xref: /openbmc/qemu/linux-user/elfload.c (revision 744c72a8)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
17 
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27 
28 #define ELF_OSABI   ELFOSABI_SYSV
29 
30 /* from personality.h */
31 
32 /*
33  * Flags for bug emulation.
34  *
35  * These occupy the top three bytes.
36  */
37 enum {
38     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
39     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
40                                            descriptors (signal handling) */
41     MMAP_PAGE_ZERO =    0x0100000,
42     ADDR_COMPAT_LAYOUT = 0x0200000,
43     READ_IMPLIES_EXEC = 0x0400000,
44     ADDR_LIMIT_32BIT =  0x0800000,
45     SHORT_INODE =       0x1000000,
46     WHOLE_SECONDS =     0x2000000,
47     STICKY_TIMEOUTS =   0x4000000,
48     ADDR_LIMIT_3GB =    0x8000000,
49 };
50 
51 /*
52  * Personality types.
53  *
54  * These go in the low byte.  Avoid using the top bit, it will
55  * conflict with error returns.
56  */
57 enum {
58     PER_LINUX =         0x0000,
59     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
60     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
61     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
67     PER_BSD =           0x0006,
68     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
69     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_LINUX32 =       0x0008,
71     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
72     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75     PER_RISCOS =        0x000c,
76     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
77     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
79     PER_HPUX =          0x0010,
80     PER_MASK =          0x00ff,
81 };
82 
83 /*
84  * Return the base personality without flags.
85  */
86 #define personality(pers)       (pers & PER_MASK)
87 
88 int info_is_fdpic(struct image_info *info)
89 {
90     return info->personality == PER_LINUX_FDPIC;
91 }
92 
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
97 
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
102 
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA        ELFDATA2MSB
105 #else
106 #define ELF_DATA        ELFDATA2LSB
107 #endif
108 
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong      target_elf_greg_t;
111 #define tswapreg(ptr)   tswap64(ptr)
112 #else
113 typedef abi_ulong       target_elf_greg_t;
114 #define tswapreg(ptr)   tswapal(ptr)
115 #endif
116 
117 #ifdef USE_UID16
118 typedef abi_ushort      target_uid_t;
119 typedef abi_ushort      target_gid_t;
120 #else
121 typedef abi_uint        target_uid_t;
122 typedef abi_uint        target_gid_t;
123 #endif
124 typedef abi_int         target_pid_t;
125 
126 #ifdef TARGET_I386
127 
128 #define ELF_PLATFORM get_elf_platform()
129 
130 static const char *get_elf_platform(void)
131 {
132     static char elf_platform[] = "i386";
133     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134     if (family > 6)
135         family = 6;
136     if (family >= 3)
137         elf_platform[1] = '0' + family;
138     return elf_platform;
139 }
140 
141 #define ELF_HWCAP get_elf_hwcap()
142 
143 static uint32_t get_elf_hwcap(void)
144 {
145     X86CPU *cpu = X86_CPU(thread_cpu);
146 
147     return cpu->env.features[FEAT_1_EDX];
148 }
149 
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
152 
153 #define ELF_CLASS      ELFCLASS64
154 #define ELF_ARCH       EM_X86_64
155 
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157 {
158     regs->rax = 0;
159     regs->rsp = infop->start_stack;
160     regs->rip = infop->entry;
161 }
162 
163 #define ELF_NREG    27
164 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
165 
166 /*
167  * Note that ELF_NREG should be 29 as there should be place for
168  * TRAPNO and ERR "registers" as well but linux doesn't dump
169  * those.
170  *
171  * See linux kernel: arch/x86/include/asm/elf.h
172  */
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
174 {
175     (*regs)[0] = env->regs[15];
176     (*regs)[1] = env->regs[14];
177     (*regs)[2] = env->regs[13];
178     (*regs)[3] = env->regs[12];
179     (*regs)[4] = env->regs[R_EBP];
180     (*regs)[5] = env->regs[R_EBX];
181     (*regs)[6] = env->regs[11];
182     (*regs)[7] = env->regs[10];
183     (*regs)[8] = env->regs[9];
184     (*regs)[9] = env->regs[8];
185     (*regs)[10] = env->regs[R_EAX];
186     (*regs)[11] = env->regs[R_ECX];
187     (*regs)[12] = env->regs[R_EDX];
188     (*regs)[13] = env->regs[R_ESI];
189     (*regs)[14] = env->regs[R_EDI];
190     (*regs)[15] = env->regs[R_EAX]; /* XXX */
191     (*regs)[16] = env->eip;
192     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193     (*regs)[18] = env->eflags;
194     (*regs)[19] = env->regs[R_ESP];
195     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202 }
203 
204 #else
205 
206 #define ELF_START_MMAP 0x80000000
207 
208 /*
209  * This is used to ensure we don't load something for the wrong architecture.
210  */
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212 
213 /*
214  * These are used to set parameters in the core dumps.
215  */
216 #define ELF_CLASS       ELFCLASS32
217 #define ELF_ARCH        EM_386
218 
219 static inline void init_thread(struct target_pt_regs *regs,
220                                struct image_info *infop)
221 {
222     regs->esp = infop->start_stack;
223     regs->eip = infop->entry;
224 
225     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226        starts %edx contains a pointer to a function which might be
227        registered using `atexit'.  This provides a mean for the
228        dynamic linker to call DT_FINI functions for shared libraries
229        that have been loaded before the code runs.
230 
231        A value of 0 tells we have no such handler.  */
232     regs->edx = 0;
233 }
234 
235 #define ELF_NREG    17
236 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
237 
238 /*
239  * Note that ELF_NREG should be 19 as there should be place for
240  * TRAPNO and ERR "registers" as well but linux doesn't dump
241  * those.
242  *
243  * See linux kernel: arch/x86/include/asm/elf.h
244  */
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
246 {
247     (*regs)[0] = env->regs[R_EBX];
248     (*regs)[1] = env->regs[R_ECX];
249     (*regs)[2] = env->regs[R_EDX];
250     (*regs)[3] = env->regs[R_ESI];
251     (*regs)[4] = env->regs[R_EDI];
252     (*regs)[5] = env->regs[R_EBP];
253     (*regs)[6] = env->regs[R_EAX];
254     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258     (*regs)[11] = env->regs[R_EAX]; /* XXX */
259     (*regs)[12] = env->eip;
260     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261     (*regs)[14] = env->eflags;
262     (*regs)[15] = env->regs[R_ESP];
263     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264 }
265 #endif
266 
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE       4096
269 
270 #endif
271 
272 #ifdef TARGET_ARM
273 
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
276 
277 #define ELF_START_MMAP 0x80000000
278 
279 #define ELF_ARCH        EM_ARM
280 #define ELF_CLASS       ELFCLASS32
281 
282 static inline void init_thread(struct target_pt_regs *regs,
283                                struct image_info *infop)
284 {
285     abi_long stack = infop->start_stack;
286     memset(regs, 0, sizeof(*regs));
287 
288     regs->uregs[16] = ARM_CPU_MODE_USR;
289     if (infop->entry & 1) {
290         regs->uregs[16] |= CPSR_T;
291     }
292     regs->uregs[15] = infop->entry & 0xfffffffe;
293     regs->uregs[13] = infop->start_stack;
294     /* FIXME - what to for failure of get_user()? */
295     get_user_ual(regs->uregs[2], stack + 8); /* envp */
296     get_user_ual(regs->uregs[1], stack + 4); /* envp */
297     /* XXX: it seems that r0 is zeroed after ! */
298     regs->uregs[0] = 0;
299     /* For uClinux PIC binaries.  */
300     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301     regs->uregs[10] = infop->start_data;
302 
303     /* Support ARM FDPIC.  */
304     if (info_is_fdpic(infop)) {
305         /* As described in the ABI document, r7 points to the loadmap info
306          * prepared by the kernel. If an interpreter is needed, r8 points
307          * to the interpreter loadmap and r9 points to the interpreter
308          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309          * r9 points to the main program PT_DYNAMIC info.
310          */
311         regs->uregs[7] = infop->loadmap_addr;
312         if (infop->interpreter_loadmap_addr) {
313             /* Executable is dynamically loaded.  */
314             regs->uregs[8] = infop->interpreter_loadmap_addr;
315             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316         } else {
317             regs->uregs[8] = 0;
318             regs->uregs[9] = infop->pt_dynamic_addr;
319         }
320     }
321 }
322 
323 #define ELF_NREG    18
324 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
325 
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
327 {
328     (*regs)[0] = tswapreg(env->regs[0]);
329     (*regs)[1] = tswapreg(env->regs[1]);
330     (*regs)[2] = tswapreg(env->regs[2]);
331     (*regs)[3] = tswapreg(env->regs[3]);
332     (*regs)[4] = tswapreg(env->regs[4]);
333     (*regs)[5] = tswapreg(env->regs[5]);
334     (*regs)[6] = tswapreg(env->regs[6]);
335     (*regs)[7] = tswapreg(env->regs[7]);
336     (*regs)[8] = tswapreg(env->regs[8]);
337     (*regs)[9] = tswapreg(env->regs[9]);
338     (*regs)[10] = tswapreg(env->regs[10]);
339     (*regs)[11] = tswapreg(env->regs[11]);
340     (*regs)[12] = tswapreg(env->regs[12]);
341     (*regs)[13] = tswapreg(env->regs[13]);
342     (*regs)[14] = tswapreg(env->regs[14]);
343     (*regs)[15] = tswapreg(env->regs[15]);
344 
345     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
347 }
348 
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE       4096
351 
352 enum
353 {
354     ARM_HWCAP_ARM_SWP       = 1 << 0,
355     ARM_HWCAP_ARM_HALF      = 1 << 1,
356     ARM_HWCAP_ARM_THUMB     = 1 << 2,
357     ARM_HWCAP_ARM_26BIT     = 1 << 3,
358     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359     ARM_HWCAP_ARM_FPA       = 1 << 5,
360     ARM_HWCAP_ARM_VFP       = 1 << 6,
361     ARM_HWCAP_ARM_EDSP      = 1 << 7,
362     ARM_HWCAP_ARM_JAVA      = 1 << 8,
363     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
364     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
365     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
366     ARM_HWCAP_ARM_NEON      = 1 << 12,
367     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
368     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
369     ARM_HWCAP_ARM_TLS       = 1 << 15,
370     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
371     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
372     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
373     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
374     ARM_HWCAP_ARM_LPAE      = 1 << 20,
375     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
376 };
377 
378 enum {
379     ARM_HWCAP2_ARM_AES      = 1 << 0,
380     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
381     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
382     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
383     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
384 };
385 
386 /* The commpage only exists for 32 bit kernels */
387 
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
389 
390 static bool init_guest_commpage(void)
391 {
392     void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
393     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
395 
396     if (addr == MAP_FAILED) {
397         perror("Allocating guest commpage");
398         exit(EXIT_FAILURE);
399     }
400     if (addr != want) {
401         return false;
402     }
403 
404     /* Set kernel helper versions; rest of page is 0.  */
405     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
406 
407     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408         perror("Protecting guest commpage");
409         exit(EXIT_FAILURE);
410     }
411     return true;
412 }
413 
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
416 
417 static uint32_t get_elf_hwcap(void)
418 {
419     ARMCPU *cpu = ARM_CPU(thread_cpu);
420     uint32_t hwcaps = 0;
421 
422     hwcaps |= ARM_HWCAP_ARM_SWP;
423     hwcaps |= ARM_HWCAP_ARM_HALF;
424     hwcaps |= ARM_HWCAP_ARM_THUMB;
425     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
426 
427     /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
430 
431 #define GET_FEATURE_ID(feat, hwcap) \
432     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433 
434     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444 
445     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447         hwcaps |= ARM_HWCAP_ARM_VFPv3;
448         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449             hwcaps |= ARM_HWCAP_ARM_VFPD32;
450         } else {
451             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452         }
453     }
454     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
455 
456     return hwcaps;
457 }
458 
459 static uint32_t get_elf_hwcap2(void)
460 {
461     ARMCPU *cpu = ARM_CPU(thread_cpu);
462     uint32_t hwcaps = 0;
463 
464     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469     return hwcaps;
470 }
471 
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
474 
475 #define ELF_PLATFORM get_elf_platform()
476 
477 static const char *get_elf_platform(void)
478 {
479     CPUARMState *env = thread_cpu->env_ptr;
480 
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END  "b"
483 #else
484 # define END  "l"
485 #endif
486 
487     if (arm_feature(env, ARM_FEATURE_V8)) {
488         return "v8" END;
489     } else if (arm_feature(env, ARM_FEATURE_V7)) {
490         if (arm_feature(env, ARM_FEATURE_M)) {
491             return "v7m" END;
492         } else {
493             return "v7" END;
494         }
495     } else if (arm_feature(env, ARM_FEATURE_V6)) {
496         return "v6" END;
497     } else if (arm_feature(env, ARM_FEATURE_V5)) {
498         return "v5" END;
499     } else {
500         return "v4" END;
501     }
502 
503 #undef END
504 }
505 
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
509 
510 #define ELF_ARCH        EM_AARCH64
511 #define ELF_CLASS       ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM    "aarch64_be"
514 #else
515 # define ELF_PLATFORM    "aarch64"
516 #endif
517 
518 static inline void init_thread(struct target_pt_regs *regs,
519                                struct image_info *infop)
520 {
521     abi_long stack = infop->start_stack;
522     memset(regs, 0, sizeof(*regs));
523 
524     regs->pc = infop->entry & ~0x3ULL;
525     regs->sp = stack;
526 }
527 
528 #define ELF_NREG    34
529 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
530 
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532                                const CPUARMState *env)
533 {
534     int i;
535 
536     for (i = 0; i < 32; i++) {
537         (*regs)[i] = tswapreg(env->xregs[i]);
538     }
539     (*regs)[32] = tswapreg(env->pc);
540     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541 }
542 
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE       4096
545 
546 enum {
547     ARM_HWCAP_A64_FP            = 1 << 0,
548     ARM_HWCAP_A64_ASIMD         = 1 << 1,
549     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
550     ARM_HWCAP_A64_AES           = 1 << 3,
551     ARM_HWCAP_A64_PMULL         = 1 << 4,
552     ARM_HWCAP_A64_SHA1          = 1 << 5,
553     ARM_HWCAP_A64_SHA2          = 1 << 6,
554     ARM_HWCAP_A64_CRC32         = 1 << 7,
555     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
556     ARM_HWCAP_A64_FPHP          = 1 << 9,
557     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
558     ARM_HWCAP_A64_CPUID         = 1 << 11,
559     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
560     ARM_HWCAP_A64_JSCVT         = 1 << 13,
561     ARM_HWCAP_A64_FCMA          = 1 << 14,
562     ARM_HWCAP_A64_LRCPC         = 1 << 15,
563     ARM_HWCAP_A64_DCPOP         = 1 << 16,
564     ARM_HWCAP_A64_SHA3          = 1 << 17,
565     ARM_HWCAP_A64_SM3           = 1 << 18,
566     ARM_HWCAP_A64_SM4           = 1 << 19,
567     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
568     ARM_HWCAP_A64_SHA512        = 1 << 21,
569     ARM_HWCAP_A64_SVE           = 1 << 22,
570     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
571     ARM_HWCAP_A64_DIT           = 1 << 24,
572     ARM_HWCAP_A64_USCAT         = 1 << 25,
573     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
574     ARM_HWCAP_A64_FLAGM         = 1 << 27,
575     ARM_HWCAP_A64_SSBS          = 1 << 28,
576     ARM_HWCAP_A64_SB            = 1 << 29,
577     ARM_HWCAP_A64_PACA          = 1 << 30,
578     ARM_HWCAP_A64_PACG          = 1UL << 31,
579 
580     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
581     ARM_HWCAP2_A64_SVE2         = 1 << 1,
582     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
583     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
584     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
585     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
586     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
587     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
588     ARM_HWCAP2_A64_FRINT        = 1 << 8,
589     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
590     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
591     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
592     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
593     ARM_HWCAP2_A64_I8MM         = 1 << 13,
594     ARM_HWCAP2_A64_BF16         = 1 << 14,
595     ARM_HWCAP2_A64_DGH          = 1 << 15,
596     ARM_HWCAP2_A64_RNG          = 1 << 16,
597     ARM_HWCAP2_A64_BTI          = 1 << 17,
598     ARM_HWCAP2_A64_MTE          = 1 << 18,
599 };
600 
601 #define ELF_HWCAP   get_elf_hwcap()
602 #define ELF_HWCAP2  get_elf_hwcap2()
603 
604 #define GET_FEATURE_ID(feat, hwcap) \
605     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
606 
607 static uint32_t get_elf_hwcap(void)
608 {
609     ARMCPU *cpu = ARM_CPU(thread_cpu);
610     uint32_t hwcaps = 0;
611 
612     hwcaps |= ARM_HWCAP_A64_FP;
613     hwcaps |= ARM_HWCAP_A64_ASIMD;
614     hwcaps |= ARM_HWCAP_A64_CPUID;
615 
616     /* probe for the extra features */
617 
618     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
619     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
620     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
621     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
622     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
623     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
624     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
625     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
626     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
627     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
628     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
629     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
630     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
631     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
632     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
633     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
634     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
635     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
636     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
637     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
638     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
639     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
640     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
641 
642     return hwcaps;
643 }
644 
645 static uint32_t get_elf_hwcap2(void)
646 {
647     ARMCPU *cpu = ARM_CPU(thread_cpu);
648     uint32_t hwcaps = 0;
649 
650     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
651     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
652     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
653     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
654     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
655     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
656     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
657     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
658     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
659     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
660     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
661     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
662     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
663     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
664     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
665     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
666 
667     return hwcaps;
668 }
669 
670 #undef GET_FEATURE_ID
