1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/path.h" 11 #include "qemu/guest-random.h" 12 13 #ifdef _ARCH_PPC64 14 #undef ARCH_DLINFO 15 #undef ELF_PLATFORM 16 #undef ELF_HWCAP 17 #undef ELF_HWCAP2 18 #undef ELF_CLASS 19 #undef ELF_DATA 20 #undef ELF_ARCH 21 #endif 22 23 #define ELF_OSABI ELFOSABI_SYSV 24 25 /* from personality.h */ 26 27 /* 28 * Flags for bug emulation. 29 * 30 * These occupy the top three bytes. 31 */ 32 enum { 33 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 34 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 35 descriptors (signal handling) */ 36 MMAP_PAGE_ZERO = 0x0100000, 37 ADDR_COMPAT_LAYOUT = 0x0200000, 38 READ_IMPLIES_EXEC = 0x0400000, 39 ADDR_LIMIT_32BIT = 0x0800000, 40 SHORT_INODE = 0x1000000, 41 WHOLE_SECONDS = 0x2000000, 42 STICKY_TIMEOUTS = 0x4000000, 43 ADDR_LIMIT_3GB = 0x8000000, 44 }; 45 46 /* 47 * Personality types. 48 * 49 * These go in the low byte. Avoid using the top bit, it will 50 * conflict with error returns. 51 */ 52 enum { 53 PER_LINUX = 0x0000, 54 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 55 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 56 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 57 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 58 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 59 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 60 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 61 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 62 PER_BSD = 0x0006, 63 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 64 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 65 PER_LINUX32 = 0x0008, 66 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 67 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 68 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 69 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 70 PER_RISCOS = 0x000c, 71 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 72 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 73 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 74 PER_HPUX = 0x0010, 75 PER_MASK = 0x00ff, 76 }; 77 78 /* 79 * Return the base personality without flags. 80 */ 81 #define personality(pers) (pers & PER_MASK) 82 83 int info_is_fdpic(struct image_info *info) 84 { 85 return info->personality == PER_LINUX_FDPIC; 86 } 87 88 /* this flag is uneffective under linux too, should be deleted */ 89 #ifndef MAP_DENYWRITE 90 #define MAP_DENYWRITE 0 91 #endif 92 93 /* should probably go in elf.h */ 94 #ifndef ELIBBAD 95 #define ELIBBAD 80 96 #endif 97 98 #ifdef TARGET_WORDS_BIGENDIAN 99 #define ELF_DATA ELFDATA2MSB 100 #else 101 #define ELF_DATA ELFDATA2LSB 102 #endif 103 104 #ifdef TARGET_ABI_MIPSN32 105 typedef abi_ullong target_elf_greg_t; 106 #define tswapreg(ptr) tswap64(ptr) 107 #else 108 typedef abi_ulong target_elf_greg_t; 109 #define tswapreg(ptr) tswapal(ptr) 110 #endif 111 112 #ifdef USE_UID16 113 typedef abi_ushort target_uid_t; 114 typedef abi_ushort target_gid_t; 115 #else 116 typedef abi_uint target_uid_t; 117 typedef abi_uint target_gid_t; 118 #endif 119 typedef abi_int target_pid_t; 120 121 #ifdef TARGET_I386 122 123 #define ELF_PLATFORM get_elf_platform() 124 125 static const char *get_elf_platform(void) 126 { 127 static char elf_platform[] = "i386"; 128 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 129 if (family > 6) 130 family = 6; 131 if (family >= 3) 132 elf_platform[1] = '0' + family; 133 return elf_platform; 134 } 135 136 #define ELF_HWCAP get_elf_hwcap() 137 138 static uint32_t get_elf_hwcap(void) 139 { 140 X86CPU *cpu = X86_CPU(thread_cpu); 141 142 return cpu->env.features[FEAT_1_EDX]; 143 } 144 145 #ifdef TARGET_X86_64 146 #define ELF_START_MMAP 0x2aaaaab000ULL 147 148 #define ELF_CLASS ELFCLASS64 149 #define ELF_ARCH EM_X86_64 150 151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 152 { 153 regs->rax = 0; 154 regs->rsp = infop->start_stack; 155 regs->rip = infop->entry; 156 } 157 158 #define ELF_NREG 27 159 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 160 161 /* 162 * Note that ELF_NREG should be 29 as there should be place for 163 * TRAPNO and ERR "registers" as well but linux doesn't dump 164 * those. 165 * 166 * See linux kernel: arch/x86/include/asm/elf.h 167 */ 168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 169 { 170 (*regs)[0] = env->regs[15]; 171 (*regs)[1] = env->regs[14]; 172 (*regs)[2] = env->regs[13]; 173 (*regs)[3] = env->regs[12]; 174 (*regs)[4] = env->regs[R_EBP]; 175 (*regs)[5] = env->regs[R_EBX]; 176 (*regs)[6] = env->regs[11]; 177 (*regs)[7] = env->regs[10]; 178 (*regs)[8] = env->regs[9]; 179 (*regs)[9] = env->regs[8]; 180 (*regs)[10] = env->regs[R_EAX]; 181 (*regs)[11] = env->regs[R_ECX]; 182 (*regs)[12] = env->regs[R_EDX]; 183 (*regs)[13] = env->regs[R_ESI]; 184 (*regs)[14] = env->regs[R_EDI]; 185 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 186 (*regs)[16] = env->eip; 187 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 188 (*regs)[18] = env->eflags; 189 (*regs)[19] = env->regs[R_ESP]; 190 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 191 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 192 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 193 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 194 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 195 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 196 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 197 } 198 199 #else 200 201 #define ELF_START_MMAP 0x80000000 202 203 /* 204 * This is used to ensure we don't load something for the wrong architecture. 205 */ 206 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 207 208 /* 209 * These are used to set parameters in the core dumps. 210 */ 211 #define ELF_CLASS ELFCLASS32 212 #define ELF_ARCH EM_386 213 214 static inline void init_thread(struct target_pt_regs *regs, 215 struct image_info *infop) 216 { 217 regs->esp = infop->start_stack; 218 regs->eip = infop->entry; 219 220 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 221 starts %edx contains a pointer to a function which might be 222 registered using `atexit'. This provides a mean for the 223 dynamic linker to call DT_FINI functions for shared libraries 224 that have been loaded before the code runs. 225 226 A value of 0 tells we have no such handler. */ 227 regs->edx = 0; 228 } 229 230 #define ELF_NREG 17 231 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 232 233 /* 234 * Note that ELF_NREG should be 19 as there should be place for 235 * TRAPNO and ERR "registers" as well but linux doesn't dump 236 * those. 237 * 238 * See linux kernel: arch/x86/include/asm/elf.h 239 */ 240 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 241 { 242 (*regs)[0] = env->regs[R_EBX]; 243 (*regs)[1] = env->regs[R_ECX]; 244 (*regs)[2] = env->regs[R_EDX]; 245 (*regs)[3] = env->regs[R_ESI]; 246 (*regs)[4] = env->regs[R_EDI]; 247 (*regs)[5] = env->regs[R_EBP]; 248 (*regs)[6] = env->regs[R_EAX]; 249 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 250 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 251 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 252 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 253 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 254 (*regs)[12] = env->eip; 255 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 256 (*regs)[14] = env->eflags; 257 (*regs)[15] = env->regs[R_ESP]; 258 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 259 } 260 #endif 261 262 #define USE_ELF_CORE_DUMP 263 #define ELF_EXEC_PAGESIZE 4096 264 265 #endif 266 267 #ifdef TARGET_ARM 268 269 #ifndef TARGET_AARCH64 270 /* 32 bit ARM definitions */ 271 272 #define ELF_START_MMAP 0x80000000 273 274 #define ELF_ARCH EM_ARM 275 #define ELF_CLASS ELFCLASS32 276 277 static inline void init_thread(struct target_pt_regs *regs, 278 struct image_info *infop) 279 { 280 abi_long stack = infop->start_stack; 281 memset(regs, 0, sizeof(*regs)); 282 283 regs->uregs[16] = ARM_CPU_MODE_USR; 284 if (infop->entry & 1) { 285 regs->uregs[16] |= CPSR_T; 286 } 287 regs->uregs[15] = infop->entry & 0xfffffffe; 288 regs->uregs[13] = infop->start_stack; 289 /* FIXME - what to for failure of get_user()? */ 290 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 291 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 292 /* XXX: it seems that r0 is zeroed after ! */ 293 regs->uregs[0] = 0; 294 /* For uClinux PIC binaries. */ 295 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 296 regs->uregs[10] = infop->start_data; 297 298 /* Support ARM FDPIC. */ 299 if (info_is_fdpic(infop)) { 300 /* As described in the ABI document, r7 points to the loadmap info 301 * prepared by the kernel. If an interpreter is needed, r8 points 302 * to the interpreter loadmap and r9 points to the interpreter 303 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 304 * r9 points to the main program PT_DYNAMIC info. 305 */ 306 regs->uregs[7] = infop->loadmap_addr; 307 if (infop->interpreter_loadmap_addr) { 308 /* Executable is dynamically loaded. */ 309 regs->uregs[8] = infop->interpreter_loadmap_addr; 310 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 311 } else { 312 regs->uregs[8] = 0; 313 regs->uregs[9] = infop->pt_dynamic_addr; 314 } 315 } 316 } 317 318 #define ELF_NREG 18 319 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 320 321 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 322 { 323 (*regs)[0] = tswapreg(env->regs[0]); 324 (*regs)[1] = tswapreg(env->regs[1]); 325 (*regs)[2] = tswapreg(env->regs[2]); 326 (*regs)[3] = tswapreg(env->regs[3]); 327 (*regs)[4] = tswapreg(env->regs[4]); 328 (*regs)[5] = tswapreg(env->regs[5]); 329 (*regs)[6] = tswapreg(env->regs[6]); 330 (*regs)[7] = tswapreg(env->regs[7]); 331 (*regs)[8] = tswapreg(env->regs[8]); 332 (*regs)[9] = tswapreg(env->regs[9]); 333 (*regs)[10] = tswapreg(env->regs[10]); 334 (*regs)[11] = tswapreg(env->regs[11]); 335 (*regs)[12] = tswapreg(env->regs[12]); 336 (*regs)[13] = tswapreg(env->regs[13]); 337 (*regs)[14] = tswapreg(env->regs[14]); 338 (*regs)[15] = tswapreg(env->regs[15]); 339 340 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 341 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 342 } 343 344 #define USE_ELF_CORE_DUMP 345 #define ELF_EXEC_PAGESIZE 4096 346 347 enum 348 { 349 ARM_HWCAP_ARM_SWP = 1 << 0, 350 ARM_HWCAP_ARM_HALF = 1 << 1, 351 ARM_HWCAP_ARM_THUMB = 1 << 2, 352 ARM_HWCAP_ARM_26BIT = 1 << 3, 353 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 354 ARM_HWCAP_ARM_FPA = 1 << 5, 355 ARM_HWCAP_ARM_VFP = 1 << 6, 356 ARM_HWCAP_ARM_EDSP = 1 << 7, 357 ARM_HWCAP_ARM_JAVA = 1 << 8, 358 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 359 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 360 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 361 ARM_HWCAP_ARM_NEON = 1 << 12, 362 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 363 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 364 ARM_HWCAP_ARM_TLS = 1 << 15, 365 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 366 ARM_HWCAP_ARM_IDIVA = 1 << 17, 367 ARM_HWCAP_ARM_IDIVT = 1 << 18, 368 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 369 ARM_HWCAP_ARM_LPAE = 1 << 20, 370 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 371 }; 372 373 enum { 374 ARM_HWCAP2_ARM_AES = 1 << 0, 375 ARM_HWCAP2_ARM_PMULL = 1 << 1, 376 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 377 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 378 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 379 }; 380 381 /* The commpage only exists for 32 bit kernels */ 382 383 /* Return 1 if the proposed guest space is suitable for the guest. 384 * Return 0 if the proposed guest space isn't suitable, but another 385 * address space should be tried. 386 * Return -1 if there is no way the proposed guest space can be 387 * valid regardless of the base. 388 * The guest code may leave a page mapped and populate it if the 389 * address is suitable. 390 */ 391 static int init_guest_commpage(unsigned long guest_base, 392 unsigned long guest_size) 393 { 394 unsigned long real_start, test_page_addr; 395 396 /* We need to check that we can force a fault on access to the 397 * commpage at 0xffff0fxx 398 */ 399 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 400 401 /* If the commpage lies within the already allocated guest space, 402 * then there is no way we can allocate it. 403 * 404 * You may be thinking that that this check is redundant because 405 * we already validated the guest size against MAX_RESERVED_VA; 406 * but if qemu_host_page_mask is unusually large, then 407 * test_page_addr may be lower. 