xref: /openbmc/qemu/linux-user/elfload.c (revision 74433bf0)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/guest-random.h"
12 
13 #ifdef _ARCH_PPC64
14 #undef ARCH_DLINFO
15 #undef ELF_PLATFORM
16 #undef ELF_HWCAP
17 #undef ELF_HWCAP2
18 #undef ELF_CLASS
19 #undef ELF_DATA
20 #undef ELF_ARCH
21 #endif
22 
23 #define ELF_OSABI   ELFOSABI_SYSV
24 
25 /* from personality.h */
26 
27 /*
28  * Flags for bug emulation.
29  *
30  * These occupy the top three bytes.
31  */
32 enum {
33     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
34     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
35                                            descriptors (signal handling) */
36     MMAP_PAGE_ZERO =    0x0100000,
37     ADDR_COMPAT_LAYOUT = 0x0200000,
38     READ_IMPLIES_EXEC = 0x0400000,
39     ADDR_LIMIT_32BIT =  0x0800000,
40     SHORT_INODE =       0x1000000,
41     WHOLE_SECONDS =     0x2000000,
42     STICKY_TIMEOUTS =   0x4000000,
43     ADDR_LIMIT_3GB =    0x8000000,
44 };
45 
46 /*
47  * Personality types.
48  *
49  * These go in the low byte.  Avoid using the top bit, it will
50  * conflict with error returns.
51  */
52 enum {
53     PER_LINUX =         0x0000,
54     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
55     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
56     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
57     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
58     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
59     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
60     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
61     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
62     PER_BSD =           0x0006,
63     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
64     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
65     PER_LINUX32 =       0x0008,
66     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
67     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
68     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
69     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
70     PER_RISCOS =        0x000c,
71     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
72     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
73     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
74     PER_HPUX =          0x0010,
75     PER_MASK =          0x00ff,
76 };
77 
78 /*
79  * Return the base personality without flags.
80  */
81 #define personality(pers)       (pers & PER_MASK)
82 
83 int info_is_fdpic(struct image_info *info)
84 {
85     return info->personality == PER_LINUX_FDPIC;
86 }
87 
88 /* this flag is uneffective under linux too, should be deleted */
89 #ifndef MAP_DENYWRITE
90 #define MAP_DENYWRITE 0
91 #endif
92 
93 /* should probably go in elf.h */
94 #ifndef ELIBBAD
95 #define ELIBBAD 80
96 #endif
97 
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA        ELFDATA2MSB
100 #else
101 #define ELF_DATA        ELFDATA2LSB
102 #endif
103 
104 #ifdef TARGET_ABI_MIPSN32
105 typedef abi_ullong      target_elf_greg_t;
106 #define tswapreg(ptr)   tswap64(ptr)
107 #else
108 typedef abi_ulong       target_elf_greg_t;
109 #define tswapreg(ptr)   tswapal(ptr)
110 #endif
111 
112 #ifdef USE_UID16
113 typedef abi_ushort      target_uid_t;
114 typedef abi_ushort      target_gid_t;
115 #else
116 typedef abi_uint        target_uid_t;
117 typedef abi_uint        target_gid_t;
118 #endif
119 typedef abi_int         target_pid_t;
120 
121 #ifdef TARGET_I386
122 
123 #define ELF_PLATFORM get_elf_platform()
124 
125 static const char *get_elf_platform(void)
126 {
127     static char elf_platform[] = "i386";
128     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
129     if (family > 6)
130         family = 6;
131     if (family >= 3)
132         elf_platform[1] = '0' + family;
133     return elf_platform;
134 }
135 
136 #define ELF_HWCAP get_elf_hwcap()
137 
138 static uint32_t get_elf_hwcap(void)
139 {
140     X86CPU *cpu = X86_CPU(thread_cpu);
141 
142     return cpu->env.features[FEAT_1_EDX];
143 }
144 
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147 
148 #define ELF_CLASS      ELFCLASS64
149 #define ELF_ARCH       EM_X86_64
150 
151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
152 {
153     regs->rax = 0;
154     regs->rsp = infop->start_stack;
155     regs->rip = infop->entry;
156 }
157 
158 #define ELF_NREG    27
159 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
160 
161 /*
162  * Note that ELF_NREG should be 29 as there should be place for
163  * TRAPNO and ERR "registers" as well but linux doesn't dump
164  * those.
165  *
166  * See linux kernel: arch/x86/include/asm/elf.h
167  */
168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
169 {
170     (*regs)[0] = env->regs[15];
171     (*regs)[1] = env->regs[14];
172     (*regs)[2] = env->regs[13];
173     (*regs)[3] = env->regs[12];
174     (*regs)[4] = env->regs[R_EBP];
175     (*regs)[5] = env->regs[R_EBX];
176     (*regs)[6] = env->regs[11];
177     (*regs)[7] = env->regs[10];
178     (*regs)[8] = env->regs[9];
179     (*regs)[9] = env->regs[8];
180     (*regs)[10] = env->regs[R_EAX];
181     (*regs)[11] = env->regs[R_ECX];
182     (*regs)[12] = env->regs[R_EDX];
183     (*regs)[13] = env->regs[R_ESI];
184     (*regs)[14] = env->regs[R_EDI];
185     (*regs)[15] = env->regs[R_EAX]; /* XXX */
186     (*regs)[16] = env->eip;
187     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
188     (*regs)[18] = env->eflags;
189     (*regs)[19] = env->regs[R_ESP];
190     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
191     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
192     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
193     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
194     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
195     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
196     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
197 }
198 
199 #else
200 
201 #define ELF_START_MMAP 0x80000000
202 
203 /*
204  * This is used to ensure we don't load something for the wrong architecture.
205  */
206 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207 
208 /*
209  * These are used to set parameters in the core dumps.
210  */
211 #define ELF_CLASS       ELFCLASS32
212 #define ELF_ARCH        EM_386
213 
214 static inline void init_thread(struct target_pt_regs *regs,
215                                struct image_info *infop)
216 {
217     regs->esp = infop->start_stack;
218     regs->eip = infop->entry;
219 
220     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
221        starts %edx contains a pointer to a function which might be
222        registered using `atexit'.  This provides a mean for the
223        dynamic linker to call DT_FINI functions for shared libraries
224        that have been loaded before the code runs.
225 
226        A value of 0 tells we have no such handler.  */
227     regs->edx = 0;
228 }
229 
230 #define ELF_NREG    17
231 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
232 
233 /*
234  * Note that ELF_NREG should be 19 as there should be place for
235  * TRAPNO and ERR "registers" as well but linux doesn't dump
236  * those.
237  *
238  * See linux kernel: arch/x86/include/asm/elf.h
239  */
240 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
241 {
242     (*regs)[0] = env->regs[R_EBX];
243     (*regs)[1] = env->regs[R_ECX];
244     (*regs)[2] = env->regs[R_EDX];
245     (*regs)[3] = env->regs[R_ESI];
246     (*regs)[4] = env->regs[R_EDI];
247     (*regs)[5] = env->regs[R_EBP];
248     (*regs)[6] = env->regs[R_EAX];
249     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
250     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
251     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
252     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
253     (*regs)[11] = env->regs[R_EAX]; /* XXX */
254     (*regs)[12] = env->eip;
255     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
256     (*regs)[14] = env->eflags;
257     (*regs)[15] = env->regs[R_ESP];
258     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
259 }
260 #endif
261 
262 #define USE_ELF_CORE_DUMP
263 #define ELF_EXEC_PAGESIZE       4096
264 
265 #endif
266 
267 #ifdef TARGET_ARM
268 
269 #ifndef TARGET_AARCH64
270 /* 32 bit ARM definitions */
271 
272 #define ELF_START_MMAP 0x80000000
273 
274 #define ELF_ARCH        EM_ARM
275 #define ELF_CLASS       ELFCLASS32
276 
277 static inline void init_thread(struct target_pt_regs *regs,
278                                struct image_info *infop)
279 {
280     abi_long stack = infop->start_stack;
281     memset(regs, 0, sizeof(*regs));
282 
283     regs->uregs[16] = ARM_CPU_MODE_USR;
284     if (infop->entry & 1) {
285         regs->uregs[16] |= CPSR_T;
286     }
287     regs->uregs[15] = infop->entry & 0xfffffffe;
288     regs->uregs[13] = infop->start_stack;
289     /* FIXME - what to for failure of get_user()? */
290     get_user_ual(regs->uregs[2], stack + 8); /* envp */
291     get_user_ual(regs->uregs[1], stack + 4); /* envp */
292     /* XXX: it seems that r0 is zeroed after ! */
293     regs->uregs[0] = 0;
294     /* For uClinux PIC binaries.  */
295     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
296     regs->uregs[10] = infop->start_data;
297 
298     /* Support ARM FDPIC.  */
299     if (info_is_fdpic(infop)) {
300         /* As described in the ABI document, r7 points to the loadmap info
301          * prepared by the kernel. If an interpreter is needed, r8 points
302          * to the interpreter loadmap and r9 points to the interpreter
303          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
304          * r9 points to the main program PT_DYNAMIC info.
305          */
306         regs->uregs[7] = infop->loadmap_addr;
307         if (infop->interpreter_loadmap_addr) {
308             /* Executable is dynamically loaded.  */
309             regs->uregs[8] = infop->interpreter_loadmap_addr;
310             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
311         } else {
312             regs->uregs[8] = 0;
313             regs->uregs[9] = infop->pt_dynamic_addr;
314         }
315     }
316 }
317 
318 #define ELF_NREG    18
319 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
320 
321 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
322 {
323     (*regs)[0] = tswapreg(env->regs[0]);
324     (*regs)[1] = tswapreg(env->regs[1]);
325     (*regs)[2] = tswapreg(env->regs[2]);
326     (*regs)[3] = tswapreg(env->regs[3]);
327     (*regs)[4] = tswapreg(env->regs[4]);
328     (*regs)[5] = tswapreg(env->regs[5]);
329     (*regs)[6] = tswapreg(env->regs[6]);
330     (*regs)[7] = tswapreg(env->regs[7]);
331     (*regs)[8] = tswapreg(env->regs[8]);
332     (*regs)[9] = tswapreg(env->regs[9]);
333     (*regs)[10] = tswapreg(env->regs[10]);
334     (*regs)[11] = tswapreg(env->regs[11]);
335     (*regs)[12] = tswapreg(env->regs[12]);
336     (*regs)[13] = tswapreg(env->regs[13]);
337     (*regs)[14] = tswapreg(env->regs[14]);
338     (*regs)[15] = tswapreg(env->regs[15]);
339 
340     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
341     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
342 }
343 
344 #define USE_ELF_CORE_DUMP
345 #define ELF_EXEC_PAGESIZE       4096
346 
347 enum
348 {
349     ARM_HWCAP_ARM_SWP       = 1 << 0,
350     ARM_HWCAP_ARM_HALF      = 1 << 1,
351     ARM_HWCAP_ARM_THUMB     = 1 << 2,
352     ARM_HWCAP_ARM_26BIT     = 1 << 3,
353     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
354     ARM_HWCAP_ARM_FPA       = 1 << 5,
355     ARM_HWCAP_ARM_VFP       = 1 << 6,
356     ARM_HWCAP_ARM_EDSP      = 1 << 7,
357     ARM_HWCAP_ARM_JAVA      = 1 << 8,
358     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
359     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
360     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
361     ARM_HWCAP_ARM_NEON      = 1 << 12,
362     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
363     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
364     ARM_HWCAP_ARM_TLS       = 1 << 15,
365     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
366     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
367     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
368     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
369     ARM_HWCAP_ARM_LPAE      = 1 << 20,
370     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
371 };
372 
373 enum {
374     ARM_HWCAP2_ARM_AES      = 1 << 0,
375     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
376     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
377     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
378     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
379 };
380 
381 /* The commpage only exists for 32 bit kernels */
382 
383 /* Return 1 if the proposed guest space is suitable for the guest.
384  * Return 0 if the proposed guest space isn't suitable, but another
385  * address space should be tried.
386  * Return -1 if there is no way the proposed guest space can be
387  * valid regardless of the base.
388  * The guest code may leave a page mapped and populate it if the
389  * address is suitable.
390  */
391 static int init_guest_commpage(unsigned long guest_base,
392                                unsigned long guest_size)
393 {
394     unsigned long real_start, test_page_addr;
395 
396     /* We need to check that we can force a fault on access to the
397      * commpage at 0xffff0fxx
398      */
399     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
400 
401     /* If the commpage lies within the already allocated guest space,
402      * then there is no way we can allocate it.
403      *
404      * You may be thinking that that this check is redundant because
405      * we already validated the guest size against MAX_RESERVED_VA;
406      * but if qemu_host_page_mask is unusually large, then
407      * test_page_addr may be lower.
408      */
409     if (test_page_addr >= guest_base
410         && test_page_addr < (guest_base + guest_size)) {
411         return -1;
412     }
413 
414     /* Note it needs to be writeable to let us initialise it */
415     real_start = (unsigned long)
416                  mmap((void *)test_page_addr, qemu_host_page_size,
417                      PROT_READ | PROT_WRITE,
418                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
419 
420     /* If we can't map it then try another address */
421     if (real_start == -1ul) {
422         return 0;
423     }
424 
425     if (real_start != test_page_addr) {
426         /* OS didn't put the page where we asked - unmap and reject */
427         munmap((void *)real_start, qemu_host_page_size);
428         return 0;
429     }
430 
431     /* Leave the page mapped
432      * Populate it (mmap should have left it all 0'd)
433      */
434 
435     /* Kernel helper versions */
436     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
437 
438     /* Now it's populated make it RO */
439     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
440         perror("Protecting guest commpage");
441         exit(-1);
442     }
443 
444     return 1; /* All good */
445 }
446 
447 #define ELF_HWCAP get_elf_hwcap()
448 #define ELF_HWCAP2 get_elf_hwcap2()
449 
450 static uint32_t get_elf_hwcap(void)
451 {
452     ARMCPU *cpu = ARM_CPU(thread_cpu);
453     uint32_t hwcaps = 0;
454 
455     hwcaps |= ARM_HWCAP_ARM_SWP;
456     hwcaps |= ARM_HWCAP_ARM_HALF;
457     hwcaps |= ARM_HWCAP_ARM_THUMB;
458     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
459 
460     /* probe for the extra features */
461 #define GET_FEATURE(feat, hwcap) \
462     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
463 
464 #define GET_FEATURE_ID(feat, hwcap) \
465     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
466 
467     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
468     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
469     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
470     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
471     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
472     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
473     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
474     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
475     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
476     GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
477     GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
478     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
479      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
480      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
481      * to our VFP_FP16 feature bit.
