1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 int info_is_fdpic(struct image_info *info) 82 { 83 return info->personality == PER_LINUX_FDPIC; 84 } 85 86 /* this flag is uneffective under linux too, should be deleted */ 87 #ifndef MAP_DENYWRITE 88 #define MAP_DENYWRITE 0 89 #endif 90 91 /* should probably go in elf.h */ 92 #ifndef ELIBBAD 93 #define ELIBBAD 80 94 #endif 95 96 #ifdef TARGET_WORDS_BIGENDIAN 97 #define ELF_DATA ELFDATA2MSB 98 #else 99 #define ELF_DATA ELFDATA2LSB 100 #endif 101 102 #ifdef TARGET_ABI_MIPSN32 103 typedef abi_ullong target_elf_greg_t; 104 #define tswapreg(ptr) tswap64(ptr) 105 #else 106 typedef abi_ulong target_elf_greg_t; 107 #define tswapreg(ptr) tswapal(ptr) 108 #endif 109 110 #ifdef USE_UID16 111 typedef abi_ushort target_uid_t; 112 typedef abi_ushort target_gid_t; 113 #else 114 typedef abi_uint target_uid_t; 115 typedef abi_uint target_gid_t; 116 #endif 117 typedef abi_int target_pid_t; 118 119 #ifdef TARGET_I386 120 121 #define ELF_PLATFORM get_elf_platform() 122 123 static const char *get_elf_platform(void) 124 { 125 static char elf_platform[] = "i386"; 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 127 if (family > 6) 128 family = 6; 129 if (family >= 3) 130 elf_platform[1] = '0' + family; 131 return elf_platform; 132 } 133 134 #define ELF_HWCAP get_elf_hwcap() 135 136 static uint32_t get_elf_hwcap(void) 137 { 138 X86CPU *cpu = X86_CPU(thread_cpu); 139 140 return cpu->env.features[FEAT_1_EDX]; 141 } 142 143 #ifdef TARGET_X86_64 144 #define ELF_START_MMAP 0x2aaaaab000ULL 145 146 #define ELF_CLASS ELFCLASS64 147 #define ELF_ARCH EM_X86_64 148 149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 150 { 151 regs->rax = 0; 152 regs->rsp = infop->start_stack; 153 regs->rip = infop->entry; 154 } 155 156 #define ELF_NREG 27 157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 158 159 /* 160 * Note that ELF_NREG should be 29 as there should be place for 161 * TRAPNO and ERR "registers" as well but linux doesn't dump 162 * those. 163 * 164 * See linux kernel: arch/x86/include/asm/elf.h 165 */ 166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 167 { 168 (*regs)[0] = env->regs[15]; 169 (*regs)[1] = env->regs[14]; 170 (*regs)[2] = env->regs[13]; 171 (*regs)[3] = env->regs[12]; 172 (*regs)[4] = env->regs[R_EBP]; 173 (*regs)[5] = env->regs[R_EBX]; 174 (*regs)[6] = env->regs[11]; 175 (*regs)[7] = env->regs[10]; 176 (*regs)[8] = env->regs[9]; 177 (*regs)[9] = env->regs[8]; 178 (*regs)[10] = env->regs[R_EAX]; 179 (*regs)[11] = env->regs[R_ECX]; 180 (*regs)[12] = env->regs[R_EDX]; 181 (*regs)[13] = env->regs[R_ESI]; 182 (*regs)[14] = env->regs[R_EDI]; 183 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 184 (*regs)[16] = env->eip; 185 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 186 (*regs)[18] = env->eflags; 187 (*regs)[19] = env->regs[R_ESP]; 188 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 189 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 190 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 191 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 192 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 193 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 194 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 195 } 196 197 #else 198 199 #define ELF_START_MMAP 0x80000000 200 201 /* 202 * This is used to ensure we don't load something for the wrong architecture. 203 */ 204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 205 206 /* 207 * These are used to set parameters in the core dumps. 208 */ 209 #define ELF_CLASS ELFCLASS32 210 #define ELF_ARCH EM_386 211 212 static inline void init_thread(struct target_pt_regs *regs, 213 struct image_info *infop) 214 { 215 regs->esp = infop->start_stack; 216 regs->eip = infop->entry; 217 218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 219 starts %edx contains a pointer to a function which might be 220 registered using `atexit'. This provides a mean for the 221 dynamic linker to call DT_FINI functions for shared libraries 222 that have been loaded before the code runs. 223 224 A value of 0 tells we have no such handler. */ 225 regs->edx = 0; 226 } 227 228 #define ELF_NREG 17 229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 230 231 /* 232 * Note that ELF_NREG should be 19 as there should be place for 233 * TRAPNO and ERR "registers" as well but linux doesn't dump 234 * those. 235 * 236 * See linux kernel: arch/x86/include/asm/elf.h 237 */ 238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 239 { 240 (*regs)[0] = env->regs[R_EBX]; 241 (*regs)[1] = env->regs[R_ECX]; 242 (*regs)[2] = env->regs[R_EDX]; 243 (*regs)[3] = env->regs[R_ESI]; 244 (*regs)[4] = env->regs[R_EDI]; 245 (*regs)[5] = env->regs[R_EBP]; 246 (*regs)[6] = env->regs[R_EAX]; 247 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 248 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 249 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 250 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 251 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 252 (*regs)[12] = env->eip; 253 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 254 (*regs)[14] = env->eflags; 255 (*regs)[15] = env->regs[R_ESP]; 256 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 257 } 258 #endif 259 260 #define USE_ELF_CORE_DUMP 261 #define ELF_EXEC_PAGESIZE 4096 262 263 #endif 264 265 #ifdef TARGET_ARM 266 267 #ifndef TARGET_AARCH64 268 /* 32 bit ARM definitions */ 269 270 #define ELF_START_MMAP 0x80000000 271 272 #define ELF_ARCH EM_ARM 273 #define ELF_CLASS ELFCLASS32 274 275 static inline void init_thread(struct target_pt_regs *regs, 276 struct image_info *infop) 277 { 278 abi_long stack = infop->start_stack; 279 memset(regs, 0, sizeof(*regs)); 280 281 regs->uregs[16] = ARM_CPU_MODE_USR; 282 if (infop->entry & 1) { 283 regs->uregs[16] |= CPSR_T; 284 } 285 regs->uregs[15] = infop->entry & 0xfffffffe; 286 regs->uregs[13] = infop->start_stack; 287 /* FIXME - what to for failure of get_user()? */ 288 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 289 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 290 /* XXX: it seems that r0 is zeroed after ! */ 291 regs->uregs[0] = 0; 292 /* For uClinux PIC binaries. */ 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 294 regs->uregs[10] = infop->start_data; 295 296 /* Support ARM FDPIC. */ 297 if (info_is_fdpic(infop)) { 298 /* As described in the ABI document, r7 points to the loadmap info 299 * prepared by the kernel. If an interpreter is needed, r8 points 300 * to the interpreter loadmap and r9 points to the interpreter 301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 302 * r9 points to the main program PT_DYNAMIC info. 303 */ 304 regs->uregs[7] = infop->loadmap_addr; 305 if (infop->interpreter_loadmap_addr) { 306 /* Executable is dynamically loaded. */ 307 regs->uregs[8] = infop->interpreter_loadmap_addr; 308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 309 } else { 310 regs->uregs[8] = 0; 311 regs->uregs[9] = infop->pt_dynamic_addr; 312 } 313 } 314 } 315 316 #define ELF_NREG 18 317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 318 319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 320 { 321 (*regs)[0] = tswapreg(env->regs[0]); 322 (*regs)[1] = tswapreg(env->regs[1]); 323 (*regs)[2] = tswapreg(env->regs[2]); 324 (*regs)[3] = tswapreg(env->regs[3]); 325 (*regs)[4] = tswapreg(env->regs[4]); 326 (*regs)[5] = tswapreg(env->regs[5]); 327 (*regs)[6] = tswapreg(env->regs[6]); 328 (*regs)[7] = tswapreg(env->regs[7]); 329 (*regs)[8] = tswapreg(env->regs[8]); 330 (*regs)[9] = tswapreg(env->regs[9]); 331 (*regs)[10] = tswapreg(env->regs[10]); 332 (*regs)[11] = tswapreg(env->regs[11]); 333 (*regs)[12] = tswapreg(env->regs[12]); 334 (*regs)[13] = tswapreg(env->regs[13]); 335 (*regs)[14] = tswapreg(env->regs[14]); 336 (*regs)[15] = tswapreg(env->regs[15]); 337 338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 340 } 341 342 #define USE_ELF_CORE_DUMP 343 #define ELF_EXEC_PAGESIZE 4096 344 345 enum 346 { 347 ARM_HWCAP_ARM_SWP = 1 << 0, 348 ARM_HWCAP_ARM_HALF = 1 << 1, 349 ARM_HWCAP_ARM_THUMB = 1 << 2, 350 ARM_HWCAP_ARM_26BIT = 1 << 3, 351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 352 ARM_HWCAP_ARM_FPA = 1 << 5, 353 ARM_HWCAP_ARM_VFP = 1 << 6, 354 ARM_HWCAP_ARM_EDSP = 1 << 7, 355 ARM_HWCAP_ARM_JAVA = 1 << 8, 356 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 357 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 358 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 359 ARM_HWCAP_ARM_NEON = 1 << 12, 360 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 362 ARM_HWCAP_ARM_TLS = 1 << 15, 363 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 364 ARM_HWCAP_ARM_IDIVA = 1 << 17, 365 ARM_HWCAP_ARM_IDIVT = 1 << 18, 366 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 367 ARM_HWCAP_ARM_LPAE = 1 << 20, 368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 369 }; 370 371 enum { 372 ARM_HWCAP2_ARM_AES = 1 << 0, 373 ARM_HWCAP2_ARM_PMULL = 1 << 1, 374 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 375 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 376 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 377 }; 378 379 /* The commpage only exists for 32 bit kernels */ 380 381 /* Return 1 if the proposed guest space is suitable for the guest. 382 * Return 0 if the proposed guest space isn't suitable, but another 383 * address space should be tried. 384 * Return -1 if there is no way the proposed guest space can be 385 * valid regardless of the base. 386 * The guest code may leave a page mapped and populate it if the 387 * address is suitable. 388 */ 389 static int init_guest_commpage(unsigned long guest_base, 390 unsigned long guest_size) 391 { 392 unsigned long real_start, test_page_addr; 393 394 /* We need to check that we can force a fault on access to the 395 * commpage at 0xffff0fxx 396 */ 397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 398 399 /* If the commpage lies within the already allocated guest space, 400 * then there is no way we can allocate it. 401 * 402 * You may be thinking that that this check is redundant because 403 * we already validated the guest size against MAX_RESERVED_VA; 404 * but if qemu_host_page_mask is unusually large, then 405 * test_page_addr may be lower. 406 */ 407 if (test_page_addr >= guest_base 408 && test_page_addr < (guest_base + guest_size)) { 409 return -1; 410 } 411 412 /* Note it needs to be writeable to let us initialise it */ 413 real_start = (unsigned long) 414 mmap((void *)test_page_addr, qemu_host_page_size, 415 PROT_READ | PROT_WRITE, 416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 417 418 /* If we can't map it then try another address */ 419 if (real_start == -1ul) { 420 return 0; 421 } 422 423 if (real_start != test_page_addr) { 424 /* OS didn't put the page where we asked - unmap and reject */ 425 munmap((void *)real_start, qemu_host_page_size); 426 return 0; 427 } 428 429 /* Leave the page mapped 430 * Populate it (mmap should have left it all 0'd) 431 */ 432 433 /* Kernel helper versions */ 434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 435 436 /* Now it's populated make it RO */ 437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 438 perror("Protecting guest commpage"); 439 exit(-1); 440 } 441 442 return 1; /* All good */ 443 } 444 445 #define ELF_HWCAP get_elf_hwcap() 446 #define ELF_HWCAP2 get_elf_hwcap2() 447 448 static uint32_t get_elf_hwcap(void) 449 { 450 ARMCPU *cpu = ARM_CPU(thread_cpu); 451 uint32_t hwcaps = 0; 452 453 hwcaps |= ARM_HWCAP_ARM_SWP; 454 hwcaps |= ARM_HWCAP_ARM_HALF; 455 hwcaps |= ARM_HWCAP_ARM_THUMB; 456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 457 458 /* probe for the extra features */ 459 #define GET_FEATURE(feat, hwcap) \ 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 462 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 463 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 464 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 465 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 466 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 467 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 468 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 469 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 470 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 471 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 475 * to our VFP_FP16 feature bit. 476 */ 477 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 479 480 return hwcaps; 481 } 482 483 static uint32_t get_elf_hwcap2(void) 484 { 485 ARMCPU *cpu = ARM_CPU(thread_cpu); 486 uint32_t hwcaps = 0; 487 488 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 489 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 490 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 491 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 492 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 493 return hwcaps; 494 } 495 496 #undef GET_FEATURE 497 498 #else 499 /* 64 bit ARM definitions */ 500 #define ELF_START_MMAP 0x80000000 501 502 #define ELF_ARCH EM_AARCH64 503 #define ELF_CLASS ELFCLASS64 504 #define ELF_PLATFORM "aarch64" 