xref: /openbmc/qemu/linux-user/elfload.c (revision 77452383e0c45704e2339b58eac29a3730bc18b1)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4 
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15 
16 #include "qemu.h"
17 #include "disas/disas.h"
18 
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_HWCAP2
24 #undef ELF_CLASS
25 #undef ELF_DATA
26 #undef ELF_ARCH
27 #endif
28 
29 #define ELF_OSABI   ELFOSABI_SYSV
30 
31 /* from personality.h */
32 
33 /*
34  * Flags for bug emulation.
35  *
36  * These occupy the top three bytes.
37  */
38 enum {
39     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
40     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
41                                            descriptors (signal handling) */
42     MMAP_PAGE_ZERO =    0x0100000,
43     ADDR_COMPAT_LAYOUT = 0x0200000,
44     READ_IMPLIES_EXEC = 0x0400000,
45     ADDR_LIMIT_32BIT =  0x0800000,
46     SHORT_INODE =       0x1000000,
47     WHOLE_SECONDS =     0x2000000,
48     STICKY_TIMEOUTS =   0x4000000,
49     ADDR_LIMIT_3GB =    0x8000000,
50 };
51 
52 /*
53  * Personality types.
54  *
55  * These go in the low byte.  Avoid using the top bit, it will
56  * conflict with error returns.
57  */
58 enum {
59     PER_LINUX =         0x0000,
60     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
61     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
62     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
68     PER_BSD =           0x0006,
69     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
70     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_LINUX32 =       0x0008,
72     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
73     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76     PER_RISCOS =        0x000c,
77     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
78     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
80     PER_HPUX =          0x0010,
81     PER_MASK =          0x00ff,
82 };
83 
84 /*
85  * Return the base personality without flags.
86  */
87 #define personality(pers)       (pers & PER_MASK)
88 
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93 
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98 
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA        ELFDATA2MSB
101 #else
102 #define ELF_DATA        ELFDATA2LSB
103 #endif
104 
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong      target_elf_greg_t;
107 #define tswapreg(ptr)   tswap64(ptr)
108 #else
109 typedef abi_ulong       target_elf_greg_t;
110 #define tswapreg(ptr)   tswapal(ptr)
111 #endif
112 
113 #ifdef USE_UID16
114 typedef abi_ushort      target_uid_t;
115 typedef abi_ushort      target_gid_t;
116 #else
117 typedef abi_uint        target_uid_t;
118 typedef abi_uint        target_gid_t;
119 #endif
120 typedef abi_int         target_pid_t;
121 
122 #ifdef TARGET_I386
123 
124 #define ELF_PLATFORM get_elf_platform()
125 
126 static const char *get_elf_platform(void)
127 {
128     static char elf_platform[] = "i386";
129     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130     if (family > 6)
131         family = 6;
132     if (family >= 3)
133         elf_platform[1] = '0' + family;
134     return elf_platform;
135 }
136 
137 #define ELF_HWCAP get_elf_hwcap()
138 
139 static uint32_t get_elf_hwcap(void)
140 {
141     X86CPU *cpu = X86_CPU(thread_cpu);
142 
143     return cpu->env.features[FEAT_1_EDX];
144 }
145 
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 
149 #define ELF_CLASS      ELFCLASS64
150 #define ELF_ARCH       EM_X86_64
151 
152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153 {
154     regs->rax = 0;
155     regs->rsp = infop->start_stack;
156     regs->rip = infop->entry;
157 }
158 
159 #define ELF_NREG    27
160 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
161 
162 /*
163  * Note that ELF_NREG should be 29 as there should be place for
164  * TRAPNO and ERR "registers" as well but linux doesn't dump
165  * those.
166  *
167  * See linux kernel: arch/x86/include/asm/elf.h
168  */
169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
170 {
171     (*regs)[0] = env->regs[15];
172     (*regs)[1] = env->regs[14];
173     (*regs)[2] = env->regs[13];
174     (*regs)[3] = env->regs[12];
175     (*regs)[4] = env->regs[R_EBP];
176     (*regs)[5] = env->regs[R_EBX];
177     (*regs)[6] = env->regs[11];
178     (*regs)[7] = env->regs[10];
179     (*regs)[8] = env->regs[9];
180     (*regs)[9] = env->regs[8];
181     (*regs)[10] = env->regs[R_EAX];
182     (*regs)[11] = env->regs[R_ECX];
183     (*regs)[12] = env->regs[R_EDX];
184     (*regs)[13] = env->regs[R_ESI];
185     (*regs)[14] = env->regs[R_EDI];
186     (*regs)[15] = env->regs[R_EAX]; /* XXX */
187     (*regs)[16] = env->eip;
188     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
189     (*regs)[18] = env->eflags;
190     (*regs)[19] = env->regs[R_ESP];
191     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
192     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
193     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
194     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
195     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
196     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
198 }
199 
200 #else
201 
202 #define ELF_START_MMAP 0x80000000
203 
204 /*
205  * This is used to ensure we don't load something for the wrong architecture.
206  */
207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
208 
209 /*
210  * These are used to set parameters in the core dumps.
211  */
212 #define ELF_CLASS       ELFCLASS32
213 #define ELF_ARCH        EM_386
214 
215 static inline void init_thread(struct target_pt_regs *regs,
216                                struct image_info *infop)
217 {
218     regs->esp = infop->start_stack;
219     regs->eip = infop->entry;
220 
221     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
222        starts %edx contains a pointer to a function which might be
223        registered using `atexit'.  This provides a mean for the
224        dynamic linker to call DT_FINI functions for shared libraries
225        that have been loaded before the code runs.
226 
227        A value of 0 tells we have no such handler.  */
228     regs->edx = 0;
229 }
230 
231 #define ELF_NREG    17
232 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
233 
234 /*
235  * Note that ELF_NREG should be 19 as there should be place for
236  * TRAPNO and ERR "registers" as well but linux doesn't dump
237  * those.
238  *
239  * See linux kernel: arch/x86/include/asm/elf.h
240  */
241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
242 {
243     (*regs)[0] = env->regs[R_EBX];
244     (*regs)[1] = env->regs[R_ECX];
245     (*regs)[2] = env->regs[R_EDX];
246     (*regs)[3] = env->regs[R_ESI];
247     (*regs)[4] = env->regs[R_EDI];
248     (*regs)[5] = env->regs[R_EBP];
249     (*regs)[6] = env->regs[R_EAX];
250     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
251     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
252     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
253     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
254     (*regs)[11] = env->regs[R_EAX]; /* XXX */
255     (*regs)[12] = env->eip;
256     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
257     (*regs)[14] = env->eflags;
258     (*regs)[15] = env->regs[R_ESP];
259     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
260 }
261 #endif
262 
263 #define USE_ELF_CORE_DUMP
264 #define ELF_EXEC_PAGESIZE       4096
265 
266 #endif
267 
268 #ifdef TARGET_ARM
269 
270 #ifndef TARGET_AARCH64
271 /* 32 bit ARM definitions */
272 
273 #define ELF_START_MMAP 0x80000000
274 
275 #define ELF_ARCH        EM_ARM
276 #define ELF_CLASS       ELFCLASS32
277 
278 static inline void init_thread(struct target_pt_regs *regs,
279                                struct image_info *infop)
280 {
281     abi_long stack = infop->start_stack;
282     memset(regs, 0, sizeof(*regs));
283 
284     regs->ARM_cpsr = 0x10;
285     if (infop->entry & 1)
286         regs->ARM_cpsr |= CPSR_T;
287     regs->ARM_pc = infop->entry & 0xfffffffe;
288     regs->ARM_sp = infop->start_stack;
289     /* FIXME - what to for failure of get_user()? */
290     get_user_ual(regs->ARM_r2, stack + 8); /* envp */
291     get_user_ual(regs->ARM_r1, stack + 4); /* envp */
292     /* XXX: it seems that r0 is zeroed after ! */
293     regs->ARM_r0 = 0;
294     /* For uClinux PIC binaries.  */
295     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
296     regs->ARM_r10 = infop->start_data;
297 }
298 
299 #define ELF_NREG    18
300 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
301 
302 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
303 {
304     (*regs)[0] = tswapreg(env->regs[0]);
305     (*regs)[1] = tswapreg(env->regs[1]);
306     (*regs)[2] = tswapreg(env->regs[2]);
307     (*regs)[3] = tswapreg(env->regs[3]);
308     (*regs)[4] = tswapreg(env->regs[4]);
309     (*regs)[5] = tswapreg(env->regs[5]);
310     (*regs)[6] = tswapreg(env->regs[6]);
311     (*regs)[7] = tswapreg(env->regs[7]);
312     (*regs)[8] = tswapreg(env->regs[8]);
313     (*regs)[9] = tswapreg(env->regs[9]);
314     (*regs)[10] = tswapreg(env->regs[10]);
315     (*regs)[11] = tswapreg(env->regs[11]);
316     (*regs)[12] = tswapreg(env->regs[12]);
317     (*regs)[13] = tswapreg(env->regs[13]);
318     (*regs)[14] = tswapreg(env->regs[14]);
319     (*regs)[15] = tswapreg(env->regs[15]);
320 
321     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
322     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
323 }
324 
325 #define USE_ELF_CORE_DUMP
326 #define ELF_EXEC_PAGESIZE       4096
327 
328 enum
329 {
330     ARM_HWCAP_ARM_SWP       = 1 << 0,
331     ARM_HWCAP_ARM_HALF      = 1 << 1,
332     ARM_HWCAP_ARM_THUMB     = 1 << 2,
333     ARM_HWCAP_ARM_26BIT     = 1 << 3,
334     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
335     ARM_HWCAP_ARM_FPA       = 1 << 5,
336     ARM_HWCAP_ARM_VFP       = 1 << 6,
337     ARM_HWCAP_ARM_EDSP      = 1 << 7,
338     ARM_HWCAP_ARM_JAVA      = 1 << 8,
339     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
340     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
341     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
342     ARM_HWCAP_ARM_NEON      = 1 << 12,
343     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
344     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
345     ARM_HWCAP_ARM_TLS       = 1 << 15,
346     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
347     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
348     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
349     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
350     ARM_HWCAP_ARM_LPAE      = 1 << 20,
351     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
352 };
353 
354 enum {
355     ARM_HWCAP2_ARM_AES      = 1 << 0,
356     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
357     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
358     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
359     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
360 };
361 
362 /* The commpage only exists for 32 bit kernels */
363 
364 #define TARGET_HAS_VALIDATE_GUEST_SPACE
365 /* Return 1 if the proposed guest space is suitable for the guest.
366  * Return 0 if the proposed guest space isn't suitable, but another
367  * address space should be tried.
368  * Return -1 if there is no way the proposed guest space can be
369  * valid regardless of the base.
370  * The guest code may leave a page mapped and populate it if the
371  * address is suitable.
372  */
373 static int validate_guest_space(unsigned long guest_base,
374                                 unsigned long guest_size)
375 {
376     unsigned long real_start, test_page_addr;
377 
378     /* We need to check that we can force a fault on access to the
379      * commpage at 0xffff0fxx
380      */
381     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
382 
383     /* If the commpage lies within the already allocated guest space,
384      * then there is no way we can allocate it.