408 */ 409 if (test_page_addr >= guest_base 410 && test_page_addr < (guest_base + guest_size)) { 411 return -1; 412 } 413 414 /* Note it needs to be writeable to let us initialise it */ 415 real_start = (unsigned long) 416 mmap((void *)test_page_addr, qemu_host_page_size, 417 PROT_READ | PROT_WRITE, 418 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 419 420 /* If we can't map it then try another address */ 421 if (real_start == -1ul) { 422 return 0; 423 } 424 425 if (real_start != test_page_addr) { 426 /* OS didn't put the page where we asked - unmap and reject */ 427 munmap((void *)real_start, qemu_host_page_size); 428 return 0; 429 } 430 431 /* Leave the page mapped 432 * Populate it (mmap should have left it all 0'd) 433 */ 434 435 /* Kernel helper versions */ 436 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 437 438 /* Now it's populated make it RO */ 439 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 440 perror("Protecting guest commpage"); 441 exit(-1); 442 } 443 444 return 1; /* All good */ 445 } 446 447 #define ELF_HWCAP get_elf_hwcap() 448 #define ELF_HWCAP2 get_elf_hwcap2() 449 450 static uint32_t get_elf_hwcap(void) 451 { 452 ARMCPU *cpu = ARM_CPU(thread_cpu); 453 uint32_t hwcaps = 0; 454 455 hwcaps |= ARM_HWCAP_ARM_SWP; 456 hwcaps |= ARM_HWCAP_ARM_HALF; 457 hwcaps |= ARM_HWCAP_ARM_THUMB; 458 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 459 460 /* probe for the extra features */ 461 #define GET_FEATURE(feat, hwcap) \ 462 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 463 464 #define GET_FEATURE_ID(feat, hwcap) \ 465 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 466 467 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 468 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 469 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 470 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 471 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 472 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 473 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 474 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 475 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 476 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA); 477 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT); 478 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 479 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 480 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 481 * to our VFP_FP16 feature bit. 482 */ 483 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 484 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 485 486 return hwcaps; 487 } 488 489 static uint32_t get_elf_hwcap2(void) 490 { 491 ARMCPU *cpu = ARM_CPU(thread_cpu); 492 uint32_t hwcaps = 0; 493 494 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 495 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 496 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 497 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 498 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 499 return hwcaps; 500 } 501 502 #undef GET_FEATURE 503 #undef GET_FEATURE_ID 504 505 #define ELF_PLATFORM get_elf_platform() 506 507 static const char *get_elf_platform(void) 508 { 509 CPUARMState *env = thread_cpu->env_ptr; 510 511 #ifdef TARGET_WORDS_BIGENDIAN 512 # define END "b" 513 #else 514 # define END "l" 515 #endif 516 517 if (arm_feature(env, ARM_FEATURE_V8)) { 518 return "v8" END; 519 } else if (arm_feature(env, ARM_FEATURE_V7)) { 520 if (arm_feature(env, ARM_FEATURE_M)) { 521 return "v7m" END; 522 } else { 523 return "v7" END; 524 } 525 } else if (arm_feature(env, ARM_FEATURE_V6)) { 526 return "v6" END; 527 } else if (arm_feature(env, ARM_FEATURE_V5)) { 528 return "v5" END; 529 } else { 530 return "v4" END; 531 } 532 533 #undef END 534 } 535 536 #else 537 /* 64 bit ARM definitions */ 538 #define ELF_START_MMAP 0x80000000 539 540 #define ELF_ARCH EM_AARCH64 541 #define ELF_CLASS ELFCLASS64 542 #ifdef TARGET_WORDS_BIGENDIAN 543 # define ELF_PLATFORM "aarch64_be" 544 #else 545 # define ELF_PLATFORM "aarch64" 546 #endif 547 548 static inline void init_thread(struct target_pt_regs *regs, 549 struct image_info *infop) 550 { 551 abi_long stack = infop->start_stack; 552 memset(regs, 0, sizeof(*regs)); 553 554 regs->pc = infop->entry & ~0x3ULL; 555 regs->sp = stack; 556 } 557 558 #define ELF_NREG 34 559 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 560 561 static void elf_core_copy_regs(target_elf_gregset_t *regs, 562 const CPUARMState *env) 563 { 564 int i; 565 566 for (i = 0; i < 32; i++) { 567 (*regs)[i] = tswapreg(env->xregs[i]); 568 } 569 (*regs)[32] = tswapreg(env->pc); 570 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 571 } 572 573 #define USE_ELF_CORE_DUMP 574 #define ELF_EXEC_PAGESIZE 4096 575 576 enum { 577 ARM_HWCAP_A64_FP = 1 << 0, 578 ARM_HWCAP_A64_ASIMD = 1 << 1, 579 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 580 ARM_HWCAP_A64_AES = 1 << 3, 581 ARM_HWCAP_A64_PMULL = 1 << 4, 582 ARM_HWCAP_A64_SHA1 = 1 << 5, 583 ARM_HWCAP_A64_SHA2 = 1 << 6, 584 ARM_HWCAP_A64_CRC32 = 1 << 7, 585 ARM_HWCAP_A64_ATOMICS = 1 << 8, 586 ARM_HWCAP_A64_FPHP = 1 << 9, 587 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 588 ARM_HWCAP_A64_CPUID = 1 << 11, 589 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 590 ARM_HWCAP_A64_JSCVT = 1 << 13, 591 ARM_HWCAP_A64_FCMA = 1 << 14, 592 ARM_HWCAP_A64_LRCPC = 1 << 15, 593 ARM_HWCAP_A64_DCPOP = 1 << 16, 594 ARM_HWCAP_A64_SHA3 = 1 << 17, 595 ARM_HWCAP_A64_SM3 = 1 << 18, 596 ARM_HWCAP_A64_SM4 = 1 << 19, 597 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 598 ARM_HWCAP_A64_SHA512 = 1 << 21, 599 ARM_HWCAP_A64_SVE = 1 << 22, 600 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 601 ARM_HWCAP_A64_DIT = 1 << 24, 602 ARM_HWCAP_A64_USCAT = 1 << 25, 603 ARM_HWCAP_A64_ILRCPC = 1 << 26, 604 ARM_HWCAP_A64_FLAGM = 1 << 27, 605 ARM_HWCAP_A64_SSBS = 1 << 28, 606 ARM_HWCAP_A64_SB = 1 << 29, 607 ARM_HWCAP_A64_PACA = 1 << 30, 608 ARM_HWCAP_A64_PACG = 1UL << 31, 609 }; 610 611 #define ELF_HWCAP get_elf_hwcap() 612 613 static uint32_t get_elf_hwcap(void) 614 { 615 ARMCPU *cpu = ARM_CPU(thread_cpu); 616 uint32_t hwcaps = 0; 617 618 hwcaps |= ARM_HWCAP_A64_FP; 619 hwcaps |= ARM_HWCAP_A64_ASIMD; 620 hwcaps |= ARM_HWCAP_A64_CPUID; 621 622 /* probe for the extra features */ 623 #define GET_FEATURE_ID(feat, hwcap) \ 624 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 625 626 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 627 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 628 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 629 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 630 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 631 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 632 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 633 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 634 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 635 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 636 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 637 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 638 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 639 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 640 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 641 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 642 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 643 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 644 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 645 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 646 647 #undef GET_FEATURE_ID 648 649 return hwcaps; 650 } 651 652 #endif /* not TARGET_AARCH64 */ 653 #endif /* TARGET_ARM */ 654 655 #ifdef TARGET_SPARC 656 #ifdef TARGET_SPARC64 657 658 #define ELF_START_MMAP 0x80000000 659 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 660 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 661 #ifndef TARGET_ABI32 662 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 663 #else 664 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 665 #endif 666 667 #define ELF_CLASS ELFCLASS64 668 #define ELF_ARCH EM_SPARCV9 669 670 #define STACK_BIAS 2047 671 672 static inline void init_thread(struct target_pt_regs *regs, 673 struct image_info *infop) 674 { 675 #ifndef TARGET_ABI32 676 regs->tstate = 0; 677 #endif 678 regs->pc = infop->entry; 679 regs->npc = regs->pc + 4; 680 regs->y = 0; 681 #ifdef TARGET_ABI32 682 regs->u_regs[14] = infop->start_stack - 16 * 4; 683 #else 684 if (personality(infop->personality) == PER_LINUX32) 685 regs->u_regs[14] = infop->start_stack - 16 * 4; 686 else 687 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 688 #endif 689 } 690 691 #else 692 #define ELF_START_MMAP 0x80000000 693 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 694 | HWCAP_SPARC_MULDIV) 695 696 #define ELF_CLASS ELFCLASS32 697 #define ELF_ARCH EM_SPARC 698 699 static inline void init_thread(struct target_pt_regs *regs, 700 struct image_info *infop) 701 { 702 regs->psr = 0; 703 regs->pc = infop->entry; 704 regs->npc = regs->pc + 4; 705 regs->y = 0; 706 regs->u_regs[14] = infop->start_stack - 16 * 4; 707 } 708 709 #endif 710 #endif 711 712 #ifdef TARGET_PPC 713 714 #define ELF_MACHINE PPC_ELF_MACHINE 715 #define ELF_START_MMAP 0x80000000 716 717 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 718 719 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 720 721 #define ELF_CLASS ELFCLASS64 722 723 #else 724 725 #define ELF_CLASS ELFCLASS32 726 727 #endif 728 729 #define ELF_ARCH EM_PPC 730 731 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 732 See arch/powerpc/include/asm/cputable.h. */ 733 enum { 734 QEMU_PPC_FEATURE_32 = 0x80000000, 735 QEMU_PPC_FEATURE_64 = 0x40000000, 736 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 737 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 738 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 739 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 740 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 741 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 742 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 743 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 744 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 745 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 746 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 747 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 748 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 749 QEMU_PPC_FEATURE_CELL = 0x00010000, 750 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 751 QEMU_PPC_FEATURE_SMT = 0x00004000, 752 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 753 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 754 QEMU_PPC_FEATURE_PA6T = 0x00000800, 755 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 756 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 757 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 758 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 759 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 760 761 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 762 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 763 764 /* Feature definitions in AT_HWCAP2. */ 765 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 766 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 767 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 768 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 769 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 770 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 771 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 772 }; 773 774 #define ELF_HWCAP get_elf_hwcap() 775 776 static uint32_t get_elf_hwcap(void) 777 { 778 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 779 uint32_t features = 0; 780 781 /* We don't have to be terribly complete here; the high points are 782 Altivec/FP/SPE support. Anything else is just a bonus. */ 783 #define GET_FEATURE(flag, feature) \ 784 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 785 #define GET_FEATURE2(flags, feature) \ 786 do { \ 787 if ((cpu->env.insns_flags2 & flags) == flags) { \ 788 features |= feature; \ 789 } \ 790 } while (0) 791 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 792 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 793 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 794 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 795 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 796 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 797 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 798 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 799 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 800 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 801 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 802 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 803 QEMU_PPC_FEATURE_ARCH_2_06); 804 #undef GET_FEATURE 805 #undef GET_FEATURE2 806 807 return features; 808 } 809 810 #define ELF_HWCAP2 get_elf_hwcap2() 811 812 static uint32_t get_elf_hwcap2(void) 813 { 814 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 815 uint32_t features = 0; 816 817 #define GET_FEATURE(flag, feature) \ 818 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 819 #define GET_FEATURE2(flag, feature) \ 820 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 821 822 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 823 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 824 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 825 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 826 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00); 827 828 #undef GET_FEATURE 829 #undef GET_FEATURE2 830 831 return features; 832 } 833 834 /* 835 * The requirements here are: 836 * - keep the final alignment of sp (sp & 0xf) 837 * - make sure the 32-bit value at the first 16 byte aligned position of 838 * AUXV is greater than 16 for glibc compatibility. 