505 506 static inline void init_thread(struct target_pt_regs *regs, 507 struct image_info *infop) 508 { 509 abi_long stack = infop->start_stack; 510 memset(regs, 0, sizeof(*regs)); 511 512 regs->pc = infop->entry & ~0x3ULL; 513 regs->sp = stack; 514 } 515 516 #define ELF_NREG 34 517 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 518 519 static void elf_core_copy_regs(target_elf_gregset_t *regs, 520 const CPUARMState *env) 521 { 522 int i; 523 524 for (i = 0; i < 32; i++) { 525 (*regs)[i] = tswapreg(env->xregs[i]); 526 } 527 (*regs)[32] = tswapreg(env->pc); 528 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 529 } 530 531 #define USE_ELF_CORE_DUMP 532 #define ELF_EXEC_PAGESIZE 4096 533 534 enum { 535 ARM_HWCAP_A64_FP = 1 << 0, 536 ARM_HWCAP_A64_ASIMD = 1 << 1, 537 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 538 ARM_HWCAP_A64_AES = 1 << 3, 539 ARM_HWCAP_A64_PMULL = 1 << 4, 540 ARM_HWCAP_A64_SHA1 = 1 << 5, 541 ARM_HWCAP_A64_SHA2 = 1 << 6, 542 ARM_HWCAP_A64_CRC32 = 1 << 7, 543 ARM_HWCAP_A64_ATOMICS = 1 << 8, 544 ARM_HWCAP_A64_FPHP = 1 << 9, 545 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 546 ARM_HWCAP_A64_CPUID = 1 << 11, 547 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 548 ARM_HWCAP_A64_JSCVT = 1 << 13, 549 ARM_HWCAP_A64_FCMA = 1 << 14, 550 ARM_HWCAP_A64_LRCPC = 1 << 15, 551 ARM_HWCAP_A64_DCPOP = 1 << 16, 552 ARM_HWCAP_A64_SHA3 = 1 << 17, 553 ARM_HWCAP_A64_SM3 = 1 << 18, 554 ARM_HWCAP_A64_SM4 = 1 << 19, 555 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 556 ARM_HWCAP_A64_SHA512 = 1 << 21, 557 ARM_HWCAP_A64_SVE = 1 << 22, 558 }; 559 560 #define ELF_HWCAP get_elf_hwcap() 561 562 static uint32_t get_elf_hwcap(void) 563 { 564 ARMCPU *cpu = ARM_CPU(thread_cpu); 565 uint32_t hwcaps = 0; 566 567 hwcaps |= ARM_HWCAP_A64_FP; 568 hwcaps |= ARM_HWCAP_A64_ASIMD; 569 570 /* probe for the extra features */ 571 #define GET_FEATURE(feat, hwcap) \ 572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 573 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 574 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 575 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 576 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 577 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 578 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3); 579 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3); 580 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4); 581 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512); 582 GET_FEATURE(ARM_FEATURE_V8_FP16, 583 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 584 GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS); 585 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM); 586 GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP); 587 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA); 588 GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE); 589 #undef GET_FEATURE 590 591 return hwcaps; 592 } 593 594 #endif /* not TARGET_AARCH64 */ 595 #endif /* TARGET_ARM */ 596 597 #ifdef TARGET_SPARC 598 #ifdef TARGET_SPARC64 599 600 #define ELF_START_MMAP 0x80000000 601 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 602 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 603 #ifndef TARGET_ABI32 604 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 605 #else 606 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 607 #endif 608 609 #define ELF_CLASS ELFCLASS64 610 #define ELF_ARCH EM_SPARCV9 611 612 #define STACK_BIAS 2047 613 614 static inline void init_thread(struct target_pt_regs *regs, 615 struct image_info *infop) 616 { 617 #ifndef TARGET_ABI32 618 regs->tstate = 0; 619 #endif 620 regs->pc = infop->entry; 621 regs->npc = regs->pc + 4; 622 regs->y = 0; 623 #ifdef TARGET_ABI32 624 regs->u_regs[14] = infop->start_stack - 16 * 4; 625 #else 626 if (personality(infop->personality) == PER_LINUX32) 627 regs->u_regs[14] = infop->start_stack - 16 * 4; 628 else 629 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 630 #endif 631 } 632 633 #else 634 #define ELF_START_MMAP 0x80000000 635 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 636 | HWCAP_SPARC_MULDIV) 637 638 #define ELF_CLASS ELFCLASS32 639 #define ELF_ARCH EM_SPARC 640 641 static inline void init_thread(struct target_pt_regs *regs, 642 struct image_info *infop) 643 { 644 regs->psr = 0; 645 regs->pc = infop->entry; 646 regs->npc = regs->pc + 4; 647 regs->y = 0; 648 regs->u_regs[14] = infop->start_stack - 16 * 4; 649 } 650 651 #endif 652 #endif 653 654 #ifdef TARGET_PPC 655 656 #define ELF_MACHINE PPC_ELF_MACHINE 657 #define ELF_START_MMAP 0x80000000 658 659 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 660 661 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 662 663 #define ELF_CLASS ELFCLASS64 664 665 #else 666 667 #define ELF_CLASS ELFCLASS32 668 669 #endif 670 671 #define ELF_ARCH EM_PPC 672 673 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 674 See arch/powerpc/include/asm/cputable.h. */ 675 enum { 676 QEMU_PPC_FEATURE_32 = 0x80000000, 677 QEMU_PPC_FEATURE_64 = 0x40000000, 678 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 679 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 680 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 681 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 682 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 683 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 684 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 685 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 686 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 687 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 688 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 689 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 690 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 691 QEMU_PPC_FEATURE_CELL = 0x00010000, 692 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 693 QEMU_PPC_FEATURE_SMT = 0x00004000, 694 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 695 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 696 QEMU_PPC_FEATURE_PA6T = 0x00000800, 697 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 698 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 699 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 700 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 701 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 702 703 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 704 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 705 706 /* Feature definitions in AT_HWCAP2. */ 707 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 708 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 709 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 710 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 711 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 712 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 713 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 714 }; 715 716 #define ELF_HWCAP get_elf_hwcap() 717 718 static uint32_t get_elf_hwcap(void) 719 { 720 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 721 uint32_t features = 0; 722 723 /* We don't have to be terribly complete here; the high points are 724 Altivec/FP/SPE support. Anything else is just a bonus. */ 725 #define GET_FEATURE(flag, feature) \ 726 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 727 #define GET_FEATURE2(flags, feature) \ 728 do { \ 729 if ((cpu->env.insns_flags2 & flags) == flags) { \ 730 features |= feature; \ 731 } \ 732 } while (0) 733 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 734 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 735 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 736 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 737 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 738 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 739 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 740 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 741 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 742 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 743 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 744 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 745 QEMU_PPC_FEATURE_ARCH_2_06); 746 #undef GET_FEATURE 747 #undef GET_FEATURE2 748 749 return features; 750 } 751 752 #define ELF_HWCAP2 get_elf_hwcap2() 753 754 static uint32_t get_elf_hwcap2(void) 755 { 756 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 757 uint32_t features = 0; 758 759 #define GET_FEATURE(flag, feature) \ 760 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 761 #define GET_FEATURE2(flag, feature) \ 762 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 763 764 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 765 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 766 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 767 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 768 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00); 769 770 #undef GET_FEATURE 771 #undef GET_FEATURE2 772 773 return features; 774 } 775 776 /* 777 * The requirements here are: 778 * - keep the final alignment of sp (sp & 0xf) 779 * - make sure the 32-bit value at the first 16 byte aligned position of 780 * AUXV is greater than 16 for glibc compatibility. 781 * AT_IGNOREPPC is used for that. 782 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 783 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 784 */ 785 #define DLINFO_ARCH_ITEMS 5 786 #define ARCH_DLINFO \ 787 do { \ 788 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 789 /* \ 790 * Handle glibc compatibility: these magic entries must \ 791 * be at the lowest addresses in the final auxv. \ 792 */ \ 793 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 794 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 795 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 796 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 797 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 798 } while (0) 799 800 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 801 { 802 _regs->gpr[1] = infop->start_stack; 803 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 804 if (get_ppc64_abi(infop) < 2) { 805 uint64_t val; 806 get_user_u64(val, infop->entry + 8); 807 _regs->gpr[2] = val + infop->load_bias; 808 get_user_u64(val, infop->entry); 809 infop->entry = val + infop->load_bias; 810 } else { 811 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 812 } 813 #endif 814 _regs->nip = infop->entry; 815 } 816 817 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 818 #define ELF_NREG 48 819 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 820 821 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 822 { 823 int i; 824 target_ulong ccr = 0; 825 826 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 827 (*regs)[i] = tswapreg(env->gpr[i]); 828 } 829 830 (*regs)[32] = tswapreg(env->nip); 831 (*regs)[33] = tswapreg(env->msr); 832 (*regs)[35] = tswapreg(env->ctr); 833 (*regs)[36] = tswapreg(env->lr); 834 (*regs)[37] = tswapreg(env->xer); 835 836 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 837 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 838 } 839 (*regs)[38] = tswapreg(ccr); 840 } 841 842 #define USE_ELF_CORE_DUMP 843 #define ELF_EXEC_PAGESIZE 4096 844 845 #endif 846 847 #ifdef TARGET_MIPS 848 849 #define ELF_START_MMAP 0x80000000 850 851 #ifdef TARGET_MIPS64 852 #define ELF_CLASS ELFCLASS64 853 #else 854 #define ELF_CLASS ELFCLASS32 855 #endif 856 #define ELF_ARCH EM_MIPS 857 858 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 859 860 static inline void init_thread(struct target_pt_regs *regs, 861 struct image_info *infop) 862 { 863 regs->cp0_status = 2 << CP0St_KSU; 864 regs->cp0_epc = infop->entry; 865 regs->regs[29] = infop->start_stack; 866 } 867 868 /* See linux kernel: arch/mips/include/asm/elf.h. */ 869 #define ELF_NREG 45 870 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 871 872 /* See linux kernel: arch/mips/include/asm/reg.h. */ 873 enum { 874 #ifdef TARGET_MIPS64 875 TARGET_EF_R0 = 0, 876 #else 877 TARGET_EF_R0 = 6, 878 #endif 879 TARGET_EF_R26 = TARGET_EF_R0 + 26, 880 TARGET_EF_R27 = TARGET_EF_R0 + 27, 881 TARGET_EF_LO = TARGET_EF_R0 + 32, 882 TARGET_EF_HI = TARGET_EF_R0 + 33, 883 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 884 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 885 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 886 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 887 }; 888 889 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 890 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 891 { 892 int i; 893 894 for (i = 0; i < TARGET_EF_R0; i++) { 895 (*regs)[i] = 0; 896 } 897 (*regs)[TARGET_EF_R0] = 0; 898 899 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 900 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 901 } 902 903 (*regs)[TARGET_EF_R26] = 0; 904 (*regs)[TARGET_EF_R27] = 0; 905 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 906 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 907 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 908 