1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/path.h" 11 #include "qemu/queue.h" 12 #include "qemu/guest-random.h" 13 14 #ifdef _ARCH_PPC64 15 #undef ARCH_DLINFO 16 #undef ELF_PLATFORM 17 #undef ELF_HWCAP 18 #undef ELF_HWCAP2 19 #undef ELF_CLASS 20 #undef ELF_DATA 21 #undef ELF_ARCH 22 #endif 23 24 #define ELF_OSABI ELFOSABI_SYSV 25 26 /* from personality.h */ 27 28 /* 29 * Flags for bug emulation. 30 * 31 * These occupy the top three bytes. 32 */ 33 enum { 34 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 35 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 36 descriptors (signal handling) */ 37 MMAP_PAGE_ZERO = 0x0100000, 38 ADDR_COMPAT_LAYOUT = 0x0200000, 39 READ_IMPLIES_EXEC = 0x0400000, 40 ADDR_LIMIT_32BIT = 0x0800000, 41 SHORT_INODE = 0x1000000, 42 WHOLE_SECONDS = 0x2000000, 43 STICKY_TIMEOUTS = 0x4000000, 44 ADDR_LIMIT_3GB = 0x8000000, 45 }; 46 47 /* 48 * Personality types. 49 * 50 * These go in the low byte. Avoid using the top bit, it will 51 * conflict with error returns. 52 */ 53 enum { 54 PER_LINUX = 0x0000, 55 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 56 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 57 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 58 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 60 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 61 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 62 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 63 PER_BSD = 0x0006, 64 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 65 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 66 PER_LINUX32 = 0x0008, 67 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 68 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 69 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 70 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 71 PER_RISCOS = 0x000c, 72 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 73 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 74 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 75 PER_HPUX = 0x0010, 76 PER_MASK = 0x00ff, 77 }; 78 79 /* 80 * Return the base personality without flags. 81 */ 82 #define personality(pers) (pers & PER_MASK) 83 84 int info_is_fdpic(struct image_info *info) 85 { 86 return info->personality == PER_LINUX_FDPIC; 87 } 88 89 /* this flag is uneffective under linux too, should be deleted */ 90 #ifndef MAP_DENYWRITE 91 #define MAP_DENYWRITE 0 92 #endif 93 94 /* should probably go in elf.h */ 95 #ifndef ELIBBAD 96 #define ELIBBAD 80 97 #endif 98 99 #ifdef TARGET_WORDS_BIGENDIAN 100 #define ELF_DATA ELFDATA2MSB 101 #else 102 #define ELF_DATA ELFDATA2LSB 103 #endif 104 105 #ifdef TARGET_ABI_MIPSN32 106 typedef abi_ullong target_elf_greg_t; 107 #define tswapreg(ptr) tswap64(ptr) 108 #else 109 typedef abi_ulong target_elf_greg_t; 110 #define tswapreg(ptr) tswapal(ptr) 111 #endif 112 113 #ifdef USE_UID16 114 typedef abi_ushort target_uid_t; 115 typedef abi_ushort target_gid_t; 116 #else 117 typedef abi_uint target_uid_t; 118 typedef abi_uint target_gid_t; 119 #endif 120 typedef abi_int target_pid_t; 121 122 #ifdef TARGET_I386 123 124 #define ELF_PLATFORM get_elf_platform() 125 126 static const char *get_elf_platform(void) 127 { 128 static char elf_platform[] = "i386"; 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 130 if (family > 6) 131 family = 6; 132 if (family >= 3) 133 elf_platform[1] = '0' + family; 134 return elf_platform; 135 } 136 137 #define ELF_HWCAP get_elf_hwcap() 138 139 static uint32_t get_elf_hwcap(void) 140 { 141 X86CPU *cpu = X86_CPU(thread_cpu); 142 143 return cpu->env.features[FEAT_1_EDX]; 144 } 145 146 #ifdef TARGET_X86_64 147 #define ELF_START_MMAP 0x2aaaaab000ULL 148 149 #define ELF_CLASS ELFCLASS64 150 #define ELF_ARCH EM_X86_64 151 152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 153 { 154 regs->rax = 0; 155 regs->rsp = infop->start_stack; 156 regs->rip = infop->entry; 157 } 158 159 #define ELF_NREG 27 160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 161 162 /* 163 * Note that ELF_NREG should be 29 as there should be place for 164 * TRAPNO and ERR "registers" as well but linux doesn't dump 165 * those. 166 * 167 * See linux kernel: arch/x86/include/asm/elf.h 168 */ 169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 170 { 171 (*regs)[0] = env->regs[15]; 172 (*regs)[1] = env->regs[14]; 173 (*regs)[2] = env->regs[13]; 174 (*regs)[3] = env->regs[12]; 175 (*regs)[4] = env->regs[R_EBP]; 176 (*regs)[5] = env->regs[R_EBX]; 177 (*regs)[6] = env->regs[11]; 178 (*regs)[7] = env->regs[10]; 179 (*regs)[8] = env->regs[9]; 180 (*regs)[9] = env->regs[8]; 181 (*regs)[10] = env->regs[R_EAX]; 182 (*regs)[11] = env->regs[R_ECX]; 183 (*regs)[12] = env->regs[R_EDX]; 184 (*regs)[13] = env->regs[R_ESI]; 185 (*regs)[14] = env->regs[R_EDI]; 186 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 187 (*regs)[16] = env->eip; 188 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 189 (*regs)[18] = env->eflags; 190 (*regs)[19] = env->regs[R_ESP]; 191 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 192 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 193 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 194 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 195 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 196 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 197 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 198 } 199 200 #else 201 202 #define ELF_START_MMAP 0x80000000 203 204 /* 205 * This is used to ensure we don't load something for the wrong architecture. 206 */ 207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 208 209 /* 210 * These are used to set parameters in the core dumps. 211 */ 212 #define ELF_CLASS ELFCLASS32 213 #define ELF_ARCH EM_386 214 215 static inline void init_thread(struct target_pt_regs *regs, 216 struct image_info *infop) 217 { 218 regs->esp = infop->start_stack; 219 regs->eip = infop->entry; 220 221 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 222 starts %edx contains a pointer to a function which might be 223 registered using `atexit'. This provides a mean for the 224 dynamic linker to call DT_FINI functions for shared libraries 225 that have been loaded before the code runs. 226 227 A value of 0 tells we have no such handler. */ 228 regs->edx = 0; 229 } 230 231 #define ELF_NREG 17 232 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 233 234 /* 235 * Note that ELF_NREG should be 19 as there should be place for 236 * TRAPNO and ERR "registers" as well but linux doesn't dump 237 * those. 238 * 239 * See linux kernel: arch/x86/include/asm/elf.h 240 */ 241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 242 { 243 (*regs)[0] = env->regs[R_EBX]; 244 (*regs)[1] = env->regs[R_ECX]; 245 (*regs)[2] = env->regs[R_EDX]; 246 (*regs)[3] = env->regs[R_ESI]; 247 (*regs)[4] = env->regs[R_EDI]; 248 (*regs)[5] = env->regs[R_EBP]; 249 (*regs)[6] = env->regs[R_EAX]; 250 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 251 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 252 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 253 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 254 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 255 (*regs)[12] = env->eip; 256 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 257 (*regs)[14] = env->eflags; 258 (*regs)[15] = env->regs[R_ESP]; 259 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 260 } 261 #endif 262 263 #define USE_ELF_CORE_DUMP 264 #define ELF_EXEC_PAGESIZE 4096 265 266 #endif 267 268 #ifdef TARGET_ARM 269 270 #ifndef TARGET_AARCH64 271 /* 32 bit ARM definitions */ 272 273 #define ELF_START_MMAP 0x80000000 274 275 #define ELF_ARCH EM_ARM 276 #define ELF_CLASS ELFCLASS32 277 278 static inline void init_thread(struct target_pt_regs *regs, 279 struct image_info *infop) 280 { 281 abi_long stack = infop->start_stack; 282 memset(regs, 0, sizeof(*regs)); 283 284 regs->uregs[16] = ARM_CPU_MODE_USR; 285 if (infop->entry & 1) { 286 regs->uregs[16] |= CPSR_T; 287 } 288 regs->uregs[15] = infop->entry & 0xfffffffe; 289 regs->uregs[13] = infop->start_stack; 290 /* FIXME - what to for failure of get_user()? */ 291 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 292 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 293 /* XXX: it seems that r0 is zeroed after ! */ 294 regs->uregs[0] = 0; 295 /* For uClinux PIC binaries. */ 296 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 297 regs->uregs[10] = infop->start_data; 298 299 /* Support ARM FDPIC. */ 300 if (info_is_fdpic(infop)) { 301 /* As described in the ABI document, r7 points to the loadmap info 302 * prepared by the kernel. If an interpreter is needed, r8 points 303 * to the interpreter loadmap and r9 points to the interpreter 304 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 305 * r9 points to the main program PT_DYNAMIC info. 306 */ 307 regs->uregs[7] = infop->loadmap_addr; 308 if (infop->interpreter_loadmap_addr) { 309 /* Executable is dynamically loaded. */ 310 regs->uregs[8] = infop->interpreter_loadmap_addr; 311 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 312 } else { 313 regs->uregs[8] = 0; 314 regs->uregs[9] = infop->pt_dynamic_addr; 315 } 316 } 317 } 318 319 #define ELF_NREG 18 320 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 321 322 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 323 { 324 (*regs)[0] = tswapreg(env->regs[0]); 325 (*regs)[1] = tswapreg(env->regs[1]); 326 (*regs)[2] = tswapreg(env->regs[2]); 327 (*regs)[3] = tswapreg(env->regs[3]); 328 (*regs)[4] = tswapreg(env->regs[4]); 329 (*regs)[5] = tswapreg(env->regs[5]); 330 (*regs)[6] = tswapreg(env->regs[6]); 331 (*regs)[7] = tswapreg(env->regs[7]); 332 (*regs)[8] = tswapreg(env->regs[8]); 333 (*regs)[9] = tswapreg(env->regs[9]); 334 (*regs)[10] = tswapreg(env->regs[10]); 335 (*regs)[11] = tswapreg(env->regs[11]); 336 (*regs)[12] = tswapreg(env->regs[12]); 337 (*regs)[13] = tswapreg(env->regs[13]); 338 (*regs)[14] = tswapreg(env->regs[14]); 339 (*regs)[15] = tswapreg(env->regs[15]); 340 341 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 342 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 343 } 344 345 #define USE_ELF_CORE_DUMP 346 #define ELF_EXEC_PAGESIZE 4096 347 348 enum 349 { 350 ARM_HWCAP_ARM_SWP = 1 << 0, 351 ARM_HWCAP_ARM_HALF = 1 << 1, 352 ARM_HWCAP_ARM_THUMB = 1 << 2, 353 ARM_HWCAP_ARM_26BIT = 1 << 3, 354 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 355 ARM_HWCAP_ARM_FPA = 1 << 5, 356 ARM_HWCAP_ARM_VFP = 1 << 6, 357 ARM_HWCAP_ARM_EDSP = 1 << 7, 358 ARM_HWCAP_ARM_JAVA = 1 << 8, 359 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 360 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 361 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 362 ARM_HWCAP_ARM_NEON = 1 << 12, 363 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 364 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 365 ARM_HWCAP_ARM_TLS = 1 << 15, 366 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 367 ARM_HWCAP_ARM_IDIVA = 1 << 17, 368 ARM_HWCAP_ARM_IDIVT = 1 << 18, 369 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 370 ARM_HWCAP_ARM_LPAE = 1 << 20, 371 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 372 }; 373 374 enum { 375 ARM_HWCAP2_ARM_AES = 1 << 0, 376 ARM_HWCAP2_ARM_PMULL = 1 << 1, 377 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 378 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 379 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 380 }; 381 382 /* The commpage only exists for 32 bit kernels */ 383 384 /* Return 1 if the proposed guest space is suitable for the guest. 385 * Return 0 if the proposed guest space isn't suitable, but another 386 * address space should be tried. 387 * Return -1 if there is no way the proposed guest space can be 388 * valid regardless of the base. 389 * The guest code may leave a page mapped and populate it if the 390 * address is suitable. 391 */ 392 static int init_guest_commpage(unsigned long guest_base, 393 unsigned long guest_size) 394 { 395 unsigned long real_start, test_page_addr; 396 397 /* We need to check that we can force a fault on access to the 398 * commpage at 0xffff0fxx 399 */ 400 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 401 402 /* If the commpage lies within the already allocated guest space, 403 * then there is no way we can allocate it. 404 * 405 * You may be thinking that that this check is redundant because 406 * we already validated the guest size against MAX_RESERVED_VA; 407 * but if qemu_host_page_mask is unusually large, then 408 * test_page_addr may be lower. 