839 * AT_IGNOREPPC is used for that. 840 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 841 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 842 */ 843 #define DLINFO_ARCH_ITEMS 5 844 #define ARCH_DLINFO \ 845 do { \ 846 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 847 /* \ 848 * Handle glibc compatibility: these magic entries must \ 849 * be at the lowest addresses in the final auxv. \ 850 */ \ 851 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 852 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 853 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 854 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 855 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 856 } while (0) 857 858 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 859 { 860 _regs->gpr[1] = infop->start_stack; 861 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 862 if (get_ppc64_abi(infop) < 2) { 863 uint64_t val; 864 get_user_u64(val, infop->entry + 8); 865 _regs->gpr[2] = val + infop->load_bias; 866 get_user_u64(val, infop->entry); 867 infop->entry = val + infop->load_bias; 868 } else { 869 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 870 } 871 #endif 872 _regs->nip = infop->entry; 873 } 874 875 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 876 #define ELF_NREG 48 877 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 878 879 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 880 { 881 int i; 882 target_ulong ccr = 0; 883 884 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 885 (*regs)[i] = tswapreg(env->gpr[i]); 886 } 887 888 (*regs)[32] = tswapreg(env->nip); 889 (*regs)[33] = tswapreg(env->msr); 890 (*regs)[35] = tswapreg(env->ctr); 891 (*regs)[36] = tswapreg(env->lr); 892 (*regs)[37] = tswapreg(env->xer); 893 894 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 895 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 896 } 897 (*regs)[38] = tswapreg(ccr); 898 } 899 900 #define USE_ELF_CORE_DUMP 901 #define ELF_EXEC_PAGESIZE 4096 902 903 #endif 904 905 #ifdef TARGET_MIPS 906 907 #define ELF_START_MMAP 0x80000000 908 909 #ifdef TARGET_MIPS64 910 #define ELF_CLASS ELFCLASS64 911 #else 912 #define ELF_CLASS ELFCLASS32 913 #endif 914 #define ELF_ARCH EM_MIPS 915 916 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 917 918 static inline void init_thread(struct target_pt_regs *regs, 919 struct image_info *infop) 920 { 921 regs->cp0_status = 2 << CP0St_KSU; 922 regs->cp0_epc = infop->entry; 923 regs->regs[29] = infop->start_stack; 924 } 925 926 /* See linux kernel: arch/mips/include/asm/elf.h. */ 927 #define ELF_NREG 45 928 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 929 930 /* See linux kernel: arch/mips/include/asm/reg.h. */ 931 enum { 932 #ifdef TARGET_MIPS64 933 TARGET_EF_R0 = 0, 934 #else 935 TARGET_EF_R0 = 6, 936 #endif 937 TARGET_EF_R26 = TARGET_EF_R0 + 26, 938 TARGET_EF_R27 = TARGET_EF_R0 + 27, 939 TARGET_EF_LO = TARGET_EF_R0 + 32, 940 TARGET_EF_HI = TARGET_EF_R0 + 33, 941 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 942 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 943 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 944 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 945 }; 946 947 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 948 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 949 { 950 int i; 951 952 for (i = 0; i < TARGET_EF_R0; i++) { 953 (*regs)[i] = 0; 954 } 955 (*regs)[TARGET_EF_R0] = 0; 956 957 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 958 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 959 } 960 961 (*regs)[TARGET_EF_R26] = 0; 962 (*regs)[TARGET_EF_R27] = 0; 963 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 964 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 965 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 966 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 967 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 968 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 969 } 970 971 #define USE_ELF_CORE_DUMP 972 #define ELF_EXEC_PAGESIZE 4096 973 974 /* See arch/mips/include/uapi/asm/hwcap.h. */ 975 enum { 976 HWCAP_MIPS_R6 = (1 << 0), 977 HWCAP_MIPS_MSA = (1 << 1), 978 }; 979 980 #define ELF_HWCAP get_elf_hwcap() 981 982 static uint32_t get_elf_hwcap(void) 983 { 984 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 985 uint32_t hwcaps = 0; 986 987 #define GET_FEATURE(flag, hwcap) \ 988 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 989 990 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 991 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 992 993 #undef GET_FEATURE 994 995 return hwcaps; 996 } 997 998 #endif /* TARGET_MIPS */ 999 1000 #ifdef TARGET_MICROBLAZE 1001 1002 #define ELF_START_MMAP 0x80000000 1003 1004 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1005 1006 #define ELF_CLASS ELFCLASS32 1007 #define ELF_ARCH EM_MICROBLAZE 1008 1009 static inline void init_thread(struct target_pt_regs *regs, 1010 struct image_info *infop) 1011 { 1012 regs->pc = infop->entry; 1013 regs->r1 = infop->start_stack; 1014 1015 } 1016 1017 #define ELF_EXEC_PAGESIZE 4096 1018 1019 #define USE_ELF_CORE_DUMP 1020 #define ELF_NREG 38 1021 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1022 1023 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1024 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1025 { 1026 int i, pos = 0; 1027 1028 for (i = 0; i < 32; i++) { 1029 (*regs)[pos++] = tswapreg(env->regs[i]); 1030 } 1031 1032 for (i = 0; i < 6; i++) { 1033 (*regs)[pos++] = tswapreg(env->sregs[i]); 1034 } 1035 } 1036 1037 #endif /* TARGET_MICROBLAZE */ 1038 1039 #ifdef TARGET_NIOS2 1040 1041 #define ELF_START_MMAP 0x80000000 1042 1043 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1044 1045 #define ELF_CLASS ELFCLASS32 1046 #define ELF_ARCH EM_ALTERA_NIOS2 1047 1048 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1049 { 1050 regs->ea = infop->entry; 1051 regs->sp = infop->start_stack; 1052 regs->estatus = 0x3; 1053 } 1054 1055 #define ELF_EXEC_PAGESIZE 4096 1056 1057 #define USE_ELF_CORE_DUMP 1058 #define ELF_NREG 49 1059 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1060 1061 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1062 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1063 const CPUNios2State *env) 1064 { 1065 int i; 1066 1067 (*regs)[0] = -1; 1068 for (i = 1; i < 8; i++) /* r0-r7 */ 1069 (*regs)[i] = tswapreg(env->regs[i + 7]); 1070 1071 for (i = 8; i < 16; i++) /* r8-r15 */ 1072 (*regs)[i] = tswapreg(env->regs[i - 8]); 1073 1074 for (i = 16; i < 24; i++) /* r16-r23 */ 1075 (*regs)[i] = tswapreg(env->regs[i + 7]); 1076 (*regs)[24] = -1; /* R_ET */ 1077 (*regs)[25] = -1; /* R_BT */ 1078 (*regs)[26] = tswapreg(env->regs[R_GP]); 1079 (*regs)[27] = tswapreg(env->regs[R_SP]); 1080 (*regs)[28] = tswapreg(env->regs[R_FP]); 1081 (*regs)[29] = tswapreg(env->regs[R_EA]); 1082 (*regs)[30] = -1; /* R_SSTATUS */ 1083 (*regs)[31] = tswapreg(env->regs[R_RA]); 1084 1085 (*regs)[32] = tswapreg(env->regs[R_PC]); 1086 1087 (*regs)[33] = -1; /* R_STATUS */ 1088 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1089 1090 for (i = 35; i < 49; i++) /* ... */ 1091 (*regs)[i] = -1; 1092 } 1093 1094 #endif /* TARGET_NIOS2 */ 1095 1096 #ifdef TARGET_OPENRISC 1097 1098 #define ELF_START_MMAP 0x08000000 1099 1100 #define ELF_ARCH EM_OPENRISC 1101 #define ELF_CLASS ELFCLASS32 1102 #define ELF_DATA ELFDATA2MSB 1103 1104 static inline void init_thread(struct target_pt_regs *regs, 1105 struct image_info *infop) 1106 { 1107 regs->pc = infop->entry; 1108 regs->gpr[1] = infop->start_stack; 1109 } 1110 1111 #define USE_ELF_CORE_DUMP 1112 #define ELF_EXEC_PAGESIZE 8192 1113 1114 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1115 #define ELF_NREG 34 /* gprs and pc, sr */ 1116 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1117 1118 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1119 const CPUOpenRISCState *env) 1120 { 1121 int i; 1122 1123 for (i = 0; i < 32; i++) { 1124 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1125 } 1126 (*regs)[32] = tswapreg(env->pc); 1127 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1128 } 1129 #define ELF_HWCAP 0 1130 #define ELF_PLATFORM NULL 1131 1132 #endif /* TARGET_OPENRISC */ 1133 1134 #ifdef TARGET_SH4 1135 1136 #define ELF_START_MMAP 0x80000000 1137 1138 #define ELF_CLASS ELFCLASS32 1139 #define ELF_ARCH EM_SH 1140 1141 static inline void init_thread(struct target_pt_regs *regs, 1142 struct image_info *infop) 1143 { 1144 /* Check other registers XXXXX */ 1145 regs->pc = infop->entry; 1146 regs->regs[15] = infop->start_stack; 1147 } 1148 1149 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1150 #define ELF_NREG 23 1151 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1152 1153 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1154 enum { 1155 TARGET_REG_PC = 16, 1156 TARGET_REG_PR = 17, 1157 TARGET_REG_SR = 18, 1158 TARGET_REG_GBR = 19, 1159 TARGET_REG_MACH = 20, 1160 TARGET_REG_MACL = 21, 1161 TARGET_REG_SYSCALL = 22 1162 }; 1163 1164 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1165 const CPUSH4State *env) 1166 { 1167 int i; 1168 1169 for (i = 0; i < 16; i++) { 1170 (*regs)[i] = tswapreg(env->gregs[i]); 1171 } 1172 1173 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1174 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1175 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1176 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1177 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1178 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1179 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1180 } 1181 1182 #define USE_ELF_CORE_DUMP 1183 #define ELF_EXEC_PAGESIZE 4096 1184 1185 enum { 1186 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1187 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1188 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1189 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1190 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1191 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1192 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1193 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1194 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1195 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1196 }; 1197 1198 #define ELF_HWCAP get_elf_hwcap() 1199 1200 static uint32_t get_elf_hwcap(void) 1201 { 1202 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1203 uint32_t hwcap = 0; 1204 1205 hwcap |= SH_CPU_HAS_FPU; 1206 1207 if (cpu->env.features & SH_FEATURE_SH4A) { 1208 hwcap |= SH_CPU_HAS_LLSC; 1209 } 1210 1211 return hwcap; 1212 } 1213 1214 #endif 1215 1216 #ifdef TARGET_CRIS 1217 1218 #define ELF_START_MMAP 0x80000000 1219 1220 #define ELF_CLASS ELFCLASS32 1221 #define ELF_ARCH EM_CRIS 1222 1223 static inline void init_thread(struct target_pt_regs *regs, 1224 struct image_info *infop) 1225 { 1226 regs->erp = infop->entry; 1227 } 1228 1229 #define ELF_EXEC_PAGESIZE 8192 1230 1231 #endif 1232 1233 #ifdef TARGET_M68K 1234 1235 #define ELF_START_MMAP 0x80000000 1236 1237 #define ELF_CLASS ELFCLASS32 1238 #define ELF_ARCH EM_68K 1239 1240 /* ??? Does this need to do anything? 1241 #define ELF_PLAT_INIT(_r) */ 1242 1243 static inline void init_thread(struct target_pt_regs *regs, 1244 struct image_info *infop) 1245 { 1246 regs->usp = infop->start_stack; 1247 regs->sr = 0; 1248 regs->pc = infop->entry; 1249 } 1250 1251 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1252 #define ELF_NREG 20 1253 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1254 1255 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1256 { 1257 (*regs)[0] = tswapreg(env->dregs[1]); 1258 (*regs)[1] = tswapreg(env->dregs[2]); 1259 (*regs)[2] = tswapreg(env->dregs[3]); 1260 (*regs)[3] = tswapreg(env->dregs[4]); 1261 (*regs)[4] = tswapreg(env->dregs[5]); 1262 (*regs)[5] = tswapreg(env->dregs[6]); 1263 (*regs)[6] = tswapreg(env->dregs[7]); 1264 (*regs)[7] = tswapreg(env->aregs[0]); 1265 (*regs)[8] = tswapreg(env->aregs[1]); 1266 (*regs)[9] = tswapreg(env->aregs[2]); 1267 (*regs)[10] = tswapreg(env->aregs[3]); 1268 (*regs)[11] = tswapreg(env->aregs[4]); 1269 (*regs)[12] = tswapreg(env->aregs[5]); 1270 (*regs)[13] = tswapreg(env->aregs[6]); 1271 (*regs)[14] = tswapreg(env->dregs[0]); 1272 (*regs)[15] = tswapreg(env->aregs[7]); 1273 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1274 (*regs)[17] = tswapreg(env->sr); 1275 (*regs)[18] = tswapreg(env->pc); 1276 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1277 } 1278 1279 #define USE_ELF_CORE_DUMP 1280 #define ELF_EXEC_PAGESIZE 8192 1281 1282 #endif 1283 1284 #ifdef TARGET_ALPHA 1285 1286 #define ELF_START_MMAP (0x30000000000ULL) 1287 1288 #define ELF_CLASS ELFCLASS64 1289 #define ELF_ARCH EM_ALPHA 1290 1291 static inline void init_thread(struct target_pt_regs *regs, 1292 struct image_info *infop) 1293 { 1294 regs->pc = infop->entry; 1295 regs->ps = 8; 1296 regs->usp = infop->start_stack; 1297 } 1298 1299 #define ELF_EXEC_PAGESIZE 8192 1300 1301 #endif /* TARGET_ALPHA */ 1302 1303 #ifdef TARGET_S390X 1304 1305 #define ELF_START_MMAP (0x20000000000ULL) 1306 1307 #define ELF_CLASS ELFCLASS64 1308 #define ELF_DATA ELFDATA2MSB 1309 #define ELF_ARCH EM_S390 1310 1311 #include "elf.h" 1312 1313 #define ELF_HWCAP get_elf_hwcap() 1314 1315 #define GET_FEATURE(_feat, _hwcap) \ 1316 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1317 1318 static uint32_t get_elf_hwcap(void) 1319 { 1320 /* 1321 * Let's assume we always have esan3 and zarch. 1322 * 31-bit processes can use 64-bit registers (high gprs). 