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 909 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 910 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 911 } 912 913 #define USE_ELF_CORE_DUMP 914 #define ELF_EXEC_PAGESIZE 4096 915 916 /* See arch/mips/include/uapi/asm/hwcap.h. */ 917 enum { 918 HWCAP_MIPS_R6 = (1 << 0), 919 HWCAP_MIPS_MSA = (1 << 1), 920 }; 921 922 #define ELF_HWCAP get_elf_hwcap() 923 924 static uint32_t get_elf_hwcap(void) 925 { 926 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 927 uint32_t hwcaps = 0; 928 929 #define GET_FEATURE(flag, hwcap) \ 930 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 931 932 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 933 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 934 935 #undef GET_FEATURE 936 937 return hwcaps; 938 } 939 940 #endif /* TARGET_MIPS */ 941 942 #ifdef TARGET_MICROBLAZE 943 944 #define ELF_START_MMAP 0x80000000 945 946 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 947 948 #define ELF_CLASS ELFCLASS32 949 #define ELF_ARCH EM_MICROBLAZE 950 951 static inline void init_thread(struct target_pt_regs *regs, 952 struct image_info *infop) 953 { 954 regs->pc = infop->entry; 955 regs->r1 = infop->start_stack; 956 957 } 958 959 #define ELF_EXEC_PAGESIZE 4096 960 961 #define USE_ELF_CORE_DUMP 962 #define ELF_NREG 38 963 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 964 965 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 966 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 967 { 968 int i, pos = 0; 969 970 for (i = 0; i < 32; i++) { 971 (*regs)[pos++] = tswapreg(env->regs[i]); 972 } 973 974 for (i = 0; i < 6; i++) { 975 (*regs)[pos++] = tswapreg(env->sregs[i]); 976 } 977 } 978 979 #endif /* TARGET_MICROBLAZE */ 980 981 #ifdef TARGET_NIOS2 982 983 #define ELF_START_MMAP 0x80000000 984 985 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 986 987 #define ELF_CLASS ELFCLASS32 988 #define ELF_ARCH EM_ALTERA_NIOS2 989 990 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 991 { 992 regs->ea = infop->entry; 993 regs->sp = infop->start_stack; 994 regs->estatus = 0x3; 995 } 996 997 #define ELF_EXEC_PAGESIZE 4096 998 999 #define USE_ELF_CORE_DUMP 1000 #define ELF_NREG 49 1001 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1002 1003 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1004 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1005 const CPUNios2State *env) 1006 { 1007 int i; 1008 1009 (*regs)[0] = -1; 1010 for (i = 1; i < 8; i++) /* r0-r7 */ 1011 (*regs)[i] = tswapreg(env->regs[i + 7]); 1012 1013 for (i = 8; i < 16; i++) /* r8-r15 */ 1014 (*regs)[i] = tswapreg(env->regs[i - 8]); 1015 1016 for (i = 16; i < 24; i++) /* r16-r23 */ 1017 (*regs)[i] = tswapreg(env->regs[i + 7]); 1018 (*regs)[24] = -1; /* R_ET */ 1019 (*regs)[25] = -1; /* R_BT */ 1020 (*regs)[26] = tswapreg(env->regs[R_GP]); 1021 (*regs)[27] = tswapreg(env->regs[R_SP]); 1022 (*regs)[28] = tswapreg(env->regs[R_FP]); 1023 (*regs)[29] = tswapreg(env->regs[R_EA]); 1024 (*regs)[30] = -1; /* R_SSTATUS */ 1025 (*regs)[31] = tswapreg(env->regs[R_RA]); 1026 1027 (*regs)[32] = tswapreg(env->regs[R_PC]); 1028 1029 (*regs)[33] = -1; /* R_STATUS */ 1030 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1031 1032 for (i = 35; i < 49; i++) /* ... */ 1033 (*regs)[i] = -1; 1034 } 1035 1036 #endif /* TARGET_NIOS2 */ 1037 1038 #ifdef TARGET_OPENRISC 1039 1040 #define ELF_START_MMAP 0x08000000 1041 1042 #define ELF_ARCH EM_OPENRISC 1043 #define ELF_CLASS ELFCLASS32 1044 #define ELF_DATA ELFDATA2MSB 1045 1046 static inline void init_thread(struct target_pt_regs *regs, 1047 struct image_info *infop) 1048 { 1049 regs->pc = infop->entry; 1050 regs->gpr[1] = infop->start_stack; 1051 } 1052 1053 #define USE_ELF_CORE_DUMP 1054 #define ELF_EXEC_PAGESIZE 8192 1055 1056 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1057 #define ELF_NREG 34 /* gprs and pc, sr */ 1058 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1059 1060 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1061 const CPUOpenRISCState *env) 1062 { 1063 int i; 1064 1065 for (i = 0; i < 32; i++) { 1066 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1067 } 1068 (*regs)[32] = tswapreg(env->pc); 1069 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1070 } 1071 #define ELF_HWCAP 0 1072 #define ELF_PLATFORM NULL 1073 1074 #endif /* TARGET_OPENRISC */ 1075 1076 #ifdef TARGET_SH4 1077 1078 #define ELF_START_MMAP 0x80000000 1079 1080 #define ELF_CLASS ELFCLASS32 1081 #define ELF_ARCH EM_SH 1082 1083 static inline void init_thread(struct target_pt_regs *regs, 1084 struct image_info *infop) 1085 { 1086 /* Check other registers XXXXX */ 1087 regs->pc = infop->entry; 1088 regs->regs[15] = infop->start_stack; 1089 } 1090 1091 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1092 #define ELF_NREG 23 1093 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1094 1095 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1096 enum { 1097 TARGET_REG_PC = 16, 1098 TARGET_REG_PR = 17, 1099 TARGET_REG_SR = 18, 1100 TARGET_REG_GBR = 19, 1101 TARGET_REG_MACH = 20, 1102 TARGET_REG_MACL = 21, 1103 TARGET_REG_SYSCALL = 22 1104 }; 1105 1106 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1107 const CPUSH4State *env) 1108 { 1109 int i; 1110 1111 for (i = 0; i < 16; i++) { 1112 (*regs)[i] = tswapreg(env->gregs[i]); 1113 } 1114 1115 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1116 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1117 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1118 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1119 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1120 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1121 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1122 } 1123 1124 #define USE_ELF_CORE_DUMP 1125 #define ELF_EXEC_PAGESIZE 4096 1126 1127 enum { 1128 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1129 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1130 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1131 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1132 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1133 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1134 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1135 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1136 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1137 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1138 }; 1139 1140 #define ELF_HWCAP get_elf_hwcap() 1141 1142 static uint32_t get_elf_hwcap(void) 1143 { 1144 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1145 uint32_t hwcap = 0; 1146 1147 hwcap |= SH_CPU_HAS_FPU; 1148 1149 if (cpu->env.features & SH_FEATURE_SH4A) { 1150 hwcap |= SH_CPU_HAS_LLSC; 1151 } 1152 1153 return hwcap; 1154 } 1155 1156 #endif 1157 1158 #ifdef TARGET_CRIS 1159 1160 #define ELF_START_MMAP 0x80000000 1161 1162 #define ELF_CLASS ELFCLASS32 1163 #define ELF_ARCH EM_CRIS 1164 1165 static inline void init_thread(struct target_pt_regs *regs, 1166 struct image_info *infop) 1167 { 1168 regs->erp = infop->entry; 1169 } 1170 1171 #define ELF_EXEC_PAGESIZE 8192 1172 1173 #endif 1174 1175 #ifdef TARGET_M68K 1176 1177 #define ELF_START_MMAP 0x80000000 1178 1179 #define ELF_CLASS ELFCLASS32 1180 #define ELF_ARCH EM_68K 1181 1182 /* ??? Does this need to do anything? 1183 #define ELF_PLAT_INIT(_r) */ 1184 1185 static inline void init_thread(struct target_pt_regs *regs, 1186 struct image_info *infop) 1187 { 1188 regs->usp = infop->start_stack; 1189 regs->sr = 0; 1190 regs->pc = infop->entry; 1191 } 1192 1193 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1194 #define ELF_NREG 20 1195 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1196 1197 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1198 { 1199 (*regs)[0] = tswapreg(env->dregs[1]); 1200 (*regs)[1] = tswapreg(env->dregs[2]); 1201 (*regs)[2] = tswapreg(env->dregs[3]); 1202 (*regs)[3] = tswapreg(env->dregs[4]); 1203 (*regs)[4] = tswapreg(env->dregs[5]); 1204 (*regs)[5] = tswapreg(env->dregs[6]); 1205 (*regs)[6] = tswapreg(env->dregs[7]); 1206 (*regs)[7] = tswapreg(env->aregs[0]); 1207 (*regs)[8] = tswapreg(env->aregs[1]); 1208 (*regs)[9] = tswapreg(env->aregs[2]); 1209 (*regs)[10] = tswapreg(env->aregs[3]); 1210 (*regs)[11] = tswapreg(env->aregs[4]); 1211 (*regs)[12] = tswapreg(env->aregs[5]); 1212 (*regs)[13] = tswapreg(env->aregs[6]); 1213 (*regs)[14] = tswapreg(env->dregs[0]); 1214 (*regs)[15] = tswapreg(env->aregs[7]); 1215 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1216 (*regs)[17] = tswapreg(env->sr); 1217 (*regs)[18] = tswapreg(env->pc); 1218 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1219 } 1220 1221 #define USE_ELF_CORE_DUMP 1222 #define ELF_EXEC_PAGESIZE 8192 1223 1224 #endif 1225 1226 #ifdef TARGET_ALPHA 1227 1228 #define ELF_START_MMAP (0x30000000000ULL) 1229 1230 #define ELF_CLASS ELFCLASS64 1231 #define ELF_ARCH EM_ALPHA 1232 1233 static inline void init_thread(struct target_pt_regs *regs, 1234 struct image_info *infop) 1235 { 1236 regs->pc = infop->entry; 1237 regs->ps = 8; 1238 regs->usp = infop->start_stack; 1239 } 1240 1241 #define ELF_EXEC_PAGESIZE 8192 1242 1243 #endif /* TARGET_ALPHA */ 1244 1245 #ifdef TARGET_S390X 1246 1247 #define ELF_START_MMAP (0x20000000000ULL) 1248 1249 #define ELF_CLASS ELFCLASS64 1250 #define ELF_DATA ELFDATA2MSB 1251 #define ELF_ARCH EM_S390 1252 1253 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1254 { 1255 regs->psw.addr = infop->entry; 1256 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1257 regs->gprs[15] = infop->start_stack; 1258 } 1259 1260 #endif /* TARGET_S390X */ 1261 1262 #ifdef TARGET_TILEGX 1263 1264 /* 42 bits real used address, a half for user mode */ 1265 #define ELF_START_MMAP (0x00000020000000000ULL) 1266 1267 #define elf_check_arch(x) ((x) == EM_TILEGX) 1268 1269 #define ELF_CLASS ELFCLASS64 1270 #define ELF_DATA ELFDATA2LSB 1271 #define ELF_ARCH EM_TILEGX 1272 1273 static inline void init_thread(struct target_pt_regs *regs, 1274 struct image_info *infop) 1275 { 1276 regs->pc = infop->entry; 1277 regs->sp = infop->start_stack; 1278 1279 } 1280 1281 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1282 1283 #endif /* TARGET_TILEGX */ 1284 1285 #ifdef TARGET_RISCV 1286 1287 #define ELF_START_MMAP 0x80000000 1288 #define ELF_ARCH EM_RISCV 1289 1290 #ifdef TARGET_RISCV32 1291 #define ELF_CLASS ELFCLASS32 1292 #else 1293 #define ELF_CLASS ELFCLASS64 1294 #endif 1295 1296 static inline void init_thread(struct target_pt_regs *regs, 1297 struct image_info *infop) 1298 { 1299 regs->sepc = infop->entry; 1300 regs->sp = infop->start_stack; 1301 } 1302 1303 #define ELF_EXEC_PAGESIZE 4096 1304 1305 #endif /* TARGET_RISCV */ 1306 1307 #ifdef TARGET_HPPA 1308 1309 #define ELF_START_MMAP 0x80000000 1310 #define ELF_CLASS ELFCLASS32 1311 #define ELF_ARCH EM_PARISC 1312 #define ELF_PLATFORM "PARISC" 1313 #define STACK_GROWS_DOWN 0 1314 #define STACK_ALIGNMENT 64 1315 1316 static inline void init_thread(struct target_pt_regs *regs, 1317 struct image_info *infop) 1318 { 1319 regs->iaoq[0] = infop->entry; 1320 regs->iaoq[1] = infop->entry + 4; 1321 regs->gr[23] = 0; 1322 regs->gr[24] = infop->arg_start; 1323 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1324 /* The top-of-stack contains a linkage buffer. */ 1325 regs->gr[30] = infop->start_stack + 64; 1326 regs->gr[31] = infop->entry; 1327 } 1328 1329 #endif /* TARGET_HPPA */ 1330 1331 #ifdef TARGET_XTENSA 1332 1333 #define ELF_START_MMAP 0x20000000 1334 1335 #define ELF_CLASS ELFCLASS32 1336 #define ELF_ARCH EM_XTENSA 1337 1338 static inline void init_thread(struct target_pt_regs *regs, 1339 struct image_info *infop) 1340 { 1341 regs->windowbase = 0; 1342 regs->windowstart = 1; 1343 regs->areg[1] = infop->start_stack; 1344 regs->pc = infop->entry; 1345 } 1346 1347 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1348 #define ELF_NREG 128 1349 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1350 1351 enum { 1352 TARGET_REG_PC, 1353 TARGET_REG_PS, 1354 TARGET_REG_LBEG, 1355 TARGET_REG_LEND, 1356 TARGET_REG_LCOUNT, 1357 TARGET_REG_SAR, 1358 TARGET_REG_WINDOWSTART, 1359 TARGET_REG_WINDOWBASE, 1360 TARGET_REG_THREADPTR, 1361 TARGET_REG_AR0 = 64, 1362 }; 1363 1364 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1365 const CPUXtensaState *env) 1366 { 1367 unsigned i; 1368 1369 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1370 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1371 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1372 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1373 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1374 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1375 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1376 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1377 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1378 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1379 for (i = 0; i < env->config->nareg; ++i) { 1380 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1381 } 1382 } 1383 1384 #define USE_ELF_CORE_DUMP 1385 #define ELF_EXEC_PAGESIZE 4096 1386 1387 #endif /* TARGET_XTENSA */ 1388 1389 #ifndef