385      */
386     if (test_page_addr >= guest_base
387         && test_page_addr <= (guest_base + guest_size)) {
388         return -1;
389     }
390 
391     /* Note it needs to be writeable to let us initialise it */
392     real_start = (unsigned long)
393                  mmap((void *)test_page_addr, qemu_host_page_size,
394                      PROT_READ | PROT_WRITE,
395                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
396 
397     /* If we can't map it then try another address */
398     if (real_start == -1ul) {
399         return 0;
400     }
401 
402     if (real_start != test_page_addr) {
403         /* OS didn't put the page where we asked - unmap and reject */
404         munmap((void *)real_start, qemu_host_page_size);
405         return 0;
406     }
407 
408     /* Leave the page mapped
409      * Populate it (mmap should have left it all 0'd)
410      */
411 
412     /* Kernel helper versions */
413     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
414 
415     /* Now it's populated make it RO */
416     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
417         perror("Protecting guest commpage");
418         exit(-1);
419     }
420 
421     return 1; /* All good */
422 }
423 
424 #define ELF_HWCAP get_elf_hwcap()
425 #define ELF_HWCAP2 get_elf_hwcap2()
426 
427 static uint32_t get_elf_hwcap(void)
428 {
429     ARMCPU *cpu = ARM_CPU(thread_cpu);
430     uint32_t hwcaps = 0;
431 
432     hwcaps |= ARM_HWCAP_ARM_SWP;
433     hwcaps |= ARM_HWCAP_ARM_HALF;
434     hwcaps |= ARM_HWCAP_ARM_THUMB;
435     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
436 
437     /* probe for the extra features */
438 #define GET_FEATURE(feat, hwcap) \
439     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
440     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
441     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
442     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
443     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
444     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
445     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
446     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
447     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
448     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
449     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
450     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
451     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
452      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
453      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
454      * to our VFP_FP16 feature bit.
455      */
456     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
457     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
458 
459     return hwcaps;
460 }
461 
462 static uint32_t get_elf_hwcap2(void)
463 {
464     ARMCPU *cpu = ARM_CPU(thread_cpu);
465     uint32_t hwcaps = 0;
466 
467     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
468     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
469     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
470     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
471     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
472     return hwcaps;
473 }
474 
475 #undef GET_FEATURE
476 
477 #else
478 /* 64 bit ARM definitions */
479 #define ELF_START_MMAP 0x80000000
480 
481 #define ELF_ARCH        EM_AARCH64
482 #define ELF_CLASS       ELFCLASS64
483 #define ELF_PLATFORM    "aarch64"
484 
485 static inline void init_thread(struct target_pt_regs *regs,
486                                struct image_info *infop)
487 {
488     abi_long stack = infop->start_stack;
489     memset(regs, 0, sizeof(*regs));
490 
491     regs->pc = infop->entry & ~0x3ULL;
492     regs->sp = stack;
493 }
494 
495 #define ELF_NREG    34
496 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
497 
498 static void elf_core_copy_regs(target_elf_gregset_t *regs,
499                                const CPUARMState *env)
500 {
501     int i;
502 
503     for (i = 0; i < 32; i++) {
504         (*regs)[i] = tswapreg(env->xregs[i]);
505     }
506     (*regs)[32] = tswapreg(env->pc);
507     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
508 }
509 
510 #define USE_ELF_CORE_DUMP
511 #define ELF_EXEC_PAGESIZE       4096
512 
513 enum {
514     ARM_HWCAP_A64_FP            = 1 << 0,
515     ARM_HWCAP_A64_ASIMD         = 1 << 1,
516     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
517     ARM_HWCAP_A64_AES           = 1 << 3,
518     ARM_HWCAP_A64_PMULL         = 1 << 4,
519     ARM_HWCAP_A64_SHA1          = 1 << 5,
520     ARM_HWCAP_A64_SHA2          = 1 << 6,
521     ARM_HWCAP_A64_CRC32         = 1 << 7,
522 };
523 
524 #define ELF_HWCAP get_elf_hwcap()
525 
526 static uint32_t get_elf_hwcap(void)
527 {
528     ARMCPU *cpu = ARM_CPU(thread_cpu);
529     uint32_t hwcaps = 0;
530 
531     hwcaps |= ARM_HWCAP_A64_FP;
532     hwcaps |= ARM_HWCAP_A64_ASIMD;
533 
534     /* probe for the extra features */
535 #define GET_FEATURE(feat, hwcap) \
536     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
537     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
538     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
539     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
540     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
541     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
542 #undef GET_FEATURE
543 
544     return hwcaps;
545 }
546 
547 #endif /* not TARGET_AARCH64 */
548 #endif /* TARGET_ARM */
549 
550 #ifdef TARGET_UNICORE32
551 
552 #define ELF_START_MMAP          0x80000000
553 
554 #define ELF_CLASS               ELFCLASS32
555 #define ELF_DATA                ELFDATA2LSB
556 #define ELF_ARCH                EM_UNICORE32
557 
558 static inline void init_thread(struct target_pt_regs *regs,
559         struct image_info *infop)
560 {
561     abi_long stack = infop->start_stack;
562     memset(regs, 0, sizeof(*regs));
563     regs->UC32_REG_asr = 0x10;
564     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
565     regs->UC32_REG_sp = infop->start_stack;
566     /* FIXME - what to for failure of get_user()? */
567     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
568     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
569     /* XXX: it seems that r0 is zeroed after ! */
570     regs->UC32_REG_00 = 0;
571 }
572 
573 #define ELF_NREG    34
574 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
575 
576 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
577 {
578     (*regs)[0] = env->regs[0];
579     (*regs)[1] = env->regs[1];
580     (*regs)[2] = env->regs[2];
581     (*regs)[3] = env->regs[3];
582     (*regs)[4] = env->regs[4];
583     (*regs)[5] = env->regs[5];
584     (*regs)[6] = env->regs[6];
585     (*regs)[7] = env->regs[7];
586     (*regs)[8] = env->regs[8];
587     (*regs)[9] = env->regs[9];
588     (*regs)[10] = env->regs[10];
589     (*regs)[11] = env->regs[11];
590     (*regs)[12] = env->regs[12];
591     (*regs)[13] = env->regs[13];
592     (*regs)[14] = env->regs[14];
593     (*regs)[15] = env->regs[15];
594     (*regs)[16] = env->regs[16];
595     (*regs)[17] = env->regs[17];
596     (*regs)[18] = env->regs[18];
597     (*regs)[19] = env->regs[19];
598     (*regs)[20] = env->regs[20];
599     (*regs)[21] = env->regs[21];
600     (*regs)[22] = env->regs[22];
601     (*regs)[23] = env->regs[23];
602     (*regs)[24] = env->regs[24];
603     (*regs)[25] = env->regs[25];
604     (*regs)[26] = env->regs[26];
605     (*regs)[27] = env->regs[27];
606     (*regs)[28] = env->regs[28];
607     (*regs)[29] = env->regs[29];
608     (*regs)[30] = env->regs[30];
609     (*regs)[31] = env->regs[31];
610 
611     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
612     (*regs)[33] = env->regs[0]; /* XXX */
613 }
614 
615 #define USE_ELF_CORE_DUMP
616 #define ELF_EXEC_PAGESIZE               4096
617 
618 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
619 
620 #endif
621 
622 #ifdef TARGET_SPARC
623 #ifdef TARGET_SPARC64
624 
625 #define ELF_START_MMAP 0x80000000
626 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
627                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
628 #ifndef TARGET_ABI32
629 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
630 #else
631 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
632 #endif
633 
634 #define ELF_CLASS   ELFCLASS64
635 #define ELF_ARCH    EM_SPARCV9
636 
637 #define STACK_BIAS              2047
638 
639 static inline void init_thread(struct target_pt_regs *regs,
640                                struct image_info *infop)
641 {
642 #ifndef TARGET_ABI32
643     regs->tstate = 0;
644 #endif
645     regs->pc = infop->entry;
646     regs->npc = regs->pc + 4;
647     regs->y = 0;
648 #ifdef TARGET_ABI32
649     regs->u_regs[14] = infop->start_stack - 16 * 4;
650 #else
651     if (personality(infop->personality) == PER_LINUX32)
652         regs->u_regs[14] = infop->start_stack - 16 * 4;
653     else
654         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
655 #endif
656 }
657 
658 #else
659 #define ELF_START_MMAP 0x80000000
660 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
661                     | HWCAP_SPARC_MULDIV)
662 
663 #define ELF_CLASS   ELFCLASS32
664 #define ELF_ARCH    EM_SPARC
665 
666 static inline void init_thread(struct target_pt_regs *regs,
667                                struct image_info *infop)
668 {
669     regs->psr = 0;
670     regs->pc = infop->entry;
671     regs->npc = regs->pc + 4;
672     regs->y = 0;
673     regs->u_regs[14] = infop->start_stack - 16 * 4;
674 }
675 
676 #endif
677 #endif
678 
679 #ifdef TARGET_PPC
680 
681 #define ELF_START_MMAP 0x80000000
682 
683 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
684 
685 #define elf_check_arch(x) ( (x) == EM_PPC64 )
686 
687 #define ELF_CLASS       ELFCLASS64
688 
689 #else
690 
691 #define ELF_CLASS       ELFCLASS32
692 
693 #endif
694 
695 #define ELF_ARCH        EM_PPC
696 
697 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
698    See arch/powerpc/include/asm/cputable.h.  */
699 enum {
700     QEMU_PPC_FEATURE_32 = 0x80000000,
701     QEMU_PPC_FEATURE_64 = 0x40000000,
702     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
703     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
704     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
705     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
706     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
707     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
708     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
709     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
710     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
711     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
712     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
713     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
714     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
715     QEMU_PPC_FEATURE_CELL = 0x00010000,
716     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
717     QEMU_PPC_FEATURE_SMT = 0x00004000,
718     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
719     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
720     QEMU_PPC_FEATURE_PA6T = 0x00000800,
721     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
722     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
723     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
724     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
725     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
726 
727     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
728     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
729 
730     /* Feature definitions in AT_HWCAP2.  */
731     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
732     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
733     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
734     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
735     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
736     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
737 };
738 
739 #define ELF_HWCAP get_elf_hwcap()
740 
741 static uint32_t get_elf_hwcap(void)
742 {
743     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
744     uint32_t features = 0;
745 
746     /* We don't have to be terribly complete here; the high points are
747        Altivec/FP/SPE support.  Anything else is just a bonus.  */
748 #define GET_FEATURE(flag, feature)                                      \
749     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
750 #define GET_FEATURE2(flag, feature)                                      \
751     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
752     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
753     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
754     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
755     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
756     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
757     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
758     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
759     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
760     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
761     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
762     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
763                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
764                   QEMU_PPC_FEATURE_ARCH_2_06);
765 #undef GET_FEATURE
766 #undef GET_FEATURE2
767 
768     return features;
769 }
770 
771 #define ELF_HWCAP2 get_elf_hwcap2()
772 
773 static uint32_t get_elf_hwcap2(void)
774 {
775     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
776     uint32_t features = 0;
777 
778 #define GET_FEATURE(flag, feature)                                      \
779     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
780 #define GET_FEATURE2(flag, feature)                                      \
781     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
782 
783     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
784     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
785     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
786                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
787 
788 #undef GET_FEATURE
789 #undef GET_FEATURE2
790 
791     return features;
792 }
793 
794 /*
795  * The requirements here are:
796  * - keep the final alignment of sp (sp & 0xf)
797  * - make sure the 32-bit value at the first 16 byte aligned position of
798  *   AUXV is greater than 16 for glibc compatibility.
799  *   AT_IGNOREPPC is used for that.