482      */
483     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
484     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
485 
486     return hwcaps;
487 }
488 
489 static uint32_t get_elf_hwcap2(void)
490 {
491     ARMCPU *cpu = ARM_CPU(thread_cpu);
492     uint32_t hwcaps = 0;
493 
494     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
495     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
496     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
497     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
498     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
499     return hwcaps;
500 }
501 
502 #undef GET_FEATURE
503 #undef GET_FEATURE_ID
504 
505 #define ELF_PLATFORM get_elf_platform()
506 
507 static const char *get_elf_platform(void)
508 {
509     CPUARMState *env = thread_cpu->env_ptr;
510 
511 #ifdef TARGET_WORDS_BIGENDIAN
512 # define END  "b"
513 #else
514 # define END  "l"
515 #endif
516 
517     if (arm_feature(env, ARM_FEATURE_V8)) {
518         return "v8" END;
519     } else if (arm_feature(env, ARM_FEATURE_V7)) {
520         if (arm_feature(env, ARM_FEATURE_M)) {
521             return "v7m" END;
522         } else {
523             return "v7" END;
524         }
525     } else if (arm_feature(env, ARM_FEATURE_V6)) {
526         return "v6" END;
527     } else if (arm_feature(env, ARM_FEATURE_V5)) {
528         return "v5" END;
529     } else {
530         return "v4" END;
531     }
532 
533 #undef END
534 }
535 
536 #else
537 /* 64 bit ARM definitions */
538 #define ELF_START_MMAP 0x80000000
539 
540 #define ELF_ARCH        EM_AARCH64
541 #define ELF_CLASS       ELFCLASS64
542 #ifdef TARGET_WORDS_BIGENDIAN
543 # define ELF_PLATFORM    "aarch64_be"
544 #else
545 # define ELF_PLATFORM    "aarch64"
546 #endif
547 
548 static inline void init_thread(struct target_pt_regs *regs,
549                                struct image_info *infop)
550 {
551     abi_long stack = infop->start_stack;
552     memset(regs, 0, sizeof(*regs));
553 
554     regs->pc = infop->entry & ~0x3ULL;
555     regs->sp = stack;
556 }
557 
558 #define ELF_NREG    34
559 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
560 
561 static void elf_core_copy_regs(target_elf_gregset_t *regs,
562                                const CPUARMState *env)
563 {
564     int i;
565 
566     for (i = 0; i < 32; i++) {
567         (*regs)[i] = tswapreg(env->xregs[i]);
568     }
569     (*regs)[32] = tswapreg(env->pc);
570     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
571 }
572 
573 #define USE_ELF_CORE_DUMP
574 #define ELF_EXEC_PAGESIZE       4096
575 
576 enum {
577     ARM_HWCAP_A64_FP            = 1 << 0,
578     ARM_HWCAP_A64_ASIMD         = 1 << 1,
579     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
580     ARM_HWCAP_A64_AES           = 1 << 3,
581     ARM_HWCAP_A64_PMULL         = 1 << 4,
582     ARM_HWCAP_A64_SHA1          = 1 << 5,
583     ARM_HWCAP_A64_SHA2          = 1 << 6,
584     ARM_HWCAP_A64_CRC32         = 1 << 7,
585     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
586     ARM_HWCAP_A64_FPHP          = 1 << 9,
587     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
588     ARM_HWCAP_A64_CPUID         = 1 << 11,
589     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
590     ARM_HWCAP_A64_JSCVT         = 1 << 13,
591     ARM_HWCAP_A64_FCMA          = 1 << 14,
592     ARM_HWCAP_A64_LRCPC         = 1 << 15,
593     ARM_HWCAP_A64_DCPOP         = 1 << 16,
594     ARM_HWCAP_A64_SHA3          = 1 << 17,
595     ARM_HWCAP_A64_SM3           = 1 << 18,
596     ARM_HWCAP_A64_SM4           = 1 << 19,
597     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
598     ARM_HWCAP_A64_SHA512        = 1 << 21,
599     ARM_HWCAP_A64_SVE           = 1 << 22,
600     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
601     ARM_HWCAP_A64_DIT           = 1 << 24,
602     ARM_HWCAP_A64_USCAT         = 1 << 25,
603     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
604     ARM_HWCAP_A64_FLAGM         = 1 << 27,
605     ARM_HWCAP_A64_SSBS          = 1 << 28,
606     ARM_HWCAP_A64_SB            = 1 << 29,
607     ARM_HWCAP_A64_PACA          = 1 << 30,
608     ARM_HWCAP_A64_PACG          = 1UL << 31,
609 };
610 
611 #define ELF_HWCAP get_elf_hwcap()
612 
613 static uint32_t get_elf_hwcap(void)
614 {
615     ARMCPU *cpu = ARM_CPU(thread_cpu);
616     uint32_t hwcaps = 0;
617 
618     hwcaps |= ARM_HWCAP_A64_FP;
619     hwcaps |= ARM_HWCAP_A64_ASIMD;
620     hwcaps |= ARM_HWCAP_A64_CPUID;
621 
622     /* probe for the extra features */
623 #define GET_FEATURE_ID(feat, hwcap) \
624     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
625 
626     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
627     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
628     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
629     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
630     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
631     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
632     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
633     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
634     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
635     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
636     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
637     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
638     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
639     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
640     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
641     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
642     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
643     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
644     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
645     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
646 
647 #undef GET_FEATURE_ID
648 
649     return hwcaps;
650 }
651 
652 #endif /* not TARGET_AARCH64 */
653 #endif /* TARGET_ARM */
654 
655 #ifdef TARGET_SPARC
656 #ifdef TARGET_SPARC64
657 
658 #define ELF_START_MMAP 0x80000000
659 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
660                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
661 #ifndef TARGET_ABI32
662 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
663 #else
664 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
665 #endif
666 
667 #define ELF_CLASS   ELFCLASS64
668 #define ELF_ARCH    EM_SPARCV9
669 
670 #define STACK_BIAS              2047
671 
672 static inline void init_thread(struct target_pt_regs *regs,
673                                struct image_info *infop)
674 {
675 #ifndef TARGET_ABI32
676     regs->tstate = 0;
677 #endif
678     regs->pc = infop->entry;
679     regs->npc = regs->pc + 4;
680     regs->y = 0;
681 #ifdef TARGET_ABI32
682     regs->u_regs[14] = infop->start_stack - 16 * 4;
683 #else
684     if (personality(infop->personality) == PER_LINUX32)
685         regs->u_regs[14] = infop->start_stack - 16 * 4;
686     else
687         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
688 #endif
689 }
690 
691 #else
692 #define ELF_START_MMAP 0x80000000
693 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
694                     | HWCAP_SPARC_MULDIV)
695 
696 #define ELF_CLASS   ELFCLASS32
697 #define ELF_ARCH    EM_SPARC
698 
699 static inline void init_thread(struct target_pt_regs *regs,
700                                struct image_info *infop)
701 {
702     regs->psr = 0;
703     regs->pc = infop->entry;
704     regs->npc = regs->pc + 4;
705     regs->y = 0;
706     regs->u_regs[14] = infop->start_stack - 16 * 4;
707 }
708 
709 #endif
710 #endif
711 
712 #ifdef TARGET_PPC
713 
714 #define ELF_MACHINE    PPC_ELF_MACHINE
715 #define ELF_START_MMAP 0x80000000
716 
717 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
718 
719 #define elf_check_arch(x) ( (x) == EM_PPC64 )
720 
721 #define ELF_CLASS       ELFCLASS64
722 
723 #else
724 
725 #define ELF_CLASS       ELFCLASS32
726 
727 #endif
728 
729 #define ELF_ARCH        EM_PPC
730 
731 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
732    See arch/powerpc/include/asm/cputable.h.  */
733 enum {
734     QEMU_PPC_FEATURE_32 = 0x80000000,
735     QEMU_PPC_FEATURE_64 = 0x40000000,
736     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
737     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
738     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
739     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
740     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
741     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
742     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
743     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
744     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
745     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
746     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
747     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
748     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
749     QEMU_PPC_FEATURE_CELL = 0x00010000,
750     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
751     QEMU_PPC_FEATURE_SMT = 0x00004000,
752     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
753     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
754     QEMU_PPC_FEATURE_PA6T = 0x00000800,
755     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
756     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
757     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
758     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
759     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
760 
761     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
762     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
763 
764     /* Feature definitions in AT_HWCAP2.  */
765     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
766     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
767     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
768     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
769     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
770     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
771     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
772 };
773 
774 #define ELF_HWCAP get_elf_hwcap()
775 
776 static uint32_t get_elf_hwcap(void)
777 {
778     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
779     uint32_t features = 0;
780 
781     /* We don't have to be terribly complete here; the high points are
782        Altivec/FP/SPE support.  Anything else is just a bonus.  */
783 #define GET_FEATURE(flag, feature)                                      \
784     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
785 #define GET_FEATURE2(flags, feature) \
786     do { \
787         if ((cpu->env.insns_flags2 & flags) == flags) { \
788             features |= feature; \
789         } \
790     } while (0)
791     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
792     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
793     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
794     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
795     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
796     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
797     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
798     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
799     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
800     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
801     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
802                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
803                   QEMU_PPC_FEATURE_ARCH_2_06);
804 #undef GET_FEATURE
805 #undef GET_FEATURE2
806 
807     return features;
808 }
809 
810 #define ELF_HWCAP2 get_elf_hwcap2()
811 
812 static uint32_t get_elf_hwcap2(void)
813 {
814     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
815     uint32_t features = 0;
816 
817 #define GET_FEATURE(flag, feature)                                      \
818     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
819 #define GET_FEATURE2(flag, feature)                                      \
820     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
821 
822     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
823     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
824     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
825                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
826     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
827 
828 #undef GET_FEATURE
829 #undef GET_FEATURE2
830 
831     return features;
832 }
833 
834 /*
835  * The requirements here are:
836  * - keep the final alignment of sp (sp & 0xf)
837  * - make sure the 32-bit value at the first 16 byte aligned position of
838  *   AUXV is greater than 16 for glibc compatibility.
839  *   AT_IGNOREPPC is used for that.