1323 */ 1324 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1325 1326 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1327 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1328 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1329 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1330 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1331 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1332 hwcap |= HWCAP_S390_ETF3EH; 1333 } 1334 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1335 1336 return hwcap; 1337 } 1338 1339 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1340 { 1341 regs->psw.addr = infop->entry; 1342 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1343 regs->gprs[15] = infop->start_stack; 1344 } 1345 1346 #endif /* TARGET_S390X */ 1347 1348 #ifdef TARGET_TILEGX 1349 1350 /* 42 bits real used address, a half for user mode */ 1351 #define ELF_START_MMAP (0x00000020000000000ULL) 1352 1353 #define elf_check_arch(x) ((x) == EM_TILEGX) 1354 1355 #define ELF_CLASS ELFCLASS64 1356 #define ELF_DATA ELFDATA2LSB 1357 #define ELF_ARCH EM_TILEGX 1358 1359 static inline void init_thread(struct target_pt_regs *regs, 1360 struct image_info *infop) 1361 { 1362 regs->pc = infop->entry; 1363 regs->sp = infop->start_stack; 1364 1365 } 1366 1367 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1368 1369 #endif /* TARGET_TILEGX */ 1370 1371 #ifdef TARGET_RISCV 1372 1373 #define ELF_START_MMAP 0x80000000 1374 #define ELF_ARCH EM_RISCV 1375 1376 #ifdef TARGET_RISCV32 1377 #define ELF_CLASS ELFCLASS32 1378 #else 1379 #define ELF_CLASS ELFCLASS64 1380 #endif 1381 1382 static inline void init_thread(struct target_pt_regs *regs, 1383 struct image_info *infop) 1384 { 1385 regs->sepc = infop->entry; 1386 regs->sp = infop->start_stack; 1387 } 1388 1389 #define ELF_EXEC_PAGESIZE 4096 1390 1391 #endif /* TARGET_RISCV */ 1392 1393 #ifdef TARGET_HPPA 1394 1395 #define ELF_START_MMAP 0x80000000 1396 #define ELF_CLASS ELFCLASS32 1397 #define ELF_ARCH EM_PARISC 1398 #define ELF_PLATFORM "PARISC" 1399 #define STACK_GROWS_DOWN 0 1400 #define STACK_ALIGNMENT 64 1401 1402 static inline void init_thread(struct target_pt_regs *regs, 1403 struct image_info *infop) 1404 { 1405 regs->iaoq[0] = infop->entry; 1406 regs->iaoq[1] = infop->entry + 4; 1407 regs->gr[23] = 0; 1408 regs->gr[24] = infop->arg_start; 1409 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1410 /* The top-of-stack contains a linkage buffer. */ 1411 regs->gr[30] = infop->start_stack + 64; 1412 regs->gr[31] = infop->entry; 1413 } 1414 1415 #endif /* TARGET_HPPA */ 1416 1417 #ifdef TARGET_XTENSA 1418 1419 #define ELF_START_MMAP 0x20000000 1420 1421 #define ELF_CLASS ELFCLASS32 1422 #define ELF_ARCH EM_XTENSA 1423 1424 static inline void init_thread(struct target_pt_regs *regs, 1425 struct image_info *infop) 1426 { 1427 regs->windowbase = 0; 1428 regs->windowstart = 1; 1429 regs->areg[1] = infop->start_stack; 1430 regs->pc = infop->entry; 1431 } 1432 1433 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1434 #define ELF_NREG 128 1435 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1436 1437 enum { 1438 TARGET_REG_PC, 1439 TARGET_REG_PS, 1440 TARGET_REG_LBEG, 1441 TARGET_REG_LEND, 1442 TARGET_REG_LCOUNT, 1443 TARGET_REG_SAR, 1444 TARGET_REG_WINDOWSTART, 1445 TARGET_REG_WINDOWBASE, 1446 TARGET_REG_THREADPTR, 1447 TARGET_REG_AR0 = 64, 1448 }; 1449 1450 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1451 const CPUXtensaState *env) 1452 { 1453 unsigned i; 1454 1455 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1456 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1457 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1458 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1459 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1460 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1461 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1462 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1463 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1464 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1465 for (i = 0; i < env->config->nareg; ++i) { 1466 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1467 } 1468 } 1469 1470 #define USE_ELF_CORE_DUMP 1471 #define ELF_EXEC_PAGESIZE 4096 1472 1473 #endif /* TARGET_XTENSA */ 1474 1475 #ifndef ELF_PLATFORM 1476 #define ELF_PLATFORM (NULL) 1477 #endif 1478 1479 #ifndef ELF_MACHINE 1480 #define ELF_MACHINE ELF_ARCH 1481 #endif 1482 1483 #ifndef elf_check_arch 1484 #define elf_check_arch(x) ((x) == ELF_ARCH) 1485 #endif 1486 1487 #ifndef ELF_HWCAP 1488 #define ELF_HWCAP 0 1489 #endif 1490 1491 #ifndef STACK_GROWS_DOWN 1492 #define STACK_GROWS_DOWN 1 1493 #endif 1494 1495 #ifndef STACK_ALIGNMENT 1496 #define STACK_ALIGNMENT 16 1497 #endif 1498 1499 #ifdef TARGET_ABI32 1500 #undef ELF_CLASS 1501 #define ELF_CLASS ELFCLASS32 1502 #undef bswaptls 1503 #define bswaptls(ptr) bswap32s(ptr) 1504 #endif 1505 1506 #include "elf.h" 1507 1508 struct exec 1509 { 1510 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1511 unsigned int a_text; /* length of text, in bytes */ 1512 unsigned int a_data; /* length of data, in bytes */ 1513 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1514 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1515 unsigned int a_entry; /* start address */ 1516 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1517 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1518 }; 1519 1520 1521 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1522 #define OMAGIC 0407 1523 #define NMAGIC 0410 1524 #define ZMAGIC 0413 1525 #define QMAGIC 0314 1526 1527 /* Necessary parameters */ 1528 #define TARGET_ELF_EXEC_PAGESIZE \ 1529 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1530 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1531 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1532 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1533 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1534 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1535 1536 #define DLINFO_ITEMS 15 1537 1538 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1539 { 1540 memcpy(to, from, n); 1541 } 1542 1543 #ifdef BSWAP_NEEDED 1544 static void bswap_ehdr(struct elfhdr *ehdr) 1545 { 1546 bswap16s(&ehdr->e_type); /* Object file type */ 1547 bswap16s(&ehdr->e_machine); /* Architecture */ 1548 bswap32s(&ehdr->e_version); /* Object file version */ 1549 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1550 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1551 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1552 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1553 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1554 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1555 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1556 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1557 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1558 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1559 } 1560 1561 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1562 { 1563 int i; 1564 for (i = 0; i < phnum; ++i, ++phdr) { 1565 bswap32s(&phdr->p_type); /* Segment type */ 1566 bswap32s(&phdr->p_flags); /* Segment flags */ 1567 bswaptls(&phdr->p_offset); /* Segment file offset */ 1568 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1569 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1570 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1571 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1572 bswaptls(&phdr->p_align); /* Segment alignment */ 1573 } 1574 } 1575 1576 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1577 { 1578 int i; 1579 for (i = 0; i < shnum; ++i, ++shdr) { 1580 bswap32s(&shdr->sh_name); 1581 bswap32s(&shdr->sh_type); 1582 bswaptls(&shdr->sh_flags); 1583 bswaptls(&shdr->sh_addr); 1584 bswaptls(&shdr->sh_offset); 1585 bswaptls(&shdr->sh_size); 1586 bswap32s(&shdr->sh_link); 1587 bswap32s(&shdr->sh_info); 1588 bswaptls(&shdr->sh_addralign); 1589 bswaptls(&shdr->sh_entsize); 1590 } 1591 } 1592 1593 static void bswap_sym(struct elf_sym *sym) 1594 { 1595 bswap32s(&sym->st_name); 1596 bswaptls(&sym->st_value); 1597 bswaptls(&sym->st_size); 1598 bswap16s(&sym->st_shndx); 1599 } 1600 1601 #ifdef TARGET_MIPS 1602 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1603 { 1604 bswap16s(&abiflags->version); 1605 bswap32s(&abiflags->ases); 1606 bswap32s(&abiflags->isa_ext); 1607 bswap32s(&abiflags->flags1); 1608 bswap32s(&abiflags->flags2); 1609 } 1610 #endif 1611 #else 1612 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1613 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1614 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1615 static inline void bswap_sym(struct elf_sym *sym) { } 1616 #ifdef TARGET_MIPS 1617 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1618 #endif 1619 #endif 1620 1621 #ifdef USE_ELF_CORE_DUMP 1622 static int elf_core_dump(int, const CPUArchState *); 1623 #endif /* USE_ELF_CORE_DUMP */ 1624 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1625 1626 /* Verify the portions of EHDR within E_IDENT for the target. 1627 This can be performed before bswapping the entire header. */ 1628 static bool elf_check_ident(struct elfhdr *ehdr) 1629 { 1630 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1631 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1632 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1633 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1634 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1635 && ehdr->e_ident[EI_DATA] == ELF_DATA 1636 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1637 } 1638 1639 /* Verify the portions of EHDR outside of E_IDENT for the target. 1640 This has to wait until after bswapping the header. */ 1641 static bool elf_check_ehdr(struct elfhdr *ehdr) 1642 { 1643 return (elf_check_arch(ehdr->e_machine) 1644 && ehdr->e_ehsize == sizeof(struct elfhdr) 1645 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1646 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1647 } 1648 1649 /* 1650 * 'copy_elf_strings()' copies argument/envelope strings from user 1651 * memory to free pages in kernel mem. These are in a format ready 1652 * to be put directly into the top of new user memory. 1653 * 1654 */ 1655 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1656 abi_ulong p, abi_ulong stack_limit) 1657 { 1658 char *tmp; 1659 int len, i; 1660 abi_ulong top = p; 1661 1662 if (!p) { 1663 return 0; /* bullet-proofing */ 1664 } 1665 1666 if (STACK_GROWS_DOWN) { 1667 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1668 for (i = argc - 1; i >= 0; --i) { 1669 tmp = argv[i]; 1670 if (!tmp) { 1671 fprintf(stderr, "VFS: argc is wrong"); 1672 exit(-1); 1673 } 1674 len = strlen(tmp) + 1; 1675 tmp += len; 1676 1677 if (len > (p - stack_limit)) { 1678 return 0; 1679 } 1680 while (len) { 1681 int bytes_to_copy = (len > offset) ? offset : len; 1682 tmp -= bytes_to_copy; 1683 p -= bytes_to_copy; 1684 offset -= bytes_to_copy; 1685 len -= bytes_to_copy; 1686 1687 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1688 1689 if (offset == 0) { 1690 memcpy_to_target(p, scratch, top - p); 1691 top = p; 1692 offset = TARGET_PAGE_SIZE; 1693 } 1694 } 1695 } 1696 if (p != top) { 1697 memcpy_to_target(p, scratch + offset, top - p); 1698 } 1699 } else { 1700 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1701 for (i = 0; i < argc; ++i) { 1702 tmp = argv[i]; 1703 if (!tmp) { 1704 fprintf(stderr, "VFS: argc is wrong"); 1705 exit(-1); 1706 } 1707 len = strlen(tmp) + 1; 1708 if (len > (stack_limit - p)) { 1709 return 0; 1710 } 1711 while (len) { 1712 int bytes_to_copy = (len > remaining) ? remaining : len; 1713 1714 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1715 1716 tmp += bytes_to_copy; 1717 remaining -= bytes_to_copy; 1718 p += bytes_to_copy; 1719 len -= bytes_to_copy; 1720 1721 if (remaining == 0) { 1722 memcpy_to_target(top, scratch, p - top); 1723 top = p; 1724 remaining = TARGET_PAGE_SIZE; 1725 } 1726 } 1727 } 1728 if (p != top) { 1729 memcpy_to_target(top, scratch, p - top); 1730 } 1731 } 1732 1733 return p; 1734 } 1735 1736 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1737 * argument/environment space. Newer kernels (>2.6.33) allow more, 1738 * dependent on stack size, but guarantee at least 32 pages for 1739 * backwards compatibility. 1740 */ 1741 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1742 1743 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1744 struct image_info *info) 1745 { 1746 abi_ulong size, error, guard; 1747 1748 size = guest_stack_size; 1749 if (size < STACK_LOWER_LIMIT) { 1750 size = STACK_LOWER_LIMIT; 1751 } 1752 guard = TARGET_PAGE_SIZE; 1753 if (guard < qemu_real_host_page_size) { 1754 guard = qemu_real_host_page_size; 1755 } 1756 1757 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1758 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1759 if (error == -1) { 1760 perror("mmap stack"); 1761 exit(-1); 1762 } 1763 1764 /* We reserve one extra page at the top of the stack as guard. */ 1765 if (STACK_GROWS_DOWN) { 1766 target_mprotect(error, guard, PROT_NONE); 1767 info->stack_limit = error + guard; 1768 return info->stack_limit + size - sizeof(void *); 1769 } else { 1770 target_mprotect(error + size, guard, PROT_NONE); 1771 info->stack_limit = error + size; 1772 return error; 1773 } 1774 } 1775 1776 /* Map and zero the bss. We need to explicitly zero any fractional pages 1777 after the data section (i.e. bss). */ 1778 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1779 { 1780 uintptr_t host_start, host_map_start, host_end; 1781 1782 last_bss = TARGET_PAGE_ALIGN(last_bss); 1783 1784 /* ??? There is confusion between qemu_real_host_page_size and 1785 qemu_host_page_size here and elsewhere in target_mmap, which 1786 may lead to the end of the data section mapping from the file 1787 not being mapped. At least there was an explicit test and 1788 comment for that here, suggesting that "the file size must 1789 be known". The comment probably pre-dates the introduction 1790 of the fstat system call in target_mmap which does in fact 1791 find out the size. What isn't clear is if the workaround 1792 here is still actually needed. For now, continue with it, 1793 but merge it with the "normal" mmap that would allocate the bss. */ 1794 1795 host_start = (uintptr_t) g2h(elf_bss); 1796 host_end = (uintptr_t) g2h(last_bss); 1797 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1798 1799 if (host_map_start < host_end) { 1800 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1801 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1802 if (p == MAP_FAILED) { 1803 perror("cannot mmap brk"); 1804 exit(-1); 1805 } 1806 } 1807 1808 /* Ensure that the bss page(s) are valid */ 1809 if ((page_get_flags(last_bss-1) & prot) != prot) { 1810 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1811 } 1812 1813 if (host_start < host_map_start) { 1814 memset((void *)host_start, 0, host_map_start - host_start); 1815 } 1816 } 1817 1818 #ifdef TARGET_ARM 1819 static int elf_is_fdpic(struct elfhdr *exec) 1820 { 1821 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1822 } 1823 #else 1824 /* Default implementation, always false. */ 1825 static int elf_is_fdpic(struct elfhdr *exec) 1826 { 1827 return 0; 1828 } 1829 #endif 1830 1831 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1832 { 1833 uint16_t n; 1834 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1835 1836 /* elf32_fdpic_loadseg */ 1837 n = info->nsegs; 1838 while (n--) { 1839 sp -= 12; 1840 put_user_u32(loadsegs[n].addr, sp+0); 1841 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1842 put_user_u32(loadsegs[n].p_memsz, sp+8); 1843 } 1844 1845 /* elf32_fdpic_loadmap */ 1846 sp -= 4; 1847 put_user_u16(0, sp+0); /* version */ 1848 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1849 1850 info->personality = PER_LINUX_FDPIC; 1851 info->loadmap_addr = sp; 1852 1853 return sp; 1854 } 1855 1856 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1857 struct elfhdr *exec, 1858 struct image_info *info, 1859 struct image_info *interp_info) 1860 { 1861 abi_ulong sp; 1862 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1863 int size; 1864 int i; 1865 abi_ulong u_rand_bytes; 1866 uint8_t k_rand_bytes[16]; 1867 abi_ulong u_platform; 1868 const char *k_platform; 1869 const int n = sizeof(elf_addr_t); 1870 1871 sp = p; 1872 1873 /* Needs to be before we load the env/argc/... */ 1874 if (elf_is_fdpic(exec)) { 1875 /* Need 4 byte alignment for these structs */ 1876 sp &= ~3; 1877 sp = loader_build_fdpic_loadmap(info, sp); 1878 info->other_info = interp_info; 1879 if (interp_info) { 1880 interp_info->other_info = info; 1881 sp = loader_build_fdpic_loadmap(interp_info, sp); 1882 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1883 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1884 } else { 1885 info->interpreter_loadmap_addr = 0; 1886 info->interpreter_pt_dynamic_addr = 0; 1887 } 1888 } 1889 1890 u_platform = 0; 1891 k_platform = ELF_PLATFORM; 1892 if (k_platform) { 1893 size_t len = strlen(k_platform) + 1; 1894 if (STACK_GROWS_DOWN) { 1895 sp -= (len + n - 1) & ~(n - 1); 1896 u_platform = sp; 1897 /* FIXME - check return value of memcpy_to_target() for failure */ 1898 memcpy_to_target(sp, k_platform, len); 1899 } else { 1900 memcpy_to_target(sp, k_platform, len); 1901 u_platform = sp; 1902 sp += len + 1; 1903 } 1904 } 1905 1906 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1907 * the argv and envp pointers. 