800  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
801  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
802  */
803 #define DLINFO_ARCH_ITEMS       5
804 #define ARCH_DLINFO                                     \
805     do {                                                \
806         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
807         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
808         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
809         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
810         /*                                              \
811          * Now handle glibc compatibility.              \
812          */                                             \
813         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
814         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
815     } while (0)
816 
817 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
818 {
819     _regs->gpr[1] = infop->start_stack;
820 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
821     if (get_ppc64_abi(infop) < 2) {
822         uint64_t val;
823         get_user_u64(val, infop->entry + 8);
824         _regs->gpr[2] = val + infop->load_bias;
825         get_user_u64(val, infop->entry);
826         infop->entry = val + infop->load_bias;
827     } else {
828         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
829     }
830 #endif
831     _regs->nip = infop->entry;
832 }
833 
834 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
835 #define ELF_NREG 48
836 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
837 
838 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
839 {
840     int i;
841     target_ulong ccr = 0;
842 
843     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
844         (*regs)[i] = tswapreg(env->gpr[i]);
845     }
846 
847     (*regs)[32] = tswapreg(env->nip);
848     (*regs)[33] = tswapreg(env->msr);
849     (*regs)[35] = tswapreg(env->ctr);
850     (*regs)[36] = tswapreg(env->lr);
851     (*regs)[37] = tswapreg(env->xer);
852 
853     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
854         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
855     }
856     (*regs)[38] = tswapreg(ccr);
857 }
858 
859 #define USE_ELF_CORE_DUMP
860 #define ELF_EXEC_PAGESIZE       4096
861 
862 #endif
863 
864 #ifdef TARGET_MIPS
865 
866 #define ELF_START_MMAP 0x80000000
867 
868 #ifdef TARGET_MIPS64
869 #define ELF_CLASS   ELFCLASS64
870 #else
871 #define ELF_CLASS   ELFCLASS32
872 #endif
873 #define ELF_ARCH    EM_MIPS
874 
875 static inline void init_thread(struct target_pt_regs *regs,
876                                struct image_info *infop)
877 {
878     regs->cp0_status = 2 << CP0St_KSU;
879     regs->cp0_epc = infop->entry;
880     regs->regs[29] = infop->start_stack;
881 }
882 
883 /* See linux kernel: arch/mips/include/asm/elf.h.  */
884 #define ELF_NREG 45
885 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
886 
887 /* See linux kernel: arch/mips/include/asm/reg.h.  */
888 enum {
889 #ifdef TARGET_MIPS64
890     TARGET_EF_R0 = 0,
891 #else
892     TARGET_EF_R0 = 6,
893 #endif
894     TARGET_EF_R26 = TARGET_EF_R0 + 26,
895     TARGET_EF_R27 = TARGET_EF_R0 + 27,
896     TARGET_EF_LO = TARGET_EF_R0 + 32,
897     TARGET_EF_HI = TARGET_EF_R0 + 33,
898     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
899     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
900     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
901     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
902 };
903 
904 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
905 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
906 {
907     int i;
908 
909     for (i = 0; i < TARGET_EF_R0; i++) {
910         (*regs)[i] = 0;
911     }
912     (*regs)[TARGET_EF_R0] = 0;
913 
914     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
915         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
916     }
917 
918     (*regs)[TARGET_EF_R26] = 0;
919     (*regs)[TARGET_EF_R27] = 0;
920     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
921     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
922     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
923     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
924     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
925     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
926 }
927 
928 #define USE_ELF_CORE_DUMP
929 #define ELF_EXEC_PAGESIZE        4096
930 
931 #endif /* TARGET_MIPS */
932 
933 #ifdef TARGET_MICROBLAZE
934 
935 #define ELF_START_MMAP 0x80000000
936 
937 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
938 
939 #define ELF_CLASS   ELFCLASS32
940 #define ELF_ARCH    EM_MICROBLAZE
941 
942 static inline void init_thread(struct target_pt_regs *regs,
943                                struct image_info *infop)
944 {
945     regs->pc = infop->entry;
946     regs->r1 = infop->start_stack;
947 
948 }
949 
950 #define ELF_EXEC_PAGESIZE        4096
951 
952 #define USE_ELF_CORE_DUMP
953 #define ELF_NREG 38
954 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
955 
956 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
957 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
958 {
959     int i, pos = 0;
960 
961     for (i = 0; i < 32; i++) {
962         (*regs)[pos++] = tswapreg(env->regs[i]);
963     }
964 
965     for (i = 0; i < 6; i++) {
966         (*regs)[pos++] = tswapreg(env->sregs[i]);
967     }
968 }
969 
970 #endif /* TARGET_MICROBLAZE */
971 
972 #ifdef TARGET_OPENRISC
973 
974 #define ELF_START_MMAP 0x08000000
975 
976 #define ELF_ARCH EM_OPENRISC
977 #define ELF_CLASS ELFCLASS32
978 #define ELF_DATA  ELFDATA2MSB
979 
980 static inline void init_thread(struct target_pt_regs *regs,
981                                struct image_info *infop)
982 {
983     regs->pc = infop->entry;
984     regs->gpr[1] = infop->start_stack;
985 }
986 
987 #define USE_ELF_CORE_DUMP
988 #define ELF_EXEC_PAGESIZE 8192
989 
990 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
991 #define ELF_NREG 34 /* gprs and pc, sr */
992 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
993 
994 static void elf_core_copy_regs(target_elf_gregset_t *regs,
995                                const CPUOpenRISCState *env)
996 {
997     int i;
998 
999     for (i = 0; i < 32; i++) {
1000         (*regs)[i] = tswapreg(env->gpr[i]);
1001     }
1002 
1003     (*regs)[32] = tswapreg(env->pc);
1004     (*regs)[33] = tswapreg(env->sr);
1005 }
1006 #define ELF_HWCAP 0
1007 #define ELF_PLATFORM NULL
1008 
1009 #endif /* TARGET_OPENRISC */
1010 
1011 #ifdef TARGET_SH4
1012 
1013 #define ELF_START_MMAP 0x80000000
1014 
1015 #define ELF_CLASS ELFCLASS32
1016 #define ELF_ARCH  EM_SH
1017 
1018 static inline void init_thread(struct target_pt_regs *regs,
1019                                struct image_info *infop)
1020 {
1021     /* Check other registers XXXXX */
1022     regs->pc = infop->entry;
1023     regs->regs[15] = infop->start_stack;
1024 }
1025 
1026 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1027 #define ELF_NREG 23
1028 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1029 
1030 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1031 enum {
1032     TARGET_REG_PC = 16,
1033     TARGET_REG_PR = 17,
1034     TARGET_REG_SR = 18,
1035     TARGET_REG_GBR = 19,
1036     TARGET_REG_MACH = 20,
1037     TARGET_REG_MACL = 21,
1038     TARGET_REG_SYSCALL = 22
1039 };
1040 
1041 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1042                                       const CPUSH4State *env)
1043 {
1044     int i;
1045 
1046     for (i = 0; i < 16; i++) {
1047         (*regs[i]) = tswapreg(env->gregs[i]);
1048     }
1049 
1050     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1051     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1052     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1053     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1054     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1055     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1056     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1057 }
1058 
1059 #define USE_ELF_CORE_DUMP
1060 #define ELF_EXEC_PAGESIZE        4096
1061 
1062 enum {
1063     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1064     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1065     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1066     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1067     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1068     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1069     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1070     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1071     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1072     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1073 };
1074 
1075 #define ELF_HWCAP get_elf_hwcap()
1076 
1077 static uint32_t get_elf_hwcap(void)
1078 {
1079     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1080     uint32_t hwcap = 0;
1081 
1082     hwcap |= SH_CPU_HAS_FPU;
1083 
1084     if (cpu->env.features & SH_FEATURE_SH4A) {
1085         hwcap |= SH_CPU_HAS_LLSC;
1086     }
1087 
1088     return hwcap;
1089 }
1090 
1091 #endif
1092 
1093 #ifdef TARGET_CRIS
1094 
1095 #define ELF_START_MMAP 0x80000000
1096 
1097 #define ELF_CLASS ELFCLASS32
1098 #define ELF_ARCH  EM_CRIS
1099 
1100 static inline void init_thread(struct target_pt_regs *regs,
1101                                struct image_info *infop)
1102 {
1103     regs->erp = infop->entry;
1104 }
1105 
1106 #define ELF_EXEC_PAGESIZE        8192
1107 
1108 #endif
1109 
1110 #ifdef TARGET_M68K
1111 
1112 #define ELF_START_MMAP 0x80000000
1113 
1114 #define ELF_CLASS       ELFCLASS32
1115 #define ELF_ARCH        EM_68K
1116 
1117 /* ??? Does this need to do anything?
1118    #define ELF_PLAT_INIT(_r) */
1119 
1120 static inline void init_thread(struct target_pt_regs *regs,
1121                                struct image_info *infop)
1122 {
1123     regs->usp = infop->start_stack;
1124     regs->sr = 0;
1125     regs->pc = infop->entry;
1126 }
1127 
1128 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1129 #define ELF_NREG 20
1130 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1131 
1132 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1133 {
1134     (*regs)[0] = tswapreg(env->dregs[1]);
1135     (*regs)[1] = tswapreg(env->dregs[2]);
1136     (*regs)[2] = tswapreg(env->dregs[3]);
1137     (*regs)[3] = tswapreg(env->dregs[4]);
1138     (*regs)[4] = tswapreg(env->dregs[5]);
1139     (*regs)[5] = tswapreg(env->dregs[6]);
1140     (*regs)[6] = tswapreg(env->dregs[7]);
1141     (*regs)[7] = tswapreg(env->aregs[0]);
1142     (*regs)[8] = tswapreg(env->aregs[1]);
1143     (*regs)[9] = tswapreg(env->aregs[2]);
1144     (*regs)[10] = tswapreg(env->aregs[3]);
1145     (*regs)[11] = tswapreg(env->aregs[4]);
1146     (*regs)[12] = tswapreg(env->aregs[5]);
1147     (*regs)[13] = tswapreg(env->aregs[6]);
1148     (*regs)[14] = tswapreg(env->dregs[0]);
1149     (*regs)[15] = tswapreg(env->aregs[7]);
1150     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1151     (*regs)[17] = tswapreg(env->sr);
1152     (*regs)[18] = tswapreg(env->pc);
1153     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1154 }
1155 
1156 #define USE_ELF_CORE_DUMP
1157 #define ELF_EXEC_PAGESIZE       8192
1158 
1159 #endif
1160 
1161 #ifdef TARGET_ALPHA
1162 
1163 #define ELF_START_MMAP (0x30000000000ULL)
1164 
1165 #define ELF_CLASS      ELFCLASS64
1166 #define ELF_ARCH       EM_ALPHA
1167 
1168 static inline void init_thread(struct target_pt_regs *regs,
1169                                struct image_info *infop)
1170 {
1171     regs->pc = infop->entry;
1172     regs->ps = 8;
1173     regs->usp = infop->start_stack;
1174 }
1175 
1176 #define ELF_EXEC_PAGESIZE        8192
1177 
1178 #endif /* TARGET_ALPHA */
1179 
1180 #ifdef TARGET_S390X
1181 
1182 #define ELF_START_MMAP (0x20000000000ULL)
1183 
1184 #define ELF_CLASS	ELFCLASS64
1185 #define ELF_DATA	ELFDATA2MSB
1186 #define ELF_ARCH	EM_S390
1187 
1188 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1189 {
1190     regs->psw.addr = infop->entry;
1191     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1192     regs->gprs[15] = infop->start_stack;
1193 }
1194 
1195 #endif /* TARGET_S390X */
1196 
1197 #ifdef TARGET_TILEGX
1198 
1199 /* 42 bits real used address, a half for user mode */
1200 #define ELF_START_MMAP (0x00000020000000000ULL)
1201 
1202 #define elf_check_arch(x) ((x) == EM_TILEGX)
1203 
1204 #define ELF_CLASS   ELFCLASS64
1205 #define ELF_DATA    ELFDATA2LSB
1206 #define ELF_ARCH    EM_TILEGX
1207 
1208 static inline void init_thread(struct target_pt_regs *regs,
1209                                struct image_info *infop)
1210 {
1211     regs->pc = infop->entry;
1212     regs->sp = infop->start_stack;
1213 
1214 }
1215 
1216 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1217 
1218 #endif /* TARGET_TILEGX */
1219 
1220 #ifndef ELF_PLATFORM
1221 #define ELF_PLATFORM (NULL)
1222 #endif
1223 
1224 #ifndef ELF_MACHINE
1225 #define ELF_MACHINE ELF_ARCH
1226 #endif
1227 
1228 #ifndef elf_check_arch
1229 #define elf_check_arch(x) ((x) == ELF_ARCH)
1230 #endif
1231 
1232 #ifndef ELF_HWCAP