840  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
841  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
842  */
843 #define DLINFO_ARCH_ITEMS       5
844 #define ARCH_DLINFO                                     \
845     do {                                                \
846         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
847         /*                                              \
848          * Handle glibc compatibility: these magic entries must \
849          * be at the lowest addresses in the final auxv.        \
850          */                                             \
851         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
852         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
853         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
854         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
855         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
856     } while (0)
857 
858 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
859 {
860     _regs->gpr[1] = infop->start_stack;
861 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
862     if (get_ppc64_abi(infop) < 2) {
863         uint64_t val;
864         get_user_u64(val, infop->entry + 8);
865         _regs->gpr[2] = val + infop->load_bias;
866         get_user_u64(val, infop->entry);
867         infop->entry = val + infop->load_bias;
868     } else {
869         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
870     }
871 #endif
872     _regs->nip = infop->entry;
873 }
874 
875 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
876 #define ELF_NREG 48
877 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
878 
879 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
880 {
881     int i;
882     target_ulong ccr = 0;
883 
884     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
885         (*regs)[i] = tswapreg(env->gpr[i]);
886     }
887 
888     (*regs)[32] = tswapreg(env->nip);
889     (*regs)[33] = tswapreg(env->msr);
890     (*regs)[35] = tswapreg(env->ctr);
891     (*regs)[36] = tswapreg(env->lr);
892     (*regs)[37] = tswapreg(env->xer);
893 
894     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
895         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
896     }
897     (*regs)[38] = tswapreg(ccr);
898 }
899 
900 #define USE_ELF_CORE_DUMP
901 #define ELF_EXEC_PAGESIZE       4096
902 
903 #endif
904 
905 #ifdef TARGET_MIPS
906 
907 #define ELF_START_MMAP 0x80000000
908 
909 #ifdef TARGET_MIPS64
910 #define ELF_CLASS   ELFCLASS64
911 #else
912 #define ELF_CLASS   ELFCLASS32
913 #endif
914 #define ELF_ARCH    EM_MIPS
915 
916 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
917 
918 static inline void init_thread(struct target_pt_regs *regs,
919                                struct image_info *infop)
920 {
921     regs->cp0_status = 2 << CP0St_KSU;
922     regs->cp0_epc = infop->entry;
923     regs->regs[29] = infop->start_stack;
924 }
925 
926 /* See linux kernel: arch/mips/include/asm/elf.h.  */
927 #define ELF_NREG 45
928 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
929 
930 /* See linux kernel: arch/mips/include/asm/reg.h.  */
931 enum {
932 #ifdef TARGET_MIPS64
933     TARGET_EF_R0 = 0,
934 #else
935     TARGET_EF_R0 = 6,
936 #endif
937     TARGET_EF_R26 = TARGET_EF_R0 + 26,
938     TARGET_EF_R27 = TARGET_EF_R0 + 27,
939     TARGET_EF_LO = TARGET_EF_R0 + 32,
940     TARGET_EF_HI = TARGET_EF_R0 + 33,
941     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
942     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
943     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
944     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
945 };
946 
947 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
948 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
949 {
950     int i;
951 
952     for (i = 0; i < TARGET_EF_R0; i++) {
953         (*regs)[i] = 0;
954     }
955     (*regs)[TARGET_EF_R0] = 0;
956 
957     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
958         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
959     }
960 
961     (*regs)[TARGET_EF_R26] = 0;
962     (*regs)[TARGET_EF_R27] = 0;
963     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
964     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
965     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
966     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
967     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
968     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
969 }
970 
971 #define USE_ELF_CORE_DUMP
972 #define ELF_EXEC_PAGESIZE        4096
973 
974 /* See arch/mips/include/uapi/asm/hwcap.h.  */
975 enum {
976     HWCAP_MIPS_R6           = (1 << 0),
977     HWCAP_MIPS_MSA          = (1 << 1),
978 };
979 
980 #define ELF_HWCAP get_elf_hwcap()
981 
982 static uint32_t get_elf_hwcap(void)
983 {
984     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
985     uint32_t hwcaps = 0;
986 
987 #define GET_FEATURE(flag, hwcap) \
988     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
989 
990     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
991     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
992 
993 #undef GET_FEATURE
994 
995     return hwcaps;
996 }
997 
998 #endif /* TARGET_MIPS */
999 
1000 #ifdef TARGET_MICROBLAZE
1001 
1002 #define ELF_START_MMAP 0x80000000
1003 
1004 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1005 
1006 #define ELF_CLASS   ELFCLASS32
1007 #define ELF_ARCH    EM_MICROBLAZE
1008 
1009 static inline void init_thread(struct target_pt_regs *regs,
1010                                struct image_info *infop)
1011 {
1012     regs->pc = infop->entry;
1013     regs->r1 = infop->start_stack;
1014 
1015 }
1016 
1017 #define ELF_EXEC_PAGESIZE        4096
1018 
1019 #define USE_ELF_CORE_DUMP
1020 #define ELF_NREG 38
1021 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1022 
1023 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1024 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1025 {
1026     int i, pos = 0;
1027 
1028     for (i = 0; i < 32; i++) {
1029         (*regs)[pos++] = tswapreg(env->regs[i]);
1030     }
1031 
1032     for (i = 0; i < 6; i++) {
1033         (*regs)[pos++] = tswapreg(env->sregs[i]);
1034     }
1035 }
1036 
1037 #endif /* TARGET_MICROBLAZE */
1038 
1039 #ifdef TARGET_NIOS2
1040 
1041 #define ELF_START_MMAP 0x80000000
1042 
1043 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1044 
1045 #define ELF_CLASS   ELFCLASS32
1046 #define ELF_ARCH    EM_ALTERA_NIOS2
1047 
1048 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1049 {
1050     regs->ea = infop->entry;
1051     regs->sp = infop->start_stack;
1052     regs->estatus = 0x3;
1053 }
1054 
1055 #define ELF_EXEC_PAGESIZE        4096
1056 
1057 #define USE_ELF_CORE_DUMP
1058 #define ELF_NREG 49
1059 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1060 
1061 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1062 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1063                                const CPUNios2State *env)
1064 {
1065     int i;
1066 
1067     (*regs)[0] = -1;
1068     for (i = 1; i < 8; i++)    /* r0-r7 */
1069         (*regs)[i] = tswapreg(env->regs[i + 7]);
1070 
1071     for (i = 8; i < 16; i++)   /* r8-r15 */
1072         (*regs)[i] = tswapreg(env->regs[i - 8]);
1073 
1074     for (i = 16; i < 24; i++)  /* r16-r23 */
1075         (*regs)[i] = tswapreg(env->regs[i + 7]);
1076     (*regs)[24] = -1;    /* R_ET */
1077     (*regs)[25] = -1;    /* R_BT */
1078     (*regs)[26] = tswapreg(env->regs[R_GP]);
1079     (*regs)[27] = tswapreg(env->regs[R_SP]);
1080     (*regs)[28] = tswapreg(env->regs[R_FP]);
1081     (*regs)[29] = tswapreg(env->regs[R_EA]);
1082     (*regs)[30] = -1;    /* R_SSTATUS */
1083     (*regs)[31] = tswapreg(env->regs[R_RA]);
1084 
1085     (*regs)[32] = tswapreg(env->regs[R_PC]);
1086 
1087     (*regs)[33] = -1; /* R_STATUS */
1088     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1089 
1090     for (i = 35; i < 49; i++)    /* ... */
1091         (*regs)[i] = -1;
1092 }
1093 
1094 #endif /* TARGET_NIOS2 */
1095 
1096 #ifdef TARGET_OPENRISC
1097 
1098 #define ELF_START_MMAP 0x08000000
1099 
1100 #define ELF_ARCH EM_OPENRISC
1101 #define ELF_CLASS ELFCLASS32
1102 #define ELF_DATA  ELFDATA2MSB
1103 
1104 static inline void init_thread(struct target_pt_regs *regs,
1105                                struct image_info *infop)
1106 {
1107     regs->pc = infop->entry;
1108     regs->gpr[1] = infop->start_stack;
1109 }
1110 
1111 #define USE_ELF_CORE_DUMP
1112 #define ELF_EXEC_PAGESIZE 8192
1113 
1114 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1115 #define ELF_NREG 34 /* gprs and pc, sr */
1116 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1117 
1118 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1119                                const CPUOpenRISCState *env)
1120 {
1121     int i;
1122 
1123     for (i = 0; i < 32; i++) {
1124         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1125     }
1126     (*regs)[32] = tswapreg(env->pc);
1127     (*regs)[33] = tswapreg(cpu_get_sr(env));
1128 }
1129 #define ELF_HWCAP 0
1130 #define ELF_PLATFORM NULL
1131 
1132 #endif /* TARGET_OPENRISC */
1133 
1134 #ifdef TARGET_SH4
1135 
1136 #define ELF_START_MMAP 0x80000000
1137 
1138 #define ELF_CLASS ELFCLASS32
1139 #define ELF_ARCH  EM_SH
1140 
1141 static inline void init_thread(struct target_pt_regs *regs,
1142                                struct image_info *infop)
1143 {
1144     /* Check other registers XXXXX */
1145     regs->pc = infop->entry;
1146     regs->regs[15] = infop->start_stack;
1147 }
1148 
1149 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1150 #define ELF_NREG 23
1151 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1152 
1153 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1154 enum {
1155     TARGET_REG_PC = 16,
1156     TARGET_REG_PR = 17,
1157     TARGET_REG_SR = 18,
1158     TARGET_REG_GBR = 19,
1159     TARGET_REG_MACH = 20,
1160     TARGET_REG_MACL = 21,
1161     TARGET_REG_SYSCALL = 22
1162 };
1163 
1164 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1165                                       const CPUSH4State *env)
1166 {
1167     int i;
1168 
1169     for (i = 0; i < 16; i++) {
1170         (*regs)[i] = tswapreg(env->gregs[i]);
1171     }
1172 
1173     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1174     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1175     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1176     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1177     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1178     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1179     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1180 }
1181 
1182 #define USE_ELF_CORE_DUMP
1183 #define ELF_EXEC_PAGESIZE        4096
1184 
1185 enum {
1186     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1187     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1188     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1189     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1190     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1191     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1192     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1193     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1194     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1195     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1196 };
1197 
1198 #define ELF_HWCAP get_elf_hwcap()
1199 
1200 static uint32_t get_elf_hwcap(void)
1201 {
1202     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1203     uint32_t hwcap = 0;
1204 
1205     hwcap |= SH_CPU_HAS_FPU;
1206 
1207     if (cpu->env.features & SH_FEATURE_SH4A) {
1208         hwcap |= SH_CPU_HAS_LLSC;
1209     }
1210 
1211     return hwcap;
1212 }
1213 
1214 #endif
1215 
1216 #ifdef TARGET_CRIS
1217 
1218 #define ELF_START_MMAP 0x80000000
1219 
1220 #define ELF_CLASS ELFCLASS32
1221 #define ELF_ARCH  EM_CRIS
1222 
1223 static inline void init_thread(struct target_pt_regs *regs,
1224                                struct image_info *infop)
1225 {
1226     regs->erp = infop->entry;
1227 }
1228 
1229 #define ELF_EXEC_PAGESIZE        8192
1230 
1231 #endif
1232 
1233 #ifdef TARGET_M68K
1234 
1235 #define ELF_START_MMAP 0x80000000
1236 
1237 #define ELF_CLASS       ELFCLASS32
1238 #define ELF_ARCH        EM_68K
1239 
1240 /* ??? Does this need to do anything?
1241    #define ELF_PLAT_INIT(_r) */
1242 
1243 static inline void init_thread(struct target_pt_regs *regs,
1244                                struct image_info *infop)
1245 {
1246     regs->usp = infop->start_stack;
1247     regs->sr = 0;
1248     regs->pc = infop->entry;
1249 }
1250 
1251 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1252 #define ELF_NREG 20
1253 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1254 
1255 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1256 {
1257     (*regs)[0] = tswapreg(env->dregs[1]);
1258     (*regs)[1] = tswapreg(env->dregs[2]);
1259     (*regs)[2] = tswapreg(env->dregs[3]);
1260     (*regs)[3] = tswapreg(env->dregs[4]);
1261     (*regs)[4] = tswapreg(env->dregs[5]);
1262     (*regs)[5] = tswapreg(env->dregs[6]);
1263     (*regs)[6] = tswapreg(env->dregs[7]);
1264     (*regs)[7] = tswapreg(env->aregs[0]);
1265     (*regs)[8] = tswapreg(env->aregs[1]);
1266     (*regs)[9] = tswapreg(env->aregs[2]);
1267     (*regs)[10] = tswapreg(env->aregs[3]);
1268     (*regs)[11] = tswapreg(env->aregs[4]);
1269     (*regs)[12] = tswapreg(env->aregs[5]);
1270     (*regs)[13] = tswapreg(env->aregs[6]);
1271     (*regs)[14] = tswapreg(env->dregs[0]);
1272     (*regs)[15] = tswapreg(env->aregs[7]);
1273     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1274     (*regs)[17] = tswapreg(env->sr);
1275     (*regs)[18] = tswapreg(env->pc);
1276     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1277 }
1278 
1279 #define USE_ELF_CORE_DUMP
1280 #define ELF_EXEC_PAGESIZE       8192
1281 
1282 #endif
1283 
1284 #ifdef TARGET_ALPHA
1285 
1286 #define ELF_START_MMAP (0x30000000000ULL)
1287 
1288 #define ELF_CLASS      ELFCLASS64
1289 #define ELF_ARCH       EM_ALPHA
1290 
1291 static inline void init_thread(struct target_pt_regs *regs,
1292                                struct image_info *infop)
1293 {
1294     regs->pc = infop->entry;
1295     regs->ps = 8;
1296     regs->usp = infop->start_stack;
1297 }
1298 
1299 #define ELF_EXEC_PAGESIZE        8192
1300 
1301 #endif /* TARGET_ALPHA */
1302 
1303 #ifdef TARGET_S390X
1304 
1305 #define ELF_START_MMAP (0x20000000000ULL)
1306 
1307 #define ELF_CLASS	ELFCLASS64
1308 #define ELF_DATA	ELFDATA2MSB
1309 #define ELF_ARCH	EM_S390
1310 
1311 #include "elf.h"
1312 
1313 #define ELF_HWCAP get_elf_hwcap()
1314 
1315 #define GET_FEATURE(_feat, _hwcap) \
1316     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1317 
1318 static uint32_t get_elf_hwcap(void)
1319 {
1320     /*
1321      * Let's assume we always have esan3 and zarch.
1322      * 31-bit processes can use 64-bit registers (high gprs).
