1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/bitops.h" 11 #include "qemu/path.h" 12 #include "qemu/queue.h" 13 #include "qemu/guest-random.h" 14 #include "qemu/units.h" 15 #include "qemu/selfmap.h" 16 #include "qapi/error.h" 17 18 #ifdef _ARCH_PPC64 19 #undef ARCH_DLINFO 20 #undef ELF_PLATFORM 21 #undef ELF_HWCAP 22 #undef ELF_HWCAP2 23 #undef ELF_CLASS 24 #undef ELF_DATA 25 #undef ELF_ARCH 26 #endif 27 28 #define ELF_OSABI ELFOSABI_SYSV 29 30 /* from personality.h */ 31 32 /* 33 * Flags for bug emulation. 34 * 35 * These occupy the top three bytes. 36 */ 37 enum { 38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 40 descriptors (signal handling) */ 41 MMAP_PAGE_ZERO = 0x0100000, 42 ADDR_COMPAT_LAYOUT = 0x0200000, 43 READ_IMPLIES_EXEC = 0x0400000, 44 ADDR_LIMIT_32BIT = 0x0800000, 45 SHORT_INODE = 0x1000000, 46 WHOLE_SECONDS = 0x2000000, 47 STICKY_TIMEOUTS = 0x4000000, 48 ADDR_LIMIT_3GB = 0x8000000, 49 }; 50 51 /* 52 * Personality types. 53 * 54 * These go in the low byte. Avoid using the top bit, it will 55 * conflict with error returns. 56 */ 57 enum { 58 PER_LINUX = 0x0000, 59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 67 PER_BSD = 0x0006, 68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 70 PER_LINUX32 = 0x0008, 71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 75 PER_RISCOS = 0x000c, 76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 78 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 79 PER_HPUX = 0x0010, 80 PER_MASK = 0x00ff, 81 }; 82 83 /* 84 * Return the base personality without flags. 85 */ 86 #define personality(pers) (pers & PER_MASK) 87 88 int info_is_fdpic(struct image_info *info) 89 { 90 return info->personality == PER_LINUX_FDPIC; 91 } 92 93 /* this flag is uneffective under linux too, should be deleted */ 94 #ifndef MAP_DENYWRITE 95 #define MAP_DENYWRITE 0 96 #endif 97 98 /* should probably go in elf.h */ 99 #ifndef ELIBBAD 100 #define ELIBBAD 80 101 #endif 102 103 #ifdef TARGET_WORDS_BIGENDIAN 104 #define ELF_DATA ELFDATA2MSB 105 #else 106 #define ELF_DATA ELFDATA2LSB 107 #endif 108 109 #ifdef TARGET_ABI_MIPSN32 110 typedef abi_ullong target_elf_greg_t; 111 #define tswapreg(ptr) tswap64(ptr) 112 #else 113 typedef abi_ulong target_elf_greg_t; 114 #define tswapreg(ptr) tswapal(ptr) 115 #endif 116 117 #ifdef USE_UID16 118 typedef abi_ushort target_uid_t; 119 typedef abi_ushort target_gid_t; 120 #else 121 typedef abi_uint target_uid_t; 122 typedef abi_uint target_gid_t; 123 #endif 124 typedef abi_int target_pid_t; 125 126 #ifdef TARGET_I386 127 128 #define ELF_PLATFORM get_elf_platform() 129 130 static const char *get_elf_platform(void) 131 { 132 static char elf_platform[] = "i386"; 133 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 134 if (family > 6) 135 family = 6; 136 if (family >= 3) 137 elf_platform[1] = '0' + family; 138 return elf_platform; 139 } 140 141 #define ELF_HWCAP get_elf_hwcap() 142 143 static uint32_t get_elf_hwcap(void) 144 { 145 X86CPU *cpu = X86_CPU(thread_cpu); 146 147 return cpu->env.features[FEAT_1_EDX]; 148 } 149 150 #ifdef TARGET_X86_64 151 #define ELF_START_MMAP 0x2aaaaab000ULL 152 153 #define ELF_CLASS ELFCLASS64 154 #define ELF_ARCH EM_X86_64 155 156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 157 { 158 regs->rax = 0; 159 regs->rsp = infop->start_stack; 160 regs->rip = infop->entry; 161 } 162 163 #define ELF_NREG 27 164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 165 166 /* 167 * Note that ELF_NREG should be 29 as there should be place for 168 * TRAPNO and ERR "registers" as well but linux doesn't dump 169 * those. 170 * 171 * See linux kernel: arch/x86/include/asm/elf.h 172 */ 173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 174 { 175 (*regs)[0] = env->regs[15]; 176 (*regs)[1] = env->regs[14]; 177 (*regs)[2] = env->regs[13]; 178 (*regs)[3] = env->regs[12]; 179 (*regs)[4] = env->regs[R_EBP]; 180 (*regs)[5] = env->regs[R_EBX]; 181 (*regs)[6] = env->regs[11]; 182 (*regs)[7] = env->regs[10]; 183 (*regs)[8] = env->regs[9]; 184 (*regs)[9] = env->regs[8]; 185 (*regs)[10] = env->regs[R_EAX]; 186 (*regs)[11] = env->regs[R_ECX]; 187 (*regs)[12] = env->regs[R_EDX]; 188 (*regs)[13] = env->regs[R_ESI]; 189 (*regs)[14] = env->regs[R_EDI]; 190 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 191 (*regs)[16] = env->eip; 192 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 193 (*regs)[18] = env->eflags; 194 (*regs)[19] = env->regs[R_ESP]; 195 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 196 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 197 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 198 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 199 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 200 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 201 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 202 } 203 204 #else 205 206 #define ELF_START_MMAP 0x80000000 207 208 /* 209 * This is used to ensure we don't load something for the wrong architecture. 210 */ 211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 212 213 /* 214 * These are used to set parameters in the core dumps. 215 */ 216 #define ELF_CLASS ELFCLASS32 217 #define ELF_ARCH EM_386 218 219 static inline void init_thread(struct target_pt_regs *regs, 220 struct image_info *infop) 221 { 222 regs->esp = infop->start_stack; 223 regs->eip = infop->entry; 224 225 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 226 starts %edx contains a pointer to a function which might be 227 registered using `atexit'. This provides a mean for the 228 dynamic linker to call DT_FINI functions for shared libraries 229 that have been loaded before the code runs. 230 231 A value of 0 tells we have no such handler. */ 232 regs->edx = 0; 233 } 234 235 #define ELF_NREG 17 236 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 237 238 /* 239 * Note that ELF_NREG should be 19 as there should be place for 240 * TRAPNO and ERR "registers" as well but linux doesn't dump 241 * those. 242 * 243 * See linux kernel: arch/x86/include/asm/elf.h 244 */ 245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 246 { 247 (*regs)[0] = env->regs[R_EBX]; 248 (*regs)[1] = env->regs[R_ECX]; 249 (*regs)[2] = env->regs[R_EDX]; 250 (*regs)[3] = env->regs[R_ESI]; 251 (*regs)[4] = env->regs[R_EDI]; 252 (*regs)[5] = env->regs[R_EBP]; 253 (*regs)[6] = env->regs[R_EAX]; 254 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 255 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 256 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 257 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 258 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 259 (*regs)[12] = env->eip; 260 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 261 (*regs)[14] = env->eflags; 262 (*regs)[15] = env->regs[R_ESP]; 263 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 264 } 265 #endif 266 267 #define USE_ELF_CORE_DUMP 268 #define ELF_EXEC_PAGESIZE 4096 269 270 #endif 271 272 #ifdef TARGET_ARM 273 274 #ifndef TARGET_AARCH64 275 /* 32 bit ARM definitions */ 276 277 #define ELF_START_MMAP 0x80000000 278 279 #define ELF_ARCH EM_ARM 280 #define ELF_CLASS ELFCLASS32 281 282 static inline void init_thread(struct target_pt_regs *regs, 283 struct image_info *infop) 284 { 285 abi_long stack = infop->start_stack; 286 memset(regs, 0, sizeof(*regs)); 287 288 regs->uregs[16] = ARM_CPU_MODE_USR; 289 if (infop->entry & 1) { 290 regs->uregs[16] |= CPSR_T; 291 } 292 regs->uregs[15] = infop->entry & 0xfffffffe; 293 regs->uregs[13] = infop->start_stack; 294 /* FIXME - what to for failure of get_user()? */ 295 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 296 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 297 /* XXX: it seems that r0 is zeroed after ! */ 298 regs->uregs[0] = 0; 299 /* For uClinux PIC binaries. */ 300 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 301 regs->uregs[10] = infop->start_data; 302 303 /* Support ARM FDPIC. */ 304 if (info_is_fdpic(infop)) { 305 /* As described in the ABI document, r7 points to the loadmap info 306 * prepared by the kernel. If an interpreter is needed, r8 points 307 * to the interpreter loadmap and r9 points to the interpreter 308 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 309 * r9 points to the main program PT_DYNAMIC info. 310 */ 311 regs->uregs[7] = infop->loadmap_addr; 312 if (infop->interpreter_loadmap_addr) { 313 /* Executable is dynamically loaded. */ 314 regs->uregs[8] = infop->interpreter_loadmap_addr; 315 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 316 } else { 317 regs->uregs[8] = 0; 318 regs->uregs[9] = infop->pt_dynamic_addr; 319 } 320 } 321 } 322 323 #define ELF_NREG 18 324 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 325 326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 327 { 328 (*regs)[0] = tswapreg(env->regs[0]); 329 (*regs)[1] = tswapreg(env->regs[1]); 330 (*regs)[2] = tswapreg(env->regs[2]); 331 (*regs)[3] = tswapreg(env->regs[3]); 332 (*regs)[4] = tswapreg(env->regs[4]); 333 (*regs)[5] = tswapreg(env->regs[5]); 334 (*regs)[6] = tswapreg(env->regs[6]); 335 (*regs)[7] = tswapreg(env->regs[7]); 336 (*regs)[8] = tswapreg(env->regs[8]); 337 (*regs)[9] = tswapreg(env->regs[9]); 338 (*regs)[10] = tswapreg(env->regs[10]); 339 (*regs)[11] = tswapreg(env->regs[11]); 340 (*regs)[12] = tswapreg(env->regs[12]); 341 (*regs)[13] = tswapreg(env->regs[13]); 342 (*regs)[14] = tswapreg(env->regs[14]); 343 (*regs)[15] = tswapreg(env->regs[15]); 344 345 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 346 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 347 } 348 349 #define USE_ELF_CORE_DUMP 350 #define ELF_EXEC_PAGESIZE 4096 351 352 enum 353 { 354 ARM_HWCAP_ARM_SWP = 1 << 0, 355 ARM_HWCAP_ARM_HALF = 1 << 1, 356 ARM_HWCAP_ARM_THUMB = 1 << 2, 357 ARM_HWCAP_ARM_26BIT = 1 << 3, 358 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 359 ARM_HWCAP_ARM_FPA = 1 << 5, 360 ARM_HWCAP_ARM_VFP = 1 << 6, 361 ARM_HWCAP_ARM_EDSP = 1 << 7, 362 ARM_HWCAP_ARM_JAVA = 1 << 8, 363 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 364 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 365 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 366 ARM_HWCAP_ARM_NEON = 1 << 12, 367 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 368 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 369 ARM_HWCAP_ARM_TLS = 1 << 15, 370 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 371 ARM_HWCAP_ARM_IDIVA = 1 << 17, 372 ARM_HWCAP_ARM_IDIVT = 1 << 18, 373 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 374 ARM_HWCAP_ARM_LPAE = 1 << 20, 375 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 376 }; 377 378 enum { 379 ARM_HWCAP2_ARM_AES = 1 << 0, 380 ARM_HWCAP2_ARM_PMULL = 1 << 1, 381 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 382 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 383 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 384 }; 385 386 /* The commpage only exists for 32 bit kernels */ 387 388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u 389 390 static bool init_guest_commpage(void) 391 { 392 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size); 393 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 394 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 395 396 if (addr == MAP_FAILED) { 397 perror("Allocating guest commpage"); 398 exit(EXIT_FAILURE); 399 } 400 if (addr != want) { 401 return false; 402 } 403 404 /* Set kernel helper versions; rest of page is 0. */ 405 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 406 407 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 408 perror("Protecting guest commpage"); 409 exit(EXIT_FAILURE); 410 } 411 return true; 412 } 413 414 #define ELF_HWCAP get_elf_hwcap() 415 #define ELF_HWCAP2 get_elf_hwcap2() 416 417 static uint32_t get_elf_hwcap(void) 418 { 419 ARMCPU *cpu = ARM_CPU(thread_cpu); 420 uint32_t hwcaps = 0; 421 422 hwcaps |= ARM_HWCAP_ARM_SWP; 423 hwcaps |= ARM_HWCAP_ARM_HALF; 424 hwcaps |= ARM_HWCAP_ARM_THUMB; 425 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 426 427 /* probe for the extra features */ 428 #define GET_FEATURE(feat, hwcap) \ 429 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 430 431 #define GET_FEATURE_ID(feat, hwcap) \ 432 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 433 434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 440 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 441 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 442 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 443 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 444 445 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 446 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 447 hwcaps |= ARM_HWCAP_ARM_VFPv3; 448 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 449 hwcaps |= ARM_HWCAP_ARM_VFPD32; 450 } else { 451 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 452 } 453 } 454 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 455 456 return hwcaps; 457 } 458 459 static uint32_t get_elf_hwcap2(void) 460 { 461 ARMCPU *cpu = ARM_CPU(thread_cpu); 462 uint32_t hwcaps = 0; 463 464 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 465 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 466 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 467 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 468 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 469 return hwcaps; 470 } 471 472 #undef GET_FEATURE 473 #undef GET_FEATURE_ID 474 475 #define ELF_PLATFORM get_elf_platform() 476 477 static const char *get_elf_platform(void) 478 { 479 CPUARMState *env = thread_cpu->env_ptr; 480 481 #ifdef TARGET_WORDS_BIGENDIAN 482 # define END "b" 483 #else 484 # define END "l" 485 #endif 486 487 if (arm_feature(env, ARM_FEATURE_V8)) { 488 return "v8" END; 489 } else if (arm_feature(env, ARM_FEATURE_V7)) { 490 if (arm_feature(env, ARM_FEATURE_M)) { 491 return "v7m" END; 492 } else { 493 return "v7" END; 494 } 495 } else if (arm_feature(env, ARM_FEATURE_V6)) { 496 return "v6" END; 497 } else if (arm_feature(env, ARM_FEATURE_V5)) { 498 return "v5" END; 499 } else { 500 return "v4" END; 501 } 502 503 #undef END 504 } 505 506 #else 507 /* 64 bit ARM definitions */ 508 #define ELF_START_MMAP 0x80000000 509 510 #define ELF_ARCH EM_AARCH64 511 #define ELF_CLASS ELFCLASS64 512 #ifdef TARGET_WORDS_BIGENDIAN 513 # define ELF_PLATFORM "aarch64_be" 514 #else 515 # define ELF_PLATFORM "aarch64" 516 #endif 517 518 static inline void init_thread(struct target_pt_regs *regs, 519 struct image_info *infop) 520 { 521 abi_long stack = infop->start_stack; 522 memset(regs, 0, sizeof(*regs)); 523 524 regs->pc = infop->entry & ~0x3ULL; 525 regs->sp = stack; 526 } 527 528 #define ELF_NREG 34 529 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 530 531 static void elf_core_copy_regs(target_elf_gregset_t *regs, 532 const CPUARMState *env) 533 { 534 int i; 535 536 for (i = 0; i < 32; i++) { 537 (*regs)[i] = tswapreg(env->xregs[i]); 538 } 539 (*regs)[32] = tswapreg(env->pc); 540 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 541 } 542 543 #define USE_ELF_CORE_DUMP 544 #define ELF_EXEC_PAGESIZE 4096 545 546 enum { 547 ARM_HWCAP_A64_FP = 1 << 0, 548 ARM_HWCAP_A64_ASIMD = 1 << 1, 549 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 550 ARM_HWCAP_A64_AES = 1 << 3, 551 ARM_HWCAP_A64_PMULL = 1 << 4, 552 ARM_HWCAP_A64_SHA1 = 1 << 5, 553 ARM_HWCAP_A64_SHA2 = 1 << 6, 554 ARM_HWCAP_A64_CRC32 = 1 << 7, 555 ARM_HWCAP_A64_ATOMICS = 1 << 8, 556 ARM_HWCAP_A64_FPHP = 1 << 9, 557 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 558 ARM_HWCAP_A64_CPUID = 1 << 11, 559 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 560 ARM_HWCAP_A64_JSCVT = 1 << 13, 561 ARM_HWCAP_A64_FCMA = 1 << 14, 562 ARM_HWCAP_A64_LRCPC = 1 << 15, 563 ARM_HWCAP_A64_DCPOP = 1 << 16, 564 ARM_HWCAP_A64_SHA3 = 1 << 17, 565 ARM_HWCAP_A64_SM3 = 1 << 18, 566 ARM_HWCAP_A64_SM4 = 1 << 19, 567 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 568 ARM_HWCAP_A64_SHA512 = 1 << 21, 569 ARM_HWCAP_A64_SVE = 1 << 22, 570 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 571 ARM_HWCAP_A64_DIT = 1 << 24, 572 ARM_HWCAP_A64_USCAT = 1 << 25, 573 ARM_HWCAP_A64_ILRCPC = 1 << 26, 574 ARM_HWCAP_A64_FLAGM = 1 << 27, 575 ARM_HWCAP_A64_SSBS = 1 << 28, 576 ARM_HWCAP_A64_SB = 1 << 29, 577 ARM_HWCAP_A64_PACA = 1 << 30, 578 ARM_HWCAP_A64_PACG = 1UL << 31, 579 580 ARM_HWCAP2_A64_DCPODP = 1 << 0, 581 ARM_HWCAP2_A64_SVE2 = 1 << 1, 582 ARM_HWCAP2_A64_SVEAES = 1 << 2, 583 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 584 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 585 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 586 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 587 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 588 ARM_HWCAP2_A64_FRINT = 1 << 8, 589 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 590 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 591 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 592 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 593 ARM_HWCAP2_A64_I8MM = 1 << 13, 594 ARM_HWCAP2_A64_BF16 = 1 << 14, 595 ARM_HWCAP2_A64_DGH = 1 << 15, 596 ARM_HWCAP2_A64_RNG = 1 << 16, 597 ARM_HWCAP2_A64_BTI = 1 << 17, 598 ARM_HWCAP2_A64_MTE = 1 << 18, 599 }; 600 601 #define ELF_HWCAP get_elf_hwcap() 602 #define ELF_HWCAP2 get_elf_hwcap2() 603 604 #define GET_FEATURE_ID(feat, hwcap) \ 605 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 606 607 static uint32_t get_elf_hwcap(void) 608 { 609 ARMCPU *cpu = ARM_CPU(thread_cpu); 610 uint32_t hwcaps = 0; 611 612 hwcaps |= ARM_HWCAP_A64_FP; 613 hwcaps |= ARM_HWCAP_A64_ASIMD; 614 hwcaps |= ARM_HWCAP_A64_CPUID; 615 616 /* probe for the extra features */ 617 618 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 619 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 620 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 621 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 622 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 623 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 624 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 625 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 626 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 627 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 628 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 629 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 630 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 631 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 632 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 633 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 634 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 635 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 636 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 637 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 638 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 639 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 640 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 641 642 return hwcaps; 643 } 644 645 static uint32_t get_elf_hwcap2(void) 646 { 647 ARMCPU *cpu = ARM_CPU(thread_cpu); 648 uint32_t hwcaps = 0; 649 650 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 651 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 652 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 653 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 654 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 655 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 656 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 657 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 658 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 659 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 660 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 661 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 662 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 663 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 664 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 665 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 666 667 return hwcaps; 668 } 669 670 #undef GET_FEATURE_ID 671 672 #endif /* not TARGET_AARCH64 */ 673 #endif /* TARGET_ARM */ 674 675 #ifdef TARGET_SPARC 676 #ifdef TARGET_SPARC64 677 678 #define ELF_START_MMAP 0x80000000 679 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 680 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 681 #ifndef TARGET_ABI32 682 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 683 #else 684 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 685 #endif 686 687 #define ELF_CLASS ELFCLASS64 688 #define ELF_ARCH EM_SPARCV9 689 #else 690 #define ELF_START_MMAP 0x80000000 691 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 692 | HWCAP_SPARC_MULDIV) 693 #define ELF_CLASS ELFCLASS32 694 #define ELF_ARCH EM_SPARC 695 #endif /* TARGET_SPARC64 */ 696 697 static inline void init_thread(struct target_pt_regs *regs, 698 struct image_info *infop) 699 { 700 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 701 regs->pc = infop->entry; 702 regs->npc = regs->pc + 4; 703 regs->y = 0; 704 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 705 - TARGET_STACK_BIAS); 706 } 707 #endif /* TARGET_SPARC */ 708 709 #ifdef TARGET_PPC 710 711 #define ELF_MACHINE PPC_ELF_MACHINE 712 #define ELF_START_MMAP 0x80000000 713 714 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 715 716 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 717 718 #define ELF_CLASS ELFCLASS64 719 720 #else 721 722 #define ELF_CLASS ELFCLASS32 723 724 #endif 725 726 #define ELF_ARCH EM_PPC 727 728 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 729 See arch/powerpc/include/asm/cputable.h. */ 730 enum { 731 QEMU_PPC_FEATURE_32 = 0x80000000, 732 QEMU_PPC_FEATURE_64 = 0x40000000, 733 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 734 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 735 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 736 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 737 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 738 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 739 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 740 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 741 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 742 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 743 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 744 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 745 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 746 QEMU_PPC_FEATURE_CELL = 0x00010000, 747 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 748 QEMU_PPC_FEATURE_SMT = 0x00004000, 749 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 750 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 751 QEMU_PPC_FEATURE_PA6T = 0x00000800, 752 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 753 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 754 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 755 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 756 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 757 758 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 759 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 760 761 /* Feature definitions in AT_HWCAP2. */ 762 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 763 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 764 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 765 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 766 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 767 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 768 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 769 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 770 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 771 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 772 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 773 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 774 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 775 }; 776 777 #define ELF_HWCAP get_elf_hwcap() 778 779 static uint32_t get_elf_hwcap(void) 780 { 781 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 782 uint32_t features = 0; 783 784 /* We don't have to be terribly complete here; the high points are 785 Altivec/FP/SPE support. Anything else is just a bonus. */ 786 #define GET_FEATURE(flag, feature) \ 787 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 788 #define GET_FEATURE2(flags, feature) \ 789 do { \ 790 if ((cpu->env.insns_flags2 & flags) == flags) { \ 791 features |= feature; \ 792 } \ 793 } while (0) 794 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 795 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 796 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 797 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 798 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 799 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 800 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 801 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 802 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 803 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 804 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 805 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 806 QEMU_PPC_FEATURE_ARCH_2_06); 807 #undef GET_FEATURE 808 #undef GET_FEATURE2 809 810 return features; 811 } 812 813 #define ELF_HWCAP2 get_elf_hwcap2() 814 815 static uint32_t get_elf_hwcap2(void) 816 { 817 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 818 uint32_t features = 0; 819 820 #define GET_FEATURE(flag, feature) \ 821 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 822 #define GET_FEATURE2(flag, feature) \ 823 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 824 825 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 826 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 827 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 828 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 829 QEMU_PPC_FEATURE2_VEC_CRYPTO); 830 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 831 QEMU_PPC_FEATURE2_DARN); 832 833 #undef GET_FEATURE 834 #undef GET_FEATURE2 835 836 return features; 837 } 838 839 /* 840 * The requirements here are: 841 * - keep the final alignment of sp (sp & 0xf) 842 * - make sure the 32-bit value at the first 16 byte aligned position of 843 * AUXV is greater than 16 for glibc compatibility. 844 * AT_IGNOREPPC is used for that. 845 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 846 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 847 */ 848 #define DLINFO_ARCH_ITEMS 5 849 #define ARCH_DLINFO \ 850 do { \ 851 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 852 /* \ 853 * Handle glibc compatibility: these magic entries must \ 854 * be at the lowest addresses in the final auxv. \ 855 */ \ 856 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 857 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 858 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 859 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 860 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 861 } while (0) 862 863 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 864 { 865 _regs->gpr[1] = infop->start_stack; 866 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 867 if (get_ppc64_abi(infop) < 2) { 868 uint64_t val; 869 get_user_u64(val, infop->entry + 8); 870 _regs->gpr[2] = val + infop->load_bias; 871 get_user_u64(val, infop->entry); 872 infop->entry = val + infop->load_bias; 873 } else { 874 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 875 } 876 #endif 877 _regs->nip = infop->entry; 878 } 879 880 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 881 #define ELF_NREG 48 882 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 883 884 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 885 { 886 int i; 887 target_ulong ccr = 0; 888 889 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 890 (*regs)[i] = tswapreg(env->gpr[i]); 891 } 892 893 (*regs)[32] = tswapreg(env->nip); 894 (*regs)[33] = tswapreg(env->msr); 895 (*regs)[35] = tswapreg(env->ctr); 896 (*regs)[36] = tswapreg(env->lr); 897 (*regs)[37] = tswapreg(env->xer); 898 899 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 900 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 901 } 902 (*regs)[38] = tswapreg(ccr); 903 } 904 905 #define USE_ELF_CORE_DUMP 906 #define ELF_EXEC_PAGESIZE 4096 907 908 #endif 909 910 #ifdef TARGET_MIPS 911 912 #define ELF_START_MMAP 0x80000000 913 914 #ifdef TARGET_MIPS64 915 #define ELF_CLASS ELFCLASS64 916 #else 917 #define ELF_CLASS ELFCLASS32 918 #endif 919 #define ELF_ARCH EM_MIPS 920 921 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 922 923 #ifdef TARGET_ABI_MIPSN32 924 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 925 #else 926 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 927 #endif 928 929 static inline void init_thread(struct target_pt_regs *regs, 930 struct image_info *infop) 931 { 932 regs->cp0_status = 2 << CP0St_KSU; 933 regs->cp0_epc = infop->entry; 934 regs->regs[29] = infop->start_stack; 935 } 936 937 /* See linux kernel: arch/mips/include/asm/elf.h. */ 938 #define ELF_NREG 45 939 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 940 941 /* See linux kernel: arch/mips/include/asm/reg.h. */ 942 enum { 943 #ifdef TARGET_MIPS64 944 TARGET_EF_R0 = 0, 945 #else 946 TARGET_EF_R0 = 6, 947 #endif 948 TARGET_EF_R26 = TARGET_EF_R0 + 26, 949 TARGET_EF_R27 = TARGET_EF_R0 + 27, 950 TARGET_EF_LO = TARGET_EF_R0 + 32, 951 TARGET_EF_HI = TARGET_EF_R0 + 33, 952 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 953 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 954 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 955 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 956 }; 957 958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 959 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 960 { 961 int i; 962 963 for (i = 0; i < TARGET_EF_R0; i++) { 964 (*regs)[i] = 0; 965 } 966 (*regs)[TARGET_EF_R0] = 0; 967 968 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 969 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 970 } 971 972 (*regs)[TARGET_EF_R26] = 0; 973 (*regs)[TARGET_EF_R27] = 0; 974 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 975 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 976 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 977 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 978 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 979 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 980 } 981 982 #define USE_ELF_CORE_DUMP 983 #define ELF_EXEC_PAGESIZE 4096 984 985 /* See arch/mips/include/uapi/asm/hwcap.h. */ 986 enum { 987 HWCAP_MIPS_R6 = (1 << 0), 988 HWCAP_MIPS_MSA = (1 << 1), 989 HWCAP_MIPS_CRC32 = (1 << 2), 990 HWCAP_MIPS_MIPS16 = (1 << 3), 