1233 #define ELF_HWCAP 0
1234 #endif
1235 
1236 #ifdef TARGET_ABI32
1237 #undef ELF_CLASS
1238 #define ELF_CLASS ELFCLASS32
1239 #undef bswaptls
1240 #define bswaptls(ptr) bswap32s(ptr)
1241 #endif
1242 
1243 #include "elf.h"
1244 
1245 struct exec
1246 {
1247     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1248     unsigned int a_text;   /* length of text, in bytes */
1249     unsigned int a_data;   /* length of data, in bytes */
1250     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1251     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1252     unsigned int a_entry;  /* start address */
1253     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1254     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1255 };
1256 
1257 
1258 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1259 #define OMAGIC 0407
1260 #define NMAGIC 0410
1261 #define ZMAGIC 0413
1262 #define QMAGIC 0314
1263 
1264 /* Necessary parameters */
1265 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1266 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1267                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1268 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1269 
1270 #define DLINFO_ITEMS 14
1271 
1272 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1273 {
1274     memcpy(to, from, n);
1275 }
1276 
1277 #ifdef BSWAP_NEEDED
1278 static void bswap_ehdr(struct elfhdr *ehdr)
1279 {
1280     bswap16s(&ehdr->e_type);            /* Object file type */
1281     bswap16s(&ehdr->e_machine);         /* Architecture */
1282     bswap32s(&ehdr->e_version);         /* Object file version */
1283     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1284     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1285     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1286     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1287     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1288     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1289     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1290     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1291     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1292     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1293 }
1294 
1295 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1296 {
1297     int i;
1298     for (i = 0; i < phnum; ++i, ++phdr) {
1299         bswap32s(&phdr->p_type);        /* Segment type */
1300         bswap32s(&phdr->p_flags);       /* Segment flags */
1301         bswaptls(&phdr->p_offset);      /* Segment file offset */
1302         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1303         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1304         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1305         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1306         bswaptls(&phdr->p_align);       /* Segment alignment */
1307     }
1308 }
1309 
1310 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1311 {
1312     int i;
1313     for (i = 0; i < shnum; ++i, ++shdr) {
1314         bswap32s(&shdr->sh_name);
1315         bswap32s(&shdr->sh_type);
1316         bswaptls(&shdr->sh_flags);
1317         bswaptls(&shdr->sh_addr);
1318         bswaptls(&shdr->sh_offset);
1319         bswaptls(&shdr->sh_size);
1320         bswap32s(&shdr->sh_link);
1321         bswap32s(&shdr->sh_info);
1322         bswaptls(&shdr->sh_addralign);
1323         bswaptls(&shdr->sh_entsize);
1324     }
1325 }
1326 
1327 static void bswap_sym(struct elf_sym *sym)
1328 {
1329     bswap32s(&sym->st_name);
1330     bswaptls(&sym->st_value);
1331     bswaptls(&sym->st_size);
1332     bswap16s(&sym->st_shndx);
1333 }
1334 #else
1335 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1336 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1337 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1338 static inline void bswap_sym(struct elf_sym *sym) { }
1339 #endif
1340 
1341 #ifdef USE_ELF_CORE_DUMP
1342 static int elf_core_dump(int, const CPUArchState *);
1343 #endif /* USE_ELF_CORE_DUMP */
1344 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1345 
1346 /* Verify the portions of EHDR within E_IDENT for the target.
1347    This can be performed before bswapping the entire header.  */
1348 static bool elf_check_ident(struct elfhdr *ehdr)
1349 {
1350     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1351             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1352             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1353             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1354             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1355             && ehdr->e_ident[EI_DATA] == ELF_DATA
1356             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1357 }
1358 
1359 /* Verify the portions of EHDR outside of E_IDENT for the target.
1360    This has to wait until after bswapping the header.  */
1361 static bool elf_check_ehdr(struct elfhdr *ehdr)
1362 {
1363     return (elf_check_arch(ehdr->e_machine)
1364             && ehdr->e_ehsize == sizeof(struct elfhdr)
1365             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1366             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1367 }
1368 
1369 /*
1370  * 'copy_elf_strings()' copies argument/envelope strings from user
1371  * memory to free pages in kernel mem. These are in a format ready
1372  * to be put directly into the top of new user memory.
1373  *
1374  */
1375 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1376                                   abi_ulong p)
1377 {
1378     char *tmp, *tmp1, *pag = NULL;
1379     int len, offset = 0;
1380 
1381     if (!p) {
1382         return 0;       /* bullet-proofing */
1383     }
1384     while (argc-- > 0) {
1385         tmp = argv[argc];
1386         if (!tmp) {
1387             fprintf(stderr, "VFS: argc is wrong");
1388             exit(-1);
1389         }
1390         tmp1 = tmp;
1391         while (*tmp++);
1392         len = tmp - tmp1;
1393         if (p < len) {  /* this shouldn't happen - 128kB */
1394             return 0;
1395         }
1396         while (len) {
1397             --p; --tmp; --len;
1398             if (--offset < 0) {
1399                 offset = p % TARGET_PAGE_SIZE;
1400                 pag = (char *)page[p/TARGET_PAGE_SIZE];
1401                 if (!pag) {
1402                     pag = g_try_malloc0(TARGET_PAGE_SIZE);
1403                     page[p/TARGET_PAGE_SIZE] = pag;
1404                     if (!pag)
1405                         return 0;
1406                 }
1407             }
1408             if (len == 0 || offset == 0) {
1409                 *(pag + offset) = *tmp;
1410             }
1411             else {
1412                 int bytes_to_copy = (len > offset) ? offset : len;
1413                 tmp -= bytes_to_copy;
1414                 p -= bytes_to_copy;
1415                 offset -= bytes_to_copy;
1416                 len -= bytes_to_copy;
1417                 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1418             }
1419         }
1420     }
1421     return p;
1422 }
1423 
1424 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1425                                  struct image_info *info)
1426 {
1427     abi_ulong stack_base, size, error, guard;
1428     int i;
1429 
1430     /* Create enough stack to hold everything.  If we don't use
1431        it for args, we'll use it for something else.  */
1432     size = guest_stack_size;
1433     if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1434         size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1435     }
1436     guard = TARGET_PAGE_SIZE;
1437     if (guard < qemu_real_host_page_size) {
1438         guard = qemu_real_host_page_size;
1439     }
1440 
1441     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1442                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1443     if (error == -1) {
1444         perror("mmap stack");
1445         exit(-1);
1446     }
1447 
1448     /* We reserve one extra page at the top of the stack as guard.  */
1449     target_mprotect(error, guard, PROT_NONE);
1450 
1451     info->stack_limit = error + guard;
1452     stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1453     p += stack_base;
1454 
1455     for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1456         if (bprm->page[i]) {
1457             info->rss++;
1458             /* FIXME - check return value of memcpy_to_target() for failure */
1459             memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1460             g_free(bprm->page[i]);
1461         }
1462         stack_base += TARGET_PAGE_SIZE;
1463     }
1464     return p;
1465 }
1466 
1467 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1468    after the data section (i.e. bss).  */
1469 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1470 {
1471     uintptr_t host_start, host_map_start, host_end;
1472 
1473     last_bss = TARGET_PAGE_ALIGN(last_bss);
1474 
1475     /* ??? There is confusion between qemu_real_host_page_size and
1476        qemu_host_page_size here and elsewhere in target_mmap, which
1477        may lead to the end of the data section mapping from the file
1478        not being mapped.  At least there was an explicit test and
1479        comment for that here, suggesting that "the file size must
1480        be known".  The comment probably pre-dates the introduction
1481        of the fstat system call in target_mmap which does in fact
1482        find out the size.  What isn't clear is if the workaround
1483        here is still actually needed.  For now, continue with it,
1484        but merge it with the "normal" mmap that would allocate the bss.  */
1485 
1486     host_start = (uintptr_t) g2h(elf_bss);
1487     host_end = (uintptr_t) g2h(last_bss);
1488     host_map_start = (host_start + qemu_real_host_page_size - 1);
1489     host_map_start &= -qemu_real_host_page_size;
1490 
1491     if (host_map_start < host_end) {
1492         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1493                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1494         if (p == MAP_FAILED) {
1495             perror("cannot mmap brk");
1496             exit(-1);
1497         }
1498     }
1499 
1500     /* Ensure that the bss page(s) are valid */
1501     if ((page_get_flags(last_bss-1) & prot) != prot) {
1502         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1503     }
1504 
1505     if (host_start < host_map_start) {
1506         memset((void *)host_start, 0, host_map_start - host_start);
1507     }
1508 }
1509 
1510 #ifdef CONFIG_USE_FDPIC
1511 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1512 {
1513     uint16_t n;
1514     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1515 
1516     /* elf32_fdpic_loadseg */
1517     n = info->nsegs;
1518     while (n--) {
1519         sp -= 12;
1520         put_user_u32(loadsegs[n].addr, sp+0);
1521         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1522         put_user_u32(loadsegs[n].p_memsz, sp+8);
1523     }
1524 
1525     /* elf32_fdpic_loadmap */
1526     sp -= 4;
1527     put_user_u16(0, sp+0); /* version */
1528     put_user_u16(info->nsegs, sp+2); /* nsegs */
1529 
1530     info->personality = PER_LINUX_FDPIC;
1531     info->loadmap_addr = sp;
1532 
1533     return sp;
1534 }
1535 #endif
1536 
1537 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1538                                    struct elfhdr *exec,
1539                                    struct image_info *info,
1540                                    struct image_info *interp_info)
1541 {
1542     abi_ulong sp;
1543     abi_ulong sp_auxv;
1544     int size;
1545     int i;
1546     abi_ulong u_rand_bytes;
1547     uint8_t k_rand_bytes[16];
1548     abi_ulong u_platform;
1549     const char *k_platform;
1550     const int n = sizeof(elf_addr_t);
1551 
1552     sp = p;
1553 
1554 #ifdef CONFIG_USE_FDPIC
1555     /* Needs to be before we load the env/argc/... */
1556     if (elf_is_fdpic(exec)) {
1557         /* Need 4 byte alignment for these structs */
1558         sp &= ~3;
1559         sp = loader_build_fdpic_loadmap(info, sp);
1560         info->other_info = interp_info;
1561         if (interp_info) {
1562             interp_info->other_info = info;
1563             sp = loader_build_fdpic_loadmap(interp_info, sp);
1564         }
1565     }
1566 #endif
1567 
1568     u_platform = 0;
1569     k_platform = ELF_PLATFORM;
1570     if (k_platform) {
1571         size_t len = strlen(k_platform) + 1;
1572         sp -= (len + n - 1) & ~(n - 1);
1573         u_platform = sp;
1574         /* FIXME - check return value of memcpy_to_target() for failure */
1575         memcpy_to_target(sp, k_platform, len);
1576     }
1577 
1578     /*
1579      * Generate 16 random bytes for userspace PRNG seeding (not
1580      * cryptically secure but it's not the aim of QEMU).
1581      */
1582     for (i = 0; i < 16; i++) {
1583         k_rand_bytes[i] = rand();
1584     }
1585     sp -= 16;
1586     u_rand_bytes = sp;
1587     /* FIXME - check return value of memcpy_to_target() for failure */
1588     memcpy_to_target(sp, k_rand_bytes, 16);
1589 
1590     /*
1591      * Force 16 byte _final_ alignment here for generality.