409 */ 410 if (test_page_addr >= guest_base 411 && test_page_addr < (guest_base + guest_size)) { 412 return -1; 413 } 414 415 /* Note it needs to be writeable to let us initialise it */ 416 real_start = (unsigned long) 417 mmap((void *)test_page_addr, qemu_host_page_size, 418 PROT_READ | PROT_WRITE, 419 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 420 421 /* If we can't map it then try another address */ 422 if (real_start == -1ul) { 423 return 0; 424 } 425 426 if (real_start != test_page_addr) { 427 /* OS didn't put the page where we asked - unmap and reject */ 428 munmap((void *)real_start, qemu_host_page_size); 429 return 0; 430 } 431 432 /* Leave the page mapped 433 * Populate it (mmap should have left it all 0'd) 434 */ 435 436 /* Kernel helper versions */ 437 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 438 439 /* Now it's populated make it RO */ 440 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 441 perror("Protecting guest commpage"); 442 exit(-1); 443 } 444 445 return 1; /* All good */ 446 } 447 448 #define ELF_HWCAP get_elf_hwcap() 449 #define ELF_HWCAP2 get_elf_hwcap2() 450 451 static uint32_t get_elf_hwcap(void) 452 { 453 ARMCPU *cpu = ARM_CPU(thread_cpu); 454 uint32_t hwcaps = 0; 455 456 hwcaps |= ARM_HWCAP_ARM_SWP; 457 hwcaps |= ARM_HWCAP_ARM_HALF; 458 hwcaps |= ARM_HWCAP_ARM_THUMB; 459 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 460 461 /* probe for the extra features */ 462 #define GET_FEATURE(feat, hwcap) \ 463 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 464 465 #define GET_FEATURE_ID(feat, hwcap) \ 466 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 467 468 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 469 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 470 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 471 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 472 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 473 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 474 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 475 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 476 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 477 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA); 478 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT); 479 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 480 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 481 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 482 * to our VFP_FP16 feature bit. 483 */ 484 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 485 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 486 487 return hwcaps; 488 } 489 490 static uint32_t get_elf_hwcap2(void) 491 { 492 ARMCPU *cpu = ARM_CPU(thread_cpu); 493 uint32_t hwcaps = 0; 494 495 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 496 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 497 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 498 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 499 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 500 return hwcaps; 501 } 502 503 #undef GET_FEATURE 504 #undef GET_FEATURE_ID 505 506 #define ELF_PLATFORM get_elf_platform() 507 508 static const char *get_elf_platform(void) 509 { 510 CPUARMState *env = thread_cpu->env_ptr; 511 512 #ifdef TARGET_WORDS_BIGENDIAN 513 # define END "b" 514 #else 515 # define END "l" 516 #endif 517 518 if (arm_feature(env, ARM_FEATURE_V8)) { 519 return "v8" END; 520 } else if (arm_feature(env, ARM_FEATURE_V7)) { 521 if (arm_feature(env, ARM_FEATURE_M)) { 522 return "v7m" END; 523 } else { 524 return "v7" END; 525 } 526 } else if (arm_feature(env, ARM_FEATURE_V6)) { 527 return "v6" END; 528 } else if (arm_feature(env, ARM_FEATURE_V5)) { 529 return "v5" END; 530 } else { 531 return "v4" END; 532 } 533 534 #undef END 535 } 536 537 #else 538 /* 64 bit ARM definitions */ 539 #define ELF_START_MMAP 0x80000000 540 541 #define ELF_ARCH EM_AARCH64 542 #define ELF_CLASS ELFCLASS64 543 #ifdef TARGET_WORDS_BIGENDIAN 544 # define ELF_PLATFORM "aarch64_be" 545 #else 546 # define ELF_PLATFORM "aarch64" 547 #endif 548 549 static inline void init_thread(struct target_pt_regs *regs, 550 struct image_info *infop) 551 { 552 abi_long stack = infop->start_stack; 553 memset(regs, 0, sizeof(*regs)); 554 555 regs->pc = infop->entry & ~0x3ULL; 556 regs->sp = stack; 557 } 558 559 #define ELF_NREG 34 560 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 561 562 static void elf_core_copy_regs(target_elf_gregset_t *regs, 563 const CPUARMState *env) 564 { 565 int i; 566 567 for (i = 0; i < 32; i++) { 568 (*regs)[i] = tswapreg(env->xregs[i]); 569 } 570 (*regs)[32] = tswapreg(env->pc); 571 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 572 } 573 574 #define USE_ELF_CORE_DUMP 575 #define ELF_EXEC_PAGESIZE 4096 576 577 enum { 578 ARM_HWCAP_A64_FP = 1 << 0, 579 ARM_HWCAP_A64_ASIMD = 1 << 1, 580 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 581 ARM_HWCAP_A64_AES = 1 << 3, 582 ARM_HWCAP_A64_PMULL = 1 << 4, 583 ARM_HWCAP_A64_SHA1 = 1 << 5, 584 ARM_HWCAP_A64_SHA2 = 1 << 6, 585 ARM_HWCAP_A64_CRC32 = 1 << 7, 586 ARM_HWCAP_A64_ATOMICS = 1 << 8, 587 ARM_HWCAP_A64_FPHP = 1 << 9, 588 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 589 ARM_HWCAP_A64_CPUID = 1 << 11, 590 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 591 ARM_HWCAP_A64_JSCVT = 1 << 13, 592 ARM_HWCAP_A64_FCMA = 1 << 14, 593 ARM_HWCAP_A64_LRCPC = 1 << 15, 594 ARM_HWCAP_A64_DCPOP = 1 << 16, 595 ARM_HWCAP_A64_SHA3 = 1 << 17, 596 ARM_HWCAP_A64_SM3 = 1 << 18, 597 ARM_HWCAP_A64_SM4 = 1 << 19, 598 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 599 ARM_HWCAP_A64_SHA512 = 1 << 21, 600 ARM_HWCAP_A64_SVE = 1 << 22, 601 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 602 ARM_HWCAP_A64_DIT = 1 << 24, 603 ARM_HWCAP_A64_USCAT = 1 << 25, 604 ARM_HWCAP_A64_ILRCPC = 1 << 26, 605 ARM_HWCAP_A64_FLAGM = 1 << 27, 606 ARM_HWCAP_A64_SSBS = 1 << 28, 607 ARM_HWCAP_A64_SB = 1 << 29, 608 ARM_HWCAP_A64_PACA = 1 << 30, 609 ARM_HWCAP_A64_PACG = 1UL << 31, 610 611 ARM_HWCAP2_A64_DCPODP = 1 << 0, 612 ARM_HWCAP2_A64_SVE2 = 1 << 1, 613 ARM_HWCAP2_A64_SVEAES = 1 << 2, 614 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 615 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 616 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 617 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 618 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 619 ARM_HWCAP2_A64_FRINT = 1 << 8, 620 }; 621 622 #define ELF_HWCAP get_elf_hwcap() 623 #define ELF_HWCAP2 get_elf_hwcap2() 624 625 #define GET_FEATURE_ID(feat, hwcap) \ 626 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 627 628 static uint32_t get_elf_hwcap(void) 629 { 630 ARMCPU *cpu = ARM_CPU(thread_cpu); 631 uint32_t hwcaps = 0; 632 633 hwcaps |= ARM_HWCAP_A64_FP; 634 hwcaps |= ARM_HWCAP_A64_ASIMD; 635 hwcaps |= ARM_HWCAP_A64_CPUID; 636 637 /* probe for the extra features */ 638 639 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 640 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 641 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 642 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 643 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 644 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 645 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 646 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 647 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 648 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 649 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 650 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 651 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 652 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 653 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 654 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 655 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 656 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 657 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 658 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 659 660 return hwcaps; 661 } 662 663 static uint32_t get_elf_hwcap2(void) 664 { 665 ARMCPU *cpu = ARM_CPU(thread_cpu); 666 uint32_t hwcaps = 0; 667 668 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 669 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 670 671 return hwcaps; 672 } 673 674 #undef GET_FEATURE_ID 675 676 #endif /* not TARGET_AARCH64 */ 677 #endif /* TARGET_ARM */ 678 679 #ifdef TARGET_SPARC 680 #ifdef TARGET_SPARC64 681 682 #define ELF_START_MMAP 0x80000000 683 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 684 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 685 #ifndef TARGET_ABI32 686 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 687 #else 688 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 689 #endif 690 691 #define ELF_CLASS ELFCLASS64 692 #define ELF_ARCH EM_SPARCV9 693 694 #define STACK_BIAS 2047 695 696 static inline void init_thread(struct target_pt_regs *regs, 697 struct image_info *infop) 698 { 699 #ifndef TARGET_ABI32 700 regs->tstate = 0; 701 #endif 702 regs->pc = infop->entry; 703 regs->npc = regs->pc + 4; 704 regs->y = 0; 705 #ifdef TARGET_ABI32 706 regs->u_regs[14] = infop->start_stack - 16 * 4; 707 #else 708 if (personality(infop->personality) == PER_LINUX32) 709 regs->u_regs[14] = infop->start_stack - 16 * 4; 710 else 711 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 712 #endif 713 } 714 715 #else 716 #define ELF_START_MMAP 0x80000000 717 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 718 | HWCAP_SPARC_MULDIV) 719 720 #define ELF_CLASS ELFCLASS32 721 #define ELF_ARCH EM_SPARC 722 723 static inline void init_thread(struct target_pt_regs *regs, 724 struct image_info *infop) 725 { 726 regs->psr = 0; 727 regs->pc = infop->entry; 728 regs->npc = regs->pc + 4; 729 regs->y = 0; 730 regs->u_regs[14] = infop->start_stack - 16 * 4; 731 } 732 733 #endif 734 #endif 735 736 #ifdef TARGET_PPC 737 738 #define ELF_MACHINE PPC_ELF_MACHINE 739 #define ELF_START_MMAP 0x80000000 740 741 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 742 743 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 744 745 #define ELF_CLASS ELFCLASS64 746 747 #else 748 749 #define ELF_CLASS ELFCLASS32 750 751 #endif 752 753 #define ELF_ARCH EM_PPC 754 755 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 756 See arch/powerpc/include/asm/cputable.h. */ 757 enum { 758 QEMU_PPC_FEATURE_32 = 0x80000000, 759 QEMU_PPC_FEATURE_64 = 0x40000000, 760 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 761 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 762 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 763 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 764 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 765 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 766 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 767 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 768 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 769 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 770 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 771 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 772 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 773 QEMU_PPC_FEATURE_CELL = 0x00010000, 774 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 775 QEMU_PPC_FEATURE_SMT = 0x00004000, 776 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 777 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 778 QEMU_PPC_FEATURE_PA6T = 0x00000800, 779 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 780 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 781 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 782 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 783 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 784 785 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 786 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 787 788 /* Feature definitions in AT_HWCAP2. */ 789 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 790 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 791 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 792 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 793 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 794 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 795 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 796 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 797 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 798 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 799 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 800 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 801 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 802 }; 803 804 #define ELF_HWCAP get_elf_hwcap() 805 806 static uint32_t get_elf_hwcap(void) 807 { 808 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 809 uint32_t features = 0; 810 811 /* We don't have to be terribly complete here; the high points are 812 Altivec/FP/SPE support. Anything else is just a bonus. */ 813 #define GET_FEATURE(flag, feature) \ 814 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 815 #define GET_FEATURE2(flags, feature) \ 816 do { \ 817 if ((cpu->env.insns_flags2 & flags) == flags) { \ 818 features |= feature; \ 819 } \ 820 } while (0) 821 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 822 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 823 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 824 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 825 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 826 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 827 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 828 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 829 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 830 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 831 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 832 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 833 QEMU_PPC_FEATURE_ARCH_2_06); 834 #undef GET_FEATURE 835 #undef GET_FEATURE2 836 837 return features; 838 } 839 840 #define ELF_HWCAP2 get_elf_hwcap2() 841 842 static uint32_t get_elf_hwcap2(void) 843 { 844 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 845 uint32_t features = 0; 846 847 #define GET_FEATURE(flag, feature) \ 848 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 849 #define GET_FEATURE2(flag, feature) \ 850 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 851 852 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 853 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 854 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 855 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 856 QEMU_PPC_FEATURE2_VEC_CRYPTO); 857 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 858 QEMU_PPC_FEATURE2_DARN); 859 860 #undef GET_FEATURE 861 #undef GET_FEATURE2 862 863 return features; 864 } 865 866 /* 867 * The requirements here are: 868 * - keep the final alignment of sp (sp & 0xf) 869 * - make sure the 32-bit value at the first 16 byte aligned position of 870 * AUXV is greater than 16 for glibc compatibility. 