671 
672 #endif /* not TARGET_AARCH64 */
673 #endif /* TARGET_ARM */
674 
675 #ifdef TARGET_SPARC
676 #ifdef TARGET_SPARC64
677 
678 #define ELF_START_MMAP 0x80000000
679 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
680                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
681 #ifndef TARGET_ABI32
682 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
683 #else
684 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
685 #endif
686 
687 #define ELF_CLASS   ELFCLASS64
688 #define ELF_ARCH    EM_SPARCV9
689 #else
690 #define ELF_START_MMAP 0x80000000
691 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
692                     | HWCAP_SPARC_MULDIV)
693 #define ELF_CLASS   ELFCLASS32
694 #define ELF_ARCH    EM_SPARC
695 #endif /* TARGET_SPARC64 */
696 
697 static inline void init_thread(struct target_pt_regs *regs,
698                                struct image_info *infop)
699 {
700     /* Note that target_cpu_copy_regs does not read psr/tstate. */
701     regs->pc = infop->entry;
702     regs->npc = regs->pc + 4;
703     regs->y = 0;
704     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
705                         - TARGET_STACK_BIAS);
706 }
707 #endif /* TARGET_SPARC */
708 
709 #ifdef TARGET_PPC
710 
711 #define ELF_MACHINE    PPC_ELF_MACHINE
712 #define ELF_START_MMAP 0x80000000
713 
714 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
715 
716 #define elf_check_arch(x) ( (x) == EM_PPC64 )
717 
718 #define ELF_CLASS       ELFCLASS64
719 
720 #else
721 
722 #define ELF_CLASS       ELFCLASS32
723 
724 #endif
725 
726 #define ELF_ARCH        EM_PPC
727 
728 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
729    See arch/powerpc/include/asm/cputable.h.  */
730 enum {
731     QEMU_PPC_FEATURE_32 = 0x80000000,
732     QEMU_PPC_FEATURE_64 = 0x40000000,
733     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
734     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
735     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
736     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
737     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
738     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
739     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
740     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
741     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
742     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
743     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
744     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
745     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
746     QEMU_PPC_FEATURE_CELL = 0x00010000,
747     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
748     QEMU_PPC_FEATURE_SMT = 0x00004000,
749     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
750     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
751     QEMU_PPC_FEATURE_PA6T = 0x00000800,
752     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
753     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
754     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
755     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
756     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
757 
758     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
759     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
760 
761     /* Feature definitions in AT_HWCAP2.  */
762     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
763     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
764     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
765     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
766     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
767     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
768     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
769     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
770     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
771     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
772     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
773     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
774     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
775 };
776 
777 #define ELF_HWCAP get_elf_hwcap()
778 
779 static uint32_t get_elf_hwcap(void)
780 {
781     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
782     uint32_t features = 0;
783 
784     /* We don't have to be terribly complete here; the high points are
785        Altivec/FP/SPE support.  Anything else is just a bonus.  */
786 #define GET_FEATURE(flag, feature)                                      \
787     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
788 #define GET_FEATURE2(flags, feature) \
789     do { \
790         if ((cpu->env.insns_flags2 & flags) == flags) { \
791             features |= feature; \
792         } \
793     } while (0)
794     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
795     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
796     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
797     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
798     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
799     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
800     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
801     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
802     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
803     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
804     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
805                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
806                   QEMU_PPC_FEATURE_ARCH_2_06);
807 #undef GET_FEATURE
808 #undef GET_FEATURE2
809 
810     return features;
811 }
812 
813 #define ELF_HWCAP2 get_elf_hwcap2()
814 
815 static uint32_t get_elf_hwcap2(void)
816 {
817     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
818     uint32_t features = 0;
819 
820 #define GET_FEATURE(flag, feature)                                      \
821     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
822 #define GET_FEATURE2(flag, feature)                                      \
823     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
824 
825     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
826     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
827     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
828                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
829                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
830     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
831                  QEMU_PPC_FEATURE2_DARN);
832 
833 #undef GET_FEATURE
834 #undef GET_FEATURE2
835 
836     return features;
837 }
838 
839 /*
840  * The requirements here are:
841  * - keep the final alignment of sp (sp & 0xf)
842  * - make sure the 32-bit value at the first 16 byte aligned position of
843  *   AUXV is greater than 16 for glibc compatibility.
844  *   AT_IGNOREPPC is used for that.
845  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
846  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
847  */
848 #define DLINFO_ARCH_ITEMS       5
849 #define ARCH_DLINFO                                     \
850     do {                                                \
851         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
852         /*                                              \
853          * Handle glibc compatibility: these magic entries must \
854          * be at the lowest addresses in the final auxv.        \
855          */                                             \
856         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
857         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
858         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
859         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
860         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
861     } while (0)
862 
863 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
864 {
865     _regs->gpr[1] = infop->start_stack;
866 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
867     if (get_ppc64_abi(infop) < 2) {
868         uint64_t val;
869         get_user_u64(val, infop->entry + 8);
870         _regs->gpr[2] = val + infop->load_bias;
871         get_user_u64(val, infop->entry);
872         infop->entry = val + infop->load_bias;
873     } else {
874         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
875     }
876 #endif
877     _regs->nip = infop->entry;
878 }
879 
880 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
881 #define ELF_NREG 48
882 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
883 
884 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
885 {
886     int i;
887     target_ulong ccr = 0;
888 
889     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
890         (*regs)[i] = tswapreg(env->gpr[i]);
891     }
892 
893     (*regs)[32] = tswapreg(env->nip);
894     (*regs)[33] = tswapreg(env->msr);
895     (*regs)[35] = tswapreg(env->ctr);
896     (*regs)[36] = tswapreg(env->lr);
897     (*regs)[37] = tswapreg(env->xer);
898 
899     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
900         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
901     }
902     (*regs)[38] = tswapreg(ccr);
903 }
904 
905 #define USE_ELF_CORE_DUMP
906 #define ELF_EXEC_PAGESIZE       4096
907 
908 #endif
909 
910 #ifdef TARGET_MIPS
911 
912 #define ELF_START_MMAP 0x80000000
913 
914 #ifdef TARGET_MIPS64
915 #define ELF_CLASS   ELFCLASS64
916 #else
917 #define ELF_CLASS   ELFCLASS32
918 #endif
919 #define ELF_ARCH    EM_MIPS
920 
921 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
922 
923 #ifdef TARGET_ABI_MIPSN32
924 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
925 #else
926 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
927 #endif
928 
929 static inline void init_thread(struct target_pt_regs *regs,
930                                struct image_info *infop)
931 {
932     regs->cp0_status = 2 << CP0St_KSU;
933     regs->cp0_epc = infop->entry;
934     regs->regs[29] = infop->start_stack;
935 }
936 
937 /* See linux kernel: arch/mips/include/asm/elf.h.  */
938 #define ELF_NREG 45
939 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
940 
941 /* See linux kernel: arch/mips/include/asm/reg.h.  */
942 enum {
943 #ifdef TARGET_MIPS64
944     TARGET_EF_R0 = 0,
945 #else
946     TARGET_EF_R0 = 6,
947 #endif
948     TARGET_EF_R26 = TARGET_EF_R0 + 26,
949     TARGET_EF_R27 = TARGET_EF_R0 + 27,
950     TARGET_EF_LO = TARGET_EF_R0 + 32,
951     TARGET_EF_HI = TARGET_EF_R0 + 33,
952     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
953     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
954     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
955     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
956 };
957 
958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
959 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
960 {
961     int i;
962 
963     for (i = 0; i < TARGET_EF_R0; i++) {
964         (*regs)[i] = 0;
965     }
966     (*regs)[TARGET_EF_R0] = 0;
967 
968     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
969         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
970     }
971 
972     (*regs)[TARGET_EF_R26] = 0;
973     (*regs)[TARGET_EF_R27] = 0;
974     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
975     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
976     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
977     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
978     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
979     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
980 }
981 
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE        4096
984 
985 /* See arch/mips/include/uapi/asm/hwcap.h.  */
986 enum {
987     HWCAP_MIPS_R6           = (1 << 0),
988     HWCAP_MIPS_MSA          = (1 << 1),
989     HWCAP_MIPS_CRC32        = (1 << 2),
990     HWCAP_MIPS_MIPS16       = (1 << 3),
991     HWCAP_MIPS_MDMX         = (1 << 4),
992     HWCAP_MIPS_MIPS3D       = (1 << 5),
993     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
994     HWCAP_MIPS_DSP          = (1 << 7),
995     HWCAP_MIPS_DSP2         = (1 << 8),
996     HWCAP_MIPS_DSP3         = (1 << 9),
997     HWCAP_MIPS_MIPS16E2     = (1 << 10),
998     HWCAP_LOONGSON_MMI      = (1 << 11),
999     HWCAP_LOONGSON_EXT      = (1 << 12),
1000     HWCAP_LOONGSON_EXT2     = (1 << 13),
1001     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1002 };
1003 
1004 #define ELF_HWCAP get_elf_hwcap()
1005 
1006 #define GET_FEATURE_INSN(_flag, _hwcap) \
1007     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1008 
1009 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1010     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1011 
1012 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1013     do { \
1014         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1015             hwcaps |= _hwcap; \
1016         } \
1017     } while (0)
1018 
1019 static uint32_t get_elf_hwcap(void)
1020 {
1021     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1022     uint32_t hwcaps = 0;
1023 
1024     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1025                         2, HWCAP_MIPS_R6);
1026     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1027     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1028     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1029 
1030     return hwcaps;
1031 }
1032 
1033 #undef GET_FEATURE_REG_EQU
1034 #undef GET_FEATURE_REG_SET
1035 #undef GET_FEATURE_INSN
1036 
1037 #endif /* TARGET_MIPS */
1038 
1039 #ifdef TARGET_MICROBLAZE
1040 
1041 #define ELF_START_MMAP 0x80000000
1042 
1043 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1044 
1045 #define ELF_CLASS   ELFCLASS32
1046 #define ELF_ARCH    EM_MICROBLAZE
1047 
1048 static inline void init_thread(struct target_pt_regs *regs,
1049                                struct image_info *infop)
1050 {
1051     regs->pc = infop->entry;
1052     regs->r1 = infop->start_stack;
1053 
1054 }
1055 
1056 #define ELF_EXEC_PAGESIZE        4096
1057 
1058 #define USE_ELF_CORE_DUMP
1059 #define ELF_NREG 38
1060 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1061 
1062 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1063 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1064 {
1065     int i, pos = 0;
1066 
1067     for (i = 0; i < 32; i++) {
1068         (*regs)[pos++] = tswapreg(env->regs[i]);
1069     }
1070 
1071     (*regs)[pos++] = tswapreg(env->pc);
1072     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1073     (*regs)[pos++] = 0;
1074     (*regs)[pos++] = tswapreg(env->ear);
1075     (*regs)[pos++] = 0;
1076     (*regs)[pos++] = tswapreg(env->esr);
1077 }
1078 
1079 #endif /* TARGET_MICROBLAZE */
1080 
1081 #ifdef TARGET_NIOS2
1082 
1083 #define ELF_START_MMAP 0x80000000
1084 
1085 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1086 
1087 #define ELF_CLASS   ELFCLASS32
1088 #define ELF_ARCH    EM_ALTERA_NIOS2
1089 
1090 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1091 {
1092     regs->ea = infop->entry;
1093     regs->sp = infop->start_stack;
1094     regs->estatus = 0x3;
1095 }
1096 
1097 #define ELF_EXEC_PAGESIZE        4096
1098 
1099 #define USE_ELF_CORE_DUMP
1100 #define ELF_NREG 49
1101 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1102 
1103 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1104 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1105                                const CPUNios2State *env)
1106 {
1107     int i;
1108 
1109     (*regs)[0] = -1;
1110     for (i = 1; i < 8; i++)    /* r0-r7 */
1111         (*regs)[i] = tswapreg(env->regs[i + 7]);
1112 
1113     for (i = 8; i < 16; i++)   /* r8-r15 */
1114         (*regs)[i] = tswapreg(env->regs[i - 8]);
1115 
1116     for (i = 16; i < 24; i++)  /* r16-r23 */
1117         (*regs)[i] = tswapreg(env->regs[i + 7]);
1118     (*regs)[24] = -1;    /* R_ET */
1119     (*regs)[25] = -1;    /* R_BT */
1120     (*regs)[26] = tswapreg(env->regs[R_GP]);
1121     (*regs)[27] = tswapreg(env->regs[R_SP]);
1122     (*regs)[28] = tswapreg(env->regs[R_FP]);
1123     (*regs)[29] = tswapreg(env->regs[R_EA]);
1124     (*regs)[30] = -1;    /* R_SSTATUS */
1125     (*regs)[31] = tswapreg(env->regs[R_RA]);
1126 
1127     (*regs)[32] = tswapreg(env->regs[R_PC]);
1128 
1129     (*regs)[33] = -1; /* R_STATUS */
1130     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1131 
1132     for (i = 35; i < 49; i++)    /* ... */
1133         (*regs)[i] = -1;
1134 }
1135 
1136 #endif /* TARGET_NIOS2 */
1137 
1138 #ifdef TARGET_OPENRISC
1139 
1140 #define ELF_START_MMAP 0x08000000
1141 
1142 #define ELF_ARCH EM_OPENRISC
1143 #define ELF_CLASS ELFCLASS32
1144 #define ELF_DATA  ELFDATA2MSB
1145 
1146 static inline void init_thread(struct target_pt_regs *regs,
1147                                struct image_info *infop)
1148 {
1149     regs->pc = infop->entry;
1150     regs->gpr[1] = infop->start_stack;
1151 }
1152 
1153 #define USE_ELF_CORE_DUMP
1154 #define ELF_EXEC_PAGESIZE 8192
1155 
1156 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1157 #define ELF_NREG 34 /* gprs and pc, sr */
1158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1159 
1160 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1161                                const CPUOpenRISCState *env)
1162 {
1163     int i;
1164 
1165     for (i = 0; i < 32; i++) {
1166         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1167     }
1168     (*regs)[32] = tswapreg(env->pc);
1169     (*regs)[33] = tswapreg(cpu_get_sr(env));
1170 }
1171 #define ELF_HWCAP 0
1172 #define ELF_PLATFORM NULL
1173 
1174 #endif /* TARGET_OPENRISC */
1175 
1176 #ifdef TARGET_SH4
1177 
1178 #define ELF_START_MMAP 0x80000000
1179 
1180 #define ELF_CLASS ELFCLASS32
1181 #define ELF_ARCH  EM_SH
1182 
1183 static inline void init_thread(struct target_pt_regs *regs,
1184                                struct image_info *infop)
1185 {
1186     /* Check other registers XXXXX */
1187     regs->pc = infop->entry;
1188     regs->regs[15] = infop->start_stack;
1189 }
1190 
1191 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1192 #define ELF_NREG 23
1193 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1194 
1195 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1196 enum {
1197     TARGET_REG_PC = 16,
1198     TARGET_REG_PR = 17,
1199     TARGET_REG_SR = 18,
1200     TARGET_REG_GBR = 19,
1201     TARGET_REG_MACH = 20,
1202     TARGET_REG_MACL = 21,
1203     TARGET_REG_SYSCALL = 22
1204 };
1205 
1206 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1207                                       const CPUSH4State *env)
1208 {
1209     int i;
1210 
1211     for (i = 0; i < 16; i++) {
1212         (*regs)[i] = tswapreg(env->gregs[i]);
1213     }
1214 
1215     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1216     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1217     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1218     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1219     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1220     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1221     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1222 }
1223 
1224 #define USE_ELF_CORE_DUMP
1225 #define ELF_EXEC_PAGESIZE        4096
1226 
1227 enum {
1228     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1229     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1230     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1231     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1232     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1233     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1234     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1235     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1236     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1237     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1238 };
1239 
1240 #define ELF_HWCAP get_elf_hwcap()
1241 
1242 static uint32_t get_elf_hwcap(void)
1243 {
1244     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1245     uint32_t hwcap = 0;
1246 
1247     hwcap |= SH_CPU_HAS_FPU;
1248 
1249     if (cpu->env.features & SH_FEATURE_SH4A) {
1250         hwcap |= SH_CPU_HAS_LLSC;
1251     }
1252 
1253     return hwcap;
1254 }
1255 
1256 #endif
1257 
1258 #ifdef TARGET_CRIS
1259 
1260 #define ELF_START_MMAP 0x80000000
1261 
1262 #define ELF_CLASS ELFCLASS32
1263 #define ELF_ARCH  EM_CRIS
1264 
1265 static inline void init_thread(struct target_pt_regs *regs,
1266                                struct image_info *infop)
1267 {
1268     regs->erp = infop->entry;
1269 }
1270 
1271 #define ELF_EXEC_PAGESIZE        8192
1272 
1273 #endif
1274 
1275 #ifdef TARGET_M68K
1276 
1277 #define ELF_START_MMAP 0x80000000
1278 
1279 #define ELF_CLASS       ELFCLASS32
1280 #define ELF_ARCH        EM_68K
1281 
1282 /* ??? Does this need to do anything?