1592      */
1593     sp = sp &~ (abi_ulong)15;
1594     size = (DLINFO_ITEMS + 1) * 2;
1595     if (k_platform)
1596         size += 2;
1597 #ifdef DLINFO_ARCH_ITEMS
1598     size += DLINFO_ARCH_ITEMS * 2;
1599 #endif
1600 #ifdef ELF_HWCAP2
1601     size += 2;
1602 #endif
1603     size += envc + argc + 2;
1604     size += 1;  /* argc itself */
1605     size *= n;
1606     if (size & 15)
1607         sp -= 16 - (size & 15);
1608 
1609     /* This is correct because Linux defines
1610      * elf_addr_t as Elf32_Off / Elf64_Off
1611      */
1612 #define NEW_AUX_ENT(id, val) do {               \
1613         sp -= n; put_user_ual(val, sp);         \
1614         sp -= n; put_user_ual(id, sp);          \
1615     } while(0)
1616 
1617     sp_auxv = sp;
1618     NEW_AUX_ENT (AT_NULL, 0);
1619 
1620     /* There must be exactly DLINFO_ITEMS entries here.  */
1621     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1622     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1623     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1624     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1625     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1626     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1627     NEW_AUX_ENT(AT_ENTRY, info->entry);
1628     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1629     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1630     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1631     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1632     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1633     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1634     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1635 
1636 #ifdef ELF_HWCAP2
1637     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1638 #endif
1639 
1640     if (k_platform)
1641         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1642 #ifdef ARCH_DLINFO
1643     /*
1644      * ARCH_DLINFO must come last so platform specific code can enforce
1645      * special alignment requirements on the AUXV if necessary (eg. PPC).
1646      */
1647     ARCH_DLINFO;
1648 #endif
1649 #undef NEW_AUX_ENT
1650 
1651     info->saved_auxv = sp;
1652     info->auxv_len = sp_auxv - sp;
1653 
1654     sp = loader_build_argptr(envc, argc, sp, p, 0);
1655     /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1656     assert(sp_auxv - sp == size);
1657     return sp;
1658 }
1659 
1660 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1661 /* If the guest doesn't have a validation function just agree */
1662 static int validate_guest_space(unsigned long guest_base,
1663                                 unsigned long guest_size)
1664 {
1665     return 1;
1666 }
1667 #endif
1668 
1669 unsigned long init_guest_space(unsigned long host_start,
1670                                unsigned long host_size,
1671                                unsigned long guest_start,
1672                                bool fixed)
1673 {
1674     unsigned long current_start, real_start;
1675     int flags;
1676 
1677     assert(host_start || host_size);
1678 
1679     /* If just a starting address is given, then just verify that
1680      * address.  */
1681     if (host_start && !host_size) {
1682         if (validate_guest_space(host_start, host_size) == 1) {
1683             return host_start;
1684         } else {
1685             return (unsigned long)-1;
1686         }
1687     }
1688 
1689     /* Setup the initial flags and start address.  */
1690     current_start = host_start & qemu_host_page_mask;
1691     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1692     if (fixed) {
1693         flags |= MAP_FIXED;
1694     }
1695 
1696     /* Otherwise, a non-zero size region of memory needs to be mapped
1697      * and validated.  */
1698     while (1) {
1699         unsigned long real_size = host_size;
1700 
1701         /* Do not use mmap_find_vma here because that is limited to the
1702          * guest address space.  We are going to make the
1703          * guest address space fit whatever we're given.
1704          */
1705         real_start = (unsigned long)
1706             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1707         if (real_start == (unsigned long)-1) {
1708             return (unsigned long)-1;
1709         }
1710 
1711         /* Ensure the address is properly aligned.  */
1712         if (real_start & ~qemu_host_page_mask) {
1713             munmap((void *)real_start, host_size);
1714             real_size = host_size + qemu_host_page_size;
1715             real_start = (unsigned long)
1716                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1717             if (real_start == (unsigned long)-1) {
1718                 return (unsigned long)-1;
1719             }
1720             real_start = HOST_PAGE_ALIGN(real_start);
1721         }
1722 
1723         /* Check to see if the address is valid.  */
1724         if (!host_start || real_start == current_start) {
1725             int valid = validate_guest_space(real_start - guest_start,
1726                                              real_size);
1727             if (valid == 1) {
1728                 break;
1729             } else if (valid == -1) {
1730                 return (unsigned long)-1;
1731             }
1732             /* valid == 0, so try again. */
1733         }
1734 
1735         /* That address didn't work.  Unmap and try a different one.
1736          * The address the host picked because is typically right at
1737          * the top of the host address space and leaves the guest with
1738          * no usable address space.  Resort to a linear search.  We
1739          * already compensated for mmap_min_addr, so this should not
1740          * happen often.  Probably means we got unlucky and host
1741          * address space randomization put a shared library somewhere
1742          * inconvenient.
1743          */
1744         munmap((void *)real_start, host_size);
1745         current_start += qemu_host_page_size;
1746         if (host_start == current_start) {
1747             /* Theoretically possible if host doesn't have any suitably
1748              * aligned areas.  Normally the first mmap will fail.
1749              */
1750             return (unsigned long)-1;
1751         }
1752     }
1753 
1754     qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1755 
1756     return real_start;
1757 }
1758 
1759 static void probe_guest_base(const char *image_name,
1760                              abi_ulong loaddr, abi_ulong hiaddr)
1761 {
1762     /* Probe for a suitable guest base address, if the user has not set
1763      * it explicitly, and set guest_base appropriately.
1764      * In case of error we will print a suitable message and exit.
1765      */
1766     const char *errmsg;
1767     if (!have_guest_base && !reserved_va) {
1768         unsigned long host_start, real_start, host_size;
1769 
1770         /* Round addresses to page boundaries.  */
1771         loaddr &= qemu_host_page_mask;
1772         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1773 
1774         if (loaddr < mmap_min_addr) {
1775             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1776         } else {
1777             host_start = loaddr;
1778             if (host_start != loaddr) {
1779                 errmsg = "Address overflow loading ELF binary";
1780                 goto exit_errmsg;
1781             }
1782         }
1783         host_size = hiaddr - loaddr;
1784 
1785         /* Setup the initial guest memory space with ranges gleaned from
1786          * the ELF image that is being loaded.
1787          */
1788         real_start = init_guest_space(host_start, host_size, loaddr, false);
1789         if (real_start == (unsigned long)-1) {
1790             errmsg = "Unable to find space for application";
1791             goto exit_errmsg;
1792         }
1793         guest_base = real_start - loaddr;
1794 
1795         qemu_log("Relocating guest address space from 0x"
1796                  TARGET_ABI_FMT_lx " to 0x%lx\n",
1797                  loaddr, real_start);
1798     }
1799     return;
1800 
1801 exit_errmsg:
1802     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1803     exit(-1);
1804 }
1805 
1806 
1807 /* Load an ELF image into the address space.
1808 
1809    IMAGE_NAME is the filename of the image, to use in error messages.
1810    IMAGE_FD is the open file descriptor for the image.
1811 
1812    BPRM_BUF is a copy of the beginning of the file; this of course
1813    contains the elf file header at offset 0.  It is assumed that this
1814    buffer is sufficiently aligned to present no problems to the host
1815    in accessing data at aligned offsets within the buffer.
1816 
1817    On return: INFO values will be filled in, as necessary or available.  */
1818 
1819 static void load_elf_image(const char *image_name, int image_fd,
1820                            struct image_info *info, char **pinterp_name,
1821                            char bprm_buf[BPRM_BUF_SIZE])
1822 {
1823     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1824     struct elf_phdr *phdr;
1825     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1826     int i, retval;
1827     const char *errmsg;
1828 
1829     /* First of all, some simple consistency checks */
1830     errmsg = "Invalid ELF image for this architecture";
1831     if (!elf_check_ident(ehdr)) {
1832         goto exit_errmsg;
1833     }
1834     bswap_ehdr(ehdr);
1835     if (!elf_check_ehdr(ehdr)) {
1836         goto exit_errmsg;
1837     }
1838 
1839     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1840     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1841         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1842     } else {
1843         phdr = (struct elf_phdr *) alloca(i);
1844         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1845         if (retval != i) {
1846             goto exit_read;
1847         }
1848     }
1849     bswap_phdr(phdr, ehdr->e_phnum);
1850 
1851 #ifdef CONFIG_USE_FDPIC
1852     info->nsegs = 0;
1853     info->pt_dynamic_addr = 0;
1854 #endif
1855 
1856     /* Find the maximum size of the image and allocate an appropriate
1857        amount of memory to handle that.  */
1858     loaddr = -1, hiaddr = 0;
1859     for (i = 0; i < ehdr->e_phnum; ++i) {
1860         if (phdr[i].p_type == PT_LOAD) {
1861             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1862             if (a < loaddr) {
1863                 loaddr = a;
1864             }
1865             a = phdr[i].p_vaddr + phdr[i].p_memsz;
1866             if (a > hiaddr) {
1867                 hiaddr = a;
1868             }
1869 #ifdef CONFIG_USE_FDPIC
1870             ++info->nsegs;
1871 #endif
1872         }
1873     }
1874 
1875     load_addr = loaddr;
1876     if (ehdr->e_type == ET_DYN) {
1877         /* The image indicates that it can be loaded anywhere.  Find a
1878            location that can hold the memory space required.  If the
1879            image is pre-linked, LOADDR will be non-zero.  Since we do
1880            not supply MAP_FIXED here we'll use that address if and
1881            only if it remains available.  */
1882         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1883                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1884                                 -1, 0);
1885         if (load_addr == -1) {
1886             goto exit_perror;
1887         }
1888     } else if (pinterp_name != NULL) {
1889         /* This is the main executable.  Make sure that the low
1890            address does not conflict with MMAP_MIN_ADDR or the
1891            QEMU application itself.  */
1892         probe_guest_base(image_name, loaddr, hiaddr);
1893     }
1894     load_bias = load_addr - loaddr;
1895 
1896 #ifdef CONFIG_USE_FDPIC
1897     {
1898         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1899             g_malloc(sizeof(*loadsegs) * info->nsegs);
1900 
1901         for (i = 0; i < ehdr->e_phnum; ++i) {
1902             switch (phdr[i].p_type) {
1903             case PT_DYNAMIC:
1904                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1905                 break;
1906             case PT_LOAD:
1907                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1908                 loadsegs->p_vaddr = phdr[i].p_vaddr;
1909                 loadsegs->p_memsz = phdr[i].p_memsz;
1910                 ++loadsegs;
1911                 break;
1912             }
1913         }
1914     }
1915 #endif
1916 
1917     info->load_bias = load_bias;
1918     info->load_addr = load_addr;
1919     info->entry = ehdr->e_entry + load_bias;
1920     info->start_code = -1;
1921     info->end_code = 0;
1922     info->start_data = -1;
1923     info->end_data = 0;
1924     info->brk = 0;
1925     info->elf_flags = ehdr->e_flags;
1926 
1927     for (i = 0; i < ehdr->e_phnum; i++) {
1928         struct elf_phdr *eppnt = phdr + i;
1929         if (eppnt->p_type == PT_LOAD) {
1930             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1931             int elf_prot = 0;
1932 