871 * AT_IGNOREPPC is used for that. 872 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 873 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 874 */ 875 #define DLINFO_ARCH_ITEMS 5 876 #define ARCH_DLINFO \ 877 do { \ 878 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 879 /* \ 880 * Handle glibc compatibility: these magic entries must \ 881 * be at the lowest addresses in the final auxv. \ 882 */ \ 883 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 884 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 885 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 886 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 887 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 888 } while (0) 889 890 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 891 { 892 _regs->gpr[1] = infop->start_stack; 893 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 894 if (get_ppc64_abi(infop) < 2) { 895 uint64_t val; 896 get_user_u64(val, infop->entry + 8); 897 _regs->gpr[2] = val + infop->load_bias; 898 get_user_u64(val, infop->entry); 899 infop->entry = val + infop->load_bias; 900 } else { 901 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 902 } 903 #endif 904 _regs->nip = infop->entry; 905 } 906 907 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 908 #define ELF_NREG 48 909 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 910 911 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 912 { 913 int i; 914 target_ulong ccr = 0; 915 916 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 917 (*regs)[i] = tswapreg(env->gpr[i]); 918 } 919 920 (*regs)[32] = tswapreg(env->nip); 921 (*regs)[33] = tswapreg(env->msr); 922 (*regs)[35] = tswapreg(env->ctr); 923 (*regs)[36] = tswapreg(env->lr); 924 (*regs)[37] = tswapreg(env->xer); 925 926 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 927 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 928 } 929 (*regs)[38] = tswapreg(ccr); 930 } 931 932 #define USE_ELF_CORE_DUMP 933 #define ELF_EXEC_PAGESIZE 4096 934 935 #endif 936 937 #ifdef TARGET_MIPS 938 939 #define ELF_START_MMAP 0x80000000 940 941 #ifdef TARGET_MIPS64 942 #define ELF_CLASS ELFCLASS64 943 #else 944 #define ELF_CLASS ELFCLASS32 945 #endif 946 #define ELF_ARCH EM_MIPS 947 948 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 949 950 static inline void init_thread(struct target_pt_regs *regs, 951 struct image_info *infop) 952 { 953 regs->cp0_status = 2 << CP0St_KSU; 954 regs->cp0_epc = infop->entry; 955 regs->regs[29] = infop->start_stack; 956 } 957 958 /* See linux kernel: arch/mips/include/asm/elf.h. */ 959 #define ELF_NREG 45 960 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 961 962 /* See linux kernel: arch/mips/include/asm/reg.h. */ 963 enum { 964 #ifdef TARGET_MIPS64 965 TARGET_EF_R0 = 0, 966 #else 967 TARGET_EF_R0 = 6, 968 #endif 969 TARGET_EF_R26 = TARGET_EF_R0 + 26, 970 TARGET_EF_R27 = TARGET_EF_R0 + 27, 971 TARGET_EF_LO = TARGET_EF_R0 + 32, 972 TARGET_EF_HI = TARGET_EF_R0 + 33, 973 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 974 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 975 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 976 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 977 }; 978 979 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 980 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 981 { 982 int i; 983 984 for (i = 0; i < TARGET_EF_R0; i++) { 985 (*regs)[i] = 0; 986 } 987 (*regs)[TARGET_EF_R0] = 0; 988 989 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 990 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 991 } 992 993 (*regs)[TARGET_EF_R26] = 0; 994 (*regs)[TARGET_EF_R27] = 0; 995 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 996 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 997 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 998 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 999 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1000 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1001 } 1002 1003 #define USE_ELF_CORE_DUMP 1004 #define ELF_EXEC_PAGESIZE 4096 1005 1006 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1007 enum { 1008 HWCAP_MIPS_R6 = (1 << 0), 1009 HWCAP_MIPS_MSA = (1 << 1), 1010 }; 1011 1012 #define ELF_HWCAP get_elf_hwcap() 1013 1014 static uint32_t get_elf_hwcap(void) 1015 { 1016 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1017 uint32_t hwcaps = 0; 1018 1019 #define GET_FEATURE(flag, hwcap) \ 1020 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 1021 1022 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 1023 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 1024 1025 #undef GET_FEATURE 1026 1027 return hwcaps; 1028 } 1029 1030 #endif /* TARGET_MIPS */ 1031 1032 #ifdef TARGET_MICROBLAZE 1033 1034 #define ELF_START_MMAP 0x80000000 1035 1036 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1037 1038 #define ELF_CLASS ELFCLASS32 1039 #define ELF_ARCH EM_MICROBLAZE 1040 1041 static inline void init_thread(struct target_pt_regs *regs, 1042 struct image_info *infop) 1043 { 1044 regs->pc = infop->entry; 1045 regs->r1 = infop->start_stack; 1046 1047 } 1048 1049 #define ELF_EXEC_PAGESIZE 4096 1050 1051 #define USE_ELF_CORE_DUMP 1052 #define ELF_NREG 38 1053 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1054 1055 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1056 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1057 { 1058 int i, pos = 0; 1059 1060 for (i = 0; i < 32; i++) { 1061 (*regs)[pos++] = tswapreg(env->regs[i]); 1062 } 1063 1064 for (i = 0; i < 6; i++) { 1065 (*regs)[pos++] = tswapreg(env->sregs[i]); 1066 } 1067 } 1068 1069 #endif /* TARGET_MICROBLAZE */ 1070 1071 #ifdef TARGET_NIOS2 1072 1073 #define ELF_START_MMAP 0x80000000 1074 1075 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1076 1077 #define ELF_CLASS ELFCLASS32 1078 #define ELF_ARCH EM_ALTERA_NIOS2 1079 1080 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1081 { 1082 regs->ea = infop->entry; 1083 regs->sp = infop->start_stack; 1084 regs->estatus = 0x3; 1085 } 1086 1087 #define ELF_EXEC_PAGESIZE 4096 1088 1089 #define USE_ELF_CORE_DUMP 1090 #define ELF_NREG 49 1091 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1092 1093 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1094 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1095 const CPUNios2State *env) 1096 { 1097 int i; 1098 1099 (*regs)[0] = -1; 1100 for (i = 1; i < 8; i++) /* r0-r7 */ 1101 (*regs)[i] = tswapreg(env->regs[i + 7]); 1102 1103 for (i = 8; i < 16; i++) /* r8-r15 */ 1104 (*regs)[i] = tswapreg(env->regs[i - 8]); 1105 1106 for (i = 16; i < 24; i++) /* r16-r23 */ 1107 (*regs)[i] = tswapreg(env->regs[i + 7]); 1108 (*regs)[24] = -1; /* R_ET */ 1109 (*regs)[25] = -1; /* R_BT */ 1110 (*regs)[26] = tswapreg(env->regs[R_GP]); 1111 (*regs)[27] = tswapreg(env->regs[R_SP]); 1112 (*regs)[28] = tswapreg(env->regs[R_FP]); 1113 (*regs)[29] = tswapreg(env->regs[R_EA]); 1114 (*regs)[30] = -1; /* R_SSTATUS */ 1115 (*regs)[31] = tswapreg(env->regs[R_RA]); 1116 1117 (*regs)[32] = tswapreg(env->regs[R_PC]); 1118 1119 (*regs)[33] = -1; /* R_STATUS */ 1120 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1121 1122 for (i = 35; i < 49; i++) /* ... */ 1123 (*regs)[i] = -1; 1124 } 1125 1126 #endif /* TARGET_NIOS2 */ 1127 1128 #ifdef TARGET_OPENRISC 1129 1130 #define ELF_START_MMAP 0x08000000 1131 1132 #define ELF_ARCH EM_OPENRISC 1133 #define ELF_CLASS ELFCLASS32 1134 #define ELF_DATA ELFDATA2MSB 1135 1136 static inline void init_thread(struct target_pt_regs *regs, 1137 struct image_info *infop) 1138 { 1139 regs->pc = infop->entry; 1140 regs->gpr[1] = infop->start_stack; 1141 } 1142 1143 #define USE_ELF_CORE_DUMP 1144 #define ELF_EXEC_PAGESIZE 8192 1145 1146 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1147 #define ELF_NREG 34 /* gprs and pc, sr */ 1148 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1149 1150 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1151 const CPUOpenRISCState *env) 1152 { 1153 int i; 1154 1155 for (i = 0; i < 32; i++) { 1156 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1157 } 1158 (*regs)[32] = tswapreg(env->pc); 1159 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1160 } 1161 #define ELF_HWCAP 0 1162 #define ELF_PLATFORM NULL 1163 1164 #endif /* TARGET_OPENRISC */ 1165 1166 #ifdef TARGET_SH4 1167 1168 #define ELF_START_MMAP 0x80000000 1169 1170 #define ELF_CLASS ELFCLASS32 1171 #define ELF_ARCH EM_SH 1172 1173 static inline void init_thread(struct target_pt_regs *regs, 1174 struct image_info *infop) 1175 { 1176 /* Check other registers XXXXX */ 1177 regs->pc = infop->entry; 1178 regs->regs[15] = infop->start_stack; 1179 } 1180 1181 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1182 #define ELF_NREG 23 1183 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1184 1185 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1186 enum { 1187 TARGET_REG_PC = 16, 1188 TARGET_REG_PR = 17, 1189 TARGET_REG_SR = 18, 1190 TARGET_REG_GBR = 19, 1191 TARGET_REG_MACH = 20, 1192 TARGET_REG_MACL = 21, 1193 TARGET_REG_SYSCALL = 22 1194 }; 1195 1196 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1197 const CPUSH4State *env) 1198 { 1199 int i; 1200 1201 for (i = 0; i < 16; i++) { 1202 (*regs)[i] = tswapreg(env->gregs[i]); 1203 } 1204 1205 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1206 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1207 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1208 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1209 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1210 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1211 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1212 } 1213 1214 #define USE_ELF_CORE_DUMP 1215 #define ELF_EXEC_PAGESIZE 4096 1216 1217 enum { 1218 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1219 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1220 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1221 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1222 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1223 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1224 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1225 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1226 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1227 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1228 }; 1229 1230 #define ELF_HWCAP get_elf_hwcap() 1231 1232 static uint32_t get_elf_hwcap(void) 1233 { 1234 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1235 uint32_t hwcap = 0; 1236 1237 hwcap |= SH_CPU_HAS_FPU; 1238 1239 if (cpu->env.features & SH_FEATURE_SH4A) { 1240 hwcap |= SH_CPU_HAS_LLSC; 1241 } 1242 1243 return hwcap; 1244 } 1245 1246 #endif 1247 1248 #ifdef TARGET_CRIS 1249 1250 #define ELF_START_MMAP 0x80000000 1251 1252 #define ELF_CLASS ELFCLASS32 1253 #define ELF_ARCH EM_CRIS 1254 1255 static inline void init_thread(struct target_pt_regs *regs, 1256 struct image_info *infop) 1257 { 1258 regs->erp = infop->entry; 1259 } 1260 1261 #define ELF_EXEC_PAGESIZE 8192 1262 1263 #endif 1264 1265 #ifdef TARGET_M68K 1266 1267 #define ELF_START_MMAP 0x80000000 1268 1269 #define ELF_CLASS ELFCLASS32 1270 #define ELF_ARCH EM_68K 1271 1272 /* ??? Does this need to do anything? 1273 #define ELF_PLAT_INIT(_r) */ 1274 1275 static inline void init_thread(struct target_pt_regs *regs, 1276 struct image_info *infop) 1277 { 1278 regs->usp = infop->start_stack; 1279 regs->sr = 0; 1280 regs->pc = infop->entry; 1281 } 1282 1283 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1284 #define ELF_NREG 20 1285 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1286 1287 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1288 { 1289 (*regs)[0] = tswapreg(env->dregs[1]); 1290 (*regs)[1] = tswapreg(env->dregs[2]); 1291 (*regs)[2] = tswapreg(env->dregs[3]); 1292 (*regs)[3] = tswapreg(env->dregs[4]); 1293 (*regs)[4] = tswapreg(env->dregs[5]); 1294 (*regs)[5] = tswapreg(env->dregs[6]); 1295 (*regs)[6] = tswapreg(env->dregs[7]); 1296 (*regs)[7] = tswapreg(env->aregs[0]); 1297 (*regs)[8] = tswapreg(env->aregs[1]); 1298 (*regs)[9] = tswapreg(env->aregs[2]); 1299 (*regs)[10] = tswapreg(env->aregs[3]); 1300 (*regs)[11] = tswapreg(env->aregs[4]); 1301 (*regs)[12] = tswapreg(env->aregs[5]); 1302 (*regs)[13] = tswapreg(env->aregs[6]); 1303 (*regs)[14] = tswapreg(env->dregs[0]); 1304 (*regs)[15] = tswapreg(env->aregs[7]); 1305 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1306 (*regs)[17] = tswapreg(env->sr); 1307 (*regs)[18] = tswapreg(env->pc); 1308 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1309 } 1310 1311 #define USE_ELF_CORE_DUMP 1312 #define ELF_EXEC_PAGESIZE 8192 1313 1314 #endif 1315 1316 #ifdef TARGET_ALPHA 1317 1318 #define ELF_START_MMAP (0x30000000000ULL) 1319 1320 #define ELF_CLASS ELFCLASS64 1321 #define ELF_ARCH EM_ALPHA 1322 1323 static inline void init_thread(struct target_pt_regs *regs, 1324 struct image_info *infop) 1325 { 1326 regs->pc = infop->entry; 1327 regs->ps = 8; 1328 regs->usp = infop->start_stack; 1329 } 1330 1331 #define ELF_EXEC_PAGESIZE 8192 1332 1333 #endif /* TARGET_ALPHA */ 1334 1335 #ifdef TARGET_S390X 1336 1337 #define ELF_START_MMAP (0x20000000000ULL) 1338 1339 #define ELF_CLASS ELFCLASS64 1340 #define ELF_DATA ELFDATA2MSB 1341 #define ELF_ARCH EM_S390 1342 1343 #include "elf.h" 1344 1345 #define ELF_HWCAP get_elf_hwcap() 1346 1347 #define GET_FEATURE(_feat, _hwcap) \ 1348 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1349 1350 static uint32_t get_elf_hwcap(void) 1351 { 1352 /* 1353 * Let's assume we always have esan3 and zarch. 1354 * 31-bit processes can use 64-bit registers (high gprs). 