1323      */
1324     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1325 
1326     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1327     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1328     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1329     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1330     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1331         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1332         hwcap |= HWCAP_S390_ETF3EH;
1333     }
1334     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1335 
1336     return hwcap;
1337 }
1338 
1339 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1340 {
1341     regs->psw.addr = infop->entry;
1342     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1343     regs->gprs[15] = infop->start_stack;
1344 }
1345 
1346 #endif /* TARGET_S390X */
1347 
1348 #ifdef TARGET_TILEGX
1349 
1350 /* 42 bits real used address, a half for user mode */
1351 #define ELF_START_MMAP (0x00000020000000000ULL)
1352 
1353 #define elf_check_arch(x) ((x) == EM_TILEGX)
1354 
1355 #define ELF_CLASS   ELFCLASS64
1356 #define ELF_DATA    ELFDATA2LSB
1357 #define ELF_ARCH    EM_TILEGX
1358 
1359 static inline void init_thread(struct target_pt_regs *regs,
1360                                struct image_info *infop)
1361 {
1362     regs->pc = infop->entry;
1363     regs->sp = infop->start_stack;
1364 
1365 }
1366 
1367 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1368 
1369 #endif /* TARGET_TILEGX */
1370 
1371 #ifdef TARGET_RISCV
1372 
1373 #define ELF_START_MMAP 0x80000000
1374 #define ELF_ARCH  EM_RISCV
1375 
1376 #ifdef TARGET_RISCV32
1377 #define ELF_CLASS ELFCLASS32
1378 #else
1379 #define ELF_CLASS ELFCLASS64
1380 #endif
1381 
1382 static inline void init_thread(struct target_pt_regs *regs,
1383                                struct image_info *infop)
1384 {
1385     regs->sepc = infop->entry;
1386     regs->sp = infop->start_stack;
1387 }
1388 
1389 #define ELF_EXEC_PAGESIZE 4096
1390 
1391 #endif /* TARGET_RISCV */
1392 
1393 #ifdef TARGET_HPPA
1394 
1395 #define ELF_START_MMAP  0x80000000
1396 #define ELF_CLASS       ELFCLASS32
1397 #define ELF_ARCH        EM_PARISC
1398 #define ELF_PLATFORM    "PARISC"
1399 #define STACK_GROWS_DOWN 0
1400 #define STACK_ALIGNMENT  64
1401 
1402 static inline void init_thread(struct target_pt_regs *regs,
1403                                struct image_info *infop)
1404 {
1405     regs->iaoq[0] = infop->entry;
1406     regs->iaoq[1] = infop->entry + 4;
1407     regs->gr[23] = 0;
1408     regs->gr[24] = infop->arg_start;
1409     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1410     /* The top-of-stack contains a linkage buffer.  */
1411     regs->gr[30] = infop->start_stack + 64;
1412     regs->gr[31] = infop->entry;
1413 }
1414 
1415 #endif /* TARGET_HPPA */
1416 
1417 #ifdef TARGET_XTENSA
1418 
1419 #define ELF_START_MMAP 0x20000000
1420 
1421 #define ELF_CLASS       ELFCLASS32
1422 #define ELF_ARCH        EM_XTENSA
1423 
1424 static inline void init_thread(struct target_pt_regs *regs,
1425                                struct image_info *infop)
1426 {
1427     regs->windowbase = 0;
1428     regs->windowstart = 1;
1429     regs->areg[1] = infop->start_stack;
1430     regs->pc = infop->entry;
1431 }
1432 
1433 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1434 #define ELF_NREG 128
1435 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1436 
1437 enum {
1438     TARGET_REG_PC,
1439     TARGET_REG_PS,
1440     TARGET_REG_LBEG,
1441     TARGET_REG_LEND,
1442     TARGET_REG_LCOUNT,
1443     TARGET_REG_SAR,
1444     TARGET_REG_WINDOWSTART,
1445     TARGET_REG_WINDOWBASE,
1446     TARGET_REG_THREADPTR,
1447     TARGET_REG_AR0 = 64,
1448 };
1449 
1450 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1451                                const CPUXtensaState *env)
1452 {
1453     unsigned i;
1454 
1455     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1456     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1457     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1458     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1459     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1460     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1461     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1462     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1463     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1464     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1465     for (i = 0; i < env->config->nareg; ++i) {
1466         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1467     }
1468 }
1469 
1470 #define USE_ELF_CORE_DUMP
1471 #define ELF_EXEC_PAGESIZE       4096
1472 
1473 #endif /* TARGET_XTENSA */
1474 
1475 #ifndef ELF_PLATFORM
1476 #define ELF_PLATFORM (NULL)
1477 #endif
1478 
1479 #ifndef ELF_MACHINE
1480 #define ELF_MACHINE ELF_ARCH
1481 #endif
1482 
1483 #ifndef elf_check_arch
1484 #define elf_check_arch(x) ((x) == ELF_ARCH)
1485 #endif
1486 
1487 #ifndef ELF_HWCAP
1488 #define ELF_HWCAP 0
1489 #endif
1490 
1491 #ifndef STACK_GROWS_DOWN
1492 #define STACK_GROWS_DOWN 1
1493 #endif
1494 
1495 #ifndef STACK_ALIGNMENT
1496 #define STACK_ALIGNMENT 16
1497 #endif
1498 
1499 #ifdef TARGET_ABI32
1500 #undef ELF_CLASS
1501 #define ELF_CLASS ELFCLASS32
1502 #undef bswaptls
1503 #define bswaptls(ptr) bswap32s(ptr)
1504 #endif
1505 
1506 #include "elf.h"
1507 
1508 struct exec
1509 {
1510     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1511     unsigned int a_text;   /* length of text, in bytes */
1512     unsigned int a_data;   /* length of data, in bytes */
1513     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1514     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1515     unsigned int a_entry;  /* start address */
1516     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1517     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1518 };
1519 
1520 
1521 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1522 #define OMAGIC 0407
1523 #define NMAGIC 0410
1524 #define ZMAGIC 0413
1525 #define QMAGIC 0314
1526 
1527 /* Necessary parameters */
1528 #define TARGET_ELF_EXEC_PAGESIZE \
1529         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1530          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1531 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1532 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1533                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1534 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1535 
1536 #define DLINFO_ITEMS 15
1537 
1538 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1539 {
1540     memcpy(to, from, n);
1541 }
1542 
1543 #ifdef BSWAP_NEEDED
1544 static void bswap_ehdr(struct elfhdr *ehdr)
1545 {
1546     bswap16s(&ehdr->e_type);            /* Object file type */
1547     bswap16s(&ehdr->e_machine);         /* Architecture */
1548     bswap32s(&ehdr->e_version);         /* Object file version */
1549     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1550     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1551     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1552     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1553     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1554     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1555     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1556     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1557     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1558     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1559 }
1560 
1561 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1562 {
1563     int i;
1564     for (i = 0; i < phnum; ++i, ++phdr) {
1565         bswap32s(&phdr->p_type);        /* Segment type */
1566         bswap32s(&phdr->p_flags);       /* Segment flags */
1567         bswaptls(&phdr->p_offset);      /* Segment file offset */
1568         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1569         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1570         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1571         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1572         bswaptls(&phdr->p_align);       /* Segment alignment */
1573     }
1574 }
1575 
1576 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1577 {
1578     int i;
1579     for (i = 0; i < shnum; ++i, ++shdr) {
1580         bswap32s(&shdr->sh_name);
1581         bswap32s(&shdr->sh_type);
1582         bswaptls(&shdr->sh_flags);
1583         bswaptls(&shdr->sh_addr);
1584         bswaptls(&shdr->sh_offset);
1585         bswaptls(&shdr->sh_size);
1586         bswap32s(&shdr->sh_link);
1587         bswap32s(&shdr->sh_info);
1588         bswaptls(&shdr->sh_addralign);
1589         bswaptls(&shdr->sh_entsize);
1590     }
1591 }
1592 
1593 static void bswap_sym(struct elf_sym *sym)
1594 {
1595     bswap32s(&sym->st_name);
1596     bswaptls(&sym->st_value);
1597     bswaptls(&sym->st_size);
1598     bswap16s(&sym->st_shndx);
1599 }
1600 
1601 #ifdef TARGET_MIPS
1602 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1603 {
1604     bswap16s(&abiflags->version);
1605     bswap32s(&abiflags->ases);
1606     bswap32s(&abiflags->isa_ext);
1607     bswap32s(&abiflags->flags1);
1608     bswap32s(&abiflags->flags2);
1609 }
1610 #endif
1611 #else
1612 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1613 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1614 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1615 static inline void bswap_sym(struct elf_sym *sym) { }
1616 #ifdef TARGET_MIPS
1617 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1618 #endif
1619 #endif
1620 
1621 #ifdef USE_ELF_CORE_DUMP
1622 static int elf_core_dump(int, const CPUArchState *);
1623 #endif /* USE_ELF_CORE_DUMP */
1624 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1625 
1626 /* Verify the portions of EHDR within E_IDENT for the target.
1627    This can be performed before bswapping the entire header.  */
1628 static bool elf_check_ident(struct elfhdr *ehdr)
1629 {
1630     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1631             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1632             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1633             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1634             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1635             && ehdr->e_ident[EI_DATA] == ELF_DATA
1636             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1637 }
1638 
1639 /* Verify the portions of EHDR outside of E_IDENT for the target.
1640    This has to wait until after bswapping the header.  */
1641 static bool elf_check_ehdr(struct elfhdr *ehdr)
1642 {
1643     return (elf_check_arch(ehdr->e_machine)
1644             && ehdr->e_ehsize == sizeof(struct elfhdr)
1645             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1646             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1647 }
1648 
1649 /*
1650  * 'copy_elf_strings()' copies argument/envelope strings from user
1651  * memory to free pages in kernel mem. These are in a format ready
1652  * to be put directly into the top of new user memory.
1653  *
1654  */
1655 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1656                                   abi_ulong p, abi_ulong stack_limit)
1657 {
1658     char *tmp;
1659     int len, i;
1660     abi_ulong top = p;
1661 
1662     if (!p) {
1663         return 0;       /* bullet-proofing */
1664     }
1665 
1666     if (STACK_GROWS_DOWN) {
1667         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1668         for (i = argc - 1; i >= 0; --i) {
1669             tmp = argv[i];
1670             if (!tmp) {
1671                 fprintf(stderr, "VFS: argc is wrong");
1672                 exit(-1);
1673             }
1674             len = strlen(tmp) + 1;
1675             tmp += len;
1676 
1677             if (len > (p - stack_limit)) {
1678                 return 0;
1679             }
1680             while (len) {
1681                 int bytes_to_copy = (len > offset) ? offset : len;
1682                 tmp -= bytes_to_copy;
1683                 p -= bytes_to_copy;
1684                 offset -= bytes_to_copy;
1685                 len -= bytes_to_copy;
1686 
1687                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1688 
1689                 if (offset == 0) {
1690                     memcpy_to_target(p, scratch, top - p);
1691                     top = p;
1692                     offset = TARGET_PAGE_SIZE;
1693                 }
1694             }
1695         }
1696         if (p != top) {
1697             memcpy_to_target(p, scratch + offset, top - p);
1698         }
1699     } else {
1700         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1701         for (i = 0; i < argc; ++i) {
1702             tmp = argv[i];
1703             if (!tmp) {
1704                 fprintf(stderr, "VFS: argc is wrong");
1705                 exit(-1);
1706             }
1707             len = strlen(tmp) + 1;
1708             if (len > (stack_limit - p)) {
1709                 return 0;
1710             }
1711             while (len) {
1712                 int bytes_to_copy = (len > remaining) ? remaining : len;
1713 
1714                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1715 
1716                 tmp += bytes_to_copy;
1717                 remaining -= bytes_to_copy;
1718                 p += bytes_to_copy;
1719                 len -= bytes_to_copy;
1720 
1721                 if (remaining == 0) {
1722                     memcpy_to_target(top, scratch, p - top);
1723                     top = p;
1724                     remaining = TARGET_PAGE_SIZE;
1725                 }
1726             }
1727         }
1728         if (p != top) {
1729             memcpy_to_target(top, scratch, p - top);
1730         }
1731     }
1732 
1733     return p;
1734 }
1735 
1736 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1737  * argument/environment space. Newer kernels (>2.6.33) allow more,
1738  * dependent on stack size, but guarantee at least 32 pages for
1739  * backwards compatibility.
1740  */
1741 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1742 
1743 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1744                                  struct image_info *info)
1745 {
1746     abi_ulong size, error, guard;
1747 
1748     size = guest_stack_size;
1749     if (size < STACK_LOWER_LIMIT) {
1750         size = STACK_LOWER_LIMIT;
1751     }
1752     guard = TARGET_PAGE_SIZE;
1753     if (guard < qemu_real_host_page_size) {
1754         guard = qemu_real_host_page_size;
1755     }
1756 
1757     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1758                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1759     if (error == -1) {
1760         perror("mmap stack");
1761         exit(-1);
1762     }
1763 
1764     /* We reserve one extra page at the top of the stack as guard.  */
1765     if (STACK_GROWS_DOWN) {
1766         target_mprotect(error, guard, PROT_NONE);
1767         info->stack_limit = error + guard;
1768         return info->stack_limit + size - sizeof(void *);
1769     } else {
1770         target_mprotect(error + size, guard, PROT_NONE);
1771         info->stack_limit = error + size;
1772         return error;
1773     }
1774 }
1775 
1776 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1777    after the data section (i.e. bss).  */
1778 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1779 {
1780     uintptr_t host_start, host_map_start, host_end;
1781 
1782     last_bss = TARGET_PAGE_ALIGN(last_bss);
1783 
1784     /* ??? There is confusion between qemu_real_host_page_size and
1785        qemu_host_page_size here and elsewhere in target_mmap, which
1786        may lead to the end of the data section mapping from the file
1787        not being mapped.  At least there was an explicit test and
1788        comment for that here, suggesting that "the file size must
1789        be known".  The comment probably pre-dates the introduction
1790        of the fstat system call in target_mmap which does in fact
1791        find out the size.  What isn't clear is if the workaround
1792        here is still actually needed.  For now, continue with it,
1793        but merge it with the "normal" mmap that would allocate the bss.  */
1794 
1795     host_start = (uintptr_t) g2h(elf_bss);
1796     host_end = (uintptr_t) g2h(last_bss);
1797     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1798 
1799     if (host_map_start < host_end) {
1800         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1801                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1802         if (p == MAP_FAILED) {
1803             perror("cannot mmap brk");
1804             exit(-1);
1805         }
1806     }
1807 
1808     /* Ensure that the bss page(s) are valid */
1809     if ((page_get_flags(last_bss-1) & prot) != prot) {
1810         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1811     }
1812 
1813     if (host_start < host_map_start) {
1814         memset((void *)host_start, 0, host_map_start - host_start);
1815     }
1816 }
1817 
1818 #ifdef TARGET_ARM
1819 static int elf_is_fdpic(struct elfhdr *exec)
1820 {
1821     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1822 }
1823 #else
1824 /* Default implementation, always false.  */
1825 static int elf_is_fdpic(struct elfhdr *exec)
1826 {
1827     return 0;
1828 }
1829 #endif
1830 
1831 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1832 {
1833     uint16_t n;
1834     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1835 
1836     /* elf32_fdpic_loadseg */
1837     n = info->nsegs;
1838     while (n--) {
1839         sp -= 12;
1840         put_user_u32(loadsegs[n].addr, sp+0);
1841         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1842         put_user_u32(loadsegs[n].p_memsz, sp+8);
1843     }
1844 
1845     /* elf32_fdpic_loadmap */
1846     sp -= 4;
1847     put_user_u16(0, sp+0); /* version */
1848     put_user_u16(info->nsegs, sp+2); /* nsegs */
1849 
1850     info->personality = PER_LINUX_FDPIC;
1851     info->loadmap_addr = sp;
1852 
1853     return sp;
1854 }
1855 
1856 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1857                                    struct elfhdr *exec,
1858                                    struct image_info *info,
1859                                    struct image_info *interp_info)
1860 {
1861     abi_ulong sp;
1862     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1863     int size;
1864     int i;
1865     abi_ulong u_rand_bytes;
1866     uint8_t k_rand_bytes[16];
1867     abi_ulong u_platform;
1868     const char *k_platform;
1869     const int n = sizeof(elf_addr_t);
1870 
1871     sp = p;
1872 
1873     /* Needs to be before we load the env/argc/... */
1874     if (elf_is_fdpic(exec)) {
1875         /* Need 4 byte alignment for these structs */
1876         sp &= ~3;
1877         sp = loader_build_fdpic_loadmap(info, sp);
1878         info->other_info = interp_info;
1879         if (interp_info) {
1880             interp_info->other_info = info;
1881             sp = loader_build_fdpic_loadmap(interp_info, sp);
1882             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1883             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1884         } else {
1885             info->interpreter_loadmap_addr = 0;
1886             info->interpreter_pt_dynamic_addr = 0;
1887         }
1888     }
1889 
1890     u_platform = 0;
1891     k_platform = ELF_PLATFORM;
1892     if (k_platform) {
1893         size_t len = strlen(k_platform) + 1;
1894         if (STACK_GROWS_DOWN) {
1895             sp -= (len + n - 1) & ~(n - 1);
1896             u_platform = sp;
1897             /* FIXME - check return value of memcpy_to_target() for failure */
1898             memcpy_to_target(sp, k_platform, len);
1899         } else {
1900             memcpy_to_target(sp, k_platform, len);
1901             u_platform = sp;
1902             sp += len + 1;
1903         }
1904     }
1905 
1906     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1907      * the argv and envp pointers.