991 HWCAP_MIPS_MDMX = (1 << 4), 992 HWCAP_MIPS_MIPS3D = (1 << 5), 993 HWCAP_MIPS_SMARTMIPS = (1 << 6), 994 HWCAP_MIPS_DSP = (1 << 7), 995 HWCAP_MIPS_DSP2 = (1 << 8), 996 HWCAP_MIPS_DSP3 = (1 << 9), 997 HWCAP_MIPS_MIPS16E2 = (1 << 10), 998 HWCAP_LOONGSON_MMI = (1 << 11), 999 HWCAP_LOONGSON_EXT = (1 << 12), 1000 HWCAP_LOONGSON_EXT2 = (1 << 13), 1001 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1002 }; 1003 1004 #define ELF_HWCAP get_elf_hwcap() 1005 1006 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1007 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1008 1009 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1010 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1011 1012 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1013 do { \ 1014 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1015 hwcaps |= _hwcap; \ 1016 } \ 1017 } while (0) 1018 1019 static uint32_t get_elf_hwcap(void) 1020 { 1021 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1022 uint32_t hwcaps = 0; 1023 1024 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1025 2, HWCAP_MIPS_R6); 1026 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1027 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1028 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1029 1030 return hwcaps; 1031 } 1032 1033 #undef GET_FEATURE_REG_EQU 1034 #undef GET_FEATURE_REG_SET 1035 #undef GET_FEATURE_INSN 1036 1037 #endif /* TARGET_MIPS */ 1038 1039 #ifdef TARGET_MICROBLAZE 1040 1041 #define ELF_START_MMAP 0x80000000 1042 1043 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1044 1045 #define ELF_CLASS ELFCLASS32 1046 #define ELF_ARCH EM_MICROBLAZE 1047 1048 static inline void init_thread(struct target_pt_regs *regs, 1049 struct image_info *infop) 1050 { 1051 regs->pc = infop->entry; 1052 regs->r1 = infop->start_stack; 1053 1054 } 1055 1056 #define ELF_EXEC_PAGESIZE 4096 1057 1058 #define USE_ELF_CORE_DUMP 1059 #define ELF_NREG 38 1060 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1061 1062 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1063 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1064 { 1065 int i, pos = 0; 1066 1067 for (i = 0; i < 32; i++) { 1068 (*regs)[pos++] = tswapreg(env->regs[i]); 1069 } 1070 1071 (*regs)[pos++] = tswapreg(env->pc); 1072 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1073 (*regs)[pos++] = 0; 1074 (*regs)[pos++] = tswapreg(env->ear); 1075 (*regs)[pos++] = 0; 1076 (*regs)[pos++] = tswapreg(env->esr); 1077 } 1078 1079 #endif /* TARGET_MICROBLAZE */ 1080 1081 #ifdef TARGET_NIOS2 1082 1083 #define ELF_START_MMAP 0x80000000 1084 1085 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1086 1087 #define ELF_CLASS ELFCLASS32 1088 #define ELF_ARCH EM_ALTERA_NIOS2 1089 1090 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1091 { 1092 regs->ea = infop->entry; 1093 regs->sp = infop->start_stack; 1094 regs->estatus = 0x3; 1095 } 1096 1097 #define ELF_EXEC_PAGESIZE 4096 1098 1099 #define USE_ELF_CORE_DUMP 1100 #define ELF_NREG 49 1101 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1102 1103 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1104 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1105 const CPUNios2State *env) 1106 { 1107 int i; 1108 1109 (*regs)[0] = -1; 1110 for (i = 1; i < 8; i++) /* r0-r7 */ 1111 (*regs)[i] = tswapreg(env->regs[i + 7]); 1112 1113 for (i = 8; i < 16; i++) /* r8-r15 */ 1114 (*regs)[i] = tswapreg(env->regs[i - 8]); 1115 1116 for (i = 16; i < 24; i++) /* r16-r23 */ 1117 (*regs)[i] = tswapreg(env->regs[i + 7]); 1118 (*regs)[24] = -1; /* R_ET */ 1119 (*regs)[25] = -1; /* R_BT */ 1120 (*regs)[26] = tswapreg(env->regs[R_GP]); 1121 (*regs)[27] = tswapreg(env->regs[R_SP]); 1122 (*regs)[28] = tswapreg(env->regs[R_FP]); 1123 (*regs)[29] = tswapreg(env->regs[R_EA]); 1124 (*regs)[30] = -1; /* R_SSTATUS */ 1125 (*regs)[31] = tswapreg(env->regs[R_RA]); 1126 1127 (*regs)[32] = tswapreg(env->regs[R_PC]); 1128 1129 (*regs)[33] = -1; /* R_STATUS */ 1130 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1131 1132 for (i = 35; i < 49; i++) /* ... */ 1133 (*regs)[i] = -1; 1134 } 1135 1136 #endif /* TARGET_NIOS2 */ 1137 1138 #ifdef TARGET_OPENRISC 1139 1140 #define ELF_START_MMAP 0x08000000 1141 1142 #define ELF_ARCH EM_OPENRISC 1143 #define ELF_CLASS ELFCLASS32 1144 #define ELF_DATA ELFDATA2MSB 1145 1146 static inline void init_thread(struct target_pt_regs *regs, 1147 struct image_info *infop) 1148 { 1149 regs->pc = infop->entry; 1150 regs->gpr[1] = infop->start_stack; 1151 } 1152 1153 #define USE_ELF_CORE_DUMP 1154 #define ELF_EXEC_PAGESIZE 8192 1155 1156 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1157 #define ELF_NREG 34 /* gprs and pc, sr */ 1158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1159 1160 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1161 const CPUOpenRISCState *env) 1162 { 1163 int i; 1164 1165 for (i = 0; i < 32; i++) { 1166 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1167 } 1168 (*regs)[32] = tswapreg(env->pc); 1169 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1170 } 1171 #define ELF_HWCAP 0 1172 #define ELF_PLATFORM NULL 1173 1174 #endif /* TARGET_OPENRISC */ 1175 1176 #ifdef TARGET_SH4 1177 1178 #define ELF_START_MMAP 0x80000000 1179 1180 #define ELF_CLASS ELFCLASS32 1181 #define ELF_ARCH EM_SH 1182 1183 static inline void init_thread(struct target_pt_regs *regs, 1184 struct image_info *infop) 1185 { 1186 /* Check other registers XXXXX */ 1187 regs->pc = infop->entry; 1188 regs->regs[15] = infop->start_stack; 1189 } 1190 1191 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1192 #define ELF_NREG 23 1193 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1194 1195 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1196 enum { 1197 TARGET_REG_PC = 16, 1198 TARGET_REG_PR = 17, 1199 TARGET_REG_SR = 18, 1200 TARGET_REG_GBR = 19, 1201 TARGET_REG_MACH = 20, 1202 TARGET_REG_MACL = 21, 1203 TARGET_REG_SYSCALL = 22 1204 }; 1205 1206 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1207 const CPUSH4State *env) 1208 { 1209 int i; 1210 1211 for (i = 0; i < 16; i++) { 1212 (*regs)[i] = tswapreg(env->gregs[i]); 1213 } 1214 1215 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1216 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1217 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1218 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1219 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1220 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1221 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1222 } 1223 1224 #define USE_ELF_CORE_DUMP 1225 #define ELF_EXEC_PAGESIZE 4096 1226 1227 enum { 1228 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1229 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1230 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1231 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1232 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1233 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1234 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1235 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1236 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1237 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1238 }; 1239 1240 #define ELF_HWCAP get_elf_hwcap() 1241 1242 static uint32_t get_elf_hwcap(void) 1243 { 1244 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1245 uint32_t hwcap = 0; 1246 1247 hwcap |= SH_CPU_HAS_FPU; 1248 1249 if (cpu->env.features & SH_FEATURE_SH4A) { 1250 hwcap |= SH_CPU_HAS_LLSC; 1251 } 1252 1253 return hwcap; 1254 } 1255 1256 #endif 1257 1258 #ifdef TARGET_CRIS 1259 1260 #define ELF_START_MMAP 0x80000000 1261 1262 #define ELF_CLASS ELFCLASS32 1263 #define ELF_ARCH EM_CRIS 1264 1265 static inline void init_thread(struct target_pt_regs *regs, 1266 struct image_info *infop) 1267 { 1268 regs->erp = infop->entry; 1269 } 1270 1271 #define ELF_EXEC_PAGESIZE 8192 1272 1273 #endif 1274 1275 #ifdef TARGET_M68K 1276 1277 #define ELF_START_MMAP 0x80000000 1278 1279 #define ELF_CLASS ELFCLASS32 1280 #define ELF_ARCH EM_68K 1281 1282 /* ??? Does this need to do anything? 1283 #define ELF_PLAT_INIT(_r) */ 1284 1285 static inline void init_thread(struct target_pt_regs *regs, 1286 struct image_info *infop) 1287 { 1288 regs->usp = infop->start_stack; 1289 regs->sr = 0; 1290 regs->pc = infop->entry; 1291 } 1292 1293 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1294 #define ELF_NREG 20 1295 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1296 1297 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1298 { 1299 (*regs)[0] = tswapreg(env->dregs[1]); 1300 (*regs)[1] = tswapreg(env->dregs[2]); 1301 (*regs)[2] = tswapreg(env->dregs[3]); 1302 (*regs)[3] = tswapreg(env->dregs[4]); 1303 (*regs)[4] = tswapreg(env->dregs[5]); 1304 (*regs)[5] = tswapreg(env->dregs[6]); 1305 (*regs)[6] = tswapreg(env->dregs[7]); 1306 (*regs)[7] = tswapreg(env->aregs[0]); 1307 (*regs)[8] = tswapreg(env->aregs[1]); 1308 (*regs)[9] = tswapreg(env->aregs[2]); 1309 (*regs)[10] = tswapreg(env->aregs[3]); 1310 (*regs)[11] = tswapreg(env->aregs[4]); 1311 (*regs)[12] = tswapreg(env->aregs[5]); 1312 (*regs)[13] = tswapreg(env->aregs[6]); 1313 (*regs)[14] = tswapreg(env->dregs[0]); 1314 (*regs)[15] = tswapreg(env->aregs[7]); 1315 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1316 (*regs)[17] = tswapreg(env->sr); 1317 (*regs)[18] = tswapreg(env->pc); 1318 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1319 } 1320 1321 #define USE_ELF_CORE_DUMP 1322 #define ELF_EXEC_PAGESIZE 8192 1323 1324 #endif 1325 1326 #ifdef TARGET_ALPHA 1327 1328 #define ELF_START_MMAP (0x30000000000ULL) 1329 1330 #define ELF_CLASS ELFCLASS64 1331 #define ELF_ARCH EM_ALPHA 1332 1333 static inline void init_thread(struct target_pt_regs *regs, 1334 struct image_info *infop) 1335 { 1336 regs->pc = infop->entry; 1337 regs->ps = 8; 1338 regs->usp = infop->start_stack; 1339 } 1340 1341 #define ELF_EXEC_PAGESIZE 8192 1342 1343 #endif /* TARGET_ALPHA */ 1344 1345 #ifdef TARGET_S390X 1346 1347 #define ELF_START_MMAP (0x20000000000ULL) 1348 1349 #define ELF_CLASS ELFCLASS64 1350 #define ELF_DATA ELFDATA2MSB 1351 #define ELF_ARCH EM_S390 1352 1353 #include "elf.h" 1354 1355 #define ELF_HWCAP get_elf_hwcap() 1356 1357 #define GET_FEATURE(_feat, _hwcap) \ 1358 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1359 1360 static uint32_t get_elf_hwcap(void) 1361 { 1362 /* 1363 * Let's assume we always have esan3 and zarch. 1364 * 31-bit processes can use 64-bit registers (high gprs). 1365 */ 1366 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1367 1368 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1369 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1370 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1371 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1372 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1373 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1374 hwcap |= HWCAP_S390_ETF3EH; 1375 } 1376 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1377 1378 return hwcap; 1379 } 1380 1381 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1382 { 1383 regs->psw.addr = infop->entry; 1384 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1385 regs->gprs[15] = infop->start_stack; 1386 } 1387 1388 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1389 #define ELF_NREG 27 1390 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1391 1392 enum { 1393 TARGET_REG_PSWM = 0, 1394 TARGET_REG_PSWA = 1, 1395 TARGET_REG_GPRS = 2, 1396 TARGET_REG_ARS = 18, 1397 TARGET_REG_ORIG_R2 = 26, 1398 }; 1399 1400 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1401 const CPUS390XState *env) 1402 { 1403 int i; 1404 uint32_t *aregs; 1405 1406 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1407 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1408 for (i = 0; i < 16; i++) { 1409 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1410 } 1411 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1412 for (i = 0; i < 16; i++) { 1413 aregs[i] = tswap32(env->aregs[i]); 1414 } 1415 (*regs)[TARGET_REG_ORIG_R2] = 0; 1416 } 1417 1418 #define USE_ELF_CORE_DUMP 1419 #define ELF_EXEC_PAGESIZE 4096 1420 1421 #endif /* TARGET_S390X */ 1422 1423 #ifdef TARGET_RISCV 1424 1425 #define ELF_START_MMAP 0x80000000 1426 #define ELF_ARCH EM_RISCV 1427 1428 #ifdef TARGET_RISCV32 1429 #define ELF_CLASS ELFCLASS32 1430 #else 1431 #define ELF_CLASS ELFCLASS64 1432 #endif 1433 1434 static inline void init_thread(struct target_pt_regs *regs, 1435 struct image_info *infop) 1436 { 1437 regs->sepc = infop->entry; 1438 regs->sp = infop->start_stack; 1439 } 1440 1441 #define ELF_EXEC_PAGESIZE 4096 1442 1443 #endif /* TARGET_RISCV */ 1444 1445 #ifdef TARGET_HPPA 1446 1447 #define ELF_START_MMAP 0x80000000 1448 #define ELF_CLASS ELFCLASS32 1449 #define ELF_ARCH EM_PARISC 1450 #define ELF_PLATFORM "PARISC" 1451 #define STACK_GROWS_DOWN 0 1452 #define STACK_ALIGNMENT 64 1453 1454 static inline void init_thread(struct target_pt_regs *regs, 1455 struct image_info *infop) 1456 { 1457 regs->iaoq[0] = infop->entry; 1458 regs->iaoq[1] = infop->entry + 4; 1459 regs->gr[23] = 0; 1460 regs->gr[24] = infop->arg_start; 1461 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1462 /* The top-of-stack contains a linkage buffer. */ 1463 regs->gr[30] = infop->start_stack + 64; 1464 regs->gr[31] = infop->entry; 1465 } 1466 1467 #endif /* TARGET_HPPA */ 1468 1469 #ifdef TARGET_XTENSA 1470 1471 #define ELF_START_MMAP 0x20000000 1472 1473 #define ELF_CLASS ELFCLASS32 1474 #define ELF_ARCH EM_XTENSA 1475 1476 static inline void init_thread(struct target_pt_regs *regs, 1477 struct image_info *infop) 1478 { 1479 regs->windowbase = 0; 1480 regs->windowstart = 1; 1481 regs->areg[1] = infop->start_stack; 1482 regs->pc = infop->entry; 1483 } 1484 1485 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1486 #define ELF_NREG 128 1487 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1488 1489 enum { 1490 TARGET_REG_PC, 1491 TARGET_REG_PS, 1492 TARGET_REG_LBEG, 1493 TARGET_REG_LEND, 1494 TARGET_REG_LCOUNT, 1495 TARGET_REG_SAR, 1496 TARGET_REG_WINDOWSTART, 1497 TARGET_REG_WINDOWBASE, 1498 TARGET_REG_THREADPTR, 1499 TARGET_REG_AR0 = 64, 1500 }; 1501 1502 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1503 const CPUXtensaState *env) 1504 { 1505 unsigned i; 1506 1507 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1508 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1509 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1510 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1511 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1512 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1513 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1514 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1515 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1516 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1517 for (i = 0; i < env->config->nareg; ++i) { 1518 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1519 } 1520 } 1521 1522 #define USE_ELF_CORE_DUMP 1523 #define ELF_EXEC_PAGESIZE 4096 1524 1525 #endif /* TARGET_XTENSA */ 1526 1527 #ifdef TARGET_HEXAGON 1528 1529 #define ELF_START_MMAP 0x20000000 1530 1531 #define ELF_CLASS ELFCLASS32 1532 #define ELF_ARCH EM_HEXAGON 1533 1534 static inline void init_thread(struct target_pt_regs *regs, 1535 struct image_info *infop) 1536 { 1537 regs->sepc = infop->entry; 1538 regs->sp = infop->start_stack; 