1355 */ 1356 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1357 1358 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1359 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1360 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1361 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1362 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1363 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1364 hwcap |= HWCAP_S390_ETF3EH; 1365 } 1366 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1367 1368 return hwcap; 1369 } 1370 1371 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1372 { 1373 regs->psw.addr = infop->entry; 1374 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1375 regs->gprs[15] = infop->start_stack; 1376 } 1377 1378 #endif /* TARGET_S390X */ 1379 1380 #ifdef TARGET_TILEGX 1381 1382 /* 42 bits real used address, a half for user mode */ 1383 #define ELF_START_MMAP (0x00000020000000000ULL) 1384 1385 #define elf_check_arch(x) ((x) == EM_TILEGX) 1386 1387 #define ELF_CLASS ELFCLASS64 1388 #define ELF_DATA ELFDATA2LSB 1389 #define ELF_ARCH EM_TILEGX 1390 1391 static inline void init_thread(struct target_pt_regs *regs, 1392 struct image_info *infop) 1393 { 1394 regs->pc = infop->entry; 1395 regs->sp = infop->start_stack; 1396 1397 } 1398 1399 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1400 1401 #endif /* TARGET_TILEGX */ 1402 1403 #ifdef TARGET_RISCV 1404 1405 #define ELF_START_MMAP 0x80000000 1406 #define ELF_ARCH EM_RISCV 1407 1408 #ifdef TARGET_RISCV32 1409 #define ELF_CLASS ELFCLASS32 1410 #else 1411 #define ELF_CLASS ELFCLASS64 1412 #endif 1413 1414 static inline void init_thread(struct target_pt_regs *regs, 1415 struct image_info *infop) 1416 { 1417 regs->sepc = infop->entry; 1418 regs->sp = infop->start_stack; 1419 } 1420 1421 #define ELF_EXEC_PAGESIZE 4096 1422 1423 #endif /* TARGET_RISCV */ 1424 1425 #ifdef TARGET_HPPA 1426 1427 #define ELF_START_MMAP 0x80000000 1428 #define ELF_CLASS ELFCLASS32 1429 #define ELF_ARCH EM_PARISC 1430 #define ELF_PLATFORM "PARISC" 1431 #define STACK_GROWS_DOWN 0 1432 #define STACK_ALIGNMENT 64 1433 1434 static inline void init_thread(struct target_pt_regs *regs, 1435 struct image_info *infop) 1436 { 1437 regs->iaoq[0] = infop->entry; 1438 regs->iaoq[1] = infop->entry + 4; 1439 regs->gr[23] = 0; 1440 regs->gr[24] = infop->arg_start; 1441 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1442 /* The top-of-stack contains a linkage buffer. */ 1443 regs->gr[30] = infop->start_stack + 64; 1444 regs->gr[31] = infop->entry; 1445 } 1446 1447 #endif /* TARGET_HPPA */ 1448 1449 #ifdef TARGET_XTENSA 1450 1451 #define ELF_START_MMAP 0x20000000 1452 1453 #define ELF_CLASS ELFCLASS32 1454 #define ELF_ARCH EM_XTENSA 1455 1456 static inline void init_thread(struct target_pt_regs *regs, 1457 struct image_info *infop) 1458 { 1459 regs->windowbase = 0; 1460 regs->windowstart = 1; 1461 regs->areg[1] = infop->start_stack; 1462 regs->pc = infop->entry; 1463 } 1464 1465 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1466 #define ELF_NREG 128 1467 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1468 1469 enum { 1470 TARGET_REG_PC, 1471 TARGET_REG_PS, 1472 TARGET_REG_LBEG, 1473 TARGET_REG_LEND, 1474 TARGET_REG_LCOUNT, 1475 TARGET_REG_SAR, 1476 TARGET_REG_WINDOWSTART, 1477 TARGET_REG_WINDOWBASE, 1478 TARGET_REG_THREADPTR, 1479 TARGET_REG_AR0 = 64, 1480 }; 1481 1482 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1483 const CPUXtensaState *env) 1484 { 1485 unsigned i; 1486 1487 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1488 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1489 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1490 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1491 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1492 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1493 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1494 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1495 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1496 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1497 for (i = 0; i < env->config->nareg; ++i) { 1498 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1499 } 1500 } 1501 1502 #define USE_ELF_CORE_DUMP 1503 #define ELF_EXEC_PAGESIZE 4096 1504 1505 #endif /* TARGET_XTENSA */ 1506 1507 #ifndef ELF_PLATFORM 1508 #define ELF_PLATFORM (NULL) 1509 #endif 1510 1511 #ifndef ELF_MACHINE 1512 #define ELF_MACHINE ELF_ARCH 1513 #endif 1514 1515 #ifndef elf_check_arch 1516 #define elf_check_arch(x) ((x) == ELF_ARCH) 1517 #endif 1518 1519 #ifndef ELF_HWCAP 1520 #define ELF_HWCAP 0 1521 #endif 1522 1523 #ifndef STACK_GROWS_DOWN 1524 #define STACK_GROWS_DOWN 1 1525 #endif 1526 1527 #ifndef STACK_ALIGNMENT 1528 #define STACK_ALIGNMENT 16 1529 #endif 1530 1531 #ifdef TARGET_ABI32 1532 #undef ELF_CLASS 1533 #define ELF_CLASS ELFCLASS32 1534 #undef bswaptls 1535 #define bswaptls(ptr) bswap32s(ptr) 1536 #endif 1537 1538 #include "elf.h" 1539 1540 struct exec 1541 { 1542 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1543 unsigned int a_text; /* length of text, in bytes */ 1544 unsigned int a_data; /* length of data, in bytes */ 1545 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1546 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1547 unsigned int a_entry; /* start address */ 1548 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1549 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1550 }; 1551 1552 1553 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1554 #define OMAGIC 0407 1555 #define NMAGIC 0410 1556 #define ZMAGIC 0413 1557 #define QMAGIC 0314 1558 1559 /* Necessary parameters */ 1560 #define TARGET_ELF_EXEC_PAGESIZE \ 1561 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1562 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1563 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1564 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1565 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1566 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1567 1568 #define DLINFO_ITEMS 15 1569 1570 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1571 { 1572 memcpy(to, from, n); 1573 } 1574 1575 #ifdef BSWAP_NEEDED 1576 static void bswap_ehdr(struct elfhdr *ehdr) 1577 { 1578 bswap16s(&ehdr->e_type); /* Object file type */ 1579 bswap16s(&ehdr->e_machine); /* Architecture */ 1580 bswap32s(&ehdr->e_version); /* Object file version */ 1581 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1582 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1583 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1584 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1585 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1586 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1587 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1588 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1589 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1590 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1591 } 1592 1593 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1594 { 1595 int i; 1596 for (i = 0; i < phnum; ++i, ++phdr) { 1597 bswap32s(&phdr->p_type); /* Segment type */ 1598 bswap32s(&phdr->p_flags); /* Segment flags */ 1599 bswaptls(&phdr->p_offset); /* Segment file offset */ 1600 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1601 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1602 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1603 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1604 bswaptls(&phdr->p_align); /* Segment alignment */ 1605 } 1606 } 1607 1608 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1609 { 1610 int i; 1611 for (i = 0; i < shnum; ++i, ++shdr) { 1612 bswap32s(&shdr->sh_name); 1613 bswap32s(&shdr->sh_type); 1614 bswaptls(&shdr->sh_flags); 1615 bswaptls(&shdr->sh_addr); 1616 bswaptls(&shdr->sh_offset); 1617 bswaptls(&shdr->sh_size); 1618 bswap32s(&shdr->sh_link); 1619 bswap32s(&shdr->sh_info); 1620 bswaptls(&shdr->sh_addralign); 1621 bswaptls(&shdr->sh_entsize); 1622 } 1623 } 1624 1625 static void bswap_sym(struct elf_sym *sym) 1626 { 1627 bswap32s(&sym->st_name); 1628 bswaptls(&sym->st_value); 1629 bswaptls(&sym->st_size); 1630 bswap16s(&sym->st_shndx); 1631 } 1632 1633 #ifdef TARGET_MIPS 1634 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1635 { 1636 bswap16s(&abiflags->version); 1637 bswap32s(&abiflags->ases); 1638 bswap32s(&abiflags->isa_ext); 1639 bswap32s(&abiflags->flags1); 1640 bswap32s(&abiflags->flags2); 1641 } 1642 #endif 1643 #else 1644 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1645 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1646 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1647 static inline void bswap_sym(struct elf_sym *sym) { } 1648 #ifdef TARGET_MIPS 1649 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1650 #endif 1651 #endif 1652 1653 #ifdef USE_ELF_CORE_DUMP 1654 static int elf_core_dump(int, const CPUArchState *); 1655 #endif /* USE_ELF_CORE_DUMP */ 1656 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1657 1658 /* Verify the portions of EHDR within E_IDENT for the target. 1659 This can be performed before bswapping the entire header. */ 1660 static bool elf_check_ident(struct elfhdr *ehdr) 1661 { 1662 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1663 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1664 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1665 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1666 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1667 && ehdr->e_ident[EI_DATA] == ELF_DATA 1668 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1669 } 1670 1671 /* Verify the portions of EHDR outside of E_IDENT for the target. 1672 This has to wait until after bswapping the header. */ 1673 static bool elf_check_ehdr(struct elfhdr *ehdr) 1674 { 1675 return (elf_check_arch(ehdr->e_machine) 1676 && ehdr->e_ehsize == sizeof(struct elfhdr) 1677 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1678 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1679 } 1680 1681 /* 1682 * 'copy_elf_strings()' copies argument/envelope strings from user 1683 * memory to free pages in kernel mem. These are in a format ready 1684 * to be put directly into the top of new user memory. 1685 * 1686 */ 1687 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1688 abi_ulong p, abi_ulong stack_limit) 1689 { 1690 char *tmp; 1691 int len, i; 1692 abi_ulong top = p; 1693 1694 if (!p) { 1695 return 0; /* bullet-proofing */ 1696 } 1697 1698 if (STACK_GROWS_DOWN) { 1699 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1700 for (i = argc - 1; i >= 0; --i) { 1701 tmp = argv[i]; 1702 if (!tmp) { 1703 fprintf(stderr, "VFS: argc is wrong"); 1704 exit(-1); 1705 } 1706 len = strlen(tmp) + 1; 1707 tmp += len; 1708 1709 if (len > (p - stack_limit)) { 1710 return 0; 1711 } 1712 while (len) { 1713 int bytes_to_copy = (len > offset) ? offset : len; 1714 tmp -= bytes_to_copy; 1715 p -= bytes_to_copy; 1716 offset -= bytes_to_copy; 1717 len -= bytes_to_copy; 1718 1719 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1720 1721 if (offset == 0) { 1722 memcpy_to_target(p, scratch, top - p); 1723 top = p; 1724 offset = TARGET_PAGE_SIZE; 1725 } 1726 } 1727 } 1728 if (p != top) { 1729 memcpy_to_target(p, scratch + offset, top - p); 1730 } 1731 } else { 1732 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1733 for (i = 0; i < argc; ++i) { 1734 tmp = argv[i]; 1735 if (!tmp) { 1736 fprintf(stderr, "VFS: argc is wrong"); 1737 exit(-1); 1738 } 1739 len = strlen(tmp) + 1; 1740 if (len > (stack_limit - p)) { 1741 return 0; 1742 } 1743 while (len) { 1744 int bytes_to_copy = (len > remaining) ? remaining : len; 1745 1746 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1747 1748 tmp += bytes_to_copy; 1749 remaining -= bytes_to_copy; 1750 p += bytes_to_copy; 1751 len -= bytes_to_copy; 1752 1753 if (remaining == 0) { 1754 memcpy_to_target(top, scratch, p - top); 1755 top = p; 1756 remaining = TARGET_PAGE_SIZE; 1757 } 1758 } 1759 } 1760 if (p != top) { 1761 memcpy_to_target(top, scratch, p - top); 1762 } 1763 } 1764 1765 return p; 1766 } 1767 1768 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1769 * argument/environment space. Newer kernels (>2.6.33) allow more, 1770 * dependent on stack size, but guarantee at least 32 pages for 1771 * backwards compatibility. 1772 */ 1773 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1774 1775 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1776 struct image_info *info) 1777 { 1778 abi_ulong size, error, guard; 1779 1780 size = guest_stack_size; 1781 if (size < STACK_LOWER_LIMIT) { 1782 size = STACK_LOWER_LIMIT; 1783 } 1784 guard = TARGET_PAGE_SIZE; 1785 if (guard < qemu_real_host_page_size) { 1786 guard = qemu_real_host_page_size; 1787 } 1788 1789 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1790 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1791 if (error == -1) { 1792 perror("mmap stack"); 1793 exit(-1); 1794 } 1795 1796 /* We reserve one extra page at the top of the stack as guard. */ 1797 if (STACK_GROWS_DOWN) { 1798 target_mprotect(error, guard, PROT_NONE); 1799 info->stack_limit = error + guard; 1800 return info->stack_limit + size - sizeof(void *); 1801 } else { 1802 target_mprotect(error + size, guard, PROT_NONE); 1803 info->stack_limit = error + size; 1804 return error; 1805 } 1806 } 1807 1808 /* Map and zero the bss. We need to explicitly zero any fractional pages 1809 after the data section (i.e. bss). */ 1810 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1811 { 1812 uintptr_t host_start, host_map_start, host_end; 1813 1814 last_bss = TARGET_PAGE_ALIGN(last_bss); 1815 1816 /* ??? There is confusion between qemu_real_host_page_size and 1817 qemu_host_page_size here and elsewhere in target_mmap, which 1818 may lead to the end of the data section mapping from the file 1819 not being mapped. At least there was an explicit test and 1820 comment for that here, suggesting that "the file size must 1821 be known". The comment probably pre-dates the introduction 1822 of the fstat system call in target_mmap which does in fact 1823 find out the size. What isn't clear is if the workaround 1824 here is still actually needed. For now, continue with it, 1825 but merge it with the "normal" mmap that would allocate the bss. */ 1826 1827 host_start = (uintptr_t) g2h(elf_bss); 1828 host_end = (uintptr_t) g2h(last_bss); 1829 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1830 1831 if (host_map_start < host_end) { 1832 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1833 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1834 if (p == MAP_FAILED) { 1835 perror("cannot mmap brk"); 1836 exit(-1); 1837 } 1838 } 1839 1840 /* Ensure that the bss page(s) are valid */ 1841 if ((page_get_flags(last_bss-1) & prot) != prot) { 1842 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1843 } 1844 1845 if (host_start < host_map_start) { 1846 memset((void *)host_start, 0, host_map_start - host_start); 1847 } 1848 } 1849 1850 #ifdef TARGET_ARM 1851 static int elf_is_fdpic(struct elfhdr *exec) 1852 { 1853 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1854 } 1855 #else 1856 /* Default implementation, always false. */ 1857 static int elf_is_fdpic(struct elfhdr *exec) 1858 { 1859 return 0; 1860 } 1861 #endif 1862 1863 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1864 { 1865 uint16_t n; 1866 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1867 1868 /* elf32_fdpic_loadseg */ 1869 n = info->nsegs; 1870 while (n--) { 1871 sp -= 12; 1872 put_user_u32(loadsegs[n].addr, sp+0); 1873 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1874 put_user_u32(loadsegs[n].p_memsz, sp+8); 1875 } 1876 1877 /* elf32_fdpic_loadmap */ 1878 sp -= 4; 1879 put_user_u16(0, sp+0); /* version */ 1880 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1881 1882 info->personality = PER_LINUX_FDPIC; 1883 info->loadmap_addr = sp; 1884 1885 return sp; 1886 } 1887 1888 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1889 struct elfhdr *exec, 1890 struct image_info *info, 1891 struct image_info *interp_info) 1892 { 1893 abi_ulong sp; 1894 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1895 int size; 1896 int i; 1897 abi_ulong u_rand_bytes; 1898 uint8_t k_rand_bytes[16]; 1899 abi_ulong u_platform; 1900 const char *k_platform; 1901 const int n = sizeof(elf_addr_t); 1902 1903 sp = p; 1904 1905 /* Needs to be before we load the env/argc/... */ 1906 if (elf_is_fdpic(exec)) { 1907 /* Need 4 byte alignment for these structs */ 1908 sp &= ~3; 1909 sp = loader_build_fdpic_loadmap(info, sp); 1910 info->other_info = interp_info; 1911 if (interp_info) { 1912 interp_info->other_info = info; 1913 sp = loader_build_fdpic_loadmap(interp_info, sp); 1914 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1915 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1916 } else { 1917 info->interpreter_loadmap_addr = 0; 1918 info->interpreter_pt_dynamic_addr = 0; 1919 } 1920 } 1921 1922 u_platform = 0; 1923 k_platform = ELF_PLATFORM; 1924 if (k_platform) { 1925 size_t len = strlen(k_platform) + 1; 1926 if (STACK_GROWS_DOWN) { 1927 sp -= (len + n - 1) & ~(n - 1); 1928 u_platform = sp; 1929 /* FIXME - check return value of memcpy_to_target() for failure */ 1930 memcpy_to_target(sp, k_platform, len); 1931 } else { 1932 memcpy_to_target(sp, k_platform, len); 1933 u_platform = sp; 1934 sp += len + 1; 1935 } 1936 } 1937 1938 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1939 * the argv and envp pointers. 1940 */ 1941 if (STACK_GROWS_DOWN) { 1942 sp = QEMU_ALIGN_DOWN(sp, 16); 1943 } else { 1944 sp = QEMU_ALIGN_UP(sp, 16); 1945 } 1946 1947 /* 1948 * Generate 16 random bytes for userspace PRNG seeding. 1949 */ 1950 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 1951 if (STACK_GROWS_DOWN) { 1952 sp -= 16; 1953 u_rand_bytes = sp; 1954 /* FIXME - check return value of memcpy_to_target() for failure */ 1955 memcpy_to_target(sp, k_rand_bytes, 16); 1956 } else { 1957 memcpy_to_target(sp, k_rand_bytes, 16); 1958 u_rand_bytes = sp; 1959 sp += 16; 1960 } 1961 1962 size = (DLINFO_ITEMS + 1) * 2; 1963 if (k_platform) 1964 size += 2; 1965 #ifdef DLINFO_ARCH_ITEMS 1966 size += DLINFO_ARCH_ITEMS * 2; 1967 #endif 1968 #ifdef ELF_HWCAP2 1969 size += 2; 1970 #endif 1971 info->auxv_len = size * n; 1972 1973 size += envc + argc + 2; 1974 size += 1; /* argc itself */ 1975 size *= n; 1976 1977 /* Allocate space and finalize stack alignment for entry now. */ 1978 if (STACK_GROWS_DOWN) { 1979 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1980 sp = u_argc; 1981 } else { 1982 u_argc = sp; 1983 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1984 } 1985 1986 u_argv = u_argc + n; 1987 u_envp = u_argv + (argc + 1) * n; 1988 u_auxv = u_envp + (envc + 1) * n; 1989 info->saved_auxv = u_auxv; 1990 info->arg_start = u_argv; 1991 info->arg_end = u_argv + argc * n; 1992 1993 /* This is correct because Linux defines 1994 * elf_addr_t as Elf32_Off / Elf64_Off 1995 */ 1996 #define NEW_AUX_ENT(id, val) do { \ 1997 put_user_ual(id, u_auxv); u_auxv += n; \ 1998 put_user_ual(val, u_auxv); u_auxv += n; \ 1999 } while(0) 2000 2001 #ifdef ARCH_DLINFO 2002 /* 2003 * ARCH_DLINFO must come first so platform specific code can enforce 2004 * special alignment requirements on the AUXV if necessary (eg. PPC). 2005 */ 2006 ARCH_DLINFO; 2007 #endif 2008 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2009 * on info->auxv_len will trigger. 2010 */ 2011 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2012 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2013 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2014 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2015 /* Target doesn't support host page size alignment */ 2016 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2017 } else { 2018 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2019 qemu_host_page_size))); 2020 } 2021 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2022 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2023 NEW_AUX_ENT(AT_ENTRY, info->entry); 2024 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2025 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2026 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2027 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2028 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2029 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2030 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2031 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2032 2033 #ifdef ELF_HWCAP2 2034 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2035 #endif 2036 2037 if (u_platform) { 2038 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2039 } 2040 NEW_AUX_ENT (AT_NULL, 0); 2041 #undef NEW_AUX_ENT 2042 2043 /* Check that our initial calculation of the auxv length matches how much 2044 * we actually put into it. 2045 */ 2046 assert(info->auxv_len == u_auxv - info->saved_auxv); 2047 2048 put_user_ual(argc, u_argc); 2049 2050 p = info->arg_strings; 2051 for (i = 0; i < argc; ++i) { 2052 put_user_ual(p, u_argv); 2053 u_argv += n; 2054 p += target_strlen(p) + 1; 2055 } 2056 put_user_ual(0, u_argv); 2057 2058 p = info->env_strings; 2059 for (i = 0; i < envc; ++i) { 2060 put_user_ual(p, u_envp); 2061 u_envp += n; 2062 p += target_strlen(p) + 1; 2063 } 2064 put_user_ual(0, u_envp); 2065 2066 return sp; 2067 } 2068 2069 unsigned long init_guest_space(unsigned long host_start, 2070 unsigned long host_size, 2071 unsigned long guest_start, 2072 bool fixed) 2073 { 2074 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2075 unsigned long align = MAX(SHMLBA, qemu_host_page_size); 2076 unsigned long current_start, aligned_start; 2077 int flags; 2078 2079 assert(host_start || host_size); 2080 2081 /* If just a starting address is given, then just verify that 2082 * address. */ 2083 if (host_start && !host_size) { 2084 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2085 if (init_guest_commpage(host_start, host_size) != 1) { 2086 return (unsigned long)-1; 2087 } 2088 #endif 2089 return host_start; 2090 } 2091 2092 /* Setup the initial flags and start address. */ 2093 current_start = host_start & -align; 2094 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2095 if (fixed) { 2096 flags |= MAP_FIXED; 2097 } 2098 2099 /* Otherwise, a non-zero size region of memory needs to be mapped 2100 * and validated. */ 2101 2102 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2103 /* On 32-bit ARM, we need to map not just the usable memory, but 2104 * also the commpage. Try to find a suitable place by allocating 2105 * a big chunk for all of it. If host_start, then the naive 2106 * strategy probably does good enough. 2107 */ 2108 if (!host_start) { 2109 unsigned long guest_full_size, host_full_size, real_start; 2110 2111 guest_full_size = 2112 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 2113 host_full_size = guest_full_size - guest_start; 2114 real_start = (unsigned long) 2115 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 2116 if (real_start == (unsigned long)-1) { 2117 if (host_size < host_full_size - qemu_host_page_size) { 2118 /* We failed to map a continous segment, but we're 2119 * allowed to have a gap between the usable memory and 2120 * the commpage where other things can be mapped. 2121 * This sparseness gives us more flexibility to find 2122 * an address range. 2123 */ 2124 goto naive; 2125 } 2126 return (unsigned long)-1; 2127 } 2128 munmap((void *)real_start, host_full_size); 2129 if (real_start & (align - 1)) { 2130 /* The same thing again, but with extra 2131 * so that we can shift around alignment. 2132 */ 2133 unsigned long real_size = host_full_size + qemu_host_page_size; 2134 real_start = (unsigned long) 2135 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 2136 if (real_start == (unsigned long)-1) { 2137 if (host_size < host_full_size - qemu_host_page_size) { 2138 goto naive; 2139 } 2140 return (unsigned long)-1; 2141 } 2142 munmap((void *)real_start, real_size); 2143 real_start = ROUND_UP(real_start, align); 2144 } 2145 current_start = real_start; 2146 } 2147 naive: 2148 #endif 2149 2150 while (1) { 2151 unsigned long real_start, real_size, aligned_size; 2152 aligned_size = real_size = host_size; 2153 2154 /* Do not use mmap_find_vma here because that is limited to the 2155 * guest address space. We are going to make the 2156 * guest address space fit whatever we're given. 2157 */ 2158 real_start = (unsigned long) 2159 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2160 if (real_start == (unsigned long)-1) { 2161 return (unsigned long)-1; 2162 } 2163 2164 /* Check to see if the address is valid. */ 2165 if (host_start && real_start != current_start) { 2166 goto try_again; 2167 } 2168 2169 /* Ensure the address is properly aligned. */ 2170 if (real_start & (align - 1)) { 2171 /* Ideally, we adjust like 2172 * 2173 * pages: [ ][ ][ ][ ][ ] 2174 * old: [ real ] 2175 * [ aligned ] 2176 * new: [ real ] 2177 * [ aligned ] 2178 * 2179 * But if there is something else mapped right after it, 2180 * then obviously it won't have room to grow, and the 2181 * kernel will put the new larger real someplace else with 2182 * unknown alignment (if we made it to here, then 2183 * fixed=false). Which is why we grow real by a full page 2184 * size, instead of by part of one; so that even if we get 2185 * moved, we can still guarantee alignment. But this does 2186 * mean that there is a padding of < 1 page both before 2187 * and after the aligned range; the "after" could could 2188 * cause problems for ARM emulation where it could butt in 2189 * to where we need to put the commpage. 2190 */ 2191 munmap((void *)real_start, host_size); 2192 real_size = aligned_size + qemu_host_page_size; 2193 real_start = (unsigned long) 2194 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2195 if (real_start == (unsigned long)-1) { 2196 return (unsigned long)-1; 2197 } 2198 aligned_start = ROUND_UP(real_start, align); 2199 } else { 2200 aligned_start = real_start; 2201 } 2202 2203 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2204 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2205 int valid = init_guest_commpage(aligned_start - guest_start, 2206 aligned_size + guest_start); 2207 if (valid == -1) { 2208 munmap((void *)real_start, real_size); 2209 return (unsigned long)-1; 2210 } else if (valid == 0) { 2211 goto try_again; 2212 } 2213 #endif 2214 2215 /* If nothing has said `return -1` or `goto try_again` yet, 2216 * then the address we have is good. 2217 */ 2218 break; 2219 2220 try_again: 2221 /* That address didn't work. Unmap and try a different one. 2222 * The address the host picked because is typically right at 2223 * the top of the host address space and leaves the guest with 2224 * no usable address space. Resort to a linear search. We 2225 * already compensated for mmap_min_addr, so this should not 2226 * happen often. Probably means we got unlucky and host 2227 * address space randomization put a shared library somewhere 2228 * inconvenient. 2229 * 2230 * This is probably a good strategy if host_start, but is 2231 * probably a bad strategy if not, which means we got here 2232 * because of trouble with ARM commpage setup. 2233 */ 2234 munmap((void *)real_start, real_size); 2235 current_start += align; 2236 if (host_start == current_start) { 2237 /* Theoretically possible if host doesn't have any suitably 2238 * aligned areas. Normally the first mmap will fail. 2239 */ 2240 return (unsigned long)-1; 2241 } 2242 } 2243 2244 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2245 2246 return aligned_start; 2247 } 2248 2249 static void probe_guest_base(const char *image_name, 2250 abi_ulong loaddr, abi_ulong hiaddr) 2251 { 2252 /* Probe for a suitable guest base address, if the user has not set 2253 * it explicitly, and set guest_base appropriately. 2254 * In case of error we will print a suitable message and exit. 2255 */ 2256 const char *errmsg; 2257 if (!have_guest_base && !reserved_va) { 2258 unsigned long host_start, real_start, host_size; 2259 2260 /* Round addresses to page boundaries. */ 2261 loaddr &= qemu_host_page_mask; 2262 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2263 2264 if (loaddr < mmap_min_addr) { 2265 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2266 } else { 2267 host_start = loaddr; 2268 if (host_start != loaddr) { 2269 errmsg = "Address overflow loading ELF binary"; 2270 goto exit_errmsg; 2271 } 2272 } 2273 host_size = hiaddr - loaddr; 2274 2275 /* Setup the initial guest memory space with ranges gleaned from 2276 * the ELF image that is being loaded. 2277 */ 2278 real_start = init_guest_space(host_start, host_size, loaddr, false); 2279 if (real_start == (unsigned long)-1) { 2280 errmsg = "Unable to find space for application"; 2281 goto exit_errmsg; 2282 } 2283 guest_base = real_start - loaddr; 2284 2285 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2286 TARGET_ABI_FMT_lx " to 0x%lx\n", 2287 loaddr, real_start); 2288 } 2289 return; 2290 2291 exit_errmsg: 2292 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2293 exit(-1); 2294 } 2295 2296 2297 /* Load an ELF image into the address space. 2298 2299 IMAGE_NAME is the filename of the image, to use in error messages. 