1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/prctl.h> 6 #include <sys/resource.h> 7 #include <sys/shm.h> 8 9 #include "qemu.h" 10 #include "user/tswap-target.h" 11 #include "exec/page-protection.h" 12 #include "user/guest-base.h" 13 #include "user-internals.h" 14 #include "signal-common.h" 15 #include "loader.h" 16 #include "user-mmap.h" 17 #include "disas/disas.h" 18 #include "qemu/bitops.h" 19 #include "qemu/path.h" 20 #include "qemu/queue.h" 21 #include "qemu/guest-random.h" 22 #include "qemu/units.h" 23 #include "qemu/selfmap.h" 24 #include "qemu/lockable.h" 25 #include "qapi/error.h" 26 #include "qemu/error-report.h" 27 #include "target_signal.h" 28 #include "tcg/debuginfo.h" 29 30 #ifdef TARGET_ARM 31 #include "target/arm/cpu-features.h" 32 #endif 33 34 #ifdef _ARCH_PPC64 35 #undef ARCH_DLINFO 36 #undef ELF_PLATFORM 37 #undef ELF_HWCAP 38 #undef ELF_HWCAP2 39 #undef ELF_CLASS 40 #undef ELF_DATA 41 #undef ELF_ARCH 42 #endif 43 44 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE 45 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0 46 #endif 47 48 typedef struct { 49 const uint8_t *image; 50 const uint32_t *relocs; 51 unsigned image_size; 52 unsigned reloc_count; 53 unsigned sigreturn_ofs; 54 unsigned rt_sigreturn_ofs; 55 } VdsoImageInfo; 56 57 #define ELF_OSABI ELFOSABI_SYSV 58 59 /* from personality.h */ 60 61 /* 62 * Flags for bug emulation. 63 * 64 * These occupy the top three bytes. 65 */ 66 enum { 67 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 68 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 69 descriptors (signal handling) */ 70 MMAP_PAGE_ZERO = 0x0100000, 71 ADDR_COMPAT_LAYOUT = 0x0200000, 72 READ_IMPLIES_EXEC = 0x0400000, 73 ADDR_LIMIT_32BIT = 0x0800000, 74 SHORT_INODE = 0x1000000, 75 WHOLE_SECONDS = 0x2000000, 76 STICKY_TIMEOUTS = 0x4000000, 77 ADDR_LIMIT_3GB = 0x8000000, 78 }; 79 80 /* 81 * Personality types. 82 * 83 * These go in the low byte. Avoid using the top bit, it will 84 * conflict with error returns. 85 */ 86 enum { 87 PER_LINUX = 0x0000, 88 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 89 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 90 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 91 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 92 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 93 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 94 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 95 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 96 PER_BSD = 0x0006, 97 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 98 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 99 PER_LINUX32 = 0x0008, 100 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 101 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 102 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 103 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 104 PER_RISCOS = 0x000c, 105 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 106 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 107 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 108 PER_HPUX = 0x0010, 109 PER_MASK = 0x00ff, 110 }; 111 112 /* 113 * Return the base personality without flags. 114 */ 115 #define personality(pers) (pers & PER_MASK) 116 117 int info_is_fdpic(struct image_info *info) 118 { 119 return info->personality == PER_LINUX_FDPIC; 120 } 121 122 /* this flag is uneffective under linux too, should be deleted */ 123 #ifndef MAP_DENYWRITE 124 #define MAP_DENYWRITE 0 125 #endif 126 127 /* should probably go in elf.h */ 128 #ifndef ELIBBAD 129 #define ELIBBAD 80 130 #endif 131 132 #if TARGET_BIG_ENDIAN 133 #define ELF_DATA ELFDATA2MSB 134 #else 135 #define ELF_DATA ELFDATA2LSB 136 #endif 137 138 #ifdef TARGET_ABI_MIPSN32 139 typedef abi_ullong target_elf_greg_t; 140 #define tswapreg(ptr) tswap64(ptr) 141 #else 142 typedef abi_ulong target_elf_greg_t; 143 #define tswapreg(ptr) tswapal(ptr) 144 #endif 145 146 #ifdef USE_UID16 147 typedef abi_ushort target_uid_t; 148 typedef abi_ushort target_gid_t; 149 #else 150 typedef abi_uint target_uid_t; 151 typedef abi_uint target_gid_t; 152 #endif 153 typedef abi_int target_pid_t; 154 155 #ifdef TARGET_I386 156 157 #define ELF_HWCAP get_elf_hwcap() 158 159 static uint32_t get_elf_hwcap(void) 160 { 161 X86CPU *cpu = X86_CPU(thread_cpu); 162 163 return cpu->env.features[FEAT_1_EDX]; 164 } 165 166 #ifdef TARGET_X86_64 167 #define ELF_CLASS ELFCLASS64 168 #define ELF_ARCH EM_X86_64 169 170 #define ELF_PLATFORM "x86_64" 171 172 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 173 { 174 regs->rax = 0; 175 regs->rsp = infop->start_stack; 176 regs->rip = infop->entry; 177 } 178 179 #define ELF_NREG 27 180 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 181 182 /* 183 * Note that ELF_NREG should be 29 as there should be place for 184 * TRAPNO and ERR "registers" as well but linux doesn't dump 185 * those. 186 * 187 * See linux kernel: arch/x86/include/asm/elf.h 188 */ 189 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 190 { 191 (*regs)[0] = tswapreg(env->regs[15]); 192 (*regs)[1] = tswapreg(env->regs[14]); 193 (*regs)[2] = tswapreg(env->regs[13]); 194 (*regs)[3] = tswapreg(env->regs[12]); 195 (*regs)[4] = tswapreg(env->regs[R_EBP]); 196 (*regs)[5] = tswapreg(env->regs[R_EBX]); 197 (*regs)[6] = tswapreg(env->regs[11]); 198 (*regs)[7] = tswapreg(env->regs[10]); 199 (*regs)[8] = tswapreg(env->regs[9]); 200 (*regs)[9] = tswapreg(env->regs[8]); 201 (*regs)[10] = tswapreg(env->regs[R_EAX]); 202 (*regs)[11] = tswapreg(env->regs[R_ECX]); 203 (*regs)[12] = tswapreg(env->regs[R_EDX]); 204 (*regs)[13] = tswapreg(env->regs[R_ESI]); 205 (*regs)[14] = tswapreg(env->regs[R_EDI]); 206 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 207 (*regs)[16] = tswapreg(env->eip); 208 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 209 (*regs)[18] = tswapreg(env->eflags); 210 (*regs)[19] = tswapreg(env->regs[R_ESP]); 211 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 212 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 213 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 214 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 215 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 216 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 217 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 218 } 219 220 #if ULONG_MAX > UINT32_MAX 221 #define INIT_GUEST_COMMPAGE 222 static bool init_guest_commpage(void) 223 { 224 /* 225 * The vsyscall page is at a high negative address aka kernel space, 226 * which means that we cannot actually allocate it with target_mmap. 227 * We still should be able to use page_set_flags, unless the user 228 * has specified -R reserved_va, which would trigger an assert(). 229 */ 230 if (reserved_va != 0 && 231 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) { 232 error_report("Cannot allocate vsyscall page"); 233 exit(EXIT_FAILURE); 234 } 235 page_set_flags(TARGET_VSYSCALL_PAGE, 236 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK, 237 PAGE_EXEC | PAGE_VALID); 238 return true; 239 } 240 #endif 241 #else 242 243 /* 244 * This is used to ensure we don't load something for the wrong architecture. 245 */ 246 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 247 248 /* 249 * These are used to set parameters in the core dumps. 250 */ 251 #define ELF_CLASS ELFCLASS32 252 #define ELF_ARCH EM_386 253 254 #define ELF_PLATFORM get_elf_platform() 255 #define EXSTACK_DEFAULT true 256 257 static const char *get_elf_platform(void) 258 { 259 static char elf_platform[] = "i386"; 260 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 261 if (family > 6) { 262 family = 6; 263 } 264 if (family >= 3) { 265 elf_platform[1] = '0' + family; 266 } 267 return elf_platform; 268 } 269 270 static inline void init_thread(struct target_pt_regs *regs, 271 struct image_info *infop) 272 { 273 regs->esp = infop->start_stack; 274 regs->eip = infop->entry; 275 276 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 277 starts %edx contains a pointer to a function which might be 278 registered using `atexit'. This provides a mean for the 279 dynamic linker to call DT_FINI functions for shared libraries 280 that have been loaded before the code runs. 281 282 A value of 0 tells we have no such handler. */ 283 regs->edx = 0; 284 } 285 286 #define ELF_NREG 17 287 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 288 289 /* 290 * Note that ELF_NREG should be 19 as there should be place for 291 * TRAPNO and ERR "registers" as well but linux doesn't dump 292 * those. 293 * 294 * See linux kernel: arch/x86/include/asm/elf.h 295 */ 296 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 297 { 298 (*regs)[0] = tswapreg(env->regs[R_EBX]); 299 (*regs)[1] = tswapreg(env->regs[R_ECX]); 300 (*regs)[2] = tswapreg(env->regs[R_EDX]); 301 (*regs)[3] = tswapreg(env->regs[R_ESI]); 302 (*regs)[4] = tswapreg(env->regs[R_EDI]); 303 (*regs)[5] = tswapreg(env->regs[R_EBP]); 304 (*regs)[6] = tswapreg(env->regs[R_EAX]); 305 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 306 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 307 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 308 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 309 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 310 (*regs)[12] = tswapreg(env->eip); 311 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 312 (*regs)[14] = tswapreg(env->eflags); 313 (*regs)[15] = tswapreg(env->regs[R_ESP]); 314 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 315 } 316 317 /* 318 * i386 is the only target which supplies AT_SYSINFO for the vdso. 319 * All others only supply AT_SYSINFO_EHDR. 320 */ 321 #define DLINFO_ARCH_ITEMS (vdso_info != NULL) 322 #define ARCH_DLINFO \ 323 do { \ 324 if (vdso_info) { \ 325 NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \ 326 } \ 327 } while (0) 328 329 #endif /* TARGET_X86_64 */ 330 331 #define VDSO_HEADER "vdso.c.inc" 332 333 #define USE_ELF_CORE_DUMP 334 #define ELF_EXEC_PAGESIZE 4096 335 336 #endif /* TARGET_I386 */ 337 338 #ifdef TARGET_ARM 339 340 #ifndef TARGET_AARCH64 341 /* 32 bit ARM definitions */ 342 343 #define ELF_ARCH EM_ARM 344 #define ELF_CLASS ELFCLASS32 345 #define EXSTACK_DEFAULT true 346 347 static inline void init_thread(struct target_pt_regs *regs, 348 struct image_info *infop) 349 { 350 abi_long stack = infop->start_stack; 351 memset(regs, 0, sizeof(*regs)); 352 353 regs->uregs[16] = ARM_CPU_MODE_USR; 354 if (infop->entry & 1) { 355 regs->uregs[16] |= CPSR_T; 356 } 357 regs->uregs[15] = infop->entry & 0xfffffffe; 358 regs->uregs[13] = infop->start_stack; 359 /* FIXME - what to for failure of get_user()? */ 360 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 361 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 362 /* XXX: it seems that r0 is zeroed after ! */ 363 regs->uregs[0] = 0; 364 /* For uClinux PIC binaries. */ 365 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 366 regs->uregs[10] = infop->start_data; 367 368 /* Support ARM FDPIC. */ 369 if (info_is_fdpic(infop)) { 370 /* As described in the ABI document, r7 points to the loadmap info 371 * prepared by the kernel. If an interpreter is needed, r8 points 372 * to the interpreter loadmap and r9 points to the interpreter 373 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 374 * r9 points to the main program PT_DYNAMIC info. 375 */ 376 regs->uregs[7] = infop->loadmap_addr; 377 if (infop->interpreter_loadmap_addr) { 378 /* Executable is dynamically loaded. */ 379 regs->uregs[8] = infop->interpreter_loadmap_addr; 380 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 381 } else { 382 regs->uregs[8] = 0; 383 regs->uregs[9] = infop->pt_dynamic_addr; 384 } 385 } 386 } 387 388 #define ELF_NREG 18 389 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 390 391 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 392 { 393 (*regs)[0] = tswapreg(env->regs[0]); 394 (*regs)[1] = tswapreg(env->regs[1]); 395 (*regs)[2] = tswapreg(env->regs[2]); 396 (*regs)[3] = tswapreg(env->regs[3]); 397 (*regs)[4] = tswapreg(env->regs[4]); 398 (*regs)[5] = tswapreg(env->regs[5]); 399 (*regs)[6] = tswapreg(env->regs[6]); 400 (*regs)[7] = tswapreg(env->regs[7]); 401 (*regs)[8] = tswapreg(env->regs[8]); 402 (*regs)[9] = tswapreg(env->regs[9]); 403 (*regs)[10] = tswapreg(env->regs[10]); 404 (*regs)[11] = tswapreg(env->regs[11]); 405 (*regs)[12] = tswapreg(env->regs[12]); 406 (*regs)[13] = tswapreg(env->regs[13]); 407 (*regs)[14] = tswapreg(env->regs[14]); 408 (*regs)[15] = tswapreg(env->regs[15]); 409 410 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 411 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 412 } 413 414 #define USE_ELF_CORE_DUMP 415 #define ELF_EXEC_PAGESIZE 4096 416 417 enum 418 { 419 ARM_HWCAP_ARM_SWP = 1 << 0, 420 ARM_HWCAP_ARM_HALF = 1 << 1, 421 ARM_HWCAP_ARM_THUMB = 1 << 2, 422 ARM_HWCAP_ARM_26BIT = 1 << 3, 423 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 424 ARM_HWCAP_ARM_FPA = 1 << 5, 425 ARM_HWCAP_ARM_VFP = 1 << 6, 426 ARM_HWCAP_ARM_EDSP = 1 << 7, 427 ARM_HWCAP_ARM_JAVA = 1 << 8, 428 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 429 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 430 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 431 ARM_HWCAP_ARM_NEON = 1 << 12, 432 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 433 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 434 ARM_HWCAP_ARM_TLS = 1 << 15, 435 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 436 ARM_HWCAP_ARM_IDIVA = 1 << 17, 437 ARM_HWCAP_ARM_IDIVT = 1 << 18, 438 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 439 ARM_HWCAP_ARM_LPAE = 1 << 20, 440 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 441 ARM_HWCAP_ARM_FPHP = 1 << 22, 442 ARM_HWCAP_ARM_ASIMDHP = 1 << 23, 443 ARM_HWCAP_ARM_ASIMDDP = 1 << 24, 444 ARM_HWCAP_ARM_ASIMDFHM = 1 << 25, 445 ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26, 446 ARM_HWCAP_ARM_I8MM = 1 << 27, 447 }; 448 449 enum { 450 ARM_HWCAP2_ARM_AES = 1 << 0, 451 ARM_HWCAP2_ARM_PMULL = 1 << 1, 452 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 453 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 454 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 455 ARM_HWCAP2_ARM_SB = 1 << 5, 456 ARM_HWCAP2_ARM_SSBS = 1 << 6, 457 }; 458 459 /* The commpage only exists for 32 bit kernels */ 460 461 #define HI_COMMPAGE (intptr_t)0xffff0f00u 462 463 static bool init_guest_commpage(void) 464 { 465 ARMCPU *cpu = ARM_CPU(thread_cpu); 466 int host_page_size = qemu_real_host_page_size(); 467 abi_ptr commpage; 468 void *want; 469 void *addr; 470 471 /* 472 * M-profile allocates maximum of 2GB address space, so can never 473 * allocate the commpage. Skip it. 474 */ 475 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 476 return true; 477 } 478 479 commpage = HI_COMMPAGE & -host_page_size; 480 want = g2h_untagged(commpage); 481 addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE, 482 MAP_ANONYMOUS | MAP_PRIVATE | 483 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE), 484 -1, 0); 485 486 if (addr == MAP_FAILED) { 487 perror("Allocating guest commpage"); 488 exit(EXIT_FAILURE); 489 } 490 if (addr != want) { 491 return false; 492 } 493 494 /* Set kernel helper versions; rest of page is 0. */ 495 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 496 497 if (mprotect(addr, host_page_size, PROT_READ)) { 498 perror("Protecting guest commpage"); 499 exit(EXIT_FAILURE); 500 } 501 502 page_set_flags(commpage, commpage | (host_page_size - 1), 503 PAGE_READ | PAGE_EXEC | PAGE_VALID); 504 return true; 505 } 506 507 #define ELF_HWCAP get_elf_hwcap() 508 #define ELF_HWCAP2 get_elf_hwcap2() 509 510 uint32_t get_elf_hwcap(void) 511 { 512 ARMCPU *cpu = ARM_CPU(thread_cpu); 513 uint32_t hwcaps = 0; 514 515 hwcaps |= ARM_HWCAP_ARM_SWP; 516 hwcaps |= ARM_HWCAP_ARM_HALF; 517 hwcaps |= ARM_HWCAP_ARM_THUMB; 518 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 519 520 /* probe for the extra features */ 521 #define GET_FEATURE(feat, hwcap) \ 522 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 523 524 #define GET_FEATURE_ID(feat, hwcap) \ 525 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 526 527 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 528 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 529 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 530 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 531 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 532 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 533 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 534 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 535 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 536 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 537 538 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 539 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 540 hwcaps |= ARM_HWCAP_ARM_VFPv3; 541 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 542 hwcaps |= ARM_HWCAP_ARM_VFPD32; 543 } else { 544 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 545 } 546 } 547 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 548 /* 549 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same 550 * isar_feature function for both. The kernel reports them as two hwcaps. 