1933             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1934             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1935             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1936 
1937             vaddr = load_bias + eppnt->p_vaddr;
1938             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1939             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1940 
1941             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1942                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
1943                                 image_fd, eppnt->p_offset - vaddr_po);
1944             if (error == -1) {
1945                 goto exit_perror;
1946             }
1947 
1948             vaddr_ef = vaddr + eppnt->p_filesz;
1949             vaddr_em = vaddr + eppnt->p_memsz;
1950 
1951             /* If the load segment requests extra zeros (e.g. bss), map it.  */
1952             if (vaddr_ef < vaddr_em) {
1953                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1954             }
1955 
1956             /* Find the full program boundaries.  */
1957             if (elf_prot & PROT_EXEC) {
1958                 if (vaddr < info->start_code) {
1959                     info->start_code = vaddr;
1960                 }
1961                 if (vaddr_ef > info->end_code) {
1962                     info->end_code = vaddr_ef;
1963                 }
1964             }
1965             if (elf_prot & PROT_WRITE) {
1966                 if (vaddr < info->start_data) {
1967                     info->start_data = vaddr;
1968                 }
1969                 if (vaddr_ef > info->end_data) {
1970                     info->end_data = vaddr_ef;
1971                 }
1972                 if (vaddr_em > info->brk) {
1973                     info->brk = vaddr_em;
1974                 }
1975             }
1976         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1977             char *interp_name;
1978 
1979             if (*pinterp_name) {
1980                 errmsg = "Multiple PT_INTERP entries";
1981                 goto exit_errmsg;
1982             }
1983             interp_name = malloc(eppnt->p_filesz);
1984             if (!interp_name) {
1985                 goto exit_perror;
1986             }
1987 
1988             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1989                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1990                        eppnt->p_filesz);
1991             } else {
1992                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1993                                eppnt->p_offset);
1994                 if (retval != eppnt->p_filesz) {
1995                     goto exit_perror;
1996                 }
1997             }
1998             if (interp_name[eppnt->p_filesz - 1] != 0) {
1999                 errmsg = "Invalid PT_INTERP entry";
2000                 goto exit_errmsg;
2001             }
2002             *pinterp_name = interp_name;
2003         }
2004     }
2005 
2006     if (info->end_data == 0) {
2007         info->start_data = info->end_code;
2008         info->end_data = info->end_code;
2009         info->brk = info->end_code;
2010     }
2011 
2012     if (qemu_log_enabled()) {
2013         load_symbols(ehdr, image_fd, load_bias);
2014     }
2015 
2016     close(image_fd);
2017     return;
2018 
2019  exit_read:
2020     if (retval >= 0) {
2021         errmsg = "Incomplete read of file header";
2022         goto exit_errmsg;
2023     }
2024  exit_perror:
2025     errmsg = strerror(errno);
2026  exit_errmsg:
2027     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2028     exit(-1);
2029 }
2030 
2031 static void load_elf_interp(const char *filename, struct image_info *info,
2032                             char bprm_buf[BPRM_BUF_SIZE])
2033 {
2034     int fd, retval;
2035 
2036     fd = open(path(filename), O_RDONLY);
2037     if (fd < 0) {
2038         goto exit_perror;
2039     }
2040 
2041     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2042     if (retval < 0) {
2043         goto exit_perror;
2044     }
2045     if (retval < BPRM_BUF_SIZE) {
2046         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2047     }
2048 
2049     load_elf_image(filename, fd, info, NULL, bprm_buf);
2050     return;
2051 
2052  exit_perror:
2053     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2054     exit(-1);
2055 }
2056 
2057 static int symfind(const void *s0, const void *s1)
2058 {
2059     target_ulong addr = *(target_ulong *)s0;
2060     struct elf_sym *sym = (struct elf_sym *)s1;
2061     int result = 0;
2062     if (addr < sym->st_value) {
2063         result = -1;
2064     } else if (addr >= sym->st_value + sym->st_size) {
2065         result = 1;
2066     }
2067     return result;
2068 }
2069 
2070 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2071 {
2072 #if ELF_CLASS == ELFCLASS32
2073     struct elf_sym *syms = s->disas_symtab.elf32;
2074 #else
2075     struct elf_sym *syms = s->disas_symtab.elf64;
2076 #endif
2077 
2078     // binary search
2079     struct elf_sym *sym;
2080 
2081     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2082     if (sym != NULL) {
2083         return s->disas_strtab + sym->st_name;
2084     }
2085 
2086     return "";
2087 }
2088 
2089 /* FIXME: This should use elf_ops.h  */
2090 static int symcmp(const void *s0, const void *s1)
2091 {
2092     struct elf_sym *sym0 = (struct elf_sym *)s0;
2093     struct elf_sym *sym1 = (struct elf_sym *)s1;
2094     return (sym0->st_value < sym1->st_value)
2095         ? -1
2096         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2097 }
2098 
2099 /* Best attempt to load symbols from this ELF object. */
2100 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2101 {
2102     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2103     struct elf_shdr *shdr;
2104     char *strings = NULL;
2105     struct syminfo *s = NULL;
2106     struct elf_sym *new_syms, *syms = NULL;
2107 
2108     shnum = hdr->e_shnum;
2109     i = shnum * sizeof(struct elf_shdr);
2110     shdr = (struct elf_shdr *)alloca(i);
2111     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2112         return;
2113     }
2114 
2115     bswap_shdr(shdr, shnum);
2116     for (i = 0; i < shnum; ++i) {
2117         if (shdr[i].sh_type == SHT_SYMTAB) {
2118             sym_idx = i;
2119             str_idx = shdr[i].sh_link;
2120             goto found;
2121         }
2122     }
2123 
2124     /* There will be no symbol table if the file was stripped.  */
2125     return;
2126 
2127  found:
2128     /* Now know where the strtab and symtab are.  Snarf them.  */
2129     s = malloc(sizeof(*s));
2130     if (!s) {
2131         goto give_up;
2132     }
2133 
2134     i = shdr[str_idx].sh_size;
2135     s->disas_strtab = strings = malloc(i);
2136     if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2137         goto give_up;
2138     }
2139 
2140     i = shdr[sym_idx].sh_size;
2141     syms = malloc(i);
2142     if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2143         goto give_up;
2144     }
2145 
2146     nsyms = i / sizeof(struct elf_sym);
2147     for (i = 0; i < nsyms; ) {
2148         bswap_sym(syms + i);
2149         /* Throw away entries which we do not need.  */
2150         if (syms[i].st_shndx == SHN_UNDEF
2151             || syms[i].st_shndx >= SHN_LORESERVE
2152             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2153             if (i < --nsyms) {
2154                 syms[i] = syms[nsyms];
2155             }
2156         } else {
2157 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2158             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2159             syms[i].st_value &= ~(target_ulong)1;
2160 #endif
2161             syms[i].st_value += load_bias;
2162             i++;
2163         }
2164     }
2165 
2166     /* No "useful" symbol.  */
2167     if (nsyms == 0) {
2168         goto give_up;
2169     }
2170 
2171     /* Attempt to free the storage associated with the local symbols
2172        that we threw away.  Whether or not this has any effect on the
2173        memory allocation depends on the malloc implementation and how
2174        many symbols we managed to discard.  */
2175     new_syms = realloc(syms, nsyms * sizeof(*syms));
2176     if (new_syms == NULL) {
2177         goto give_up;
2178     }
2179     syms = new_syms;
2180 
2181     qsort(syms, nsyms, sizeof(*syms), symcmp);
2182 
2183     s->disas_num_syms = nsyms;
2184 #if ELF_CLASS == ELFCLASS32
2185     s->disas_symtab.elf32 = syms;
2186 #else
2187     s->disas_symtab.elf64 = syms;
2188 #endif
2189     s->lookup_symbol = lookup_symbolxx;
2190     s->next = syminfos;
2191     syminfos = s;
2192 
2193     return;
2194 
2195 give_up:
2196     free(s);
2197     free(strings);
2198     free(syms);
2199 }
2200 
2201 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2202 {
2203     struct image_info interp_info;
2204     struct elfhdr elf_ex;
2205     char *elf_interpreter = NULL;
2206 
2207     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2208     info->mmap = 0;
2209     info->rss = 0;
2210 
2211     load_elf_image(bprm->filename, bprm->fd, info,
2212                    &elf_interpreter, bprm->buf);
2213 
2214     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2215        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2216        when we load the interpreter.  */
2217     elf_ex = *(struct elfhdr *)bprm->buf;
2218 
2219     bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2220     bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2221     bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2222     if (!bprm->p) {
2223         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2224         exit(-1);
2225     }
2226 
2227     /* Do this so that we can load the interpreter, if need be.  We will
2228        change some of these later */
2229     bprm->p = setup_arg_pages(bprm->p, bprm, info);
2230 
2231     if (elf_interpreter) {
2232         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2233 
2234         /* If the program interpreter is one of these two, then assume
2235            an iBCS2 image.  Otherwise assume a native linux image.  */
2236 
2237         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2238             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2239             info->personality = PER_SVR4;
2240 
2241             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2242                and some applications "depend" upon this behavior.  Since
2243                we do not have the power to recompile these, we emulate
2244                the SVr4 behavior.  Sigh.  */
2245             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2246                         MAP_FIXED | MAP_PRIVATE, -1, 0);
2247         }
2248     }
2249 
2250     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2251                                 info, (elf_interpreter ? &interp_info : NULL));
2252     info->start_stack = bprm->p;
2253 
2254     /* If we have an interpreter, set that as the program's entry point.
2255        Copy the load_bias as well, to help PPC64 interpret the entry
2256        point as a function descriptor.  Do this after creating elf tables
2257        so that we copy the original program entry point into the AUXV.  */
2258     if (elf_interpreter) {
2259         info->load_bias = interp_info.load_bias;
2260         info->entry = interp_info.entry;
2261         free(elf_interpreter);
2262     }
2263 
2264 #ifdef USE_ELF_CORE_DUMP
2265     bprm->core_dump = &elf_core_dump;
2266 #endif
2267 
2268     return 0;
2269 }
2270 
2271 #ifdef USE_ELF_CORE_DUMP
2272 /*
2273  * Definitions to generate Intel SVR4-like core files.
2274  * These mostly have the same names as the SVR4 types with "target_elf_"
2275  * tacked on the front to prevent clashes with linux definitions,
2276  * and the typedef forms have been avoided.  This is mostly like
2277  * the SVR4 structure, but more Linuxy, with things that Linux does
2278  * not support and which gdb doesn't really use excluded.
2279  *
2280  * Fields we don't dump (their contents is zero) in linux-user qemu
2281  * are marked with XXX.
2282  *
2283  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2284  *
2285  * Porting ELF coredump for target is (quite) simple process.  First you
2286  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2287  * the target resides):
2288  *
2289  * #define USE_ELF_CORE_DUMP
2290  *
2291  * Next you define type of register set used for dumping.  ELF specification
2292  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2293  *
2294  * typedef <target_regtype> target_elf_greg_t;
2295  * #define ELF_NREG <number of registers>
2296  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2297  *
2298  * Last step is to implement target specific function that copies registers
2299  * from given cpu into just specified register set.  Prototype is:
2300  *
2301  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2302  *                                const CPUArchState *env);
2303  *
2304  * Parameters:
2305  *     regs - copy register values into here (allocated and zeroed by caller)
2306  *     env - copy registers from here
2307  *
2308  * Example for ARM target is provided in this file.