1908      */
1909     if (STACK_GROWS_DOWN) {
1910         sp = QEMU_ALIGN_DOWN(sp, 16);
1911     } else {
1912         sp = QEMU_ALIGN_UP(sp, 16);
1913     }
1914 
1915     /*
1916      * Generate 16 random bytes for userspace PRNG seeding.
1917      */
1918     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1919     if (STACK_GROWS_DOWN) {
1920         sp -= 16;
1921         u_rand_bytes = sp;
1922         /* FIXME - check return value of memcpy_to_target() for failure */
1923         memcpy_to_target(sp, k_rand_bytes, 16);
1924     } else {
1925         memcpy_to_target(sp, k_rand_bytes, 16);
1926         u_rand_bytes = sp;
1927         sp += 16;
1928     }
1929 
1930     size = (DLINFO_ITEMS + 1) * 2;
1931     if (k_platform)
1932         size += 2;
1933 #ifdef DLINFO_ARCH_ITEMS
1934     size += DLINFO_ARCH_ITEMS * 2;
1935 #endif
1936 #ifdef ELF_HWCAP2
1937     size += 2;
1938 #endif
1939     info->auxv_len = size * n;
1940 
1941     size += envc + argc + 2;
1942     size += 1;  /* argc itself */
1943     size *= n;
1944 
1945     /* Allocate space and finalize stack alignment for entry now.  */
1946     if (STACK_GROWS_DOWN) {
1947         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1948         sp = u_argc;
1949     } else {
1950         u_argc = sp;
1951         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1952     }
1953 
1954     u_argv = u_argc + n;
1955     u_envp = u_argv + (argc + 1) * n;
1956     u_auxv = u_envp + (envc + 1) * n;
1957     info->saved_auxv = u_auxv;
1958     info->arg_start = u_argv;
1959     info->arg_end = u_argv + argc * n;
1960 
1961     /* This is correct because Linux defines
1962      * elf_addr_t as Elf32_Off / Elf64_Off
1963      */
1964 #define NEW_AUX_ENT(id, val) do {               \
1965         put_user_ual(id, u_auxv);  u_auxv += n; \
1966         put_user_ual(val, u_auxv); u_auxv += n; \
1967     } while(0)
1968 
1969 #ifdef ARCH_DLINFO
1970     /*
1971      * ARCH_DLINFO must come first so platform specific code can enforce
1972      * special alignment requirements on the AUXV if necessary (eg. PPC).
1973      */
1974     ARCH_DLINFO;
1975 #endif
1976     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1977      * on info->auxv_len will trigger.
1978      */
1979     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1980     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1981     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1982     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1983         /* Target doesn't support host page size alignment */
1984         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1985     } else {
1986         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1987                                                qemu_host_page_size)));
1988     }
1989     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1990     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1991     NEW_AUX_ENT(AT_ENTRY, info->entry);
1992     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1993     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1994     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1995     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1996     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1997     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1998     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1999     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2000 
2001 #ifdef ELF_HWCAP2
2002     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2003 #endif
2004 
2005     if (u_platform) {
2006         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2007     }
2008     NEW_AUX_ENT (AT_NULL, 0);
2009 #undef NEW_AUX_ENT
2010 
2011     /* Check that our initial calculation of the auxv length matches how much
2012      * we actually put into it.
2013      */
2014     assert(info->auxv_len == u_auxv - info->saved_auxv);
2015 
2016     put_user_ual(argc, u_argc);
2017 
2018     p = info->arg_strings;
2019     for (i = 0; i < argc; ++i) {
2020         put_user_ual(p, u_argv);
2021         u_argv += n;
2022         p += target_strlen(p) + 1;
2023     }
2024     put_user_ual(0, u_argv);
2025 
2026     p = info->env_strings;
2027     for (i = 0; i < envc; ++i) {
2028         put_user_ual(p, u_envp);
2029         u_envp += n;
2030         p += target_strlen(p) + 1;
2031     }
2032     put_user_ual(0, u_envp);
2033 
2034     return sp;
2035 }
2036 
2037 unsigned long init_guest_space(unsigned long host_start,
2038                                unsigned long host_size,
2039                                unsigned long guest_start,
2040                                bool fixed)
2041 {
2042     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2043     unsigned long align = MAX(SHMLBA, qemu_host_page_size);
2044     unsigned long current_start, aligned_start;
2045     int flags;
2046 
2047     assert(host_start || host_size);
2048 
2049     /* If just a starting address is given, then just verify that
2050      * address.  */
2051     if (host_start && !host_size) {
2052 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2053         if (init_guest_commpage(host_start, host_size) != 1) {
2054             return (unsigned long)-1;
2055         }
2056 #endif
2057         return host_start;
2058     }
2059 
2060     /* Setup the initial flags and start address.  */
2061     current_start = host_start & -align;
2062     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2063     if (fixed) {
2064         flags |= MAP_FIXED;
2065     }
2066 
2067     /* Otherwise, a non-zero size region of memory needs to be mapped
2068      * and validated.  */
2069 
2070 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2071     /* On 32-bit ARM, we need to map not just the usable memory, but
2072      * also the commpage.  Try to find a suitable place by allocating
2073      * a big chunk for all of it.  If host_start, then the naive
2074      * strategy probably does good enough.
2075      */
2076     if (!host_start) {
2077         unsigned long guest_full_size, host_full_size, real_start;
2078 
2079         guest_full_size =
2080             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2081         host_full_size = guest_full_size - guest_start;
2082         real_start = (unsigned long)
2083             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2084         if (real_start == (unsigned long)-1) {
2085             if (host_size < host_full_size - qemu_host_page_size) {
2086                 /* We failed to map a continous segment, but we're
2087                  * allowed to have a gap between the usable memory and
2088                  * the commpage where other things can be mapped.
2089                  * This sparseness gives us more flexibility to find
2090                  * an address range.
2091                  */
2092                 goto naive;
2093             }
2094             return (unsigned long)-1;
2095         }
2096         munmap((void *)real_start, host_full_size);
2097         if (real_start & (align - 1)) {
2098             /* The same thing again, but with extra
2099              * so that we can shift around alignment.
2100              */
2101             unsigned long real_size = host_full_size + qemu_host_page_size;
2102             real_start = (unsigned long)
2103                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2104             if (real_start == (unsigned long)-1) {
2105                 if (host_size < host_full_size - qemu_host_page_size) {
2106                     goto naive;
2107                 }
2108                 return (unsigned long)-1;
2109             }
2110             munmap((void *)real_start, real_size);
2111             real_start = ROUND_UP(real_start, align);
2112         }
2113         current_start = real_start;
2114     }
2115  naive:
2116 #endif
2117 
2118     while (1) {
2119         unsigned long real_start, real_size, aligned_size;
2120         aligned_size = real_size = host_size;
2121 
2122         /* Do not use mmap_find_vma here because that is limited to the
2123          * guest address space.  We are going to make the
2124          * guest address space fit whatever we're given.
2125          */
2126         real_start = (unsigned long)
2127             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2128         if (real_start == (unsigned long)-1) {
2129             return (unsigned long)-1;
2130         }
2131 
2132         /* Check to see if the address is valid.  */
2133         if (host_start && real_start != current_start) {
2134             goto try_again;
2135         }
2136 
2137         /* Ensure the address is properly aligned.  */
2138         if (real_start & (align - 1)) {
2139             /* Ideally, we adjust like
2140              *
2141              *    pages: [  ][  ][  ][  ][  ]
2142              *      old:   [   real   ]
2143              *             [ aligned  ]
2144              *      new:   [     real     ]
2145              *               [ aligned  ]
2146              *
2147              * But if there is something else mapped right after it,
2148              * then obviously it won't have room to grow, and the
2149              * kernel will put the new larger real someplace else with
2150              * unknown alignment (if we made it to here, then
2151              * fixed=false).  Which is why we grow real by a full page
2152              * size, instead of by part of one; so that even if we get
2153              * moved, we can still guarantee alignment.  But this does
2154              * mean that there is a padding of < 1 page both before
2155              * and after the aligned range; the "after" could could
2156              * cause problems for ARM emulation where it could butt in
2157              * to where we need to put the commpage.
2158              */
2159             munmap((void *)real_start, host_size);
2160             real_size = aligned_size + qemu_host_page_size;
2161             real_start = (unsigned long)
2162                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2163             if (real_start == (unsigned long)-1) {
2164                 return (unsigned long)-1;
2165             }
2166             aligned_start = ROUND_UP(real_start, align);
2167         } else {
2168             aligned_start = real_start;
2169         }
2170 
2171 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2172         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2173         int valid = init_guest_commpage(aligned_start - guest_start,
2174                                         aligned_size + guest_start);
2175         if (valid == -1) {
2176             munmap((void *)real_start, real_size);
2177             return (unsigned long)-1;
2178         } else if (valid == 0) {
2179             goto try_again;
2180         }
2181 #endif
2182 
2183         /* If nothing has said `return -1` or `goto try_again` yet,
2184          * then the address we have is good.
2185          */
2186         break;
2187 
2188     try_again:
2189         /* That address didn't work.  Unmap and try a different one.
2190          * The address the host picked because is typically right at
2191          * the top of the host address space and leaves the guest with
2192          * no usable address space.  Resort to a linear search.  We
2193          * already compensated for mmap_min_addr, so this should not
2194          * happen often.  Probably means we got unlucky and host
2195          * address space randomization put a shared library somewhere
2196          * inconvenient.
2197          *
2198          * This is probably a good strategy if host_start, but is
2199          * probably a bad strategy if not, which means we got here
2200          * because of trouble with ARM commpage setup.
2201          */
2202         munmap((void *)real_start, real_size);
2203         current_start += align;
2204         if (host_start == current_start) {
2205             /* Theoretically possible if host doesn't have any suitably
2206              * aligned areas.  Normally the first mmap will fail.
2207              */
2208             return (unsigned long)-1;
2209         }
2210     }
2211 
2212     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2213 
2214     return aligned_start;
2215 }
2216 
2217 static void probe_guest_base(const char *image_name,
2218                              abi_ulong loaddr, abi_ulong hiaddr)
2219 {
2220     /* Probe for a suitable guest base address, if the user has not set
2221      * it explicitly, and set guest_base appropriately.
2222      * In case of error we will print a suitable message and exit.
2223      */
2224     const char *errmsg;
2225     if (!have_guest_base && !reserved_va) {
2226         unsigned long host_start, real_start, host_size;
2227 
2228         /* Round addresses to page boundaries.  */
2229         loaddr &= qemu_host_page_mask;
2230         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2231 
2232         if (loaddr < mmap_min_addr) {
2233             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2234         } else {
2235             host_start = loaddr;
2236             if (host_start != loaddr) {
2237                 errmsg = "Address overflow loading ELF binary";
2238                 goto exit_errmsg;
2239             }
2240         }
2241         host_size = hiaddr - loaddr;
2242 
2243         /* Setup the initial guest memory space with ranges gleaned from
2244          * the ELF image that is being loaded.
2245          */
2246         real_start = init_guest_space(host_start, host_size, loaddr, false);
2247         if (real_start == (unsigned long)-1) {
2248             errmsg = "Unable to find space for application";
2249             goto exit_errmsg;
2250         }
2251         guest_base = real_start - loaddr;
2252 
2253         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2254                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2255                       loaddr, real_start);
2256     }
2257     return;
2258 
2259 exit_errmsg:
2260     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2261     exit(-1);
2262 }
2263 
2264 
2265 /* Load an ELF image into the address space.
2266 
2267    IMAGE_NAME is the filename of the image, to use in error messages.
2268    IMAGE_FD is the open file descriptor for the image.
2269 
2270    BPRM_BUF is a copy of the beginning of the file; this of course
2271    contains the elf file header at offset 0.  It is assumed that this
2272    buffer is sufficiently aligned to present no problems to the host
2273    in accessing data at aligned offsets within the buffer.