551 */ 552 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP); 553 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP); 554 GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP); 555 GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM); 556 GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16); 557 GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM); 558 559 return hwcaps; 560 } 561 562 uint64_t get_elf_hwcap2(void) 563 { 564 ARMCPU *cpu = ARM_CPU(thread_cpu); 565 uint64_t hwcaps = 0; 566 567 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 568 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 569 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 570 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 571 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 572 GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB); 573 GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS); 574 return hwcaps; 575 } 576 577 const char *elf_hwcap_str(uint32_t bit) 578 { 579 static const char *hwcap_str[] = { 580 [__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp", 581 [__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half", 582 [__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb", 583 [__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit", 584 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult", 585 [__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa", 586 [__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp", 587 [__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp", 588 [__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java", 589 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt", 590 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch", 591 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee", 592 [__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon", 593 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3", 594 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16", 595 [__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls", 596 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4", 597 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva", 598 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt", 599 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32", 600 [__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae", 601 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm", 602 [__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp", 603 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp", 604 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp", 605 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm", 606 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16", 607 [__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm", 608 }; 609 610 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 611 } 612 613 const char *elf_hwcap2_str(uint32_t bit) 614 { 615 static const char *hwcap_str[] = { 616 [__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes", 617 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull", 618 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1", 619 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2", 620 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32", 621 [__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb", 622 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs", 623 }; 624 625 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 626 } 627 628 #undef GET_FEATURE 629 #undef GET_FEATURE_ID 630 631 #define ELF_PLATFORM get_elf_platform() 632 633 static const char *get_elf_platform(void) 634 { 635 CPUARMState *env = cpu_env(thread_cpu); 636 637 #if TARGET_BIG_ENDIAN 638 # define END "b" 639 #else 640 # define END "l" 641 #endif 642 643 if (arm_feature(env, ARM_FEATURE_V8)) { 644 return "v8" END; 645 } else if (arm_feature(env, ARM_FEATURE_V7)) { 646 if (arm_feature(env, ARM_FEATURE_M)) { 647 return "v7m" END; 648 } else { 649 return "v7" END; 650 } 651 } else if (arm_feature(env, ARM_FEATURE_V6)) { 652 return "v6" END; 653 } else if (arm_feature(env, ARM_FEATURE_V5)) { 654 return "v5" END; 655 } else { 656 return "v4" END; 657 } 658 659 #undef END 660 } 661 662 #else 663 /* 64 bit ARM definitions */ 664 665 #define ELF_ARCH EM_AARCH64 666 #define ELF_CLASS ELFCLASS64 667 #if TARGET_BIG_ENDIAN 668 # define ELF_PLATFORM "aarch64_be" 669 #else 670 # define ELF_PLATFORM "aarch64" 671 #endif 672 673 static inline void init_thread(struct target_pt_regs *regs, 674 struct image_info *infop) 675 { 676 abi_long stack = infop->start_stack; 677 memset(regs, 0, sizeof(*regs)); 678 679 regs->pc = infop->entry & ~0x3ULL; 680 regs->sp = stack; 681 } 682 683 #define ELF_NREG 34 684 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 685 686 static void elf_core_copy_regs(target_elf_gregset_t *regs, 687 const CPUARMState *env) 688 { 689 int i; 690 691 for (i = 0; i < 32; i++) { 692 (*regs)[i] = tswapreg(env->xregs[i]); 693 } 694 (*regs)[32] = tswapreg(env->pc); 695 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 696 } 697 698 #define USE_ELF_CORE_DUMP 699 #define ELF_EXEC_PAGESIZE 4096 700 701 enum { 702 ARM_HWCAP_A64_FP = 1 << 0, 703 ARM_HWCAP_A64_ASIMD = 1 << 1, 704 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 705 ARM_HWCAP_A64_AES = 1 << 3, 706 ARM_HWCAP_A64_PMULL = 1 << 4, 707 ARM_HWCAP_A64_SHA1 = 1 << 5, 708 ARM_HWCAP_A64_SHA2 = 1 << 6, 709 ARM_HWCAP_A64_CRC32 = 1 << 7, 710 ARM_HWCAP_A64_ATOMICS = 1 << 8, 711 ARM_HWCAP_A64_FPHP = 1 << 9, 712 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 713 ARM_HWCAP_A64_CPUID = 1 << 11, 714 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 715 ARM_HWCAP_A64_JSCVT = 1 << 13, 716 ARM_HWCAP_A64_FCMA = 1 << 14, 717 ARM_HWCAP_A64_LRCPC = 1 << 15, 718 ARM_HWCAP_A64_DCPOP = 1 << 16, 719 ARM_HWCAP_A64_SHA3 = 1 << 17, 720 ARM_HWCAP_A64_SM3 = 1 << 18, 721 ARM_HWCAP_A64_SM4 = 1 << 19, 722 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 723 ARM_HWCAP_A64_SHA512 = 1 << 21, 724 ARM_HWCAP_A64_SVE = 1 << 22, 725 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 726 ARM_HWCAP_A64_DIT = 1 << 24, 727 ARM_HWCAP_A64_USCAT = 1 << 25, 728 ARM_HWCAP_A64_ILRCPC = 1 << 26, 729 ARM_HWCAP_A64_FLAGM = 1 << 27, 730 ARM_HWCAP_A64_SSBS = 1 << 28, 731 ARM_HWCAP_A64_SB = 1 << 29, 732 ARM_HWCAP_A64_PACA = 1 << 30, 733 ARM_HWCAP_A64_PACG = 1UL << 31, 734 735 ARM_HWCAP2_A64_DCPODP = 1 << 0, 736 ARM_HWCAP2_A64_SVE2 = 1 << 1, 737 ARM_HWCAP2_A64_SVEAES = 1 << 2, 738 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 739 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 740 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 741 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 742 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 743 ARM_HWCAP2_A64_FRINT = 1 << 8, 744 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 745 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 746 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 747 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 748 ARM_HWCAP2_A64_I8MM = 1 << 13, 749 ARM_HWCAP2_A64_BF16 = 1 << 14, 750 ARM_HWCAP2_A64_DGH = 1 << 15, 751 ARM_HWCAP2_A64_RNG = 1 << 16, 752 ARM_HWCAP2_A64_BTI = 1 << 17, 753 ARM_HWCAP2_A64_MTE = 1 << 18, 754 ARM_HWCAP2_A64_ECV = 1 << 19, 755 ARM_HWCAP2_A64_AFP = 1 << 20, 756 ARM_HWCAP2_A64_RPRES = 1 << 21, 757 ARM_HWCAP2_A64_MTE3 = 1 << 22, 758 ARM_HWCAP2_A64_SME = 1 << 23, 759 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 760 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 761 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 762 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 763 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 764 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 765 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 766 ARM_HWCAP2_A64_WFXT = 1ULL << 31, 767 ARM_HWCAP2_A64_EBF16 = 1ULL << 32, 768 ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33, 769 ARM_HWCAP2_A64_CSSC = 1ULL << 34, 770 ARM_HWCAP2_A64_RPRFM = 1ULL << 35, 771 ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36, 772 ARM_HWCAP2_A64_SME2 = 1ULL << 37, 773 ARM_HWCAP2_A64_SME2P1 = 1ULL << 38, 774 ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39, 775 ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40, 776 ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41, 777 ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42, 778 ARM_HWCAP2_A64_MOPS = 1ULL << 43, 779 ARM_HWCAP2_A64_HBC = 1ULL << 44, 780 }; 781 782 #define ELF_HWCAP get_elf_hwcap() 783 #define ELF_HWCAP2 get_elf_hwcap2() 784 785 #define GET_FEATURE_ID(feat, hwcap) \ 786 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 787 788 uint32_t get_elf_hwcap(void) 789 { 790 ARMCPU *cpu = ARM_CPU(thread_cpu); 791 uint32_t hwcaps = 0; 792 793 hwcaps |= ARM_HWCAP_A64_FP; 794 hwcaps |= ARM_HWCAP_A64_ASIMD; 795 hwcaps |= ARM_HWCAP_A64_CPUID; 796 797 /* probe for the extra features */ 798 799 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 800 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 801 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 802 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 803 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 804 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 805 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 806 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 807 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 808 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 809 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 810 GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT); 811 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 812 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 813 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 814 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 815 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 816 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 817 GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT); 818 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 819 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 820 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 821 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 822 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 823 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 824 825 return hwcaps; 826 } 827 828 uint64_t get_elf_hwcap2(void) 829 { 830 ARMCPU *cpu = ARM_CPU(thread_cpu); 831 uint64_t hwcaps = 0; 832 833 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 834 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 835 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 836 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 837 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 838 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 839 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 840 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 841 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 842 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 843 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 844 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 845 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 846 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 847 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 848 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 849 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 850 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 851 GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3); 852 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 853 ARM_HWCAP2_A64_SME_F32F32 | 854 ARM_HWCAP2_A64_SME_B16F32 | 855 ARM_HWCAP2_A64_SME_F16F32 | 856 ARM_HWCAP2_A64_SME_I8I32)); 857 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 858 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 859 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 860 GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC); 861 GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS); 862 863 return hwcaps; 864 } 865 866 const char *elf_hwcap_str(uint32_t bit) 867 { 868 static const char *hwcap_str[] = { 869 [__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp", 870 [__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd", 871 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm", 872 [__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes", 873 [__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull", 874 [__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1", 875 [__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2", 876 [__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32", 877 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics", 878 [__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp", 879 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp", 880 [__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid", 881 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm", 882 [__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt", 883 [__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma", 884 [__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc", 885 [__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop", 886 [__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3", 887 [__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3", 888 [__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4", 889 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp", 890 [__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512", 891 [__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve", 892 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm", 893 [__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit", 894 [__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat", 895 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc", 896 [__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm", 897 [__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs", 898 [__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb", 899 [__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca", 900 [__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg", 901 }; 902 903 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 904 } 905 906 const char *elf_hwcap2_str(uint32_t bit) 907 { 908 static const char *hwcap_str[] = { 909 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp", 910 [__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2", 911 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes", 912 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull", 913 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm", 914 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3", 915 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4", 916 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2", 917 [__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint", 918 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm", 919 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm", 920 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm", 921 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16", 922 [__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm", 923 [__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16", 924 [__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh", 925 [__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng", 926 [__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti", 927 [__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte", 928 [__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv", 929 [__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp", 930 [__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres", 931 [__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3", 932 [__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme", 933 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64", 934 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64", 935 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32", 936 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32", 937 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32", 938 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32", 939 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64", 940 [__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt", 941 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16", 942 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16", 943 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc", 944 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm", 945 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1", 946 [__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2", 947 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1", 948 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32", 949 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32", 950 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16", 951 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16", 952 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops", 953 [__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc", 954 }; 955 956 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 957 } 958 959 #undef GET_FEATURE_ID 960 961 #endif /* not TARGET_AARCH64 */ 962 963 #if TARGET_BIG_ENDIAN 964 # define VDSO_HEADER "vdso-be.c.inc" 965 #else 966 # define VDSO_HEADER "vdso-le.c.inc" 