2309  */
2310 
2311 /* An ELF note in memory */
2312 struct memelfnote {
2313     const char *name;
2314     size_t     namesz;
2315     size_t     namesz_rounded;
2316     int        type;
2317     size_t     datasz;
2318     size_t     datasz_rounded;
2319     void       *data;
2320     size_t     notesz;
2321 };
2322 
2323 struct target_elf_siginfo {
2324     abi_int    si_signo; /* signal number */
2325     abi_int    si_code;  /* extra code */
2326     abi_int    si_errno; /* errno */
2327 };
2328 
2329 struct target_elf_prstatus {
2330     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2331     abi_short          pr_cursig;    /* Current signal */
2332     abi_ulong          pr_sigpend;   /* XXX */
2333     abi_ulong          pr_sighold;   /* XXX */
2334     target_pid_t       pr_pid;
2335     target_pid_t       pr_ppid;
2336     target_pid_t       pr_pgrp;
2337     target_pid_t       pr_sid;
2338     struct target_timeval pr_utime;  /* XXX User time */
2339     struct target_timeval pr_stime;  /* XXX System time */
2340     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2341     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2342     target_elf_gregset_t      pr_reg;       /* GP registers */
2343     abi_int            pr_fpvalid;   /* XXX */
2344 };
2345 
2346 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2347 
2348 struct target_elf_prpsinfo {
2349     char         pr_state;       /* numeric process state */
2350     char         pr_sname;       /* char for pr_state */
2351     char         pr_zomb;        /* zombie */
2352     char         pr_nice;        /* nice val */
2353     abi_ulong    pr_flag;        /* flags */
2354     target_uid_t pr_uid;
2355     target_gid_t pr_gid;
2356     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2357     /* Lots missing */
2358     char    pr_fname[16];           /* filename of executable */
2359     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2360 };
2361 
2362 /* Here is the structure in which status of each thread is captured. */
2363 struct elf_thread_status {
2364     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2365     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2366 #if 0
2367     elf_fpregset_t fpu;             /* NT_PRFPREG */
2368     struct task_struct *thread;
2369     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2370 #endif
2371     struct memelfnote notes[1];
2372     int num_notes;
2373 };
2374 
2375 struct elf_note_info {
2376     struct memelfnote   *notes;
2377     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2378     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2379 
2380     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2381 #if 0
2382     /*
2383      * Current version of ELF coredump doesn't support
2384      * dumping fp regs etc.
2385      */
2386     elf_fpregset_t *fpu;
2387     elf_fpxregset_t *xfpu;
2388     int thread_status_size;
2389 #endif
2390     int notes_size;
2391     int numnote;
2392 };
2393 
2394 struct vm_area_struct {
2395     target_ulong   vma_start;  /* start vaddr of memory region */
2396     target_ulong   vma_end;    /* end vaddr of memory region */
2397     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2398     QTAILQ_ENTRY(vm_area_struct) vma_link;
2399 };
2400 
2401 struct mm_struct {
2402     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2403     int mm_count;           /* number of mappings */
2404 };
2405 
2406 static struct mm_struct *vma_init(void);
2407 static void vma_delete(struct mm_struct *);
2408 static int vma_add_mapping(struct mm_struct *, target_ulong,
2409                            target_ulong, abi_ulong);
2410 static int vma_get_mapping_count(const struct mm_struct *);
2411 static struct vm_area_struct *vma_first(const struct mm_struct *);
2412 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2413 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2414 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2415                       unsigned long flags);
2416 
2417 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2418 static void fill_note(struct memelfnote *, const char *, int,
2419                       unsigned int, void *);
2420 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2421 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2422 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2423 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2424 static size_t note_size(const struct memelfnote *);
2425 static void free_note_info(struct elf_note_info *);
2426 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2427 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2428 static int core_dump_filename(const TaskState *, char *, size_t);
2429 
2430 static int dump_write(int, const void *, size_t);
2431 static int write_note(struct memelfnote *, int);
2432 static int write_note_info(struct elf_note_info *, int);
2433 
2434 #ifdef BSWAP_NEEDED
2435 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2436 {
2437     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2438     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2439     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2440     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2441     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2442     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2443     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2444     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2445     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2446     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2447     /* cpu times are not filled, so we skip them */
2448     /* regs should be in correct format already */
2449     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2450 }
2451 
2452 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2453 {
2454     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2455     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2456     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2457     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2458     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2459     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2460     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2461 }
2462 
2463 static void bswap_note(struct elf_note *en)
2464 {
2465     bswap32s(&en->n_namesz);
2466     bswap32s(&en->n_descsz);
2467     bswap32s(&en->n_type);
2468 }
2469 #else
2470 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2471 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2472 static inline void bswap_note(struct elf_note *en) { }
2473 #endif /* BSWAP_NEEDED */
2474 
2475 /*
2476  * Minimal support for linux memory regions.  These are needed
2477  * when we are finding out what memory exactly belongs to
2478  * emulated process.  No locks needed here, as long as
2479  * thread that received the signal is stopped.
2480  */
2481 
2482 static struct mm_struct *vma_init(void)
2483 {
2484     struct mm_struct *mm;
2485 
2486     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2487         return (NULL);
2488 
2489     mm->mm_count = 0;
2490     QTAILQ_INIT(&mm->mm_mmap);
2491 
2492     return (mm);
2493 }
2494 
2495 static void vma_delete(struct mm_struct *mm)
2496 {
2497     struct vm_area_struct *vma;
2498 
2499     while ((vma = vma_first(mm)) != NULL) {
2500         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2501         g_free(vma);
2502     }
2503     g_free(mm);
2504 }
2505 
2506 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2507                            target_ulong end, abi_ulong flags)
2508 {
2509     struct vm_area_struct *vma;
2510 
2511     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2512         return (-1);
2513 
2514     vma->vma_start = start;
2515     vma->vma_end = end;
2516     vma->vma_flags = flags;
2517 
2518     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2519     mm->mm_count++;
2520 
2521     return (0);
2522 }
2523 
2524 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2525 {
2526     return (QTAILQ_FIRST(&mm->mm_mmap));
2527 }
2528 
2529 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2530 {
2531     return (QTAILQ_NEXT(vma, vma_link));
2532 }
2533 
2534 static int vma_get_mapping_count(const struct mm_struct *mm)
2535 {
2536     return (mm->mm_count);
2537 }
2538 
2539 /*
2540  * Calculate file (dump) size of given memory region.
2541  */
2542 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2543 {
2544     /* if we cannot even read the first page, skip it */
2545     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2546         return (0);
2547 
2548     /*
2549      * Usually we don't dump executable pages as they contain
2550      * non-writable code that debugger can read directly from
2551      * target library etc.  However, thread stacks are marked
2552      * also executable so we read in first page of given region
2553      * and check whether it contains elf header.  If there is
2554      * no elf header, we dump it.
2555      */
2556     if (vma->vma_flags & PROT_EXEC) {
2557         char page[TARGET_PAGE_SIZE];
2558 
2559         copy_from_user(page, vma->vma_start, sizeof (page));
2560         if ((page[EI_MAG0] == ELFMAG0) &&
2561             (page[EI_MAG1] == ELFMAG1) &&
2562             (page[EI_MAG2] == ELFMAG2) &&
2563             (page[EI_MAG3] == ELFMAG3)) {
2564             /*
2565              * Mappings are possibly from ELF binary.  Don't dump
2566              * them.
2567              */
2568             return (0);
2569         }
2570     }
2571 
2572     return (vma->vma_end - vma->vma_start);
2573 }
2574 
2575 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2576                       unsigned long flags)
2577 {
2578     struct mm_struct *mm = (struct mm_struct *)priv;
2579 
2580     vma_add_mapping(mm, start, end, flags);
2581     return (0);
2582 }
2583 
2584 static void fill_note(struct memelfnote *note, const char *name, int type,
2585                       unsigned int sz, void *data)
2586 {
2587     unsigned int namesz;
2588 
2589     namesz = strlen(name) + 1;
2590     note->name = name;
2591     note->namesz = namesz;
2592     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2593     note->type = type;
2594     note->datasz = sz;
2595     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2596 
2597     note->data = data;
2598 
2599     /*
2600      * We calculate rounded up note size here as specified by
2601      * ELF document.
2602      */
2603     note->notesz = sizeof (struct elf_note) +
2604         note->namesz_rounded + note->datasz_rounded;
2605 }
2606 
2607 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2608                             uint32_t flags)
2609 {
2610     (void) memset(elf, 0, sizeof(*elf));
2611 
2612     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2613     elf->e_ident[EI_CLASS] = ELF_CLASS;
2614     elf->e_ident[EI_DATA] = ELF_DATA;
2615     elf->e_ident[EI_VERSION] = EV_CURRENT;
2616     elf->e_ident[EI_OSABI] = ELF_OSABI;
2617 
2618     elf->e_type = ET_CORE;
2619     elf->e_machine = machine;
2620     elf->e_version = EV_CURRENT;
2621     elf->e_phoff = sizeof(struct elfhdr);
2622     elf->e_flags = flags;
2623     elf->e_ehsize = sizeof(struct elfhdr);
2624     elf->e_phentsize = sizeof(struct elf_phdr);
2625     elf->e_phnum = segs;
2626 
2627     bswap_ehdr(elf);
2628 }
2629 
2630 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2631 {
2632     phdr->p_type = PT_NOTE;
2633     phdr->p_offset = offset;
2634     phdr->p_vaddr = 0;
2635     phdr->p_paddr = 0;
2636     phdr->p_filesz = sz;
2637     phdr->p_memsz = 0;
2638     phdr->p_flags = 0;
2639     phdr->p_align = 0;
2640 
2641     bswap_phdr(phdr, 1);
2642 }
2643 
2644 static size_t note_size(const struct memelfnote *note)
2645 {
2646     return (note->notesz);
2647 }
2648 
2649 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2650                           const TaskState *ts, int signr)
2651 {
2652     (void) memset(prstatus, 0, sizeof (*prstatus));
2653     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2654     prstatus->pr_pid = ts->ts_tid;
2655     prstatus->pr_ppid = getppid();
2656     prstatus->pr_pgrp = getpgrp();
2657     prstatus->pr_sid = getsid(0);
2658 
2659     bswap_prstatus(prstatus);
2660 }
2661 
2662 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2663 {
2664     char *base_filename;
2665     unsigned int i, len;
2666 
2667     (void) memset(psinfo, 0, sizeof (*psinfo));
2668 
2669     len = ts->info->arg_end - ts->info->arg_start;
2670     if (len >= ELF_PRARGSZ)
2671         len = ELF_PRARGSZ - 1;
2672     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2673         return -EFAULT;
2674     for (i = 0; i < len; i++)
2675         if (psinfo->pr_psargs[i] == 0)
2676             psinfo->pr_psargs[i] = ' ';
2677     psinfo->pr_psargs[len] = 0;
2678 
2679     psinfo->pr_pid = getpid();
2680     psinfo->pr_ppid = getppid();
2681     psinfo->pr_pgrp = getpgrp();
2682     psinfo->pr_sid = getsid(0);
2683     psinfo->pr_uid = getuid();
2684     psinfo->pr_gid = getgid();
2685 
2686     base_filename = g_path_get_basename(ts->bprm->filename);
2687     /*
2688      * Using strncpy here is fine: at max-length,
2689      * this field is not NUL-terminated.
2690      */
2691     (void) strncpy(psinfo->pr_fname, base_filename,
2692                    sizeof(psinfo->pr_fname));
2693 
2694     g_free(base_filename);
2695     bswap_psinfo(psinfo);
2696     return (0);
2697 }
2698 
2699 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2700 {
2701     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2702     elf_addr_t orig_auxv = auxv;
2703     void *ptr;
2704     int len = ts->info->auxv_len;
2705 
2706     /*
2707      * Auxiliary vector is stored in target process stack.  It contains
2708      * {type, value} pairs that we need to dump into note.  This is not
2709      * strictly necessary but we do it here for sake of completeness.
2710      */
2711 
2712     /* read in whole auxv vector and copy it to memelfnote */
2713     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2714     if (ptr != NULL) {
2715         fill_note(note, "CORE", NT_AUXV, len, ptr);
2716         unlock_user(ptr, auxv, len);
2717     }
2718 }
2719 
2720 /*
2721  * Constructs name of coredump file.  We have following convention
2722  * for the name:
2723  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2724  *
2725  * Returns 0 in case of success, -1 otherwise (errno is set).