2300 IMAGE_FD is the open file descriptor for the image. 2301 2302 BPRM_BUF is a copy of the beginning of the file; this of course 2303 contains the elf file header at offset 0. It is assumed that this 2304 buffer is sufficiently aligned to present no problems to the host 2305 in accessing data at aligned offsets within the buffer. 2306 2307 On return: INFO values will be filled in, as necessary or available. */ 2308 2309 static void load_elf_image(const char *image_name, int image_fd, 2310 struct image_info *info, char **pinterp_name, 2311 char bprm_buf[BPRM_BUF_SIZE]) 2312 { 2313 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2314 struct elf_phdr *phdr; 2315 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2316 int i, retval; 2317 const char *errmsg; 2318 2319 /* First of all, some simple consistency checks */ 2320 errmsg = "Invalid ELF image for this architecture"; 2321 if (!elf_check_ident(ehdr)) { 2322 goto exit_errmsg; 2323 } 2324 bswap_ehdr(ehdr); 2325 if (!elf_check_ehdr(ehdr)) { 2326 goto exit_errmsg; 2327 } 2328 2329 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2330 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2331 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2332 } else { 2333 phdr = (struct elf_phdr *) alloca(i); 2334 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2335 if (retval != i) { 2336 goto exit_read; 2337 } 2338 } 2339 bswap_phdr(phdr, ehdr->e_phnum); 2340 2341 info->nsegs = 0; 2342 info->pt_dynamic_addr = 0; 2343 2344 mmap_lock(); 2345 2346 /* Find the maximum size of the image and allocate an appropriate 2347 amount of memory to handle that. */ 2348 loaddr = -1, hiaddr = 0; 2349 info->alignment = 0; 2350 for (i = 0; i < ehdr->e_phnum; ++i) { 2351 if (phdr[i].p_type == PT_LOAD) { 2352 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2353 if (a < loaddr) { 2354 loaddr = a; 2355 } 2356 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2357 if (a > hiaddr) { 2358 hiaddr = a; 2359 } 2360 ++info->nsegs; 2361 info->alignment |= phdr[i].p_align; 2362 } 2363 } 2364 2365 load_addr = loaddr; 2366 if (ehdr->e_type == ET_DYN) { 2367 /* The image indicates that it can be loaded anywhere. Find a 2368 location that can hold the memory space required. If the 2369 image is pre-linked, LOADDR will be non-zero. Since we do 2370 not supply MAP_FIXED here we'll use that address if and 2371 only if it remains available. */ 2372 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2373 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2374 -1, 0); 2375 if (load_addr == -1) { 2376 goto exit_perror; 2377 } 2378 } else if (pinterp_name != NULL) { 2379 /* This is the main executable. Make sure that the low 2380 address does not conflict with MMAP_MIN_ADDR or the 2381 QEMU application itself. */ 2382 probe_guest_base(image_name, loaddr, hiaddr); 2383 } 2384 load_bias = load_addr - loaddr; 2385 2386 if (elf_is_fdpic(ehdr)) { 2387 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2388 g_malloc(sizeof(*loadsegs) * info->nsegs); 2389 2390 for (i = 0; i < ehdr->e_phnum; ++i) { 2391 switch (phdr[i].p_type) { 2392 case PT_DYNAMIC: 2393 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2394 break; 2395 case PT_LOAD: 2396 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2397 loadsegs->p_vaddr = phdr[i].p_vaddr; 2398 loadsegs->p_memsz = phdr[i].p_memsz; 2399 ++loadsegs; 2400 break; 2401 } 2402 } 2403 } 2404 2405 info->load_bias = load_bias; 2406 info->code_offset = load_bias; 2407 info->data_offset = load_bias; 2408 info->load_addr = load_addr; 2409 info->entry = ehdr->e_entry + load_bias; 2410 info->start_code = -1; 2411 info->end_code = 0; 2412 info->start_data = -1; 2413 info->end_data = 0; 2414 info->brk = 0; 2415 info->elf_flags = ehdr->e_flags; 2416 2417 for (i = 0; i < ehdr->e_phnum; i++) { 2418 struct elf_phdr *eppnt = phdr + i; 2419 if (eppnt->p_type == PT_LOAD) { 2420 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2421 int elf_prot = 0; 2422 2423 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2424 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2425 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2426 2427 vaddr = load_bias + eppnt->p_vaddr; 2428 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2429 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2430 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2431 2432 /* 2433 * Some segments may be completely empty without any backing file 2434 * segment, in that case just let zero_bss allocate an empty buffer 2435 * for it. 2436 */ 2437 if (eppnt->p_filesz != 0) { 2438 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2439 MAP_PRIVATE | MAP_FIXED, 2440 image_fd, eppnt->p_offset - vaddr_po); 2441 2442 if (error == -1) { 2443 goto exit_perror; 2444 } 2445 } 2446 2447 vaddr_ef = vaddr + eppnt->p_filesz; 2448 vaddr_em = vaddr + eppnt->p_memsz; 2449 2450 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2451 if (vaddr_ef < vaddr_em) { 2452 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2453 } 2454 2455 /* Find the full program boundaries. */ 2456 if (elf_prot & PROT_EXEC) { 2457 if (vaddr < info->start_code) { 2458 info->start_code = vaddr; 2459 } 2460 if (vaddr_ef > info->end_code) { 2461 info->end_code = vaddr_ef; 2462 } 2463 } 2464 if (elf_prot & PROT_WRITE) { 2465 if (vaddr < info->start_data) { 2466 info->start_data = vaddr; 2467 } 2468 if (vaddr_ef > info->end_data) { 2469 info->end_data = vaddr_ef; 2470 } 2471 if (vaddr_em > info->brk) { 2472 info->brk = vaddr_em; 2473 } 2474 } 2475 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2476 char *interp_name; 2477 2478 if (*pinterp_name) { 2479 errmsg = "Multiple PT_INTERP entries"; 2480 goto exit_errmsg; 2481 } 2482 interp_name = malloc(eppnt->p_filesz); 2483 if (!interp_name) { 2484 goto exit_perror; 2485 } 2486 2487 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2488 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2489 eppnt->p_filesz); 2490 } else { 2491 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2492 eppnt->p_offset); 2493 if (retval != eppnt->p_filesz) { 2494 goto exit_perror; 2495 } 2496 } 2497 if (interp_name[eppnt->p_filesz - 1] != 0) { 2498 errmsg = "Invalid PT_INTERP entry"; 2499 goto exit_errmsg; 2500 } 2501 *pinterp_name = interp_name; 2502 #ifdef TARGET_MIPS 2503 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2504 Mips_elf_abiflags_v0 abiflags; 2505 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2506 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2507 goto exit_errmsg; 2508 } 2509 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2510 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2511 sizeof(Mips_elf_abiflags_v0)); 2512 } else { 2513 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2514 eppnt->p_offset); 2515 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2516 goto exit_perror; 2517 } 2518 } 2519 bswap_mips_abiflags(&abiflags); 2520 info->fp_abi = abiflags.fp_abi; 2521 #endif 2522 } 2523 } 2524 2525 if (info->end_data == 0) { 2526 info->start_data = info->end_code; 2527 info->end_data = info->end_code; 2528 info->brk = info->end_code; 2529 } 2530 2531 if (qemu_log_enabled()) { 2532 load_symbols(ehdr, image_fd, load_bias); 2533 } 2534 2535 mmap_unlock(); 2536 2537 close(image_fd); 2538 return; 2539 2540 exit_read: 2541 if (retval >= 0) { 2542 errmsg = "Incomplete read of file header"; 2543 goto exit_errmsg; 2544 } 2545 exit_perror: 2546 errmsg = strerror(errno); 2547 exit_errmsg: 2548 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2549 exit(-1); 2550 } 2551 2552 static void load_elf_interp(const char *filename, struct image_info *info, 2553 char bprm_buf[BPRM_BUF_SIZE]) 2554 { 2555 int fd, retval; 2556 2557 fd = open(path(filename), O_RDONLY); 2558 if (fd < 0) { 2559 goto exit_perror; 2560 } 2561 2562 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2563 if (retval < 0) { 2564 goto exit_perror; 2565 } 2566 if (retval < BPRM_BUF_SIZE) { 2567 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2568 } 2569 2570 load_elf_image(filename, fd, info, NULL, bprm_buf); 2571 return; 2572 2573 exit_perror: 2574 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2575 exit(-1); 2576 } 2577 2578 static int symfind(const void *s0, const void *s1) 2579 { 2580 target_ulong addr = *(target_ulong *)s0; 2581 struct elf_sym *sym = (struct elf_sym *)s1; 2582 int result = 0; 2583 if (addr < sym->st_value) { 2584 result = -1; 2585 } else if (addr >= sym->st_value + sym->st_size) { 2586 result = 1; 2587 } 2588 return result; 2589 } 2590 2591 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2592 { 2593 #if ELF_CLASS == ELFCLASS32 2594 struct elf_sym *syms = s->disas_symtab.elf32; 2595 #else 2596 struct elf_sym *syms = s->disas_symtab.elf64; 2597 #endif 2598 2599 // binary search 2600 struct elf_sym *sym; 2601 2602 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2603 if (sym != NULL) { 2604 return s->disas_strtab + sym->st_name; 2605 } 2606 2607 return ""; 2608 } 2609 2610 /* FIXME: This should use elf_ops.h */ 2611 static int symcmp(const void *s0, const void *s1) 2612 { 2613 struct elf_sym *sym0 = (struct elf_sym *)s0; 2614 struct elf_sym *sym1 = (struct elf_sym *)s1; 2615 return (sym0->st_value < sym1->st_value) 2616 ? -1 2617 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2618 } 2619 2620 /* Best attempt to load symbols from this ELF object. */ 2621 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2622 { 2623 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2624 uint64_t segsz; 2625 struct elf_shdr *shdr; 2626 char *strings = NULL; 2627 struct syminfo *s = NULL; 2628 struct elf_sym *new_syms, *syms = NULL; 2629 2630 shnum = hdr->e_shnum; 2631 i = shnum * sizeof(struct elf_shdr); 2632 shdr = (struct elf_shdr *)alloca(i); 2633 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2634 return; 2635 } 2636 2637 bswap_shdr(shdr, shnum); 2638 for (i = 0; i < shnum; ++i) { 2639 if (shdr[i].sh_type == SHT_SYMTAB) { 2640 sym_idx = i; 2641 str_idx = shdr[i].sh_link; 2642 goto found; 2643 } 2644 } 2645 2646 /* There will be no symbol table if the file was stripped. */ 2647 return; 2648 2649 found: 2650 /* Now know where the strtab and symtab are. Snarf them. */ 2651 s = g_try_new(struct syminfo, 1); 2652 if (!s) { 2653 goto give_up; 2654 } 2655 2656 segsz = shdr[str_idx].sh_size; 2657 s->disas_strtab = strings = g_try_malloc(segsz); 2658 if (!strings || 2659 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2660 goto give_up; 2661 } 2662 2663 segsz = shdr[sym_idx].sh_size; 2664 syms = g_try_malloc(segsz); 2665 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2666 goto give_up; 2667 } 2668 2669 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2670 /* Implausibly large symbol table: give up rather than ploughing 2671 * on with the number of symbols calculation overflowing 2672 */ 2673 goto give_up; 2674 } 2675 nsyms = segsz / sizeof(struct elf_sym); 2676 for (i = 0; i < nsyms; ) { 2677 bswap_sym(syms + i); 2678 /* Throw away entries which we do not need. */ 2679 if (syms[i].st_shndx == SHN_UNDEF 2680 || syms[i].st_shndx >= SHN_LORESERVE 2681 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2682 if (i < --nsyms) { 2683 syms[i] = syms[nsyms]; 2684 } 2685 } else { 2686 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2687 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2688 syms[i].st_value &= ~(target_ulong)1; 2689 #endif 2690 syms[i].st_value += load_bias; 2691 i++; 2692 } 2693 } 2694 2695 /* No "useful" symbol. */ 2696 if (nsyms == 0) { 2697 goto give_up; 2698 } 2699 2700 /* Attempt to free the storage associated with the local symbols 2701 that we threw away. Whether or not this has any effect on the 2702 memory allocation depends on the malloc implementation and how 2703 many symbols we managed to discard. */ 2704 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2705 if (new_syms == NULL) { 2706 goto give_up; 2707 } 2708 syms = new_syms; 2709 2710 qsort(syms, nsyms, sizeof(*syms), symcmp); 2711 2712 s->disas_num_syms = nsyms; 2713 #if ELF_CLASS == ELFCLASS32 2714 s->disas_symtab.elf32 = syms; 2715 #else 2716 s->disas_symtab.elf64 = syms; 2717 #endif 2718 s->lookup_symbol = lookup_symbolxx; 2719 s->next = syminfos; 2720 syminfos = s; 2721 2722 return; 2723 2724 give_up: 2725 g_free(s); 2726 g_free(strings); 2727 g_free(syms); 2728 } 2729 2730 uint32_t get_elf_eflags(int fd) 2731 { 2732 struct elfhdr ehdr; 2733 off_t offset; 2734 int ret; 2735 2736 /* Read ELF header */ 2737 offset = lseek(fd, 0, SEEK_SET); 2738 if (offset == (off_t) -1) { 2739 return 0; 2740 } 2741 ret = read(fd, &ehdr, sizeof(ehdr)); 2742 if (ret < sizeof(ehdr)) { 2743 return 0; 2744 } 2745 offset = lseek(fd, offset, SEEK_SET); 2746 if (offset == (off_t) -1) { 2747 return 0; 2748 } 2749 2750 /* Check ELF signature */ 2751 if (!elf_check_ident(&ehdr)) { 2752 return 0; 2753 } 2754 2755 /* check header */ 2756 bswap_ehdr(&ehdr); 2757 if (!elf_check_ehdr(&ehdr)) { 2758 return 0; 2759 } 2760 2761 /* return architecture id */ 2762 return ehdr.e_flags; 2763 } 2764 2765 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2766 { 2767 struct image_info interp_info; 2768 struct elfhdr elf_ex; 2769 char *elf_interpreter = NULL; 2770 char *scratch; 2771 2772 memset(&interp_info, 0, sizeof(interp_info)); 2773 #ifdef TARGET_MIPS 2774 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 2775 #endif 2776 2777 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2778 2779 load_elf_image(bprm->filename, bprm->fd, info, 2780 &elf_interpreter, bprm->buf); 2781 2782 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2783 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2784 when we load the interpreter. */ 2785 elf_ex = *(struct elfhdr *)bprm->buf; 2786 2787 /* Do this so that we can load the interpreter, if need be. We will 2788 change some of these later */ 2789 bprm->p = setup_arg_pages(bprm, info); 2790 2791 scratch = g_new0(char, TARGET_PAGE_SIZE); 2792 if (STACK_GROWS_DOWN) { 2793 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2794 bprm->p, info->stack_limit); 2795 info->file_string = bprm->p; 2796 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2797 bprm->p, info->stack_limit); 2798 info->env_strings = bprm->p; 2799 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2800 bprm->p, info->stack_limit); 2801 info->arg_strings = bprm->p; 2802 } else { 2803 info->arg_strings = bprm->p; 2804 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2805 bprm->p, info->stack_limit); 2806 info->env_strings = bprm->p; 2807 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2808 bprm->p, info->stack_limit); 2809 info->file_string = bprm->p; 2810 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2811 bprm->p, info->stack_limit); 2812 } 2813 2814 g_free(scratch); 2815 2816 if (!bprm->p) { 2817 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2818 exit(-1); 2819 } 2820 2821 if (elf_interpreter) { 2822 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2823 2824 /* If the program interpreter is one of these two, then assume 2825 an iBCS2 image. Otherwise assume a native linux image. */ 2826 2827 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2828 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2829 info->personality = PER_SVR4; 2830 2831 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2832 and some applications "depend" upon this behavior. Since 2833 we do not have the power to recompile these, we emulate 2834 the SVr4 behavior. Sigh. */ 2835 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2836 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2837 } 2838 #ifdef TARGET_MIPS 2839 info->interp_fp_abi = interp_info.fp_abi; 2840 #endif 2841 } 2842 2843 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2844 info, (elf_interpreter ? &interp_info : NULL)); 2845 info->start_stack = bprm->p; 2846 2847 /* If we have an interpreter, set that as the program's entry point. 