1908 */ 1909 if (STACK_GROWS_DOWN) { 1910 sp = QEMU_ALIGN_DOWN(sp, 16); 1911 } else { 1912 sp = QEMU_ALIGN_UP(sp, 16); 1913 } 1914 1915 /* 1916 * Generate 16 random bytes for userspace PRNG seeding. 1917 */ 1918 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 1919 if (STACK_GROWS_DOWN) { 1920 sp -= 16; 1921 u_rand_bytes = sp; 1922 /* FIXME - check return value of memcpy_to_target() for failure */ 1923 memcpy_to_target(sp, k_rand_bytes, 16); 1924 } else { 1925 memcpy_to_target(sp, k_rand_bytes, 16); 1926 u_rand_bytes = sp; 1927 sp += 16; 1928 } 1929 1930 size = (DLINFO_ITEMS + 1) * 2; 1931 if (k_platform) 1932 size += 2; 1933 #ifdef DLINFO_ARCH_ITEMS 1934 size += DLINFO_ARCH_ITEMS * 2; 1935 #endif 1936 #ifdef ELF_HWCAP2 1937 size += 2; 1938 #endif 1939 info->auxv_len = size * n; 1940 1941 size += envc + argc + 2; 1942 size += 1; /* argc itself */ 1943 size *= n; 1944 1945 /* Allocate space and finalize stack alignment for entry now. */ 1946 if (STACK_GROWS_DOWN) { 1947 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1948 sp = u_argc; 1949 } else { 1950 u_argc = sp; 1951 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1952 } 1953 1954 u_argv = u_argc + n; 1955 u_envp = u_argv + (argc + 1) * n; 1956 u_auxv = u_envp + (envc + 1) * n; 1957 info->saved_auxv = u_auxv; 1958 info->arg_start = u_argv; 1959 info->arg_end = u_argv + argc * n; 1960 1961 /* This is correct because Linux defines 1962 * elf_addr_t as Elf32_Off / Elf64_Off 1963 */ 1964 #define NEW_AUX_ENT(id, val) do { \ 1965 put_user_ual(id, u_auxv); u_auxv += n; \ 1966 put_user_ual(val, u_auxv); u_auxv += n; \ 1967 } while(0) 1968 1969 #ifdef ARCH_DLINFO 1970 /* 1971 * ARCH_DLINFO must come first so platform specific code can enforce 1972 * special alignment requirements on the AUXV if necessary (eg. PPC). 1973 */ 1974 ARCH_DLINFO; 1975 #endif 1976 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1977 * on info->auxv_len will trigger. 1978 */ 1979 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1980 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1981 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1982 if ((info->alignment & ~qemu_host_page_mask) != 0) { 1983 /* Target doesn't support host page size alignment */ 1984 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1985 } else { 1986 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 1987 qemu_host_page_size))); 1988 } 1989 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1990 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1991 NEW_AUX_ENT(AT_ENTRY, info->entry); 1992 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1993 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1994 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1995 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1996 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1997 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1998 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1999 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2000 2001 #ifdef ELF_HWCAP2 2002 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2003 #endif 2004 2005 if (u_platform) { 2006 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2007 } 2008 NEW_AUX_ENT (AT_NULL, 0); 2009 #undef NEW_AUX_ENT 2010 2011 /* Check that our initial calculation of the auxv length matches how much 2012 * we actually put into it. 2013 */ 2014 assert(info->auxv_len == u_auxv - info->saved_auxv); 2015 2016 put_user_ual(argc, u_argc); 2017 2018 p = info->arg_strings; 2019 for (i = 0; i < argc; ++i) { 2020 put_user_ual(p, u_argv); 2021 u_argv += n; 2022 p += target_strlen(p) + 1; 2023 } 2024 put_user_ual(0, u_argv); 2025 2026 p = info->env_strings; 2027 for (i = 0; i < envc; ++i) { 2028 put_user_ual(p, u_envp); 2029 u_envp += n; 2030 p += target_strlen(p) + 1; 2031 } 2032 put_user_ual(0, u_envp); 2033 2034 return sp; 2035 } 2036 2037 unsigned long init_guest_space(unsigned long host_start, 2038 unsigned long host_size, 2039 unsigned long guest_start, 2040 bool fixed) 2041 { 2042 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2043 unsigned long align = MAX(SHMLBA, qemu_host_page_size); 2044 unsigned long current_start, aligned_start; 2045 int flags; 2046 2047 assert(host_start || host_size); 2048 2049 /* If just a starting address is given, then just verify that 2050 * address. */ 2051 if (host_start && !host_size) { 2052 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2053 if (init_guest_commpage(host_start, host_size) != 1) { 2054 return (unsigned long)-1; 2055 } 2056 #endif 2057 return host_start; 2058 } 2059 2060 /* Setup the initial flags and start address. */ 2061 current_start = host_start & -align; 2062 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2063 if (fixed) { 2064 flags |= MAP_FIXED; 2065 } 2066 2067 /* Otherwise, a non-zero size region of memory needs to be mapped 2068 * and validated. */ 2069 2070 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2071 /* On 32-bit ARM, we need to map not just the usable memory, but 2072 * also the commpage. Try to find a suitable place by allocating 2073 * a big chunk for all of it. If host_start, then the naive 2074 * strategy probably does good enough. 2075 */ 2076 if (!host_start) { 2077 unsigned long guest_full_size, host_full_size, real_start; 2078 2079 guest_full_size = 2080 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 2081 host_full_size = guest_full_size - guest_start; 2082 real_start = (unsigned long) 2083 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 2084 if (real_start == (unsigned long)-1) { 2085 if (host_size < host_full_size - qemu_host_page_size) { 2086 /* We failed to map a continous segment, but we're 2087 * allowed to have a gap between the usable memory and 2088 * the commpage where other things can be mapped. 2089 * This sparseness gives us more flexibility to find 2090 * an address range. 2091 */ 2092 goto naive; 2093 } 2094 return (unsigned long)-1; 2095 } 2096 munmap((void *)real_start, host_full_size); 2097 if (real_start & (align - 1)) { 2098 /* The same thing again, but with extra 2099 * so that we can shift around alignment. 2100 */ 2101 unsigned long real_size = host_full_size + qemu_host_page_size; 2102 real_start = (unsigned long) 2103 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 2104 if (real_start == (unsigned long)-1) { 2105 if (host_size < host_full_size - qemu_host_page_size) { 2106 goto naive; 2107 } 2108 return (unsigned long)-1; 2109 } 2110 munmap((void *)real_start, real_size); 2111 real_start = ROUND_UP(real_start, align); 2112 } 2113 current_start = real_start; 2114 } 2115 naive: 2116 #endif 2117 2118 while (1) { 2119 unsigned long real_start, real_size, aligned_size; 2120 aligned_size = real_size = host_size; 2121 2122 /* Do not use mmap_find_vma here because that is limited to the 2123 * guest address space. We are going to make the 2124 * guest address space fit whatever we're given. 2125 */ 2126 real_start = (unsigned long) 2127 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2128 if (real_start == (unsigned long)-1) { 2129 return (unsigned long)-1; 2130 } 2131 2132 /* Check to see if the address is valid. */ 2133 if (host_start && real_start != current_start) { 2134 goto try_again; 2135 } 2136 2137 /* Ensure the address is properly aligned. */ 2138 if (real_start & (align - 1)) { 2139 /* Ideally, we adjust like 2140 * 2141 * pages: [ ][ ][ ][ ][ ] 2142 * old: [ real ] 2143 * [ aligned ] 2144 * new: [ real ] 2145 * [ aligned ] 2146 * 2147 * But if there is something else mapped right after it, 2148 * then obviously it won't have room to grow, and the 2149 * kernel will put the new larger real someplace else with 2150 * unknown alignment (if we made it to here, then 2151 * fixed=false). Which is why we grow real by a full page 2152 * size, instead of by part of one; so that even if we get 2153 * moved, we can still guarantee alignment. But this does 2154 * mean that there is a padding of < 1 page both before 2155 * and after the aligned range; the "after" could could 2156 * cause problems for ARM emulation where it could butt in 2157 * to where we need to put the commpage. 2158 */ 2159 munmap((void *)real_start, host_size); 2160 real_size = aligned_size + qemu_host_page_size; 2161 real_start = (unsigned long) 2162 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2163 if (real_start == (unsigned long)-1) { 2164 return (unsigned long)-1; 2165 } 2166 aligned_start = ROUND_UP(real_start, align); 2167 } else { 2168 aligned_start = real_start; 2169 } 2170 2171 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2172 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2173 int valid = init_guest_commpage(aligned_start - guest_start, 2174 aligned_size + guest_start); 2175 if (valid == -1) { 2176 munmap((void *)real_start, real_size); 2177 return (unsigned long)-1; 2178 } else if (valid == 0) { 2179 goto try_again; 2180 } 2181 #endif 2182 2183 /* If nothing has said `return -1` or `goto try_again` yet, 2184 * then the address we have is good. 2185 */ 2186 break; 2187 2188 try_again: 2189 /* That address didn't work. Unmap and try a different one. 2190 * The address the host picked because is typically right at 2191 * the top of the host address space and leaves the guest with 2192 * no usable address space. Resort to a linear search. We 2193 * already compensated for mmap_min_addr, so this should not 2194 * happen often. Probably means we got unlucky and host 2195 * address space randomization put a shared library somewhere 2196 * inconvenient. 2197 * 2198 * This is probably a good strategy if host_start, but is 2199 * probably a bad strategy if not, which means we got here 2200 * because of trouble with ARM commpage setup. 2201 */ 2202 munmap((void *)real_start, real_size); 2203 current_start += align; 2204 if (host_start == current_start) { 2205 /* Theoretically possible if host doesn't have any suitably 2206 * aligned areas. Normally the first mmap will fail. 2207 */ 2208 return (unsigned long)-1; 2209 } 2210 } 2211 2212 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2213 2214 return aligned_start; 2215 } 2216 2217 static void probe_guest_base(const char *image_name, 2218 abi_ulong loaddr, abi_ulong hiaddr) 2219 { 2220 /* Probe for a suitable guest base address, if the user has not set 2221 * it explicitly, and set guest_base appropriately. 2222 * In case of error we will print a suitable message and exit. 2223 */ 2224 const char *errmsg; 2225 if (!have_guest_base && !reserved_va) { 2226 unsigned long host_start, real_start, host_size; 2227 2228 /* Round addresses to page boundaries. */ 2229 loaddr &= qemu_host_page_mask; 2230 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2231 2232 if (loaddr < mmap_min_addr) { 2233 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2234 } else { 2235 host_start = loaddr; 2236 if (host_start != loaddr) { 2237 errmsg = "Address overflow loading ELF binary"; 2238 goto exit_errmsg; 2239 } 2240 } 2241 host_size = hiaddr - loaddr; 2242 2243 /* Setup the initial guest memory space with ranges gleaned from 2244 * the ELF image that is being loaded. 2245 */ 2246 real_start = init_guest_space(host_start, host_size, loaddr, false); 2247 if (real_start == (unsigned long)-1) { 2248 errmsg = "Unable to find space for application"; 2249 goto exit_errmsg; 2250 } 2251 guest_base = real_start - loaddr; 2252 2253 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2254 TARGET_ABI_FMT_lx " to 0x%lx\n", 2255 loaddr, real_start); 2256 } 2257 return; 2258 2259 exit_errmsg: 2260 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2261 exit(-1); 2262 } 2263 2264 2265 /* Load an ELF image into the address space. 2266 2267 IMAGE_NAME is the filename of the image, to use in error messages. 2268 IMAGE_FD is the open file descriptor for the image. 2269 2270 BPRM_BUF is a copy of the beginning of the file; this of course 2271 contains the elf file header at offset 0. It is assumed that this 2272 buffer is sufficiently aligned to present no problems to the host 2273 in accessing data at aligned offsets within the buffer. 