967 #endif 968 969 #endif /* TARGET_ARM */ 970 971 #ifdef TARGET_SPARC 972 973 #ifndef TARGET_SPARC64 974 # define ELF_CLASS ELFCLASS32 975 # define ELF_ARCH EM_SPARC 976 #elif defined(TARGET_ABI32) 977 # define ELF_CLASS ELFCLASS32 978 # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC) 979 #else 980 # define ELF_CLASS ELFCLASS64 981 # define ELF_ARCH EM_SPARCV9 982 #endif 983 984 #include "elf.h" 985 986 #define ELF_HWCAP get_elf_hwcap() 987 988 static uint32_t get_elf_hwcap(void) 989 { 990 /* There are not many sparc32 hwcap bits -- we have all of them. */ 991 uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | 992 HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV; 993 994 #ifdef TARGET_SPARC64 995 CPUSPARCState *env = cpu_env(thread_cpu); 996 uint32_t features = env->def.features; 997 998 r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS; 999 /* 32x32 multiply and divide are efficient. */ 1000 r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32; 1001 /* We don't have an internal feature bit for this. */ 1002 r |= HWCAP_SPARC_POPC; 1003 r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0; 1004 r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0; 1005 r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0; 1006 r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0; 1007 r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0; 1008 r |= features & CPU_FEATURE_IMA ? HWCAP_SPARC_IMA : 0; 1009 #endif 1010 1011 return r; 1012 } 1013 1014 static inline void init_thread(struct target_pt_regs *regs, 1015 struct image_info *infop) 1016 { 1017 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 1018 regs->pc = infop->entry; 1019 regs->npc = regs->pc + 4; 1020 regs->y = 0; 1021 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 1022 - TARGET_STACK_BIAS); 1023 } 1024 #endif /* TARGET_SPARC */ 1025 1026 #ifdef TARGET_PPC 1027 1028 #define ELF_MACHINE PPC_ELF_MACHINE 1029 1030 #if defined(TARGET_PPC64) 1031 1032 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 1033 1034 #define ELF_CLASS ELFCLASS64 1035 1036 #else 1037 1038 #define ELF_CLASS ELFCLASS32 1039 #define EXSTACK_DEFAULT true 1040 1041 #endif 1042 1043 #define ELF_ARCH EM_PPC 1044 1045 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 1046 See arch/powerpc/include/asm/cputable.h. */ 1047 enum { 1048 QEMU_PPC_FEATURE_32 = 0x80000000, 1049 QEMU_PPC_FEATURE_64 = 0x40000000, 1050 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 1051 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 1052 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 1053 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 1054 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 1055 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 1056 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 1057 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 1058 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 1059 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 1060 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 1061 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 1062 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 1063 QEMU_PPC_FEATURE_CELL = 0x00010000, 1064 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 1065 QEMU_PPC_FEATURE_SMT = 0x00004000, 1066 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 1067 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 1068 QEMU_PPC_FEATURE_PA6T = 0x00000800, 1069 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 1070 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 1071 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 1072 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 1073 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 1074 1075 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 1076 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 1077 1078 /* Feature definitions in AT_HWCAP2. */ 1079 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 1080 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 1081 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 1082 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 1083 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 1084 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 1085 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 1086 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 1087 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 1088 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 1089 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 1090 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 1091 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 1092 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 1093 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 1094 }; 1095 1096 #define ELF_HWCAP get_elf_hwcap() 1097 1098 static uint32_t get_elf_hwcap(void) 1099 { 1100 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 1101 uint32_t features = 0; 1102 1103 /* We don't have to be terribly complete here; the high points are 1104 Altivec/FP/SPE support. Anything else is just a bonus. */ 1105 #define GET_FEATURE(flag, feature) \ 1106 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 1107 #define GET_FEATURE2(flags, feature) \ 1108 do { \ 1109 if ((cpu->env.insns_flags2 & flags) == flags) { \ 1110 features |= feature; \ 1111 } \ 1112 } while (0) 1113 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 1114 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 1115 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 1116 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 1117 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 1118 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 1119 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 1120 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 1121 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 1122 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 1123 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 1124 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 1125 QEMU_PPC_FEATURE_ARCH_2_06); 1126 #undef GET_FEATURE 1127 #undef GET_FEATURE2 1128 1129 return features; 1130 } 1131 1132 #define ELF_HWCAP2 get_elf_hwcap2() 1133 1134 static uint32_t get_elf_hwcap2(void) 1135 { 1136 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 1137 uint32_t features = 0; 1138 1139 #define GET_FEATURE(flag, feature) \ 1140 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 1141 #define GET_FEATURE2(flag, feature) \ 1142 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 1143 1144 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 1145 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 1146 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 1147 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 1148 QEMU_PPC_FEATURE2_VEC_CRYPTO); 1149 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 1150 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 1151 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 1152 QEMU_PPC_FEATURE2_MMA); 1153 1154 #undef GET_FEATURE 1155 #undef GET_FEATURE2 1156 1157 return features; 1158 } 1159 1160 /* 1161 * The requirements here are: 1162 * - keep the final alignment of sp (sp & 0xf) 1163 * - make sure the 32-bit value at the first 16 byte aligned position of 1164 * AUXV is greater than 16 for glibc compatibility. 1165 * AT_IGNOREPPC is used for that. 1166 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 1167 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 1168 */ 1169 #define DLINFO_ARCH_ITEMS 5 1170 #define ARCH_DLINFO \ 1171 do { \ 1172 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 1173 /* \ 1174 * Handle glibc compatibility: these magic entries must \ 1175 * be at the lowest addresses in the final auxv. \ 1176 */ \ 1177 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 1178 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 1179 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 1180 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 1181 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 1182 } while (0) 1183 1184 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 1185 { 1186 _regs->gpr[1] = infop->start_stack; 1187 #if defined(TARGET_PPC64) 1188 if (get_ppc64_abi(infop) < 2) { 1189 uint64_t val; 1190 get_user_u64(val, infop->entry + 8); 1191 _regs->gpr[2] = val + infop->load_bias; 1192 get_user_u64(val, infop->entry); 1193 infop->entry = val + infop->load_bias; 1194 } else { 1195 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 1196 } 1197 #endif 1198 _regs->nip = infop->entry; 1199 } 1200 1201 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 1202 #define ELF_NREG 48 1203 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1204 1205 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 1206 { 1207 int i; 1208 target_ulong ccr = 0; 1209 1210 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 1211 (*regs)[i] = tswapreg(env->gpr[i]); 1212 } 1213 1214 (*regs)[32] = tswapreg(env->nip); 1215 (*regs)[33] = tswapreg(env->msr); 1216 (*regs)[35] = tswapreg(env->ctr); 1217 (*regs)[36] = tswapreg(env->lr); 1218 (*regs)[37] = tswapreg(cpu_read_xer(env)); 1219 1220 ccr = ppc_get_cr(env); 1221 (*regs)[38] = tswapreg(ccr); 1222 } 1223 1224 #define USE_ELF_CORE_DUMP 1225 #define ELF_EXEC_PAGESIZE 4096 1226 1227 #ifndef TARGET_PPC64 1228 # define VDSO_HEADER "vdso-32.c.inc" 1229 #elif TARGET_BIG_ENDIAN 1230 # define VDSO_HEADER "vdso-64.c.inc" 1231 #else 1232 # define VDSO_HEADER "vdso-64le.c.inc" 1233 #endif 1234 1235 #endif 1236 1237 #ifdef TARGET_LOONGARCH64 1238 1239 #define ELF_CLASS ELFCLASS64 1240 #define ELF_ARCH EM_LOONGARCH 1241 #define EXSTACK_DEFAULT true 1242 1243 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 1244 1245 #define VDSO_HEADER "vdso.c.inc" 1246 1247 static inline void init_thread(struct target_pt_regs *regs, 1248 struct image_info *infop) 1249 { 1250 /*Set crmd PG,DA = 1,0 */ 1251 regs->csr.crmd = 2 << 3; 1252 regs->csr.era = infop->entry; 1253 regs->regs[3] = infop->start_stack; 1254 } 1255 1256 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 1257 #define ELF_NREG 45 1258 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1259 1260 enum { 1261 TARGET_EF_R0 = 0, 1262 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 1263 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1264 }; 1265 1266 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1267 const CPULoongArchState *env) 1268 { 1269 int i; 1270 1271 (*regs)[TARGET_EF_R0] = 0; 1272 1273 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1274 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1275 } 1276 1277 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1278 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1279 } 1280 1281 #define USE_ELF_CORE_DUMP 1282 #define ELF_EXEC_PAGESIZE 4096 1283 1284 #define ELF_HWCAP get_elf_hwcap() 1285 1286 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1287 enum { 1288 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1289 HWCAP_LOONGARCH_LAM = (1 << 1), 1290 HWCAP_LOONGARCH_UAL = (1 << 2), 1291 HWCAP_LOONGARCH_FPU = (1 << 3), 1292 HWCAP_LOONGARCH_LSX = (1 << 4), 1293 HWCAP_LOONGARCH_LASX = (1 << 5), 1294 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1295 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1296 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1297 HWCAP_LOONGARCH_LVZ = (1 << 9), 1298 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1299 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1300 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1301 }; 1302 1303 static uint32_t get_elf_hwcap(void) 1304 { 1305 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1306 uint32_t hwcaps = 0; 1307 1308 hwcaps |= HWCAP_LOONGARCH_CRC32; 1309 1310 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1311 hwcaps |= HWCAP_LOONGARCH_UAL; 1312 } 1313 1314 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1315 hwcaps |= HWCAP_LOONGARCH_FPU; 1316 } 1317 1318 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1319 hwcaps |= HWCAP_LOONGARCH_LAM; 1320 } 1321 1322 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) { 1323 hwcaps |= HWCAP_LOONGARCH_LSX; 1324 } 1325 1326 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) { 1327 hwcaps |= HWCAP_LOONGARCH_LASX; 1328 } 1329 1330 return hwcaps; 1331 } 1332 1333 #define ELF_PLATFORM "loongarch" 1334 1335 #endif /* TARGET_LOONGARCH64 */ 1336 1337 #ifdef TARGET_MIPS 1338 1339 #ifdef TARGET_MIPS64 1340 #define ELF_CLASS ELFCLASS64 1341 #else 1342 #define ELF_CLASS ELFCLASS32 1343 #endif 1344 #define ELF_ARCH EM_MIPS 1345 #define EXSTACK_DEFAULT true 1346 1347 #ifdef TARGET_ABI_MIPSN32 1348 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1349 #else 1350 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1351 #endif 1352 1353 #define ELF_BASE_PLATFORM get_elf_base_platform() 1354 1355 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ 1356 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ 1357 { return _base_platform; } } while (0) 1358 1359 static const char *get_elf_base_platform(void) 1360 { 1361 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1362 1363 /* 64 bit ISAs goes first */ 1364 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); 1365 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); 1366 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); 1367 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); 1368 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); 1369 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); 1370 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); 1371 1372 /* 32 bit ISAs */ 1373 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); 1374 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); 1375 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); 1376 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); 1377 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); 1378 1379 /* Fallback */ 1380 return "mips"; 1381 } 1382 #undef MATCH_PLATFORM_INSN 1383 1384 static inline void init_thread(struct target_pt_regs *regs, 1385 struct image_info *infop) 1386 { 1387 regs->cp0_status = 2 << CP0St_KSU; 1388 regs->cp0_epc = infop->entry; 1389 regs->regs[29] = infop->start_stack; 1390 } 1391 1392 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1393 #define ELF_NREG 45 1394 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1395 1396 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1397 enum { 1398 #ifdef TARGET_MIPS64 1399 TARGET_EF_R0 = 0, 1400 #else 1401 TARGET_EF_R0 = 6, 1402 #endif 1403 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1404 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1405 TARGET_EF_LO = TARGET_EF_R0 + 32, 1406 TARGET_EF_HI = TARGET_EF_R0 + 33, 1407 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1408 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1409 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1410 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1411 }; 1412 1413 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1414 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1415 { 1416 int i; 1417 1418 for (i = 0; i < TARGET_EF_R0; i++) { 1419 (*regs)[i] = 0; 1420 } 1421 (*regs)[TARGET_EF_R0] = 0; 1422 1423 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1424 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1425 } 1426 1427 (*regs)[TARGET_EF_R26] = 0; 1428 (*regs)[TARGET_EF_R27] = 0; 1429 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1430 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1431 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1432 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1433 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1434 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1435 } 1436 1437 #define USE_ELF_CORE_DUMP 1438 #define ELF_EXEC_PAGESIZE 4096 1439 1440 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1441 enum { 1442 HWCAP_MIPS_R6 = (1 << 0), 1443 HWCAP_MIPS_MSA = (1 << 1), 1444 HWCAP_MIPS_CRC32 = (1 << 2), 1445 HWCAP_MIPS_MIPS16 = (1 << 3), 1446 HWCAP_MIPS_MDMX = (1 << 4), 1447 HWCAP_MIPS_MIPS3D = (1 << 5), 1448 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1449 HWCAP_MIPS_DSP = (1 << 7), 1450 HWCAP_MIPS_DSP2 = (1 << 8), 1451 HWCAP_MIPS_DSP3 = (1 << 9), 1452 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1453 HWCAP_LOONGSON_MMI = (1 << 11), 1454 HWCAP_LOONGSON_EXT = (1 << 12), 1455 HWCAP_LOONGSON_EXT2 = (1 << 13), 1456 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1457 }; 1458 1459 #define ELF_HWCAP get_elf_hwcap() 1460 1461 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1462 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1463 1464 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1465 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1466 1467 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1468 do { \ 1469 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1470 hwcaps |= _hwcap; \ 1471 } \ 1472 } while (0) 1473 1474 static uint32_t get_elf_hwcap(void) 1475 { 1476 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1477 uint32_t hwcaps = 0; 1478 1479 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1480 2, HWCAP_MIPS_R6); 1481 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1482 