ELF_PLATFORM 1390 #define ELF_PLATFORM (NULL) 1391 #endif 1392 1393 #ifndef ELF_MACHINE 1394 #define ELF_MACHINE ELF_ARCH 1395 #endif 1396 1397 #ifndef elf_check_arch 1398 #define elf_check_arch(x) ((x) == ELF_ARCH) 1399 #endif 1400 1401 #ifndef ELF_HWCAP 1402 #define ELF_HWCAP 0 1403 #endif 1404 1405 #ifndef STACK_GROWS_DOWN 1406 #define STACK_GROWS_DOWN 1 1407 #endif 1408 1409 #ifndef STACK_ALIGNMENT 1410 #define STACK_ALIGNMENT 16 1411 #endif 1412 1413 #ifdef TARGET_ABI32 1414 #undef ELF_CLASS 1415 #define ELF_CLASS ELFCLASS32 1416 #undef bswaptls 1417 #define bswaptls(ptr) bswap32s(ptr) 1418 #endif 1419 1420 #include "elf.h" 1421 1422 struct exec 1423 { 1424 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1425 unsigned int a_text; /* length of text, in bytes */ 1426 unsigned int a_data; /* length of data, in bytes */ 1427 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1428 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1429 unsigned int a_entry; /* start address */ 1430 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1431 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1432 }; 1433 1434 1435 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1436 #define OMAGIC 0407 1437 #define NMAGIC 0410 1438 #define ZMAGIC 0413 1439 #define QMAGIC 0314 1440 1441 /* Necessary parameters */ 1442 #define TARGET_ELF_EXEC_PAGESIZE \ 1443 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1444 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1445 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1446 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1447 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1448 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1449 1450 #define DLINFO_ITEMS 15 1451 1452 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1453 { 1454 memcpy(to, from, n); 1455 } 1456 1457 #ifdef BSWAP_NEEDED 1458 static void bswap_ehdr(struct elfhdr *ehdr) 1459 { 1460 bswap16s(&ehdr->e_type); /* Object file type */ 1461 bswap16s(&ehdr->e_machine); /* Architecture */ 1462 bswap32s(&ehdr->e_version); /* Object file version */ 1463 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1464 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1465 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1466 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1467 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1468 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1469 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1470 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1471 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1472 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1473 } 1474 1475 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1476 { 1477 int i; 1478 for (i = 0; i < phnum; ++i, ++phdr) { 1479 bswap32s(&phdr->p_type); /* Segment type */ 1480 bswap32s(&phdr->p_flags); /* Segment flags */ 1481 bswaptls(&phdr->p_offset); /* Segment file offset */ 1482 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1483 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1484 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1485 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1486 bswaptls(&phdr->p_align); /* Segment alignment */ 1487 } 1488 } 1489 1490 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1491 { 1492 int i; 1493 for (i = 0; i < shnum; ++i, ++shdr) { 1494 bswap32s(&shdr->sh_name); 1495 bswap32s(&shdr->sh_type); 1496 bswaptls(&shdr->sh_flags); 1497 bswaptls(&shdr->sh_addr); 1498 bswaptls(&shdr->sh_offset); 1499 bswaptls(&shdr->sh_size); 1500 bswap32s(&shdr->sh_link); 1501 bswap32s(&shdr->sh_info); 1502 bswaptls(&shdr->sh_addralign); 1503 bswaptls(&shdr->sh_entsize); 1504 } 1505 } 1506 1507 static void bswap_sym(struct elf_sym *sym) 1508 { 1509 bswap32s(&sym->st_name); 1510 bswaptls(&sym->st_value); 1511 bswaptls(&sym->st_size); 1512 bswap16s(&sym->st_shndx); 1513 } 1514 #else 1515 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1516 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1517 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1518 static inline void bswap_sym(struct elf_sym *sym) { } 1519 #endif 1520 1521 #ifdef USE_ELF_CORE_DUMP 1522 static int elf_core_dump(int, const CPUArchState *); 1523 #endif /* USE_ELF_CORE_DUMP */ 1524 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1525 1526 /* Verify the portions of EHDR within E_IDENT for the target. 1527 This can be performed before bswapping the entire header. */ 1528 static bool elf_check_ident(struct elfhdr *ehdr) 1529 { 1530 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1531 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1532 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1533 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1534 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1535 && ehdr->e_ident[EI_DATA] == ELF_DATA 1536 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1537 } 1538 1539 /* Verify the portions of EHDR outside of E_IDENT for the target. 1540 This has to wait until after bswapping the header. */ 1541 static bool elf_check_ehdr(struct elfhdr *ehdr) 1542 { 1543 return (elf_check_arch(ehdr->e_machine) 1544 && ehdr->e_ehsize == sizeof(struct elfhdr) 1545 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1546 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1547 } 1548 1549 /* 1550 * 'copy_elf_strings()' copies argument/envelope strings from user 1551 * memory to free pages in kernel mem. These are in a format ready 1552 * to be put directly into the top of new user memory. 1553 * 1554 */ 1555 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1556 abi_ulong p, abi_ulong stack_limit) 1557 { 1558 char *tmp; 1559 int len, i; 1560 abi_ulong top = p; 1561 1562 if (!p) { 1563 return 0; /* bullet-proofing */ 1564 } 1565 1566 if (STACK_GROWS_DOWN) { 1567 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1568 for (i = argc - 1; i >= 0; --i) { 1569 tmp = argv[i]; 1570 if (!tmp) { 1571 fprintf(stderr, "VFS: argc is wrong"); 1572 exit(-1); 1573 } 1574 len = strlen(tmp) + 1; 1575 tmp += len; 1576 1577 if (len > (p - stack_limit)) { 1578 return 0; 1579 } 1580 while (len) { 1581 int bytes_to_copy = (len > offset) ? offset : len; 1582 tmp -= bytes_to_copy; 1583 p -= bytes_to_copy; 1584 offset -= bytes_to_copy; 1585 len -= bytes_to_copy; 1586 1587 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1588 1589 if (offset == 0) { 1590 memcpy_to_target(p, scratch, top - p); 1591 top = p; 1592 offset = TARGET_PAGE_SIZE; 1593 } 1594 } 1595 } 1596 if (p != top) { 1597 memcpy_to_target(p, scratch + offset, top - p); 1598 } 1599 } else { 1600 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1601 for (i = 0; i < argc; ++i) { 1602 tmp = argv[i]; 1603 if (!tmp) { 1604 fprintf(stderr, "VFS: argc is wrong"); 1605 exit(-1); 1606 } 1607 len = strlen(tmp) + 1; 1608 if (len > (stack_limit - p)) { 1609 return 0; 1610 } 1611 while (len) { 1612 int bytes_to_copy = (len > remaining) ? remaining : len; 1613 1614 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1615 1616 tmp += bytes_to_copy; 1617 remaining -= bytes_to_copy; 1618 p += bytes_to_copy; 1619 len -= bytes_to_copy; 1620 1621 if (remaining == 0) { 1622 memcpy_to_target(top, scratch, p - top); 1623 top = p; 1624 remaining = TARGET_PAGE_SIZE; 1625 } 1626 } 1627 } 1628 if (p != top) { 1629 memcpy_to_target(top, scratch, p - top); 1630 } 1631 } 1632 1633 return p; 1634 } 1635 1636 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1637 * argument/environment space. Newer kernels (>2.6.33) allow more, 1638 * dependent on stack size, but guarantee at least 32 pages for 1639 * backwards compatibility. 1640 */ 1641 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1642 1643 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1644 struct image_info *info) 1645 { 1646 abi_ulong size, error, guard; 1647 1648 size = guest_stack_size; 1649 if (size < STACK_LOWER_LIMIT) { 1650 size = STACK_LOWER_LIMIT; 1651 } 1652 guard = TARGET_PAGE_SIZE; 1653 if (guard < qemu_real_host_page_size) { 1654 guard = qemu_real_host_page_size; 1655 } 1656 1657 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1658 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1659 if (error == -1) { 1660 perror("mmap stack"); 1661 exit(-1); 1662 } 1663 1664 /* We reserve one extra page at the top of the stack as guard. */ 1665 if (STACK_GROWS_DOWN) { 1666 target_mprotect(error, guard, PROT_NONE); 1667 info->stack_limit = error + guard; 1668 return info->stack_limit + size - sizeof(void *); 1669 } else { 1670 target_mprotect(error + size, guard, PROT_NONE); 1671 info->stack_limit = error + size; 1672 return error; 1673 } 1674 } 1675 1676 /* Map and zero the bss. We need to explicitly zero any fractional pages 1677 after the data section (i.e. bss). */ 1678 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1679 { 1680 uintptr_t host_start, host_map_start, host_end; 1681 1682 last_bss = TARGET_PAGE_ALIGN(last_bss); 1683 1684 /* ??? There is confusion between qemu_real_host_page_size and 1685 qemu_host_page_size here and elsewhere in target_mmap, which 1686 may lead to the end of the data section mapping from the file 1687 not being mapped. At least there was an explicit test and 1688 comment for that here, suggesting that "the file size must 1689 be known". The comment probably pre-dates the introduction 1690 of the fstat system call in target_mmap which does in fact 1691 find out the size. What isn't clear is if the workaround 1692 here is still actually needed. For now, continue with it, 1693 but merge it with the "normal" mmap that would allocate the bss. */ 1694 1695 host_start = (uintptr_t) g2h(elf_bss); 1696 host_end = (uintptr_t) g2h(last_bss); 1697 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1698 1699 if (host_map_start < host_end) { 1700 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1701 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1702 if (p == MAP_FAILED) { 1703 perror("cannot mmap brk"); 1704 exit(-1); 1705 } 1706 } 1707 1708 /* Ensure that the bss page(s) are valid */ 1709 if ((page_get_flags(last_bss-1) & prot) != prot) { 1710 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1711 } 1712 1713 if (host_start < host_map_start) { 1714 memset((void *)host_start, 0, host_map_start - host_start); 1715 } 1716 } 1717 1718 #ifdef TARGET_ARM 1719 static int elf_is_fdpic(struct elfhdr *exec) 1720 { 1721 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1722 } 1723 #else 1724 /* Default implementation, always false. */ 1725 static int elf_is_fdpic(struct elfhdr *exec) 1726 { 1727 return 0; 1728 } 1729 #endif 1730 1731 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1732 { 1733 uint16_t n; 1734 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1735 1736 /* elf32_fdpic_loadseg */ 1737 n = info->nsegs; 1738 while (n--) { 1739 sp -= 12; 1740 put_user_u32(loadsegs[n].addr, sp+0); 1741 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1742 put_user_u32(loadsegs[n].p_memsz, sp+8); 1743 } 1744 1745 /* elf32_fdpic_loadmap */ 1746 sp -= 4; 1747 put_user_u16(0, sp+0); /* version */ 1748 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1749 1750 info->personality = PER_LINUX_FDPIC; 1751 info->loadmap_addr = sp; 1752 1753 return sp; 1754 } 1755 1756 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1757 struct elfhdr *exec, 1758 struct image_info *info, 1759 struct image_info *interp_info) 1760 { 1761 abi_ulong sp; 1762 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1763 int size; 1764 int i; 1765 abi_ulong u_rand_bytes; 1766 uint8_t k_rand_bytes[16]; 1767 abi_ulong u_platform; 1768 const char *k_platform; 1769 const int n = sizeof(elf_addr_t); 1770 1771 sp = p; 1772 1773 /* Needs to be before we load the env/argc/... */ 1774 if (elf_is_fdpic(exec)) { 1775 /* Need 4 byte alignment for these structs */ 1776 sp &= ~3; 1777 sp = loader_build_fdpic_loadmap(info, sp); 1778 info->other_info = interp_info; 1779 if (interp_info) { 1780 interp_info->other_info = info; 1781 sp = loader_build_fdpic_loadmap(interp_info, sp); 1782 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1783 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1784 } else { 1785 info->interpreter_loadmap_addr = 0; 1786 info->interpreter_pt_dynamic_addr = 0; 1787 } 1788 } 1789 1790 u_platform = 0; 1791 k_platform = ELF_PLATFORM; 1792 if (k_platform) { 1793 size_t len = strlen(k_platform) + 1; 1794 if (STACK_GROWS_DOWN) { 1795 sp -= (len + n - 1) & ~(n - 1); 1796 u_platform = sp; 1797 /* FIXME - check return value of memcpy_to_target() for failure */ 1798 memcpy_to_target(sp, k_platform, len); 1799 } else { 1800 memcpy_to_target(sp, k_platform, len); 1801 u_platform = sp; 1802 sp += len + 1; 1803 } 1804 } 1805 1806 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1807 * the argv and envp pointers. 1808 */ 1809 if (STACK_GROWS_DOWN) { 1810 sp = QEMU_ALIGN_DOWN(sp, 16); 1811 } else { 1812 sp = QEMU_ALIGN_UP(sp, 16); 1813 } 1814 1815 /* 1816 * Generate 16 random bytes for userspace PRNG seeding (not 1817 * cryptically secure but it's not the aim of QEMU). 