2274 2275 On return: INFO values will be filled in, as necessary or available. */ 2276 2277 static void load_elf_image(const char *image_name, int image_fd, 2278 struct image_info *info, char **pinterp_name, 2279 char bprm_buf[BPRM_BUF_SIZE]) 2280 { 2281 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2282 struct elf_phdr *phdr; 2283 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2284 int i, retval; 2285 const char *errmsg; 2286 2287 /* First of all, some simple consistency checks */ 2288 errmsg = "Invalid ELF image for this architecture"; 2289 if (!elf_check_ident(ehdr)) { 2290 goto exit_errmsg; 2291 } 2292 bswap_ehdr(ehdr); 2293 if (!elf_check_ehdr(ehdr)) { 2294 goto exit_errmsg; 2295 } 2296 2297 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2298 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2299 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2300 } else { 2301 phdr = (struct elf_phdr *) alloca(i); 2302 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2303 if (retval != i) { 2304 goto exit_read; 2305 } 2306 } 2307 bswap_phdr(phdr, ehdr->e_phnum); 2308 2309 info->nsegs = 0; 2310 info->pt_dynamic_addr = 0; 2311 2312 mmap_lock(); 2313 2314 /* Find the maximum size of the image and allocate an appropriate 2315 amount of memory to handle that. */ 2316 loaddr = -1, hiaddr = 0; 2317 info->alignment = 0; 2318 for (i = 0; i < ehdr->e_phnum; ++i) { 2319 if (phdr[i].p_type == PT_LOAD) { 2320 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2321 if (a < loaddr) { 2322 loaddr = a; 2323 } 2324 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2325 if (a > hiaddr) { 2326 hiaddr = a; 2327 } 2328 ++info->nsegs; 2329 info->alignment |= phdr[i].p_align; 2330 } 2331 } 2332 2333 load_addr = loaddr; 2334 if (ehdr->e_type == ET_DYN) { 2335 /* The image indicates that it can be loaded anywhere. Find a 2336 location that can hold the memory space required. If the 2337 image is pre-linked, LOADDR will be non-zero. Since we do 2338 not supply MAP_FIXED here we'll use that address if and 2339 only if it remains available. */ 2340 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2341 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2342 -1, 0); 2343 if (load_addr == -1) { 2344 goto exit_perror; 2345 } 2346 } else if (pinterp_name != NULL) { 2347 /* This is the main executable. Make sure that the low 2348 address does not conflict with MMAP_MIN_ADDR or the 2349 QEMU application itself. */ 2350 probe_guest_base(image_name, loaddr, hiaddr); 2351 } 2352 load_bias = load_addr - loaddr; 2353 2354 if (elf_is_fdpic(ehdr)) { 2355 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2356 g_malloc(sizeof(*loadsegs) * info->nsegs); 2357 2358 for (i = 0; i < ehdr->e_phnum; ++i) { 2359 switch (phdr[i].p_type) { 2360 case PT_DYNAMIC: 2361 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2362 break; 2363 case PT_LOAD: 2364 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2365 loadsegs->p_vaddr = phdr[i].p_vaddr; 2366 loadsegs->p_memsz = phdr[i].p_memsz; 2367 ++loadsegs; 2368 break; 2369 } 2370 } 2371 } 2372 2373 info->load_bias = load_bias; 2374 info->load_addr = load_addr; 2375 info->entry = ehdr->e_entry + load_bias; 2376 info->start_code = -1; 2377 info->end_code = 0; 2378 info->start_data = -1; 2379 info->end_data = 0; 2380 info->brk = 0; 2381 info->elf_flags = ehdr->e_flags; 2382 2383 for (i = 0; i < ehdr->e_phnum; i++) { 2384 struct elf_phdr *eppnt = phdr + i; 2385 if (eppnt->p_type == PT_LOAD) { 2386 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2387 int elf_prot = 0; 2388 2389 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2390 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2391 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2392 2393 vaddr = load_bias + eppnt->p_vaddr; 2394 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2395 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2396 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2397 2398 /* 2399 * Some segments may be completely empty without any backing file 2400 * segment, in that case just let zero_bss allocate an empty buffer 2401 * for it. 2402 */ 2403 if (eppnt->p_filesz != 0) { 2404 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2405 MAP_PRIVATE | MAP_FIXED, 2406 image_fd, eppnt->p_offset - vaddr_po); 2407 2408 if (error == -1) { 2409 goto exit_perror; 2410 } 2411 } 2412 2413 vaddr_ef = vaddr + eppnt->p_filesz; 2414 vaddr_em = vaddr + eppnt->p_memsz; 2415 2416 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2417 if (vaddr_ef < vaddr_em) { 2418 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2419 } 2420 2421 /* Find the full program boundaries. */ 2422 if (elf_prot & PROT_EXEC) { 2423 if (vaddr < info->start_code) { 2424 info->start_code = vaddr; 2425 } 2426 if (vaddr_ef > info->end_code) { 2427 info->end_code = vaddr_ef; 2428 } 2429 } 2430 if (elf_prot & PROT_WRITE) { 2431 if (vaddr < info->start_data) { 2432 info->start_data = vaddr; 2433 } 2434 if (vaddr_ef > info->end_data) { 2435 info->end_data = vaddr_ef; 2436 } 2437 if (vaddr_em > info->brk) { 2438 info->brk = vaddr_em; 2439 } 2440 } 2441 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2442 char *interp_name; 2443 2444 if (*pinterp_name) { 2445 errmsg = "Multiple PT_INTERP entries"; 2446 goto exit_errmsg; 2447 } 2448 interp_name = malloc(eppnt->p_filesz); 2449 if (!interp_name) { 2450 goto exit_perror; 2451 } 2452 2453 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2454 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2455 eppnt->p_filesz); 2456 } else { 2457 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2458 eppnt->p_offset); 2459 if (retval != eppnt->p_filesz) { 2460 goto exit_perror; 2461 } 2462 } 2463 if (interp_name[eppnt->p_filesz - 1] != 0) { 2464 errmsg = "Invalid PT_INTERP entry"; 2465 goto exit_errmsg; 2466 } 2467 *pinterp_name = interp_name; 2468 #ifdef TARGET_MIPS 2469 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2470 Mips_elf_abiflags_v0 abiflags; 2471 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2472 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2473 goto exit_errmsg; 2474 } 2475 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2476 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2477 sizeof(Mips_elf_abiflags_v0)); 2478 } else { 2479 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2480 eppnt->p_offset); 2481 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2482 goto exit_perror; 2483 } 2484 } 2485 bswap_mips_abiflags(&abiflags); 2486 info->fp_abi = abiflags.fp_abi; 2487 #endif 2488 } 2489 } 2490 2491 if (info->end_data == 0) { 2492 info->start_data = info->end_code; 2493 info->end_data = info->end_code; 2494 info->brk = info->end_code; 2495 } 2496 2497 if (qemu_log_enabled()) { 2498 load_symbols(ehdr, image_fd, load_bias); 2499 } 2500 2501 mmap_unlock(); 2502 2503 close(image_fd); 2504 return; 2505 2506 exit_read: 2507 if (retval >= 0) { 2508 errmsg = "Incomplete read of file header"; 2509 goto exit_errmsg; 2510 } 2511 exit_perror: 2512 errmsg = strerror(errno); 2513 exit_errmsg: 2514 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2515 exit(-1); 2516 } 2517 2518 static void load_elf_interp(const char *filename, struct image_info *info, 2519 char bprm_buf[BPRM_BUF_SIZE]) 2520 { 2521 int fd, retval; 2522 2523 fd = open(path(filename), O_RDONLY); 2524 if (fd < 0) { 2525 goto exit_perror; 2526 } 2527 2528 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2529 if (retval < 0) { 2530 goto exit_perror; 2531 } 2532 if (retval < BPRM_BUF_SIZE) { 2533 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2534 } 2535 2536 load_elf_image(filename, fd, info, NULL, bprm_buf); 2537 return; 2538 2539 exit_perror: 2540 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2541 exit(-1); 2542 } 2543 2544 static int symfind(const void *s0, const void *s1) 2545 { 2546 target_ulong addr = *(target_ulong *)s0; 2547 struct elf_sym *sym = (struct elf_sym *)s1; 2548 int result = 0; 2549 if (addr < sym->st_value) { 2550 result = -1; 2551 } else if (addr >= sym->st_value + sym->st_size) { 2552 result = 1; 2553 } 2554 return result; 2555 } 2556 2557 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2558 { 2559 #if ELF_CLASS == ELFCLASS32 2560 struct elf_sym *syms = s->disas_symtab.elf32; 2561 #else 2562 struct elf_sym *syms = s->disas_symtab.elf64; 2563 #endif 2564 2565 // binary search 2566 struct elf_sym *sym; 2567 2568 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2569 if (sym != NULL) { 2570 return s->disas_strtab + sym->st_name; 2571 } 2572 2573 return ""; 2574 } 2575 2576 /* FIXME: This should use elf_ops.h */ 2577 static int symcmp(const void *s0, const void *s1) 2578 { 2579 struct elf_sym *sym0 = (struct elf_sym *)s0; 2580 struct elf_sym *sym1 = (struct elf_sym *)s1; 2581 return (sym0->st_value < sym1->st_value) 2582 ? -1 2583 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2584 } 2585 2586 /* Best attempt to load symbols from this ELF object. */ 2587 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2588 { 2589 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2590 uint64_t segsz; 2591 struct elf_shdr *shdr; 2592 char *strings = NULL; 2593 struct syminfo *s = NULL; 2594 struct elf_sym *new_syms, *syms = NULL; 2595 2596 shnum = hdr->e_shnum; 2597 i = shnum * sizeof(struct elf_shdr); 2598 shdr = (struct elf_shdr *)alloca(i); 2599 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2600 return; 2601 } 2602 2603 bswap_shdr(shdr, shnum); 2604 for (i = 0; i < shnum; ++i) { 2605 if (shdr[i].sh_type == SHT_SYMTAB) { 2606 sym_idx = i; 2607 str_idx = shdr[i].sh_link; 2608 goto found; 2609 } 2610 } 2611 2612 /* There will be no symbol table if the file was stripped. */ 2613 return; 2614 2615 found: 2616 /* Now know where the strtab and symtab are. Snarf them. */ 2617 s = g_try_new(struct syminfo, 1); 2618 if (!s) { 2619 goto give_up; 2620 } 2621 2622 segsz = shdr[str_idx].sh_size; 2623 s->disas_strtab = strings = g_try_malloc(segsz); 2624 if (!strings || 2625 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2626 goto give_up; 2627 } 2628 2629 segsz = shdr[sym_idx].sh_size; 2630 syms = g_try_malloc(segsz); 2631 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2632 goto give_up; 2633 } 2634 2635 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2636 /* Implausibly large symbol table: give up rather than ploughing 2637 * on with the number of symbols calculation overflowing 2638 */ 2639 goto give_up; 2640 } 2641 nsyms = segsz / sizeof(struct elf_sym); 2642 for (i = 0; i < nsyms; ) { 2643 bswap_sym(syms + i); 2644 /* Throw away entries which we do not need. */ 2645 if (syms[i].st_shndx == SHN_UNDEF 2646 || syms[i].st_shndx >= SHN_LORESERVE 2647 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2648 if (i < --nsyms) { 2649 syms[i] = syms[nsyms]; 2650 } 2651 } else { 2652 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2653 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2654 syms[i].st_value &= ~(target_ulong)1; 2655 #endif 2656 syms[i].st_value += load_bias; 2657 i++; 2658 } 2659 } 2660 2661 /* No "useful" symbol. */ 2662 if (nsyms == 0) { 2663 goto give_up; 2664 } 2665 2666 /* Attempt to free the storage associated with the local symbols 2667 that we threw away. Whether or not this has any effect on the 2668 memory allocation depends on the malloc implementation and how 2669 many symbols we managed to discard. */ 2670 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2671 if (new_syms == NULL) { 2672 goto give_up; 2673 } 2674 syms = new_syms; 2675 2676 qsort(syms, nsyms, sizeof(*syms), symcmp); 2677 2678 s->disas_num_syms = nsyms; 2679 #if ELF_CLASS == ELFCLASS32 2680 s->disas_symtab.elf32 = syms; 2681 #else 2682 s->disas_symtab.elf64 = syms; 2683 #endif 2684 s->lookup_symbol = lookup_symbolxx; 2685 s->next = syminfos; 2686 syminfos = s; 2687 2688 return; 2689 2690 give_up: 2691 g_free(s); 2692 g_free(strings); 2693 g_free(syms); 2694 } 2695 2696 uint32_t get_elf_eflags(int fd) 2697 { 2698 struct elfhdr ehdr; 2699 off_t offset; 2700 int ret; 2701 2702 /* Read ELF header */ 2703 offset = lseek(fd, 0, SEEK_SET); 2704 if (offset == (off_t) -1) { 2705 return 0; 2706 } 2707 ret = read(fd, &ehdr, sizeof(ehdr)); 2708 if (ret < sizeof(ehdr)) { 2709 return 0; 2710 } 2711 offset = lseek(fd, offset, SEEK_SET); 2712 if (offset == (off_t) -1) { 2713 return 0; 2714 } 2715 2716 /* Check ELF signature */ 2717 if (!elf_check_ident(&ehdr)) { 2718 return 0; 2719 } 2720 2721 /* check header */ 2722 bswap_ehdr(&ehdr); 2723 if (!elf_check_ehdr(&ehdr)) { 2724 return 0; 2725 } 2726 2727 /* return architecture id */ 2728 return ehdr.e_flags; 2729 } 2730 2731 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2732 { 2733 struct image_info interp_info; 2734 struct elfhdr elf_ex; 2735 char *elf_interpreter = NULL; 2736 char *scratch; 2737 2738 memset(&interp_info, 0, sizeof(interp_info)); 2739 #ifdef TARGET_MIPS 2740 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 2741 #endif 2742 2743 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2744 2745 load_elf_image(bprm->filename, bprm->fd, info, 2746 &elf_interpreter, bprm->buf); 2747 2748 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2749 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2750 when we load the interpreter. */ 2751 elf_ex = *(struct elfhdr *)bprm->buf; 2752 2753 /* Do this so that we can load the interpreter, if need be. We will 2754 change some of these later */ 2755 bprm->p = setup_arg_pages(bprm, info); 2756 2757 scratch = g_new0(char, TARGET_PAGE_SIZE); 2758 if (STACK_GROWS_DOWN) { 2759 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2760 bprm->p, info->stack_limit); 2761 info->file_string = bprm->p; 2762 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2763 bprm->p, info->stack_limit); 2764 info->env_strings = bprm->p; 2765 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2766 bprm->p, info->stack_limit); 2767 info->arg_strings = bprm->p; 2768 } else { 2769 info->arg_strings = bprm->p; 2770 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2771 bprm->p, info->stack_limit); 2772 info->env_strings = bprm->p; 2773 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2774 bprm->p, info->stack_limit); 2775 info->file_string = bprm->p; 2776 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2777 bprm->p, info->stack_limit); 2778 } 2779 2780 g_free(scratch); 2781 2782 if (!bprm->p) { 2783 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2784 exit(-1); 2785 } 2786 2787 if (elf_interpreter) { 2788 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2789 2790 /* If the program interpreter is one of these two, then assume 2791 an iBCS2 image. Otherwise assume a native linux image. */ 2792 2793 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2794 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2795 info->personality = PER_SVR4; 2796 2797 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2798 and some applications "depend" upon this behavior. Since 2799 we do not have the power to recompile these, we emulate 2800 the SVr4 behavior. Sigh. */ 2801 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2802 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2803 } 2804 #ifdef TARGET_MIPS 2805 info->interp_fp_abi = interp_info.fp_abi; 2806 #endif 2807 } 2808 2809 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2810 info, (elf_interpreter ? &interp_info : NULL)); 2811 info->start_stack = bprm->p; 2812 2813 /* If we have an interpreter, set that as the program's entry point. 