2848 Copy the load_bias as well, to help PPC64 interpret the entry 2849 point as a function descriptor. Do this after creating elf tables 2850 so that we copy the original program entry point into the AUXV. */ 2851 if (elf_interpreter) { 2852 info->load_bias = interp_info.load_bias; 2853 info->entry = interp_info.entry; 2854 free(elf_interpreter); 2855 } 2856 2857 #ifdef USE_ELF_CORE_DUMP 2858 bprm->core_dump = &elf_core_dump; 2859 #endif 2860 2861 return 0; 2862 } 2863 2864 #ifdef USE_ELF_CORE_DUMP 2865 /* 2866 * Definitions to generate Intel SVR4-like core files. 2867 * These mostly have the same names as the SVR4 types with "target_elf_" 2868 * tacked on the front to prevent clashes with linux definitions, 2869 * and the typedef forms have been avoided. This is mostly like 2870 * the SVR4 structure, but more Linuxy, with things that Linux does 2871 * not support and which gdb doesn't really use excluded. 2872 * 2873 * Fields we don't dump (their contents is zero) in linux-user qemu 2874 * are marked with XXX. 2875 * 2876 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2877 * 2878 * Porting ELF coredump for target is (quite) simple process. First you 2879 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2880 * the target resides): 2881 * 2882 * #define USE_ELF_CORE_DUMP 2883 * 2884 * Next you define type of register set used for dumping. ELF specification 2885 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2886 * 2887 * typedef <target_regtype> target_elf_greg_t; 2888 * #define ELF_NREG <number of registers> 2889 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2890 * 2891 * Last step is to implement target specific function that copies registers 2892 * from given cpu into just specified register set. Prototype is: 2893 * 2894 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2895 * const CPUArchState *env); 2896 * 2897 * Parameters: 2898 * regs - copy register values into here (allocated and zeroed by caller) 2899 * env - copy registers from here 2900 * 2901 * Example for ARM target is provided in this file. 2902 */ 2903 2904 /* An ELF note in memory */ 2905 struct memelfnote { 2906 const char *name; 2907 size_t namesz; 2908 size_t namesz_rounded; 2909 int type; 2910 size_t datasz; 2911 size_t datasz_rounded; 2912 void *data; 2913 size_t notesz; 2914 }; 2915 2916 struct target_elf_siginfo { 2917 abi_int si_signo; /* signal number */ 2918 abi_int si_code; /* extra code */ 2919 abi_int si_errno; /* errno */ 2920 }; 2921 2922 struct target_elf_prstatus { 2923 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2924 abi_short pr_cursig; /* Current signal */ 2925 abi_ulong pr_sigpend; /* XXX */ 2926 abi_ulong pr_sighold; /* XXX */ 2927 target_pid_t pr_pid; 2928 target_pid_t pr_ppid; 2929 target_pid_t pr_pgrp; 2930 target_pid_t pr_sid; 2931 struct target_timeval pr_utime; /* XXX User time */ 2932 struct target_timeval pr_stime; /* XXX System time */ 2933 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2934 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2935 target_elf_gregset_t pr_reg; /* GP registers */ 2936 abi_int pr_fpvalid; /* XXX */ 2937 }; 2938 2939 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2940 2941 struct target_elf_prpsinfo { 2942 char pr_state; /* numeric process state */ 2943 char pr_sname; /* char for pr_state */ 2944 char pr_zomb; /* zombie */ 2945 char pr_nice; /* nice val */ 2946 abi_ulong pr_flag; /* flags */ 2947 target_uid_t pr_uid; 2948 target_gid_t pr_gid; 2949 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2950 /* Lots missing */ 2951 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 2952 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2953 }; 2954 2955 /* Here is the structure in which status of each thread is captured. */ 2956 struct elf_thread_status { 2957 QTAILQ_ENTRY(elf_thread_status) ets_link; 2958 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2959 #if 0 2960 elf_fpregset_t fpu; /* NT_PRFPREG */ 2961 struct task_struct *thread; 2962 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2963 #endif 2964 struct memelfnote notes[1]; 2965 int num_notes; 2966 }; 2967 2968 struct elf_note_info { 2969 struct memelfnote *notes; 2970 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2971 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2972 2973 QTAILQ_HEAD(, elf_thread_status) thread_list; 2974 #if 0 2975 /* 2976 * Current version of ELF coredump doesn't support 2977 * dumping fp regs etc. 2978 */ 2979 elf_fpregset_t *fpu; 2980 elf_fpxregset_t *xfpu; 2981 int thread_status_size; 2982 #endif 2983 int notes_size; 2984 int numnote; 2985 }; 2986 2987 struct vm_area_struct { 2988 target_ulong vma_start; /* start vaddr of memory region */ 2989 target_ulong vma_end; /* end vaddr of memory region */ 2990 abi_ulong vma_flags; /* protection etc. flags for the region */ 2991 QTAILQ_ENTRY(vm_area_struct) vma_link; 2992 }; 2993 2994 struct mm_struct { 2995 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2996 int mm_count; /* number of mappings */ 2997 }; 2998 2999 static struct mm_struct *vma_init(void); 3000 static void vma_delete(struct mm_struct *); 3001 static int vma_add_mapping(struct mm_struct *, target_ulong, 3002 target_ulong, abi_ulong); 3003 static int vma_get_mapping_count(const struct mm_struct *); 3004 static struct vm_area_struct *vma_first(const struct mm_struct *); 3005 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3006 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3007 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3008 unsigned long flags); 3009 3010 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3011 static void fill_note(struct memelfnote *, const char *, int, 3012 unsigned int, void *); 3013 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3014 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3015 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3016 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3017 static size_t note_size(const struct memelfnote *); 3018 static void free_note_info(struct elf_note_info *); 3019 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3020 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3021 static int core_dump_filename(const TaskState *, char *, size_t); 3022 3023 static int dump_write(int, const void *, size_t); 3024 static int write_note(struct memelfnote *, int); 3025 static int write_note_info(struct elf_note_info *, int); 3026 3027 #ifdef BSWAP_NEEDED 3028 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3029 { 3030 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3031 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3032 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3033 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3034 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3035 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3036 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3037 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3038 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3039 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3040 /* cpu times are not filled, so we skip them */ 3041 /* regs should be in correct format already */ 3042 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3043 } 3044 3045 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3046 { 3047 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3048 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3049 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3050 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3051 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3052 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3053 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3054 } 3055 3056 static void bswap_note(struct elf_note *en) 3057 { 3058 bswap32s(&en->n_namesz); 3059 bswap32s(&en->n_descsz); 3060 bswap32s(&en->n_type); 3061 } 3062 #else 3063 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3064 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3065 static inline void bswap_note(struct elf_note *en) { } 3066 #endif /* BSWAP_NEEDED */ 3067 3068 /* 3069 * Minimal support for linux memory regions. These are needed 3070 * when we are finding out what memory exactly belongs to 3071 * emulated process. No locks needed here, as long as 3072 * thread that received the signal is stopped. 3073 */ 3074 3075 static struct mm_struct *vma_init(void) 3076 { 3077 struct mm_struct *mm; 3078 3079 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3080 return (NULL); 3081 3082 mm->mm_count = 0; 3083 QTAILQ_INIT(&mm->mm_mmap); 3084 3085 return (mm); 3086 } 3087 3088 static void vma_delete(struct mm_struct *mm) 3089 { 3090 struct vm_area_struct *vma; 3091 3092 while ((vma = vma_first(mm)) != NULL) { 3093 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3094 g_free(vma); 3095 } 3096 g_free(mm); 3097 } 3098 3099 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3100 target_ulong end, abi_ulong flags) 3101 { 3102 struct vm_area_struct *vma; 3103 3104 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3105 return (-1); 3106 3107 vma->vma_start = start; 3108 vma->vma_end = end; 3109 vma->vma_flags = flags; 3110 3111 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3112 mm->mm_count++; 3113 3114 return (0); 3115 } 3116 3117 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3118 { 3119 return (QTAILQ_FIRST(&mm->mm_mmap)); 3120 } 3121 3122 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3123 { 3124 return (QTAILQ_NEXT(vma, vma_link)); 3125 } 3126 3127 static int vma_get_mapping_count(const struct mm_struct *mm) 3128 { 3129 return (mm->mm_count); 3130 } 3131 3132 /* 3133 * Calculate file (dump) size of given memory region. 3134 */ 3135 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3136 { 3137 /* if we cannot even read the first page, skip it */ 3138 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3139 return (0); 3140 3141 /* 3142 * Usually we don't dump executable pages as they contain 3143 * non-writable code that debugger can read directly from 3144 * target library etc. However, thread stacks are marked 3145 * also executable so we read in first page of given region 3146 * and check whether it contains elf header. If there is 3147 * no elf header, we dump it. 3148 */ 3149 if (vma->vma_flags & PROT_EXEC) { 3150 char page[TARGET_PAGE_SIZE]; 3151 3152 copy_from_user(page, vma->vma_start, sizeof (page)); 3153 if ((page[EI_MAG0] == ELFMAG0) && 3154 (page[EI_MAG1] == ELFMAG1) && 3155 (page[EI_MAG2] == ELFMAG2) && 3156 (page[EI_MAG3] == ELFMAG3)) { 3157 /* 3158 * Mappings are possibly from ELF binary. Don't dump 3159 * them. 3160 */ 3161 return (0); 3162 } 3163 } 3164 3165 return (vma->vma_end - vma->vma_start); 3166 } 3167 3168 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3169 unsigned long flags) 3170 { 3171 struct mm_struct *mm = (struct mm_struct *)priv; 3172 3173 vma_add_mapping(mm, start, end, flags); 3174 return (0); 3175 } 3176 3177 static void fill_note(struct memelfnote *note, const char *name, int type, 3178 unsigned int sz, void *data) 3179 { 3180 unsigned int namesz; 3181 3182 namesz = strlen(name) + 1; 3183 note->name = name; 3184 note->namesz = namesz; 3185 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3186 note->type = type; 3187 note->datasz = sz; 3188 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3189 3190 note->data = data; 3191 3192 /* 3193 * We calculate rounded up note size here as specified by 3194 * ELF document. 