1818 */ 1819 for (i = 0; i < 16; i++) { 1820 k_rand_bytes[i] = rand(); 1821 } 1822 if (STACK_GROWS_DOWN) { 1823 sp -= 16; 1824 u_rand_bytes = sp; 1825 /* FIXME - check return value of memcpy_to_target() for failure */ 1826 memcpy_to_target(sp, k_rand_bytes, 16); 1827 } else { 1828 memcpy_to_target(sp, k_rand_bytes, 16); 1829 u_rand_bytes = sp; 1830 sp += 16; 1831 } 1832 1833 size = (DLINFO_ITEMS + 1) * 2; 1834 if (k_platform) 1835 size += 2; 1836 #ifdef DLINFO_ARCH_ITEMS 1837 size += DLINFO_ARCH_ITEMS * 2; 1838 #endif 1839 #ifdef ELF_HWCAP2 1840 size += 2; 1841 #endif 1842 info->auxv_len = size * n; 1843 1844 size += envc + argc + 2; 1845 size += 1; /* argc itself */ 1846 size *= n; 1847 1848 /* Allocate space and finalize stack alignment for entry now. */ 1849 if (STACK_GROWS_DOWN) { 1850 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1851 sp = u_argc; 1852 } else { 1853 u_argc = sp; 1854 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1855 } 1856 1857 u_argv = u_argc + n; 1858 u_envp = u_argv + (argc + 1) * n; 1859 u_auxv = u_envp + (envc + 1) * n; 1860 info->saved_auxv = u_auxv; 1861 info->arg_start = u_argv; 1862 info->arg_end = u_argv + argc * n; 1863 1864 /* This is correct because Linux defines 1865 * elf_addr_t as Elf32_Off / Elf64_Off 1866 */ 1867 #define NEW_AUX_ENT(id, val) do { \ 1868 put_user_ual(id, u_auxv); u_auxv += n; \ 1869 put_user_ual(val, u_auxv); u_auxv += n; \ 1870 } while(0) 1871 1872 #ifdef ARCH_DLINFO 1873 /* 1874 * ARCH_DLINFO must come first so platform specific code can enforce 1875 * special alignment requirements on the AUXV if necessary (eg. PPC). 1876 */ 1877 ARCH_DLINFO; 1878 #endif 1879 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1880 * on info->auxv_len will trigger. 1881 */ 1882 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1883 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1884 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1885 if ((info->alignment & ~qemu_host_page_mask) != 0) { 1886 /* Target doesn't support host page size alignment */ 1887 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1888 } else { 1889 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 1890 qemu_host_page_size))); 1891 } 1892 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1893 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1894 NEW_AUX_ENT(AT_ENTRY, info->entry); 1895 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1896 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1897 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1898 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1899 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1900 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1901 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1902 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 1903 1904 #ifdef ELF_HWCAP2 1905 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1906 #endif 1907 1908 if (u_platform) { 1909 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1910 } 1911 NEW_AUX_ENT (AT_NULL, 0); 1912 #undef NEW_AUX_ENT 1913 1914 /* Check that our initial calculation of the auxv length matches how much 1915 * we actually put into it. 1916 */ 1917 assert(info->auxv_len == u_auxv - info->saved_auxv); 1918 1919 put_user_ual(argc, u_argc); 1920 1921 p = info->arg_strings; 1922 for (i = 0; i < argc; ++i) { 1923 put_user_ual(p, u_argv); 1924 u_argv += n; 1925 p += target_strlen(p) + 1; 1926 } 1927 put_user_ual(0, u_argv); 1928 1929 p = info->env_strings; 1930 for (i = 0; i < envc; ++i) { 1931 put_user_ual(p, u_envp); 1932 u_envp += n; 1933 p += target_strlen(p) + 1; 1934 } 1935 put_user_ual(0, u_envp); 1936 1937 return sp; 1938 } 1939 1940 unsigned long init_guest_space(unsigned long host_start, 1941 unsigned long host_size, 1942 unsigned long guest_start, 1943 bool fixed) 1944 { 1945 unsigned long current_start, aligned_start; 1946 int flags; 1947 1948 assert(host_start || host_size); 1949 1950 /* If just a starting address is given, then just verify that 1951 * address. */ 1952 if (host_start && !host_size) { 1953 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1954 if (init_guest_commpage(host_start, host_size) != 1) { 1955 return (unsigned long)-1; 1956 } 1957 #endif 1958 return host_start; 1959 } 1960 1961 /* Setup the initial flags and start address. */ 1962 current_start = host_start & qemu_host_page_mask; 1963 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1964 if (fixed) { 1965 flags |= MAP_FIXED; 1966 } 1967 1968 /* Otherwise, a non-zero size region of memory needs to be mapped 1969 * and validated. */ 1970 1971 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1972 /* On 32-bit ARM, we need to map not just the usable memory, but 1973 * also the commpage. Try to find a suitable place by allocating 1974 * a big chunk for all of it. If host_start, then the naive 1975 * strategy probably does good enough. 1976 */ 1977 if (!host_start) { 1978 unsigned long guest_full_size, host_full_size, real_start; 1979 1980 guest_full_size = 1981 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 1982 host_full_size = guest_full_size - guest_start; 1983 real_start = (unsigned long) 1984 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 1985 if (real_start == (unsigned long)-1) { 1986 if (host_size < host_full_size - qemu_host_page_size) { 1987 /* We failed to map a continous segment, but we're 1988 * allowed to have a gap between the usable memory and 1989 * the commpage where other things can be mapped. 1990 * This sparseness gives us more flexibility to find 1991 * an address range. 1992 */ 1993 goto naive; 1994 } 1995 return (unsigned long)-1; 1996 } 1997 munmap((void *)real_start, host_full_size); 1998 if (real_start & ~qemu_host_page_mask) { 1999 /* The same thing again, but with an extra qemu_host_page_size 2000 * so that we can shift around alignment. 2001 */ 2002 unsigned long real_size = host_full_size + qemu_host_page_size; 2003 real_start = (unsigned long) 2004 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 2005 if (real_start == (unsigned long)-1) { 2006 if (host_size < host_full_size - qemu_host_page_size) { 2007 goto naive; 2008 } 2009 return (unsigned long)-1; 2010 } 2011 munmap((void *)real_start, real_size); 2012 real_start = HOST_PAGE_ALIGN(real_start); 2013 } 2014 current_start = real_start; 2015 } 2016 naive: 2017 #endif 2018 2019 while (1) { 2020 unsigned long real_start, real_size, aligned_size; 2021 aligned_size = real_size = host_size; 2022 2023 /* Do not use mmap_find_vma here because that is limited to the 2024 * guest address space. We are going to make the 2025 * guest address space fit whatever we're given. 2026 */ 2027 real_start = (unsigned long) 2028 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2029 if (real_start == (unsigned long)-1) { 2030 return (unsigned long)-1; 2031 } 2032 2033 /* Check to see if the address is valid. */ 2034 if (host_start && real_start != current_start) { 2035 goto try_again; 2036 } 2037 2038 /* Ensure the address is properly aligned. */ 2039 if (real_start & ~qemu_host_page_mask) { 2040 /* Ideally, we adjust like 2041 * 2042 * pages: [ ][ ][ ][ ][ ] 2043 * old: [ real ] 2044 * [ aligned ] 2045 * new: [ real ] 2046 * [ aligned ] 2047 * 2048 * But if there is something else mapped right after it, 2049 * then obviously it won't have room to grow, and the 2050 * kernel will put the new larger real someplace else with 2051 * unknown alignment (if we made it to here, then 2052 * fixed=false). Which is why we grow real by a full page 2053 * size, instead of by part of one; so that even if we get 2054 * moved, we can still guarantee alignment. But this does 2055 * mean that there is a padding of < 1 page both before 2056 * and after the aligned range; the "after" could could 2057 * cause problems for ARM emulation where it could butt in 2058 * to where we need to put the commpage. 2059 */ 2060 munmap((void *)real_start, host_size); 2061 real_size = aligned_size + qemu_host_page_size; 2062 real_start = (unsigned long) 2063 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2064 if (real_start == (unsigned long)-1) { 2065 return (unsigned long)-1; 2066 } 2067 aligned_start = HOST_PAGE_ALIGN(real_start); 2068 } else { 2069 aligned_start = real_start; 2070 } 2071 2072 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2073 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2074 int valid = init_guest_commpage(aligned_start - guest_start, 2075 aligned_size + guest_start); 2076 if (valid == -1) { 2077 munmap((void *)real_start, real_size); 2078 return (unsigned long)-1; 2079 } else if (valid == 0) { 2080 goto try_again; 2081 } 2082 #endif 2083 2084 /* If nothing has said `return -1` or `goto try_again` yet, 2085 * then the address we have is good. 2086 */ 2087 break; 2088 2089 try_again: 2090 /* That address didn't work. Unmap and try a different one. 2091 * The address the host picked because is typically right at 2092 * the top of the host address space and leaves the guest with 2093 * no usable address space. Resort to a linear search. We 2094 * already compensated for mmap_min_addr, so this should not 2095 * happen often. Probably means we got unlucky and host 2096 * address space randomization put a shared library somewhere 2097 * inconvenient. 2098 * 2099 * This is probably a good strategy if host_start, but is 2100 * probably a bad strategy if not, which means we got here 2101 * because of trouble with ARM commpage setup. 2102 */ 2103 munmap((void *)real_start, real_size); 2104 current_start += qemu_host_page_size; 2105 if (host_start == current_start) { 2106 /* Theoretically possible if host doesn't have any suitably 2107 * aligned areas. Normally the first mmap will fail. 2108 */ 2109 return (unsigned long)-1; 2110 } 2111 } 2112 2113 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2114 2115 return aligned_start; 2116 } 2117 2118 static void probe_guest_base(const char *image_name, 2119 abi_ulong loaddr, abi_ulong hiaddr) 2120 { 2121 /* Probe for a suitable guest base address, if the user has not set 2122 * it explicitly, and set guest_base appropriately. 2123 * In case of error we will print a suitable message and exit. 2124 */ 2125 const char *errmsg; 2126 if (!have_guest_base && !reserved_va) { 2127 unsigned long host_start, real_start, host_size; 2128 2129 /* Round addresses to page boundaries. */ 2130 loaddr &= qemu_host_page_mask; 2131 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2132 2133 if (loaddr < mmap_min_addr) { 2134 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2135 } else { 2136 host_start = loaddr; 2137 if (host_start != loaddr) { 2138 errmsg = "Address overflow loading ELF binary"; 2139 goto exit_errmsg; 2140 } 2141 } 2142 host_size = hiaddr - loaddr; 2143 2144 /* Setup the initial guest memory space with ranges gleaned from 2145 * the ELF image that is being loaded. 2146 */ 2147 real_start = init_guest_space(host_start, host_size, loaddr, false); 2148 if (real_start == (unsigned long)-1) { 2149 errmsg = "Unable to find space for application"; 2150 goto exit_errmsg; 2151 } 2152 guest_base = real_start - loaddr; 2153 2154 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2155 TARGET_ABI_FMT_lx " to 0x%lx\n", 2156 loaddr, real_start); 2157 } 2158 return; 2159 2160 exit_errmsg: 2161 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2162 exit(-1); 2163 } 2164 2165 2166 /* Load an ELF image into the address space. 2167 2168 IMAGE_NAME is the filename of the image, to use in error messages. 2169 IMAGE_FD is the open file descriptor for the image. 2170 2171 BPRM_BUF is a copy of the beginning of the file; this of course 2172 contains the elf file header at offset 0. It is assumed that this 2173 buffer is sufficiently aligned to present no problems to the host 2174 in accessing data at aligned offsets within the buffer. 