2814 Copy the load_bias as well, to help PPC64 interpret the entry 2815 point as a function descriptor. Do this after creating elf tables 2816 so that we copy the original program entry point into the AUXV. */ 2817 if (elf_interpreter) { 2818 info->load_bias = interp_info.load_bias; 2819 info->entry = interp_info.entry; 2820 free(elf_interpreter); 2821 } 2822 2823 #ifdef USE_ELF_CORE_DUMP 2824 bprm->core_dump = &elf_core_dump; 2825 #endif 2826 2827 return 0; 2828 } 2829 2830 #ifdef USE_ELF_CORE_DUMP 2831 /* 2832 * Definitions to generate Intel SVR4-like core files. 2833 * These mostly have the same names as the SVR4 types with "target_elf_" 2834 * tacked on the front to prevent clashes with linux definitions, 2835 * and the typedef forms have been avoided. This is mostly like 2836 * the SVR4 structure, but more Linuxy, with things that Linux does 2837 * not support and which gdb doesn't really use excluded. 2838 * 2839 * Fields we don't dump (their contents is zero) in linux-user qemu 2840 * are marked with XXX. 2841 * 2842 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2843 * 2844 * Porting ELF coredump for target is (quite) simple process. First you 2845 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2846 * the target resides): 2847 * 2848 * #define USE_ELF_CORE_DUMP 2849 * 2850 * Next you define type of register set used for dumping. ELF specification 2851 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2852 * 2853 * typedef <target_regtype> target_elf_greg_t; 2854 * #define ELF_NREG <number of registers> 2855 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2856 * 2857 * Last step is to implement target specific function that copies registers 2858 * from given cpu into just specified register set. Prototype is: 2859 * 2860 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2861 * const CPUArchState *env); 2862 * 2863 * Parameters: 2864 * regs - copy register values into here (allocated and zeroed by caller) 2865 * env - copy registers from here 2866 * 2867 * Example for ARM target is provided in this file. 2868 */ 2869 2870 /* An ELF note in memory */ 2871 struct memelfnote { 2872 const char *name; 2873 size_t namesz; 2874 size_t namesz_rounded; 2875 int type; 2876 size_t datasz; 2877 size_t datasz_rounded; 2878 void *data; 2879 size_t notesz; 2880 }; 2881 2882 struct target_elf_siginfo { 2883 abi_int si_signo; /* signal number */ 2884 abi_int si_code; /* extra code */ 2885 abi_int si_errno; /* errno */ 2886 }; 2887 2888 struct target_elf_prstatus { 2889 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2890 abi_short pr_cursig; /* Current signal */ 2891 abi_ulong pr_sigpend; /* XXX */ 2892 abi_ulong pr_sighold; /* XXX */ 2893 target_pid_t pr_pid; 2894 target_pid_t pr_ppid; 2895 target_pid_t pr_pgrp; 2896 target_pid_t pr_sid; 2897 struct target_timeval pr_utime; /* XXX User time */ 2898 struct target_timeval pr_stime; /* XXX System time */ 2899 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2900 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2901 target_elf_gregset_t pr_reg; /* GP registers */ 2902 abi_int pr_fpvalid; /* XXX */ 2903 }; 2904 2905 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2906 2907 struct target_elf_prpsinfo { 2908 char pr_state; /* numeric process state */ 2909 char pr_sname; /* char for pr_state */ 2910 char pr_zomb; /* zombie */ 2911 char pr_nice; /* nice val */ 2912 abi_ulong pr_flag; /* flags */ 2913 target_uid_t pr_uid; 2914 target_gid_t pr_gid; 2915 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2916 /* Lots missing */ 2917 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 2918 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2919 }; 2920 2921 /* Here is the structure in which status of each thread is captured. */ 2922 struct elf_thread_status { 2923 QTAILQ_ENTRY(elf_thread_status) ets_link; 2924 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2925 #if 0 2926 elf_fpregset_t fpu; /* NT_PRFPREG */ 2927 struct task_struct *thread; 2928 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2929 #endif 2930 struct memelfnote notes[1]; 2931 int num_notes; 2932 }; 2933 2934 struct elf_note_info { 2935 struct memelfnote *notes; 2936 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2937 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2938 2939 QTAILQ_HEAD(, elf_thread_status) thread_list; 2940 #if 0 2941 /* 2942 * Current version of ELF coredump doesn't support 2943 * dumping fp regs etc. 2944 */ 2945 elf_fpregset_t *fpu; 2946 elf_fpxregset_t *xfpu; 2947 int thread_status_size; 2948 #endif 2949 int notes_size; 2950 int numnote; 2951 }; 2952 2953 struct vm_area_struct { 2954 target_ulong vma_start; /* start vaddr of memory region */ 2955 target_ulong vma_end; /* end vaddr of memory region */ 2956 abi_ulong vma_flags; /* protection etc. flags for the region */ 2957 QTAILQ_ENTRY(vm_area_struct) vma_link; 2958 }; 2959 2960 struct mm_struct { 2961 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2962 int mm_count; /* number of mappings */ 2963 }; 2964 2965 static struct mm_struct *vma_init(void); 2966 static void vma_delete(struct mm_struct *); 2967 static int vma_add_mapping(struct mm_struct *, target_ulong, 2968 target_ulong, abi_ulong); 2969 static int vma_get_mapping_count(const struct mm_struct *); 2970 static struct vm_area_struct *vma_first(const struct mm_struct *); 2971 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2972 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2973 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2974 unsigned long flags); 2975 2976 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2977 static void fill_note(struct memelfnote *, const char *, int, 2978 unsigned int, void *); 2979 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2980 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2981 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2982 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2983 static size_t note_size(const struct memelfnote *); 2984 static void free_note_info(struct elf_note_info *); 2985 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2986 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2987 static int core_dump_filename(const TaskState *, char *, size_t); 2988 2989 static int dump_write(int, const void *, size_t); 2990 static int write_note(struct memelfnote *, int); 2991 static int write_note_info(struct elf_note_info *, int); 2992 2993 #ifdef BSWAP_NEEDED 2994 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2995 { 2996 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2997 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2998 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2999 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3000 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3001 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3002 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3003 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3004 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3005 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3006 /* cpu times are not filled, so we skip them */ 3007 /* regs should be in correct format already */ 3008 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3009 } 3010 3011 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3012 { 3013 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3014 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3015 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3016 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3017 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3018 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3019 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3020 } 3021 3022 static void bswap_note(struct elf_note *en) 3023 { 3024 bswap32s(&en->n_namesz); 3025 bswap32s(&en->n_descsz); 3026 bswap32s(&en->n_type); 3027 } 3028 #else 3029 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3030 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3031 static inline void bswap_note(struct elf_note *en) { } 3032 #endif /* BSWAP_NEEDED */ 3033 3034 /* 3035 * Minimal support for linux memory regions. These are needed 3036 * when we are finding out what memory exactly belongs to 3037 * emulated process. No locks needed here, as long as 3038 * thread that received the signal is stopped. 3039 */ 3040 3041 static struct mm_struct *vma_init(void) 3042 { 3043 struct mm_struct *mm; 3044 3045 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3046 return (NULL); 3047 3048 mm->mm_count = 0; 3049 QTAILQ_INIT(&mm->mm_mmap); 3050 3051 return (mm); 3052 } 3053 3054 static void vma_delete(struct mm_struct *mm) 3055 { 3056 struct vm_area_struct *vma; 3057 3058 while ((vma = vma_first(mm)) != NULL) { 3059 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3060 g_free(vma); 3061 } 3062 g_free(mm); 3063 } 3064 3065 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3066 target_ulong end, abi_ulong flags) 3067 { 3068 struct vm_area_struct *vma; 3069 3070 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3071 return (-1); 3072 3073 vma->vma_start = start; 3074 vma->vma_end = end; 3075 vma->vma_flags = flags; 3076 3077 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3078 mm->mm_count++; 3079 3080 return (0); 3081 } 3082 3083 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3084 { 3085 return (QTAILQ_FIRST(&mm->mm_mmap)); 3086 } 3087 3088 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3089 { 3090 return (QTAILQ_NEXT(vma, vma_link)); 3091 } 3092 3093 static int vma_get_mapping_count(const struct mm_struct *mm) 3094 { 3095 return (mm->mm_count); 3096 } 3097 3098 /* 3099 * Calculate file (dump) size of given memory region. 3100 */ 3101 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3102 { 3103 /* if we cannot even read the first page, skip it */ 3104 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3105 return (0); 3106 3107 /* 3108 * Usually we don't dump executable pages as they contain 3109 * non-writable code that debugger can read directly from 3110 * target library etc. However, thread stacks are marked 3111 * also executable so we read in first page of given region 3112 * and check whether it contains elf header. If there is 3113 * no elf header, we dump it. 3114 */ 3115 if (vma->vma_flags & PROT_EXEC) { 3116 char page[TARGET_PAGE_SIZE]; 3117 3118 copy_from_user(page, vma->vma_start, sizeof (page)); 3119 if ((page[EI_MAG0] == ELFMAG0) && 3120 (page[EI_MAG1] == ELFMAG1) && 3121 (page[EI_MAG2] == ELFMAG2) && 3122 (page[EI_MAG3] == ELFMAG3)) { 3123 /* 3124 * Mappings are possibly from ELF binary. Don't dump 3125 * them. 3126 */ 3127 return (0); 3128 } 3129 } 3130 3131 return (vma->vma_end - vma->vma_start); 3132 } 3133 3134 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3135 unsigned long flags) 3136 { 3137 struct mm_struct *mm = (struct mm_struct *)priv; 3138 3139 vma_add_mapping(mm, start, end, flags); 3140 return (0); 3141 } 3142 3143 static void fill_note(struct memelfnote *note, const char *name, int type, 3144 unsigned int sz, void *data) 3145 { 3146 unsigned int namesz; 3147 3148 namesz = strlen(name) + 1; 3149 note->name = name; 3150 note->namesz = namesz; 3151 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3152 note->type = type; 3153 note->datasz = sz; 3154 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3155 3156 note->data = data; 3157 3158 /* 3159 * We calculate rounded up note size here as specified by 3160 * ELF document. 