3195 */ 3196 note->notesz = sizeof (struct elf_note) + 3197 note->namesz_rounded + note->datasz_rounded; 3198 } 3199 3200 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3201 uint32_t flags) 3202 { 3203 (void) memset(elf, 0, sizeof(*elf)); 3204 3205 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3206 elf->e_ident[EI_CLASS] = ELF_CLASS; 3207 elf->e_ident[EI_DATA] = ELF_DATA; 3208 elf->e_ident[EI_VERSION] = EV_CURRENT; 3209 elf->e_ident[EI_OSABI] = ELF_OSABI; 3210 3211 elf->e_type = ET_CORE; 3212 elf->e_machine = machine; 3213 elf->e_version = EV_CURRENT; 3214 elf->e_phoff = sizeof(struct elfhdr); 3215 elf->e_flags = flags; 3216 elf->e_ehsize = sizeof(struct elfhdr); 3217 elf->e_phentsize = sizeof(struct elf_phdr); 3218 elf->e_phnum = segs; 3219 3220 bswap_ehdr(elf); 3221 } 3222 3223 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3224 { 3225 phdr->p_type = PT_NOTE; 3226 phdr->p_offset = offset; 3227 phdr->p_vaddr = 0; 3228 phdr->p_paddr = 0; 3229 phdr->p_filesz = sz; 3230 phdr->p_memsz = 0; 3231 phdr->p_flags = 0; 3232 phdr->p_align = 0; 3233 3234 bswap_phdr(phdr, 1); 3235 } 3236 3237 static size_t note_size(const struct memelfnote *note) 3238 { 3239 return (note->notesz); 3240 } 3241 3242 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3243 const TaskState *ts, int signr) 3244 { 3245 (void) memset(prstatus, 0, sizeof (*prstatus)); 3246 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3247 prstatus->pr_pid = ts->ts_tid; 3248 prstatus->pr_ppid = getppid(); 3249 prstatus->pr_pgrp = getpgrp(); 3250 prstatus->pr_sid = getsid(0); 3251 3252 bswap_prstatus(prstatus); 3253 } 3254 3255 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3256 { 3257 char *base_filename; 3258 unsigned int i, len; 3259 3260 (void) memset(psinfo, 0, sizeof (*psinfo)); 3261 3262 len = ts->info->arg_end - ts->info->arg_start; 3263 if (len >= ELF_PRARGSZ) 3264 len = ELF_PRARGSZ - 1; 3265 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3266 return -EFAULT; 3267 for (i = 0; i < len; i++) 3268 if (psinfo->pr_psargs[i] == 0) 3269 psinfo->pr_psargs[i] = ' '; 3270 psinfo->pr_psargs[len] = 0; 3271 3272 psinfo->pr_pid = getpid(); 3273 psinfo->pr_ppid = getppid(); 3274 psinfo->pr_pgrp = getpgrp(); 3275 psinfo->pr_sid = getsid(0); 3276 psinfo->pr_uid = getuid(); 3277 psinfo->pr_gid = getgid(); 3278 3279 base_filename = g_path_get_basename(ts->bprm->filename); 3280 /* 3281 * Using strncpy here is fine: at max-length, 3282 * this field is not NUL-terminated. 3283 */ 3284 (void) strncpy(psinfo->pr_fname, base_filename, 3285 sizeof(psinfo->pr_fname)); 3286 3287 g_free(base_filename); 3288 bswap_psinfo(psinfo); 3289 return (0); 3290 } 3291 3292 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3293 { 3294 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3295 elf_addr_t orig_auxv = auxv; 3296 void *ptr; 3297 int len = ts->info->auxv_len; 3298 3299 /* 3300 * Auxiliary vector is stored in target process stack. It contains 3301 * {type, value} pairs that we need to dump into note. This is not 3302 * strictly necessary but we do it here for sake of completeness. 3303 */ 3304 3305 /* read in whole auxv vector and copy it to memelfnote */ 3306 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3307 if (ptr != NULL) { 3308 fill_note(note, "CORE", NT_AUXV, len, ptr); 3309 unlock_user(ptr, auxv, len); 3310 } 3311 } 3312 3313 /* 3314 * Constructs name of coredump file. We have following convention 3315 * for the name: 3316 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3317 * 3318 * Returns 0 in case of success, -1 otherwise (errno is set). 3319 */ 3320 static int core_dump_filename(const TaskState *ts, char *buf, 3321 size_t bufsize) 3322 { 3323 char timestamp[64]; 3324 char *base_filename = NULL; 3325 struct timeval tv; 3326 struct tm tm; 3327 3328 assert(bufsize >= PATH_MAX); 3329 3330 if (gettimeofday(&tv, NULL) < 0) { 3331 (void) fprintf(stderr, "unable to get current timestamp: %s", 3332 strerror(errno)); 3333 return (-1); 3334 } 3335 3336 base_filename = g_path_get_basename(ts->bprm->filename); 3337 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3338 localtime_r(&tv.tv_sec, &tm)); 3339 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3340 base_filename, timestamp, (int)getpid()); 3341 g_free(base_filename); 3342 3343 return (0); 3344 } 3345 3346 static int dump_write(int fd, const void *ptr, size_t size) 3347 { 3348 const char *bufp = (const char *)ptr; 3349 ssize_t bytes_written, bytes_left; 3350 struct rlimit dumpsize; 3351 off_t pos; 3352 3353 bytes_written = 0; 3354 getrlimit(RLIMIT_CORE, &dumpsize); 3355 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3356 if (errno == ESPIPE) { /* not a seekable stream */ 3357 bytes_left = size; 3358 } else { 3359 return pos; 3360 } 3361 } else { 3362 if (dumpsize.rlim_cur <= pos) { 3363 return -1; 3364 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3365 bytes_left = size; 3366 } else { 3367 size_t limit_left=dumpsize.rlim_cur - pos; 3368 bytes_left = limit_left >= size ? size : limit_left ; 3369 } 3370 } 3371 3372 /* 3373 * In normal conditions, single write(2) should do but 3374 * in case of socket etc. this mechanism is more portable. 3375 */ 3376 do { 3377 bytes_written = write(fd, bufp, bytes_left); 3378 if (bytes_written < 0) { 3379 if (errno == EINTR) 3380 continue; 3381 return (-1); 3382 } else if (bytes_written == 0) { /* eof */ 3383 return (-1); 3384 } 3385 bufp += bytes_written; 3386 bytes_left -= bytes_written; 3387 } while (bytes_left > 0); 3388 3389 return (0); 3390 } 3391 3392 static int write_note(struct memelfnote *men, int fd) 3393 { 3394 struct elf_note en; 3395 3396 en.n_namesz = men->namesz; 3397 en.n_type = men->type; 3398 en.n_descsz = men->datasz; 3399 3400 bswap_note(&en); 3401 3402 if (dump_write(fd, &en, sizeof(en)) != 0) 3403 return (-1); 3404 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3405 return (-1); 3406 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3407 return (-1); 3408 3409 return (0); 3410 } 3411 3412 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3413 { 3414 CPUState *cpu = env_cpu((CPUArchState *)env); 3415 TaskState *ts = (TaskState *)cpu->opaque; 3416 struct elf_thread_status *ets; 3417 3418 ets = g_malloc0(sizeof (*ets)); 3419 ets->num_notes = 1; /* only prstatus is dumped */ 3420 fill_prstatus(&ets->prstatus, ts, 0); 3421 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3422 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3423 &ets->prstatus); 3424 3425 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3426 3427 info->notes_size += note_size(&ets->notes[0]); 3428 } 3429 3430 static void init_note_info(struct elf_note_info *info) 3431 { 3432 /* Initialize the elf_note_info structure so that it is at 3433 * least safe to call free_note_info() on it. Must be 3434 * called before calling fill_note_info(). 3435 */ 3436 memset(info, 0, sizeof (*info)); 3437 QTAILQ_INIT(&info->thread_list); 3438 } 3439 3440 static int fill_note_info(struct elf_note_info *info, 3441 long signr, const CPUArchState *env) 3442 { 3443 #define NUMNOTES 3 3444 CPUState *cpu = env_cpu((CPUArchState *)env); 3445 TaskState *ts = (TaskState *)cpu->opaque; 3446 int i; 3447 3448 info->notes = g_new0(struct memelfnote, NUMNOTES); 3449 if (info->notes == NULL) 3450 return (-ENOMEM); 3451 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3452 if (info->prstatus == NULL) 3453 return (-ENOMEM); 3454 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3455 if (info->prstatus == NULL) 3456 return (-ENOMEM); 3457 3458 /* 3459 * First fill in status (and registers) of current thread 3460 * including process info & aux vector. 3461 */ 3462 fill_prstatus(info->prstatus, ts, signr); 3463 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3464 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3465 sizeof (*info->prstatus), info->prstatus); 3466 fill_psinfo(info->psinfo, ts); 3467 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3468 sizeof (*info->psinfo), info->psinfo); 3469 fill_auxv_note(&info->notes[2], ts); 3470 info->numnote = 3; 3471 3472 info->notes_size = 0; 3473 for (i = 0; i < info->numnote; i++) 3474 info->notes_size += note_size(&info->notes[i]); 3475 3476 /* read and fill status of all threads */ 3477 cpu_list_lock(); 3478 CPU_FOREACH(cpu) { 3479 if (cpu == thread_cpu) { 3480 continue; 3481 } 3482 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3483 } 3484 cpu_list_unlock(); 3485 3486 return (0); 3487 } 3488 3489 static void free_note_info(struct elf_note_info *info) 3490 { 3491 struct elf_thread_status *ets; 3492 3493 while (!QTAILQ_EMPTY(&info->thread_list)) { 3494 ets = QTAILQ_FIRST(&info->thread_list); 3495 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3496 g_free(ets); 3497 } 3498 3499 g_free(info->prstatus); 3500 g_free(info->psinfo); 3501 g_free(info->notes); 3502 } 3503 3504 static int write_note_info(struct elf_note_info *info, int fd) 3505 { 3506 struct elf_thread_status *ets; 3507 int i, error = 0; 3508 3509 /* write prstatus, psinfo and auxv for current thread */ 3510 for (i = 0; i < info->numnote; i++) 3511 if ((error = write_note(&info->notes[i], fd)) != 0) 3512 return (error); 3513 3514 /* write prstatus for each thread */ 3515 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3516 if ((error = write_note(&ets->notes[0], fd)) != 0) 3517 return (error); 3518 } 3519 3520 return (0); 3521 } 3522 3523 /* 3524 * Write out ELF coredump. 3525 * 3526 * See documentation of ELF object file format in: 3527 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3528 * 3529 * Coredump format in linux is following: 3530 * 3531 * 0 +----------------------+ \ 3532 * | ELF header | ET_CORE | 3533 * +----------------------+ | 3534 * | ELF program headers | |--- headers 3535 * | - NOTE section | | 3536 * | - PT_LOAD sections | | 3537 * +----------------------+ / 3538 * | NOTEs: | 3539 * | - NT_PRSTATUS | 3540 * | - NT_PRSINFO | 3541 * | - NT_AUXV | 3542 * +----------------------+ <-- aligned to target page 3543 * | Process memory dump | 3544 * : : 3545 * . . 3546 * : : 3547 * | | 3548 * +----------------------+ 3549 * 3550 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3551 * NT_PRSINFO -> struct elf_prpsinfo 3552 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3553 * 3554 * Format follows System V format as close as possible. Current 3555 * version limitations are as follows: 3556 * - no floating point registers are dumped 3557 * 3558 * Function returns 0 in case of success, negative errno otherwise. 3559 * 3560 * TODO: make this work also during runtime: it should be 3561 * possible to force coredump from running process and then 3562 * continue processing. For example qemu could set up SIGUSR2 3563 * handler (provided that target process haven't registered 3564 * handler for that) that does the dump when signal is received. 3565 */ 3566 static int elf_core_dump(int signr, const CPUArchState *env) 3567 { 3568 const CPUState *cpu = env_cpu((CPUArchState *)env); 3569 const TaskState *ts = (const TaskState *)cpu->opaque; 3570 struct vm_area_struct *vma = NULL; 3571 char corefile[PATH_MAX]; 3572 struct elf_note_info info; 3573 struct elfhdr elf; 3574 struct elf_phdr phdr; 3575 struct rlimit dumpsize; 3576 struct mm_struct *mm = NULL; 3577 off_t offset = 0, data_offset = 0; 3578 int segs = 0; 3579 int fd = -1; 3580 3581 init_note_info(&info); 3582 3583 errno = 0; 3584 getrlimit(RLIMIT_CORE, &dumpsize); 3585 if (dumpsize.rlim_cur == 0) 3586 return 0; 3587 3588 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3589 return (-errno); 3590 3591 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3592 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3593 return (-errno); 3594 3595 /* 3596 * Walk through target process memory mappings and 3597 * set up structure containing this information. After 3598 * this point vma_xxx functions can be used. 3599 */ 3600 if ((mm = vma_init()) == NULL) 3601 goto out; 3602 3603 walk_memory_regions(mm, vma_walker); 3604 segs = vma_get_mapping_count(mm); 3605 3606 /* 3607 * Construct valid coredump ELF header. We also 3608 * add one more segment for notes. 3609 */ 3610 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3611 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3612 goto out; 3613 3614 /* fill in the in-memory version of notes */ 3615 if (fill_note_info(&info, signr, env) < 0) 3616 goto out; 3617 3618 offset += sizeof (elf); /* elf header */ 3619 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3620 3621 /* write out notes program header */ 3622 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3623 3624 offset += info.notes_size; 3625 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3626 goto out; 3627 3628 /* 3629 * ELF specification wants data to start at page boundary so 3630 * we align it here. 3631 */ 3632 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3633 3634 /* 3635 * Write program headers for memory regions mapped in 3636 * the target process. 3637 */ 3638 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3639 (void) memset(&phdr, 0, sizeof (phdr)); 3640 3641 phdr.p_type = PT_LOAD; 3642 phdr.p_offset = offset; 3643 phdr.p_vaddr = vma->vma_start; 3644 phdr.p_paddr = 0; 3645 phdr.p_filesz = vma_dump_size(vma); 3646 offset += phdr.p_filesz; 3647 phdr.p_memsz = vma->vma_end - vma->vma_start; 3648 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3649 if (vma->vma_flags & PROT_WRITE) 3650 phdr.p_flags |= PF_W; 3651 if (vma->vma_flags & PROT_EXEC) 3652 phdr.p_flags |= PF_X; 3653 phdr.p_align = ELF_EXEC_PAGESIZE; 3654 3655 bswap_phdr(&phdr, 1); 3656 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3657 goto out; 3658 } 3659 } 3660 3661 /* 3662 * Next we write notes just after program headers. No 3663 * alignment needed here. 3664 */ 3665 if (write_note_info(&info, fd) < 0) 3666 goto out; 3667 3668 /* align data to page boundary */ 3669 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3670 goto out; 3671 3672 /* 3673 * Finally we can dump process memory into corefile as well. 3674 */ 3675 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3676 abi_ulong addr; 3677 abi_ulong end; 3678 3679 end = vma->vma_start + vma_dump_size(vma); 3680 3681 for (addr = vma->vma_start; addr < end; 3682 addr += TARGET_PAGE_SIZE) { 3683 char page[TARGET_PAGE_SIZE]; 3684 int error; 3685 3686 /* 3687 * Read in page from target process memory and 3688 * write it to coredump file. 3689 */ 3690 error = copy_from_user(page, addr, sizeof (page)); 3691 if (error != 0) { 3692 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3693 addr); 3694 errno = -error; 3695 goto out; 3696 } 3697 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3698 goto out; 3699 } 3700 } 3701 3702 out: 3703 free_note_info(&info); 3704 if (mm != NULL) 3705 vma_delete(mm); 3706 (void) close(fd); 3707 3708 if (errno != 0) 3709 return (-errno); 3710 return (0); 3711 } 3712 #endif /* USE_ELF_CORE_DUMP */ 3713 3714 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3715 { 3716 init_thread(regs, infop); 3717 } 3718