2175 2176 On return: INFO values will be filled in, as necessary or available. */ 2177 2178 static void load_elf_image(const char *image_name, int image_fd, 2179 struct image_info *info, char **pinterp_name, 2180 char bprm_buf[BPRM_BUF_SIZE]) 2181 { 2182 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2183 struct elf_phdr *phdr; 2184 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2185 int i, retval; 2186 const char *errmsg; 2187 2188 /* First of all, some simple consistency checks */ 2189 errmsg = "Invalid ELF image for this architecture"; 2190 if (!elf_check_ident(ehdr)) { 2191 goto exit_errmsg; 2192 } 2193 bswap_ehdr(ehdr); 2194 if (!elf_check_ehdr(ehdr)) { 2195 goto exit_errmsg; 2196 } 2197 2198 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2199 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2200 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2201 } else { 2202 phdr = (struct elf_phdr *) alloca(i); 2203 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2204 if (retval != i) { 2205 goto exit_read; 2206 } 2207 } 2208 bswap_phdr(phdr, ehdr->e_phnum); 2209 2210 info->nsegs = 0; 2211 info->pt_dynamic_addr = 0; 2212 2213 mmap_lock(); 2214 2215 /* Find the maximum size of the image and allocate an appropriate 2216 amount of memory to handle that. */ 2217 loaddr = -1, hiaddr = 0; 2218 info->alignment = 0; 2219 for (i = 0; i < ehdr->e_phnum; ++i) { 2220 if (phdr[i].p_type == PT_LOAD) { 2221 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2222 if (a < loaddr) { 2223 loaddr = a; 2224 } 2225 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2226 if (a > hiaddr) { 2227 hiaddr = a; 2228 } 2229 ++info->nsegs; 2230 info->alignment |= phdr[i].p_align; 2231 } 2232 } 2233 2234 load_addr = loaddr; 2235 if (ehdr->e_type == ET_DYN) { 2236 /* The image indicates that it can be loaded anywhere. Find a 2237 location that can hold the memory space required. If the 2238 image is pre-linked, LOADDR will be non-zero. Since we do 2239 not supply MAP_FIXED here we'll use that address if and 2240 only if it remains available. */ 2241 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2242 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2243 -1, 0); 2244 if (load_addr == -1) { 2245 goto exit_perror; 2246 } 2247 } else if (pinterp_name != NULL) { 2248 /* This is the main executable. Make sure that the low 2249 address does not conflict with MMAP_MIN_ADDR or the 2250 QEMU application itself. */ 2251 probe_guest_base(image_name, loaddr, hiaddr); 2252 } 2253 load_bias = load_addr - loaddr; 2254 2255 if (elf_is_fdpic(ehdr)) { 2256 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2257 g_malloc(sizeof(*loadsegs) * info->nsegs); 2258 2259 for (i = 0; i < ehdr->e_phnum; ++i) { 2260 switch (phdr[i].p_type) { 2261 case PT_DYNAMIC: 2262 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2263 break; 2264 case PT_LOAD: 2265 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2266 loadsegs->p_vaddr = phdr[i].p_vaddr; 2267 loadsegs->p_memsz = phdr[i].p_memsz; 2268 ++loadsegs; 2269 break; 2270 } 2271 } 2272 } 2273 2274 info->load_bias = load_bias; 2275 info->load_addr = load_addr; 2276 info->entry = ehdr->e_entry + load_bias; 2277 info->start_code = -1; 2278 info->end_code = 0; 2279 info->start_data = -1; 2280 info->end_data = 0; 2281 info->brk = 0; 2282 info->elf_flags = ehdr->e_flags; 2283 2284 for (i = 0; i < ehdr->e_phnum; i++) { 2285 struct elf_phdr *eppnt = phdr + i; 2286 if (eppnt->p_type == PT_LOAD) { 2287 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2288 int elf_prot = 0; 2289 2290 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2291 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2292 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2293 2294 vaddr = load_bias + eppnt->p_vaddr; 2295 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2296 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2297 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2298 2299 error = target_mmap(vaddr_ps, vaddr_len, 2300 elf_prot, MAP_PRIVATE | MAP_FIXED, 2301 image_fd, eppnt->p_offset - vaddr_po); 2302 if (error == -1) { 2303 goto exit_perror; 2304 } 2305 2306 vaddr_ef = vaddr + eppnt->p_filesz; 2307 vaddr_em = vaddr + eppnt->p_memsz; 2308 2309 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2310 if (vaddr_ef < vaddr_em) { 2311 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2312 } 2313 2314 /* Find the full program boundaries. */ 2315 if (elf_prot & PROT_EXEC) { 2316 if (vaddr < info->start_code) { 2317 info->start_code = vaddr; 2318 } 2319 if (vaddr_ef > info->end_code) { 2320 info->end_code = vaddr_ef; 2321 } 2322 } 2323 if (elf_prot & PROT_WRITE) { 2324 if (vaddr < info->start_data) { 2325 info->start_data = vaddr; 2326 } 2327 if (vaddr_ef > info->end_data) { 2328 info->end_data = vaddr_ef; 2329 } 2330 if (vaddr_em > info->brk) { 2331 info->brk = vaddr_em; 2332 } 2333 } 2334 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2335 char *interp_name; 2336 2337 if (*pinterp_name) { 2338 errmsg = "Multiple PT_INTERP entries"; 2339 goto exit_errmsg; 2340 } 2341 interp_name = malloc(eppnt->p_filesz); 2342 if (!interp_name) { 2343 goto exit_perror; 2344 } 2345 2346 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2347 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2348 eppnt->p_filesz); 2349 } else { 2350 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2351 eppnt->p_offset); 2352 if (retval != eppnt->p_filesz) { 2353 goto exit_perror; 2354 } 2355 } 2356 if (interp_name[eppnt->p_filesz - 1] != 0) { 2357 errmsg = "Invalid PT_INTERP entry"; 2358 goto exit_errmsg; 2359 } 2360 *pinterp_name = interp_name; 2361 } 2362 } 2363 2364 if (info->end_data == 0) { 2365 info->start_data = info->end_code; 2366 info->end_data = info->end_code; 2367 info->brk = info->end_code; 2368 } 2369 2370 if (qemu_log_enabled()) { 2371 load_symbols(ehdr, image_fd, load_bias); 2372 } 2373 2374 mmap_unlock(); 2375 2376 close(image_fd); 2377 return; 2378 2379 exit_read: 2380 if (retval >= 0) { 2381 errmsg = "Incomplete read of file header"; 2382 goto exit_errmsg; 2383 } 2384 exit_perror: 2385 errmsg = strerror(errno); 2386 exit_errmsg: 2387 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2388 exit(-1); 2389 } 2390 2391 static void load_elf_interp(const char *filename, struct image_info *info, 2392 char bprm_buf[BPRM_BUF_SIZE]) 2393 { 2394 int fd, retval; 2395 2396 fd = open(path(filename), O_RDONLY); 2397 if (fd < 0) { 2398 goto exit_perror; 2399 } 2400 2401 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2402 if (retval < 0) { 2403 goto exit_perror; 2404 } 2405 if (retval < BPRM_BUF_SIZE) { 2406 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2407 } 2408 2409 load_elf_image(filename, fd, info, NULL, bprm_buf); 2410 return; 2411 2412 exit_perror: 2413 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2414 exit(-1); 2415 } 2416 2417 static int symfind(const void *s0, const void *s1) 2418 { 2419 target_ulong addr = *(target_ulong *)s0; 2420 struct elf_sym *sym = (struct elf_sym *)s1; 2421 int result = 0; 2422 if (addr < sym->st_value) { 2423 result = -1; 2424 } else if (addr >= sym->st_value + sym->st_size) { 2425 result = 1; 2426 } 2427 return result; 2428 } 2429 2430 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2431 { 2432 #if ELF_CLASS == ELFCLASS32 2433 struct elf_sym *syms = s->disas_symtab.elf32; 2434 #else 2435 struct elf_sym *syms = s->disas_symtab.elf64; 2436 #endif 2437 2438 // binary search 2439 struct elf_sym *sym; 2440 2441 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2442 if (sym != NULL) { 2443 return s->disas_strtab + sym->st_name; 2444 } 2445 2446 return ""; 2447 } 2448 2449 /* FIXME: This should use elf_ops.h */ 2450 static int symcmp(const void *s0, const void *s1) 2451 { 2452 struct elf_sym *sym0 = (struct elf_sym *)s0; 2453 struct elf_sym *sym1 = (struct elf_sym *)s1; 2454 return (sym0->st_value < sym1->st_value) 2455 ? -1 2456 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2457 } 2458 2459 /* Best attempt to load symbols from this ELF object. */ 2460 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2461 { 2462 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2463 uint64_t segsz; 2464 struct elf_shdr *shdr; 2465 char *strings = NULL; 2466 struct syminfo *s = NULL; 2467 struct elf_sym *new_syms, *syms = NULL; 2468 2469 shnum = hdr->e_shnum; 2470 i = shnum * sizeof(struct elf_shdr); 2471 shdr = (struct elf_shdr *)alloca(i); 2472 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2473 return; 2474 } 2475 2476 bswap_shdr(shdr, shnum); 2477 for (i = 0; i < shnum; ++i) { 2478 if (shdr[i].sh_type == SHT_SYMTAB) { 2479 sym_idx = i; 2480 str_idx = shdr[i].sh_link; 2481 goto found; 2482 } 2483 } 2484 2485 /* There will be no symbol table if the file was stripped. */ 2486 return; 2487 2488 found: 2489 /* Now know where the strtab and symtab are. Snarf them. */ 2490 s = g_try_new(struct syminfo, 1); 2491 if (!s) { 2492 goto give_up; 2493 } 2494 2495 segsz = shdr[str_idx].sh_size; 2496 s->disas_strtab = strings = g_try_malloc(segsz); 2497 if (!strings || 2498 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2499 goto give_up; 2500 } 2501 2502 segsz = shdr[sym_idx].sh_size; 2503 syms = g_try_malloc(segsz); 2504 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2505 goto give_up; 2506 } 2507 2508 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2509 /* Implausibly large symbol table: give up rather than ploughing 2510 * on with the number of symbols calculation overflowing 2511 */ 2512 goto give_up; 2513 } 2514 nsyms = segsz / sizeof(struct elf_sym); 2515 for (i = 0; i < nsyms; ) { 2516 bswap_sym(syms + i); 2517 /* Throw away entries which we do not need. */ 2518 if (syms[i].st_shndx == SHN_UNDEF 2519 || syms[i].st_shndx >= SHN_LORESERVE 2520 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2521 if (i < --nsyms) { 2522 syms[i] = syms[nsyms]; 2523 } 2524 } else { 2525 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2526 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2527 syms[i].st_value &= ~(target_ulong)1; 2528 #endif 2529 syms[i].st_value += load_bias; 2530 i++; 2531 } 2532 } 2533 2534 /* No "useful" symbol. */ 2535 if (nsyms == 0) { 2536 goto give_up; 2537 } 2538 2539 /* Attempt to free the storage associated with the local symbols 2540 that we threw away. Whether or not this has any effect on the 2541 memory allocation depends on the malloc implementation and how 2542 many symbols we managed to discard. */ 2543 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2544 if (new_syms == NULL) { 2545 goto give_up; 2546 } 2547 syms = new_syms; 2548 2549 qsort(syms, nsyms, sizeof(*syms), symcmp); 2550 2551 s->disas_num_syms = nsyms; 2552 #if ELF_CLASS == ELFCLASS32 2553 s->disas_symtab.elf32 = syms; 2554 #else 2555 s->disas_symtab.elf64 = syms; 2556 #endif 2557 s->lookup_symbol = lookup_symbolxx; 2558 s->next = syminfos; 2559 syminfos = s; 2560 2561 return; 2562 2563 give_up: 2564 g_free(s); 2565 g_free(strings); 2566 g_free(syms); 2567 } 2568 2569 uint32_t get_elf_eflags(int fd) 2570 { 2571 struct elfhdr ehdr; 2572 off_t offset; 2573 int ret; 2574 2575 /* Read ELF header */ 2576 offset = lseek(fd, 0, SEEK_SET); 2577 if (offset == (off_t) -1) { 2578 return 0; 2579 } 2580 ret = read(fd, &ehdr, sizeof(ehdr)); 2581 if (ret < sizeof(ehdr)) { 2582 return 0; 2583 } 2584 offset = lseek(fd, offset, SEEK_SET); 2585 if (offset == (off_t) -1) { 2586 return 0; 2587 } 2588 2589 /* Check ELF signature */ 2590 if (!elf_check_ident(&ehdr)) { 2591 return 0; 2592 } 2593 2594 /* check header */ 2595 bswap_ehdr(&ehdr); 2596 if (!elf_check_ehdr(&ehdr)) { 2597 return 0; 2598 } 2599 2600 /* return architecture id */ 2601 return ehdr.e_flags; 2602 } 2603 2604 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2605 { 2606 struct image_info interp_info; 2607 struct elfhdr elf_ex; 2608 char *elf_interpreter = NULL; 2609 char *scratch; 2610 2611 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2612 2613 load_elf_image(bprm->filename, bprm->fd, info, 2614 &elf_interpreter, bprm->buf); 2615 2616 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2617 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2618 when we load the interpreter. */ 2619 elf_ex = *(struct elfhdr *)bprm->buf; 2620 2621 /* Do this so that we can load the interpreter, if need be. We will 2622 change some of these later */ 2623 bprm->p = setup_arg_pages(bprm, info); 2624 2625 scratch = g_new0(char, TARGET_PAGE_SIZE); 2626 if (STACK_GROWS_DOWN) { 2627 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2628 bprm->p, info->stack_limit); 2629 info->file_string = bprm->p; 2630 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2631 bprm->p, info->stack_limit); 2632 info->env_strings = bprm->p; 2633 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2634 bprm->p, info->stack_limit); 2635 info->arg_strings = bprm->p; 2636 } else { 2637 info->arg_strings = bprm->p; 2638 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2639 bprm->p, info->stack_limit); 2640 info->env_strings = bprm->p; 2641 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2642 bprm->p, info->stack_limit); 2643 info->file_string = bprm->p; 2644 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2645 bprm->p, info->stack_limit); 2646 } 2647 2648 g_free(scratch); 2649 2650 if (!bprm->p) { 2651 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2652 exit(-1); 2653 } 2654 2655 if (elf_interpreter) { 2656 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2657 2658 /* If the program interpreter is one of these two, then assume 2659 an iBCS2 image. Otherwise assume a native linux image. */ 2660 2661 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2662 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2663 info->personality = PER_SVR4; 2664 2665 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2666 and some applications "depend" upon this behavior. Since 2667 we do not have the power to recompile these, we emulate 2668 the SVr4 behavior. Sigh. */ 2669 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2670 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2671 } 2672 } 2673 2674 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2675 info, (elf_interpreter ? &interp_info : NULL)); 2676 info->start_stack = bprm->p; 2677 2678 /* If we have an interpreter, set that as the program's entry point. 