2726  */
2727 static int core_dump_filename(const TaskState *ts, char *buf,
2728                               size_t bufsize)
2729 {
2730     char timestamp[64];
2731     char *filename = NULL;
2732     char *base_filename = NULL;
2733     struct timeval tv;
2734     struct tm tm;
2735 
2736     assert(bufsize >= PATH_MAX);
2737 
2738     if (gettimeofday(&tv, NULL) < 0) {
2739         (void) fprintf(stderr, "unable to get current timestamp: %s",
2740                        strerror(errno));
2741         return (-1);
2742     }
2743 
2744     filename = strdup(ts->bprm->filename);
2745     base_filename = strdup(basename(filename));
2746     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2747                     localtime_r(&tv.tv_sec, &tm));
2748     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2749                     base_filename, timestamp, (int)getpid());
2750     free(base_filename);
2751     free(filename);
2752 
2753     return (0);
2754 }
2755 
2756 static int dump_write(int fd, const void *ptr, size_t size)
2757 {
2758     const char *bufp = (const char *)ptr;
2759     ssize_t bytes_written, bytes_left;
2760     struct rlimit dumpsize;
2761     off_t pos;
2762 
2763     bytes_written = 0;
2764     getrlimit(RLIMIT_CORE, &dumpsize);
2765     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2766         if (errno == ESPIPE) { /* not a seekable stream */
2767             bytes_left = size;
2768         } else {
2769             return pos;
2770         }
2771     } else {
2772         if (dumpsize.rlim_cur <= pos) {
2773             return -1;
2774         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2775             bytes_left = size;
2776         } else {
2777             size_t limit_left=dumpsize.rlim_cur - pos;
2778             bytes_left = limit_left >= size ? size : limit_left ;
2779         }
2780     }
2781 
2782     /*
2783      * In normal conditions, single write(2) should do but
2784      * in case of socket etc. this mechanism is more portable.
2785      */
2786     do {
2787         bytes_written = write(fd, bufp, bytes_left);
2788         if (bytes_written < 0) {
2789             if (errno == EINTR)
2790                 continue;
2791             return (-1);
2792         } else if (bytes_written == 0) { /* eof */
2793             return (-1);
2794         }
2795         bufp += bytes_written;
2796         bytes_left -= bytes_written;
2797     } while (bytes_left > 0);
2798 
2799     return (0);
2800 }
2801 
2802 static int write_note(struct memelfnote *men, int fd)
2803 {
2804     struct elf_note en;
2805 
2806     en.n_namesz = men->namesz;
2807     en.n_type = men->type;
2808     en.n_descsz = men->datasz;
2809 
2810     bswap_note(&en);
2811 
2812     if (dump_write(fd, &en, sizeof(en)) != 0)
2813         return (-1);
2814     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2815         return (-1);
2816     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2817         return (-1);
2818 
2819     return (0);
2820 }
2821 
2822 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2823 {
2824     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2825     TaskState *ts = (TaskState *)cpu->opaque;
2826     struct elf_thread_status *ets;
2827 
2828     ets = g_malloc0(sizeof (*ets));
2829     ets->num_notes = 1; /* only prstatus is dumped */
2830     fill_prstatus(&ets->prstatus, ts, 0);
2831     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2832     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2833               &ets->prstatus);
2834 
2835     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2836 
2837     info->notes_size += note_size(&ets->notes[0]);
2838 }
2839 
2840 static void init_note_info(struct elf_note_info *info)
2841 {
2842     /* Initialize the elf_note_info structure so that it is at
2843      * least safe to call free_note_info() on it. Must be
2844      * called before calling fill_note_info().
2845      */
2846     memset(info, 0, sizeof (*info));
2847     QTAILQ_INIT(&info->thread_list);
2848 }
2849 
2850 static int fill_note_info(struct elf_note_info *info,
2851                           long signr, const CPUArchState *env)
2852 {
2853 #define NUMNOTES 3
2854     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2855     TaskState *ts = (TaskState *)cpu->opaque;
2856     int i;
2857 
2858     info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2859     if (info->notes == NULL)
2860         return (-ENOMEM);
2861     info->prstatus = g_malloc0(sizeof (*info->prstatus));
2862     if (info->prstatus == NULL)
2863         return (-ENOMEM);
2864     info->psinfo = g_malloc0(sizeof (*info->psinfo));
2865     if (info->prstatus == NULL)
2866         return (-ENOMEM);
2867 
2868     /*
2869      * First fill in status (and registers) of current thread
2870      * including process info & aux vector.
2871      */
2872     fill_prstatus(info->prstatus, ts, signr);
2873     elf_core_copy_regs(&info->prstatus->pr_reg, env);
2874     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2875               sizeof (*info->prstatus), info->prstatus);
2876     fill_psinfo(info->psinfo, ts);
2877     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2878               sizeof (*info->psinfo), info->psinfo);
2879     fill_auxv_note(&info->notes[2], ts);
2880     info->numnote = 3;
2881 
2882     info->notes_size = 0;
2883     for (i = 0; i < info->numnote; i++)
2884         info->notes_size += note_size(&info->notes[i]);
2885 
2886     /* read and fill status of all threads */
2887     cpu_list_lock();
2888     CPU_FOREACH(cpu) {
2889         if (cpu == thread_cpu) {
2890             continue;
2891         }
2892         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2893     }
2894     cpu_list_unlock();
2895 
2896     return (0);
2897 }
2898 
2899 static void free_note_info(struct elf_note_info *info)
2900 {
2901     struct elf_thread_status *ets;
2902 
2903     while (!QTAILQ_EMPTY(&info->thread_list)) {
2904         ets = QTAILQ_FIRST(&info->thread_list);
2905         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2906         g_free(ets);
2907     }
2908 
2909     g_free(info->prstatus);
2910     g_free(info->psinfo);
2911     g_free(info->notes);
2912 }
2913 
2914 static int write_note_info(struct elf_note_info *info, int fd)
2915 {
2916     struct elf_thread_status *ets;
2917     int i, error = 0;
2918 
2919     /* write prstatus, psinfo and auxv for current thread */
2920     for (i = 0; i < info->numnote; i++)
2921         if ((error = write_note(&info->notes[i], fd)) != 0)
2922             return (error);
2923 
2924     /* write prstatus for each thread */
2925     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
2926         if ((error = write_note(&ets->notes[0], fd)) != 0)
2927             return (error);
2928     }
2929 
2930     return (0);
2931 }
2932 
2933 /*
2934  * Write out ELF coredump.
2935  *
2936  * See documentation of ELF object file format in:
2937  * http://www.caldera.com/developers/devspecs/gabi41.pdf
2938  *
2939  * Coredump format in linux is following:
2940  *
2941  * 0   +----------------------+         \
2942  *     | ELF header           | ET_CORE  |
2943  *     +----------------------+          |
2944  *     | ELF program headers  |          |--- headers
2945  *     | - NOTE section       |          |
2946  *     | - PT_LOAD sections   |          |
2947  *     +----------------------+         /
2948  *     | NOTEs:               |
2949  *     | - NT_PRSTATUS        |
2950  *     | - NT_PRSINFO         |
2951  *     | - NT_AUXV            |
2952  *     +----------------------+ <-- aligned to target page
2953  *     | Process memory dump  |
2954  *     :                      :
2955  *     .                      .
2956  *     :                      :
2957  *     |                      |
2958  *     +----------------------+
2959  *
2960  * NT_PRSTATUS -> struct elf_prstatus (per thread)
2961  * NT_PRSINFO  -> struct elf_prpsinfo
2962  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2963  *
2964  * Format follows System V format as close as possible.  Current
2965  * version limitations are as follows:
2966  *     - no floating point registers are dumped
2967  *
2968  * Function returns 0 in case of success, negative errno otherwise.
2969  *
2970  * TODO: make this work also during runtime: it should be
2971  * possible to force coredump from running process and then
2972  * continue processing.  For example qemu could set up SIGUSR2
2973  * handler (provided that target process haven't registered
2974  * handler for that) that does the dump when signal is received.
2975  */
2976 static int elf_core_dump(int signr, const CPUArchState *env)
2977 {
2978     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2979     const TaskState *ts = (const TaskState *)cpu->opaque;
2980     struct vm_area_struct *vma = NULL;
2981     char corefile[PATH_MAX];
2982     struct elf_note_info info;
2983     struct elfhdr elf;
2984     struct elf_phdr phdr;
2985     struct rlimit dumpsize;
2986     struct mm_struct *mm = NULL;
2987     off_t offset = 0, data_offset = 0;
2988     int segs = 0;
2989     int fd = -1;
2990 
2991     init_note_info(&info);
2992 
2993     errno = 0;
2994     getrlimit(RLIMIT_CORE, &dumpsize);
2995     if (dumpsize.rlim_cur == 0)
2996         return 0;
2997 
2998     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2999         return (-errno);
3000 
3001     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3002                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3003         return (-errno);
3004 
3005     /*
3006      * Walk through target process memory mappings and
3007      * set up structure containing this information.  After
3008      * this point vma_xxx functions can be used.
3009      */
3010     if ((mm = vma_init()) == NULL)
3011         goto out;
3012 
3013     walk_memory_regions(mm, vma_walker);
3014     segs = vma_get_mapping_count(mm);
3015 
3016     /*
3017      * Construct valid coredump ELF header.  We also
3018      * add one more segment for notes.
3019      */
3020     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3021     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3022         goto out;
3023 
3024     /* fill in the in-memory version of notes */
3025     if (fill_note_info(&info, signr, env) < 0)
3026         goto out;
3027 
3028     offset += sizeof (elf);                             /* elf header */
3029     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3030 
3031     /* write out notes program header */
3032     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3033 
3034     offset += info.notes_size;
3035     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3036         goto out;
3037 
3038     /*
3039      * ELF specification wants data to start at page boundary so
3040      * we align it here.
3041      */
3042     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3043 
3044     /*
3045      * Write program headers for memory regions mapped in
3046      * the target process.
3047      */
3048     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3049         (void) memset(&phdr, 0, sizeof (phdr));
3050 
3051         phdr.p_type = PT_LOAD;
3052         phdr.p_offset = offset;
3053         phdr.p_vaddr = vma->vma_start;
3054         phdr.p_paddr = 0;
3055         phdr.p_filesz = vma_dump_size(vma);
3056         offset += phdr.p_filesz;
3057         phdr.p_memsz = vma->vma_end - vma->vma_start;
3058         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3059         if (vma->vma_flags & PROT_WRITE)
3060             phdr.p_flags |= PF_W;
3061         if (vma->vma_flags & PROT_EXEC)
3062             phdr.p_flags |= PF_X;
3063         phdr.p_align = ELF_EXEC_PAGESIZE;
3064 
3065         bswap_phdr(&phdr, 1);
3066         dump_write(fd, &phdr, sizeof (phdr));
3067     }
3068 
3069     /*
3070      * Next we write notes just after program headers.  No
3071      * alignment needed here.
3072      */
3073     if (write_note_info(&info, fd) < 0)
3074         goto out;
3075 
3076     /* align data to page boundary */
3077     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3078         goto out;
3079 
3080     /*
3081      * Finally we can dump process memory into corefile as well.
3082      */
3083     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3084         abi_ulong addr;
3085         abi_ulong end;
3086 
3087         end = vma->vma_start + vma_dump_size(vma);
3088 
3089         for (addr = vma->vma_start; addr < end;
3090              addr += TARGET_PAGE_SIZE) {
3091             char page[TARGET_PAGE_SIZE];
3092             int error;
3093 
3094             /*
3095              *  Read in page from target process memory and
3096              *  write it to coredump file.
3097              */
3098             error = copy_from_user(page, addr, sizeof (page));
3099             if (error != 0) {
3100                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3101                                addr);
3102                 errno = -error;
3103                 goto out;
3104             }
3105             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3106                 goto out;
3107         }
3108     }
3109 
3110  out:
3111     free_note_info(&info);
3112     if (mm != NULL)
3113         vma_delete(mm);
3114     (void) close(fd);
3115 
3116     if (errno != 0)
3117         return (-errno);
3118     return (0);
3119 }
3120 #endif /* USE_ELF_CORE_DUMP */
3121 
3122 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3123 {
3124     init_thread(regs, infop);
3125 }
3126