1539 } 1540 1541 #endif /* TARGET_HEXAGON */ 1542 1543 #ifndef ELF_PLATFORM 1544 #define ELF_PLATFORM (NULL) 1545 #endif 1546 1547 #ifndef ELF_MACHINE 1548 #define ELF_MACHINE ELF_ARCH 1549 #endif 1550 1551 #ifndef elf_check_arch 1552 #define elf_check_arch(x) ((x) == ELF_ARCH) 1553 #endif 1554 1555 #ifndef elf_check_abi 1556 #define elf_check_abi(x) (1) 1557 #endif 1558 1559 #ifndef ELF_HWCAP 1560 #define ELF_HWCAP 0 1561 #endif 1562 1563 #ifndef STACK_GROWS_DOWN 1564 #define STACK_GROWS_DOWN 1 1565 #endif 1566 1567 #ifndef STACK_ALIGNMENT 1568 #define STACK_ALIGNMENT 16 1569 #endif 1570 1571 #ifdef TARGET_ABI32 1572 #undef ELF_CLASS 1573 #define ELF_CLASS ELFCLASS32 1574 #undef bswaptls 1575 #define bswaptls(ptr) bswap32s(ptr) 1576 #endif 1577 1578 #include "elf.h" 1579 1580 /* We must delay the following stanzas until after "elf.h". */ 1581 #if defined(TARGET_AARCH64) 1582 1583 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1584 const uint32_t *data, 1585 struct image_info *info, 1586 Error **errp) 1587 { 1588 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1589 if (pr_datasz != sizeof(uint32_t)) { 1590 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1591 return false; 1592 } 1593 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1594 info->note_flags = *data; 1595 } 1596 return true; 1597 } 1598 #define ARCH_USE_GNU_PROPERTY 1 1599 1600 #else 1601 1602 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1603 const uint32_t *data, 1604 struct image_info *info, 1605 Error **errp) 1606 { 1607 g_assert_not_reached(); 1608 } 1609 #define ARCH_USE_GNU_PROPERTY 0 1610 1611 #endif 1612 1613 struct exec 1614 { 1615 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1616 unsigned int a_text; /* length of text, in bytes */ 1617 unsigned int a_data; /* length of data, in bytes */ 1618 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1619 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1620 unsigned int a_entry; /* start address */ 1621 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1622 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1623 }; 1624 1625 1626 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1627 #define OMAGIC 0407 1628 #define NMAGIC 0410 1629 #define ZMAGIC 0413 1630 #define QMAGIC 0314 1631 1632 /* Necessary parameters */ 1633 #define TARGET_ELF_EXEC_PAGESIZE \ 1634 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1635 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1636 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1637 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1638 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1639 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1640 1641 #define DLINFO_ITEMS 16 1642 1643 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1644 { 1645 memcpy(to, from, n); 1646 } 1647 1648 #ifdef BSWAP_NEEDED 1649 static void bswap_ehdr(struct elfhdr *ehdr) 1650 { 1651 bswap16s(&ehdr->e_type); /* Object file type */ 1652 bswap16s(&ehdr->e_machine); /* Architecture */ 1653 bswap32s(&ehdr->e_version); /* Object file version */ 1654 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1655 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1656 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1657 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1658 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1659 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1660 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1661 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1662 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1663 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1664 } 1665 1666 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1667 { 1668 int i; 1669 for (i = 0; i < phnum; ++i, ++phdr) { 1670 bswap32s(&phdr->p_type); /* Segment type */ 1671 bswap32s(&phdr->p_flags); /* Segment flags */ 1672 bswaptls(&phdr->p_offset); /* Segment file offset */ 1673 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1674 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1675 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1676 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1677 bswaptls(&phdr->p_align); /* Segment alignment */ 1678 } 1679 } 1680 1681 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1682 { 1683 int i; 1684 for (i = 0; i < shnum; ++i, ++shdr) { 1685 bswap32s(&shdr->sh_name); 1686 bswap32s(&shdr->sh_type); 1687 bswaptls(&shdr->sh_flags); 1688 bswaptls(&shdr->sh_addr); 1689 bswaptls(&shdr->sh_offset); 1690 bswaptls(&shdr->sh_size); 1691 bswap32s(&shdr->sh_link); 1692 bswap32s(&shdr->sh_info); 1693 bswaptls(&shdr->sh_addralign); 1694 bswaptls(&shdr->sh_entsize); 1695 } 1696 } 1697 1698 static void bswap_sym(struct elf_sym *sym) 1699 { 1700 bswap32s(&sym->st_name); 1701 bswaptls(&sym->st_value); 1702 bswaptls(&sym->st_size); 1703 bswap16s(&sym->st_shndx); 1704 } 1705 1706 #ifdef TARGET_MIPS 1707 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1708 { 1709 bswap16s(&abiflags->version); 1710 bswap32s(&abiflags->ases); 1711 bswap32s(&abiflags->isa_ext); 1712 bswap32s(&abiflags->flags1); 1713 bswap32s(&abiflags->flags2); 1714 } 1715 #endif 1716 #else 1717 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1718 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1719 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1720 static inline void bswap_sym(struct elf_sym *sym) { } 1721 #ifdef TARGET_MIPS 1722 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1723 #endif 1724 #endif 1725 1726 #ifdef USE_ELF_CORE_DUMP 1727 static int elf_core_dump(int, const CPUArchState *); 1728 #endif /* USE_ELF_CORE_DUMP */ 1729 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1730 1731 /* Verify the portions of EHDR within E_IDENT for the target. 1732 This can be performed before bswapping the entire header. */ 1733 static bool elf_check_ident(struct elfhdr *ehdr) 1734 { 1735 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1736 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1737 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1738 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1739 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1740 && ehdr->e_ident[EI_DATA] == ELF_DATA 1741 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1742 } 1743 1744 /* Verify the portions of EHDR outside of E_IDENT for the target. 1745 This has to wait until after bswapping the header. */ 1746 static bool elf_check_ehdr(struct elfhdr *ehdr) 1747 { 1748 return (elf_check_arch(ehdr->e_machine) 1749 && elf_check_abi(ehdr->e_flags) 1750 && ehdr->e_ehsize == sizeof(struct elfhdr) 1751 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1752 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1753 } 1754 1755 /* 1756 * 'copy_elf_strings()' copies argument/envelope strings from user 1757 * memory to free pages in kernel mem. These are in a format ready 1758 * to be put directly into the top of new user memory. 1759 * 1760 */ 1761 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1762 abi_ulong p, abi_ulong stack_limit) 1763 { 1764 char *tmp; 1765 int len, i; 1766 abi_ulong top = p; 1767 1768 if (!p) { 1769 return 0; /* bullet-proofing */ 1770 } 1771 1772 if (STACK_GROWS_DOWN) { 1773 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1774 for (i = argc - 1; i >= 0; --i) { 1775 tmp = argv[i]; 1776 if (!tmp) { 1777 fprintf(stderr, "VFS: argc is wrong"); 1778 exit(-1); 1779 } 1780 len = strlen(tmp) + 1; 1781 tmp += len; 1782 1783 if (len > (p - stack_limit)) { 1784 return 0; 1785 } 1786 while (len) { 1787 int bytes_to_copy = (len > offset) ? offset : len; 1788 tmp -= bytes_to_copy; 1789 p -= bytes_to_copy; 1790 offset -= bytes_to_copy; 1791 len -= bytes_to_copy; 1792 1793 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1794 1795 if (offset == 0) { 1796 memcpy_to_target(p, scratch, top - p); 1797 top = p; 1798 offset = TARGET_PAGE_SIZE; 1799 } 1800 } 1801 } 1802 if (p != top) { 1803 memcpy_to_target(p, scratch + offset, top - p); 1804 } 1805 } else { 1806 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1807 for (i = 0; i < argc; ++i) { 1808 tmp = argv[i]; 1809 if (!tmp) { 1810 fprintf(stderr, "VFS: argc is wrong"); 1811 exit(-1); 1812 } 1813 len = strlen(tmp) + 1; 1814 if (len > (stack_limit - p)) { 1815 return 0; 1816 } 1817 while (len) { 1818 int bytes_to_copy = (len > remaining) ? remaining : len; 1819 1820 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1821 1822 tmp += bytes_to_copy; 1823 remaining -= bytes_to_copy; 1824 p += bytes_to_copy; 1825 len -= bytes_to_copy; 1826 1827 if (remaining == 0) { 1828 memcpy_to_target(top, scratch, p - top); 1829 top = p; 1830 remaining = TARGET_PAGE_SIZE; 1831 } 1832 } 1833 } 1834 if (p != top) { 1835 memcpy_to_target(top, scratch, p - top); 1836 } 1837 } 1838 1839 return p; 1840 } 1841 1842 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1843 * argument/environment space. Newer kernels (>2.6.33) allow more, 1844 * dependent on stack size, but guarantee at least 32 pages for 1845 * backwards compatibility. 1846 */ 1847 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1848 1849 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1850 struct image_info *info) 1851 { 1852 abi_ulong size, error, guard; 1853 1854 size = guest_stack_size; 1855 if (size < STACK_LOWER_LIMIT) { 1856 size = STACK_LOWER_LIMIT; 1857 } 1858 guard = TARGET_PAGE_SIZE; 1859 if (guard < qemu_real_host_page_size) { 1860 guard = qemu_real_host_page_size; 1861 } 1862 1863 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1864 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1865 if (error == -1) { 1866 perror("mmap stack"); 1867 exit(-1); 1868 } 1869 1870 /* We reserve one extra page at the top of the stack as guard. */ 1871 if (STACK_GROWS_DOWN) { 1872 target_mprotect(error, guard, PROT_NONE); 1873 info->stack_limit = error + guard; 1874 return info->stack_limit + size - sizeof(void *); 1875 } else { 1876 target_mprotect(error + size, guard, PROT_NONE); 1877 info->stack_limit = error + size; 1878 return error; 1879 } 1880 } 1881 1882 /* Map and zero the bss. We need to explicitly zero any fractional pages 1883 after the data section (i.e. bss). */ 1884 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1885 { 1886 uintptr_t host_start, host_map_start, host_end; 1887 1888 last_bss = TARGET_PAGE_ALIGN(last_bss); 1889 1890 /* ??? There is confusion between qemu_real_host_page_size and 1891 qemu_host_page_size here and elsewhere in target_mmap, which 1892 may lead to the end of the data section mapping from the file 1893 not being mapped. At least there was an explicit test and 1894 comment for that here, suggesting that "the file size must 1895 be known". The comment probably pre-dates the introduction 1896 of the fstat system call in target_mmap which does in fact 1897 find out the size. What isn't clear is if the workaround 1898 here is still actually needed. For now, continue with it, 1899 but merge it with the "normal" mmap that would allocate the bss. */ 1900 1901 host_start = (uintptr_t) g2h_untagged(elf_bss); 1902 host_end = (uintptr_t) g2h_untagged(last_bss); 1903 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1904 1905 if (host_map_start < host_end) { 1906 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1907 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1908 if (p == MAP_FAILED) { 1909 perror("cannot mmap brk"); 1910 exit(-1); 1911 } 1912 } 1913 1914 /* Ensure that the bss page(s) are valid */ 1915 if ((page_get_flags(last_bss-1) & prot) != prot) { 1916 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1917 } 1918 1919 if (host_start < host_map_start) { 1920 memset((void *)host_start, 0, host_map_start - host_start); 1921 } 1922 } 1923 1924 #ifdef TARGET_ARM 1925 static int elf_is_fdpic(struct elfhdr *exec) 1926 { 1927 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1928 } 1929 #else 1930 /* Default implementation, always false. */ 1931 static int elf_is_fdpic(struct elfhdr *exec) 1932 { 1933 return 0; 1934 } 1935 #endif 1936 1937 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1938 { 1939 uint16_t n; 1940 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1941 1942 /* elf32_fdpic_loadseg */ 1943 n = info->nsegs; 1944 while (n--) { 1945 sp -= 12; 1946 put_user_u32(loadsegs[n].addr, sp+0); 1947 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1948 put_user_u32(loadsegs[n].p_memsz, sp+8); 1949 } 1950 1951 /* elf32_fdpic_loadmap */ 1952 sp -= 4; 1953 put_user_u16(0, sp+0); /* version */ 1954 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1955 1956 info->personality = PER_LINUX_FDPIC; 1957 info->loadmap_addr = sp; 1958 1959 return sp; 1960 } 1961 1962 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1963 struct elfhdr *exec, 1964 struct image_info *info, 1965 struct image_info *interp_info) 1966 { 1967 abi_ulong sp; 1968 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1969 int size; 1970 int i; 1971 abi_ulong u_rand_bytes; 1972 uint8_t k_rand_bytes[16]; 1973 abi_ulong u_platform; 1974 const char *k_platform; 1975 const int n = sizeof(elf_addr_t); 1976 1977 sp = p; 1978 1979 /* Needs to be before we load the env/argc/... */ 1980 if (elf_is_fdpic(exec)) { 1981 /* Need 4 byte alignment for these structs */ 1982 sp &= ~3; 1983 sp = loader_build_fdpic_loadmap(info, sp); 1984 info->other_info = interp_info; 1985 if (interp_info) { 1986 interp_info->other_info = info; 1987 sp = loader_build_fdpic_loadmap(interp_info, sp); 1988 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1989 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1990 } else { 1991 info->interpreter_loadmap_addr = 0; 1992 info->interpreter_pt_dynamic_addr = 0; 1993 } 1994 } 1995 1996 u_platform = 0; 1997 k_platform = ELF_PLATFORM; 1998 if (k_platform) { 1999 size_t len = strlen(k_platform) + 1; 2000 if (STACK_GROWS_DOWN) { 2001 sp -= (len + n - 1) & ~(n - 1); 2002 u_platform = sp; 2003 /* FIXME - check return value of memcpy_to_target() for failure */ 2004 memcpy_to_target(sp, k_platform, len); 2005 } else { 2006 memcpy_to_target(sp, k_platform, len); 2007 u_platform = sp; 2008 sp += len + 1; 2009 } 2010 } 2011 2012 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2013 * the argv and envp pointers. 2014 */ 2015 if (STACK_GROWS_DOWN) { 2016 sp = QEMU_ALIGN_DOWN(sp, 16); 2017 } else { 2018 sp = QEMU_ALIGN_UP(sp, 16); 2019 } 2020 2021 /* 2022 * Generate 16 random bytes for userspace PRNG seeding. 2023 */ 2024 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2025 if (STACK_GROWS_DOWN) { 2026 sp -= 16; 2027 u_rand_bytes = sp; 2028 /* FIXME - check return value of memcpy_to_target() for failure */ 2029 memcpy_to_target(sp, k_rand_bytes, 16); 2030 } else { 2031 memcpy_to_target(sp, k_rand_bytes, 16); 2032 u_rand_bytes = sp; 2033 sp += 16; 2034 } 2035 2036 size = (DLINFO_ITEMS + 1) * 2; 2037 if (k_platform) 2038 size += 2; 2039 #ifdef DLINFO_ARCH_ITEMS 2040 size += DLINFO_ARCH_ITEMS * 2; 2041 #endif 2042 #ifdef ELF_HWCAP2 2043 size += 2; 2044 #endif 2045 info->auxv_len = size * n; 2046 2047 size += envc + argc + 2; 2048 size += 1; /* argc itself */ 2049 size *= n; 2050 2051 /* Allocate space and finalize stack alignment for entry now. */ 2052 if (STACK_GROWS_DOWN) { 2053 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2054 sp = u_argc; 2055 } else { 2056 u_argc = sp; 2057 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2058 } 2059 2060 u_argv = u_argc + n; 2061 u_envp = u_argv + (argc + 1) * n; 2062 u_auxv = u_envp + (envc + 1) * n; 2063 info->saved_auxv = u_auxv; 2064 info->arg_start = u_argv; 2065 info->arg_end = u_argv + argc * n; 2066 2067 /* This is correct because Linux defines 2068 * elf_addr_t as Elf32_Off / Elf64_Off 2069 */ 2070 #define NEW_AUX_ENT(id, val) do { \ 2071 put_user_ual(id, u_auxv); u_auxv += n; \ 2072 put_user_ual(val, u_auxv); u_auxv += n; \ 2073 } while(0) 2074 2075 #ifdef ARCH_DLINFO 2076 /* 2077 * ARCH_DLINFO must come first so platform specific code can enforce 2078 * special alignment requirements on the AUXV if necessary (eg. PPC). 