2679 Copy the load_bias as well, to help PPC64 interpret the entry 2680 point as a function descriptor. Do this after creating elf tables 2681 so that we copy the original program entry point into the AUXV. */ 2682 if (elf_interpreter) { 2683 info->load_bias = interp_info.load_bias; 2684 info->entry = interp_info.entry; 2685 free(elf_interpreter); 2686 } 2687 2688 #ifdef USE_ELF_CORE_DUMP 2689 bprm->core_dump = &elf_core_dump; 2690 #endif 2691 2692 return 0; 2693 } 2694 2695 #ifdef USE_ELF_CORE_DUMP 2696 /* 2697 * Definitions to generate Intel SVR4-like core files. 2698 * These mostly have the same names as the SVR4 types with "target_elf_" 2699 * tacked on the front to prevent clashes with linux definitions, 2700 * and the typedef forms have been avoided. This is mostly like 2701 * the SVR4 structure, but more Linuxy, with things that Linux does 2702 * not support and which gdb doesn't really use excluded. 2703 * 2704 * Fields we don't dump (their contents is zero) in linux-user qemu 2705 * are marked with XXX. 2706 * 2707 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2708 * 2709 * Porting ELF coredump for target is (quite) simple process. First you 2710 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2711 * the target resides): 2712 * 2713 * #define USE_ELF_CORE_DUMP 2714 * 2715 * Next you define type of register set used for dumping. ELF specification 2716 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2717 * 2718 * typedef <target_regtype> target_elf_greg_t; 2719 * #define ELF_NREG <number of registers> 2720 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2721 * 2722 * Last step is to implement target specific function that copies registers 2723 * from given cpu into just specified register set. Prototype is: 2724 * 2725 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2726 * const CPUArchState *env); 2727 * 2728 * Parameters: 2729 * regs - copy register values into here (allocated and zeroed by caller) 2730 * env - copy registers from here 2731 * 2732 * Example for ARM target is provided in this file. 2733 */ 2734 2735 /* An ELF note in memory */ 2736 struct memelfnote { 2737 const char *name; 2738 size_t namesz; 2739 size_t namesz_rounded; 2740 int type; 2741 size_t datasz; 2742 size_t datasz_rounded; 2743 void *data; 2744 size_t notesz; 2745 }; 2746 2747 struct target_elf_siginfo { 2748 abi_int si_signo; /* signal number */ 2749 abi_int si_code; /* extra code */ 2750 abi_int si_errno; /* errno */ 2751 }; 2752 2753 struct target_elf_prstatus { 2754 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2755 abi_short pr_cursig; /* Current signal */ 2756 abi_ulong pr_sigpend; /* XXX */ 2757 abi_ulong pr_sighold; /* XXX */ 2758 target_pid_t pr_pid; 2759 target_pid_t pr_ppid; 2760 target_pid_t pr_pgrp; 2761 target_pid_t pr_sid; 2762 struct target_timeval pr_utime; /* XXX User time */ 2763 struct target_timeval pr_stime; /* XXX System time */ 2764 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2765 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2766 target_elf_gregset_t pr_reg; /* GP registers */ 2767 abi_int pr_fpvalid; /* XXX */ 2768 }; 2769 2770 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2771 2772 struct target_elf_prpsinfo { 2773 char pr_state; /* numeric process state */ 2774 char pr_sname; /* char for pr_state */ 2775 char pr_zomb; /* zombie */ 2776 char pr_nice; /* nice val */ 2777 abi_ulong pr_flag; /* flags */ 2778 target_uid_t pr_uid; 2779 target_gid_t pr_gid; 2780 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2781 /* Lots missing */ 2782 char pr_fname[16]; /* filename of executable */ 2783 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2784 }; 2785 2786 /* Here is the structure in which status of each thread is captured. */ 2787 struct elf_thread_status { 2788 QTAILQ_ENTRY(elf_thread_status) ets_link; 2789 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2790 #if 0 2791 elf_fpregset_t fpu; /* NT_PRFPREG */ 2792 struct task_struct *thread; 2793 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2794 #endif 2795 struct memelfnote notes[1]; 2796 int num_notes; 2797 }; 2798 2799 struct elf_note_info { 2800 struct memelfnote *notes; 2801 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2802 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2803 2804 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2805 #if 0 2806 /* 2807 * Current version of ELF coredump doesn't support 2808 * dumping fp regs etc. 2809 */ 2810 elf_fpregset_t *fpu; 2811 elf_fpxregset_t *xfpu; 2812 int thread_status_size; 2813 #endif 2814 int notes_size; 2815 int numnote; 2816 }; 2817 2818 struct vm_area_struct { 2819 target_ulong vma_start; /* start vaddr of memory region */ 2820 target_ulong vma_end; /* end vaddr of memory region */ 2821 abi_ulong vma_flags; /* protection etc. flags for the region */ 2822 QTAILQ_ENTRY(vm_area_struct) vma_link; 2823 }; 2824 2825 struct mm_struct { 2826 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2827 int mm_count; /* number of mappings */ 2828 }; 2829 2830 static struct mm_struct *vma_init(void); 2831 static void vma_delete(struct mm_struct *); 2832 static int vma_add_mapping(struct mm_struct *, target_ulong, 2833 target_ulong, abi_ulong); 2834 static int vma_get_mapping_count(const struct mm_struct *); 2835 static struct vm_area_struct *vma_first(const struct mm_struct *); 2836 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2837 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2838 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2839 unsigned long flags); 2840 2841 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2842 static void fill_note(struct memelfnote *, const char *, int, 2843 unsigned int, void *); 2844 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2845 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2846 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2847 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2848 static size_t note_size(const struct memelfnote *); 2849 static void free_note_info(struct elf_note_info *); 2850 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2851 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2852 static int core_dump_filename(const TaskState *, char *, size_t); 2853 2854 static int dump_write(int, const void *, size_t); 2855 static int write_note(struct memelfnote *, int); 2856 static int write_note_info(struct elf_note_info *, int); 2857 2858 #ifdef BSWAP_NEEDED 2859 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2860 { 2861 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2862 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2863 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2864 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2865 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2866 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2867 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2868 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2869 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2870 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2871 /* cpu times are not filled, so we skip them */ 2872 /* regs should be in correct format already */ 2873 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2874 } 2875 2876 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2877 { 2878 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2879 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2880 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2881 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2882 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2883 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2884 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2885 } 2886 2887 static void bswap_note(struct elf_note *en) 2888 { 2889 bswap32s(&en->n_namesz); 2890 bswap32s(&en->n_descsz); 2891 bswap32s(&en->n_type); 2892 } 2893 #else 2894 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2895 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2896 static inline void bswap_note(struct elf_note *en) { } 2897 #endif /* BSWAP_NEEDED */ 2898 2899 /* 2900 * Minimal support for linux memory regions. These are needed 2901 * when we are finding out what memory exactly belongs to 2902 * emulated process. No locks needed here, as long as 2903 * thread that received the signal is stopped. 2904 */ 2905 2906 static struct mm_struct *vma_init(void) 2907 { 2908 struct mm_struct *mm; 2909 2910 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2911 return (NULL); 2912 2913 mm->mm_count = 0; 2914 QTAILQ_INIT(&mm->mm_mmap); 2915 2916 return (mm); 2917 } 2918 2919 static void vma_delete(struct mm_struct *mm) 2920 { 2921 struct vm_area_struct *vma; 2922 2923 while ((vma = vma_first(mm)) != NULL) { 2924 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2925 g_free(vma); 2926 } 2927 g_free(mm); 2928 } 2929 2930 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2931 target_ulong end, abi_ulong flags) 2932 { 2933 struct vm_area_struct *vma; 2934 2935 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2936 return (-1); 2937 2938 vma->vma_start = start; 2939 vma->vma_end = end; 2940 vma->vma_flags = flags; 2941 2942 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2943 mm->mm_count++; 2944 2945 return (0); 2946 } 2947 2948 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2949 { 2950 return (QTAILQ_FIRST(&mm->mm_mmap)); 2951 } 2952 2953 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2954 { 2955 return (QTAILQ_NEXT(vma, vma_link)); 2956 } 2957 2958 static int vma_get_mapping_count(const struct mm_struct *mm) 2959 { 2960 return (mm->mm_count); 2961 } 2962 2963 /* 2964 * Calculate file (dump) size of given memory region. 2965 */ 2966 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2967 { 2968 /* if we cannot even read the first page, skip it */ 2969 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2970 return (0); 2971 2972 /* 2973 * Usually we don't dump executable pages as they contain 2974 * non-writable code that debugger can read directly from 2975 * target library etc. However, thread stacks are marked 2976 * also executable so we read in first page of given region 2977 * and check whether it contains elf header. If there is 2978 * no elf header, we dump it. 2979 */ 2980 if (vma->vma_flags & PROT_EXEC) { 2981 char page[TARGET_PAGE_SIZE]; 2982 2983 copy_from_user(page, vma->vma_start, sizeof (page)); 2984 if ((page[EI_MAG0] == ELFMAG0) && 2985 (page[EI_MAG1] == ELFMAG1) && 2986 (page[EI_MAG2] == ELFMAG2) && 2987 (page[EI_MAG3] == ELFMAG3)) { 2988 /* 2989 * Mappings are possibly from ELF binary. Don't dump 2990 * them. 2991 */ 2992 return (0); 2993 } 2994 } 2995 2996 return (vma->vma_end - vma->vma_start); 2997 } 2998 2999 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3000 unsigned long flags) 3001 { 3002 struct mm_struct *mm = (struct mm_struct *)priv; 3003 3004 vma_add_mapping(mm, start, end, flags); 3005 return (0); 3006 } 3007 3008 static void fill_note(struct memelfnote *note, const char *name, int type, 3009 unsigned int sz, void *data) 3010 { 3011 unsigned int namesz; 3012 3013 namesz = strlen(name) + 1; 3014 note->name = name; 3015 note->namesz = namesz; 3016 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3017 note->type = type; 3018 note->datasz = sz; 3019 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3020 3021 note->data = data; 3022 3023 /* 3024 * We calculate rounded up note size here as specified by 3025 * ELF document. 3026 */ 3027 note->notesz = sizeof (struct elf_note) + 3028 note->namesz_rounded + note->datasz_rounded; 3029 } 3030 3031 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3032 uint32_t flags) 3033 { 3034 (void) memset(elf, 0, sizeof(*elf)); 3035 3036 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3037 elf->e_ident[EI_CLASS] = ELF_CLASS; 3038 elf->e_ident[EI_DATA] = ELF_DATA; 3039 elf->e_ident[EI_VERSION] = EV_CURRENT; 3040 elf->e_ident[EI_OSABI] = ELF_OSABI; 3041 3042 elf->e_type = ET_CORE; 3043 elf->e_machine = machine; 3044 elf->e_version = EV_CURRENT; 3045 elf->e_phoff = sizeof(struct elfhdr); 3046 elf->e_flags = flags; 3047 elf->e_ehsize = sizeof(struct elfhdr); 3048 elf->e_phentsize = sizeof(struct elf_phdr); 3049 elf->e_phnum = segs; 3050 3051 bswap_ehdr(elf); 3052 } 3053 3054 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3055 { 3056 phdr->p_type = PT_NOTE; 3057 phdr->p_offset = offset; 3058 phdr->p_vaddr = 0; 3059 phdr->p_paddr = 0; 3060 phdr->p_filesz = sz; 3061 phdr->p_memsz = 0; 3062 phdr->p_flags = 0; 3063 phdr->p_align = 0; 3064 3065 bswap_phdr(phdr, 1); 3066 } 3067 3068 static size_t note_size(const struct memelfnote *note) 3069 { 3070 return (note->notesz); 3071 } 3072 3073 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3074 const TaskState *ts, int signr) 3075 { 3076 (void) memset(prstatus, 0, sizeof (*prstatus)); 3077 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3078 prstatus->pr_pid = ts->ts_tid; 3079 prstatus->pr_ppid = getppid(); 3080 prstatus->pr_pgrp = getpgrp(); 3081 prstatus->pr_sid = getsid(0); 3082 3083 bswap_prstatus(prstatus); 3084 } 3085 3086 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3087 { 3088 char *base_filename; 3089 unsigned int i, len; 3090 3091 (void) memset(psinfo, 0, sizeof (*psinfo)); 3092 3093 len = ts->info->arg_end - ts->info->arg_start; 3094 if (len >= ELF_PRARGSZ) 3095 len = ELF_PRARGSZ - 1; 3096 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3097 return -EFAULT; 3098 for (i = 0; i < len; i++) 3099 if (psinfo->pr_psargs[i] == 0) 3100 psinfo->pr_psargs[i] = ' '; 3101 psinfo->pr_psargs[len] = 0; 3102 3103 psinfo->pr_pid = getpid(); 3104 psinfo->pr_ppid = getppid(); 3105 psinfo->pr_pgrp = getpgrp(); 3106 psinfo->pr_sid = getsid(0); 3107 psinfo->pr_uid = getuid(); 3108 psinfo->pr_gid = getgid(); 3109 3110 base_filename = g_path_get_basename(ts->bprm->filename); 3111 /* 3112 * Using strncpy here is fine: at max-length, 3113 * this field is not NUL-terminated. 