2274 
2275    On return: INFO values will be filled in, as necessary or available.  */
2276 
2277 static void load_elf_image(const char *image_name, int image_fd,
2278                            struct image_info *info, char **pinterp_name,
2279                            char bprm_buf[BPRM_BUF_SIZE])
2280 {
2281     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2282     struct elf_phdr *phdr;
2283     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2284     int i, retval;
2285     const char *errmsg;
2286 
2287     /* First of all, some simple consistency checks */
2288     errmsg = "Invalid ELF image for this architecture";
2289     if (!elf_check_ident(ehdr)) {
2290         goto exit_errmsg;
2291     }
2292     bswap_ehdr(ehdr);
2293     if (!elf_check_ehdr(ehdr)) {
2294         goto exit_errmsg;
2295     }
2296 
2297     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2298     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2299         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2300     } else {
2301         phdr = (struct elf_phdr *) alloca(i);
2302         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2303         if (retval != i) {
2304             goto exit_read;
2305         }
2306     }
2307     bswap_phdr(phdr, ehdr->e_phnum);
2308 
2309     info->nsegs = 0;
2310     info->pt_dynamic_addr = 0;
2311 
2312     mmap_lock();
2313 
2314     /* Find the maximum size of the image and allocate an appropriate
2315        amount of memory to handle that.  */
2316     loaddr = -1, hiaddr = 0;
2317     info->alignment = 0;
2318     for (i = 0; i < ehdr->e_phnum; ++i) {
2319         if (phdr[i].p_type == PT_LOAD) {
2320             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2321             if (a < loaddr) {
2322                 loaddr = a;
2323             }
2324             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2325             if (a > hiaddr) {
2326                 hiaddr = a;
2327             }
2328             ++info->nsegs;
2329             info->alignment |= phdr[i].p_align;
2330         }
2331     }
2332 
2333     load_addr = loaddr;
2334     if (ehdr->e_type == ET_DYN) {
2335         /* The image indicates that it can be loaded anywhere.  Find a
2336            location that can hold the memory space required.  If the
2337            image is pre-linked, LOADDR will be non-zero.  Since we do
2338            not supply MAP_FIXED here we'll use that address if and
2339            only if it remains available.  */
2340         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2341                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2342                                 -1, 0);
2343         if (load_addr == -1) {
2344             goto exit_perror;
2345         }
2346     } else if (pinterp_name != NULL) {
2347         /* This is the main executable.  Make sure that the low
2348            address does not conflict with MMAP_MIN_ADDR or the
2349            QEMU application itself.  */
2350         probe_guest_base(image_name, loaddr, hiaddr);
2351     }
2352     load_bias = load_addr - loaddr;
2353 
2354     if (elf_is_fdpic(ehdr)) {
2355         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2356             g_malloc(sizeof(*loadsegs) * info->nsegs);
2357 
2358         for (i = 0; i < ehdr->e_phnum; ++i) {
2359             switch (phdr[i].p_type) {
2360             case PT_DYNAMIC:
2361                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2362                 break;
2363             case PT_LOAD:
2364                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2365                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2366                 loadsegs->p_memsz = phdr[i].p_memsz;
2367                 ++loadsegs;
2368                 break;
2369             }
2370         }
2371     }
2372 
2373     info->load_bias = load_bias;
2374     info->load_addr = load_addr;
2375     info->entry = ehdr->e_entry + load_bias;
2376     info->start_code = -1;
2377     info->end_code = 0;
2378     info->start_data = -1;
2379     info->end_data = 0;
2380     info->brk = 0;
2381     info->elf_flags = ehdr->e_flags;
2382 
2383     for (i = 0; i < ehdr->e_phnum; i++) {
2384         struct elf_phdr *eppnt = phdr + i;
2385         if (eppnt->p_type == PT_LOAD) {
2386             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2387             int elf_prot = 0;
2388 
2389             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2390             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2391             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2392 
2393             vaddr = load_bias + eppnt->p_vaddr;
2394             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2395             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2396             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2397 
2398             /*
2399              * Some segments may be completely empty without any backing file
2400              * segment, in that case just let zero_bss allocate an empty buffer
2401              * for it.
2402              */
2403             if (eppnt->p_filesz != 0) {
2404                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2405                                     MAP_PRIVATE | MAP_FIXED,
2406                                     image_fd, eppnt->p_offset - vaddr_po);
2407 
2408                 if (error == -1) {
2409                     goto exit_perror;
2410                 }
2411             }
2412 
2413             vaddr_ef = vaddr + eppnt->p_filesz;
2414             vaddr_em = vaddr + eppnt->p_memsz;
2415 
2416             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2417             if (vaddr_ef < vaddr_em) {
2418                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2419             }
2420 
2421             /* Find the full program boundaries.  */
2422             if (elf_prot & PROT_EXEC) {
2423                 if (vaddr < info->start_code) {
2424                     info->start_code = vaddr;
2425                 }
2426                 if (vaddr_ef > info->end_code) {
2427                     info->end_code = vaddr_ef;
2428                 }
2429             }
2430             if (elf_prot & PROT_WRITE) {
2431                 if (vaddr < info->start_data) {
2432                     info->start_data = vaddr;
2433                 }
2434                 if (vaddr_ef > info->end_data) {
2435                     info->end_data = vaddr_ef;
2436                 }
2437                 if (vaddr_em > info->brk) {
2438                     info->brk = vaddr_em;
2439                 }
2440             }
2441         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2442             char *interp_name;
2443 
2444             if (*pinterp_name) {
2445                 errmsg = "Multiple PT_INTERP entries";
2446                 goto exit_errmsg;
2447             }
2448             interp_name = malloc(eppnt->p_filesz);
2449             if (!interp_name) {
2450                 goto exit_perror;
2451             }
2452 
2453             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2454                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2455                        eppnt->p_filesz);
2456             } else {
2457                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2458                                eppnt->p_offset);
2459                 if (retval != eppnt->p_filesz) {
2460                     goto exit_perror;
2461                 }
2462             }
2463             if (interp_name[eppnt->p_filesz - 1] != 0) {
2464                 errmsg = "Invalid PT_INTERP entry";
2465                 goto exit_errmsg;
2466             }
2467             *pinterp_name = interp_name;
2468 #ifdef TARGET_MIPS
2469         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2470             Mips_elf_abiflags_v0 abiflags;
2471             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2472                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2473                 goto exit_errmsg;
2474             }
2475             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2476                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2477                        sizeof(Mips_elf_abiflags_v0));
2478             } else {
2479                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2480                                eppnt->p_offset);
2481                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2482                     goto exit_perror;
2483                 }
2484             }
2485             bswap_mips_abiflags(&abiflags);
2486             info->fp_abi = abiflags.fp_abi;
2487 #endif
2488         }
2489     }
2490 
2491     if (info->end_data == 0) {
2492         info->start_data = info->end_code;
2493         info->end_data = info->end_code;
2494         info->brk = info->end_code;
2495     }
2496 
2497     if (qemu_log_enabled()) {
2498         load_symbols(ehdr, image_fd, load_bias);
2499     }
2500 
2501     mmap_unlock();
2502 
2503     close(image_fd);
2504     return;
2505 
2506  exit_read:
2507     if (retval >= 0) {
2508         errmsg = "Incomplete read of file header";
2509         goto exit_errmsg;
2510     }
2511  exit_perror:
2512     errmsg = strerror(errno);
2513  exit_errmsg:
2514     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2515     exit(-1);
2516 }
2517 
2518 static void load_elf_interp(const char *filename, struct image_info *info,
2519                             char bprm_buf[BPRM_BUF_SIZE])
2520 {
2521     int fd, retval;
2522 
2523     fd = open(path(filename), O_RDONLY);
2524     if (fd < 0) {
2525         goto exit_perror;
2526     }
2527 
2528     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2529     if (retval < 0) {
2530         goto exit_perror;
2531     }
2532     if (retval < BPRM_BUF_SIZE) {
2533         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2534     }
2535 
2536     load_elf_image(filename, fd, info, NULL, bprm_buf);
2537     return;
2538 
2539  exit_perror:
2540     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2541     exit(-1);
2542 }
2543 
2544 static int symfind(const void *s0, const void *s1)
2545 {
2546     target_ulong addr = *(target_ulong *)s0;
2547     struct elf_sym *sym = (struct elf_sym *)s1;
2548     int result = 0;
2549     if (addr < sym->st_value) {
2550         result = -1;
2551     } else if (addr >= sym->st_value + sym->st_size) {
2552         result = 1;
2553     }
2554     return result;
2555 }
2556 
2557 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2558 {
2559 #if ELF_CLASS == ELFCLASS32
2560     struct elf_sym *syms = s->disas_symtab.elf32;
2561 #else
2562     struct elf_sym *syms = s->disas_symtab.elf64;
2563 #endif
2564 
2565     // binary search
2566     struct elf_sym *sym;
2567 
2568     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2569     if (sym != NULL) {
2570         return s->disas_strtab + sym->st_name;
2571     }
2572 
2573     return "";
2574 }
2575 
2576 /* FIXME: This should use elf_ops.h  */
2577 static int symcmp(const void *s0, const void *s1)
2578 {
2579     struct elf_sym *sym0 = (struct elf_sym *)s0;
2580     struct elf_sym *sym1 = (struct elf_sym *)s1;
2581     return (sym0->st_value < sym1->st_value)
2582         ? -1
2583         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2584 }
2585 
2586 /* Best attempt to load symbols from this ELF object. */
2587 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2588 {
2589     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2590     uint64_t segsz;
2591     struct elf_shdr *shdr;
2592     char *strings = NULL;
2593     struct syminfo *s = NULL;
2594     struct elf_sym *new_syms, *syms = NULL;
2595 
2596     shnum = hdr->e_shnum;
2597     i = shnum * sizeof(struct elf_shdr);
2598     shdr = (struct elf_shdr *)alloca(i);
2599     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2600         return;
2601     }
2602 
2603     bswap_shdr(shdr, shnum);
2604     for (i = 0; i < shnum; ++i) {
2605         if (shdr[i].sh_type == SHT_SYMTAB) {
2606             sym_idx = i;
2607             str_idx = shdr[i].sh_link;
2608             goto found;
2609         }
2610     }
2611 
2612     /* There will be no symbol table if the file was stripped.  */
2613     return;
2614 
2615  found:
2616     /* Now know where the strtab and symtab are.  Snarf them.  */
2617     s = g_try_new(struct syminfo, 1);
2618     if (!s) {
2619         goto give_up;
2620     }
2621 
2622     segsz = shdr[str_idx].sh_size;
2623     s->disas_strtab = strings = g_try_malloc(segsz);
2624     if (!strings ||
2625         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2626         goto give_up;
2627     }
2628 
2629     segsz = shdr[sym_idx].sh_size;
2630     syms = g_try_malloc(segsz);
2631     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2632         goto give_up;
2633     }
2634 
2635     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2636         /* Implausibly large symbol table: give up rather than ploughing
2637          * on with the number of symbols calculation overflowing
2638          */
2639         goto give_up;
2640     }
2641     nsyms = segsz / sizeof(struct elf_sym);
2642     for (i = 0; i < nsyms; ) {
2643         bswap_sym(syms + i);
2644         /* Throw away entries which we do not need.  */
2645         if (syms[i].st_shndx == SHN_UNDEF
2646             || syms[i].st_shndx >= SHN_LORESERVE
2647             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2648             if (i < --nsyms) {
2649                 syms[i] = syms[nsyms];
2650             }
2651         } else {
2652 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2653             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2654             syms[i].st_value &= ~(target_ulong)1;
2655 #endif
2656             syms[i].st_value += load_bias;
2657             i++;
2658         }
2659     }
2660 
2661     /* No "useful" symbol.  */
2662     if (nsyms == 0) {
2663         goto give_up;
2664     }
2665 
2666     /* Attempt to free the storage associated with the local symbols
2667        that we threw away.  Whether or not this has any effect on the
2668        memory allocation depends on the malloc implementation and how
2669        many symbols we managed to discard.  */
2670     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2671     if (new_syms == NULL) {
2672         goto give_up;
2673     }
2674     syms = new_syms;
2675 
2676     qsort(syms, nsyms, sizeof(*syms), symcmp);
2677 
2678     s->disas_num_syms = nsyms;
2679 #if ELF_CLASS == ELFCLASS32
2680     s->disas_symtab.elf32 = syms;
2681 #else
2682     s->disas_symtab.elf64 = syms;
2683 #endif
2684     s->lookup_symbol = lookup_symbolxx;
2685     s->next = syminfos;
2686     syminfos = s;
2687 
2688     return;
2689 
2690 give_up:
2691     g_free(s);
2692     g_free(strings);
2693     g_free(syms);
2694 }
2695 
2696 uint32_t get_elf_eflags(int fd)
2697 {
2698     struct elfhdr ehdr;
2699     off_t offset;
2700     int ret;
2701 
2702     /* Read ELF header */
2703     offset = lseek(fd, 0, SEEK_SET);
2704     if (offset == (off_t) -1) {
2705         return 0;
2706     }
2707     ret = read(fd, &ehdr, sizeof(ehdr));
2708     if (ret < sizeof(ehdr)) {
2709         return 0;
2710     }
2711     offset = lseek(fd, offset, SEEK_SET);
2712     if (offset == (off_t) -1) {
2713         return 0;
2714     }
2715 
2716     /* Check ELF signature */
2717     if (!elf_check_ident(&ehdr)) {
2718         return 0;
2719     }
2720 
2721     /* check header */
2722     bswap_ehdr(&ehdr);
2723     if (!elf_check_ehdr(&ehdr)) {
2724         return 0;
2725     }
2726 
2727     /* return architecture id */
2728     return ehdr.e_flags;
2729 }
2730 
2731 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2732 {
2733     struct image_info interp_info;
2734     struct elfhdr elf_ex;
2735     char *elf_interpreter = NULL;
2736     char *scratch;
2737 
2738     memset(&interp_info, 0, sizeof(interp_info));
2739 #ifdef TARGET_MIPS
2740     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2741 #endif
2742 
2743     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2744 
2745     load_elf_image(bprm->filename, bprm->fd, info,
2746                    &elf_interpreter, bprm->buf);
2747 
2748     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2749        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2750        when we load the interpreter.  */
2751     elf_ex = *(struct elfhdr *)bprm->buf;
2752 
2753     /* Do this so that we can load the interpreter, if need be.  We will
2754        change some of these later */
2755     bprm->p = setup_arg_pages(bprm, info);
2756 
2757     scratch = g_new0(char, TARGET_PAGE_SIZE);
2758     if (STACK_GROWS_DOWN) {
2759         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2760                                    bprm->p, info->stack_limit);
2761         info->file_string = bprm->p;
2762         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2763                                    bprm->p, info->stack_limit);
2764         info->env_strings = bprm->p;
2765         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2766                                    bprm->p, info->stack_limit);
2767         info->arg_strings = bprm->p;
2768     } else {
2769         info->arg_strings = bprm->p;
2770         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2771                                    bprm->p, info->stack_limit);
2772         info->env_strings = bprm->p;
2773         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2774                                    bprm->p, info->stack_limit);
2775         info->file_string = bprm->p;
2776         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2777                                    bprm->p, info->stack_limit);
2778     }
2779 
2780     g_free(scratch);
2781 
2782     if (!bprm->p) {
2783         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2784         exit(-1);
2785     }
2786 
2787     if (elf_interpreter) {
2788         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2789 
2790         /* If the program interpreter is one of these two, then assume
2791            an iBCS2 image.  Otherwise assume a native linux image.  */
2792 
2793         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2794             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2795             info->personality = PER_SVR4;
2796 
2797             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2798                and some applications "depend" upon this behavior.  Since
2799                we do not have the power to recompile these, we emulate
2800                the SVr4 behavior.  Sigh.  */
2801             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2802                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2803         }
2804 #ifdef TARGET_MIPS
2805         info->interp_fp_abi = interp_info.fp_abi;
2806 #endif
2807     }
2808 
2809     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2810                                 info, (elf_interpreter ? &interp_info : NULL));
2811     info->start_stack = bprm->p;
2812 
2813     /* If we have an interpreter, set that as the program's entry point.
