235 */ 3236 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3237 (void) memset(&phdr, 0, sizeof (phdr)); 3238 3239 phdr.p_type = PT_LOAD; 3240 phdr.p_offset = offset; 3241 phdr.p_vaddr = vma->vma_start; 3242 phdr.p_paddr = 0; 3243 phdr.p_filesz = vma_dump_size(vma); 3244 offset += phdr.p_filesz; 3245 phdr.p_memsz = vma->vma_end - vma->vma_start; 3246 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3247 if (vma->vma_flags & PROT_WRITE) 3248 phdr.p_flags |= PF_W; 3249 if (vma->vma_flags & PROT_EXEC) 3250 phdr.p_flags |= PF_X; 3251 phdr.p_align = ELF_EXEC_PAGESIZE; 3252 3253 bswap_phdr(&phdr, 1); 3254 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3255 goto out; 3256 } 3257 } 3258 3259 /* 3260 * Next we write notes just after program headers. No 3261 * alignment needed here. 3262 */ 3263 if (write_note_info(&info, fd) < 0) 3264 goto out; 3265 3266 /* align data to page boundary */ 3267 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3268 goto out; 3269 3270 /* 3271 * Finally we can dump process memory into corefile as well. 3272 */ 3273 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3274 abi_ulong addr; 3275 abi_ulong end; 3276 3277 end = vma->vma_start + vma_dump_size(vma); 3278 3279 for (addr = vma->vma_start; addr < end; 3280 addr += TARGET_PAGE_SIZE) { 3281 char page[TARGET_PAGE_SIZE]; 3282 int error; 3283 3284 /* 3285 * Read in page from target process memory and 3286 * write it to coredump file. 3287 */ 3288 error = copy_from_user(page, addr, sizeof (page)); 3289 if (error != 0) { 3290 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3291 addr); 3292 errno = -error; 3293 goto out; 3294 } 3295 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3296 goto out; 3297 } 3298 } 3299 3300 out: 3301 free_note_info(&info); 3302 if (mm != NULL) 3303 vma_delete(mm); 3304 (void) close(fd); 3305 3306 if (errno != 0) 3307 return (-errno); 3308 return (0); 3309 } 3310 #endif /* USE_ELF_CORE_DUMP */ 3311 3312 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3313 { 3314 init_thread(regs, infop); 3315 } 3316