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1483 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1484 1485 return hwcaps; 1486 } 1487 1488 #undef GET_FEATURE_REG_EQU 1489 #undef GET_FEATURE_REG_SET 1490 #undef GET_FEATURE_INSN 1491 1492 #endif /* TARGET_MIPS */ 1493 1494 #ifdef TARGET_MICROBLAZE 1495 1496 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1497 1498 #define ELF_CLASS ELFCLASS32 1499 #define ELF_ARCH EM_MICROBLAZE 1500 1501 static inline void init_thread(struct target_pt_regs *regs, 1502 struct image_info *infop) 1503 { 1504 regs->pc = infop->entry; 1505 regs->r1 = infop->start_stack; 1506 1507 } 1508 1509 #define ELF_EXEC_PAGESIZE 4096 1510 1511 #define USE_ELF_CORE_DUMP 1512 #define ELF_NREG 38 1513 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1514 1515 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1516 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1517 { 1518 int i, pos = 0; 1519 1520 for (i = 0; i < 32; i++) { 1521 (*regs)[pos++] = tswapreg(env->regs[i]); 1522 } 1523 1524 (*regs)[pos++] = tswapreg(env->pc); 1525 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1526 (*regs)[pos++] = 0; 1527 (*regs)[pos++] = tswapreg(env->ear); 1528 (*regs)[pos++] = 0; 1529 (*regs)[pos++] = tswapreg(env->esr); 1530 } 1531 1532 #endif /* TARGET_MICROBLAZE */ 1533 1534 #ifdef TARGET_OPENRISC 1535 1536 #define ELF_ARCH EM_OPENRISC 1537 #define ELF_CLASS ELFCLASS32 1538 #define ELF_DATA ELFDATA2MSB 1539 1540 static inline void init_thread(struct target_pt_regs *regs, 1541 struct image_info *infop) 1542 { 1543 regs->pc = infop->entry; 1544 regs->gpr[1] = infop->start_stack; 1545 } 1546 1547 #define USE_ELF_CORE_DUMP 1548 #define ELF_EXEC_PAGESIZE 8192 1549 1550 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1551 #define ELF_NREG 34 /* gprs and pc, sr */ 1552 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1553 1554 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1555 const CPUOpenRISCState *env) 1556 { 1557 int i; 1558 1559 for (i = 0; i < 32; i++) { 1560 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1561 } 1562 (*regs)[32] = tswapreg(env->pc); 1563 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1564 } 1565 #define ELF_HWCAP 0 1566 #define ELF_PLATFORM NULL 1567 1568 #endif /* TARGET_OPENRISC */ 1569 1570 #ifdef TARGET_SH4 1571 1572 #define ELF_CLASS ELFCLASS32 1573 #define ELF_ARCH EM_SH 1574 1575 static inline void init_thread(struct target_pt_regs *regs, 1576 struct image_info *infop) 1577 { 1578 /* Check other registers XXXXX */ 1579 regs->pc = infop->entry; 1580 regs->regs[15] = infop->start_stack; 1581 } 1582 1583 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1584 #define ELF_NREG 23 1585 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1586 1587 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1588 enum { 1589 TARGET_REG_PC = 16, 1590 TARGET_REG_PR = 17, 1591 TARGET_REG_SR = 18, 1592 TARGET_REG_GBR = 19, 1593 TARGET_REG_MACH = 20, 1594 TARGET_REG_MACL = 21, 1595 TARGET_REG_SYSCALL = 22 1596 }; 1597 1598 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1599 const CPUSH4State *env) 1600 { 1601 int i; 1602 1603 for (i = 0; i < 16; i++) { 1604 (*regs)[i] = tswapreg(env->gregs[i]); 1605 } 1606 1607 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1608 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1609 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1610 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1611 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1612 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1613 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1614 } 1615 1616 #define USE_ELF_CORE_DUMP 1617 #define ELF_EXEC_PAGESIZE 4096 1618 1619 enum { 1620 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1621 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1622 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1623 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1624 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1625 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1626 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1627 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1628 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1629 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1630 }; 1631 1632 #define ELF_HWCAP get_elf_hwcap() 1633 1634 static uint32_t get_elf_hwcap(void) 1635 { 1636 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1637 uint32_t hwcap = 0; 1638 1639 hwcap |= SH_CPU_HAS_FPU; 1640 1641 if (cpu->env.features & SH_FEATURE_SH4A) { 1642 hwcap |= SH_CPU_HAS_LLSC; 1643 } 1644 1645 return hwcap; 1646 } 1647 1648 #endif 1649 1650 #ifdef TARGET_M68K 1651 1652 #define ELF_CLASS ELFCLASS32 1653 #define ELF_ARCH EM_68K 1654 1655 /* ??? Does this need to do anything? 1656 #define ELF_PLAT_INIT(_r) */ 1657 1658 static inline void init_thread(struct target_pt_regs *regs, 1659 struct image_info *infop) 1660 { 1661 regs->usp = infop->start_stack; 1662 regs->sr = 0; 1663 regs->pc = infop->entry; 1664 } 1665 1666 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1667 #define ELF_NREG 20 1668 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1669 1670 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1671 { 1672 (*regs)[0] = tswapreg(env->dregs[1]); 1673 (*regs)[1] = tswapreg(env->dregs[2]); 1674 (*regs)[2] = tswapreg(env->dregs[3]); 1675 (*regs)[3] = tswapreg(env->dregs[4]); 1676 (*regs)[4] = tswapreg(env->dregs[5]); 1677 (*regs)[5] = tswapreg(env->dregs[6]); 1678 (*regs)[6] = tswapreg(env->dregs[7]); 1679 (*regs)[7] = tswapreg(env->aregs[0]); 1680 (*regs)[8] = tswapreg(env->aregs[1]); 1681 (*regs)[9] = tswapreg(env->aregs[2]); 1682 (*regs)[10] = tswapreg(env->aregs[3]); 1683 (*regs)[11] = tswapreg(env->aregs[4]); 1684 (*regs)[12] = tswapreg(env->aregs[5]); 1685 (*regs)[13] = tswapreg(env->aregs[6]); 1686 (*regs)[14] = tswapreg(env->dregs[0]); 1687 (*regs)[15] = tswapreg(env->aregs[7]); 1688 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1689 (*regs)[17] = tswapreg(env->sr); 1690 (*regs)[18] = tswapreg(env->pc); 1691 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1692 } 1693 1694 #define USE_ELF_CORE_DUMP 1695 #define ELF_EXEC_PAGESIZE 8192 1696 1697 #endif 1698 1699 #ifdef TARGET_ALPHA 1700 1701 #define ELF_CLASS ELFCLASS64 1702 #define ELF_ARCH EM_ALPHA 1703 1704 static inline void init_thread(struct target_pt_regs *regs, 1705 struct image_info *infop) 1706 { 1707 regs->pc = infop->entry; 1708 regs->ps = 8; 1709 regs->usp = infop->start_stack; 1710 } 1711 1712 #define ELF_EXEC_PAGESIZE 8192 1713 1714 #endif /* TARGET_ALPHA */ 1715 1716 #ifdef TARGET_S390X 1717 1718 #define ELF_CLASS ELFCLASS64 1719 #define ELF_DATA ELFDATA2MSB 1720 #define ELF_ARCH EM_S390 1721 1722 #include "elf.h" 1723 1724 #define ELF_HWCAP get_elf_hwcap() 1725 1726 #define GET_FEATURE(_feat, _hwcap) \ 1727 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1728 1729 uint32_t get_elf_hwcap(void) 1730 { 1731 /* 1732 * Let's assume we always have esan3 and zarch. 1733 * 31-bit processes can use 64-bit registers (high gprs). 1734 */ 1735 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1736 1737 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1738 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1739 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1740 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1741 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1742 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1743 hwcap |= HWCAP_S390_ETF3EH; 1744 } 1745 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1746 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1747 GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2); 1748 1749 return hwcap; 1750 } 1751 1752 const char *elf_hwcap_str(uint32_t bit) 1753 { 1754 static const char *hwcap_str[] = { 1755 [HWCAP_S390_NR_ESAN3] = "esan3", 1756 [HWCAP_S390_NR_ZARCH] = "zarch", 1757 [HWCAP_S390_NR_STFLE] = "stfle", 1758 [HWCAP_S390_NR_MSA] = "msa", 1759 [HWCAP_S390_NR_LDISP] = "ldisp", 1760 [HWCAP_S390_NR_EIMM] = "eimm", 1761 [HWCAP_S390_NR_DFP] = "dfp", 1762 [HWCAP_S390_NR_HPAGE] = "edat", 1763 [HWCAP_S390_NR_ETF3EH] = "etf3eh", 1764 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs", 1765 [HWCAP_S390_NR_TE] = "te", 1766 [HWCAP_S390_NR_VXRS] = "vx", 1767 [HWCAP_S390_NR_VXRS_BCD] = "vxd", 1768 [HWCAP_S390_NR_VXRS_EXT] = "vxe", 1769 [HWCAP_S390_NR_GS] = "gs", 1770 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2", 1771 [HWCAP_S390_NR_VXRS_PDE] = "vxp", 1772 [HWCAP_S390_NR_SORT] = "sort", 1773 [HWCAP_S390_NR_DFLT] = "dflt", 1774 [HWCAP_S390_NR_NNPA] = "nnpa", 1775 [HWCAP_S390_NR_PCI_MIO] = "pcimio", 1776 [HWCAP_S390_NR_SIE] = "sie", 1777 }; 1778 1779 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 1780 } 1781 1782 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1783 { 1784 regs->psw.addr = infop->entry; 1785 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \ 1786 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \ 1787 PSW_MASK_32; 1788 regs->gprs[15] = infop->start_stack; 1789 } 1790 1791 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1792 #define ELF_NREG 27 1793 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1794 1795 enum { 1796 TARGET_REG_PSWM = 0, 1797 TARGET_REG_PSWA = 1, 1798 TARGET_REG_GPRS = 2, 1799 TARGET_REG_ARS = 18, 1800 TARGET_REG_ORIG_R2 = 26, 1801 }; 1802 1803 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1804 const CPUS390XState *env) 1805 { 1806 int i; 1807 uint32_t *aregs; 1808 1809 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1810 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1811 for (i = 0; i < 16; i++) { 1812 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1813 } 1814 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1815 for (i = 0; i < 16; i++) { 1816 aregs[i] = tswap32(env->aregs[i]); 1817 } 1818 (*regs)[TARGET_REG_ORIG_R2] = 0; 1819 } 1820 1821 #define USE_ELF_CORE_DUMP 1822 #define ELF_EXEC_PAGESIZE 4096 1823 1824 #define VDSO_HEADER "vdso.c.inc" 1825 1826 #endif /* TARGET_S390X */ 1827 1828 #ifdef TARGET_RISCV 1829 1830 #define ELF_ARCH EM_RISCV 1831 1832 #ifdef TARGET_RISCV32 1833 #define ELF_CLASS ELFCLASS32 1834 #define VDSO_HEADER "vdso-32.c.inc" 1835 #else 1836 #define ELF_CLASS ELFCLASS64 1837 #define VDSO_HEADER "vdso-64.c.inc" 1838 #endif 1839 1840 #define ELF_HWCAP get_elf_hwcap() 1841 1842 static uint32_t get_elf_hwcap(void) 1843 { 1844 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1845 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1846 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1847 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C') 1848 | MISA_BIT('V'); 1849 1850 return cpu->env.misa_ext & mask; 1851 #undef MISA_BIT 1852 } 1853 1854 static inline void init_thread(struct target_pt_regs *regs, 1855 struct image_info *infop) 1856 { 1857 regs->sepc = infop->entry; 1858 regs->sp = infop->start_stack; 1859 } 1860 1861 #define ELF_EXEC_PAGESIZE 4096 1862 1863 #endif /* TARGET_RISCV */ 1864 1865 #ifdef TARGET_HPPA 1866 1867 #define ELF_CLASS ELFCLASS32 1868 #define ELF_ARCH EM_PARISC 1869 #define ELF_PLATFORM "PARISC" 1870 #define STACK_GROWS_DOWN 0 1871 #define STACK_ALIGNMENT 64 1872 1873 #define VDSO_HEADER "vdso.c.inc" 1874 1875 static inline void init_thread(struct target_pt_regs *regs, 1876 struct image_info *infop) 1877 { 1878 regs->iaoq[0] = infop->entry | PRIV_USER; 1879 regs->iaoq[1] = regs->iaoq[0] + 4; 1880 regs->gr[23] = 0; 1881 regs->gr[24] = infop->argv; 1882 regs->gr[25] = infop->argc; 1883 /* The top-of-stack contains a linkage buffer. */ 1884 regs->gr[30] = infop->start_stack + 64; 1885 regs->gr[31] = infop->entry; 1886 } 1887 1888 #define LO_COMMPAGE 0 1889 1890 static bool init_guest_commpage(void) 1891 { 1892 /* If reserved_va, then we have already mapped 0 page on the host. */ 1893 if (!reserved_va) { 1894 void *want, *addr; 1895 1896 want = g2h_untagged(LO_COMMPAGE); 1897 addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE, 1898 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0); 1899 if (addr == MAP_FAILED) { 1900 perror("Allocating guest commpage"); 1901 exit(EXIT_FAILURE); 1902 } 1903 if (addr != want) { 1904 return false; 1905 } 1906 } 1907 1908 /* 1909 * On Linux, page zero is normally marked execute only + gateway. 1910 * Normal read or write is supposed to fail (thus PROT_NONE above), 1911 * but specific offsets have kernel code mapped to raise permissions 1912 * and implement syscalls. Here, simply mark the page executable. 1913 * Special case the entry points during translation (see do_page_zero). 1914 */ 1915 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1916 PAGE_EXEC | PAGE_VALID); 1917 return true; 1918 } 1919 1920 #endif /* TARGET_HPPA */ 1921 1922 #ifdef TARGET_XTENSA 1923 1924 #define ELF_CLASS ELFCLASS32 1925 #define ELF_ARCH EM_XTENSA 1926 1927 static inline void init_thread(struct target_pt_regs *regs, 1928 struct image_info *infop) 1929 { 1930 regs->windowbase = 0; 1931 regs->windowstart = 1; 1932 regs->areg[1] = infop->start_stack; 1933 regs->pc = infop->entry; 1934 if (info_is_fdpic(infop)) { 1935 regs->areg[4] = infop->loadmap_addr; 1936 regs->areg[5] = infop->interpreter_loadmap_addr; 1937 if (infop->interpreter_loadmap_addr) { 1938 regs->areg[6] = infop->interpreter_pt_dynamic_addr; 1939 } else { 1940 regs->areg[6] = infop->pt_dynamic_addr; 1941 } 1942 } 1943 } 1944 1945 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1946 #define ELF_NREG 128 1947 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1948 1949 enum { 1950 TARGET_REG_PC, 1951 TARGET_REG_PS, 1952 TARGET_REG_LBEG, 1953 TARGET_REG_LEND, 1954 TARGET_REG_LCOUNT, 1955 TARGET_REG_SAR, 1956 TARGET_REG_WINDOWSTART, 1957 TARGET_REG_WINDOWBASE, 1958 TARGET_REG_THREADPTR, 1959 TARGET_REG_AR0 = 64, 1960 }; 1961 1962 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1963 const CPUXtensaState *env) 1964 { 1965 unsigned i; 1966 1967 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1968 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1969 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1970 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1971 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1972 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1973 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1974 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1975 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1976 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1977 for (i = 0; i < env->config->nareg; ++i) { 1978 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1979 } 1980 } 1981 1982 #define USE_ELF_CORE_DUMP 1983 #define ELF_EXEC_PAGESIZE 4096 1984 1985 #endif /* TARGET_XTENSA */ 1986 1987 #ifdef TARGET_HEXAGON 1988 1989 #define ELF_CLASS ELFCLASS32 1990 #define ELF_ARCH EM_HEXAGON 1991 1992 static inline void init_thread(struct target_pt_regs *regs, 1993 struct image_info *infop) 1994 { 1995 regs->sepc = infop->entry; 1996 regs->sp = infop->start_stack; 1997 } 1998 1999 #endif /* TARGET_HEXAGON */ 2000 2001 #ifndef ELF_BASE_PLATFORM 2002 #define ELF_BASE_PLATFORM (NULL) 2003 #endif 2004 2005 #ifndef ELF_PLATFORM 2006 #define ELF_PLATFORM (NULL) 2007 #endif 2008 2009 #ifndef ELF_MACHINE 2010 #define ELF_MACHINE ELF_ARCH 2011 #endif 2012 2013 #ifndef elf_check_arch 2014 #define elf_check_arch(x) ((x) == ELF_ARCH) 2015 #endif 2016 2017 #ifndef elf_check_abi 2018 #define elf_check_abi(x) (1) 2019 #endif 2020 2021 #ifndef ELF_HWCAP 2022 #define ELF_HWCAP 0 2023 #endif 2024 2025 #ifndef STACK_GROWS_DOWN 2026 #define STACK_GROWS_DOWN 1 2027 #endif 2028 2029 #ifndef STACK_ALIGNMENT 2030 #define STACK_ALIGNMENT 16 2031 #endif 2032 2033 #ifdef TARGET_ABI32 2034 #undef ELF_CLASS 2035 #define ELF_CLASS ELFCLASS32 2036 #undef bswaptls 2037 #define bswaptls(ptr) bswap32s(ptr) 2038 #endif 2039 2040 #ifndef EXSTACK_DEFAULT 2041 #define EXSTACK_DEFAULT false 2042 #endif 2043 2044 #include "elf.h" 2045 2046 /* We must delay the following stanzas until after "elf.h". */ 2047 #if defined(TARGET_AARCH64) 2048 2049 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 2050 const uint32_t *data, 2051 struct image_info *info, 2052 Error **errp) 2053 { 2054 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 2055 if (pr_datasz != sizeof(uint32_t)) { 2056 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 2057 return false; 2058 } 2059 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 2060 info->note_flags = *data; 2061 } 2062 return true; 2063 } 2064 #define ARCH_USE_GNU_PROPERTY 1 2065 2066 #else 2067 2068 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 2069 const uint32_t *data, 2070 struct image_info *info, 2071 Error **errp) 2072 { 2073 g_assert_not_reached(); 2074 } 2075 #define ARCH_USE_GNU_PROPERTY 0 2076 2077 #endif 2078 2079 struct exec 2080 { 2081 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 2082 unsigned int a_text; /* length of text, in bytes */ 2083 unsigned int a_data; /* length of data, in bytes */ 2084 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 2085 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 2086 unsigned int a_entry; /* start address */ 2087 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 2088 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 2089 }; 2090 2091 2092 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 