2814        Copy the load_bias as well, to help PPC64 interpret the entry
2815        point as a function descriptor.  Do this after creating elf tables
2816        so that we copy the original program entry point into the AUXV.  */
2817     if (elf_interpreter) {
2818         info->load_bias = interp_info.load_bias;
2819         info->entry = interp_info.entry;
2820         free(elf_interpreter);
2821     }
2822 
2823 #ifdef USE_ELF_CORE_DUMP
2824     bprm->core_dump = &elf_core_dump;
2825 #endif
2826 
2827     return 0;
2828 }
2829 
2830 #ifdef USE_ELF_CORE_DUMP
2831 /*
2832  * Definitions to generate Intel SVR4-like core files.
2833  * These mostly have the same names as the SVR4 types with "target_elf_"
2834  * tacked on the front to prevent clashes with linux definitions,
2835  * and the typedef forms have been avoided.  This is mostly like
2836  * the SVR4 structure, but more Linuxy, with things that Linux does
2837  * not support and which gdb doesn't really use excluded.
2838  *
2839  * Fields we don't dump (their contents is zero) in linux-user qemu
2840  * are marked with XXX.
2841  *
2842  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2843  *
2844  * Porting ELF coredump for target is (quite) simple process.  First you
2845  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2846  * the target resides):
2847  *
2848  * #define USE_ELF_CORE_DUMP
2849  *
2850  * Next you define type of register set used for dumping.  ELF specification
2851  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2852  *
2853  * typedef <target_regtype> target_elf_greg_t;
2854  * #define ELF_NREG <number of registers>
2855  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2856  *
2857  * Last step is to implement target specific function that copies registers
2858  * from given cpu into just specified register set.  Prototype is:
2859  *
2860  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2861  *                                const CPUArchState *env);
2862  *
2863  * Parameters:
2864  *     regs - copy register values into here (allocated and zeroed by caller)
2865  *     env - copy registers from here
2866  *
2867  * Example for ARM target is provided in this file.
2868  */
2869 
2870 /* An ELF note in memory */
2871 struct memelfnote {
2872     const char *name;
2873     size_t     namesz;
2874     size_t     namesz_rounded;
2875     int        type;
2876     size_t     datasz;
2877     size_t     datasz_rounded;
2878     void       *data;
2879     size_t     notesz;
2880 };
2881 
2882 struct target_elf_siginfo {
2883     abi_int    si_signo; /* signal number */
2884     abi_int    si_code;  /* extra code */
2885     abi_int    si_errno; /* errno */
2886 };
2887 
2888 struct target_elf_prstatus {
2889     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2890     abi_short          pr_cursig;    /* Current signal */
2891     abi_ulong          pr_sigpend;   /* XXX */
2892     abi_ulong          pr_sighold;   /* XXX */
2893     target_pid_t       pr_pid;
2894     target_pid_t       pr_ppid;
2895     target_pid_t       pr_pgrp;
2896     target_pid_t       pr_sid;
2897     struct target_timeval pr_utime;  /* XXX User time */
2898     struct target_timeval pr_stime;  /* XXX System time */
2899     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2900     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2901     target_elf_gregset_t      pr_reg;       /* GP registers */
2902     abi_int            pr_fpvalid;   /* XXX */
2903 };
2904 
2905 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2906 
2907 struct target_elf_prpsinfo {
2908     char         pr_state;       /* numeric process state */
2909     char         pr_sname;       /* char for pr_state */
2910     char         pr_zomb;        /* zombie */
2911     char         pr_nice;        /* nice val */
2912     abi_ulong    pr_flag;        /* flags */
2913     target_uid_t pr_uid;
2914     target_gid_t pr_gid;
2915     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2916     /* Lots missing */
2917     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
2918     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2919 };
2920 
2921 /* Here is the structure in which status of each thread is captured. */
2922 struct elf_thread_status {
2923     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2924     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2925 #if 0
2926     elf_fpregset_t fpu;             /* NT_PRFPREG */
2927     struct task_struct *thread;
2928     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2929 #endif
2930     struct memelfnote notes[1];
2931     int num_notes;
2932 };
2933 
2934 struct elf_note_info {
2935     struct memelfnote   *notes;
2936     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2937     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2938 
2939     QTAILQ_HEAD(, elf_thread_status) thread_list;
2940 #if 0
2941     /*
2942      * Current version of ELF coredump doesn't support
2943      * dumping fp regs etc.
2944      */
2945     elf_fpregset_t *fpu;
2946     elf_fpxregset_t *xfpu;
2947     int thread_status_size;
2948 #endif
2949     int notes_size;
2950     int numnote;
2951 };
2952 
2953 struct vm_area_struct {
2954     target_ulong   vma_start;  /* start vaddr of memory region */
2955     target_ulong   vma_end;    /* end vaddr of memory region */
2956     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2957     QTAILQ_ENTRY(vm_area_struct) vma_link;
2958 };
2959 
2960 struct mm_struct {
2961     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2962     int mm_count;           /* number of mappings */
2963 };
2964 
2965 static struct mm_struct *vma_init(void);
2966 static void vma_delete(struct mm_struct *);
2967 static int vma_add_mapping(struct mm_struct *, target_ulong,
2968                            target_ulong, abi_ulong);
2969 static int vma_get_mapping_count(const struct mm_struct *);
2970 static struct vm_area_struct *vma_first(const struct mm_struct *);
2971 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2972 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2973 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2974                       unsigned long flags);
2975 
2976 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2977 static void fill_note(struct memelfnote *, const char *, int,
2978                       unsigned int, void *);
2979 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2980 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2981 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2982 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2983 static size_t note_size(const struct memelfnote *);
2984 static void free_note_info(struct elf_note_info *);
2985 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2986 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2987 static int core_dump_filename(const TaskState *, char *, size_t);
2988 
2989 static int dump_write(int, const void *, size_t);
2990 static int write_note(struct memelfnote *, int);
2991 static int write_note_info(struct elf_note_info *, int);
2992 
2993 #ifdef BSWAP_NEEDED
2994 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2995 {
2996     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2997     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2998     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2999     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3000     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3001     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3002     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3003     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3004     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3005     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3006     /* cpu times are not filled, so we skip them */
3007     /* regs should be in correct format already */
3008     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3009 }
3010 
3011 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3012 {
3013     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3014     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3015     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3016     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3017     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3018     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3019     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3020 }
3021 
3022 static void bswap_note(struct elf_note *en)
3023 {
3024     bswap32s(&en->n_namesz);
3025     bswap32s(&en->n_descsz);
3026     bswap32s(&en->n_type);
3027 }
3028 #else
3029 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3030 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3031 static inline void bswap_note(struct elf_note *en) { }
3032 #endif /* BSWAP_NEEDED */
3033 
3034 /*
3035  * Minimal support for linux memory regions.  These are needed
3036  * when we are finding out what memory exactly belongs to
3037  * emulated process.  No locks needed here, as long as
3038  * thread that received the signal is stopped.
3039  */
3040 
3041 static struct mm_struct *vma_init(void)
3042 {
3043     struct mm_struct *mm;
3044 
3045     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3046         return (NULL);
3047 
3048     mm->mm_count = 0;
3049     QTAILQ_INIT(&mm->mm_mmap);
3050 
3051     return (mm);
3052 }
3053 
3054 static void vma_delete(struct mm_struct *mm)
3055 {
3056     struct vm_area_struct *vma;
3057 
3058     while ((vma = vma_first(mm)) != NULL) {
3059         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3060         g_free(vma);
3061     }
3062     g_free(mm);
3063 }
3064 
3065 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3066                            target_ulong end, abi_ulong flags)
3067 {
3068     struct vm_area_struct *vma;
3069 
3070     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3071         return (-1);
3072 
3073     vma->vma_start = start;
3074     vma->vma_end = end;
3075     vma->vma_flags = flags;
3076 
3077     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3078     mm->mm_count++;
3079 
3080     return (0);
3081 }
3082 
3083 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3084 {
3085     return (QTAILQ_FIRST(&mm->mm_mmap));
3086 }
3087 
3088 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3089 {
3090     return (QTAILQ_NEXT(vma, vma_link));
3091 }
3092 
3093 static int vma_get_mapping_count(const struct mm_struct *mm)
3094 {
3095     return (mm->mm_count);
3096 }
3097 
3098 /*
3099  * Calculate file (dump) size of given memory region.
3100  */
3101 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3102 {
3103     /* if we cannot even read the first page, skip it */
3104     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3105         return (0);
3106 
3107     /*
3108      * Usually we don't dump executable pages as they contain
3109      * non-writable code that debugger can read directly from
3110      * target library etc.  However, thread stacks are marked
3111      * also executable so we read in first page of given region
3112      * and check whether it contains elf header.  If there is
3113      * no elf header, we dump it.
3114      */
3115     if (vma->vma_flags & PROT_EXEC) {
3116         char page[TARGET_PAGE_SIZE];
3117 
3118         copy_from_user(page, vma->vma_start, sizeof (page));
3119         if ((page[EI_MAG0] == ELFMAG0) &&
3120             (page[EI_MAG1] == ELFMAG1) &&
3121             (page[EI_MAG2] == ELFMAG2) &&
3122             (page[EI_MAG3] == ELFMAG3)) {
3123             /*
3124              * Mappings are possibly from ELF binary.  Don't dump
3125              * them.
3126              */
3127             return (0);
3128         }
3129     }
3130 
3131     return (vma->vma_end - vma->vma_start);
3132 }
3133 
3134 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3135                       unsigned long flags)
3136 {
3137     struct mm_struct *mm = (struct mm_struct *)priv;
3138 
3139     vma_add_mapping(mm, start, end, flags);
3140     return (0);
3141 }
3142 
3143 static void fill_note(struct memelfnote *note, const char *name, int type,
3144                       unsigned int sz, void *data)
3145 {
3146     unsigned int namesz;
3147 
3148     namesz = strlen(name) + 1;
3149     note->name = name;
3150     note->namesz = namesz;
3151     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3152     note->type = type;
3153     note->datasz = sz;
3154     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3155 
3156     note->data = data;
3157 
3158     /*
3159      * We calculate rounded up note size here as specified by
3160      * ELF document.
3161      */
3162     note->notesz = sizeof (struct elf_note) +
3163         note->namesz_rounded + note->datasz_rounded;
3164 }
3165 
3166 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3167                             uint32_t flags)
3168 {
3169     (void) memset(elf, 0, sizeof(*elf));
3170 
3171     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3172     elf->e_ident[EI_CLASS] = ELF_CLASS;
3173     elf->e_ident[EI_DATA] = ELF_DATA;
3174     elf->e_ident[EI_VERSION] = EV_CURRENT;
3175     elf->e_ident[EI_OSABI] = ELF_OSABI;
3176 
3177     elf->e_type = ET_CORE;
3178     elf->e_machine = machine;
3179     elf->e_version = EV_CURRENT;
3180     elf->e_phoff = sizeof(struct elfhdr);
3181     elf->e_flags = flags;
3182     elf->e_ehsize = sizeof(struct elfhdr);
3183     elf->e_phentsize = sizeof(struct elf_phdr);
3184     elf->e_phnum = segs;
3185 
3186     bswap_ehdr(elf);
3187 }
3188 
3189 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3190 {
3191     phdr->p_type = PT_NOTE;
3192     phdr->p_offset = offset;
3193     phdr->p_vaddr = 0;
3194     phdr->p_paddr = 0;
3195     phdr->p_filesz = sz;
3196     phdr->p_memsz = 0;
3197     phdr->p_flags = 0;
3198     phdr->p_align = 0;
3199 
3200     bswap_phdr(phdr, 1);
3201 }
3202 
3203 static size_t note_size(const struct memelfnote *note)
3204 {
3205     return (note->notesz);
3206 }
3207 
3208 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3209                           const TaskState *ts, int signr)
3210 {
3211     (void) memset(prstatus, 0, sizeof (*prstatus));
3212     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3213     prstatus->pr_pid = ts->ts_tid;
3214     prstatus->pr_ppid = getppid();
3215     prstatus->pr_pgrp = getpgrp();
3216     prstatus->pr_sid = getsid(0);
3217 
3218     bswap_prstatus(prstatus);
3219 }
3220 
3221 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3222 {
3223     char *base_filename;
3224     unsigned int i, len;
3225 
3226     (void) memset(psinfo, 0, sizeof (*psinfo));
3227 
3228     len = ts->info->arg_end - ts->info->arg_start;
3229     if (len >= ELF_PRARGSZ)
3230         len = ELF_PRARGSZ - 1;
3231     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3232         return -EFAULT;
3233     for (i = 0; i < len; i++)
3234         if (psinfo->pr_psargs[i] == 0)
3235             psinfo->pr_psargs[i] = ' ';
3236     psinfo->pr_psargs[len] = 0;
3237 
3238     psinfo->pr_pid = getpid();
3239     psinfo->pr_ppid = getppid();
3240     psinfo->pr_pgrp = getpgrp();
3241     psinfo->pr_sid = getsid(0);
3242     psinfo->pr_uid = getuid();
3243     psinfo->pr_gid = getgid();
3244 
3245     base_filename = g_path_get_basename(ts->bprm->filename);
3246     /*
3247      * Using strncpy here is fine: at max-length,
3248      * this field is not NUL-terminated.