1283    #define ELF_PLAT_INIT(_r) */
1284 
1285 static inline void init_thread(struct target_pt_regs *regs,
1286                                struct image_info *infop)
1287 {
1288     regs->usp = infop->start_stack;
1289     regs->sr = 0;
1290     regs->pc = infop->entry;
1291 }
1292 
1293 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1294 #define ELF_NREG 20
1295 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1296 
1297 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1298 {
1299     (*regs)[0] = tswapreg(env->dregs[1]);
1300     (*regs)[1] = tswapreg(env->dregs[2]);
1301     (*regs)[2] = tswapreg(env->dregs[3]);
1302     (*regs)[3] = tswapreg(env->dregs[4]);
1303     (*regs)[4] = tswapreg(env->dregs[5]);
1304     (*regs)[5] = tswapreg(env->dregs[6]);
1305     (*regs)[6] = tswapreg(env->dregs[7]);
1306     (*regs)[7] = tswapreg(env->aregs[0]);
1307     (*regs)[8] = tswapreg(env->aregs[1]);
1308     (*regs)[9] = tswapreg(env->aregs[2]);
1309     (*regs)[10] = tswapreg(env->aregs[3]);
1310     (*regs)[11] = tswapreg(env->aregs[4]);
1311     (*regs)[12] = tswapreg(env->aregs[5]);
1312     (*regs)[13] = tswapreg(env->aregs[6]);
1313     (*regs)[14] = tswapreg(env->dregs[0]);
1314     (*regs)[15] = tswapreg(env->aregs[7]);
1315     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1316     (*regs)[17] = tswapreg(env->sr);
1317     (*regs)[18] = tswapreg(env->pc);
1318     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1319 }
1320 
1321 #define USE_ELF_CORE_DUMP
1322 #define ELF_EXEC_PAGESIZE       8192
1323 
1324 #endif
1325 
1326 #ifdef TARGET_ALPHA
1327 
1328 #define ELF_START_MMAP (0x30000000000ULL)
1329 
1330 #define ELF_CLASS      ELFCLASS64
1331 #define ELF_ARCH       EM_ALPHA
1332 
1333 static inline void init_thread(struct target_pt_regs *regs,
1334                                struct image_info *infop)
1335 {
1336     regs->pc = infop->entry;
1337     regs->ps = 8;
1338     regs->usp = infop->start_stack;
1339 }
1340 
1341 #define ELF_EXEC_PAGESIZE        8192
1342 
1343 #endif /* TARGET_ALPHA */
1344 
1345 #ifdef TARGET_S390X
1346 
1347 #define ELF_START_MMAP (0x20000000000ULL)
1348 
1349 #define ELF_CLASS	ELFCLASS64
1350 #define ELF_DATA	ELFDATA2MSB
1351 #define ELF_ARCH	EM_S390
1352 
1353 #include "elf.h"
1354 
1355 #define ELF_HWCAP get_elf_hwcap()
1356 
1357 #define GET_FEATURE(_feat, _hwcap) \
1358     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1359 
1360 static uint32_t get_elf_hwcap(void)
1361 {
1362     /*
1363      * Let's assume we always have esan3 and zarch.
1364      * 31-bit processes can use 64-bit registers (high gprs).
1365      */
1366     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1367 
1368     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1369     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1370     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1371     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1372     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1373         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1374         hwcap |= HWCAP_S390_ETF3EH;
1375     }
1376     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1377 
1378     return hwcap;
1379 }
1380 
1381 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1382 {
1383     regs->psw.addr = infop->entry;
1384     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1385     regs->gprs[15] = infop->start_stack;
1386 }
1387 
1388 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1389 #define ELF_NREG 27
1390 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1391 
1392 enum {
1393     TARGET_REG_PSWM = 0,
1394     TARGET_REG_PSWA = 1,
1395     TARGET_REG_GPRS = 2,
1396     TARGET_REG_ARS = 18,
1397     TARGET_REG_ORIG_R2 = 26,
1398 };
1399 
1400 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1401                                const CPUS390XState *env)
1402 {
1403     int i;
1404     uint32_t *aregs;
1405 
1406     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1407     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1408     for (i = 0; i < 16; i++) {
1409         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1410     }
1411     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1412     for (i = 0; i < 16; i++) {
1413         aregs[i] = tswap32(env->aregs[i]);
1414     }
1415     (*regs)[TARGET_REG_ORIG_R2] = 0;
1416 }
1417 
1418 #define USE_ELF_CORE_DUMP
1419 #define ELF_EXEC_PAGESIZE 4096
1420 
1421 #endif /* TARGET_S390X */
1422 
1423 #ifdef TARGET_RISCV
1424 
1425 #define ELF_START_MMAP 0x80000000
1426 #define ELF_ARCH  EM_RISCV
1427 
1428 #ifdef TARGET_RISCV32
1429 #define ELF_CLASS ELFCLASS32
1430 #else
1431 #define ELF_CLASS ELFCLASS64
1432 #endif
1433 
1434 static inline void init_thread(struct target_pt_regs *regs,
1435                                struct image_info *infop)
1436 {
1437     regs->sepc = infop->entry;
1438     regs->sp = infop->start_stack;
1439 }
1440 
1441 #define ELF_EXEC_PAGESIZE 4096
1442 
1443 #endif /* TARGET_RISCV */
1444 
1445 #ifdef TARGET_HPPA
1446 
1447 #define ELF_START_MMAP  0x80000000
1448 #define ELF_CLASS       ELFCLASS32
1449 #define ELF_ARCH        EM_PARISC
1450 #define ELF_PLATFORM    "PARISC"
1451 #define STACK_GROWS_DOWN 0
1452 #define STACK_ALIGNMENT  64
1453 
1454 static inline void init_thread(struct target_pt_regs *regs,
1455                                struct image_info *infop)
1456 {
1457     regs->iaoq[0] = infop->entry;
1458     regs->iaoq[1] = infop->entry + 4;
1459     regs->gr[23] = 0;
1460     regs->gr[24] = infop->arg_start;
1461     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1462     /* The top-of-stack contains a linkage buffer.  */
1463     regs->gr[30] = infop->start_stack + 64;
1464     regs->gr[31] = infop->entry;
1465 }
1466 
1467 #endif /* TARGET_HPPA */
1468 
1469 #ifdef TARGET_XTENSA
1470 
1471 #define ELF_START_MMAP 0x20000000
1472 
1473 #define ELF_CLASS       ELFCLASS32
1474 #define ELF_ARCH        EM_XTENSA
1475 
1476 static inline void init_thread(struct target_pt_regs *regs,
1477                                struct image_info *infop)
1478 {
1479     regs->windowbase = 0;
1480     regs->windowstart = 1;
1481     regs->areg[1] = infop->start_stack;
1482     regs->pc = infop->entry;
1483 }
1484 
1485 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1486 #define ELF_NREG 128
1487 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1488 
1489 enum {
1490     TARGET_REG_PC,
1491     TARGET_REG_PS,
1492     TARGET_REG_LBEG,
1493     TARGET_REG_LEND,
1494     TARGET_REG_LCOUNT,
1495     TARGET_REG_SAR,
1496     TARGET_REG_WINDOWSTART,
1497     TARGET_REG_WINDOWBASE,
1498     TARGET_REG_THREADPTR,
1499     TARGET_REG_AR0 = 64,
1500 };
1501 
1502 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1503                                const CPUXtensaState *env)
1504 {
1505     unsigned i;
1506 
1507     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1508     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1509     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1510     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1511     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1512     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1513     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1514     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1515     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1516     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1517     for (i = 0; i < env->config->nareg; ++i) {
1518         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1519     }
1520 }
1521 
1522 #define USE_ELF_CORE_DUMP
1523 #define ELF_EXEC_PAGESIZE       4096
1524 
1525 #endif /* TARGET_XTENSA */
1526 
1527 #ifdef TARGET_HEXAGON
1528 
1529 #define ELF_START_MMAP 0x20000000
1530 
1531 #define ELF_CLASS       ELFCLASS32
1532 #define ELF_ARCH        EM_HEXAGON
1533 
1534 static inline void init_thread(struct target_pt_regs *regs,
1535                                struct image_info *infop)
1536 {
1537     regs->sepc = infop->entry;
1538     regs->sp = infop->start_stack;
1539 }
1540 
1541 #endif /* TARGET_HEXAGON */
1542 
1543 #ifndef ELF_PLATFORM
1544 #define ELF_PLATFORM (NULL)
1545 #endif
1546 
1547 #ifndef ELF_MACHINE
1548 #define ELF_MACHINE ELF_ARCH
1549 #endif
1550 
1551 #ifndef elf_check_arch
1552 #define elf_check_arch(x) ((x) == ELF_ARCH)
1553 #endif
1554 
1555 #ifndef elf_check_abi
1556 #define elf_check_abi(x) (1)
1557 #endif
1558 
1559 #ifndef ELF_HWCAP
1560 #define ELF_HWCAP 0
1561 #endif
1562 
1563 #ifndef STACK_GROWS_DOWN
1564 #define STACK_GROWS_DOWN 1
1565 #endif
1566 
1567 #ifndef STACK_ALIGNMENT
1568 #define STACK_ALIGNMENT 16
1569 #endif
1570 
1571 #ifdef TARGET_ABI32
1572 #undef ELF_CLASS
1573 #define ELF_CLASS ELFCLASS32
1574 #undef bswaptls
1575 #define bswaptls(ptr) bswap32s(ptr)
1576 #endif
1577 
1578 #include "elf.h"
1579 
1580 /* We must delay the following stanzas until after "elf.h". */
1581 #if defined(TARGET_AARCH64)
1582 
1583 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1584                                     const uint32_t *data,
1585                                     struct image_info *info,
1586                                     Error **errp)
1587 {
1588     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1589         if (pr_datasz != sizeof(uint32_t)) {
1590             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1591             return false;
1592         }
1593         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1594         info->note_flags = *data;
1595     }
1596     return true;
1597 }
1598 #define ARCH_USE_GNU_PROPERTY 1
1599 
1600 #else
1601 
1602 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1603                                     const uint32_t *data,
1604                                     struct image_info *info,
1605                                     Error **errp)
1606 {
1607     g_assert_not_reached();
1608 }
1609 #define ARCH_USE_GNU_PROPERTY 0
1610 
1611 #endif
1612 
1613 struct exec
1614 {
1615     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1616     unsigned int a_text;   /* length of text, in bytes */
1617     unsigned int a_data;   /* length of data, in bytes */
1618     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1619     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1620     unsigned int a_entry;  /* start address */
1621     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1622     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1623 };
1624 
1625 
1626 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1627 #define OMAGIC 0407
1628 #define NMAGIC 0410
1629 #define ZMAGIC 0413
1630 #define QMAGIC 0314
1631 
1632 /* Necessary parameters */
1633 #define TARGET_ELF_EXEC_PAGESIZE \
1634         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1635          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1636 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1637 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1638                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1639 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1640 
1641 #define DLINFO_ITEMS 16
1642 
1643 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1644 {
1645     memcpy(to, from, n);
1646 }
1647 
1648 #ifdef BSWAP_NEEDED
1649 static void bswap_ehdr(struct elfhdr *ehdr)
1650 {
1651     bswap16s(&ehdr->e_type);            /* Object file type */
1652     bswap16s(&ehdr->e_machine);         /* Architecture */
1653     bswap32s(&ehdr->e_version);         /* Object file version */
1654     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1655     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1656     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1657     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1658     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1659     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1660     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1661     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1662     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1663     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1664 }
1665 
1666 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1667 {
1668     int i;
1669     for (i = 0; i < phnum; ++i, ++phdr) {
1670         bswap32s(&phdr->p_type);        /* Segment type */
1671         bswap32s(&phdr->p_flags);       /* Segment flags */
1672         bswaptls(&phdr->p_offset);      /* Segment file offset */
1673         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1674         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1675         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1676         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1677         bswaptls(&phdr->p_align);       /* Segment alignment */
1678     }
1679 }
1680 
1681 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1682 {
1683     int i;
1684     for (i = 0; i < shnum; ++i, ++shdr) {
1685         bswap32s(&shdr->sh_name);
1686         bswap32s(&shdr->sh_type);
1687         bswaptls(&shdr->sh_flags);
1688         bswaptls(&shdr->sh_addr);
1689         bswaptls(&shdr->sh_offset);
1690         bswaptls(&shdr->sh_size);
1691         bswap32s(&shdr->sh_link);
1692         bswap32s(&shdr->sh_info);
1693         bswaptls(&shdr->sh_addralign);
1694         bswaptls(&shdr->sh_entsize);
1695     }
1696 }
1697 
1698 static void bswap_sym(struct elf_sym *sym)
1699 {
1700     bswap32s(&sym->st_name);
1701     bswaptls(&sym->st_value);
1702     bswaptls(&sym->st_size);
1703     bswap16s(&sym->st_shndx);
1704 }
1705 
1706 #ifdef TARGET_MIPS
1707 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1708 {
1709     bswap16s(&abiflags->version);
1710     bswap32s(&abiflags->ases);
1711     bswap32s(&abiflags->isa_ext);
1712     bswap32s(&abiflags->flags1);
1713     bswap32s(&abiflags->flags2);
1714 }
1715 #endif
1716 #else
1717 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1718 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1719 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1720 static inline void bswap_sym(struct elf_sym *sym) { }
1721 #ifdef TARGET_MIPS
1722 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1723 #endif
1724 #endif
1725 
1726 #ifdef USE_ELF_CORE_DUMP
1727 static int elf_core_dump(int, const CPUArchState *);
1728 #endif /* USE_ELF_CORE_DUMP */
1729 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1730 
1731 /* Verify the portions of EHDR within E_IDENT for the target.
