xref: /openbmc/qemu/linux-user/elfload.c (revision 67abc3dd)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
13 #include "qemu/units.h"
14 #include "qemu/selfmap.h"
15 
16 #ifdef _ARCH_PPC64
17 #undef ARCH_DLINFO
18 #undef ELF_PLATFORM
19 #undef ELF_HWCAP
20 #undef ELF_HWCAP2
21 #undef ELF_CLASS
22 #undef ELF_DATA
23 #undef ELF_ARCH
24 #endif
25 
26 #define ELF_OSABI   ELFOSABI_SYSV
27 
28 /* from personality.h */
29 
30 /*
31  * Flags for bug emulation.
32  *
33  * These occupy the top three bytes.
34  */
35 enum {
36     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
37     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
38                                            descriptors (signal handling) */
39     MMAP_PAGE_ZERO =    0x0100000,
40     ADDR_COMPAT_LAYOUT = 0x0200000,
41     READ_IMPLIES_EXEC = 0x0400000,
42     ADDR_LIMIT_32BIT =  0x0800000,
43     SHORT_INODE =       0x1000000,
44     WHOLE_SECONDS =     0x2000000,
45     STICKY_TIMEOUTS =   0x4000000,
46     ADDR_LIMIT_3GB =    0x8000000,
47 };
48 
49 /*
50  * Personality types.
51  *
52  * These go in the low byte.  Avoid using the top bit, it will
53  * conflict with error returns.
54  */
55 enum {
56     PER_LINUX =         0x0000,
57     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
58     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
59     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
60     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
61     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
62     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
63     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
65     PER_BSD =           0x0006,
66     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
67     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
68     PER_LINUX32 =       0x0008,
69     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
70     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
71     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
72     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
73     PER_RISCOS =        0x000c,
74     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
75     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
76     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
77     PER_HPUX =          0x0010,
78     PER_MASK =          0x00ff,
79 };
80 
81 /*
82  * Return the base personality without flags.
83  */
84 #define personality(pers)       (pers & PER_MASK)
85 
86 int info_is_fdpic(struct image_info *info)
87 {
88     return info->personality == PER_LINUX_FDPIC;
89 }
90 
91 /* this flag is uneffective under linux too, should be deleted */
92 #ifndef MAP_DENYWRITE
93 #define MAP_DENYWRITE 0
94 #endif
95 
96 /* should probably go in elf.h */
97 #ifndef ELIBBAD
98 #define ELIBBAD 80
99 #endif
100 
101 #ifdef TARGET_WORDS_BIGENDIAN
102 #define ELF_DATA        ELFDATA2MSB
103 #else
104 #define ELF_DATA        ELFDATA2LSB
105 #endif
106 
107 #ifdef TARGET_ABI_MIPSN32
108 typedef abi_ullong      target_elf_greg_t;
109 #define tswapreg(ptr)   tswap64(ptr)
110 #else
111 typedef abi_ulong       target_elf_greg_t;
112 #define tswapreg(ptr)   tswapal(ptr)
113 #endif
114 
115 #ifdef USE_UID16
116 typedef abi_ushort      target_uid_t;
117 typedef abi_ushort      target_gid_t;
118 #else
119 typedef abi_uint        target_uid_t;
120 typedef abi_uint        target_gid_t;
121 #endif
122 typedef abi_int         target_pid_t;
123 
124 #ifdef TARGET_I386
125 
126 #define ELF_PLATFORM get_elf_platform()
127 
128 static const char *get_elf_platform(void)
129 {
130     static char elf_platform[] = "i386";
131     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
132     if (family > 6)
133         family = 6;
134     if (family >= 3)
135         elf_platform[1] = '0' + family;
136     return elf_platform;
137 }
138 
139 #define ELF_HWCAP get_elf_hwcap()
140 
141 static uint32_t get_elf_hwcap(void)
142 {
143     X86CPU *cpu = X86_CPU(thread_cpu);
144 
145     return cpu->env.features[FEAT_1_EDX];
146 }
147 
148 #ifdef TARGET_X86_64
149 #define ELF_START_MMAP 0x2aaaaab000ULL
150 
151 #define ELF_CLASS      ELFCLASS64
152 #define ELF_ARCH       EM_X86_64
153 
154 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
155 {
156     regs->rax = 0;
157     regs->rsp = infop->start_stack;
158     regs->rip = infop->entry;
159 }
160 
161 #define ELF_NREG    27
162 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
163 
164 /*
165  * Note that ELF_NREG should be 29 as there should be place for
166  * TRAPNO and ERR "registers" as well but linux doesn't dump
167  * those.