3249      */
3250     (void) strncpy(psinfo->pr_fname, base_filename,
3251                    sizeof(psinfo->pr_fname));
3252 
3253     g_free(base_filename);
3254     bswap_psinfo(psinfo);
3255     return (0);
3256 }
3257 
3258 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3259 {
3260     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3261     elf_addr_t orig_auxv = auxv;
3262     void *ptr;
3263     int len = ts->info->auxv_len;
3264 
3265     /*
3266      * Auxiliary vector is stored in target process stack.  It contains
3267      * {type, value} pairs that we need to dump into note.  This is not
3268      * strictly necessary but we do it here for sake of completeness.
3269      */
3270 
3271     /* read in whole auxv vector and copy it to memelfnote */
3272     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3273     if (ptr != NULL) {
3274         fill_note(note, "CORE", NT_AUXV, len, ptr);
3275         unlock_user(ptr, auxv, len);
3276     }
3277 }
3278 
3279 /*
3280  * Constructs name of coredump file.  We have following convention
3281  * for the name:
3282  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3283  *
3284  * Returns 0 in case of success, -1 otherwise (errno is set).
3285  */
3286 static int core_dump_filename(const TaskState *ts, char *buf,
3287                               size_t bufsize)
3288 {
3289     char timestamp[64];
3290     char *base_filename = NULL;
3291     struct timeval tv;
3292     struct tm tm;
3293 
3294     assert(bufsize >= PATH_MAX);
3295 
3296     if (gettimeofday(&tv, NULL) < 0) {
3297         (void) fprintf(stderr, "unable to get current timestamp: %s",
3298                        strerror(errno));
3299         return (-1);
3300     }
3301 
3302     base_filename = g_path_get_basename(ts->bprm->filename);
3303     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3304                     localtime_r(&tv.tv_sec, &tm));
3305     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3306                     base_filename, timestamp, (int)getpid());
3307     g_free(base_filename);
3308 
3309     return (0);
3310 }
3311 
3312 static int dump_write(int fd, const void *ptr, size_t size)
3313 {
3314     const char *bufp = (const char *)ptr;
3315     ssize_t bytes_written, bytes_left;
3316     struct rlimit dumpsize;
3317     off_t pos;
3318 
3319     bytes_written = 0;
3320     getrlimit(RLIMIT_CORE, &dumpsize);
3321     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3322         if (errno == ESPIPE) { /* not a seekable stream */
3323             bytes_left = size;
3324         } else {
3325             return pos;
3326         }
3327     } else {
3328         if (dumpsize.rlim_cur <= pos) {
3329             return -1;
3330         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3331             bytes_left = size;
3332         } else {
3333             size_t limit_left=dumpsize.rlim_cur - pos;
3334             bytes_left = limit_left >= size ? size : limit_left ;
3335         }
3336     }
3337 
3338     /*
3339      * In normal conditions, single write(2) should do but
3340      * in case of socket etc. this mechanism is more portable.
3341      */
3342     do {
3343         bytes_written = write(fd, bufp, bytes_left);
3344         if (bytes_written < 0) {
3345             if (errno == EINTR)
3346                 continue;
3347             return (-1);
3348         } else if (bytes_written == 0) { /* eof */
3349             return (-1);
3350         }
3351         bufp += bytes_written;
3352         bytes_left -= bytes_written;
3353     } while (bytes_left > 0);
3354 
3355     return (0);
3356 }
3357 
3358 static int write_note(struct memelfnote *men, int fd)
3359 {
3360     struct elf_note en;
3361 
3362     en.n_namesz = men->namesz;
3363     en.n_type = men->type;
3364     en.n_descsz = men->datasz;
3365 
3366     bswap_note(&en);
3367 
3368     if (dump_write(fd, &en, sizeof(en)) != 0)
3369         return (-1);
3370     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3371         return (-1);
3372     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3373         return (-1);
3374 
3375     return (0);
3376 }
3377 
3378 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3379 {
3380     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3381     TaskState *ts = (TaskState *)cpu->opaque;
3382     struct elf_thread_status *ets;
3383 
3384     ets = g_malloc0(sizeof (*ets));
3385     ets->num_notes = 1; /* only prstatus is dumped */
3386     fill_prstatus(&ets->prstatus, ts, 0);
3387     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3388     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3389               &ets->prstatus);
3390 
3391     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3392 
3393     info->notes_size += note_size(&ets->notes[0]);
3394 }
3395 
3396 static void init_note_info(struct elf_note_info *info)
3397 {
3398     /* Initialize the elf_note_info structure so that it is at
3399      * least safe to call free_note_info() on it. Must be
3400      * called before calling fill_note_info().
3401      */
3402     memset(info, 0, sizeof (*info));
3403     QTAILQ_INIT(&info->thread_list);
3404 }
3405 
3406 static int fill_note_info(struct elf_note_info *info,
3407                           long signr, const CPUArchState *env)
3408 {
3409 #define NUMNOTES 3
3410     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3411     TaskState *ts = (TaskState *)cpu->opaque;
3412     int i;
3413 
3414     info->notes = g_new0(struct memelfnote, NUMNOTES);
3415     if (info->notes == NULL)
3416         return (-ENOMEM);
3417     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3418     if (info->prstatus == NULL)
3419         return (-ENOMEM);
3420     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3421     if (info->prstatus == NULL)
3422         return (-ENOMEM);
3423 
3424     /*
3425      * First fill in status (and registers) of current thread
3426      * including process info & aux vector.
3427      */
3428     fill_prstatus(info->prstatus, ts, signr);
3429     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3430     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3431               sizeof (*info->prstatus), info->prstatus);
3432     fill_psinfo(info->psinfo, ts);
3433     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3434               sizeof (*info->psinfo), info->psinfo);
3435     fill_auxv_note(&info->notes[2], ts);
3436     info->numnote = 3;
3437 
3438     info->notes_size = 0;
3439     for (i = 0; i < info->numnote; i++)
3440         info->notes_size += note_size(&info->notes[i]);
3441 
3442     /* read and fill status of all threads */
3443     cpu_list_lock();
3444     CPU_FOREACH(cpu) {
3445         if (cpu == thread_cpu) {
3446             continue;
3447         }
3448         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3449     }
3450     cpu_list_unlock();
3451 
3452     return (0);
3453 }
3454 
3455 static void free_note_info(struct elf_note_info *info)
3456 {
3457     struct elf_thread_status *ets;
3458 
3459     while (!QTAILQ_EMPTY(&info->thread_list)) {
3460         ets = QTAILQ_FIRST(&info->thread_list);
3461         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3462         g_free(ets);
3463     }
3464 
3465     g_free(info->prstatus);
3466     g_free(info->psinfo);
3467     g_free(info->notes);
3468 }
3469 
3470 static int write_note_info(struct elf_note_info *info, int fd)
3471 {
3472     struct elf_thread_status *ets;
3473     int i, error = 0;
3474 
3475     /* write prstatus, psinfo and auxv for current thread */
3476     for (i = 0; i < info->numnote; i++)
3477         if ((error = write_note(&info->notes[i], fd)) != 0)
3478             return (error);
3479 
3480     /* write prstatus for each thread */
3481     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3482         if ((error = write_note(&ets->notes[0], fd)) != 0)
3483             return (error);
3484     }
3485 
3486     return (0);
3487 }
3488 
3489 /*
3490  * Write out ELF coredump.
3491  *
3492  * See documentation of ELF object file format in:
3493  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3494  *
3495  * Coredump format in linux is following:
3496  *
3497  * 0   +----------------------+         \
3498  *     | ELF header           | ET_CORE  |
3499  *     +----------------------+          |
3500  *     | ELF program headers  |          |--- headers
3501  *     | - NOTE section       |          |
3502  *     | - PT_LOAD sections   |          |
3503  *     +----------------------+         /
3504  *     | NOTEs:               |
3505  *     | - NT_PRSTATUS        |
3506  *     | - NT_PRSINFO         |
3507  *     | - NT_AUXV            |
3508  *     +----------------------+ <-- aligned to target page
3509  *     | Process memory dump  |
3510  *     :                      :
3511  *     .                      .
3512  *     :                      :
3513  *     |                      |
3514  *     +----------------------+
3515  *
3516  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3517  * NT_PRSINFO  -> struct elf_prpsinfo
3518  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3519  *
3520  * Format follows System V format as close as possible.  Current
3521  * version limitations are as follows:
3522  *     - no floating point registers are dumped
3523  *
3524  * Function returns 0 in case of success, negative errno otherwise.
3525  *
3526  * TODO: make this work also during runtime: it should be
3527  * possible to force coredump from running process and then
3528  * continue processing.  For example qemu could set up SIGUSR2
3529  * handler (provided that target process haven't registered
3530  * handler for that) that does the dump when signal is received.
3531  */
3532 static int elf_core_dump(int signr, const CPUArchState *env)
3533 {
3534     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3535     const TaskState *ts = (const TaskState *)cpu->opaque;
3536     struct vm_area_struct *vma = NULL;
3537     char corefile[PATH_MAX];
3538     struct elf_note_info info;
3539     struct elfhdr elf;
3540     struct elf_phdr phdr;
3541     struct rlimit dumpsize;
3542     struct mm_struct *mm = NULL;
3543     off_t offset = 0, data_offset = 0;
3544     int segs = 0;
3545     int fd = -1;
3546 
3547     init_note_info(&info);
3548 
3549     errno = 0;
3550     getrlimit(RLIMIT_CORE, &dumpsize);
3551     if (dumpsize.rlim_cur == 0)
3552         return 0;
3553 
3554     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3555         return (-errno);
3556 
3557     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3558                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3559         return (-errno);
3560 
3561     /*
3562      * Walk through target process memory mappings and
3563      * set up structure containing this information.  After
3564      * this point vma_xxx functions can be used.
3565      */
3566     if ((mm = vma_init()) == NULL)
3567         goto out;
3568 
3569     walk_memory_regions(mm, vma_walker);
3570     segs = vma_get_mapping_count(mm);
3571 
3572     /*
3573      * Construct valid coredump ELF header.  We also
3574      * add one more segment for notes.
3575      */
3576     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3577     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3578         goto out;
3579 
3580     /* fill in the in-memory version of notes */
3581     if (fill_note_info(&info, signr, env) < 0)
3582         goto out;
3583 
3584     offset += sizeof (elf);                             /* elf header */
3585     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3586 
3587     /* write out notes program header */
3588     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3589 
3590     offset += info.notes_size;
3591     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3592         goto out;
3593 
3594     /*
3595      * ELF specification wants data to start at page boundary so
3596      * we align it here.
3597      */
3598     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3599 
3600     /*
3601      * Write program headers for memory regions mapped in
3602      * the target process.
3603      */
3604     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3605         (void) memset(&phdr, 0, sizeof (phdr));
3606 
3607         phdr.p_type = PT_LOAD;
3608         phdr.p_offset = offset;
3609         phdr.p_vaddr = vma->vma_start;
3610         phdr.p_paddr = 0;
3611         phdr.p_filesz = vma_dump_size(vma);
3612         offset += phdr.p_filesz;
3613         phdr.p_memsz = vma->vma_end - vma->vma_start;
3614         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3615         if (vma->vma_flags & PROT_WRITE)
3616             phdr.p_flags |= PF_W;
3617         if (vma->vma_flags & PROT_EXEC)
3618             phdr.p_flags |= PF_X;
3619         phdr.p_align = ELF_EXEC_PAGESIZE;
3620 
3621         bswap_phdr(&phdr, 1);
3622         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3623             goto out;
3624         }
3625     }
3626 
3627     /*
3628      * Next we write notes just after program headers.  No
3629      * alignment needed here.
3630      */
3631     if (write_note_info(&info, fd) < 0)
3632         goto out;
3633 
3634     /* align data to page boundary */
3635     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3636         goto out;
3637 
3638     /*
3639      * Finally we can dump process memory into corefile as well.
3640      */
3641     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3642         abi_ulong addr;
3643         abi_ulong end;
3644 
3645         end = vma->vma_start + vma_dump_size(vma);
3646 
3647         for (addr = vma->vma_start; addr < end;
3648              addr += TARGET_PAGE_SIZE) {
3649             char page[TARGET_PAGE_SIZE];
3650             int error;
3651 
3652             /*
3653              *  Read in page from target process memory and
3654              *  write it to coredump file.
3655              */
3656             error = copy_from_user(page, addr, sizeof (page));
3657             if (error != 0) {
3658                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3659                                addr);
3660                 errno = -error;
3661                 goto out;
3662             }
3663             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3664                 goto out;
3665         }
3666     }
3667 
3668  out:
3669     free_note_info(&info);
3670     if (mm != NULL)
3671         vma_delete(mm);
3672     (void) close(fd);
3673 
3674     if (errno != 0)
3675         return (-errno);
3676     return (0);
3677 }
3678 #endif /* USE_ELF_CORE_DUMP */
3679 
3680 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3681 {
3682     init_thread(regs, infop);
3683 }
3684