2079 */ 2080 ARCH_DLINFO; 2081 #endif 2082 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2083 * on info->auxv_len will trigger. 2084 */ 2085 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2086 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2087 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2088 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2089 /* Target doesn't support host page size alignment */ 2090 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2091 } else { 2092 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2093 qemu_host_page_size))); 2094 } 2095 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2096 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2097 NEW_AUX_ENT(AT_ENTRY, info->entry); 2098 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2099 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2100 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2101 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2102 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2103 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2104 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2105 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2106 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2107 2108 #ifdef ELF_HWCAP2 2109 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2110 #endif 2111 2112 if (u_platform) { 2113 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2114 } 2115 NEW_AUX_ENT (AT_NULL, 0); 2116 #undef NEW_AUX_ENT 2117 2118 /* Check that our initial calculation of the auxv length matches how much 2119 * we actually put into it. 2120 */ 2121 assert(info->auxv_len == u_auxv - info->saved_auxv); 2122 2123 put_user_ual(argc, u_argc); 2124 2125 p = info->arg_strings; 2126 for (i = 0; i < argc; ++i) { 2127 put_user_ual(p, u_argv); 2128 u_argv += n; 2129 p += target_strlen(p) + 1; 2130 } 2131 put_user_ual(0, u_argv); 2132 2133 p = info->env_strings; 2134 for (i = 0; i < envc; ++i) { 2135 put_user_ual(p, u_envp); 2136 u_envp += n; 2137 p += target_strlen(p) + 1; 2138 } 2139 put_user_ual(0, u_envp); 2140 2141 return sp; 2142 } 2143 2144 #ifndef ARM_COMMPAGE 2145 #define ARM_COMMPAGE 0 2146 #define init_guest_commpage() true 2147 #endif 2148 2149 static void pgb_fail_in_use(const char *image_name) 2150 { 2151 error_report("%s: requires virtual address space that is in use " 2152 "(omit the -B option or choose a different value)", 2153 image_name); 2154 exit(EXIT_FAILURE); 2155 } 2156 2157 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2158 abi_ulong guest_hiaddr, long align) 2159 { 2160 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2161 void *addr, *test; 2162 2163 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2164 fprintf(stderr, "Requested guest base %p does not satisfy " 2165 "host minimum alignment (0x%lx)\n", 2166 (void *)guest_base, align); 2167 exit(EXIT_FAILURE); 2168 } 2169 2170 /* Sanity check the guest binary. */ 2171 if (reserved_va) { 2172 if (guest_hiaddr > reserved_va) { 2173 error_report("%s: requires more than reserved virtual " 2174 "address space (0x%" PRIx64 " > 0x%lx)", 2175 image_name, (uint64_t)guest_hiaddr, reserved_va); 2176 exit(EXIT_FAILURE); 2177 } 2178 } else { 2179 #if HOST_LONG_BITS < TARGET_ABI_BITS 2180 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2181 error_report("%s: requires more virtual address space " 2182 "than the host can provide (0x%" PRIx64 ")", 2183 image_name, (uint64_t)guest_hiaddr - guest_base); 2184 exit(EXIT_FAILURE); 2185 } 2186 #endif 2187 } 2188 2189 /* 2190 * Expand the allocation to the entire reserved_va. 2191 * Exclude the mmap_min_addr hole. 2192 */ 2193 if (reserved_va) { 2194 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2195 : mmap_min_addr - guest_base); 2196 guest_hiaddr = reserved_va; 2197 } 2198 2199 /* Reserve the address space for the binary, or reserved_va. */ 2200 test = g2h_untagged(guest_loaddr); 2201 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2202 if (test != addr) { 2203 pgb_fail_in_use(image_name); 2204 } 2205 } 2206 2207 /** 2208 * pgd_find_hole_fallback: potential mmap address 2209 * @guest_size: size of available space 2210 * @brk: location of break 2211 * @align: memory alignment 2212 * 2213 * This is a fallback method for finding a hole in the host address 2214 * space if we don't have the benefit of being able to access 2215 * /proc/self/map. It can potentially take a very long time as we can 2216 * only dumbly iterate up the host address space seeing if the 2217 * allocation would work. 2218 */ 2219 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2220 long align, uintptr_t offset) 2221 { 2222 uintptr_t base; 2223 2224 /* Start (aligned) at the bottom and work our way up */ 2225 base = ROUND_UP(mmap_min_addr, align); 2226 2227 while (true) { 2228 uintptr_t align_start, end; 2229 align_start = ROUND_UP(base, align); 2230 end = align_start + guest_size + offset; 2231 2232 /* if brk is anywhere in the range give ourselves some room to grow. */ 2233 if (align_start <= brk && brk < end) { 2234 base = brk + (16 * MiB); 2235 continue; 2236 } else if (align_start + guest_size < align_start) { 2237 /* we have run out of space */ 2238 return -1; 2239 } else { 2240 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2241 MAP_FIXED_NOREPLACE; 2242 void * mmap_start = mmap((void *) align_start, guest_size, 2243 PROT_NONE, flags, -1, 0); 2244 if (mmap_start != MAP_FAILED) { 2245 munmap(mmap_start, guest_size); 2246 if (mmap_start == (void *) align_start) { 2247 return (uintptr_t) mmap_start + offset; 2248 } 2249 } 2250 base += qemu_host_page_size; 2251 } 2252 } 2253 } 2254 2255 /* Return value for guest_base, or -1 if no hole found. */ 2256 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2257 long align, uintptr_t offset) 2258 { 2259 GSList *maps, *iter; 2260 uintptr_t this_start, this_end, next_start, brk; 2261 intptr_t ret = -1; 2262 2263 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2264 2265 maps = read_self_maps(); 2266 2267 /* Read brk after we've read the maps, which will malloc. */ 2268 brk = (uintptr_t)sbrk(0); 2269 2270 if (!maps) { 2271 ret = pgd_find_hole_fallback(guest_size, brk, align, offset); 2272 return ret == -1 ? -1 : ret - guest_loaddr; 2273 } 2274 2275 /* The first hole is before the first map entry. */ 2276 this_start = mmap_min_addr; 2277 2278 for (iter = maps; iter; 2279 this_start = next_start, iter = g_slist_next(iter)) { 2280 uintptr_t align_start, hole_size; 2281 2282 this_end = ((MapInfo *)iter->data)->start; 2283 next_start = ((MapInfo *)iter->data)->end; 2284 align_start = ROUND_UP(this_start + offset, align); 2285 2286 /* Skip holes that are too small. */ 2287 if (align_start >= this_end) { 2288 continue; 2289 } 2290 hole_size = this_end - align_start; 2291 if (hole_size < guest_size) { 2292 continue; 2293 } 2294 2295 /* If this hole contains brk, give ourselves some room to grow. */ 2296 if (this_start <= brk && brk < this_end) { 2297 hole_size -= guest_size; 2298 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2299 align_start += 1 * GiB; 2300 } else if (hole_size >= 16 * MiB) { 2301 align_start += 16 * MiB; 2302 } else { 2303 align_start = (this_end - guest_size) & -align; 2304 if (align_start < this_start) { 2305 continue; 2306 } 2307 } 2308 } 2309 2310 /* Record the lowest successful match. */ 2311 if (ret < 0) { 2312 ret = align_start - guest_loaddr; 2313 } 2314 /* If this hole contains the identity map, select it. */ 2315 if (align_start <= guest_loaddr && 2316 guest_loaddr + guest_size <= this_end) { 2317 ret = 0; 2318 } 2319 /* If this hole ends above the identity map, stop looking. */ 2320 if (this_end >= guest_loaddr) { 2321 break; 2322 } 2323 } 2324 free_self_maps(maps); 2325 2326 return ret; 2327 } 2328 2329 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2330 abi_ulong orig_hiaddr, long align) 2331 { 2332 uintptr_t loaddr = orig_loaddr; 2333 uintptr_t hiaddr = orig_hiaddr; 2334 uintptr_t offset = 0; 2335 uintptr_t addr; 2336 2337 if (hiaddr != orig_hiaddr) { 2338 error_report("%s: requires virtual address space that the " 2339 "host cannot provide (0x%" PRIx64 ")", 2340 image_name, (uint64_t)orig_hiaddr); 2341 exit(EXIT_FAILURE); 2342 } 2343 2344 loaddr &= -align; 2345 if (ARM_COMMPAGE) { 2346 /* 2347 * Extend the allocation to include the commpage. 2348 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2349 * need to ensure there is space bellow the guest_base so we 2350 * can map the commpage in the place needed when the address 2351 * arithmetic wraps around. 2352 */ 2353 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2354 hiaddr = (uintptr_t) 4 << 30; 2355 } else { 2356 offset = -(ARM_COMMPAGE & -align); 2357 } 2358 } 2359 2360 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2361 if (addr == -1) { 2362 /* 2363 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation 2364 * that can satisfy both. But as the normal arm32 link base address 2365 * is ~32k, and we extend down to include the commpage, making the 2366 * overhead only ~96k, this is unlikely. 2367 */ 2368 error_report("%s: Unable to allocate %#zx bytes of " 2369 "virtual address space", image_name, 2370 (size_t)(hiaddr - loaddr)); 2371 exit(EXIT_FAILURE); 2372 } 2373 2374 guest_base = addr; 2375 } 2376 2377 static void pgb_dynamic(const char *image_name, long align) 2378 { 2379 /* 2380 * The executable is dynamic and does not require a fixed address. 2381 * All we need is a commpage that satisfies align. 2382 * If we do not need a commpage, leave guest_base == 0. 2383 */ 2384 if (ARM_COMMPAGE) { 2385 uintptr_t addr, commpage; 2386 2387 /* 64-bit hosts should have used reserved_va. */ 2388 assert(sizeof(uintptr_t) == 4); 2389 2390 /* 2391 * By putting the commpage at the first hole, that puts guest_base 2392 * just above that, and maximises the positive guest addresses. 2393 */ 2394 commpage = ARM_COMMPAGE & -align; 2395 addr = pgb_find_hole(commpage, -commpage, align, 0); 2396 assert(addr != -1); 2397 guest_base = addr; 2398 } 2399 } 2400 2401 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2402 abi_ulong guest_hiaddr, long align) 2403 { 2404 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2405 void *addr, *test; 2406 2407 if (guest_hiaddr > reserved_va) { 2408 error_report("%s: requires more than reserved virtual " 2409 "address space (0x%" PRIx64 " > 0x%lx)", 2410 image_name, (uint64_t)guest_hiaddr, reserved_va); 2411 exit(EXIT_FAILURE); 2412 } 2413 2414 /* Widen the "image" to the entire reserved address space. */ 2415 pgb_static(image_name, 0, reserved_va, align); 2416 2417 /* osdep.h defines this as 0 if it's missing */ 2418 flags |= MAP_FIXED_NOREPLACE; 2419 2420 /* Reserve the memory on the host. */ 2421 assert(guest_base != 0); 2422 test = g2h_untagged(0); 2423 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2424 if (addr == MAP_FAILED || addr != test) { 2425 error_report("Unable to reserve 0x%lx bytes of virtual address " 2426 "space at %p (%s) for use as guest address space (check your" 2427 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2428 "using -R option)", reserved_va, test, strerror(errno)); 2429 exit(EXIT_FAILURE); 2430 } 2431 } 2432 2433 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2434 abi_ulong guest_hiaddr) 2435 { 2436 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2437 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2438 2439 if (have_guest_base) { 2440 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2441 } else if (reserved_va) { 2442 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2443 } else if (guest_loaddr) { 2444 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2445 } else { 2446 pgb_dynamic(image_name, align); 2447 } 2448 2449 /* Reserve and initialize the commpage. */ 2450 if (!init_guest_commpage()) { 2451 /* 2452 * With have_guest_base, the user has selected the address and 2453 * we are trying to work with that. Otherwise, we have selected 2454 * free space and init_guest_commpage must succeeded. 2455 */ 2456 assert(have_guest_base); 2457 pgb_fail_in_use(image_name); 2458 } 2459 2460 assert(QEMU_IS_ALIGNED(guest_base, align)); 2461 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2462 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2463 } 2464 2465 enum { 2466 /* The string "GNU\0" as a magic number. */ 2467 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2468 NOTE_DATA_SZ = 1 * KiB, 2469 NOTE_NAME_SZ = 4, 2470 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2471 }; 2472 2473 /* 2474 * Process a single gnu_property entry. 2475 * Return false for error. 2476 */ 2477 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2478 struct image_info *info, bool have_prev_type, 2479 uint32_t *prev_type, Error **errp) 2480 { 2481 uint32_t pr_type, pr_datasz, step; 2482 2483 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2484 goto error_data; 2485 } 2486 datasz -= *off; 2487 data += *off / sizeof(uint32_t); 2488 2489 if (datasz < 2 * sizeof(uint32_t)) { 2490 goto error_data; 2491 } 2492 pr_type = data[0]; 2493 pr_datasz = data[1]; 2494 data += 2; 2495 datasz -= 2 * sizeof(uint32_t); 2496 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2497 if (step > datasz) { 2498 goto error_data; 2499 } 2500 2501 /* Properties are supposed to be unique and sorted on pr_type. */ 2502 if (have_prev_type && pr_type <= *prev_type) { 2503 if (pr_type == *prev_type) { 2504 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2505 } else { 2506 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2507 } 2508 return false; 2509 } 2510 *prev_type = pr_type; 2511 2512 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2513 return false; 2514 } 2515 2516 *off += 2 * sizeof(uint32_t) + step; 2517 return true; 2518 2519 error_data: 2520 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2521 return false; 2522 } 2523 2524 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2525 static bool parse_elf_properties(int image_fd, 2526 struct image_info *info, 2527 const struct elf_phdr *phdr, 2528 char bprm_buf[BPRM_BUF_SIZE], 2529 Error **errp) 2530 { 2531 union { 2532 struct elf_note nhdr; 2533 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2534 } note; 2535 2536 int n, off, datasz; 2537 bool have_prev_type; 2538 uint32_t prev_type; 2539 2540 /* Unless the arch requires properties, ignore them. */ 2541 if (!ARCH_USE_GNU_PROPERTY) { 2542 return true; 2543 } 2544 2545 /* If the properties are crazy large, that's too bad. */ 2546 n = phdr->p_filesz; 2547 if (n > sizeof(note)) { 2548 error_setg(errp, "PT_GNU_PROPERTY too large"); 2549 return false; 2550 } 2551 if (n < sizeof(note.nhdr)) { 2552 error_setg(errp, "PT_GNU_PROPERTY too small"); 2553 return false; 2554 } 2555 2556 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2557 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2558 } else { 2559 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2560 if (len != n) { 2561 error_setg_errno(errp, errno, "Error reading file header"); 2562 return false; 2563 } 2564 } 2565 2566 /* 2567 * The contents of a valid PT_GNU_PROPERTY is a sequence 2568 * of uint32_t -- swap them all now. 2569 */ 2570 #ifdef BSWAP_NEEDED 2571 for (int i = 0; i < n / 4; i++) { 2572 bswap32s(note.data + i); 2573 } 2574 #endif 2575 2576 /* 2577 * Note that nhdr is 3 words, and that the "name" described by namesz 2578 * immediately follows nhdr and is thus at the 4th word. Further, all 2579 * of the inputs to the kernel's round_up are multiples of 4. 