2093 #define OMAGIC 0407 2094 #define NMAGIC 0410 2095 #define ZMAGIC 0413 2096 #define QMAGIC 0314 2097 2098 #define DLINFO_ITEMS 16 2099 2100 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 2101 { 2102 memcpy(to, from, n); 2103 } 2104 2105 #ifdef BSWAP_NEEDED 2106 static void bswap_ehdr(struct elfhdr *ehdr) 2107 { 2108 bswap16s(&ehdr->e_type); /* Object file type */ 2109 bswap16s(&ehdr->e_machine); /* Architecture */ 2110 bswap32s(&ehdr->e_version); /* Object file version */ 2111 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 2112 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 2113 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 2114 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 2115 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 2116 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 2117 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 2118 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 2119 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 2120 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 2121 } 2122 2123 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 2124 { 2125 int i; 2126 for (i = 0; i < phnum; ++i, ++phdr) { 2127 bswap32s(&phdr->p_type); /* Segment type */ 2128 bswap32s(&phdr->p_flags); /* Segment flags */ 2129 bswaptls(&phdr->p_offset); /* Segment file offset */ 2130 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 2131 bswaptls(&phdr->p_paddr); /* Segment physical address */ 2132 bswaptls(&phdr->p_filesz); /* Segment size in file */ 2133 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 2134 bswaptls(&phdr->p_align); /* Segment alignment */ 2135 } 2136 } 2137 2138 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 2139 { 2140 int i; 2141 for (i = 0; i < shnum; ++i, ++shdr) { 2142 bswap32s(&shdr->sh_name); 2143 bswap32s(&shdr->sh_type); 2144 bswaptls(&shdr->sh_flags); 2145 bswaptls(&shdr->sh_addr); 2146 bswaptls(&shdr->sh_offset); 2147 bswaptls(&shdr->sh_size); 2148 bswap32s(&shdr->sh_link); 2149 bswap32s(&shdr->sh_info); 2150 bswaptls(&shdr->sh_addralign); 2151 bswaptls(&shdr->sh_entsize); 2152 } 2153 } 2154 2155 static void bswap_sym(struct elf_sym *sym) 2156 { 2157 bswap32s(&sym->st_name); 2158 bswaptls(&sym->st_value); 2159 bswaptls(&sym->st_size); 2160 bswap16s(&sym->st_shndx); 2161 } 2162 2163 #ifdef TARGET_MIPS 2164 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 2165 { 2166 bswap16s(&abiflags->version); 2167 bswap32s(&abiflags->ases); 2168 bswap32s(&abiflags->isa_ext); 2169 bswap32s(&abiflags->flags1); 2170 bswap32s(&abiflags->flags2); 2171 } 2172 #endif 2173 #else 2174 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 2175 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 2176 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 2177 static inline void bswap_sym(struct elf_sym *sym) { } 2178 #ifdef TARGET_MIPS 2179 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 2180 #endif 2181 #endif 2182 2183 #ifdef USE_ELF_CORE_DUMP 2184 static int elf_core_dump(int, const CPUArchState *); 2185 #endif /* USE_ELF_CORE_DUMP */ 2186 static void load_symbols(struct elfhdr *hdr, const ImageSource *src, 2187 abi_ulong load_bias); 2188 2189 /* Verify the portions of EHDR within E_IDENT for the target. 2190 This can be performed before bswapping the entire header. */ 2191 static bool elf_check_ident(struct elfhdr *ehdr) 2192 { 2193 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 2194 && ehdr->e_ident[EI_MAG1] == ELFMAG1 2195 && ehdr->e_ident[EI_MAG2] == ELFMAG2 2196 && ehdr->e_ident[EI_MAG3] == ELFMAG3 2197 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 2198 && ehdr->e_ident[EI_DATA] == ELF_DATA 2199 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 2200 } 2201 2202 /* Verify the portions of EHDR outside of E_IDENT for the target. 2203 This has to wait until after bswapping the header. */ 2204 static bool elf_check_ehdr(struct elfhdr *ehdr) 2205 { 2206 return (elf_check_arch(ehdr->e_machine) 2207 && elf_check_abi(ehdr->e_flags) 2208 && ehdr->e_ehsize == sizeof(struct elfhdr) 2209 && ehdr->e_phentsize == sizeof(struct elf_phdr) 2210 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 2211 } 2212 2213 /* 2214 * 'copy_elf_strings()' copies argument/envelope strings from user 2215 * memory to free pages in kernel mem. These are in a format ready 2216 * to be put directly into the top of new user memory. 2217 * 2218 */ 2219 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2220 abi_ulong p, abi_ulong stack_limit) 2221 { 2222 char *tmp; 2223 int len, i; 2224 abi_ulong top = p; 2225 2226 if (!p) { 2227 return 0; /* bullet-proofing */ 2228 } 2229 2230 if (STACK_GROWS_DOWN) { 2231 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2232 for (i = argc - 1; i >= 0; --i) { 2233 tmp = argv[i]; 2234 if (!tmp) { 2235 fprintf(stderr, "VFS: argc is wrong"); 2236 exit(-1); 2237 } 2238 len = strlen(tmp) + 1; 2239 tmp += len; 2240 2241 if (len > (p - stack_limit)) { 2242 return 0; 2243 } 2244 while (len) { 2245 int bytes_to_copy = (len > offset) ? offset : len; 2246 tmp -= bytes_to_copy; 2247 p -= bytes_to_copy; 2248 offset -= bytes_to_copy; 2249 len -= bytes_to_copy; 2250 2251 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2252 2253 if (offset == 0) { 2254 memcpy_to_target(p, scratch, top - p); 2255 top = p; 2256 offset = TARGET_PAGE_SIZE; 2257 } 2258 } 2259 } 2260 if (p != top) { 2261 memcpy_to_target(p, scratch + offset, top - p); 2262 } 2263 } else { 2264 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2265 for (i = 0; i < argc; ++i) { 2266 tmp = argv[i]; 2267 if (!tmp) { 2268 fprintf(stderr, "VFS: argc is wrong"); 2269 exit(-1); 2270 } 2271 len = strlen(tmp) + 1; 2272 if (len > (stack_limit - p)) { 2273 return 0; 2274 } 2275 while (len) { 2276 int bytes_to_copy = (len > remaining) ? remaining : len; 2277 2278 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2279 2280 tmp += bytes_to_copy; 2281 remaining -= bytes_to_copy; 2282 p += bytes_to_copy; 2283 len -= bytes_to_copy; 2284 2285 if (remaining == 0) { 2286 memcpy_to_target(top, scratch, p - top); 2287 top = p; 2288 remaining = TARGET_PAGE_SIZE; 2289 } 2290 } 2291 } 2292 if (p != top) { 2293 memcpy_to_target(top, scratch, p - top); 2294 } 2295 } 2296 2297 return p; 2298 } 2299 2300 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2301 * argument/environment space. Newer kernels (>2.6.33) allow more, 2302 * dependent on stack size, but guarantee at least 32 pages for 2303 * backwards compatibility. 2304 */ 2305 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2306 2307 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2308 struct image_info *info) 2309 { 2310 abi_ulong size, error, guard; 2311 int prot; 2312 2313 size = guest_stack_size; 2314 if (size < STACK_LOWER_LIMIT) { 2315 size = STACK_LOWER_LIMIT; 2316 } 2317 2318 if (STACK_GROWS_DOWN) { 2319 guard = TARGET_PAGE_SIZE; 2320 if (guard < qemu_real_host_page_size()) { 2321 guard = qemu_real_host_page_size(); 2322 } 2323 } else { 2324 /* no guard page for hppa target where stack grows upwards. */ 2325 guard = 0; 2326 } 2327 2328 prot = PROT_READ | PROT_WRITE; 2329 if (info->exec_stack) { 2330 prot |= PROT_EXEC; 2331 } 2332 error = target_mmap(0, size + guard, prot, 2333 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2334 if (error == -1) { 2335 perror("mmap stack"); 2336 exit(-1); 2337 } 2338 2339 /* We reserve one extra page at the top of the stack as guard. */ 2340 if (STACK_GROWS_DOWN) { 2341 target_mprotect(error, guard, PROT_NONE); 2342 info->stack_limit = error + guard; 2343 return info->stack_limit + size - sizeof(void *); 2344 } else { 2345 info->stack_limit = error + size; 2346 return error; 2347 } 2348 } 2349 2350 /** 2351 * zero_bss: 2352 * 2353 * Map and zero the bss. We need to explicitly zero any fractional pages 2354 * after the data section (i.e. bss). Return false on mapping failure. 2355 */ 2356 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, 2357 int prot, Error **errp) 2358 { 2359 abi_ulong align_bss; 2360 2361 /* We only expect writable bss; the code segment shouldn't need this. */ 2362 if (!(prot & PROT_WRITE)) { 2363 error_setg(errp, "PT_LOAD with non-writable bss"); 2364 return false; 2365 } 2366 2367 align_bss = TARGET_PAGE_ALIGN(start_bss); 2368 end_bss = TARGET_PAGE_ALIGN(end_bss); 2369 2370 if (start_bss < align_bss) { 2371 int flags = page_get_flags(start_bss); 2372 2373 if (!(flags & PAGE_RWX)) { 2374 /* 2375 * The whole address space of the executable was reserved 2376 * at the start, therefore all pages will be VALID. 2377 * But assuming there are no PROT_NONE PT_LOAD segments, 2378 * a PROT_NONE page means no data all bss, and we can 2379 * simply extend the new anon mapping back to the start 2380 * of the page of bss. 2381 */ 2382 align_bss -= TARGET_PAGE_SIZE; 2383 } else { 2384 /* 2385 * The start of the bss shares a page with something. 2386 * The only thing that we expect is the data section, 2387 * which would already be marked writable. 2388 * Overlapping the RX code segment seems malformed. 2389 */ 2390 if (!(flags & PAGE_WRITE)) { 2391 error_setg(errp, "PT_LOAD with bss overlapping " 2392 "non-writable page"); 2393 return false; 2394 } 2395 2396 /* The page is already mapped and writable. */ 2397 memset(g2h_untagged(start_bss), 0, align_bss - start_bss); 2398 } 2399 } 2400 2401 if (align_bss < end_bss && 2402 target_mmap(align_bss, end_bss - align_bss, prot, 2403 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { 2404 error_setg_errno(errp, errno, "Error mapping bss"); 2405 return false; 2406 } 2407 return true; 2408 } 2409 2410 #if defined(TARGET_ARM) 2411 static int elf_is_fdpic(struct elfhdr *exec) 2412 { 2413 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2414 } 2415 #elif defined(TARGET_XTENSA) 2416 static int elf_is_fdpic(struct elfhdr *exec) 2417 { 2418 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; 2419 } 2420 #else 2421 /* Default implementation, always false. */ 2422 static int elf_is_fdpic(struct elfhdr *exec) 2423 { 2424 return 0; 2425 } 2426 #endif 2427 2428 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2429 { 2430 uint16_t n; 2431 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2432 2433 /* elf32_fdpic_loadseg */ 2434 n = info->nsegs; 2435 while (n--) { 2436 sp -= 12; 2437 put_user_u32(loadsegs[n].addr, sp+0); 2438 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2439 put_user_u32(loadsegs[n].p_memsz, sp+8); 2440 } 2441 2442 /* elf32_fdpic_loadmap */ 2443 sp -= 4; 2444 put_user_u16(0, sp+0); /* version */ 2445 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2446 2447 info->personality = PER_LINUX_FDPIC; 2448 info->loadmap_addr = sp; 2449 2450 return sp; 2451 } 2452 2453 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2454 struct elfhdr *exec, 2455 struct image_info *info, 2456 struct image_info *interp_info, 2457 struct image_info *vdso_info) 2458 { 2459 abi_ulong sp; 2460 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2461 int size; 2462 int i; 2463 abi_ulong u_rand_bytes; 2464 uint8_t k_rand_bytes[16]; 2465 abi_ulong u_platform, u_base_platform; 2466 const char *k_platform, *k_base_platform; 2467 const int n = sizeof(elf_addr_t); 2468 2469 sp = p; 2470 2471 /* Needs to be before we load the env/argc/... */ 2472 if (elf_is_fdpic(exec)) { 2473 /* Need 4 byte alignment for these structs */ 2474 sp &= ~3; 2475 sp = loader_build_fdpic_loadmap(info, sp); 2476 info->other_info = interp_info; 2477 if (interp_info) { 2478 interp_info->other_info = info; 2479 sp = loader_build_fdpic_loadmap(interp_info, sp); 2480 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2481 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2482 } else { 2483 info->interpreter_loadmap_addr = 0; 2484 info->interpreter_pt_dynamic_addr = 0; 2485 } 2486 } 2487 2488 u_base_platform = 0; 2489 k_base_platform = ELF_BASE_PLATFORM; 2490 if (k_base_platform) { 2491 size_t len = strlen(k_base_platform) + 1; 2492 if (STACK_GROWS_DOWN) { 2493 sp -= (len + n - 1) & ~(n - 1); 2494 u_base_platform = sp; 2495 /* FIXME - check return value of memcpy_to_target() for failure */ 2496 memcpy_to_target(sp, k_base_platform, len); 2497 } else { 2498 memcpy_to_target(sp, k_base_platform, len); 2499 u_base_platform = sp; 2500 sp += len + 1; 2501 } 2502 } 2503 2504 u_platform = 0; 2505 k_platform = ELF_PLATFORM; 2506 if (k_platform) { 2507 size_t len = strlen(k_platform) + 1; 2508 if (STACK_GROWS_DOWN) { 2509 sp -= (len + n - 1) & ~(n - 1); 2510 u_platform = sp; 2511 /* FIXME - check return value of memcpy_to_target() for failure */ 2512 memcpy_to_target(sp, k_platform, len); 2513 } else { 2514 memcpy_to_target(sp, k_platform, len); 2515 u_platform = sp; 2516 sp += len + 1; 2517 } 2518 } 2519 2520 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2521 * the argv and envp pointers. 2522 */ 2523 if (STACK_GROWS_DOWN) { 2524 sp = QEMU_ALIGN_DOWN(sp, 16); 2525 } else { 2526 sp = QEMU_ALIGN_UP(sp, 16); 2527 } 2528 2529 /* 2530 * Generate 16 random bytes for userspace PRNG seeding. 2531 */ 2532 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2533 if (STACK_GROWS_DOWN) { 2534 sp -= 16; 2535 u_rand_bytes = sp; 2536 /* FIXME - check return value of memcpy_to_target() for failure */ 2537 memcpy_to_target(sp, k_rand_bytes, 16); 2538 } else { 2539 memcpy_to_target(sp, k_rand_bytes, 16); 2540 u_rand_bytes = sp; 2541 sp += 16; 2542 } 2543 2544 size = (DLINFO_ITEMS + 1) * 2; 2545 if (k_base_platform) { 2546 size += 2; 2547 } 2548 if (k_platform) { 2549 size += 2; 2550 } 2551 if (vdso_info) { 2552 size += 2; 2553 } 2554 #ifdef DLINFO_ARCH_ITEMS 2555 size += DLINFO_ARCH_ITEMS * 2; 2556 #endif 2557 #ifdef ELF_HWCAP2 2558 size += 2; 2559 #endif 2560 info->auxv_len = size * n; 2561 2562 size += envc + argc + 2; 2563 size += 1; /* argc itself */ 2564 size *= n; 2565 2566 /* Allocate space and finalize stack alignment for entry now. */ 2567 if (STACK_GROWS_DOWN) { 2568 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2569 sp = u_argc; 2570 } else { 2571 u_argc = sp; 2572 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2573 } 2574 2575 u_argv = u_argc + n; 2576 u_envp = u_argv + (argc + 1) * n; 2577 u_auxv = u_envp + (envc + 1) * n; 2578 info->saved_auxv = u_auxv; 2579 info->argc = argc; 2580 info->envc = envc; 2581 info->argv = u_argv; 2582 info->envp = u_envp; 2583 2584 /* This is correct because Linux defines 2585 * elf_addr_t as Elf32_Off / Elf64_Off 2586 */ 2587 #define NEW_AUX_ENT(id, val) do { \ 2588 put_user_ual(id, u_auxv); u_auxv += n; \ 2589 put_user_ual(val, u_auxv); u_auxv += n; \ 2590 } while(0) 2591 2592 #ifdef ARCH_DLINFO 2593 /* 2594 * ARCH_DLINFO must come first so platform specific code can enforce 2595 * special alignment requirements on the AUXV if necessary (eg. PPC). 2596 */ 2597 ARCH_DLINFO; 2598 #endif 2599 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2600 * on info->auxv_len will trigger. 2601 */ 2602 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2603 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2604 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2605 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2606 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2607 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2608 NEW_AUX_ENT(AT_ENTRY, info->entry); 2609 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2610 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2611 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2612 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2613 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2614 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2615 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2616 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2617 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2618 2619 #ifdef ELF_HWCAP2 2620 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2621 #endif 2622 2623 if (u_base_platform) { 2624 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); 2625 } 2626 if (u_platform) { 2627 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2628 } 2629 if (vdso_info) { 2630 NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr); 2631 } 2632 NEW_AUX_ENT (AT_NULL, 0); 2633 #undef NEW_AUX_ENT 2634 2635 /* Check that our initial calculation of the auxv length matches how much 2636 * we actually put into it. 2637 */ 2638 assert(info->auxv_len == u_auxv - info->saved_auxv); 2639 2640 put_user_ual(argc, u_argc); 2641 2642 p = info->arg_strings; 2643 for (i = 0; i < argc; ++i) { 2644 put_user_ual(p, u_argv); 2645 u_argv += n; 2646 p += target_strlen(p) + 1; 2647 } 2648 put_user_ual(0, u_argv); 2649 2650 p = info->env_strings; 2651 for (i = 0; i < envc; ++i) { 2652 put_user_ual(p, u_envp); 2653 u_envp += n; 2654 p += target_strlen(p) + 1; 2655 } 2656 put_user_ual(0, u_envp); 2657 2658 return sp; 2659 } 2660 2661 #if defined(HI_COMMPAGE) 2662 #define LO_COMMPAGE -1 2663 #elif defined(LO_COMMPAGE) 2664 #define HI_COMMPAGE 0 2665 #else 2666 #define HI_COMMPAGE 0 2667 #define LO_COMMPAGE -1 2668 #ifndef INIT_GUEST_COMMPAGE 2669 #define init_guest_commpage() true 2670 #endif 2671 #endif 2672 2673 /** 2674 * pgb_try_mmap: 2675 * @addr: host start address 2676 * @addr_last: host last address 2677 * @keep: do not unmap the probe region 2678 * 2679 * Return 1 if [@addr, @addr_last] is not mapped in the host, 2680 * return 0 if it is not available to map, and -1 on mmap error. 