1732    This can be performed before bswapping the entire header.  */
1733 static bool elf_check_ident(struct elfhdr *ehdr)
1734 {
1735     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1736             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1737             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1738             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1739             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1740             && ehdr->e_ident[EI_DATA] == ELF_DATA
1741             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1742 }
1743 
1744 /* Verify the portions of EHDR outside of E_IDENT for the target.
1745    This has to wait until after bswapping the header.  */
1746 static bool elf_check_ehdr(struct elfhdr *ehdr)
1747 {
1748     return (elf_check_arch(ehdr->e_machine)
1749             && elf_check_abi(ehdr->e_flags)
1750             && ehdr->e_ehsize == sizeof(struct elfhdr)
1751             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1752             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1753 }
1754 
1755 /*
1756  * 'copy_elf_strings()' copies argument/envelope strings from user
1757  * memory to free pages in kernel mem. These are in a format ready
1758  * to be put directly into the top of new user memory.
1759  *
1760  */
1761 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1762                                   abi_ulong p, abi_ulong stack_limit)
1763 {
1764     char *tmp;
1765     int len, i;
1766     abi_ulong top = p;
1767 
1768     if (!p) {
1769         return 0;       /* bullet-proofing */
1770     }
1771 
1772     if (STACK_GROWS_DOWN) {
1773         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1774         for (i = argc - 1; i >= 0; --i) {
1775             tmp = argv[i];
1776             if (!tmp) {
1777                 fprintf(stderr, "VFS: argc is wrong");
1778                 exit(-1);
1779             }
1780             len = strlen(tmp) + 1;
1781             tmp += len;
1782 
1783             if (len > (p - stack_limit)) {
1784                 return 0;
1785             }
1786             while (len) {
1787                 int bytes_to_copy = (len > offset) ? offset : len;
1788                 tmp -= bytes_to_copy;
1789                 p -= bytes_to_copy;
1790                 offset -= bytes_to_copy;
1791                 len -= bytes_to_copy;
1792 
1793                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1794 
1795                 if (offset == 0) {
1796                     memcpy_to_target(p, scratch, top - p);
1797                     top = p;
1798                     offset = TARGET_PAGE_SIZE;
1799                 }
1800             }
1801         }
1802         if (p != top) {
1803             memcpy_to_target(p, scratch + offset, top - p);
1804         }
1805     } else {
1806         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1807         for (i = 0; i < argc; ++i) {
1808             tmp = argv[i];
1809             if (!tmp) {
1810                 fprintf(stderr, "VFS: argc is wrong");
1811                 exit(-1);
1812             }
1813             len = strlen(tmp) + 1;
1814             if (len > (stack_limit - p)) {
1815                 return 0;
1816             }
1817             while (len) {
1818                 int bytes_to_copy = (len > remaining) ? remaining : len;
1819 
1820                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1821 
1822                 tmp += bytes_to_copy;
1823                 remaining -= bytes_to_copy;
1824                 p += bytes_to_copy;
1825                 len -= bytes_to_copy;
1826 
1827                 if (remaining == 0) {
1828                     memcpy_to_target(top, scratch, p - top);
1829                     top = p;
1830                     remaining = TARGET_PAGE_SIZE;
1831                 }
1832             }
1833         }
1834         if (p != top) {
1835             memcpy_to_target(top, scratch, p - top);
1836         }
1837     }
1838 
1839     return p;
1840 }
1841 
1842 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1843  * argument/environment space. Newer kernels (>2.6.33) allow more,
1844  * dependent on stack size, but guarantee at least 32 pages for
1845  * backwards compatibility.
1846  */
1847 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1848 
1849 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1850                                  struct image_info *info)
1851 {
1852     abi_ulong size, error, guard;
1853 
1854     size = guest_stack_size;
1855     if (size < STACK_LOWER_LIMIT) {
1856         size = STACK_LOWER_LIMIT;
1857     }
1858     guard = TARGET_PAGE_SIZE;
1859     if (guard < qemu_real_host_page_size) {
1860         guard = qemu_real_host_page_size;
1861     }
1862 
1863     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1864                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1865     if (error == -1) {
1866         perror("mmap stack");
1867         exit(-1);
1868     }
1869 
1870     /* We reserve one extra page at the top of the stack as guard.  */
1871     if (STACK_GROWS_DOWN) {
1872         target_mprotect(error, guard, PROT_NONE);
1873         info->stack_limit = error + guard;
1874         return info->stack_limit + size - sizeof(void *);
1875     } else {
1876         target_mprotect(error + size, guard, PROT_NONE);
1877         info->stack_limit = error + size;
1878         return error;
1879     }
1880 }
1881 
1882 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1883    after the data section (i.e. bss).  */
1884 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1885 {
1886     uintptr_t host_start, host_map_start, host_end;
1887 
1888     last_bss = TARGET_PAGE_ALIGN(last_bss);
1889 
1890     /* ??? There is confusion between qemu_real_host_page_size and
1891        qemu_host_page_size here and elsewhere in target_mmap, which
1892        may lead to the end of the data section mapping from the file
1893        not being mapped.  At least there was an explicit test and
1894        comment for that here, suggesting that "the file size must
1895        be known".  The comment probably pre-dates the introduction
1896        of the fstat system call in target_mmap which does in fact
1897        find out the size.  What isn't clear is if the workaround
1898        here is still actually needed.  For now, continue with it,
1899        but merge it with the "normal" mmap that would allocate the bss.  */
1900 
1901     host_start = (uintptr_t) g2h_untagged(elf_bss);
1902     host_end = (uintptr_t) g2h_untagged(last_bss);
1903     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1904 
1905     if (host_map_start < host_end) {
1906         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1907                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1908         if (p == MAP_FAILED) {
1909             perror("cannot mmap brk");
1910             exit(-1);
1911         }
1912     }
1913 
1914     /* Ensure that the bss page(s) are valid */
1915     if ((page_get_flags(last_bss-1) & prot) != prot) {
1916         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1917     }
1918 
1919     if (host_start < host_map_start) {
1920         memset((void *)host_start, 0, host_map_start - host_start);
1921     }
1922 }
1923 
1924 #ifdef TARGET_ARM
1925 static int elf_is_fdpic(struct elfhdr *exec)
1926 {
1927     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1928 }
1929 #else
1930 /* Default implementation, always false.  */
1931 static int elf_is_fdpic(struct elfhdr *exec)
1932 {
1933     return 0;
1934 }
1935 #endif
1936 
1937 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1938 {
1939     uint16_t n;
1940     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1941 
1942     /* elf32_fdpic_loadseg */
1943     n = info->nsegs;
1944     while (n--) {
1945         sp -= 12;
1946         put_user_u32(loadsegs[n].addr, sp+0);
1947         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1948         put_user_u32(loadsegs[n].p_memsz, sp+8);
1949     }
1950 
1951     /* elf32_fdpic_loadmap */
1952     sp -= 4;
1953     put_user_u16(0, sp+0); /* version */
1954     put_user_u16(info->nsegs, sp+2); /* nsegs */
1955 
1956     info->personality = PER_LINUX_FDPIC;
1957     info->loadmap_addr = sp;
1958 
1959     return sp;
1960 }
1961 
1962 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1963                                    struct elfhdr *exec,
1964                                    struct image_info *info,
1965                                    struct image_info *interp_info)
1966 {
1967     abi_ulong sp;
1968     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1969     int size;
1970     int i;
1971     abi_ulong u_rand_bytes;
1972     uint8_t k_rand_bytes[16];
1973     abi_ulong u_platform;
1974     const char *k_platform;
1975     const int n = sizeof(elf_addr_t);
1976 
1977     sp = p;
1978 
1979     /* Needs to be before we load the env/argc/... */
1980     if (elf_is_fdpic(exec)) {
1981         /* Need 4 byte alignment for these structs */
1982         sp &= ~3;
1983         sp = loader_build_fdpic_loadmap(info, sp);
1984         info->other_info = interp_info;
1985         if (interp_info) {
1986             interp_info->other_info = info;
1987             sp = loader_build_fdpic_loadmap(interp_info, sp);
1988             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1989             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1990         } else {
1991             info->interpreter_loadmap_addr = 0;
1992             info->interpreter_pt_dynamic_addr = 0;
1993         }
1994     }
1995 
1996     u_platform = 0;
1997     k_platform = ELF_PLATFORM;
1998     if (k_platform) {
1999         size_t len = strlen(k_platform) + 1;
2000         if (STACK_GROWS_DOWN) {
2001             sp -= (len + n - 1) & ~(n - 1);
2002             u_platform = sp;
2003             /* FIXME - check return value of memcpy_to_target() for failure */
2004             memcpy_to_target(sp, k_platform, len);
2005         } else {
2006             memcpy_to_target(sp, k_platform, len);
2007             u_platform = sp;
2008             sp += len + 1;
2009         }
2010     }
2011 
2012     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2013      * the argv and envp pointers.
2014      */
2015     if (STACK_GROWS_DOWN) {
2016         sp = QEMU_ALIGN_DOWN(sp, 16);
2017     } else {
2018         sp = QEMU_ALIGN_UP(sp, 16);
2019     }
2020 
2021     /*
2022      * Generate 16 random bytes for userspace PRNG seeding.
2023      */
2024     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2025     if (STACK_GROWS_DOWN) {
2026         sp -= 16;
2027         u_rand_bytes = sp;
2028         /* FIXME - check return value of memcpy_to_target() for failure */
2029         memcpy_to_target(sp, k_rand_bytes, 16);
2030     } else {
2031         memcpy_to_target(sp, k_rand_bytes, 16);
2032         u_rand_bytes = sp;
2033         sp += 16;
2034     }
2035 
2036     size = (DLINFO_ITEMS + 1) * 2;
2037     if (k_platform)
2038         size += 2;
2039 #ifdef DLINFO_ARCH_ITEMS
2040     size += DLINFO_ARCH_ITEMS * 2;
2041 #endif
2042 #ifdef ELF_HWCAP2
2043     size += 2;
2044 #endif
2045     info->auxv_len = size * n;
2046 
2047     size += envc + argc + 2;
2048     size += 1;  /* argc itself */
2049     size *= n;
2050 
2051     /* Allocate space and finalize stack alignment for entry now.  */
2052     if (STACK_GROWS_DOWN) {
2053         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2054         sp = u_argc;
2055     } else {
2056         u_argc = sp;
2057         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2058     }
2059 
2060     u_argv = u_argc + n;
2061     u_envp = u_argv + (argc + 1) * n;
2062     u_auxv = u_envp + (envc + 1) * n;
2063     info->saved_auxv = u_auxv;
2064     info->arg_start = u_argv;
2065     info->arg_end = u_argv + argc * n;
2066 
2067     /* This is correct because Linux defines
2068      * elf_addr_t as Elf32_Off / Elf64_Off
2069      */
2070 #define NEW_AUX_ENT(id, val) do {               \
2071         put_user_ual(id, u_auxv);  u_auxv += n; \
2072         put_user_ual(val, u_auxv); u_auxv += n; \
2073     } while(0)
2074 
2075 #ifdef ARCH_DLINFO
2076     /*
2077      * ARCH_DLINFO must come first so platform specific code can enforce
2078      * special alignment requirements on the AUXV if necessary (eg. PPC).
2079      */
2080     ARCH_DLINFO;
2081 #endif
2082     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2083      * on info->auxv_len will trigger.
2084      */
2085     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2086     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2087     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2088     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2089         /* Target doesn't support host page size alignment */
2090         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2091     } else {
2092         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2093                                                qemu_host_page_size)));
2094     }
2095     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2096     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2097     NEW_AUX_ENT(AT_ENTRY, info->entry);
2098     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2099     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2100     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2101     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2102     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2103     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2104     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2105     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2106     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2107 
2108 #ifdef ELF_HWCAP2
2109     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2110 #endif
2111 
2112     if (u_platform) {
2113         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2114     }
2115     NEW_AUX_ENT (AT_NULL, 0);
2116 #undef NEW_AUX_ENT
2117 
2118     /* Check that our initial calculation of the auxv length matches how much
2119      * we actually put into it.