168  *
169  * See linux kernel: arch/x86/include/asm/elf.h
170  */
171 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
172 {
173     (*regs)[0] = env->regs[15];
174     (*regs)[1] = env->regs[14];
175     (*regs)[2] = env->regs[13];
176     (*regs)[3] = env->regs[12];
177     (*regs)[4] = env->regs[R_EBP];
178     (*regs)[5] = env->regs[R_EBX];
179     (*regs)[6] = env->regs[11];
180     (*regs)[7] = env->regs[10];
181     (*regs)[8] = env->regs[9];
182     (*regs)[9] = env->regs[8];
183     (*regs)[10] = env->regs[R_EAX];
184     (*regs)[11] = env->regs[R_ECX];
185     (*regs)[12] = env->regs[R_EDX];
186     (*regs)[13] = env->regs[R_ESI];
187     (*regs)[14] = env->regs[R_EDI];
188     (*regs)[15] = env->regs[R_EAX]; /* XXX */
189     (*regs)[16] = env->eip;
190     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
191     (*regs)[18] = env->eflags;
192     (*regs)[19] = env->regs[R_ESP];
193     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
194     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
195     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
196     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
197     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
198     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
199     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
200 }
201 
202 #else
203 
204 #define ELF_START_MMAP 0x80000000
205 
206 /*
207  * This is used to ensure we don't load something for the wrong architecture.
208  */
209 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
210 
211 /*
212  * These are used to set parameters in the core dumps.
213  */
214 #define ELF_CLASS       ELFCLASS32
215 #define ELF_ARCH        EM_386
216 
217 static inline void init_thread(struct target_pt_regs *regs,
218                                struct image_info *infop)
219 {
220     regs->esp = infop->start_stack;
221     regs->eip = infop->entry;
222 
223     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
224        starts %edx contains a pointer to a function which might be
225        registered using `atexit'.  This provides a mean for the
226        dynamic linker to call DT_FINI functions for shared libraries
227        that have been loaded before the code runs.
228 
229        A value of 0 tells we have no such handler.  */
230     regs->edx = 0;
231 }
232 
233 #define ELF_NREG    17
234 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
235 
236 /*
237  * Note that ELF_NREG should be 19 as there should be place for
238  * TRAPNO and ERR "registers" as well but linux doesn't dump
239  * those.
240  *
241  * See linux kernel: arch/x86/include/asm/elf.h
242  */
243 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
244 {
245     (*regs)[0] = env->regs[R_EBX];
246     (*regs)[1] = env->regs[R_ECX];
247     (*regs)[2] = env->regs[R_EDX];
248     (*regs)[3] = env->regs[R_ESI];
249     (*regs)[4] = env->regs[R_EDI];
250     (*regs)[5] = env->regs[R_EBP];
251     (*regs)[6] = env->regs[R_EAX];
252     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
253     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
254     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
255     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
256     (*regs)[11] = env->regs[R_EAX]; /* XXX */
257     (*regs)[12] = env->eip;
258     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
259     (*regs)[14] = env->eflags;
260     (*regs)[15] = env->regs[R_ESP];
261     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
262 }
263 #endif
264 
265 #define USE_ELF_CORE_DUMP
266 #define ELF_EXEC_PAGESIZE       4096
267 
268 #endif
269 
270 #ifdef TARGET_ARM
271 
272 #ifndef TARGET_AARCH64
273 /* 32 bit ARM definitions */
274 
275 #define ELF_START_MMAP 0x80000000
276 
277 #define ELF_ARCH        EM_ARM
278 #define ELF_CLASS       ELFCLASS32
279 
280 static inline void init_thread(struct target_pt_regs *regs,
281                                struct image_info *infop)
282 {
283     abi_long stack = infop->start_stack;
284     memset(regs, 0, sizeof(*regs));
285 
286     regs->uregs[16] = ARM_CPU_MODE_USR;
287     if (infop->entry & 1) {
288         regs->uregs[16] |= CPSR_T;
289     }
290     regs->uregs[15] = infop->entry & 0xfffffffe;
291     regs->uregs[13] = infop->start_stack;
292     /* FIXME - what to for failure of get_user()? */
293     get_user_ual(regs->uregs[2], stack + 8); /* envp */
294     get_user_ual(regs->uregs[1], stack + 4); /* envp */
295     /* XXX: it seems that r0 is zeroed after ! */
296     regs->uregs[0] = 0;
297     /* For uClinux PIC binaries.  */
298     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299     regs->uregs[10] = infop->start_data;
300 
301     /* Support ARM FDPIC.  */
302     if (info_is_fdpic(infop)) {
303         /* As described in the ABI document, r7 points to the loadmap info
304          * prepared by the kernel. If an interpreter is needed, r8 points
305          * to the interpreter loadmap and r9 points to the interpreter
306          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
307          * r9 points to the main program PT_DYNAMIC info.