2580 */ 2581 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2582 note.nhdr.n_namesz != NOTE_NAME_SZ || 2583 note.data[3] != GNU0_MAGIC) { 2584 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2585 return false; 2586 } 2587 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2588 2589 datasz = note.nhdr.n_descsz + off; 2590 if (datasz > n) { 2591 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2592 return false; 2593 } 2594 2595 have_prev_type = false; 2596 prev_type = 0; 2597 while (1) { 2598 if (off == datasz) { 2599 return true; /* end, exit ok */ 2600 } 2601 if (!parse_elf_property(note.data, &off, datasz, info, 2602 have_prev_type, &prev_type, errp)) { 2603 return false; 2604 } 2605 have_prev_type = true; 2606 } 2607 } 2608 2609 /* Load an ELF image into the address space. 2610 2611 IMAGE_NAME is the filename of the image, to use in error messages. 2612 IMAGE_FD is the open file descriptor for the image. 2613 2614 BPRM_BUF is a copy of the beginning of the file; this of course 2615 contains the elf file header at offset 0. It is assumed that this 2616 buffer is sufficiently aligned to present no problems to the host 2617 in accessing data at aligned offsets within the buffer. 2618 2619 On return: INFO values will be filled in, as necessary or available. */ 2620 2621 static void load_elf_image(const char *image_name, int image_fd, 2622 struct image_info *info, char **pinterp_name, 2623 char bprm_buf[BPRM_BUF_SIZE]) 2624 { 2625 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2626 struct elf_phdr *phdr; 2627 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2628 int i, retval, prot_exec; 2629 Error *err = NULL; 2630 2631 /* First of all, some simple consistency checks */ 2632 if (!elf_check_ident(ehdr)) { 2633 error_setg(&err, "Invalid ELF image for this architecture"); 2634 goto exit_errmsg; 2635 } 2636 bswap_ehdr(ehdr); 2637 if (!elf_check_ehdr(ehdr)) { 2638 error_setg(&err, "Invalid ELF image for this architecture"); 2639 goto exit_errmsg; 2640 } 2641 2642 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2643 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2644 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2645 } else { 2646 phdr = (struct elf_phdr *) alloca(i); 2647 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2648 if (retval != i) { 2649 goto exit_read; 2650 } 2651 } 2652 bswap_phdr(phdr, ehdr->e_phnum); 2653 2654 info->nsegs = 0; 2655 info->pt_dynamic_addr = 0; 2656 2657 mmap_lock(); 2658 2659 /* 2660 * Find the maximum size of the image and allocate an appropriate 2661 * amount of memory to handle that. Locate the interpreter, if any. 2662 */ 2663 loaddr = -1, hiaddr = 0; 2664 info->alignment = 0; 2665 for (i = 0; i < ehdr->e_phnum; ++i) { 2666 struct elf_phdr *eppnt = phdr + i; 2667 if (eppnt->p_type == PT_LOAD) { 2668 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 2669 if (a < loaddr) { 2670 loaddr = a; 2671 } 2672 a = eppnt->p_vaddr + eppnt->p_memsz; 2673 if (a > hiaddr) { 2674 hiaddr = a; 2675 } 2676 ++info->nsegs; 2677 info->alignment |= eppnt->p_align; 2678 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2679 g_autofree char *interp_name = NULL; 2680 2681 if (*pinterp_name) { 2682 error_setg(&err, "Multiple PT_INTERP entries"); 2683 goto exit_errmsg; 2684 } 2685 2686 interp_name = g_malloc(eppnt->p_filesz); 2687 2688 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2689 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2690 eppnt->p_filesz); 2691 } else { 2692 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2693 eppnt->p_offset); 2694 if (retval != eppnt->p_filesz) { 2695 goto exit_read; 2696 } 2697 } 2698 if (interp_name[eppnt->p_filesz - 1] != 0) { 2699 error_setg(&err, "Invalid PT_INTERP entry"); 2700 goto exit_errmsg; 2701 } 2702 *pinterp_name = g_steal_pointer(&interp_name); 2703 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 2704 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 2705 goto exit_errmsg; 2706 } 2707 } 2708 } 2709 2710 if (pinterp_name != NULL) { 2711 /* 2712 * This is the main executable. 2713 * 2714 * Reserve extra space for brk. 2715 * We hold on to this space while placing the interpreter 2716 * and the stack, lest they be placed immediately after 2717 * the data segment and block allocation from the brk. 2718 * 2719 * 16MB is chosen as "large enough" without being so large 2720 * as to allow the result to not fit with a 32-bit guest on 2721 * a 32-bit host. 2722 */ 2723 info->reserve_brk = 16 * MiB; 2724 hiaddr += info->reserve_brk; 2725 2726 if (ehdr->e_type == ET_EXEC) { 2727 /* 2728 * Make sure that the low address does not conflict with 2729 * MMAP_MIN_ADDR or the QEMU application itself. 2730 */ 2731 probe_guest_base(image_name, loaddr, hiaddr); 2732 } else { 2733 /* 2734 * The binary is dynamic, but we still need to 2735 * select guest_base. In this case we pass a size. 2736 */ 2737 probe_guest_base(image_name, 0, hiaddr - loaddr); 2738 } 2739 } 2740 2741 /* 2742 * Reserve address space for all of this. 2743 * 2744 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2745 * exactly the address range that is required. 2746 * 2747 * Otherwise this is ET_DYN, and we are searching for a location 2748 * that can hold the memory space required. If the image is 2749 * pre-linked, LOADDR will be non-zero, and the kernel should 2750 * honor that address if it happens to be free. 2751 * 2752 * In both cases, we will overwrite pages in this range with mappings 2753 * from the executable. 2754 */ 2755 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2756 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2757 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2758 -1, 0); 2759 if (load_addr == -1) { 2760 goto exit_mmap; 2761 } 2762 load_bias = load_addr - loaddr; 2763 2764 if (elf_is_fdpic(ehdr)) { 2765 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2766 g_malloc(sizeof(*loadsegs) * info->nsegs); 2767 2768 for (i = 0; i < ehdr->e_phnum; ++i) { 2769 switch (phdr[i].p_type) { 2770 case PT_DYNAMIC: 2771 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2772 break; 2773 case PT_LOAD: 2774 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2775 loadsegs->p_vaddr = phdr[i].p_vaddr; 2776 loadsegs->p_memsz = phdr[i].p_memsz; 2777 ++loadsegs; 2778 break; 2779 } 2780 } 2781 } 2782 2783 info->load_bias = load_bias; 2784 info->code_offset = load_bias; 2785 info->data_offset = load_bias; 2786 info->load_addr = load_addr; 2787 info->entry = ehdr->e_entry + load_bias; 2788 info->start_code = -1; 2789 info->end_code = 0; 2790 info->start_data = -1; 2791 info->end_data = 0; 2792 info->brk = 0; 2793 info->elf_flags = ehdr->e_flags; 2794 2795 prot_exec = PROT_EXEC; 2796 #ifdef TARGET_AARCH64 2797 /* 2798 * If the BTI feature is present, this indicates that the executable 2799 * pages of the startup binary should be mapped with PROT_BTI, so that 2800 * branch targets are enforced. 2801 * 2802 * The startup binary is either the interpreter or the static executable. 2803 * The interpreter is responsible for all pages of a dynamic executable. 2804 * 2805 * Elf notes are backward compatible to older cpus. 2806 * Do not enable BTI unless it is supported. 2807 */ 2808 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 2809 && (pinterp_name == NULL || *pinterp_name == 0) 2810 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 2811 prot_exec |= TARGET_PROT_BTI; 2812 } 2813 #endif 2814 2815 for (i = 0; i < ehdr->e_phnum; i++) { 2816 struct elf_phdr *eppnt = phdr + i; 2817 if (eppnt->p_type == PT_LOAD) { 2818 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2819 int elf_prot = 0; 2820 2821 if (eppnt->p_flags & PF_R) { 2822 elf_prot |= PROT_READ; 2823 } 2824 if (eppnt->p_flags & PF_W) { 2825 elf_prot |= PROT_WRITE; 2826 } 2827 if (eppnt->p_flags & PF_X) { 2828 elf_prot |= prot_exec; 2829 } 2830 2831 vaddr = load_bias + eppnt->p_vaddr; 2832 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2833 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2834 2835 vaddr_ef = vaddr + eppnt->p_filesz; 2836 vaddr_em = vaddr + eppnt->p_memsz; 2837 2838 /* 2839 * Some segments may be completely empty, with a non-zero p_memsz 2840 * but no backing file segment. 2841 */ 2842 if (eppnt->p_filesz != 0) { 2843 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2844 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2845 MAP_PRIVATE | MAP_FIXED, 2846 image_fd, eppnt->p_offset - vaddr_po); 2847 2848 if (error == -1) { 2849 goto exit_mmap; 2850 } 2851 2852 /* 2853 * If the load segment requests extra zeros (e.g. bss), map it. 2854 */ 2855 if (eppnt->p_filesz < eppnt->p_memsz) { 2856 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2857 } 2858 } else if (eppnt->p_memsz != 0) { 2859 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 2860 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2861 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 2862 -1, 0); 2863 2864 if (error == -1) { 2865 goto exit_mmap; 2866 } 2867 } 2868 2869 /* Find the full program boundaries. */ 2870 if (elf_prot & PROT_EXEC) { 2871 if (vaddr < info->start_code) { 2872 info->start_code = vaddr; 2873 } 2874 if (vaddr_ef > info->end_code) { 2875 info->end_code = vaddr_ef; 2876 } 2877 } 2878 if (elf_prot & PROT_WRITE) { 2879 if (vaddr < info->start_data) { 2880 info->start_data = vaddr; 2881 } 2882 if (vaddr_ef > info->end_data) { 2883 info->end_data = vaddr_ef; 2884 } 2885 } 2886 if (vaddr_em > info->brk) { 2887 info->brk = vaddr_em; 2888 } 2889 #ifdef TARGET_MIPS 2890 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2891 Mips_elf_abiflags_v0 abiflags; 2892 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2893 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 2894 goto exit_errmsg; 2895 } 2896 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2897 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2898 sizeof(Mips_elf_abiflags_v0)); 2899 } else { 2900 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2901 eppnt->p_offset); 2902 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2903 goto exit_read; 2904 } 2905 } 2906 bswap_mips_abiflags(&abiflags); 2907 info->fp_abi = abiflags.fp_abi; 2908 #endif 2909 } 2910 } 2911 2912 if (info->end_data == 0) { 2913 info->start_data = info->end_code; 2914 info->end_data = info->end_code; 2915 } 2916 2917 if (qemu_log_enabled()) { 2918 load_symbols(ehdr, image_fd, load_bias); 2919 } 2920 2921 mmap_unlock(); 2922 2923 close(image_fd); 2924 return; 2925 2926 exit_read: 2927 if (retval >= 0) { 2928 error_setg(&err, "Incomplete read of file header"); 2929 } else { 2930 error_setg_errno(&err, errno, "Error reading file header"); 2931 } 2932 goto exit_errmsg; 2933 exit_mmap: 2934 error_setg_errno(&err, errno, "Error mapping file"); 2935 goto exit_errmsg; 2936 exit_errmsg: 2937 error_reportf_err(err, "%s: ", image_name); 2938 exit(-1); 2939 } 2940 2941 static void load_elf_interp(const char *filename, struct image_info *info, 2942 char bprm_buf[BPRM_BUF_SIZE]) 2943 { 2944 int fd, retval; 2945 Error *err = NULL; 2946 2947 fd = open(path(filename), O_RDONLY); 2948 if (fd < 0) { 2949 error_setg_file_open(&err, errno, filename); 2950 error_report_err(err); 2951 exit(-1); 2952 } 2953 2954 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2955 if (retval < 0) { 2956 error_setg_errno(&err, errno, "Error reading file header"); 2957 error_reportf_err(err, "%s: ", filename); 2958 exit(-1); 2959 } 2960 2961 if (retval < BPRM_BUF_SIZE) { 2962 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2963 } 2964 2965 load_elf_image(filename, fd, info, NULL, bprm_buf); 2966 } 2967 2968 static int symfind(const void *s0, const void *s1) 2969 { 2970 target_ulong addr = *(target_ulong *)s0; 2971 struct elf_sym *sym = (struct elf_sym *)s1; 2972 int result = 0; 2973 if (addr < sym->st_value) { 2974 result = -1; 2975 } else if (addr >= sym->st_value + sym->st_size) { 2976 result = 1; 2977 } 2978 return result; 2979 } 2980 2981 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2982 { 2983 #if ELF_CLASS == ELFCLASS32 2984 struct elf_sym *syms = s->disas_symtab.elf32; 2985 #else 2986 struct elf_sym *syms = s->disas_symtab.elf64; 2987 #endif 2988 2989 // binary search 2990 struct elf_sym *sym; 2991 2992 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2993 if (sym != NULL) { 2994 return s->disas_strtab + sym->st_name; 2995 } 2996 2997 return ""; 2998 } 2999 3000 /* FIXME: This should use elf_ops.h */ 3001 static int symcmp(const void *s0, const void *s1) 3002 { 3003 struct elf_sym *sym0 = (struct elf_sym *)s0; 3004 struct elf_sym *sym1 = (struct elf_sym *)s1; 3005 return (sym0->st_value < sym1->st_value) 3006 ? -1 3007 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3008 } 3009 3010 /* Best attempt to load symbols from this ELF object. */ 3011 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3012 { 3013 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3014 uint64_t segsz; 3015 struct elf_shdr *shdr; 3016 char *strings = NULL; 3017 struct syminfo *s = NULL; 3018 struct elf_sym *new_syms, *syms = NULL; 3019 3020 shnum = hdr->e_shnum; 3021 i = shnum * sizeof(struct elf_shdr); 3022 shdr = (struct elf_shdr *)alloca(i); 3023 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3024 return; 3025 } 3026 3027 bswap_shdr(shdr, shnum); 3028 for (i = 0; i < shnum; ++i) { 3029 if (shdr[i].sh_type == SHT_SYMTAB) { 3030 sym_idx = i; 3031 str_idx = shdr[i].sh_link; 3032 goto found; 3033 } 3034 } 3035 3036 /* There will be no symbol table if the file was stripped. */ 3037 return; 3038 3039 found: 3040 /* Now know where the strtab and symtab are. Snarf them. */ 3041 s = g_try_new(struct syminfo, 1); 3042 if (!s) { 3043 goto give_up; 3044 } 3045 3046 segsz = shdr[str_idx].sh_size; 3047 s->disas_strtab = strings = g_try_malloc(segsz); 3048 if (!strings || 3049 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3050 goto give_up; 3051 } 3052 3053 segsz = shdr[sym_idx].sh_size; 3054 syms = g_try_malloc(segsz); 3055 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3056 goto give_up; 3057 } 3058 3059 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3060 /* Implausibly large symbol table: give up rather than ploughing 3061 * on with the number of symbols calculation overflowing 3062 */ 3063 goto give_up; 3064 } 3065 nsyms = segsz / sizeof(struct elf_sym); 3066 for (i = 0; i < nsyms; ) { 3067 bswap_sym(syms + i); 3068 /* Throw away entries which we do not need. */ 3069 if (syms[i].st_shndx == SHN_UNDEF 3070 || syms[i].st_shndx >= SHN_LORESERVE 3071 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3072 if (i < --nsyms) { 3073 syms[i] = syms[nsyms]; 3074 } 3075 } else { 3076 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3077 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3078 syms[i].st_value &= ~(target_ulong)1; 3079 #endif 3080 syms[i].st_value += load_bias; 