2120      */
2121     assert(info->auxv_len == u_auxv - info->saved_auxv);
2122 
2123     put_user_ual(argc, u_argc);
2124 
2125     p = info->arg_strings;
2126     for (i = 0; i < argc; ++i) {
2127         put_user_ual(p, u_argv);
2128         u_argv += n;
2129         p += target_strlen(p) + 1;
2130     }
2131     put_user_ual(0, u_argv);
2132 
2133     p = info->env_strings;
2134     for (i = 0; i < envc; ++i) {
2135         put_user_ual(p, u_envp);
2136         u_envp += n;
2137         p += target_strlen(p) + 1;
2138     }
2139     put_user_ual(0, u_envp);
2140 
2141     return sp;
2142 }
2143 
2144 #ifndef ARM_COMMPAGE
2145 #define ARM_COMMPAGE 0
2146 #define init_guest_commpage() true
2147 #endif
2148 
2149 static void pgb_fail_in_use(const char *image_name)
2150 {
2151     error_report("%s: requires virtual address space that is in use "
2152                  "(omit the -B option or choose a different value)",
2153                  image_name);
2154     exit(EXIT_FAILURE);
2155 }
2156 
2157 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2158                                 abi_ulong guest_hiaddr, long align)
2159 {
2160     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2161     void *addr, *test;
2162 
2163     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2164         fprintf(stderr, "Requested guest base %p does not satisfy "
2165                 "host minimum alignment (0x%lx)\n",
2166                 (void *)guest_base, align);
2167         exit(EXIT_FAILURE);
2168     }
2169 
2170     /* Sanity check the guest binary. */
2171     if (reserved_va) {
2172         if (guest_hiaddr > reserved_va) {
2173             error_report("%s: requires more than reserved virtual "
2174                          "address space (0x%" PRIx64 " > 0x%lx)",
2175                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2176             exit(EXIT_FAILURE);
2177         }
2178     } else {
2179 #if HOST_LONG_BITS < TARGET_ABI_BITS
2180         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2181             error_report("%s: requires more virtual address space "
2182                          "than the host can provide (0x%" PRIx64 ")",
2183                          image_name, (uint64_t)guest_hiaddr - guest_base);
2184             exit(EXIT_FAILURE);
2185         }
2186 #endif
2187     }
2188 
2189     /*
2190      * Expand the allocation to the entire reserved_va.
2191      * Exclude the mmap_min_addr hole.
2192      */
2193     if (reserved_va) {
2194         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2195                         : mmap_min_addr - guest_base);
2196         guest_hiaddr = reserved_va;
2197     }
2198 
2199     /* Reserve the address space for the binary, or reserved_va. */
2200     test = g2h_untagged(guest_loaddr);
2201     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2202     if (test != addr) {
2203         pgb_fail_in_use(image_name);
2204     }
2205 }
2206 
2207 /**
2208  * pgd_find_hole_fallback: potential mmap address
2209  * @guest_size: size of available space
2210  * @brk: location of break
2211  * @align: memory alignment
2212  *
2213  * This is a fallback method for finding a hole in the host address
2214  * space if we don't have the benefit of being able to access
2215  * /proc/self/map. It can potentially take a very long time as we can
2216  * only dumbly iterate up the host address space seeing if the
2217  * allocation would work.
2218  */
2219 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2220                                         long align, uintptr_t offset)
2221 {
2222     uintptr_t base;
2223 
2224     /* Start (aligned) at the bottom and work our way up */
2225     base = ROUND_UP(mmap_min_addr, align);
2226 
2227     while (true) {
2228         uintptr_t align_start, end;
2229         align_start = ROUND_UP(base, align);
2230         end = align_start + guest_size + offset;
2231 
2232         /* if brk is anywhere in the range give ourselves some room to grow. */
2233         if (align_start <= brk && brk < end) {
2234             base = brk + (16 * MiB);
2235             continue;
2236         } else if (align_start + guest_size < align_start) {
2237             /* we have run out of space */
2238             return -1;
2239         } else {
2240             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2241                 MAP_FIXED_NOREPLACE;
2242             void * mmap_start = mmap((void *) align_start, guest_size,
2243                                      PROT_NONE, flags, -1, 0);
2244             if (mmap_start != MAP_FAILED) {
2245                 munmap(mmap_start, guest_size);
2246                 if (mmap_start == (void *) align_start) {
2247                     return (uintptr_t) mmap_start + offset;
2248                 }
2249             }
2250             base += qemu_host_page_size;
2251         }
2252     }
2253 }
2254 
2255 /* Return value for guest_base, or -1 if no hole found. */
2256 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2257                                long align, uintptr_t offset)
2258 {
2259     GSList *maps, *iter;
2260     uintptr_t this_start, this_end, next_start, brk;
2261     intptr_t ret = -1;
2262 
2263     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2264 
2265     maps = read_self_maps();
2266 
2267     /* Read brk after we've read the maps, which will malloc. */
2268     brk = (uintptr_t)sbrk(0);
2269 
2270     if (!maps) {
2271         ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2272         return ret == -1 ? -1 : ret - guest_loaddr;
2273     }
2274 
2275     /* The first hole is before the first map entry. */
2276     this_start = mmap_min_addr;
2277 
2278     for (iter = maps; iter;
2279          this_start = next_start, iter = g_slist_next(iter)) {
2280         uintptr_t align_start, hole_size;
2281 
2282         this_end = ((MapInfo *)iter->data)->start;
2283         next_start = ((MapInfo *)iter->data)->end;
2284         align_start = ROUND_UP(this_start + offset, align);
2285 
2286         /* Skip holes that are too small. */
2287         if (align_start >= this_end) {
2288             continue;
2289         }
2290         hole_size = this_end - align_start;
2291         if (hole_size < guest_size) {
2292             continue;
2293         }
2294 
2295         /* If this hole contains brk, give ourselves some room to grow. */
2296         if (this_start <= brk && brk < this_end) {
2297             hole_size -= guest_size;
2298             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2299                 align_start += 1 * GiB;
2300             } else if (hole_size >= 16 * MiB) {
2301                 align_start += 16 * MiB;
2302             } else {
2303                 align_start = (this_end - guest_size) & -align;
2304                 if (align_start < this_start) {
2305                     continue;
2306                 }
2307             }
2308         }
2309 
2310         /* Record the lowest successful match. */
2311         if (ret < 0) {
2312             ret = align_start - guest_loaddr;
2313         }
2314         /* If this hole contains the identity map, select it. */
2315         if (align_start <= guest_loaddr &&
2316             guest_loaddr + guest_size <= this_end) {
2317             ret = 0;
2318         }
2319         /* If this hole ends above the identity map, stop looking. */
2320         if (this_end >= guest_loaddr) {
2321             break;
2322         }
2323     }
2324     free_self_maps(maps);
2325 
2326     return ret;
2327 }
2328 
2329 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2330                        abi_ulong orig_hiaddr, long align)
2331 {
2332     uintptr_t loaddr = orig_loaddr;
2333     uintptr_t hiaddr = orig_hiaddr;
2334     uintptr_t offset = 0;
2335     uintptr_t addr;
2336 
2337     if (hiaddr != orig_hiaddr) {
2338         error_report("%s: requires virtual address space that the "
2339                      "host cannot provide (0x%" PRIx64 ")",
2340                      image_name, (uint64_t)orig_hiaddr);
2341         exit(EXIT_FAILURE);
2342     }
2343 
2344     loaddr &= -align;
2345     if (ARM_COMMPAGE) {
2346         /*
2347          * Extend the allocation to include the commpage.
2348          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2349          * need to ensure there is space bellow the guest_base so we
2350          * can map the commpage in the place needed when the address
2351          * arithmetic wraps around.
2352          */
2353         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2354             hiaddr = (uintptr_t) 4 << 30;
2355         } else {
2356             offset = -(ARM_COMMPAGE & -align);
2357         }
2358     }
2359 
2360     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2361     if (addr == -1) {
2362         /*
2363          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2364          * that can satisfy both.  But as the normal arm32 link base address
2365          * is ~32k, and we extend down to include the commpage, making the
2366          * overhead only ~96k, this is unlikely.
2367          */
2368         error_report("%s: Unable to allocate %#zx bytes of "
2369                      "virtual address space", image_name,
2370                      (size_t)(hiaddr - loaddr));
2371         exit(EXIT_FAILURE);
2372     }
2373 
2374     guest_base = addr;
2375 }
2376 
2377 static void pgb_dynamic(const char *image_name, long align)
2378 {
2379     /*
2380      * The executable is dynamic and does not require a fixed address.
2381      * All we need is a commpage that satisfies align.
2382      * If we do not need a commpage, leave guest_base == 0.
2383      */
2384     if (ARM_COMMPAGE) {
2385         uintptr_t addr, commpage;
2386 
2387         /* 64-bit hosts should have used reserved_va. */
2388         assert(sizeof(uintptr_t) == 4);
2389 
2390         /*
2391          * By putting the commpage at the first hole, that puts guest_base
2392          * just above that, and maximises the positive guest addresses.
2393          */
2394         commpage = ARM_COMMPAGE & -align;
2395         addr = pgb_find_hole(commpage, -commpage, align, 0);
2396         assert(addr != -1);
2397         guest_base = addr;
2398     }
2399 }
2400 
2401 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2402                             abi_ulong guest_hiaddr, long align)
2403 {
2404     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2405     void *addr, *test;
2406 
2407     if (guest_hiaddr > reserved_va) {
2408         error_report("%s: requires more than reserved virtual "
2409                      "address space (0x%" PRIx64 " > 0x%lx)",
2410                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2411         exit(EXIT_FAILURE);
2412     }
2413 
2414     /* Widen the "image" to the entire reserved address space. */
2415     pgb_static(image_name, 0, reserved_va, align);
2416 
2417     /* osdep.h defines this as 0 if it's missing */
2418     flags |= MAP_FIXED_NOREPLACE;
2419 
2420     /* Reserve the memory on the host. */
2421     assert(guest_base != 0);
2422     test = g2h_untagged(0);
2423     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2424     if (addr == MAP_FAILED || addr != test) {
2425         error_report("Unable to reserve 0x%lx bytes of virtual address "
2426                      "space at %p (%s) for use as guest address space (check your"
2427                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2428                      "using -R option)", reserved_va, test, strerror(errno));
2429         exit(EXIT_FAILURE);
2430     }
2431 }
2432 
2433 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2434                       abi_ulong guest_hiaddr)
2435 {
2436     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2437     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2438 
2439     if (have_guest_base) {
2440         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2441     } else if (reserved_va) {
2442         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2443     } else if (guest_loaddr) {
2444         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2445     } else {
2446         pgb_dynamic(image_name, align);
2447     }
2448 
2449     /* Reserve and initialize the commpage. */
2450     if (!init_guest_commpage()) {
2451         /*
2452          * With have_guest_base, the user has selected the address and
2453          * we are trying to work with that.  Otherwise, we have selected
2454          * free space and init_guest_commpage must succeeded.
2455          */
2456         assert(have_guest_base);
2457         pgb_fail_in_use(image_name);
2458     }
2459 
2460     assert(QEMU_IS_ALIGNED(guest_base, align));
2461     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2462                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2463 }
2464 
2465 enum {
2466     /* The string "GNU\0" as a magic number. */
2467     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2468     NOTE_DATA_SZ = 1 * KiB,
2469     NOTE_NAME_SZ = 4,
2470     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2471 };
2472 
2473 /*
2474  * Process a single gnu_property entry.
2475  * Return false for error.
2476  */
2477 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2478                                struct image_info *info, bool have_prev_type,
2479                                uint32_t *prev_type, Error **errp)
2480 {
2481     uint32_t pr_type, pr_datasz, step;
2482 
2483     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2484         goto error_data;
2485     }
2486     datasz -= *off;
2487     data += *off / sizeof(uint32_t);
2488 
2489     if (datasz < 2 * sizeof(uint32_t)) {
2490         goto error_data;
2491     }
2492     pr_type = data[0];
2493     pr_datasz = data[1];
2494     data += 2;
2495     datasz -= 2 * sizeof(uint32_t);
2496     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2497     if (step > datasz) {
2498         goto error_data;
2499     }
2500 
2501     /* Properties are supposed to be unique and sorted on pr_type. */
2502     if (have_prev_type && pr_type <= *prev_type) {
2503         if (pr_type == *prev_type) {
2504             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2505         } else {
2506             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2507         }
2508         return false;
2509     }
2510     *prev_type = pr_type;
2511 
2512     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2513         return false;
2514     }
2515 
2516     *off += 2 * sizeof(uint32_t) + step;
2517     return true;
2518 
2519  error_data:
2520     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2521     return false;
2522 }
2523 
2524 /* Process NT_GNU_PROPERTY_TYPE_0. */
2525 static bool parse_elf_properties(int image_fd,
2526                                  struct image_info *info,
2527                                  const struct elf_phdr *phdr,
2528                                  char bprm_buf[BPRM_BUF_SIZE],
2529                                  Error **errp)
2530 {
2531     union {
2532         struct elf_note nhdr;
2533         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2534     } note;
2535 
2536     int n, off, datasz;
2537     bool have_prev_type;
2538     uint32_t prev_type;
2539 
2540     /* Unless the arch requires properties, ignore them. */
2541     if (!ARCH_USE_GNU_PROPERTY) {
2542         return true;
2543     }
2544 
2545     /* If the properties are crazy large, that's too bad. */
2546     n = phdr->p_filesz;
2547     if (n > sizeof(note)) {
2548         error_setg(errp, "PT_GNU_PROPERTY too large");
2549         return false;
2550     }
2551     if (n < sizeof(note.nhdr)) {
2552         error_setg(errp, "PT_GNU_PROPERTY too small");
2553         return false;
2554     }
2555 
2556     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2557         memcpy(&note, bprm_buf + phdr->p_offset, n);
2558     } else {
2559         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2560         if (len != n) {
2561             error_setg_errno(errp, errno, "Error reading file header");
2562             return false;
2563         }
2564     }
2565 
2566     /*
2567      * The contents of a valid PT_GNU_PROPERTY is a sequence
2568      * of uint32_t -- swap them all now.
2569      */
2570 #ifdef BSWAP_NEEDED
2571     for (int i = 0; i < n / 4; i++) {
2572         bswap32s(note.data + i);
2573     }
2574 #endif
2575 
2576     /*
2577      * Note that nhdr is 3 words, and that the "name" described by namesz
2578      * immediately follows nhdr and is thus at the 4th word.  Further, all
2579      * of the inputs to the kernel's round_up are multiples of 4.
2580      */
2581     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2582         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2583         note.data[3] != GNU0_MAGIC) {
2584         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2585         return false;
2586     }
2587     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2588 
2589     datasz = note.nhdr.n_descsz + off;
2590     if (datasz > n) {
2591         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2592         return false;
2593     }
2594 
2595     have_prev_type = false;
2596     prev_type = 0;
2597     while (1) {
2598         if (off == datasz) {
2599             return true;  /* end, exit ok */
2600         }
2601         if (!parse_elf_property(note.data, &off, datasz, info,
2602                                 have_prev_type, &prev_type, errp)) {
2603             return false;
2604         }
2605         have_prev_type = true;
2606     }
2607 }
2608 
2609 /* Load an ELF image into the address space.