2681 * If @keep, the region is left mapped on success, otherwise unmapped. 2682 */ 2683 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep) 2684 { 2685 size_t size = addr_last - addr + 1; 2686 void *p = mmap((void *)addr, size, PROT_NONE, 2687 MAP_ANONYMOUS | MAP_PRIVATE | 2688 MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0); 2689 int ret; 2690 2691 if (p == MAP_FAILED) { 2692 return errno == EEXIST ? 0 : -1; 2693 } 2694 ret = p == (void *)addr; 2695 if (!keep || !ret) { 2696 munmap(p, size); 2697 } 2698 return ret; 2699 } 2700 2701 /** 2702 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk) 2703 * @addr: host address 2704 * @addr_last: host last address 2705 * @brk: host brk 2706 * 2707 * Like pgb_try_mmap, but additionally reserve some memory following brk. 2708 */ 2709 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last, 2710 uintptr_t brk, bool keep) 2711 { 2712 uintptr_t brk_last = brk + 16 * MiB - 1; 2713 2714 /* Do not map anything close to the host brk. */ 2715 if (addr <= brk_last && brk <= addr_last) { 2716 return 0; 2717 } 2718 return pgb_try_mmap(addr, addr_last, keep); 2719 } 2720 2721 /** 2722 * pgb_try_mmap_set: 2723 * @ga: set of guest addrs 2724 * @base: guest_base 2725 * @brk: host brk 2726 * 2727 * Return true if all @ga can be mapped by the host at @base. 2728 * On success, retain the mapping at index 0 for reserved_va. 2729 */ 2730 2731 typedef struct PGBAddrs { 2732 uintptr_t bounds[3][2]; /* start/last pairs */ 2733 int nbounds; 2734 } PGBAddrs; 2735 2736 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk) 2737 { 2738 for (int i = ga->nbounds - 1; i >= 0; --i) { 2739 if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base, 2740 ga->bounds[i][1] + base, 2741 brk, i == 0 && reserved_va) <= 0) { 2742 return false; 2743 } 2744 } 2745 return true; 2746 } 2747 2748 /** 2749 * pgb_addr_set: 2750 * @ga: output set of guest addrs 2751 * @guest_loaddr: guest image low address 2752 * @guest_loaddr: guest image high address 2753 * @identity: create for identity mapping 2754 * 2755 * Fill in @ga with the image, COMMPAGE and NULL page. 2756 */ 2757 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr, 2758 abi_ulong guest_hiaddr, bool try_identity) 2759 { 2760 int n; 2761 2762 /* 2763 * With a low commpage, or a guest mapped very low, 2764 * we may not be able to use the identity map. 2765 */ 2766 if (try_identity) { 2767 if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) { 2768 return false; 2769 } 2770 if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) { 2771 return false; 2772 } 2773 } 2774 2775 memset(ga, 0, sizeof(*ga)); 2776 n = 0; 2777 2778 if (reserved_va) { 2779 ga->bounds[n][0] = try_identity ? mmap_min_addr : 0; 2780 ga->bounds[n][1] = reserved_va; 2781 n++; 2782 /* LO_COMMPAGE and NULL handled by reserving from 0. */ 2783 } else { 2784 /* Add any LO_COMMPAGE or NULL page. */ 2785 if (LO_COMMPAGE != -1) { 2786 ga->bounds[n][0] = 0; 2787 ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1; 2788 n++; 2789 } else if (!try_identity) { 2790 ga->bounds[n][0] = 0; 2791 ga->bounds[n][1] = TARGET_PAGE_SIZE - 1; 2792 n++; 2793 } 2794 2795 /* Add the guest image for ET_EXEC. */ 2796 if (guest_loaddr) { 2797 ga->bounds[n][0] = guest_loaddr; 2798 ga->bounds[n][1] = guest_hiaddr; 2799 n++; 2800 } 2801 } 2802 2803 /* 2804 * Temporarily disable 2805 * "comparison is always false due to limited range of data type" 2806 * due to comparison between unsigned and (possible) 0. 2807 */ 2808 #pragma GCC diagnostic push 2809 #pragma GCC diagnostic ignored "-Wtype-limits" 2810 2811 /* Add any HI_COMMPAGE not covered by reserved_va. */ 2812 if (reserved_va < HI_COMMPAGE) { 2813 ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask(); 2814 ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1; 2815 n++; 2816 } 2817 2818 #pragma GCC diagnostic pop 2819 2820 ga->nbounds = n; 2821 return true; 2822 } 2823 2824 static void pgb_fail_in_use(const char *image_name) 2825 { 2826 error_report("%s: requires virtual address space that is in use " 2827 "(omit the -B option or choose a different value)", 2828 image_name); 2829 exit(EXIT_FAILURE); 2830 } 2831 2832 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr, 2833 uintptr_t guest_hiaddr, uintptr_t align) 2834 { 2835 PGBAddrs ga; 2836 uintptr_t brk = (uintptr_t)sbrk(0); 2837 2838 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2839 fprintf(stderr, "Requested guest base %p does not satisfy " 2840 "host minimum alignment (0x%" PRIxPTR ")\n", 2841 (void *)guest_base, align); 2842 exit(EXIT_FAILURE); 2843 } 2844 2845 if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base) 2846 || !pgb_try_mmap_set(&ga, guest_base, brk)) { 2847 pgb_fail_in_use(image_name); 2848 } 2849 } 2850 2851 /** 2852 * pgb_find_fallback: 2853 * 2854 * This is a fallback method for finding holes in the host address space 2855 * if we don't have the benefit of being able to access /proc/self/map. 2856 * It can potentially take a very long time as we can only dumbly iterate 2857 * up the host address space seeing if the allocation would work. 2858 */ 2859 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align, 2860 uintptr_t brk) 2861 { 2862 /* TODO: come up with a better estimate of how much to skip. */ 2863 uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB; 2864 2865 for (uintptr_t base = skip; ; base += skip) { 2866 base = ROUND_UP(base, align); 2867 if (pgb_try_mmap_set(ga, base, brk)) { 2868 return base; 2869 } 2870 if (base >= -skip) { 2871 return -1; 2872 } 2873 } 2874 } 2875 2876 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base, 2877 IntervalTreeRoot *root) 2878 { 2879 for (int i = ga->nbounds - 1; i >= 0; --i) { 2880 uintptr_t s = base + ga->bounds[i][0]; 2881 uintptr_t l = base + ga->bounds[i][1]; 2882 IntervalTreeNode *n; 2883 2884 if (l < s) { 2885 /* Wraparound. Skip to advance S to mmap_min_addr. */ 2886 return mmap_min_addr - s; 2887 } 2888 2889 n = interval_tree_iter_first(root, s, l); 2890 if (n != NULL) { 2891 /* Conflict. Skip to advance S to LAST + 1. */ 2892 return n->last - s + 1; 2893 } 2894 } 2895 return 0; /* success */ 2896 } 2897 2898 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root, 2899 uintptr_t align, uintptr_t brk) 2900 { 2901 uintptr_t last = mmap_min_addr; 2902 uintptr_t base, skip; 2903 2904 while (true) { 2905 base = ROUND_UP(last, align); 2906 if (base < last) { 2907 return -1; 2908 } 2909 2910 skip = pgb_try_itree(ga, base, root); 2911 if (skip == 0) { 2912 break; 2913 } 2914 2915 last = base + skip; 2916 if (last < base) { 2917 return -1; 2918 } 2919 } 2920 2921 /* 2922 * We've chosen 'base' based on holes in the interval tree, 2923 * but we don't yet know if it is a valid host address. 2924 * Because it is the first matching hole, if the host addresses 2925 * are invalid we know there are no further matches. 2926 */ 2927 return pgb_try_mmap_set(ga, base, brk) ? base : -1; 2928 } 2929 2930 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr, 2931 uintptr_t guest_hiaddr, uintptr_t align) 2932 { 2933 IntervalTreeRoot *root; 2934 uintptr_t brk, ret; 2935 PGBAddrs ga; 2936 2937 /* Try the identity map first. */ 2938 if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) { 2939 brk = (uintptr_t)sbrk(0); 2940 if (pgb_try_mmap_set(&ga, 0, brk)) { 2941 guest_base = 0; 2942 return; 2943 } 2944 } 2945 2946 /* 2947 * Rebuild the address set for non-identity map. 2948 * This differs in the mapping of the guest NULL page. 2949 */ 2950 pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false); 2951 2952 root = read_self_maps(); 2953 2954 /* Read brk after we've read the maps, which will malloc. */ 2955 brk = (uintptr_t)sbrk(0); 2956 2957 if (!root) { 2958 ret = pgb_find_fallback(&ga, align, brk); 2959 } else { 2960 /* 2961 * Reserve the area close to the host brk. 2962 * This will be freed with the rest of the tree. 2963 */ 2964 IntervalTreeNode *b = g_new0(IntervalTreeNode, 1); 2965 b->start = brk; 2966 b->last = brk + 16 * MiB - 1; 2967 interval_tree_insert(b, root); 2968 2969 ret = pgb_find_itree(&ga, root, align, brk); 2970 free_self_maps(root); 2971 } 2972 2973 if (ret == -1) { 2974 int w = TARGET_LONG_BITS / 4; 2975 2976 error_report("%s: Unable to find a guest_base to satisfy all " 2977 "guest address mapping requirements", image_name); 2978 2979 for (int i = 0; i < ga.nbounds; ++i) { 2980 error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n", 2981 w, (uint64_t)ga.bounds[i][0], 2982 w, (uint64_t)ga.bounds[i][1]); 2983 } 2984 exit(EXIT_FAILURE); 2985 } 2986 guest_base = ret; 2987 } 2988 2989 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2990 abi_ulong guest_hiaddr) 2991 { 2992 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2993 uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE); 2994 2995 /* Sanity check the guest binary. */ 2996 if (reserved_va) { 2997 if (guest_hiaddr > reserved_va) { 2998 error_report("%s: requires more than reserved virtual " 2999 "address space (0x%" PRIx64 " > 0x%lx)", 3000 image_name, (uint64_t)guest_hiaddr, reserved_va); 3001 exit(EXIT_FAILURE); 3002 } 3003 } else { 3004 if (guest_hiaddr != (uintptr_t)guest_hiaddr) { 3005 error_report("%s: requires more virtual address space " 3006 "than the host can provide (0x%" PRIx64 ")", 3007 image_name, (uint64_t)guest_hiaddr + 1); 3008 exit(EXIT_FAILURE); 3009 } 3010 } 3011 3012 if (have_guest_base) { 3013 pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align); 3014 } else { 3015 pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align); 3016 } 3017 3018 /* Reserve and initialize the commpage. */ 3019 if (!init_guest_commpage()) { 3020 /* We have already probed for the commpage being free. */ 3021 g_assert_not_reached(); 3022 } 3023 3024 assert(QEMU_IS_ALIGNED(guest_base, align)); 3025 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 3026 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 3027 } 3028 3029 enum { 3030 /* The string "GNU\0" as a magic number. */ 3031 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 3032 NOTE_DATA_SZ = 1 * KiB, 3033 NOTE_NAME_SZ = 4, 3034 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 3035 }; 3036 3037 /* 3038 * Process a single gnu_property entry. 3039 * Return false for error. 3040 */ 3041 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 3042 struct image_info *info, bool have_prev_type, 3043 uint32_t *prev_type, Error **errp) 3044 { 3045 uint32_t pr_type, pr_datasz, step; 3046 3047 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 3048 goto error_data; 3049 } 3050 datasz -= *off; 3051 data += *off / sizeof(uint32_t); 3052 3053 if (datasz < 2 * sizeof(uint32_t)) { 3054 goto error_data; 3055 } 3056 pr_type = data[0]; 3057 pr_datasz = data[1]; 3058 data += 2; 3059 datasz -= 2 * sizeof(uint32_t); 3060 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 3061 if (step > datasz) { 3062 goto error_data; 3063 } 3064 3065 /* Properties are supposed to be unique and sorted on pr_type. */ 3066 if (have_prev_type && pr_type <= *prev_type) { 3067 if (pr_type == *prev_type) { 3068 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 3069 } else { 3070 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 3071 } 3072 return false; 3073 } 3074 *prev_type = pr_type; 3075 3076 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 3077 return false; 3078 } 3079 3080 *off += 2 * sizeof(uint32_t) + step; 3081 return true; 3082 3083 error_data: 3084 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 3085 return false; 3086 } 3087 3088 /* Process NT_GNU_PROPERTY_TYPE_0. */ 3089 static bool parse_elf_properties(const ImageSource *src, 3090 struct image_info *info, 3091 const struct elf_phdr *phdr, 3092 Error **errp) 3093 { 3094 union { 3095 struct elf_note nhdr; 3096 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 3097 } note; 3098 3099 int n, off, datasz; 3100 bool have_prev_type; 3101 uint32_t prev_type; 3102 3103 /* Unless the arch requires properties, ignore them. */ 3104 if (!ARCH_USE_GNU_PROPERTY) { 3105 return true; 3106 } 3107 3108 /* If the properties are crazy large, that's too bad. */ 3109 n = phdr->p_filesz; 3110 if (n > sizeof(note)) { 3111 error_setg(errp, "PT_GNU_PROPERTY too large"); 3112 return false; 3113 } 3114 if (n < sizeof(note.nhdr)) { 3115 error_setg(errp, "PT_GNU_PROPERTY too small"); 3116 return false; 3117 } 3118 3119 if (!imgsrc_read(¬e, phdr->p_offset, n, src, errp)) { 3120 return false; 3121 } 3122 3123 /* 3124 * The contents of a valid PT_GNU_PROPERTY is a sequence 3125 * of uint32_t -- swap them all now. 3126 */ 3127 #ifdef BSWAP_NEEDED 3128 for (int i = 0; i < n / 4; i++) { 3129 bswap32s(note.data + i); 3130 } 3131 #endif 3132 3133 /* 3134 * Note that nhdr is 3 words, and that the "name" described by namesz 3135 * immediately follows nhdr and is thus at the 4th word. Further, all 3136 * of the inputs to the kernel's round_up are multiples of 4. 3137 */ 3138 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 3139 note.nhdr.n_namesz != NOTE_NAME_SZ || 3140 note.data[3] != GNU0_MAGIC) { 3141 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 3142 return false; 3143 } 3144 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 3145 3146 datasz = note.nhdr.n_descsz + off; 3147 if (datasz > n) { 3148 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 3149 return false; 3150 } 3151 3152 have_prev_type = false; 3153 prev_type = 0; 3154 while (1) { 3155 if (off == datasz) { 3156 return true; /* end, exit ok */ 3157 } 3158 if (!parse_elf_property(note.data, &off, datasz, info, 3159 have_prev_type, &prev_type, errp)) { 3160 return false; 3161 } 3162 have_prev_type = true; 3163 } 3164 } 3165 3166 /** 3167 * load_elf_image: Load an ELF image into the address space. 3168 * @image_name: the filename of the image, to use in error messages. 3169 * @src: the ImageSource from which to read. 3170 * @info: info collected from the loaded image. 3171 * @ehdr: the ELF header, not yet bswapped. 3172 * @pinterp_name: record any PT_INTERP string found. 3173 * 3174 * On return: @info values will be filled in, as necessary or available. 3175 */ 3176 3177 static void load_elf_image(const char *image_name, const ImageSource *src, 3178 struct image_info *info, struct elfhdr *ehdr, 3179 char **pinterp_name) 3180 { 3181 g_autofree struct elf_phdr *phdr = NULL; 3182 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 3183 int i, prot_exec; 3184 Error *err = NULL; 3185 3186 /* 3187 * First of all, some simple consistency checks. 3188 * Note that we rely on the bswapped ehdr staying in bprm_buf, 3189 * for later use by load_elf_binary and create_elf_tables. 3190 */ 3191 if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) { 3192 goto exit_errmsg; 3193 } 3194 if (!elf_check_ident(ehdr)) { 3195 error_setg(&err, "Invalid ELF image for this architecture"); 3196 goto exit_errmsg; 3197 } 3198 bswap_ehdr(ehdr); 3199 if (!elf_check_ehdr(ehdr)) { 3200 error_setg(&err, "Invalid ELF image for this architecture"); 3201 goto exit_errmsg; 3202 } 3203 3204 phdr = imgsrc_read_alloc(ehdr->e_phoff, 3205 ehdr->e_phnum * sizeof(struct elf_phdr), 3206 src, &err); 3207 if (phdr == NULL) { 3208 goto exit_errmsg; 3209 } 3210 bswap_phdr(phdr, ehdr->e_phnum); 3211 3212 info->nsegs = 0; 3213 info->pt_dynamic_addr = 0; 3214 3215 mmap_lock(); 3216 3217 /* 3218 * Find the maximum size of the image and allocate an appropriate 3219 * amount of memory to handle that. Locate the interpreter, if any. 3220 */ 3221 loaddr = -1, hiaddr = 0; 3222 info->alignment = 0; 3223 info->exec_stack = EXSTACK_DEFAULT; 3224 for (i = 0; i < ehdr->e_phnum; ++i) { 3225 struct elf_phdr *eppnt = phdr + i; 3226 if (eppnt->p_type == PT_LOAD) { 3227 abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK; 3228 if (a < loaddr) { 3229 loaddr = a; 3230 } 3231 a = eppnt->p_vaddr + eppnt->p_memsz - 1; 3232 if (a > hiaddr) { 3233 hiaddr = a; 3234 } 3235 ++info->nsegs; 3236 info->alignment |= eppnt->p_align; 3237 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 3238 g_autofree char *interp_name = NULL; 3239 3240 if (*pinterp_name) { 3241 error_setg(&err, "Multiple PT_INTERP entries"); 3242 goto exit_errmsg; 3243 } 3244 3245 interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz, 3246 src, &err); 3247 if (interp_name == NULL) { 3248 goto exit_errmsg; 3249 } 3250 if (interp_name[eppnt->p_filesz - 1] != 0) { 3251 error_setg(&err, "Invalid PT_INTERP entry"); 3252 goto exit_errmsg; 3253 } 3254 *pinterp_name = g_steal_pointer(&interp_name); 3255 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 3256 if (!parse_elf_properties(src, info, eppnt, &err)) { 3257 goto exit_errmsg; 3258 } 3259 } else if (eppnt->p_type == PT_GNU_STACK) { 3260 info->exec_stack = eppnt->p_flags & PF_X; 3261 } 3262 } 3263 3264 load_addr = loaddr; 3265 3266 if (pinterp_name != NULL) { 3267 if (ehdr->e_type == ET_EXEC) { 3268 /* 3269 * Make sure that the low address does not conflict with 3270 * MMAP_MIN_ADDR or the QEMU application itself. 3271 */ 3272 probe_guest_base(image_name, loaddr, hiaddr); 3273 } else { 3274 abi_ulong align; 3275 3276 /* 3277 * The binary is dynamic, but we still need to 3278 * select guest_base. In this case we pass a size. 3279 */ 3280 probe_guest_base(image_name, 0, hiaddr - loaddr); 3281 3282 /* 3283 * Avoid collision with the loader by providing a different 3284 * default load address. 