3081 i++; 3082 } 3083 } 3084 3085 /* No "useful" symbol. */ 3086 if (nsyms == 0) { 3087 goto give_up; 3088 } 3089 3090 /* Attempt to free the storage associated with the local symbols 3091 that we threw away. Whether or not this has any effect on the 3092 memory allocation depends on the malloc implementation and how 3093 many symbols we managed to discard. */ 3094 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3095 if (new_syms == NULL) { 3096 goto give_up; 3097 } 3098 syms = new_syms; 3099 3100 qsort(syms, nsyms, sizeof(*syms), symcmp); 3101 3102 s->disas_num_syms = nsyms; 3103 #if ELF_CLASS == ELFCLASS32 3104 s->disas_symtab.elf32 = syms; 3105 #else 3106 s->disas_symtab.elf64 = syms; 3107 #endif 3108 s->lookup_symbol = lookup_symbolxx; 3109 s->next = syminfos; 3110 syminfos = s; 3111 3112 return; 3113 3114 give_up: 3115 g_free(s); 3116 g_free(strings); 3117 g_free(syms); 3118 } 3119 3120 uint32_t get_elf_eflags(int fd) 3121 { 3122 struct elfhdr ehdr; 3123 off_t offset; 3124 int ret; 3125 3126 /* Read ELF header */ 3127 offset = lseek(fd, 0, SEEK_SET); 3128 if (offset == (off_t) -1) { 3129 return 0; 3130 } 3131 ret = read(fd, &ehdr, sizeof(ehdr)); 3132 if (ret < sizeof(ehdr)) { 3133 return 0; 3134 } 3135 offset = lseek(fd, offset, SEEK_SET); 3136 if (offset == (off_t) -1) { 3137 return 0; 3138 } 3139 3140 /* Check ELF signature */ 3141 if (!elf_check_ident(&ehdr)) { 3142 return 0; 3143 } 3144 3145 /* check header */ 3146 bswap_ehdr(&ehdr); 3147 if (!elf_check_ehdr(&ehdr)) { 3148 return 0; 3149 } 3150 3151 /* return architecture id */ 3152 return ehdr.e_flags; 3153 } 3154 3155 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3156 { 3157 struct image_info interp_info; 3158 struct elfhdr elf_ex; 3159 char *elf_interpreter = NULL; 3160 char *scratch; 3161 3162 memset(&interp_info, 0, sizeof(interp_info)); 3163 #ifdef TARGET_MIPS 3164 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3165 #endif 3166 3167 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3168 3169 load_elf_image(bprm->filename, bprm->fd, info, 3170 &elf_interpreter, bprm->buf); 3171 3172 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3173 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3174 when we load the interpreter. */ 3175 elf_ex = *(struct elfhdr *)bprm->buf; 3176 3177 /* Do this so that we can load the interpreter, if need be. We will 3178 change some of these later */ 3179 bprm->p = setup_arg_pages(bprm, info); 3180 3181 scratch = g_new0(char, TARGET_PAGE_SIZE); 3182 if (STACK_GROWS_DOWN) { 3183 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3184 bprm->p, info->stack_limit); 3185 info->file_string = bprm->p; 3186 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3187 bprm->p, info->stack_limit); 3188 info->env_strings = bprm->p; 3189 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3190 bprm->p, info->stack_limit); 3191 info->arg_strings = bprm->p; 3192 } else { 3193 info->arg_strings = bprm->p; 3194 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3195 bprm->p, info->stack_limit); 3196 info->env_strings = bprm->p; 3197 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3198 bprm->p, info->stack_limit); 3199 info->file_string = bprm->p; 3200 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3201 bprm->p, info->stack_limit); 3202 } 3203 3204 g_free(scratch); 3205 3206 if (!bprm->p) { 3207 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3208 exit(-1); 3209 } 3210 3211 if (elf_interpreter) { 3212 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3213 3214 /* If the program interpreter is one of these two, then assume 3215 an iBCS2 image. Otherwise assume a native linux image. */ 3216 3217 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3218 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3219 info->personality = PER_SVR4; 3220 3221 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3222 and some applications "depend" upon this behavior. Since 3223 we do not have the power to recompile these, we emulate 3224 the SVr4 behavior. Sigh. */ 3225 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3226 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3227 } 3228 #ifdef TARGET_MIPS 3229 info->interp_fp_abi = interp_info.fp_abi; 3230 #endif 3231 } 3232 3233 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3234 info, (elf_interpreter ? &interp_info : NULL)); 3235 info->start_stack = bprm->p; 3236 3237 /* If we have an interpreter, set that as the program's entry point. 3238 Copy the load_bias as well, to help PPC64 interpret the entry 3239 point as a function descriptor. Do this after creating elf tables 3240 so that we copy the original program entry point into the AUXV. */ 3241 if (elf_interpreter) { 3242 info->load_bias = interp_info.load_bias; 3243 info->entry = interp_info.entry; 3244 g_free(elf_interpreter); 3245 } 3246 3247 #ifdef USE_ELF_CORE_DUMP 3248 bprm->core_dump = &elf_core_dump; 3249 #endif 3250 3251 /* 3252 * If we reserved extra space for brk, release it now. 3253 * The implementation of do_brk in syscalls.c expects to be able 3254 * to mmap pages in this space. 3255 */ 3256 if (info->reserve_brk) { 3257 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3258 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3259 target_munmap(start_brk, end_brk - start_brk); 3260 } 3261 3262 return 0; 3263 } 3264 3265 #ifdef USE_ELF_CORE_DUMP 3266 /* 3267 * Definitions to generate Intel SVR4-like core files. 3268 * These mostly have the same names as the SVR4 types with "target_elf_" 3269 * tacked on the front to prevent clashes with linux definitions, 3270 * and the typedef forms have been avoided. This is mostly like 3271 * the SVR4 structure, but more Linuxy, with things that Linux does 3272 * not support and which gdb doesn't really use excluded. 3273 * 3274 * Fields we don't dump (their contents is zero) in linux-user qemu 3275 * are marked with XXX. 3276 * 3277 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3278 * 3279 * Porting ELF coredump for target is (quite) simple process. First you 3280 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3281 * the target resides): 3282 * 3283 * #define USE_ELF_CORE_DUMP 3284 * 3285 * Next you define type of register set used for dumping. ELF specification 3286 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3287 * 3288 * typedef <target_regtype> target_elf_greg_t; 3289 * #define ELF_NREG <number of registers> 3290 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3291 * 3292 * Last step is to implement target specific function that copies registers 3293 * from given cpu into just specified register set. Prototype is: 3294 * 3295 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3296 * const CPUArchState *env); 3297 * 3298 * Parameters: 3299 * regs - copy register values into here (allocated and zeroed by caller) 3300 * env - copy registers from here 3301 * 3302 * Example for ARM target is provided in this file. 3303 */ 3304 3305 /* An ELF note in memory */ 3306 struct memelfnote { 3307 const char *name; 3308 size_t namesz; 3309 size_t namesz_rounded; 3310 int type; 3311 size_t datasz; 3312 size_t datasz_rounded; 3313 void *data; 3314 size_t notesz; 3315 }; 3316 3317 struct target_elf_siginfo { 3318 abi_int si_signo; /* signal number */ 3319 abi_int si_code; /* extra code */ 3320 abi_int si_errno; /* errno */ 3321 }; 3322 3323 struct target_elf_prstatus { 3324 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3325 abi_short pr_cursig; /* Current signal */ 3326 abi_ulong pr_sigpend; /* XXX */ 3327 abi_ulong pr_sighold; /* XXX */ 3328 target_pid_t pr_pid; 3329 target_pid_t pr_ppid; 3330 target_pid_t pr_pgrp; 3331 target_pid_t pr_sid; 3332 struct target_timeval pr_utime; /* XXX User time */ 3333 struct target_timeval pr_stime; /* XXX System time */ 3334 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3335 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3336 target_elf_gregset_t pr_reg; /* GP registers */ 3337 abi_int pr_fpvalid; /* XXX */ 3338 }; 3339 3340 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3341 3342 struct target_elf_prpsinfo { 3343 char pr_state; /* numeric process state */ 3344 char pr_sname; /* char for pr_state */ 3345 char pr_zomb; /* zombie */ 3346 char pr_nice; /* nice val */ 3347 abi_ulong pr_flag; /* flags */ 3348 target_uid_t pr_uid; 3349 target_gid_t pr_gid; 3350 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3351 /* Lots missing */ 3352 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3353 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3354 }; 3355 3356 /* Here is the structure in which status of each thread is captured. */ 3357 struct elf_thread_status { 3358 QTAILQ_ENTRY(elf_thread_status) ets_link; 3359 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3360 #if 0 3361 elf_fpregset_t fpu; /* NT_PRFPREG */ 3362 struct task_struct *thread; 3363 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3364 #endif 3365 struct memelfnote notes[1]; 3366 int num_notes; 3367 }; 3368 3369 struct elf_note_info { 3370 struct memelfnote *notes; 3371 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3372 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3373 3374 QTAILQ_HEAD(, elf_thread_status) thread_list; 3375 #if 0 3376 /* 3377 * Current version of ELF coredump doesn't support 3378 * dumping fp regs etc. 3379 */ 3380 elf_fpregset_t *fpu; 3381 elf_fpxregset_t *xfpu; 3382 int thread_status_size; 3383 #endif 3384 int notes_size; 3385 int numnote; 3386 }; 3387 3388 struct vm_area_struct { 3389 target_ulong vma_start; /* start vaddr of memory region */ 3390 target_ulong vma_end; /* end vaddr of memory region */ 3391 abi_ulong vma_flags; /* protection etc. flags for the region */ 3392 QTAILQ_ENTRY(vm_area_struct) vma_link; 3393 }; 3394 3395 struct mm_struct { 3396 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3397 int mm_count; /* number of mappings */ 3398 }; 3399 3400 static struct mm_struct *vma_init(void); 3401 static void vma_delete(struct mm_struct *); 3402 static int vma_add_mapping(struct mm_struct *, target_ulong, 3403 target_ulong, abi_ulong); 3404 static int vma_get_mapping_count(const struct mm_struct *); 3405 static struct vm_area_struct *vma_first(const struct mm_struct *); 3406 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3407 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3408 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3409 unsigned long flags); 3410 3411 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3412 static void fill_note(struct memelfnote *, const char *, int, 3413 unsigned int, void *); 3414 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3415 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3416 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3417 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3418 static size_t note_size(const struct memelfnote *); 3419 static void free_note_info(struct elf_note_info *); 3420 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3421 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3422 3423 static int dump_write(int, const void *, size_t); 3424 static int write_note(struct memelfnote *, int); 3425 static int write_note_info(struct elf_note_info *, int); 3426 3427 #ifdef BSWAP_NEEDED 3428 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3429 { 3430 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3431 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3432 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3433 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3434 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3435 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3436 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3437 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3438 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3439 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3440 /* cpu times are not filled, so we skip them */ 3441 /* regs should be in correct format already */ 3442 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3443 } 3444 3445 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3446 { 3447 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3448 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3449 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3450 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3451 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3452 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3453 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3454 } 3455 3456 static void bswap_note(struct elf_note *en) 3457 { 3458 bswap32s(&en->n_namesz); 3459 bswap32s(&en->n_descsz); 3460 bswap32s(&en->n_type); 3461 } 3462 #else 3463 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3464 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3465 static inline void bswap_note(struct elf_note *en) { } 3466 #endif /* BSWAP_NEEDED */ 3467 3468 /* 3469 * Minimal support for linux memory regions. These are needed 3470 * when we are finding out what memory exactly belongs to 3471 * emulated process. No locks needed here, as long as 3472 * thread that received the signal is stopped. 3473 */ 3474 3475 static struct mm_struct *vma_init(void) 3476 { 3477 struct mm_struct *mm; 3478 3479 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3480 return (NULL); 3481 3482 mm->mm_count = 0; 3483 QTAILQ_INIT(&mm->mm_mmap); 3484 3485 return (mm); 3486 } 3487 3488 static void vma_delete(struct mm_struct *mm) 3489 { 3490 struct vm_area_struct *vma; 3491 3492 while ((vma = vma_first(mm)) != NULL) { 3493 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3494 g_free(vma); 3495 } 3496 g_free(mm); 3497 } 3498 3499 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3500 target_ulong end, abi_ulong flags) 3501 { 3502 struct vm_area_struct *vma; 3503 3504 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3505 return (-1); 3506 3507 vma->vma_start = start; 3508 vma->vma_end = end; 3509 vma->vma_flags = flags; 3510 3511 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3512 mm->mm_count++; 3513 3514 return (0); 3515 } 3516 3517 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3518 { 3519 return (QTAILQ_FIRST(&mm->mm_mmap)); 3520 } 3521 3522 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3523 { 3524 return (QTAILQ_NEXT(vma, vma_link)); 3525 } 3526 3527 static int vma_get_mapping_count(const struct mm_struct *mm) 3528 { 3529 return (mm->mm_count); 3530 } 3531 3532 /* 3533 * Calculate file (dump) size of given memory region. 3534 */ 3535 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3536 { 3537 /* if we cannot even read the first page, skip it */ 3538 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3539 return (0); 3540 3541 /* 3542 * Usually we don't dump executable pages as they contain 3543 * non-writable code that debugger can read directly from 3544 * target library etc. However, thread stacks are marked 3545 * also executable so we read in first page of given region 3546 * and check whether it contains elf header. If there is 3547 * no elf header, we dump it. 3548 */ 3549 if (vma->vma_flags & PROT_EXEC) { 3550 char page[TARGET_PAGE_SIZE]; 3551 3552 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3553 return 0; 3554 } 3555 if ((page[EI_MAG0] == ELFMAG0) && 3556 (page[EI_MAG1] == ELFMAG1) && 3557 (page[EI_MAG2] == ELFMAG2) && 3558 (page[EI_MAG3] == ELFMAG3)) { 3559 /* 3560 * Mappings are possibly from ELF binary. Don't dump 3561 * them. 3562 */ 3563 return (0); 3564 } 3565 } 3566 3567 return (vma->vma_end - vma->vma_start); 3568 } 3569 3570 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3571 unsigned long flags) 3572 { 3573 struct mm_struct *mm = (struct mm_struct *)priv; 3574 3575 vma_add_mapping(mm, start, end, flags); 3576 return (0); 3577 } 3578 3579 static void fill_note(struct memelfnote *note, const char *name, int type, 3580 unsigned int sz, void *data) 3581 { 3582 unsigned int namesz; 3583 3584 namesz = strlen(name) + 1; 3585 note->name = name; 3586 note->namesz = namesz; 3587 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3588 note->type = type; 3589 note->datasz = sz; 3590 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3591 3592 note->data = data; 3593 3594 /* 3595 * We calculate rounded up note size here as specified by 3596 * ELF document. 