2610 
2611    IMAGE_NAME is the filename of the image, to use in error messages.
2612    IMAGE_FD is the open file descriptor for the image.
2613 
2614    BPRM_BUF is a copy of the beginning of the file; this of course
2615    contains the elf file header at offset 0.  It is assumed that this
2616    buffer is sufficiently aligned to present no problems to the host
2617    in accessing data at aligned offsets within the buffer.
2618 
2619    On return: INFO values will be filled in, as necessary or available.  */
2620 
2621 static void load_elf_image(const char *image_name, int image_fd,
2622                            struct image_info *info, char **pinterp_name,
2623                            char bprm_buf[BPRM_BUF_SIZE])
2624 {
2625     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2626     struct elf_phdr *phdr;
2627     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2628     int i, retval, prot_exec;
2629     Error *err = NULL;
2630 
2631     /* First of all, some simple consistency checks */
2632     if (!elf_check_ident(ehdr)) {
2633         error_setg(&err, "Invalid ELF image for this architecture");
2634         goto exit_errmsg;
2635     }
2636     bswap_ehdr(ehdr);
2637     if (!elf_check_ehdr(ehdr)) {
2638         error_setg(&err, "Invalid ELF image for this architecture");
2639         goto exit_errmsg;
2640     }
2641 
2642     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2643     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2644         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2645     } else {
2646         phdr = (struct elf_phdr *) alloca(i);
2647         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2648         if (retval != i) {
2649             goto exit_read;
2650         }
2651     }
2652     bswap_phdr(phdr, ehdr->e_phnum);
2653 
2654     info->nsegs = 0;
2655     info->pt_dynamic_addr = 0;
2656 
2657     mmap_lock();
2658 
2659     /*
2660      * Find the maximum size of the image and allocate an appropriate
2661      * amount of memory to handle that.  Locate the interpreter, if any.
2662      */
2663     loaddr = -1, hiaddr = 0;
2664     info->alignment = 0;
2665     for (i = 0; i < ehdr->e_phnum; ++i) {
2666         struct elf_phdr *eppnt = phdr + i;
2667         if (eppnt->p_type == PT_LOAD) {
2668             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2669             if (a < loaddr) {
2670                 loaddr = a;
2671             }
2672             a = eppnt->p_vaddr + eppnt->p_memsz;
2673             if (a > hiaddr) {
2674                 hiaddr = a;
2675             }
2676             ++info->nsegs;
2677             info->alignment |= eppnt->p_align;
2678         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2679             g_autofree char *interp_name = NULL;
2680 
2681             if (*pinterp_name) {
2682                 error_setg(&err, "Multiple PT_INTERP entries");
2683                 goto exit_errmsg;
2684             }
2685 
2686             interp_name = g_malloc(eppnt->p_filesz);
2687 
2688             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2689                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2690                        eppnt->p_filesz);
2691             } else {
2692                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2693                                eppnt->p_offset);
2694                 if (retval != eppnt->p_filesz) {
2695                     goto exit_read;
2696                 }
2697             }
2698             if (interp_name[eppnt->p_filesz - 1] != 0) {
2699                 error_setg(&err, "Invalid PT_INTERP entry");
2700                 goto exit_errmsg;
2701             }
2702             *pinterp_name = g_steal_pointer(&interp_name);
2703         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2704             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2705                 goto exit_errmsg;
2706             }
2707         }
2708     }
2709 
2710     if (pinterp_name != NULL) {
2711         /*
2712          * This is the main executable.
2713          *
2714          * Reserve extra space for brk.
2715          * We hold on to this space while placing the interpreter
2716          * and the stack, lest they be placed immediately after
2717          * the data segment and block allocation from the brk.
2718          *
2719          * 16MB is chosen as "large enough" without being so large
2720          * as to allow the result to not fit with a 32-bit guest on
2721          * a 32-bit host.
2722          */
2723         info->reserve_brk = 16 * MiB;
2724         hiaddr += info->reserve_brk;
2725 
2726         if (ehdr->e_type == ET_EXEC) {
2727             /*
2728              * Make sure that the low address does not conflict with
2729              * MMAP_MIN_ADDR or the QEMU application itself.
2730              */
2731             probe_guest_base(image_name, loaddr, hiaddr);
2732         } else {
2733             /*
2734              * The binary is dynamic, but we still need to
2735              * select guest_base.  In this case we pass a size.
2736              */
2737             probe_guest_base(image_name, 0, hiaddr - loaddr);
2738         }
2739     }
2740 
2741     /*
2742      * Reserve address space for all of this.
2743      *
2744      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2745      * exactly the address range that is required.
2746      *
2747      * Otherwise this is ET_DYN, and we are searching for a location
2748      * that can hold the memory space required.  If the image is
2749      * pre-linked, LOADDR will be non-zero, and the kernel should
2750      * honor that address if it happens to be free.
2751      *
2752      * In both cases, we will overwrite pages in this range with mappings
2753      * from the executable.
2754      */
2755     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2756                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2757                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2758                             -1, 0);
2759     if (load_addr == -1) {
2760         goto exit_mmap;
2761     }
2762     load_bias = load_addr - loaddr;
2763 
2764     if (elf_is_fdpic(ehdr)) {
2765         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2766             g_malloc(sizeof(*loadsegs) * info->nsegs);
2767 
2768         for (i = 0; i < ehdr->e_phnum; ++i) {
2769             switch (phdr[i].p_type) {
2770             case PT_DYNAMIC:
2771                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2772                 break;
2773             case PT_LOAD:
2774                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2775                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2776                 loadsegs->p_memsz = phdr[i].p_memsz;
2777                 ++loadsegs;
2778                 break;
2779             }
2780         }
2781     }
2782 
2783     info->load_bias = load_bias;
2784     info->code_offset = load_bias;
2785     info->data_offset = load_bias;
2786     info->load_addr = load_addr;
2787     info->entry = ehdr->e_entry + load_bias;
2788     info->start_code = -1;
2789     info->end_code = 0;
2790     info->start_data = -1;
2791     info->end_data = 0;
2792     info->brk = 0;
2793     info->elf_flags = ehdr->e_flags;
2794 
2795     prot_exec = PROT_EXEC;
2796 #ifdef TARGET_AARCH64
2797     /*
2798      * If the BTI feature is present, this indicates that the executable
2799      * pages of the startup binary should be mapped with PROT_BTI, so that
2800      * branch targets are enforced.
2801      *
2802      * The startup binary is either the interpreter or the static executable.
2803      * The interpreter is responsible for all pages of a dynamic executable.
2804      *
2805      * Elf notes are backward compatible to older cpus.
2806      * Do not enable BTI unless it is supported.
2807      */
2808     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2809         && (pinterp_name == NULL || *pinterp_name == 0)
2810         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2811         prot_exec |= TARGET_PROT_BTI;
2812     }
2813 #endif
2814 
2815     for (i = 0; i < ehdr->e_phnum; i++) {
2816         struct elf_phdr *eppnt = phdr + i;
2817         if (eppnt->p_type == PT_LOAD) {
2818             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2819             int elf_prot = 0;
2820 
2821             if (eppnt->p_flags & PF_R) {
2822                 elf_prot |= PROT_READ;
2823             }
2824             if (eppnt->p_flags & PF_W) {
2825                 elf_prot |= PROT_WRITE;
2826             }
2827             if (eppnt->p_flags & PF_X) {
2828                 elf_prot |= prot_exec;
2829             }
2830 
2831             vaddr = load_bias + eppnt->p_vaddr;
2832             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2833             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2834 
2835             vaddr_ef = vaddr + eppnt->p_filesz;
2836             vaddr_em = vaddr + eppnt->p_memsz;
2837 
2838             /*
2839              * Some segments may be completely empty, with a non-zero p_memsz
2840              * but no backing file segment.
2841              */
2842             if (eppnt->p_filesz != 0) {
2843                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2844                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2845                                     MAP_PRIVATE | MAP_FIXED,
2846                                     image_fd, eppnt->p_offset - vaddr_po);
2847 
2848                 if (error == -1) {
2849                     goto exit_mmap;
2850                 }
2851 
2852                 /*
2853                  * If the load segment requests extra zeros (e.g. bss), map it.
2854                  */
2855                 if (eppnt->p_filesz < eppnt->p_memsz) {
2856                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2857                 }
2858             } else if (eppnt->p_memsz != 0) {
2859                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2860                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2861                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2862                                     -1, 0);
2863 
2864                 if (error == -1) {
2865                     goto exit_mmap;
2866                 }
2867             }
2868 
2869             /* Find the full program boundaries.  */
2870             if (elf_prot & PROT_EXEC) {
2871                 if (vaddr < info->start_code) {
2872                     info->start_code = vaddr;
2873                 }
2874                 if (vaddr_ef > info->end_code) {
2875                     info->end_code = vaddr_ef;
2876                 }
2877             }
2878             if (elf_prot & PROT_WRITE) {
2879                 if (vaddr < info->start_data) {
2880                     info->start_data = vaddr;
2881                 }
2882                 if (vaddr_ef > info->end_data) {
2883                     info->end_data = vaddr_ef;
2884                 }
2885             }
2886             if (vaddr_em > info->brk) {
2887                 info->brk = vaddr_em;
2888             }
2889 #ifdef TARGET_MIPS
2890         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2891             Mips_elf_abiflags_v0 abiflags;
2892             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2893                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2894                 goto exit_errmsg;
2895             }
2896             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2897                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2898                        sizeof(Mips_elf_abiflags_v0));
2899             } else {
2900                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2901                                eppnt->p_offset);
2902                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2903                     goto exit_read;
2904                 }
2905             }
2906             bswap_mips_abiflags(&abiflags);
2907             info->fp_abi = abiflags.fp_abi;
2908 #endif
2909         }
2910     }
2911 
2912     if (info->end_data == 0) {
2913         info->start_data = info->end_code;
2914         info->end_data = info->end_code;
2915     }
2916 
2917     if (qemu_log_enabled()) {
2918         load_symbols(ehdr, image_fd, load_bias);
2919     }
2920 
2921     mmap_unlock();
2922 
2923     close(image_fd);
2924     return;
2925 
2926  exit_read:
2927     if (retval >= 0) {
2928         error_setg(&err, "Incomplete read of file header");
2929     } else {
2930         error_setg_errno(&err, errno, "Error reading file header");
2931     }
2932     goto exit_errmsg;
2933  exit_mmap:
2934     error_setg_errno(&err, errno, "Error mapping file");
2935     goto exit_errmsg;
2936  exit_errmsg:
2937     error_reportf_err(err, "%s: ", image_name);
2938     exit(-1);
2939 }
2940 
2941 static void load_elf_interp(const char *filename, struct image_info *info,
2942                             char bprm_buf[BPRM_BUF_SIZE])
2943 {
2944     int fd, retval;
2945     Error *err = NULL;
2946 
2947     fd = open(path(filename), O_RDONLY);
2948     if (fd < 0) {
2949         error_setg_file_open(&err, errno, filename);
2950         error_report_err(err);
2951         exit(-1);
2952     }
2953 
2954     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2955     if (retval < 0) {
2956         error_setg_errno(&err, errno, "Error reading file header");
2957         error_reportf_err(err, "%s: ", filename);
2958         exit(-1);
2959     }
2960 
2961     if (retval < BPRM_BUF_SIZE) {
2962         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2963     }
2964 
2965     load_elf_image(filename, fd, info, NULL, bprm_buf);
2966 }
2967 
2968 static int symfind(const void *s0, const void *s1)
2969 {
2970     target_ulong addr = *(target_ulong *)s0;
2971     struct elf_sym *sym = (struct elf_sym *)s1;
2972     int result = 0;
2973     if (addr < sym->st_value) {
2974         result = -1;
2975     } else if (addr >= sym->st_value + sym->st_size) {
2976         result = 1;
2977     }
2978     return result;
2979 }
2980 
2981 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2982 {
2983 #if ELF_CLASS == ELFCLASS32
2984     struct elf_sym *syms = s->disas_symtab.elf32;
2985 #else
2986     struct elf_sym *syms = s->disas_symtab.elf64;
2987 #endif
2988 
2989     // binary search
2990     struct elf_sym *sym;
2991 
2992     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2993     if (sym != NULL) {
2994         return s->disas_strtab + sym->st_name;
2995     }
2996 
2997     return "";
2998 }
2999 
3000 /* FIXME: This should use elf_ops.h  */
3001 static int symcmp(const void *s0, const void *s1)
3002 {
3003     struct elf_sym *sym0 = (struct elf_sym *)s0;
3004     struct elf_sym *sym1 = (struct elf_sym *)s1;
3005     return (sym0->st_value < sym1->st_value)
3006         ? -1
3007         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3008 }
3009 
3010 /* Best attempt to load symbols from this ELF object. */
3011 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3012 {
3013     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3014     uint64_t segsz;
3015     struct elf_shdr *shdr;
3016     char *strings = NULL;
3017     struct syminfo *s = NULL;
3018     struct elf_sym *new_syms, *syms = NULL;
3019 
3020     shnum = hdr->e_shnum;
3021     i = shnum * sizeof(struct elf_shdr);
3022     shdr = (struct elf_shdr *)alloca(i);
3023     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3024         return;
3025     }
3026 
3027     bswap_shdr(shdr, shnum);
3028     for (i = 0; i < shnum; ++i) {
3029         if (shdr[i].sh_type == SHT_SYMTAB) {
3030             sym_idx = i;
3031             str_idx = shdr[i].sh_link;
3032             goto found;
3033         }
3034     }
3035 
3036     /* There will be no symbol table if the file was stripped.  */
3037     return;
3038 
3039  found:
3040     /* Now know where the strtab and symtab are.  Snarf them.  */
3041     s = g_try_new(struct syminfo, 1);
3042     if (!s) {
3043         goto give_up;
3044     }
3045 
3046     segsz = shdr[str_idx].sh_size;
3047     s->disas_strtab = strings = g_try_malloc(segsz);
3048     if (!strings ||
3049         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3050         goto give_up;
3051     }
3052 
3053     segsz = shdr[sym_idx].sh_size;
3054     syms = g_try_malloc(segsz);
3055     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3056         goto give_up;
3057     }
3058 
3059     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3060         /* Implausibly large symbol table: give up rather than ploughing
3061          * on with the number of symbols calculation overflowing
3062          */
3063         goto give_up;
3064     }
3065     nsyms = segsz / sizeof(struct elf_sym);
3066     for (i = 0; i < nsyms; ) {
3067         bswap_sym(syms + i);
3068         /* Throw away entries which we do not need.  */
3069         if (syms[i].st_shndx == SHN_UNDEF
3070             || syms[i].st_shndx >= SHN_LORESERVE
3071             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3072             if (i < --nsyms) {
3073                 syms[i] = syms[nsyms];
3074             }
3075         } else {
3076 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3077             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3078             syms[i].st_value &= ~(target_ulong)1;
3079 #endif
3080             syms[i].st_value += load_bias;
3081             i++;
3082         }
3083     }
3084 
3085     /* No "useful" symbol.  */
3086     if (nsyms == 0) {
3087         goto give_up;
3088     }
3089 
3090     /* Attempt to free the storage associated with the local symbols
3091        that we threw away.  Whether or not this has any effect on the
3092        memory allocation depends on the malloc implementation and how
3093        many symbols we managed to discard.  */
3094     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3095     if (new_syms == NULL) {
3096         goto give_up;
3097     }
3098     syms = new_syms;
3099 
3100     qsort(syms, nsyms, sizeof(*syms), symcmp);
3101 
3102     s->disas_num_syms = nsyms;
3103 #if ELF_CLASS == ELFCLASS32
3104     s->disas_symtab.elf32 = syms;
3105 #else
3106     s->disas_symtab.elf64 = syms;
3107 #endif
3108     s->lookup_symbol = lookup_symbolxx;
3109     s->next = syminfos;
3110     syminfos = s;
3111 
3112     return;
3113 
3114 give_up:
3115     g_free(s);
3116     g_free(strings);
3117     g_free(syms);
3118 }
3119 
3120 uint32_t get_elf_eflags(int fd)
3121 {
3122     struct elfhdr ehdr;
3123     off_t offset;
3124     int ret;
3125 
3126     /* Read ELF header */
3127     offset = lseek(fd, 0, SEEK_SET);
3128     if (offset == (off_t) -1) {
3129         return 0;
3130     }
3131     ret = read(fd, &ehdr, sizeof(ehdr));
3132     if (ret < sizeof(ehdr)) {
3133         return 0;
3134     }
3135     offset = lseek(fd, offset, SEEK_SET);
3136     if (offset == (off_t) -1) {
3137         return 0;
3138     }
3139 
3140     /* Check ELF signature */
3141     if (!elf_check_ident(&ehdr)) {
3142         return 0;
3143     }
3144 
3145     /* check header */
3146     bswap_ehdr(&ehdr);
3147     if (!elf_check_ehdr(&ehdr)) {
3148         return 0;
3149     }
3150 
3151     /* return architecture id */
3152     return ehdr.e_flags;
3153 }
3154 
3155 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3156 {
3157     struct image_info interp_info;
3158     struct elfhdr elf_ex;
3159     char *elf_interpreter = NULL;
3160     char *scratch;
3161 
3162     memset(&interp_info, 0, sizeof(interp_info));
3163 #ifdef TARGET_MIPS
3164     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3165 #endif
3166 
3167     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3168 
3169     load_elf_image(bprm->filename, bprm->fd, info,
3170                    &elf_interpreter, bprm->buf);
3171 
3172     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3173        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3174        when we load the interpreter.  */
3175     elf_ex = *(struct elfhdr *)bprm->buf;
3176 
3177     /* Do this so that we can load the interpreter, if need be.  We will
3178        change some of these later */
3179     bprm->p = setup_arg_pages(bprm, info);
3180 
3181     scratch = g_new0(char, TARGET_PAGE_SIZE);
3182     if (STACK_GROWS_DOWN) {
3183         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3184                                    bprm->p, info->stack_limit);
3185         info->file_string = bprm->p;
3186         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3187                                    bprm->p, info->stack_limit);
3188         info->env_strings = bprm->p;
3189         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3190                                    bprm->p, info->stack_limit);
3191         info->arg_strings = bprm->p;
3192     } else {
3193         info->arg_strings = bprm->p;
3194         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3195                                    bprm->p, info->stack_limit);
3196         info->env_strings = bprm->p;
3197         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3198                                    bprm->p, info->stack_limit);
3199         info->file_string = bprm->p;
3200         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3201                                    bprm->p, info->stack_limit);
3202     }
3203 
3204     g_free(scratch);
3205 
3206     if (!bprm->p) {
3207         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3208         exit(-1);
3209     }
3210 
3211     if (elf_interpreter) {
3212         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3213 
3214         /* If the program interpreter is one of these two, then assume
3215            an iBCS2 image.  Otherwise assume a native linux image.  */
3216 
3217         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3218             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3219             info->personality = PER_SVR4;
3220 
3221             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3222                and some applications "depend" upon this behavior.  Since
3223                we do not have the power to recompile these, we emulate
3224                the SVr4 behavior.  Sigh.  */
3225             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3226                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3227         }
3228 #ifdef TARGET_MIPS
3229         info->interp_fp_abi = interp_info.fp_abi;
3230 #endif
3231     }
3232 
3233     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3234                                 info, (elf_interpreter ? &interp_info : NULL));
3235     info->start_stack = bprm->p;
3236 
3237     /* If we have an interpreter, set that as the program's entry point.