308          */
309         regs->uregs[7] = infop->loadmap_addr;
310         if (infop->interpreter_loadmap_addr) {
311             /* Executable is dynamically loaded.  */
312             regs->uregs[8] = infop->interpreter_loadmap_addr;
313             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
314         } else {
315             regs->uregs[8] = 0;
316             regs->uregs[9] = infop->pt_dynamic_addr;
317         }
318     }
319 }
320 
321 #define ELF_NREG    18
322 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
323 
324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
325 {
326     (*regs)[0] = tswapreg(env->regs[0]);
327     (*regs)[1] = tswapreg(env->regs[1]);
328     (*regs)[2] = tswapreg(env->regs[2]);
329     (*regs)[3] = tswapreg(env->regs[3]);
330     (*regs)[4] = tswapreg(env->regs[4]);
331     (*regs)[5] = tswapreg(env->regs[5]);
332     (*regs)[6] = tswapreg(env->regs[6]);
333     (*regs)[7] = tswapreg(env->regs[7]);
334     (*regs)[8] = tswapreg(env->regs[8]);
335     (*regs)[9] = tswapreg(env->regs[9]);
336     (*regs)[10] = tswapreg(env->regs[10]);
337     (*regs)[11] = tswapreg(env->regs[11]);
338     (*regs)[12] = tswapreg(env->regs[12]);
339     (*regs)[13] = tswapreg(env->regs[13]);
340     (*regs)[14] = tswapreg(env->regs[14]);
341     (*regs)[15] = tswapreg(env->regs[15]);
342 
343     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
344     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
345 }
346 
347 #define USE_ELF_CORE_DUMP
348 #define ELF_EXEC_PAGESIZE       4096
349 
350 enum
351 {
352     ARM_HWCAP_ARM_SWP       = 1 << 0,
353     ARM_HWCAP_ARM_HALF      = 1 << 1,
354     ARM_HWCAP_ARM_THUMB     = 1 << 2,
355     ARM_HWCAP_ARM_26BIT     = 1 << 3,
356     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
357     ARM_HWCAP_ARM_FPA       = 1 << 5,
358     ARM_HWCAP_ARM_VFP       = 1 << 6,
359     ARM_HWCAP_ARM_EDSP      = 1 << 7,
360     ARM_HWCAP_ARM_JAVA      = 1 << 8,
361     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
362     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
363     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
364     ARM_HWCAP_ARM_NEON      = 1 << 12,
365     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
366     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
367     ARM_HWCAP_ARM_TLS       = 1 << 15,
368     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
369     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
370     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
371     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
372     ARM_HWCAP_ARM_LPAE      = 1 << 20,
373     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
374 };
375 
376 enum {
377     ARM_HWCAP2_ARM_AES      = 1 << 0,
378     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
379     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
380     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
381     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
382 };
383 
384 /* The commpage only exists for 32 bit kernels */
385 
386 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
387 
388 static bool init_guest_commpage(void)
389 {
390     void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size);
391     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
392                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
393 
394     if (addr == MAP_FAILED) {
395         perror("Allocating guest commpage");
396         exit(EXIT_FAILURE);
397     }
398     if (addr != want) {
399         return false;
400     }
401 
402     /* Set kernel helper versions; rest of page is 0.  */
403     __put_user(5, (uint32_t *)g2h(0xffff0ffcu));
404 
405     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
406         perror("Protecting guest commpage");
407         exit(EXIT_FAILURE);
408     }
409     return true;
410 }
411 
412 #define ELF_HWCAP get_elf_hwcap()
413 #define ELF_HWCAP2 get_elf_hwcap2()
414 
415 static uint32_t get_elf_hwcap(void)
416 {
417     ARMCPU *cpu = ARM_CPU(thread_cpu);
418     uint32_t hwcaps = 0;
419 
420     hwcaps |= ARM_HWCAP_ARM_SWP;
421     hwcaps |= ARM_HWCAP_ARM_HALF;
422     hwcaps |= ARM_HWCAP_ARM_THUMB;
423     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
424 
425     /* probe for the extra features */
426 #define GET_FEATURE(feat, hwcap) \
427     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
428 
429 #define GET_FEATURE_ID(feat, hwcap) \
430     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
431 
432     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
433     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
434     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
435     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
436     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
437     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
438     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