3285 */ 3286 load_addr += elf_et_dyn_base; 3287 3288 /* 3289 * TODO: Better support for mmap alignment is desirable. 3290 * Since we do not have complete control over the guest 3291 * address space, we prefer the kernel to choose some address 3292 * rather than force the use of LOAD_ADDR via MAP_FIXED. 3293 * But without MAP_FIXED we cannot guarantee alignment, 3294 * only suggest it. 3295 */ 3296 align = pow2ceil(info->alignment); 3297 if (align) { 3298 load_addr &= -align; 3299 } 3300 } 3301 } 3302 3303 /* 3304 * Reserve address space for all of this. 3305 * 3306 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get 3307 * exactly the address range that is required. Without reserved_va, 3308 * the guest address space is not isolated. We have attempted to avoid 3309 * conflict with the host program itself via probe_guest_base, but using 3310 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check. 3311 * 3312 * Otherwise this is ET_DYN, and we are searching for a location 3313 * that can hold the memory space required. If the image is 3314 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should 3315 * honor that address if it happens to be free. 3316 * 3317 * In both cases, we will overwrite pages in this range with mappings 3318 * from the executable. 3319 */ 3320 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE, 3321 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3322 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0), 3323 -1, 0); 3324 if (load_addr == -1) { 3325 goto exit_mmap; 3326 } 3327 load_bias = load_addr - loaddr; 3328 3329 if (elf_is_fdpic(ehdr)) { 3330 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3331 g_malloc(sizeof(*loadsegs) * info->nsegs); 3332 3333 for (i = 0; i < ehdr->e_phnum; ++i) { 3334 switch (phdr[i].p_type) { 3335 case PT_DYNAMIC: 3336 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3337 break; 3338 case PT_LOAD: 3339 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3340 loadsegs->p_vaddr = phdr[i].p_vaddr; 3341 loadsegs->p_memsz = phdr[i].p_memsz; 3342 ++loadsegs; 3343 break; 3344 } 3345 } 3346 } 3347 3348 info->load_bias = load_bias; 3349 info->code_offset = load_bias; 3350 info->data_offset = load_bias; 3351 info->load_addr = load_addr; 3352 info->entry = ehdr->e_entry + load_bias; 3353 info->start_code = -1; 3354 info->end_code = 0; 3355 info->start_data = -1; 3356 info->end_data = 0; 3357 /* Usual start for brk is after all sections of the main executable. */ 3358 info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias); 3359 info->elf_flags = ehdr->e_flags; 3360 3361 prot_exec = PROT_EXEC; 3362 #ifdef TARGET_AARCH64 3363 /* 3364 * If the BTI feature is present, this indicates that the executable 3365 * pages of the startup binary should be mapped with PROT_BTI, so that 3366 * branch targets are enforced. 3367 * 3368 * The startup binary is either the interpreter or the static executable. 3369 * The interpreter is responsible for all pages of a dynamic executable. 3370 * 3371 * Elf notes are backward compatible to older cpus. 3372 * Do not enable BTI unless it is supported. 3373 */ 3374 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3375 && (pinterp_name == NULL || *pinterp_name == 0) 3376 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3377 prot_exec |= TARGET_PROT_BTI; 3378 } 3379 #endif 3380 3381 for (i = 0; i < ehdr->e_phnum; i++) { 3382 struct elf_phdr *eppnt = phdr + i; 3383 if (eppnt->p_type == PT_LOAD) { 3384 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 3385 int elf_prot = 0; 3386 3387 if (eppnt->p_flags & PF_R) { 3388 elf_prot |= PROT_READ; 3389 } 3390 if (eppnt->p_flags & PF_W) { 3391 elf_prot |= PROT_WRITE; 3392 } 3393 if (eppnt->p_flags & PF_X) { 3394 elf_prot |= prot_exec; 3395 } 3396 3397 vaddr = load_bias + eppnt->p_vaddr; 3398 vaddr_po = vaddr & ~TARGET_PAGE_MASK; 3399 vaddr_ps = vaddr & TARGET_PAGE_MASK; 3400 3401 vaddr_ef = vaddr + eppnt->p_filesz; 3402 vaddr_em = vaddr + eppnt->p_memsz; 3403 3404 /* 3405 * Some segments may be completely empty, with a non-zero p_memsz 3406 * but no backing file segment. 3407 */ 3408 if (eppnt->p_filesz != 0) { 3409 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 3410 elf_prot, MAP_PRIVATE | MAP_FIXED, 3411 src, eppnt->p_offset - vaddr_po); 3412 if (error == -1) { 3413 goto exit_mmap; 3414 } 3415 } 3416 3417 /* If the load segment requests extra zeros (e.g. bss), map it. */ 3418 if (vaddr_ef < vaddr_em && 3419 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) { 3420 goto exit_errmsg; 3421 } 3422 3423 /* Find the full program boundaries. */ 3424 if (elf_prot & PROT_EXEC) { 3425 if (vaddr < info->start_code) { 3426 info->start_code = vaddr; 3427 } 3428 if (vaddr_ef > info->end_code) { 3429 info->end_code = vaddr_ef; 3430 } 3431 } 3432 if (elf_prot & PROT_WRITE) { 3433 if (vaddr < info->start_data) { 3434 info->start_data = vaddr; 3435 } 3436 if (vaddr_ef > info->end_data) { 3437 info->end_data = vaddr_ef; 3438 } 3439 } 3440 #ifdef TARGET_MIPS 3441 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3442 Mips_elf_abiflags_v0 abiflags; 3443 3444 if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags), 3445 src, &err)) { 3446 goto exit_errmsg; 3447 } 3448 bswap_mips_abiflags(&abiflags); 3449 info->fp_abi = abiflags.fp_abi; 3450 #endif 3451 } 3452 } 3453 3454 if (info->end_data == 0) { 3455 info->start_data = info->end_code; 3456 info->end_data = info->end_code; 3457 } 3458 3459 if (qemu_log_enabled()) { 3460 load_symbols(ehdr, src, load_bias); 3461 } 3462 3463 debuginfo_report_elf(image_name, src->fd, load_bias); 3464 3465 mmap_unlock(); 3466 3467 close(src->fd); 3468 return; 3469 3470 exit_mmap: 3471 error_setg_errno(&err, errno, "Error mapping file"); 3472 goto exit_errmsg; 3473 exit_errmsg: 3474 error_reportf_err(err, "%s: ", image_name); 3475 exit(-1); 3476 } 3477 3478 static void load_elf_interp(const char *filename, struct image_info *info, 3479 char bprm_buf[BPRM_BUF_SIZE]) 3480 { 3481 struct elfhdr ehdr; 3482 ImageSource src; 3483 int fd, retval; 3484 Error *err = NULL; 3485 3486 fd = open(path(filename), O_RDONLY); 3487 if (fd < 0) { 3488 error_setg_file_open(&err, errno, filename); 3489 error_report_err(err); 3490 exit(-1); 3491 } 3492 3493 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3494 if (retval < 0) { 3495 error_setg_errno(&err, errno, "Error reading file header"); 3496 error_reportf_err(err, "%s: ", filename); 3497 exit(-1); 3498 } 3499 3500 src.fd = fd; 3501 src.cache = bprm_buf; 3502 src.cache_size = retval; 3503 3504 load_elf_image(filename, &src, info, &ehdr, NULL); 3505 } 3506 3507 #ifdef VDSO_HEADER 3508 #include VDSO_HEADER 3509 #define vdso_image_info() &vdso_image_info 3510 #else 3511 #define vdso_image_info() NULL 3512 #endif 3513 3514 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso) 3515 { 3516 ImageSource src; 3517 struct elfhdr ehdr; 3518 abi_ulong load_bias, load_addr; 3519 3520 src.fd = -1; 3521 src.cache = vdso->image; 3522 src.cache_size = vdso->image_size; 3523 3524 load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL); 3525 load_addr = info->load_addr; 3526 load_bias = info->load_bias; 3527 3528 /* 3529 * We need to relocate the VDSO image. The one built into the kernel 3530 * is built for a fixed address. The one built for QEMU is not, since 3531 * that requires close control of the guest address space. 3532 * We pre-processed the image to locate all of the addresses that need 3533 * to be updated. 3534 */ 3535 for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) { 3536 abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]); 3537 *addr = tswapal(tswapal(*addr) + load_bias); 3538 } 3539 3540 /* Install signal trampolines, if present. */ 3541 if (vdso->sigreturn_ofs) { 3542 default_sigreturn = load_addr + vdso->sigreturn_ofs; 3543 } 3544 if (vdso->rt_sigreturn_ofs) { 3545 default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs; 3546 } 3547 3548 /* Remove write from VDSO segment. */ 3549 target_mprotect(info->start_data, info->end_data - info->start_data, 3550 PROT_READ | PROT_EXEC); 3551 } 3552 3553 static int symfind(const void *s0, const void *s1) 3554 { 3555 struct elf_sym *sym = (struct elf_sym *)s1; 3556 __typeof(sym->st_value) addr = *(uint64_t *)s0; 3557 int result = 0; 3558 3559 if (addr < sym->st_value) { 3560 result = -1; 3561 } else if (addr >= sym->st_value + sym->st_size) { 3562 result = 1; 3563 } 3564 return result; 3565 } 3566 3567 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) 3568 { 3569 #if ELF_CLASS == ELFCLASS32 3570 struct elf_sym *syms = s->disas_symtab.elf32; 3571 #else 3572 struct elf_sym *syms = s->disas_symtab.elf64; 3573 #endif 3574 3575 // binary search 3576 struct elf_sym *sym; 3577 3578 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3579 if (sym != NULL) { 3580 return s->disas_strtab + sym->st_name; 3581 } 3582 3583 return ""; 3584 } 3585 3586 /* FIXME: This should use elf_ops.h.inc */ 3587 static int symcmp(const void *s0, const void *s1) 3588 { 3589 struct elf_sym *sym0 = (struct elf_sym *)s0; 3590 struct elf_sym *sym1 = (struct elf_sym *)s1; 3591 return (sym0->st_value < sym1->st_value) 3592 ? -1 3593 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3594 } 3595 3596 /* Best attempt to load symbols from this ELF object. */ 3597 static void load_symbols(struct elfhdr *hdr, const ImageSource *src, 3598 abi_ulong load_bias) 3599 { 3600 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3601 g_autofree struct elf_shdr *shdr = NULL; 3602 char *strings = NULL; 3603 struct elf_sym *syms = NULL; 3604 struct elf_sym *new_syms; 3605 uint64_t segsz; 3606 3607 shnum = hdr->e_shnum; 3608 shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr), 3609 src, NULL); 3610 if (shdr == NULL) { 3611 return; 3612 } 3613 3614 bswap_shdr(shdr, shnum); 3615 for (i = 0; i < shnum; ++i) { 3616 if (shdr[i].sh_type == SHT_SYMTAB) { 3617 sym_idx = i; 3618 str_idx = shdr[i].sh_link; 3619 goto found; 3620 } 3621 } 3622 3623 /* There will be no symbol table if the file was stripped. */ 3624 return; 3625 3626 found: 3627 /* Now know where the strtab and symtab are. Snarf them. */ 3628 3629 segsz = shdr[str_idx].sh_size; 3630 strings = g_try_malloc(segsz); 3631 if (!strings) { 3632 goto give_up; 3633 } 3634 if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) { 3635 goto give_up; 3636 } 3637 3638 segsz = shdr[sym_idx].sh_size; 3639 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3640 /* 3641 * Implausibly large symbol table: give up rather than ploughing 3642 * on with the number of symbols calculation overflowing. 3643 */ 3644 goto give_up; 3645 } 3646 nsyms = segsz / sizeof(struct elf_sym); 3647 syms = g_try_malloc(segsz); 3648 if (!syms) { 3649 goto give_up; 3650 } 3651 if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) { 3652 goto give_up; 3653 } 3654 3655 for (i = 0; i < nsyms; ) { 3656 bswap_sym(syms + i); 3657 /* Throw away entries which we do not need. */ 3658 if (syms[i].st_shndx == SHN_UNDEF 3659 || syms[i].st_shndx >= SHN_LORESERVE 3660 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3661 if (i < --nsyms) { 3662 syms[i] = syms[nsyms]; 3663 } 3664 } else { 3665 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3666 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3667 syms[i].st_value &= ~(target_ulong)1; 3668 #endif 3669 syms[i].st_value += load_bias; 3670 i++; 3671 } 3672 } 3673 3674 /* No "useful" symbol. */ 3675 if (nsyms == 0) { 3676 goto give_up; 3677 } 3678 3679 /* 3680 * Attempt to free the storage associated with the local symbols 3681 * that we threw away. Whether or not this has any effect on the 3682 * memory allocation depends on the malloc implementation and how 3683 * many symbols we managed to discard. 3684 */ 3685 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3686 if (new_syms == NULL) { 3687 goto give_up; 3688 } 3689 syms = new_syms; 3690 3691 qsort(syms, nsyms, sizeof(*syms), symcmp); 3692 3693 { 3694 struct syminfo *s = g_new(struct syminfo, 1); 3695 3696 s->disas_strtab = strings; 3697 s->disas_num_syms = nsyms; 3698 #if ELF_CLASS == ELFCLASS32 3699 s->disas_symtab.elf32 = syms; 3700 #else 3701 s->disas_symtab.elf64 = syms; 3702 #endif 3703 s->lookup_symbol = lookup_symbolxx; 3704 s->next = syminfos; 3705 syminfos = s; 3706 } 3707 return; 3708 3709 give_up: 3710 g_free(strings); 3711 g_free(syms); 3712 } 3713 3714 uint32_t get_elf_eflags(int fd) 3715 { 3716 struct elfhdr ehdr; 3717 off_t offset; 3718 int ret; 3719 3720 /* Read ELF header */ 3721 offset = lseek(fd, 0, SEEK_SET); 3722 if (offset == (off_t) -1) { 3723 return 0; 3724 } 3725 ret = read(fd, &ehdr, sizeof(ehdr)); 3726 if (ret < sizeof(ehdr)) { 3727 return 0; 3728 } 3729 offset = lseek(fd, offset, SEEK_SET); 3730 if (offset == (off_t) -1) { 3731 return 0; 3732 } 3733 3734 /* Check ELF signature */ 3735 if (!elf_check_ident(&ehdr)) { 3736 return 0; 3737 } 3738 3739 /* check header */ 3740 bswap_ehdr(&ehdr); 3741 if (!elf_check_ehdr(&ehdr)) { 3742 return 0; 3743 } 3744 3745 /* return architecture id */ 3746 return ehdr.e_flags; 3747 } 3748 3749 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3750 { 3751 /* 3752 * We need a copy of the elf header for passing to create_elf_tables. 3753 * We will have overwritten the original when we re-use bprm->buf 3754 * while loading the interpreter. Allocate the storage for this now 3755 * and let elf_load_image do any swapping that may be required. 3756 */ 3757 struct elfhdr ehdr; 3758 struct image_info interp_info, vdso_info; 3759 char *elf_interpreter = NULL; 3760 char *scratch; 3761 3762 memset(&interp_info, 0, sizeof(interp_info)); 3763 #ifdef TARGET_MIPS 3764 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3765 #endif 3766 3767 load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter); 3768 3769 /* Do this so that we can load the interpreter, if need be. We will 3770 change some of these later */ 3771 bprm->p = setup_arg_pages(bprm, info); 3772 3773 scratch = g_new0(char, TARGET_PAGE_SIZE); 3774 if (STACK_GROWS_DOWN) { 3775 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3776 bprm->p, info->stack_limit); 3777 info->file_string = bprm->p; 3778 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3779 bprm->p, info->stack_limit); 3780 info->env_strings = bprm->p; 3781 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3782 bprm->p, info->stack_limit); 3783 info->arg_strings = bprm->p; 3784 } else { 3785 info->arg_strings = bprm->p; 3786 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3787 bprm->p, info->stack_limit); 3788 info->env_strings = bprm->p; 3789 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3790 bprm->p, info->stack_limit); 3791 info->file_string = bprm->p; 3792 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3793 bprm->p, info->stack_limit); 3794 } 3795 3796 g_free(scratch); 3797 3798 if (!bprm->p) { 3799 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3800 exit(-1); 3801 } 3802 3803 if (elf_interpreter) { 3804 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3805 3806 /* 3807 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky 3808 * with the mappings the interpreter can be loaded above but 3809 * near the main executable, which can leave very little room 3810 * for the heap. 3811 * If the current brk has less than 16MB, use the end of the 3812 * interpreter. 3813 */ 3814 if (interp_info.brk > info->brk && 3815 interp_info.load_bias - info->brk < 16 * MiB) { 3816 info->brk = interp_info.brk; 3817 } 3818 3819 /* If the program interpreter is one of these two, then assume 3820 an iBCS2 image. Otherwise assume a native linux image. */ 3821 3822 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3823 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3824 info->personality = PER_SVR4; 3825 3826 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3827 and some applications "depend" upon this behavior. Since 3828 we do not have the power to recompile these, we emulate 3829 the SVr4 behavior. Sigh. */ 3830 target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC, 3831 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS, 3832 -1, 0); 3833 } 3834 #ifdef TARGET_MIPS 3835 info->interp_fp_abi = interp_info.fp_abi; 3836 #endif 3837 } 3838 3839 /* 3840 * Load a vdso if available, which will amongst other things contain the 3841 * signal trampolines. Otherwise, allocate a separate page for them. 3842 */ 3843 const VdsoImageInfo *vdso = vdso_image_info(); 3844 if (vdso) { 3845 load_elf_vdso(&vdso_info, vdso); 3846 info->vdso = vdso_info.load_bias; 3847 } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3848 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3849 PROT_READ | PROT_WRITE, 3850 MAP_PRIVATE | MAP_ANON, -1, 0); 3851 if (tramp_page == -1) { 3852 return -errno; 3853 } 3854 3855 setup_sigtramp(tramp_page); 3856 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3857 } 3858 3859 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info, 3860 elf_interpreter ? &interp_info : NULL, 3861 vdso ? &vdso_info : NULL); 3862 info->start_stack = bprm->p; 3863 3864 /* If we have an interpreter, set that as the program's entry point. 3865 Copy the load_bias as well, to help PPC64 interpret the entry 3866 point as a function descriptor. Do this after creating elf tables 3867 so that we copy the original program entry point into the AUXV. */ 3868 if (elf_interpreter) { 3869 info->load_bias = interp_info.load_bias; 3870 info->entry = interp_info.entry; 3871 g_free(elf_interpreter); 3872 } 3873 3874 #ifdef USE_ELF_CORE_DUMP 3875 bprm->core_dump = &elf_core_dump; 3876 #endif 3877 3878 return 0; 3879 } 3880 3881 #ifdef USE_ELF_CORE_DUMP 3882 #include "exec/translate-all.h" 3883 3884 /* 3885 * Definitions to generate Intel SVR4-like core files. 