3238        Copy the load_bias as well, to help PPC64 interpret the entry
3239        point as a function descriptor.  Do this after creating elf tables
3240        so that we copy the original program entry point into the AUXV.  */
3241     if (elf_interpreter) {
3242         info->load_bias = interp_info.load_bias;
3243         info->entry = interp_info.entry;
3244         g_free(elf_interpreter);
3245     }
3246 
3247 #ifdef USE_ELF_CORE_DUMP
3248     bprm->core_dump = &elf_core_dump;
3249 #endif
3250 
3251     /*
3252      * If we reserved extra space for brk, release it now.
3253      * The implementation of do_brk in syscalls.c expects to be able
3254      * to mmap pages in this space.
3255      */
3256     if (info->reserve_brk) {
3257         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3258         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3259         target_munmap(start_brk, end_brk - start_brk);
3260     }
3261 
3262     return 0;
3263 }
3264 
3265 #ifdef USE_ELF_CORE_DUMP
3266 /*
3267  * Definitions to generate Intel SVR4-like core files.
3268  * These mostly have the same names as the SVR4 types with "target_elf_"
3269  * tacked on the front to prevent clashes with linux definitions,
3270  * and the typedef forms have been avoided.  This is mostly like
3271  * the SVR4 structure, but more Linuxy, with things that Linux does
3272  * not support and which gdb doesn't really use excluded.
3273  *
3274  * Fields we don't dump (their contents is zero) in linux-user qemu
3275  * are marked with XXX.
3276  *
3277  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3278  *
3279  * Porting ELF coredump for target is (quite) simple process.  First you
3280  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3281  * the target resides):
3282  *
3283  * #define USE_ELF_CORE_DUMP
3284  *
3285  * Next you define type of register set used for dumping.  ELF specification
3286  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3287  *
3288  * typedef <target_regtype> target_elf_greg_t;
3289  * #define ELF_NREG <number of registers>
3290  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3291  *
3292  * Last step is to implement target specific function that copies registers
3293  * from given cpu into just specified register set.  Prototype is:
3294  *
3295  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3296  *                                const CPUArchState *env);
3297  *
3298  * Parameters:
3299  *     regs - copy register values into here (allocated and zeroed by caller)
3300  *     env - copy registers from here
3301  *
3302  * Example for ARM target is provided in this file.
3303  */
3304 
3305 /* An ELF note in memory */
3306 struct memelfnote {
3307     const char *name;
3308     size_t     namesz;
3309     size_t     namesz_rounded;
3310     int        type;
3311     size_t     datasz;
3312     size_t     datasz_rounded;
3313     void       *data;
3314     size_t     notesz;
3315 };
3316 
3317 struct target_elf_siginfo {
3318     abi_int    si_signo; /* signal number */
3319     abi_int    si_code;  /* extra code */
3320     abi_int    si_errno; /* errno */
3321 };
3322 
3323 struct target_elf_prstatus {
3324     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3325     abi_short          pr_cursig;    /* Current signal */
3326     abi_ulong          pr_sigpend;   /* XXX */
3327     abi_ulong          pr_sighold;   /* XXX */
3328     target_pid_t       pr_pid;
3329     target_pid_t       pr_ppid;
3330     target_pid_t       pr_pgrp;
3331     target_pid_t       pr_sid;
3332     struct target_timeval pr_utime;  /* XXX User time */
3333     struct target_timeval pr_stime;  /* XXX System time */
3334     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3335     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3336     target_elf_gregset_t      pr_reg;       /* GP registers */
3337     abi_int            pr_fpvalid;   /* XXX */
3338 };
3339 
3340 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3341 
3342 struct target_elf_prpsinfo {
3343     char         pr_state;       /* numeric process state */
3344     char         pr_sname;       /* char for pr_state */
3345     char         pr_zomb;        /* zombie */
3346     char         pr_nice;        /* nice val */
3347     abi_ulong    pr_flag;        /* flags */
3348     target_uid_t pr_uid;
3349     target_gid_t pr_gid;
3350     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3351     /* Lots missing */
3352     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3353     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3354 };
3355 
3356 /* Here is the structure in which status of each thread is captured. */
3357 struct elf_thread_status {
3358     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3359     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3360 #if 0
3361     elf_fpregset_t fpu;             /* NT_PRFPREG */
3362     struct task_struct *thread;
3363     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3364 #endif
3365     struct memelfnote notes[1];
3366     int num_notes;
3367 };
3368 
3369 struct elf_note_info {
3370     struct memelfnote   *notes;
3371     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3372     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3373 
3374     QTAILQ_HEAD(, elf_thread_status) thread_list;
3375 #if 0
3376     /*
3377      * Current version of ELF coredump doesn't support
3378      * dumping fp regs etc.
3379      */
3380     elf_fpregset_t *fpu;
3381     elf_fpxregset_t *xfpu;
3382     int thread_status_size;
3383 #endif
3384     int notes_size;
3385     int numnote;
3386 };
3387 
3388 struct vm_area_struct {
3389     target_ulong   vma_start;  /* start vaddr of memory region */
3390     target_ulong   vma_end;    /* end vaddr of memory region */
3391     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3392     QTAILQ_ENTRY(vm_area_struct) vma_link;
3393 };
3394 
3395 struct mm_struct {
3396     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3397     int mm_count;           /* number of mappings */
3398 };
3399 
3400 static struct mm_struct *vma_init(void);
3401 static void vma_delete(struct mm_struct *);
3402 static int vma_add_mapping(struct mm_struct *, target_ulong,
3403                            target_ulong, abi_ulong);
3404 static int vma_get_mapping_count(const struct mm_struct *);
3405 static struct vm_area_struct *vma_first(const struct mm_struct *);
3406 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3407 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3408 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3409                       unsigned long flags);
3410 
3411 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3412 static void fill_note(struct memelfnote *, const char *, int,
3413                       unsigned int, void *);
3414 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3415 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3416 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3417 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3418 static size_t note_size(const struct memelfnote *);
3419 static void free_note_info(struct elf_note_info *);
3420 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3421 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3422 
3423 static int dump_write(int, const void *, size_t);
3424 static int write_note(struct memelfnote *, int);
3425 static int write_note_info(struct elf_note_info *, int);
3426 
3427 #ifdef BSWAP_NEEDED
3428 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3429 {
3430     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3431     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3432     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3433     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3434     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3435     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3436     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3437     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3438     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3439     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3440     /* cpu times are not filled, so we skip them */
3441     /* regs should be in correct format already */
3442     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3443 }
3444 
3445 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3446 {
3447     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3448     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3449     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3450     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3451     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3452     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3453     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3454 }
3455 
3456 static void bswap_note(struct elf_note *en)
3457 {
3458     bswap32s(&en->n_namesz);
3459     bswap32s(&en->n_descsz);
3460     bswap32s(&en->n_type);
3461 }
3462 #else
3463 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3464 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3465 static inline void bswap_note(struct elf_note *en) { }
3466 #endif /* BSWAP_NEEDED */
3467 
3468 /*
3469  * Minimal support for linux memory regions.  These are needed
3470  * when we are finding out what memory exactly belongs to
3471  * emulated process.  No locks needed here, as long as
3472  * thread that received the signal is stopped.
3473  */
3474 
3475 static struct mm_struct *vma_init(void)
3476 {
3477     struct mm_struct *mm;
3478 
3479     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3480         return (NULL);
3481 
3482     mm->mm_count = 0;
3483     QTAILQ_INIT(&mm->mm_mmap);
3484 
3485     return (mm);
3486 }
3487 
3488 static void vma_delete(struct mm_struct *mm)
3489 {
3490     struct vm_area_struct *vma;
3491 
3492     while ((vma = vma_first(mm)) != NULL) {
3493         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3494         g_free(vma);
3495     }
3496     g_free(mm);
3497 }
3498 
3499 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3500                            target_ulong end, abi_ulong flags)
3501 {
3502     struct vm_area_struct *vma;
3503 
3504     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3505         return (-1);
3506 
3507     vma->vma_start = start;
3508     vma->vma_end = end;
3509     vma->vma_flags = flags;
3510 
3511     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3512     mm->mm_count++;
3513 
3514     return (0);
3515 }
3516 
3517 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3518 {
3519     return (QTAILQ_FIRST(&mm->mm_mmap));
3520 }
3521 
3522 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3523 {
3524     return (QTAILQ_NEXT(vma, vma_link));
3525 }
3526 
3527 static int vma_get_mapping_count(const struct mm_struct *mm)
3528 {
3529     return (mm->mm_count);
3530 }
3531 
3532 /*
3533  * Calculate file (dump) size of given memory region.
3534  */
3535 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3536 {
3537     /* if we cannot even read the first page, skip it */
3538     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3539         return (0);
3540 
3541     /*
3542      * Usually we don't dump executable pages as they contain
3543      * non-writable code that debugger can read directly from
3544      * target library etc.  However, thread stacks are marked
3545      * also executable so we read in first page of given region
3546      * and check whether it contains elf header.  If there is
3547      * no elf header, we dump it.
3548      */
3549     if (vma->vma_flags & PROT_EXEC) {
3550         char page[TARGET_PAGE_SIZE];
3551 
3552         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3553             return 0;
3554         }
3555         if ((page[EI_MAG0] == ELFMAG0) &&
3556             (page[EI_MAG1] == ELFMAG1) &&
3557             (page[EI_MAG2] == ELFMAG2) &&
3558             (page[EI_MAG3] == ELFMAG3)) {
3559             /*
3560              * Mappings are possibly from ELF binary.  Don't dump
3561              * them.
3562              */
3563             return (0);
3564         }
3565     }
3566 
3567     return (vma->vma_end - vma->vma_start);
3568 }
3569 
3570 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3571                       unsigned long flags)
3572 {
3573     struct mm_struct *mm = (struct mm_struct *)priv;
3574 
3575     vma_add_mapping(mm, start, end, flags);
3576     return (0);
3577 }
3578 
3579 static void fill_note(struct memelfnote *note, const char *name, int type,
3580                       unsigned int sz, void *data)
3581 {
3582     unsigned int namesz;
3583 
3584     namesz = strlen(name) + 1;
3585     note->name = name;
3586     note->namesz = namesz;
3587     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3588     note->type = type;
3589     note->datasz = sz;
3590     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3591 
3592     note->data = data;
3593 
3594     /*
3595      * We calculate rounded up note size here as specified by
3596      * ELF document.