3161 */ 3162 note->notesz = sizeof (struct elf_note) + 3163 note->namesz_rounded + note->datasz_rounded; 3164 } 3165 3166 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3167 uint32_t flags) 3168 { 3169 (void) memset(elf, 0, sizeof(*elf)); 3170 3171 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3172 elf->e_ident[EI_CLASS] = ELF_CLASS; 3173 elf->e_ident[EI_DATA] = ELF_DATA; 3174 elf->e_ident[EI_VERSION] = EV_CURRENT; 3175 elf->e_ident[EI_OSABI] = ELF_OSABI; 3176 3177 elf->e_type = ET_CORE; 3178 elf->e_machine = machine; 3179 elf->e_version = EV_CURRENT; 3180 elf->e_phoff = sizeof(struct elfhdr); 3181 elf->e_flags = flags; 3182 elf->e_ehsize = sizeof(struct elfhdr); 3183 elf->e_phentsize = sizeof(struct elf_phdr); 3184 elf->e_phnum = segs; 3185 3186 bswap_ehdr(elf); 3187 } 3188 3189 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3190 { 3191 phdr->p_type = PT_NOTE; 3192 phdr->p_offset = offset; 3193 phdr->p_vaddr = 0; 3194 phdr->p_paddr = 0; 3195 phdr->p_filesz = sz; 3196 phdr->p_memsz = 0; 3197 phdr->p_flags = 0; 3198 phdr->p_align = 0; 3199 3200 bswap_phdr(phdr, 1); 3201 } 3202 3203 static size_t note_size(const struct memelfnote *note) 3204 { 3205 return (note->notesz); 3206 } 3207 3208 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3209 const TaskState *ts, int signr) 3210 { 3211 (void) memset(prstatus, 0, sizeof (*prstatus)); 3212 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3213 prstatus->pr_pid = ts->ts_tid; 3214 prstatus->pr_ppid = getppid(); 3215 prstatus->pr_pgrp = getpgrp(); 3216 prstatus->pr_sid = getsid(0); 3217 3218 bswap_prstatus(prstatus); 3219 } 3220 3221 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3222 { 3223 char *base_filename; 3224 unsigned int i, len; 3225 3226 (void) memset(psinfo, 0, sizeof (*psinfo)); 3227 3228 len = ts->info->arg_end - ts->info->arg_start; 3229 if (len >= ELF_PRARGSZ) 3230 len = ELF_PRARGSZ - 1; 3231 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3232 return -EFAULT; 3233 for (i = 0; i < len; i++) 3234 if (psinfo->pr_psargs[i] == 0) 3235 psinfo->pr_psargs[i] = ' '; 3236 psinfo->pr_psargs[len] = 0; 3237 3238 psinfo->pr_pid = getpid(); 3239 psinfo->pr_ppid = getppid(); 3240 psinfo->pr_pgrp = getpgrp(); 3241 psinfo->pr_sid = getsid(0); 3242 psinfo->pr_uid = getuid(); 3243 psinfo->pr_gid = getgid(); 3244 3245 base_filename = g_path_get_basename(ts->bprm->filename); 3246 /* 3247 * Using strncpy here is fine: at max-length, 3248 * this field is not NUL-terminated. 3249 */ 3250 (void) strncpy(psinfo->pr_fname, base_filename, 3251 sizeof(psinfo->pr_fname)); 3252 3253 g_free(base_filename); 3254 bswap_psinfo(psinfo); 3255 return (0); 3256 } 3257 3258 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3259 { 3260 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3261 elf_addr_t orig_auxv = auxv; 3262 void *ptr; 3263 int len = ts->info->auxv_len; 3264 3265 /* 3266 * Auxiliary vector is stored in target process stack. It contains 3267 * {type, value} pairs that we need to dump into note. This is not 3268 * strictly necessary but we do it here for sake of completeness. 3269 */ 3270 3271 /* read in whole auxv vector and copy it to memelfnote */ 3272 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3273 if (ptr != NULL) { 3274 fill_note(note, "CORE", NT_AUXV, len, ptr); 3275 unlock_user(ptr, auxv, len); 3276 } 3277 } 3278 3279 /* 3280 * Constructs name of coredump file. We have following convention 3281 * for the name: 3282 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3283 * 3284 * Returns 0 in case of success, -1 otherwise (errno is set). 3285 */ 3286 static int core_dump_filename(const TaskState *ts, char *buf, 3287 size_t bufsize) 3288 { 3289 char timestamp[64]; 3290 char *base_filename = NULL; 3291 struct timeval tv; 3292 struct tm tm; 3293 3294 assert(bufsize >= PATH_MAX); 3295 3296 if (gettimeofday(&tv, NULL) < 0) { 3297 (void) fprintf(stderr, "unable to get current timestamp: %s", 3298 strerror(errno)); 3299 return (-1); 3300 } 3301 3302 base_filename = g_path_get_basename(ts->bprm->filename); 3303 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3304 localtime_r(&tv.tv_sec, &tm)); 3305 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3306 base_filename, timestamp, (int)getpid()); 3307 g_free(base_filename); 3308 3309 return (0); 3310 } 3311 3312 static int dump_write(int fd, const void *ptr, size_t size) 3313 { 3314 const char *bufp = (const char *)ptr; 3315 ssize_t bytes_written, bytes_left; 3316 struct rlimit dumpsize; 3317 off_t pos; 3318 3319 bytes_written = 0; 3320 getrlimit(RLIMIT_CORE, &dumpsize); 3321 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3322 if (errno == ESPIPE) { /* not a seekable stream */ 3323 bytes_left = size; 3324 } else { 3325 return pos; 3326 } 3327 } else { 3328 if (dumpsize.rlim_cur <= pos) { 3329 return -1; 3330 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3331 bytes_left = size; 3332 } else { 3333 size_t limit_left=dumpsize.rlim_cur - pos; 3334 bytes_left = limit_left >= size ? size : limit_left ; 3335 } 3336 } 3337 3338 /* 3339 * In normal conditions, single write(2) should do but 3340 * in case of socket etc. this mechanism is more portable. 3341 */ 3342 do { 3343 bytes_written = write(fd, bufp, bytes_left); 3344 if (bytes_written < 0) { 3345 if (errno == EINTR) 3346 continue; 3347 return (-1); 3348 } else if (bytes_written == 0) { /* eof */ 3349 return (-1); 3350 } 3351 bufp += bytes_written; 3352 bytes_left -= bytes_written; 3353 } while (bytes_left > 0); 3354 3355 return (0); 3356 } 3357 3358 static int write_note(struct memelfnote *men, int fd) 3359 { 3360 struct elf_note en; 3361 3362 en.n_namesz = men->namesz; 3363 en.n_type = men->type; 3364 en.n_descsz = men->datasz; 3365 3366 bswap_note(&en); 3367 3368 if (dump_write(fd, &en, sizeof(en)) != 0) 3369 return (-1); 3370 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3371 return (-1); 3372 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3373 return (-1); 3374 3375 return (0); 3376 } 3377 3378 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3379 { 3380 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3381 TaskState *ts = (TaskState *)cpu->opaque; 3382 struct elf_thread_status *ets; 3383 3384 ets = g_malloc0(sizeof (*ets)); 3385 ets->num_notes = 1; /* only prstatus is dumped */ 3386 fill_prstatus(&ets->prstatus, ts, 0); 3387 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3388 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3389 &ets->prstatus); 3390 3391 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3392 3393 info->notes_size += note_size(&ets->notes[0]); 3394 } 3395 3396 static void init_note_info(struct elf_note_info *info) 3397 { 3398 /* Initialize the elf_note_info structure so that it is at 3399 * least safe to call free_note_info() on it. Must be 3400 * called before calling fill_note_info(). 3401 */ 3402 memset(info, 0, sizeof (*info)); 3403 QTAILQ_INIT(&info->thread_list); 3404 } 3405 3406 static int fill_note_info(struct elf_note_info *info, 3407 long signr, const CPUArchState *env) 3408 { 3409 #define NUMNOTES 3 3410 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3411 TaskState *ts = (TaskState *)cpu->opaque; 3412 int i; 3413 3414 info->notes = g_new0(struct memelfnote, NUMNOTES); 3415 if (info->notes == NULL) 3416 return (-ENOMEM); 3417 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3418 if (info->prstatus == NULL) 3419 return (-ENOMEM); 3420 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3421 if (info->prstatus == NULL) 3422 return (-ENOMEM); 3423 3424 /* 3425 * First fill in status (and registers) of current thread 3426 * including process info & aux vector. 3427 */ 3428 fill_prstatus(info->prstatus, ts, signr); 3429 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3430 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3431 sizeof (*info->prstatus), info->prstatus); 3432 fill_psinfo(info->psinfo, ts); 3433 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3434 sizeof (*info->psinfo), info->psinfo); 3435 fill_auxv_note(&info->notes[2], ts); 3436 info->numnote = 3; 3437 3438 info->notes_size = 0; 3439 for (i = 0; i < info->numnote; i++) 3440 info->notes_size += note_size(&info->notes[i]); 3441 3442 /* read and fill status of all threads */ 3443 cpu_list_lock(); 3444 CPU_FOREACH(cpu) { 3445 if (cpu == thread_cpu) { 3446 continue; 3447 } 3448 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3449 } 3450 cpu_list_unlock(); 3451 3452 return (0); 3453 } 3454 3455 static void free_note_info(struct elf_note_info *info) 3456 { 3457 struct elf_thread_status *ets; 3458 3459 while (!QTAILQ_EMPTY(&info->thread_list)) { 3460 ets = QTAILQ_FIRST(&info->thread_list); 3461 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3462 g_free(ets); 3463 } 3464 3465 g_free(info->prstatus); 3466 g_free(info->psinfo); 3467 g_free(info->notes); 3468 } 3469 3470 static int write_note_info(struct elf_note_info *info, int fd) 3471 { 3472 struct elf_thread_status *ets; 3473 int i, error = 0; 3474 3475 /* write prstatus, psinfo and auxv for current thread */ 3476 for (i = 0; i < info->numnote; i++) 3477 if ((error = write_note(&info->notes[i], fd)) != 0) 3478 return (error); 3479 3480 /* write prstatus for each thread */ 3481 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3482 if ((error = write_note(&ets->notes[0], fd)) != 0) 3483 return (error); 3484 } 3485 3486 return (0); 3487 } 3488 3489 /* 3490 * Write out ELF coredump. 3491 * 3492 * See documentation of ELF object file format in: 3493 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3494 * 3495 * Coredump format in linux is following: 3496 * 3497 * 0 +----------------------+ \ 3498 * | ELF header | ET_CORE | 3499 * +----------------------+ | 3500 * | ELF program headers | |--- headers 3501 * | - NOTE section | | 3502 * | - PT_LOAD sections | | 3503 * +----------------------+ / 3504 * | NOTEs: | 3505 * | - NT_PRSTATUS | 3506 * | - NT_PRSINFO | 3507 * | - NT_AUXV | 3508 * +----------------------+ <-- aligned to target page 3509 * | Process memory dump | 3510 * : : 3511 * . . 3512 * : : 3513 * | | 3514 * +----------------------+ 3515 * 3516 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3517 * NT_PRSINFO -> struct elf_prpsinfo 3518 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3519 * 3520 * Format follows System V format as close as possible. Current 3521 * version limitations are as follows: 3522 * - no floating point registers are dumped 3523 * 3524 * Function returns 0 in case of success, negative errno otherwise. 3525 * 3526 * TODO: make this work also during runtime: it should be 3527 * possible to force coredump from running process and then 3528 * continue processing. For example qemu could set up SIGUSR2 3529 * handler (provided that target process haven't registered 3530 * handler for that) that does the dump when signal is received. 3531 */ 3532 static int elf_core_dump(int signr, const CPUArchState *env) 3533 { 3534 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3535 const TaskState *ts = (const TaskState *)cpu->opaque; 3536 struct vm_area_struct *vma = NULL; 3537 char corefile[PATH_MAX]; 3538 struct elf_note_info info; 3539 struct elfhdr elf; 3540 struct elf_phdr phdr; 3541 struct rlimit dumpsize; 3542 struct mm_struct *mm = NULL; 3543 off_t offset = 0, data_offset = 0; 3544 int segs = 0; 3545 int fd = -1; 3546 3547 init_note_info(&info); 3548 3549 errno = 0; 3550 getrlimit(RLIMIT_CORE, &dumpsize); 3551 if (dumpsize.rlim_cur == 0) 3552 return 0; 3553 3554 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3555 return (-errno); 3556 3557 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3558 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3559 return (-errno); 3560 3561 /* 3562 * Walk through target process memory mappings and 3563 * set up structure containing this information. After 3564 * this point vma_xxx functions can be used. 3565 */ 3566 if ((mm = vma_init()) == NULL) 3567 goto out; 3568 3569 walk_memory_regions(mm, vma_walker); 3570 segs = vma_get_mapping_count(mm); 3571 3572 /* 3573 * Construct valid coredump ELF header. We also 3574 * add one more segment for notes. 3575 */ 3576 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3577 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3578 goto out; 3579 3580 /* fill in the in-memory version of notes */ 3581 if (fill_note_info(&info, signr, env) < 0) 3582 goto out; 3583 3584 offset += sizeof (elf); /* elf header */ 3585 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3586 3587 /* write out notes program header */ 3588 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3589 3590 offset += info.notes_size; 3591 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3592 goto out; 3593 3594 /* 3595 * ELF specification wants data to start at page boundary so 3596 * we align it here. 3597 */ 3598 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3599 3600 /* 3601 * Write program headers for memory regions mapped in 3602 * the target process. 3603 */ 3604 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3605 (void) memset(&phdr, 0, sizeof (phdr)); 3606 3607 phdr.p_type = PT_LOAD; 3608 phdr.p_offset = offset; 3609 phdr.p_vaddr = vma->vma_start; 3610 phdr.p_paddr = 0; 3611 phdr.p_filesz = vma_dump_size(vma); 3612 offset += phdr.p_filesz; 3613 phdr.p_memsz = vma->vma_end - vma->vma_start; 3614 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3615 if (vma->vma_flags & PROT_WRITE) 3616 phdr.p_flags |= PF_W; 3617 if (vma->vma_flags & PROT_EXEC) 3618 phdr.p_flags |= PF_X; 3619 phdr.p_align = ELF_EXEC_PAGESIZE; 3620 3621 bswap_phdr(&phdr, 1); 3622 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3623 goto out; 3624 } 3625 } 3626 3627 /* 3628 * Next we write notes just after program headers. No 3629 * alignment needed here. 3630 */ 3631 if (write_note_info(&info, fd) < 0) 3632 goto out; 3633 3634 /* align data to page boundary */ 3635 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3636 goto out; 3637 3638 /* 3639 * Finally we can dump process memory into corefile as well. 3640 */ 3641 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3642 abi_ulong addr; 3643 abi_ulong end; 3644 3645 end = vma->vma_start + vma_dump_size(vma); 3646 3647 for (addr = vma->vma_start; addr < end; 3648 addr += TARGET_PAGE_SIZE) { 3649 char page[TARGET_PAGE_SIZE]; 3650 int error; 3651 3652 /* 3653 * Read in page from target process memory and 3654 * write it to coredump file. 3655 */ 3656 error = copy_from_user(page, addr, sizeof (page)); 3657 if (error != 0) { 3658 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3659 addr); 3660 errno = -error; 3661 goto out; 3662 } 3663 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3664 goto out; 3665 } 3666 } 3667 3668 out: 3669 free_note_info(&info); 3670 if (mm != NULL) 3671 vma_delete(mm); 3672 (void) close(fd); 3673 3674 if (errno != 0) 3675 return (-errno); 3676 return (0); 3677 } 3678 #endif /* USE_ELF_CORE_DUMP */ 3679 3680 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3681 { 3682 init_thread(regs, infop); 3683 } 3684