3597 */ 3598 note->notesz = sizeof (struct elf_note) + 3599 note->namesz_rounded + note->datasz_rounded; 3600 } 3601 3602 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3603 uint32_t flags) 3604 { 3605 (void) memset(elf, 0, sizeof(*elf)); 3606 3607 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3608 elf->e_ident[EI_CLASS] = ELF_CLASS; 3609 elf->e_ident[EI_DATA] = ELF_DATA; 3610 elf->e_ident[EI_VERSION] = EV_CURRENT; 3611 elf->e_ident[EI_OSABI] = ELF_OSABI; 3612 3613 elf->e_type = ET_CORE; 3614 elf->e_machine = machine; 3615 elf->e_version = EV_CURRENT; 3616 elf->e_phoff = sizeof(struct elfhdr); 3617 elf->e_flags = flags; 3618 elf->e_ehsize = sizeof(struct elfhdr); 3619 elf->e_phentsize = sizeof(struct elf_phdr); 3620 elf->e_phnum = segs; 3621 3622 bswap_ehdr(elf); 3623 } 3624 3625 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3626 { 3627 phdr->p_type = PT_NOTE; 3628 phdr->p_offset = offset; 3629 phdr->p_vaddr = 0; 3630 phdr->p_paddr = 0; 3631 phdr->p_filesz = sz; 3632 phdr->p_memsz = 0; 3633 phdr->p_flags = 0; 3634 phdr->p_align = 0; 3635 3636 bswap_phdr(phdr, 1); 3637 } 3638 3639 static size_t note_size(const struct memelfnote *note) 3640 { 3641 return (note->notesz); 3642 } 3643 3644 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3645 const TaskState *ts, int signr) 3646 { 3647 (void) memset(prstatus, 0, sizeof (*prstatus)); 3648 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3649 prstatus->pr_pid = ts->ts_tid; 3650 prstatus->pr_ppid = getppid(); 3651 prstatus->pr_pgrp = getpgrp(); 3652 prstatus->pr_sid = getsid(0); 3653 3654 bswap_prstatus(prstatus); 3655 } 3656 3657 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3658 { 3659 char *base_filename; 3660 unsigned int i, len; 3661 3662 (void) memset(psinfo, 0, sizeof (*psinfo)); 3663 3664 len = ts->info->env_strings - ts->info->arg_strings; 3665 if (len >= ELF_PRARGSZ) 3666 len = ELF_PRARGSZ - 1; 3667 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 3668 return -EFAULT; 3669 } 3670 for (i = 0; i < len; i++) 3671 if (psinfo->pr_psargs[i] == 0) 3672 psinfo->pr_psargs[i] = ' '; 3673 psinfo->pr_psargs[len] = 0; 3674 3675 psinfo->pr_pid = getpid(); 3676 psinfo->pr_ppid = getppid(); 3677 psinfo->pr_pgrp = getpgrp(); 3678 psinfo->pr_sid = getsid(0); 3679 psinfo->pr_uid = getuid(); 3680 psinfo->pr_gid = getgid(); 3681 3682 base_filename = g_path_get_basename(ts->bprm->filename); 3683 /* 3684 * Using strncpy here is fine: at max-length, 3685 * this field is not NUL-terminated. 3686 */ 3687 (void) strncpy(psinfo->pr_fname, base_filename, 3688 sizeof(psinfo->pr_fname)); 3689 3690 g_free(base_filename); 3691 bswap_psinfo(psinfo); 3692 return (0); 3693 } 3694 3695 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3696 { 3697 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3698 elf_addr_t orig_auxv = auxv; 3699 void *ptr; 3700 int len = ts->info->auxv_len; 3701 3702 /* 3703 * Auxiliary vector is stored in target process stack. It contains 3704 * {type, value} pairs that we need to dump into note. This is not 3705 * strictly necessary but we do it here for sake of completeness. 3706 */ 3707 3708 /* read in whole auxv vector and copy it to memelfnote */ 3709 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3710 if (ptr != NULL) { 3711 fill_note(note, "CORE", NT_AUXV, len, ptr); 3712 unlock_user(ptr, auxv, len); 3713 } 3714 } 3715 3716 /* 3717 * Constructs name of coredump file. We have following convention 3718 * for the name: 3719 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3720 * 3721 * Returns the filename 3722 */ 3723 static char *core_dump_filename(const TaskState *ts) 3724 { 3725 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 3726 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 3727 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 3728 3729 return g_strdup_printf("qemu_%s_%s_%d.core", 3730 base_filename, nowstr, (int)getpid()); 3731 } 3732 3733 static int dump_write(int fd, const void *ptr, size_t size) 3734 { 3735 const char *bufp = (const char *)ptr; 3736 ssize_t bytes_written, bytes_left; 3737 struct rlimit dumpsize; 3738 off_t pos; 3739 3740 bytes_written = 0; 3741 getrlimit(RLIMIT_CORE, &dumpsize); 3742 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3743 if (errno == ESPIPE) { /* not a seekable stream */ 3744 bytes_left = size; 3745 } else { 3746 return pos; 3747 } 3748 } else { 3749 if (dumpsize.rlim_cur <= pos) { 3750 return -1; 3751 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3752 bytes_left = size; 3753 } else { 3754 size_t limit_left=dumpsize.rlim_cur - pos; 3755 bytes_left = limit_left >= size ? size : limit_left ; 3756 } 3757 } 3758 3759 /* 3760 * In normal conditions, single write(2) should do but 3761 * in case of socket etc. this mechanism is more portable. 3762 */ 3763 do { 3764 bytes_written = write(fd, bufp, bytes_left); 3765 if (bytes_written < 0) { 3766 if (errno == EINTR) 3767 continue; 3768 return (-1); 3769 } else if (bytes_written == 0) { /* eof */ 3770 return (-1); 3771 } 3772 bufp += bytes_written; 3773 bytes_left -= bytes_written; 3774 } while (bytes_left > 0); 3775 3776 return (0); 3777 } 3778 3779 static int write_note(struct memelfnote *men, int fd) 3780 { 3781 struct elf_note en; 3782 3783 en.n_namesz = men->namesz; 3784 en.n_type = men->type; 3785 en.n_descsz = men->datasz; 3786 3787 bswap_note(&en); 3788 3789 if (dump_write(fd, &en, sizeof(en)) != 0) 3790 return (-1); 3791 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3792 return (-1); 3793 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3794 return (-1); 3795 3796 return (0); 3797 } 3798 3799 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3800 { 3801 CPUState *cpu = env_cpu((CPUArchState *)env); 3802 TaskState *ts = (TaskState *)cpu->opaque; 3803 struct elf_thread_status *ets; 3804 3805 ets = g_malloc0(sizeof (*ets)); 3806 ets->num_notes = 1; /* only prstatus is dumped */ 3807 fill_prstatus(&ets->prstatus, ts, 0); 3808 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3809 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3810 &ets->prstatus); 3811 3812 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3813 3814 info->notes_size += note_size(&ets->notes[0]); 3815 } 3816 3817 static void init_note_info(struct elf_note_info *info) 3818 { 3819 /* Initialize the elf_note_info structure so that it is at 3820 * least safe to call free_note_info() on it. Must be 3821 * called before calling fill_note_info(). 3822 */ 3823 memset(info, 0, sizeof (*info)); 3824 QTAILQ_INIT(&info->thread_list); 3825 } 3826 3827 static int fill_note_info(struct elf_note_info *info, 3828 long signr, const CPUArchState *env) 3829 { 3830 #define NUMNOTES 3 3831 CPUState *cpu = env_cpu((CPUArchState *)env); 3832 TaskState *ts = (TaskState *)cpu->opaque; 3833 int i; 3834 3835 info->notes = g_new0(struct memelfnote, NUMNOTES); 3836 if (info->notes == NULL) 3837 return (-ENOMEM); 3838 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3839 if (info->prstatus == NULL) 3840 return (-ENOMEM); 3841 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3842 if (info->prstatus == NULL) 3843 return (-ENOMEM); 3844 3845 /* 3846 * First fill in status (and registers) of current thread 3847 * including process info & aux vector. 3848 */ 3849 fill_prstatus(info->prstatus, ts, signr); 3850 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3851 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3852 sizeof (*info->prstatus), info->prstatus); 3853 fill_psinfo(info->psinfo, ts); 3854 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3855 sizeof (*info->psinfo), info->psinfo); 3856 fill_auxv_note(&info->notes[2], ts); 3857 info->numnote = 3; 3858 3859 info->notes_size = 0; 3860 for (i = 0; i < info->numnote; i++) 3861 info->notes_size += note_size(&info->notes[i]); 3862 3863 /* read and fill status of all threads */ 3864 cpu_list_lock(); 3865 CPU_FOREACH(cpu) { 3866 if (cpu == thread_cpu) { 3867 continue; 3868 } 3869 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3870 } 3871 cpu_list_unlock(); 3872 3873 return (0); 3874 } 3875 3876 static void free_note_info(struct elf_note_info *info) 3877 { 3878 struct elf_thread_status *ets; 3879 3880 while (!QTAILQ_EMPTY(&info->thread_list)) { 3881 ets = QTAILQ_FIRST(&info->thread_list); 3882 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3883 g_free(ets); 3884 } 3885 3886 g_free(info->prstatus); 3887 g_free(info->psinfo); 3888 g_free(info->notes); 3889 } 3890 3891 static int write_note_info(struct elf_note_info *info, int fd) 3892 { 3893 struct elf_thread_status *ets; 3894 int i, error = 0; 3895 3896 /* write prstatus, psinfo and auxv for current thread */ 3897 for (i = 0; i < info->numnote; i++) 3898 if ((error = write_note(&info->notes[i], fd)) != 0) 3899 return (error); 3900 3901 /* write prstatus for each thread */ 3902 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3903 if ((error = write_note(&ets->notes[0], fd)) != 0) 3904 return (error); 3905 } 3906 3907 return (0); 3908 } 3909 3910 /* 3911 * Write out ELF coredump. 3912 * 3913 * See documentation of ELF object file format in: 3914 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3915 * 3916 * Coredump format in linux is following: 3917 * 3918 * 0 +----------------------+ \ 3919 * | ELF header | ET_CORE | 3920 * +----------------------+ | 3921 * | ELF program headers | |--- headers 3922 * | - NOTE section | | 3923 * | - PT_LOAD sections | | 3924 * +----------------------+ / 3925 * | NOTEs: | 3926 * | - NT_PRSTATUS | 3927 * | - NT_PRSINFO | 3928 * | - NT_AUXV | 3929 * +----------------------+ <-- aligned to target page 3930 * | Process memory dump | 3931 * : : 3932 * . . 3933 * : : 3934 * | | 3935 * +----------------------+ 3936 * 3937 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3938 * NT_PRSINFO -> struct elf_prpsinfo 3939 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3940 * 3941 * Format follows System V format as close as possible. Current 3942 * version limitations are as follows: 3943 * - no floating point registers are dumped 3944 * 3945 * Function returns 0 in case of success, negative errno otherwise. 3946 * 3947 * TODO: make this work also during runtime: it should be 3948 * possible to force coredump from running process and then 3949 * continue processing. For example qemu could set up SIGUSR2 3950 * handler (provided that target process haven't registered 3951 * handler for that) that does the dump when signal is received. 3952 */ 3953 static int elf_core_dump(int signr, const CPUArchState *env) 3954 { 3955 const CPUState *cpu = env_cpu((CPUArchState *)env); 3956 const TaskState *ts = (const TaskState *)cpu->opaque; 3957 struct vm_area_struct *vma = NULL; 3958 g_autofree char *corefile = NULL; 3959 struct elf_note_info info; 3960 struct elfhdr elf; 3961 struct elf_phdr phdr; 3962 struct rlimit dumpsize; 3963 struct mm_struct *mm = NULL; 3964 off_t offset = 0, data_offset = 0; 3965 int segs = 0; 3966 int fd = -1; 3967 3968 init_note_info(&info); 3969 3970 errno = 0; 3971 getrlimit(RLIMIT_CORE, &dumpsize); 3972 if (dumpsize.rlim_cur == 0) 3973 return 0; 3974 3975 corefile = core_dump_filename(ts); 3976 3977 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3978 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3979 return (-errno); 3980 3981 /* 3982 * Walk through target process memory mappings and 3983 * set up structure containing this information. After 3984 * this point vma_xxx functions can be used. 3985 */ 3986 if ((mm = vma_init()) == NULL) 3987 goto out; 3988 3989 walk_memory_regions(mm, vma_walker); 3990 segs = vma_get_mapping_count(mm); 3991 3992 /* 3993 * Construct valid coredump ELF header. We also 3994 * add one more segment for notes. 3995 */ 3996 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3997 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3998 goto out; 3999 4000 /* fill in the in-memory version of notes */ 4001 if (fill_note_info(&info, signr, env) < 0) 4002 goto out; 4003 4004 offset += sizeof (elf); /* elf header */ 4005 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4006 4007 /* write out notes program header */ 4008 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4009 4010 offset += info.notes_size; 4011 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4012 goto out; 4013 4014 /* 4015 * ELF specification wants data to start at page boundary so 4016 * we align it here. 4017 */ 4018 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4019 4020 /* 4021 * Write program headers for memory regions mapped in 4022 * the target process. 4023 */ 4024 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4025 (void) memset(&phdr, 0, sizeof (phdr)); 4026 4027 phdr.p_type = PT_LOAD; 4028 phdr.p_offset = offset; 4029 phdr.p_vaddr = vma->vma_start; 4030 phdr.p_paddr = 0; 4031 phdr.p_filesz = vma_dump_size(vma); 4032 offset += phdr.p_filesz; 4033 phdr.p_memsz = vma->vma_end - vma->vma_start; 4034 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4035 if (vma->vma_flags & PROT_WRITE) 4036 phdr.p_flags |= PF_W; 4037 if (vma->vma_flags & PROT_EXEC) 4038 phdr.p_flags |= PF_X; 4039 phdr.p_align = ELF_EXEC_PAGESIZE; 4040 4041 bswap_phdr(&phdr, 1); 4042 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4043 goto out; 4044 } 4045 } 4046 4047 /* 4048 * Next we write notes just after program headers. No 4049 * alignment needed here. 4050 */ 4051 if (write_note_info(&info, fd) < 0) 4052 goto out; 4053 4054 /* align data to page boundary */ 4055 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4056 goto out; 4057 4058 /* 4059 * Finally we can dump process memory into corefile as well. 4060 */ 4061 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4062 abi_ulong addr; 4063 abi_ulong end; 4064 4065 end = vma->vma_start + vma_dump_size(vma); 4066 4067 for (addr = vma->vma_start; addr < end; 4068 addr += TARGET_PAGE_SIZE) { 4069 char page[TARGET_PAGE_SIZE]; 4070 int error; 4071 4072 /* 4073 * Read in page from target process memory and 4074 * write it to coredump file. 4075 */ 4076 error = copy_from_user(page, addr, sizeof (page)); 4077 if (error != 0) { 4078 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4079 addr); 4080 errno = -error; 4081 goto out; 4082 } 4083 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4084 goto out; 4085 } 4086 } 4087 4088 out: 4089 free_note_info(&info); 4090 if (mm != NULL) 4091 vma_delete(mm); 4092 (void) close(fd); 4093 4094 if (errno != 0) 4095 return (-errno); 4096 return (0); 4097 } 4098 #endif /* USE_ELF_CORE_DUMP */ 4099 4100 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4101 { 4102 init_thread(regs, infop); 4103 } 4104