3597      */
3598     note->notesz = sizeof (struct elf_note) +
3599         note->namesz_rounded + note->datasz_rounded;
3600 }
3601 
3602 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3603                             uint32_t flags)
3604 {
3605     (void) memset(elf, 0, sizeof(*elf));
3606 
3607     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3608     elf->e_ident[EI_CLASS] = ELF_CLASS;
3609     elf->e_ident[EI_DATA] = ELF_DATA;
3610     elf->e_ident[EI_VERSION] = EV_CURRENT;
3611     elf->e_ident[EI_OSABI] = ELF_OSABI;
3612 
3613     elf->e_type = ET_CORE;
3614     elf->e_machine = machine;
3615     elf->e_version = EV_CURRENT;
3616     elf->e_phoff = sizeof(struct elfhdr);
3617     elf->e_flags = flags;
3618     elf->e_ehsize = sizeof(struct elfhdr);
3619     elf->e_phentsize = sizeof(struct elf_phdr);
3620     elf->e_phnum = segs;
3621 
3622     bswap_ehdr(elf);
3623 }
3624 
3625 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3626 {
3627     phdr->p_type = PT_NOTE;
3628     phdr->p_offset = offset;
3629     phdr->p_vaddr = 0;
3630     phdr->p_paddr = 0;
3631     phdr->p_filesz = sz;
3632     phdr->p_memsz = 0;
3633     phdr->p_flags = 0;
3634     phdr->p_align = 0;
3635 
3636     bswap_phdr(phdr, 1);
3637 }
3638 
3639 static size_t note_size(const struct memelfnote *note)
3640 {
3641     return (note->notesz);
3642 }
3643 
3644 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3645                           const TaskState *ts, int signr)
3646 {
3647     (void) memset(prstatus, 0, sizeof (*prstatus));
3648     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3649     prstatus->pr_pid = ts->ts_tid;
3650     prstatus->pr_ppid = getppid();
3651     prstatus->pr_pgrp = getpgrp();
3652     prstatus->pr_sid = getsid(0);
3653 
3654     bswap_prstatus(prstatus);
3655 }
3656 
3657 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3658 {
3659     char *base_filename;
3660     unsigned int i, len;
3661 
3662     (void) memset(psinfo, 0, sizeof (*psinfo));
3663 
3664     len = ts->info->env_strings - ts->info->arg_strings;
3665     if (len >= ELF_PRARGSZ)
3666         len = ELF_PRARGSZ - 1;
3667     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3668         return -EFAULT;
3669     }
3670     for (i = 0; i < len; i++)
3671         if (psinfo->pr_psargs[i] == 0)
3672             psinfo->pr_psargs[i] = ' ';
3673     psinfo->pr_psargs[len] = 0;
3674 
3675     psinfo->pr_pid = getpid();
3676     psinfo->pr_ppid = getppid();
3677     psinfo->pr_pgrp = getpgrp();
3678     psinfo->pr_sid = getsid(0);
3679     psinfo->pr_uid = getuid();
3680     psinfo->pr_gid = getgid();
3681 
3682     base_filename = g_path_get_basename(ts->bprm->filename);
3683     /*
3684      * Using strncpy here is fine: at max-length,
3685      * this field is not NUL-terminated.
3686      */
3687     (void) strncpy(psinfo->pr_fname, base_filename,
3688                    sizeof(psinfo->pr_fname));
3689 
3690     g_free(base_filename);
3691     bswap_psinfo(psinfo);
3692     return (0);
3693 }
3694 
3695 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3696 {
3697     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3698     elf_addr_t orig_auxv = auxv;
3699     void *ptr;
3700     int len = ts->info->auxv_len;
3701 
3702     /*
3703      * Auxiliary vector is stored in target process stack.  It contains
3704      * {type, value} pairs that we need to dump into note.  This is not
3705      * strictly necessary but we do it here for sake of completeness.
3706      */
3707 
3708     /* read in whole auxv vector and copy it to memelfnote */
3709     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3710     if (ptr != NULL) {
3711         fill_note(note, "CORE", NT_AUXV, len, ptr);
3712         unlock_user(ptr, auxv, len);
3713     }
3714 }
3715 
3716 /*
3717  * Constructs name of coredump file.  We have following convention
3718  * for the name:
3719  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3720  *
3721  * Returns the filename
3722  */
3723 static char *core_dump_filename(const TaskState *ts)
3724 {
3725     g_autoptr(GDateTime) now = g_date_time_new_now_local();
3726     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3727     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3728 
3729     return g_strdup_printf("qemu_%s_%s_%d.core",
3730                            base_filename, nowstr, (int)getpid());
3731 }
3732 
3733 static int dump_write(int fd, const void *ptr, size_t size)
3734 {
3735     const char *bufp = (const char *)ptr;
3736     ssize_t bytes_written, bytes_left;
3737     struct rlimit dumpsize;
3738     off_t pos;
3739 
3740     bytes_written = 0;
3741     getrlimit(RLIMIT_CORE, &dumpsize);
3742     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3743         if (errno == ESPIPE) { /* not a seekable stream */
3744             bytes_left = size;
3745         } else {
3746             return pos;
3747         }
3748     } else {
3749         if (dumpsize.rlim_cur <= pos) {
3750             return -1;
3751         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3752             bytes_left = size;
3753         } else {
3754             size_t limit_left=dumpsize.rlim_cur - pos;
3755             bytes_left = limit_left >= size ? size : limit_left ;
3756         }
3757     }
3758 
3759     /*
3760      * In normal conditions, single write(2) should do but
3761      * in case of socket etc. this mechanism is more portable.
3762      */
3763     do {
3764         bytes_written = write(fd, bufp, bytes_left);
3765         if (bytes_written < 0) {
3766             if (errno == EINTR)
3767                 continue;
3768             return (-1);
3769         } else if (bytes_written == 0) { /* eof */
3770             return (-1);
3771         }
3772         bufp += bytes_written;
3773         bytes_left -= bytes_written;
3774     } while (bytes_left > 0);
3775 
3776     return (0);
3777 }
3778 
3779 static int write_note(struct memelfnote *men, int fd)
3780 {
3781     struct elf_note en;
3782 
3783     en.n_namesz = men->namesz;
3784     en.n_type = men->type;
3785     en.n_descsz = men->datasz;
3786 
3787     bswap_note(&en);
3788 
3789     if (dump_write(fd, &en, sizeof(en)) != 0)
3790         return (-1);
3791     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3792         return (-1);
3793     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3794         return (-1);
3795 
3796     return (0);
3797 }
3798 
3799 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3800 {
3801     CPUState *cpu = env_cpu((CPUArchState *)env);
3802     TaskState *ts = (TaskState *)cpu->opaque;
3803     struct elf_thread_status *ets;
3804 
3805     ets = g_malloc0(sizeof (*ets));
3806     ets->num_notes = 1; /* only prstatus is dumped */
3807     fill_prstatus(&ets->prstatus, ts, 0);
3808     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3809     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3810               &ets->prstatus);
3811 
3812     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3813 
3814     info->notes_size += note_size(&ets->notes[0]);
3815 }
3816 
3817 static void init_note_info(struct elf_note_info *info)
3818 {
3819     /* Initialize the elf_note_info structure so that it is at
3820      * least safe to call free_note_info() on it. Must be
3821      * called before calling fill_note_info().
3822      */
3823     memset(info, 0, sizeof (*info));
3824     QTAILQ_INIT(&info->thread_list);
3825 }
3826 
3827 static int fill_note_info(struct elf_note_info *info,
3828                           long signr, const CPUArchState *env)
3829 {
3830 #define NUMNOTES 3
3831     CPUState *cpu = env_cpu((CPUArchState *)env);
3832     TaskState *ts = (TaskState *)cpu->opaque;
3833     int i;
3834 
3835     info->notes = g_new0(struct memelfnote, NUMNOTES);
3836     if (info->notes == NULL)
3837         return (-ENOMEM);
3838     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3839     if (info->prstatus == NULL)
3840         return (-ENOMEM);
3841     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3842     if (info->prstatus == NULL)
3843         return (-ENOMEM);
3844 
3845     /*
3846      * First fill in status (and registers) of current thread
3847      * including process info & aux vector.
3848      */
3849     fill_prstatus(info->prstatus, ts, signr);
3850     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3851     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3852               sizeof (*info->prstatus), info->prstatus);
3853     fill_psinfo(info->psinfo, ts);
3854     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3855               sizeof (*info->psinfo), info->psinfo);
3856     fill_auxv_note(&info->notes[2], ts);
3857     info->numnote = 3;
3858 
3859     info->notes_size = 0;
3860     for (i = 0; i < info->numnote; i++)
3861         info->notes_size += note_size(&info->notes[i]);
3862 
3863     /* read and fill status of all threads */
3864     cpu_list_lock();
3865     CPU_FOREACH(cpu) {
3866         if (cpu == thread_cpu) {
3867             continue;
3868         }
3869         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3870     }
3871     cpu_list_unlock();
3872 
3873     return (0);
3874 }
3875 
3876 static void free_note_info(struct elf_note_info *info)
3877 {
3878     struct elf_thread_status *ets;
3879 
3880     while (!QTAILQ_EMPTY(&info->thread_list)) {
3881         ets = QTAILQ_FIRST(&info->thread_list);
3882         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3883         g_free(ets);
3884     }
3885 
3886     g_free(info->prstatus);
3887     g_free(info->psinfo);
3888     g_free(info->notes);
3889 }
3890 
3891 static int write_note_info(struct elf_note_info *info, int fd)
3892 {
3893     struct elf_thread_status *ets;
3894     int i, error = 0;
3895 
3896     /* write prstatus, psinfo and auxv for current thread */
3897     for (i = 0; i < info->numnote; i++)
3898         if ((error = write_note(&info->notes[i], fd)) != 0)
3899             return (error);
3900 
3901     /* write prstatus for each thread */
3902     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3903         if ((error = write_note(&ets->notes[0], fd)) != 0)
3904             return (error);
3905     }
3906 
3907     return (0);
3908 }
3909 
3910 /*
3911  * Write out ELF coredump.
3912  *
3913  * See documentation of ELF object file format in:
3914  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3915  *
3916  * Coredump format in linux is following:
3917  *
3918  * 0   +----------------------+         \
3919  *     | ELF header           | ET_CORE  |
3920  *     +----------------------+          |
3921  *     | ELF program headers  |          |--- headers
3922  *     | - NOTE section       |          |
3923  *     | - PT_LOAD sections   |          |
3924  *     +----------------------+         /
3925  *     | NOTEs:               |
3926  *     | - NT_PRSTATUS        |
3927  *     | - NT_PRSINFO         |
3928  *     | - NT_AUXV            |
3929  *     +----------------------+ <-- aligned to target page
3930  *     | Process memory dump  |
3931  *     :                      :
3932  *     .                      .
3933  *     :                      :
3934  *     |                      |
3935  *     +----------------------+
3936  *
3937  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3938  * NT_PRSINFO  -> struct elf_prpsinfo
3939  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3940  *
3941  * Format follows System V format as close as possible.  Current
3942  * version limitations are as follows:
3943  *     - no floating point registers are dumped
3944  *
3945  * Function returns 0 in case of success, negative errno otherwise.
3946  *
3947  * TODO: make this work also during runtime: it should be
3948  * possible to force coredump from running process and then
3949  * continue processing.  For example qemu could set up SIGUSR2
3950  * handler (provided that target process haven't registered
3951  * handler for that) that does the dump when signal is received.
3952  */
3953 static int elf_core_dump(int signr, const CPUArchState *env)
3954 {
3955     const CPUState *cpu = env_cpu((CPUArchState *)env);
3956     const TaskState *ts = (const TaskState *)cpu->opaque;
3957     struct vm_area_struct *vma = NULL;
3958     g_autofree char *corefile = NULL;
3959     struct elf_note_info info;
3960     struct elfhdr elf;
3961     struct elf_phdr phdr;
3962     struct rlimit dumpsize;
3963     struct mm_struct *mm = NULL;
3964     off_t offset = 0, data_offset = 0;
3965     int segs = 0;
3966     int fd = -1;
3967 
3968     init_note_info(&info);
3969 
3970     errno = 0;
3971     getrlimit(RLIMIT_CORE, &dumpsize);
3972     if (dumpsize.rlim_cur == 0)
3973         return 0;
3974 
3975     corefile = core_dump_filename(ts);
3976 
3977     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3978                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3979         return (-errno);
3980 
3981     /*
3982      * Walk through target process memory mappings and
3983      * set up structure containing this information.  After
3984      * this point vma_xxx functions can be used.
3985      */
3986     if ((mm = vma_init()) == NULL)
3987         goto out;
3988 
3989     walk_memory_regions(mm, vma_walker);
3990     segs = vma_get_mapping_count(mm);
3991 
3992     /*
3993      * Construct valid coredump ELF header.  We also
3994      * add one more segment for notes.
3995      */
3996     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3997     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3998         goto out;
3999 
4000     /* fill in the in-memory version of notes */
4001     if (fill_note_info(&info, signr, env) < 0)
4002         goto out;
4003 
4004     offset += sizeof (elf);                             /* elf header */
4005     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4006 
4007     /* write out notes program header */
4008     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4009 
4010     offset += info.notes_size;
4011     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4012         goto out;
4013 
4014     /*
4015      * ELF specification wants data to start at page boundary so
4016      * we align it here.
4017      */
4018     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4019 
4020     /*
4021      * Write program headers for memory regions mapped in
4022      * the target process.
4023      */
4024     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4025         (void) memset(&phdr, 0, sizeof (phdr));
4026 
4027         phdr.p_type = PT_LOAD;
4028         phdr.p_offset = offset;
4029         phdr.p_vaddr = vma->vma_start;
4030         phdr.p_paddr = 0;
4031         phdr.p_filesz = vma_dump_size(vma);
4032         offset += phdr.p_filesz;
4033         phdr.p_memsz = vma->vma_end - vma->vma_start;
4034         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4035         if (vma->vma_flags & PROT_WRITE)
4036             phdr.p_flags |= PF_W;
4037         if (vma->vma_flags & PROT_EXEC)
4038             phdr.p_flags |= PF_X;
4039         phdr.p_align = ELF_EXEC_PAGESIZE;
4040 
4041         bswap_phdr(&phdr, 1);
4042         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4043             goto out;
4044         }
4045     }
4046 
4047     /*
4048      * Next we write notes just after program headers.  No
4049      * alignment needed here.
4050      */
4051     if (write_note_info(&info, fd) < 0)
4052         goto out;
4053 
4054     /* align data to page boundary */
4055     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4056         goto out;
4057 
4058     /*
4059      * Finally we can dump process memory into corefile as well.
4060      */
4061     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4062         abi_ulong addr;
4063         abi_ulong end;
4064 
4065         end = vma->vma_start + vma_dump_size(vma);
4066 
4067         for (addr = vma->vma_start; addr < end;
4068              addr += TARGET_PAGE_SIZE) {
4069             char page[TARGET_PAGE_SIZE];
4070             int error;
4071 
4072             /*
4073              *  Read in page from target process memory and
4074              *  write it to coredump file.
4075              */
4076             error = copy_from_user(page, addr, sizeof (page));
4077             if (error != 0) {
4078                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4079                                addr);
4080                 errno = -error;
4081                 goto out;
4082             }
4083             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4084                 goto out;
4085         }
4086     }
4087 
4088  out:
4089     free_note_info(&info);
4090     if (mm != NULL)
4091         vma_delete(mm);
4092     (void) close(fd);
4093 
4094     if (errno != 0)
4095         return (-errno);
4096     return (0);
4097 }
4098 #endif /* USE_ELF_CORE_DUMP */
4099 
4100 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4101 {
4102     init_thread(regs, infop);
4103 }
4104