3114 */ 3115 (void) strncpy(psinfo->pr_fname, base_filename, 3116 sizeof(psinfo->pr_fname)); 3117 3118 g_free(base_filename); 3119 bswap_psinfo(psinfo); 3120 return (0); 3121 } 3122 3123 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3124 { 3125 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3126 elf_addr_t orig_auxv = auxv; 3127 void *ptr; 3128 int len = ts->info->auxv_len; 3129 3130 /* 3131 * Auxiliary vector is stored in target process stack. It contains 3132 * {type, value} pairs that we need to dump into note. This is not 3133 * strictly necessary but we do it here for sake of completeness. 3134 */ 3135 3136 /* read in whole auxv vector and copy it to memelfnote */ 3137 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3138 if (ptr != NULL) { 3139 fill_note(note, "CORE", NT_AUXV, len, ptr); 3140 unlock_user(ptr, auxv, len); 3141 } 3142 } 3143 3144 /* 3145 * Constructs name of coredump file. We have following convention 3146 * for the name: 3147 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3148 * 3149 * Returns 0 in case of success, -1 otherwise (errno is set). 3150 */ 3151 static int core_dump_filename(const TaskState *ts, char *buf, 3152 size_t bufsize) 3153 { 3154 char timestamp[64]; 3155 char *base_filename = NULL; 3156 struct timeval tv; 3157 struct tm tm; 3158 3159 assert(bufsize >= PATH_MAX); 3160 3161 if (gettimeofday(&tv, NULL) < 0) { 3162 (void) fprintf(stderr, "unable to get current timestamp: %s", 3163 strerror(errno)); 3164 return (-1); 3165 } 3166 3167 base_filename = g_path_get_basename(ts->bprm->filename); 3168 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3169 localtime_r(&tv.tv_sec, &tm)); 3170 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3171 base_filename, timestamp, (int)getpid()); 3172 g_free(base_filename); 3173 3174 return (0); 3175 } 3176 3177 static int dump_write(int fd, const void *ptr, size_t size) 3178 { 3179 const char *bufp = (const char *)ptr; 3180 ssize_t bytes_written, bytes_left; 3181 struct rlimit dumpsize; 3182 off_t pos; 3183 3184 bytes_written = 0; 3185 getrlimit(RLIMIT_CORE, &dumpsize); 3186 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3187 if (errno == ESPIPE) { /* not a seekable stream */ 3188 bytes_left = size; 3189 } else { 3190 return pos; 3191 } 3192 } else { 3193 if (dumpsize.rlim_cur <= pos) { 3194 return -1; 3195 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3196 bytes_left = size; 3197 } else { 3198 size_t limit_left=dumpsize.rlim_cur - pos; 3199 bytes_left = limit_left >= size ? size : limit_left ; 3200 } 3201 } 3202 3203 /* 3204 * In normal conditions, single write(2) should do but 3205 * in case of socket etc. this mechanism is more portable. 3206 */ 3207 do { 3208 bytes_written = write(fd, bufp, bytes_left); 3209 if (bytes_written < 0) { 3210 if (errno == EINTR) 3211 continue; 3212 return (-1); 3213 } else if (bytes_written == 0) { /* eof */ 3214 return (-1); 3215 } 3216 bufp += bytes_written; 3217 bytes_left -= bytes_written; 3218 } while (bytes_left > 0); 3219 3220 return (0); 3221 } 3222 3223 static int write_note(struct memelfnote *men, int fd) 3224 { 3225 struct elf_note en; 3226 3227 en.n_namesz = men->namesz; 3228 en.n_type = men->type; 3229 en.n_descsz = men->datasz; 3230 3231 bswap_note(&en); 3232 3233 if (dump_write(fd, &en, sizeof(en)) != 0) 3234 return (-1); 3235 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3236 return (-1); 3237 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3238 return (-1); 3239 3240 return (0); 3241 } 3242 3243 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3244 { 3245 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3246 TaskState *ts = (TaskState *)cpu->opaque; 3247 struct elf_thread_status *ets; 3248 3249 ets = g_malloc0(sizeof (*ets)); 3250 ets->num_notes = 1; /* only prstatus is dumped */ 3251 fill_prstatus(&ets->prstatus, ts, 0); 3252 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3253 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3254 &ets->prstatus); 3255 3256 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3257 3258 info->notes_size += note_size(&ets->notes[0]); 3259 } 3260 3261 static void init_note_info(struct elf_note_info *info) 3262 { 3263 /* Initialize the elf_note_info structure so that it is at 3264 * least safe to call free_note_info() on it. Must be 3265 * called before calling fill_note_info(). 3266 */ 3267 memset(info, 0, sizeof (*info)); 3268 QTAILQ_INIT(&info->thread_list); 3269 } 3270 3271 static int fill_note_info(struct elf_note_info *info, 3272 long signr, const CPUArchState *env) 3273 { 3274 #define NUMNOTES 3 3275 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3276 TaskState *ts = (TaskState *)cpu->opaque; 3277 int i; 3278 3279 info->notes = g_new0(struct memelfnote, NUMNOTES); 3280 if (info->notes == NULL) 3281 return (-ENOMEM); 3282 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3283 if (info->prstatus == NULL) 3284 return (-ENOMEM); 3285 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3286 if (info->prstatus == NULL) 3287 return (-ENOMEM); 3288 3289 /* 3290 * First fill in status (and registers) of current thread 3291 * including process info & aux vector. 3292 */ 3293 fill_prstatus(info->prstatus, ts, signr); 3294 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3295 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3296 sizeof (*info->prstatus), info->prstatus); 3297 fill_psinfo(info->psinfo, ts); 3298 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3299 sizeof (*info->psinfo), info->psinfo); 3300 fill_auxv_note(&info->notes[2], ts); 3301 info->numnote = 3; 3302 3303 info->notes_size = 0; 3304 for (i = 0; i < info->numnote; i++) 3305 info->notes_size += note_size(&info->notes[i]); 3306 3307 /* read and fill status of all threads */ 3308 cpu_list_lock(); 3309 CPU_FOREACH(cpu) { 3310 if (cpu == thread_cpu) { 3311 continue; 3312 } 3313 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3314 } 3315 cpu_list_unlock(); 3316 3317 return (0); 3318 } 3319 3320 static void free_note_info(struct elf_note_info *info) 3321 { 3322 struct elf_thread_status *ets; 3323 3324 while (!QTAILQ_EMPTY(&info->thread_list)) { 3325 ets = QTAILQ_FIRST(&info->thread_list); 3326 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3327 g_free(ets); 3328 } 3329 3330 g_free(info->prstatus); 3331 g_free(info->psinfo); 3332 g_free(info->notes); 3333 } 3334 3335 static int write_note_info(struct elf_note_info *info, int fd) 3336 { 3337 struct elf_thread_status *ets; 3338 int i, error = 0; 3339 3340 /* write prstatus, psinfo and auxv for current thread */ 3341 for (i = 0; i < info->numnote; i++) 3342 if ((error = write_note(&info->notes[i], fd)) != 0) 3343 return (error); 3344 3345 /* write prstatus for each thread */ 3346 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3347 if ((error = write_note(&ets->notes[0], fd)) != 0) 3348 return (error); 3349 } 3350 3351 return (0); 3352 } 3353 3354 /* 3355 * Write out ELF coredump. 3356 * 3357 * See documentation of ELF object file format in: 3358 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3359 * 3360 * Coredump format in linux is following: 3361 * 3362 * 0 +----------------------+ \ 3363 * | ELF header | ET_CORE | 3364 * +----------------------+ | 3365 * | ELF program headers | |--- headers 3366 * | - NOTE section | | 3367 * | - PT_LOAD sections | | 3368 * +----------------------+ / 3369 * | NOTEs: | 3370 * | - NT_PRSTATUS | 3371 * | - NT_PRSINFO | 3372 * | - NT_AUXV | 3373 * +----------------------+ <-- aligned to target page 3374 * | Process memory dump | 3375 * : : 3376 * . . 3377 * : : 3378 * | | 3379 * +----------------------+ 3380 * 3381 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3382 * NT_PRSINFO -> struct elf_prpsinfo 3383 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3384 * 3385 * Format follows System V format as close as possible. Current 3386 * version limitations are as follows: 3387 * - no floating point registers are dumped 3388 * 3389 * Function returns 0 in case of success, negative errno otherwise. 3390 * 3391 * TODO: make this work also during runtime: it should be 3392 * possible to force coredump from running process and then 3393 * continue processing. For example qemu could set up SIGUSR2 3394 * handler (provided that target process haven't registered 3395 * handler for that) that does the dump when signal is received. 3396 */ 3397 static int elf_core_dump(int signr, const CPUArchState *env) 3398 { 3399 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3400 const TaskState *ts = (const TaskState *)cpu->opaque; 3401 struct vm_area_struct *vma = NULL; 3402 char corefile[PATH_MAX]; 3403 struct elf_note_info info; 3404 struct elfhdr elf; 3405 struct elf_phdr phdr; 3406 struct rlimit dumpsize; 3407 struct mm_struct *mm = NULL; 3408 off_t offset = 0, data_offset = 0; 3409 int segs = 0; 3410 int fd = -1; 3411 3412 init_note_info(&info); 3413 3414 errno = 0; 3415 getrlimit(RLIMIT_CORE, &dumpsize); 3416 if (dumpsize.rlim_cur == 0) 3417 return 0; 3418 3419 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3420 return (-errno); 3421 3422 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3423 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3424 return (-errno); 3425 3426 /* 3427 * Walk through target process memory mappings and 3428 * set up structure containing this information. After 3429 * this point vma_xxx functions can be used. 3430 */ 3431 if ((mm = vma_init()) == NULL) 3432 goto out; 3433 3434 walk_memory_regions(mm, vma_walker); 3435 segs = vma_get_mapping_count(mm); 3436 3437 /* 3438 * Construct valid coredump ELF header. We also 3439 * add one more segment for notes. 3440 */ 3441 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3442 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3443 goto out; 3444 3445 /* fill in the in-memory version of notes */ 3446 if (fill_note_info(&info, signr, env) < 0) 3447 goto out; 3448 3449 offset += sizeof (elf); /* elf header */ 3450 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3451 3452 /* write out notes program header */ 3453 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3454 3455 offset += info.notes_size; 3456 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3457 goto out; 3458 3459 /* 3460 * ELF specification wants data to start at page boundary so 3461 * we align it here. 3462 */ 3463 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3464 3465 /* 3466 * Write program headers for memory regions mapped in 3467 * the target process. 3468 */ 3469 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3470 (void) memset(&phdr, 0, sizeof (phdr)); 3471 3472 phdr.p_type = PT_LOAD; 3473 phdr.p_offset = offset; 3474 phdr.p_vaddr = vma->vma_start; 3475 phdr.p_paddr = 0; 3476 phdr.p_filesz = vma_dump_size(vma); 3477 offset += phdr.p_filesz; 3478 phdr.p_memsz = vma->vma_end - vma->vma_start; 3479 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3480 if (vma->vma_flags & PROT_WRITE) 3481 phdr.p_flags |= PF_W; 3482 if (vma->vma_flags & PROT_EXEC) 3483 phdr.p_flags |= PF_X; 3484 phdr.p_align = ELF_EXEC_PAGESIZE; 3485 3486 bswap_phdr(&phdr, 1); 3487 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3488 goto out; 3489 } 3490 } 3491 3492 /* 3493 * Next we write notes just after program headers. No 3494 * alignment needed here. 3495 */ 3496 if (write_note_info(&info, fd) < 0) 3497 goto out; 3498 3499 /* align data to page boundary */ 3500 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3501 goto out; 3502 3503 /* 3504 * Finally we can dump process memory into corefile as well. 3505 */ 3506 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3507 abi_ulong addr; 3508 abi_ulong end; 3509 3510 end = vma->vma_start + vma_dump_size(vma); 3511 3512 for (addr = vma->vma_start; addr < end; 3513 addr += TARGET_PAGE_SIZE) { 3514 char page[TARGET_PAGE_SIZE]; 3515 int error; 3516 3517 /* 3518 * Read in page from target process memory and 3519 * write it to coredump file. 3520 */ 3521 error = copy_from_user(page, addr, sizeof (page)); 3522 if (error != 0) { 3523 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3524 addr); 3525 errno = -error; 3526 goto out; 3527 } 3528 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3529 goto out; 3530 } 3531 } 3532 3533 out: 3534 free_note_info(&info); 3535 if (mm != NULL) 3536 vma_delete(mm); 3537 (void) close(fd); 3538 3539 if (errno != 0) 3540 return (-errno); 3541 return (0); 3542 } 3543 #endif /* USE_ELF_CORE_DUMP */ 3544 3545 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3546 { 3547 init_thread(regs, infop); 3548 } 3549