3886 * These mostly have the same names as the SVR4 types with "target_elf_" 3887 * tacked on the front to prevent clashes with linux definitions, 3888 * and the typedef forms have been avoided. This is mostly like 3889 * the SVR4 structure, but more Linuxy, with things that Linux does 3890 * not support and which gdb doesn't really use excluded. 3891 * 3892 * Fields we don't dump (their contents is zero) in linux-user qemu 3893 * are marked with XXX. 3894 * 3895 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3896 * 3897 * Porting ELF coredump for target is (quite) simple process. First you 3898 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3899 * the target resides): 3900 * 3901 * #define USE_ELF_CORE_DUMP 3902 * 3903 * Next you define type of register set used for dumping. ELF specification 3904 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3905 * 3906 * typedef <target_regtype> target_elf_greg_t; 3907 * #define ELF_NREG <number of registers> 3908 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3909 * 3910 * Last step is to implement target specific function that copies registers 3911 * from given cpu into just specified register set. Prototype is: 3912 * 3913 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3914 * const CPUArchState *env); 3915 * 3916 * Parameters: 3917 * regs - copy register values into here (allocated and zeroed by caller) 3918 * env - copy registers from here 3919 * 3920 * Example for ARM target is provided in this file. 3921 */ 3922 3923 struct target_elf_siginfo { 3924 abi_int si_signo; /* signal number */ 3925 abi_int si_code; /* extra code */ 3926 abi_int si_errno; /* errno */ 3927 }; 3928 3929 struct target_elf_prstatus { 3930 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3931 abi_short pr_cursig; /* Current signal */ 3932 abi_ulong pr_sigpend; /* XXX */ 3933 abi_ulong pr_sighold; /* XXX */ 3934 target_pid_t pr_pid; 3935 target_pid_t pr_ppid; 3936 target_pid_t pr_pgrp; 3937 target_pid_t pr_sid; 3938 struct target_timeval pr_utime; /* XXX User time */ 3939 struct target_timeval pr_stime; /* XXX System time */ 3940 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3941 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3942 target_elf_gregset_t pr_reg; /* GP registers */ 3943 abi_int pr_fpvalid; /* XXX */ 3944 }; 3945 3946 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3947 3948 struct target_elf_prpsinfo { 3949 char pr_state; /* numeric process state */ 3950 char pr_sname; /* char for pr_state */ 3951 char pr_zomb; /* zombie */ 3952 char pr_nice; /* nice val */ 3953 abi_ulong pr_flag; /* flags */ 3954 target_uid_t pr_uid; 3955 target_gid_t pr_gid; 3956 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3957 /* Lots missing */ 3958 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3959 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3960 }; 3961 3962 #ifdef BSWAP_NEEDED 3963 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3964 { 3965 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3966 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3967 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3968 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3969 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3970 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3971 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3972 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3973 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3974 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3975 /* cpu times are not filled, so we skip them */ 3976 /* regs should be in correct format already */ 3977 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3978 } 3979 3980 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3981 { 3982 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3983 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3984 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3985 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3986 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3987 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3988 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3989 } 3990 3991 static void bswap_note(struct elf_note *en) 3992 { 3993 bswap32s(&en->n_namesz); 3994 bswap32s(&en->n_descsz); 3995 bswap32s(&en->n_type); 3996 } 3997 #else 3998 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3999 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 4000 static inline void bswap_note(struct elf_note *en) { } 4001 #endif /* BSWAP_NEEDED */ 4002 4003 /* 4004 * Calculate file (dump) size of given memory region. 4005 */ 4006 static size_t vma_dump_size(target_ulong start, target_ulong end, 4007 unsigned long flags) 4008 { 4009 /* The area must be readable. */ 4010 if (!(flags & PAGE_READ)) { 4011 return 0; 4012 } 4013 4014 /* 4015 * Usually we don't dump executable pages as they contain 4016 * non-writable code that debugger can read directly from 4017 * target library etc. If there is no elf header, we dump it. 4018 */ 4019 if (!(flags & PAGE_WRITE_ORG) && 4020 (flags & PAGE_EXEC) && 4021 memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) { 4022 return 0; 4023 } 4024 4025 return end - start; 4026 } 4027 4028 static size_t size_note(const char *name, size_t datasz) 4029 { 4030 size_t namesz = strlen(name) + 1; 4031 4032 namesz = ROUND_UP(namesz, 4); 4033 datasz = ROUND_UP(datasz, 4); 4034 4035 return sizeof(struct elf_note) + namesz + datasz; 4036 } 4037 4038 static void *fill_note(void **pptr, int type, const char *name, size_t datasz) 4039 { 4040 void *ptr = *pptr; 4041 struct elf_note *n = ptr; 4042 size_t namesz = strlen(name) + 1; 4043 4044 n->n_namesz = namesz; 4045 n->n_descsz = datasz; 4046 n->n_type = type; 4047 bswap_note(n); 4048 4049 ptr += sizeof(*n); 4050 memcpy(ptr, name, namesz); 4051 4052 namesz = ROUND_UP(namesz, 4); 4053 datasz = ROUND_UP(datasz, 4); 4054 4055 *pptr = ptr + namesz + datasz; 4056 return ptr + namesz; 4057 } 4058 4059 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 4060 uint32_t flags) 4061 { 4062 memcpy(elf->e_ident, ELFMAG, SELFMAG); 4063 4064 elf->e_ident[EI_CLASS] = ELF_CLASS; 4065 elf->e_ident[EI_DATA] = ELF_DATA; 4066 elf->e_ident[EI_VERSION] = EV_CURRENT; 4067 elf->e_ident[EI_OSABI] = ELF_OSABI; 4068 4069 elf->e_type = ET_CORE; 4070 elf->e_machine = machine; 4071 elf->e_version = EV_CURRENT; 4072 elf->e_phoff = sizeof(struct elfhdr); 4073 elf->e_flags = flags; 4074 elf->e_ehsize = sizeof(struct elfhdr); 4075 elf->e_phentsize = sizeof(struct elf_phdr); 4076 elf->e_phnum = segs; 4077 4078 bswap_ehdr(elf); 4079 } 4080 4081 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset) 4082 { 4083 phdr->p_type = PT_NOTE; 4084 phdr->p_offset = offset; 4085 phdr->p_filesz = sz; 4086 4087 bswap_phdr(phdr, 1); 4088 } 4089 4090 static void fill_prstatus_note(void *data, CPUState *cpu, int signr) 4091 { 4092 /* 4093 * Because note memory is only aligned to 4, and target_elf_prstatus 4094 * may well have higher alignment requirements, fill locally and 4095 * memcpy to the destination afterward. 4096 */ 4097 struct target_elf_prstatus prstatus = { 4098 .pr_info.si_signo = signr, 4099 .pr_cursig = signr, 4100 .pr_pid = get_task_state(cpu)->ts_tid, 4101 .pr_ppid = getppid(), 4102 .pr_pgrp = getpgrp(), 4103 .pr_sid = getsid(0), 4104 }; 4105 4106 elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu)); 4107 bswap_prstatus(&prstatus); 4108 memcpy(data, &prstatus, sizeof(prstatus)); 4109 } 4110 4111 static void fill_prpsinfo_note(void *data, const TaskState *ts) 4112 { 4113 /* 4114 * Because note memory is only aligned to 4, and target_elf_prpsinfo 4115 * may well have higher alignment requirements, fill locally and 4116 * memcpy to the destination afterward. 4117 */ 4118 struct target_elf_prpsinfo psinfo = { 4119 .pr_pid = getpid(), 4120 .pr_ppid = getppid(), 4121 .pr_pgrp = getpgrp(), 4122 .pr_sid = getsid(0), 4123 .pr_uid = getuid(), 4124 .pr_gid = getgid(), 4125 }; 4126 char *base_filename; 4127 size_t len; 4128 4129 len = ts->info->env_strings - ts->info->arg_strings; 4130 len = MIN(len, ELF_PRARGSZ); 4131 memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len); 4132 for (size_t i = 0; i < len; i++) { 4133 if (psinfo.pr_psargs[i] == 0) { 4134 psinfo.pr_psargs[i] = ' '; 4135 } 4136 } 4137 4138 base_filename = g_path_get_basename(ts->bprm->filename); 4139 /* 4140 * Using strncpy here is fine: at max-length, 4141 * this field is not NUL-terminated. 4142 */ 4143 strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname)); 4144 g_free(base_filename); 4145 4146 bswap_psinfo(&psinfo); 4147 memcpy(data, &psinfo, sizeof(psinfo)); 4148 } 4149 4150 static void fill_auxv_note(void *data, const TaskState *ts) 4151 { 4152 memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len); 4153 } 4154 4155 /* 4156 * Constructs name of coredump file. We have following convention 4157 * for the name: 4158 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4159 * 4160 * Returns the filename 4161 */ 4162 static char *core_dump_filename(const TaskState *ts) 4163 { 4164 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4165 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4166 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4167 4168 return g_strdup_printf("qemu_%s_%s_%d.core", 4169 base_filename, nowstr, (int)getpid()); 4170 } 4171 4172 static int dump_write(int fd, const void *ptr, size_t size) 4173 { 4174 const char *bufp = (const char *)ptr; 4175 ssize_t bytes_written, bytes_left; 4176 4177 bytes_written = 0; 4178 bytes_left = size; 4179 4180 /* 4181 * In normal conditions, single write(2) should do but 4182 * in case of socket etc. this mechanism is more portable. 4183 */ 4184 do { 4185 bytes_written = write(fd, bufp, bytes_left); 4186 if (bytes_written < 0) { 4187 if (errno == EINTR) 4188 continue; 4189 return (-1); 4190 } else if (bytes_written == 0) { /* eof */ 4191 return (-1); 4192 } 4193 bufp += bytes_written; 4194 bytes_left -= bytes_written; 4195 } while (bytes_left > 0); 4196 4197 return (0); 4198 } 4199 4200 static int wmr_page_unprotect_regions(void *opaque, target_ulong start, 4201 target_ulong end, unsigned long flags) 4202 { 4203 if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) { 4204 size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size()); 4205 4206 while (1) { 4207 page_unprotect(start, 0); 4208 if (end - start <= step) { 4209 break; 4210 } 4211 start += step; 4212 } 4213 } 4214 return 0; 4215 } 4216 4217 typedef struct { 4218 unsigned count; 4219 size_t size; 4220 } CountAndSizeRegions; 4221 4222 static int wmr_count_and_size_regions(void *opaque, target_ulong start, 4223 target_ulong end, unsigned long flags) 4224 { 4225 CountAndSizeRegions *css = opaque; 4226 4227 css->count++; 4228 css->size += vma_dump_size(start, end, flags); 4229 return 0; 4230 } 4231 4232 typedef struct { 4233 struct elf_phdr *phdr; 4234 off_t offset; 4235 } FillRegionPhdr; 4236 4237 static int wmr_fill_region_phdr(void *opaque, target_ulong start, 4238 target_ulong end, unsigned long flags) 4239 { 4240 FillRegionPhdr *d = opaque; 4241 struct elf_phdr *phdr = d->phdr; 4242 4243 phdr->p_type = PT_LOAD; 4244 phdr->p_vaddr = start; 4245 phdr->p_paddr = 0; 4246 phdr->p_filesz = vma_dump_size(start, end, flags); 4247 phdr->p_offset = d->offset; 4248 d->offset += phdr->p_filesz; 4249 phdr->p_memsz = end - start; 4250 phdr->p_flags = (flags & PAGE_READ ? PF_R : 0) 4251 | (flags & PAGE_WRITE_ORG ? PF_W : 0) 4252 | (flags & PAGE_EXEC ? PF_X : 0); 4253 phdr->p_align = ELF_EXEC_PAGESIZE; 4254 4255 bswap_phdr(phdr, 1); 4256 d->phdr = phdr + 1; 4257 return 0; 4258 } 4259 4260 static int wmr_write_region(void *opaque, target_ulong start, 4261 target_ulong end, unsigned long flags) 4262 { 4263 int fd = *(int *)opaque; 4264 size_t size = vma_dump_size(start, end, flags); 4265 4266 if (!size) { 4267 return 0; 4268 } 4269 return dump_write(fd, g2h_untagged(start), size); 4270 } 4271 4272 /* 4273 * Write out ELF coredump. 4274 * 4275 * See documentation of ELF object file format in: 4276 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4277 * 4278 * Coredump format in linux is following: 4279 * 4280 * 0 +----------------------+ \ 4281 * | ELF header | ET_CORE | 4282 * +----------------------+ | 4283 * | ELF program headers | |--- headers 4284 * | - NOTE section | | 4285 * | - PT_LOAD sections | | 4286 * +----------------------+ / 4287 * | NOTEs: | 4288 * | - NT_PRSTATUS | 4289 * | - NT_PRSINFO | 4290 * | - NT_AUXV | 4291 * +----------------------+ <-- aligned to target page 4292 * | Process memory dump | 4293 * : : 4294 * . . 4295 * : : 4296 * | | 4297 * +----------------------+ 4298 * 4299 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4300 * NT_PRSINFO -> struct elf_prpsinfo 4301 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4302 * 4303 * Format follows System V format as close as possible. Current 4304 * version limitations are as follows: 4305 * - no floating point registers are dumped 4306 * 4307 * Function returns 0 in case of success, negative errno otherwise. 4308 * 4309 * TODO: make this work also during runtime: it should be 4310 * possible to force coredump from running process and then 4311 * continue processing. For example qemu could set up SIGUSR2 4312 * handler (provided that target process haven't registered 4313 * handler for that) that does the dump when signal is received. 4314 */ 4315 static int elf_core_dump(int signr, const CPUArchState *env) 4316 { 4317 const CPUState *cpu = env_cpu((CPUArchState *)env); 4318 const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu); 4319 struct rlimit dumpsize; 4320 CountAndSizeRegions css; 4321 off_t offset, note_offset, data_offset; 4322 size_t note_size; 4323 int cpus, ret; 4324 int fd = -1; 4325 CPUState *cpu_iter; 4326 4327 if (prctl(PR_GET_DUMPABLE) == 0) { 4328 return 0; 4329 } 4330 4331 if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) { 4332 return 0; 4333 } 4334 4335 cpu_list_lock(); 4336 mmap_lock(); 4337 4338 /* By unprotecting, we merge vmas that might be split. */ 4339 walk_memory_regions(NULL, wmr_page_unprotect_regions); 4340 4341 /* 4342 * Walk through target process memory mappings and 4343 * set up structure containing this information. 4344 */ 4345 memset(&css, 0, sizeof(css)); 4346 walk_memory_regions(&css, wmr_count_and_size_regions); 4347 4348 cpus = 0; 4349 CPU_FOREACH(cpu_iter) { 4350 cpus++; 4351 } 4352 4353 offset = sizeof(struct elfhdr); 4354 offset += (css.count + 1) * sizeof(struct elf_phdr); 4355 note_offset = offset; 4356 4357 offset += size_note("CORE", ts->info->auxv_len); 4358 offset += size_note("CORE", sizeof(struct target_elf_prpsinfo)); 4359 offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus; 4360 note_size = offset - note_offset; 4361 data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE); 4362 4363 /* Do not dump if the corefile size exceeds the limit. */ 4364 if (dumpsize.rlim_cur != RLIM_INFINITY 4365 && dumpsize.rlim_cur < data_offset + css.size) { 4366 errno = 0; 4367 goto out; 4368 } 4369 4370 { 4371 g_autofree char *corefile = core_dump_filename(ts); 4372 fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC, 4373 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); 4374 } 4375 if (fd < 0) { 4376 goto out; 4377 } 4378 4379 /* 4380 * There is a fair amount of alignment padding within the notes 4381 * as well as preceeding the process memory. Allocate a zeroed 4382 * block to hold it all. Write all of the headers directly into 4383 * this buffer and then write it out as a block. 4384 */ 4385 { 4386 g_autofree void *header = g_malloc0(data_offset); 4387 FillRegionPhdr frp; 4388 void *hptr, *dptr; 4389 4390 /* Create elf file header. */ 4391 hptr = header; 4392 fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0); 4393 hptr += sizeof(struct elfhdr); 4394 4395 /* Create elf program headers. */ 4396 fill_elf_note_phdr(hptr, note_size, note_offset); 4397 hptr += sizeof(struct elf_phdr); 4398 4399 frp.phdr = hptr; 4400 frp.offset = data_offset; 4401 walk_memory_regions(&frp, wmr_fill_region_phdr); 4402 hptr = frp.phdr; 4403 4404 /* Create the notes. */ 4405 dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len); 4406 fill_auxv_note(dptr, ts); 4407 4408 dptr = fill_note(&hptr, NT_PRPSINFO, "CORE", 4409 sizeof(struct target_elf_prpsinfo)); 4410 fill_prpsinfo_note(dptr, ts); 4411 4412 CPU_FOREACH(cpu_iter) { 4413 dptr = fill_note(&hptr, NT_PRSTATUS, "CORE", 4414 sizeof(struct target_elf_prstatus)); 4415 fill_prstatus_note(dptr, cpu_iter, cpu_iter == cpu ? signr : 0); 4416 } 4417 4418 if (dump_write(fd, header, data_offset) < 0) { 4419 goto out; 4420 } 4421 } 4422 4423 /* 4424 * Finally write process memory into the corefile as well. 4425 */ 4426 if (walk_memory_regions(&fd, wmr_write_region) < 0) { 4427 goto out; 4428 } 4429 errno = 0; 4430 4431 out: 4432 ret = -errno; 4433 mmap_unlock(); 4434 cpu_list_unlock(); 4435 if (fd >= 0) { 4436 close(fd); 4437 } 4438 return ret; 4439 } 4440 #endif /* USE_ELF_CORE_DUMP */ 4441 4442 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4443 { 4444 init_thread(regs, infop); 4445 } 4446