439     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
440     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
441     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
442 
443     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
444         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
445         hwcaps |= ARM_HWCAP_ARM_VFPv3;
446         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
447             hwcaps |= ARM_HWCAP_ARM_VFPD32;
448         } else {
449             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
450         }
451     }
452     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
453 
454     return hwcaps;
455 }
456 
457 static uint32_t get_elf_hwcap2(void)
458 {
459     ARMCPU *cpu = ARM_CPU(thread_cpu);
460     uint32_t hwcaps = 0;
461 
462     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
463     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
464     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
465     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
466     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
467     return hwcaps;
468 }
469 
470 #undef GET_FEATURE
471 #undef GET_FEATURE_ID
472 
473 #define ELF_PLATFORM get_elf_platform()
474 
475 static const char *get_elf_platform(void)
476 {
477     CPUARMState *env = thread_cpu->env_ptr;
478 
479 #ifdef TARGET_WORDS_BIGENDIAN
480 # define END  "b"
481 #else
482 # define END  "l"
483 #endif
484 
485     if (arm_feature(env, ARM_FEATURE_V8)) {
486         return "v8" END;
487     } else if (arm_feature(env, ARM_FEATURE_V7)) {
488         if (arm_feature(env, ARM_FEATURE_M)) {
489             return "v7m" END;
490         } else {
491             return "v7" END;
492         }
493     } else if (arm_feature(env, ARM_FEATURE_V6)) {
494         return "v6" END;
495     } else if (arm_feature(env, ARM_FEATURE_V5)) {
496         return "v5" END;
497     } else {
498         return "v4" END;
499     }
500 
501 #undef END
502 }
503 
504 #else
505 /* 64 bit ARM definitions */
506 #define ELF_START_MMAP 0x80000000
507 
508 #define ELF_ARCH        EM_AARCH64
509 #define ELF_CLASS       ELFCLASS64
510 #ifdef TARGET_WORDS_BIGENDIAN
511 # define ELF_PLATFORM    "aarch64_be"
512 #else
513 # define ELF_PLATFORM    "aarch64"
514 #endif
515 
516 static inline void init_thread(struct target_pt_regs *regs,
517                                struct image_info *infop)
518 {
519     abi_long stack = infop->start_stack;
520     memset(regs, 0, sizeof(*regs));
521 
522     regs->pc = infop->entry & ~0x3ULL;
523     regs->sp = stack;
524 }
525 
526 #define ELF_NREG    34
527 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
528 
529 static void elf_core_copy_regs(target_elf_gregset_t *regs,
530                                const CPUARMState *env)
531 {
532     int i;
533 
534     for (i = 0; i < 32; i++) {
535         (*regs)[i] = tswapreg(env->xregs[i]);
536     }
537     (*regs)[32] = tswapreg(env->pc);
538     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
539 }
540 
541 #define USE_ELF_CORE_DUMP
542 #define ELF_EXEC_PAGESIZE       4096
543 
544 enum {
545     ARM_HWCAP_A64_FP            = 1 << 0,
546     ARM_HWCAP_A64_ASIMD         = 1 << 1,
547     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
548     ARM_HWCAP_A64_AES           = 1 << 3,
549     ARM_HWCAP_A64_PMULL         = 1 << 4,
550     ARM_HWCAP_A64_SHA1          = 1 << 5,
551     ARM_HWCAP_A64_SHA2          = 1 << 6,
552     ARM_HWCAP_A64_CRC32         = 1 << 7,
553     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
554     ARM_HWCAP_A64_FPHP          = 1 << 9,
555     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
556     ARM_HWCAP_A64_CPUID         = 1 << 11,
557     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
558     ARM_HWCAP_A64_JSCVT         = 1 << 13,
559     ARM_HWCAP_A64_FCMA          = 1 << 14,
560     ARM_HWCAP_A64_LRCPC         = 1 << 15,
561     ARM_HWCAP_A64_DCPOP         = 1 << 16,
562     ARM_HWCAP_A64_SHA3          = 1 << 17,
563     ARM_HWCAP_A64_SM3           = 1 << 18,
564     ARM_HWCAP_A64_SM4           = 1 << 19,
565     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
566     ARM_HWCAP_A64_SHA512        = 1 << 21,
567     ARM_HWCAP_A64_SVE           = 1 << 22,
568     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
569     ARM_HWCAP_A64_DIT           = 1 << 24,
570     ARM_HWCAP_A64_USCAT         = 1 << 25,
571     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
572     ARM_HWCAP_A64_FLAGM         = 1 << 27,
573     ARM_HWCAP_A64_SSBS          = 1 << 28,
574     ARM_HWCAP_A64_SB            = 1 << 29,
575     ARM_HWCAP_A64_PACA          = 1 << 30,
576     ARM_HWCAP_A64_PACG          = 1UL << 31,
577 
578     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
579     ARM_HWCAP2_A64_SVE2         = 1 << 1,
580     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
581     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
582     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
583     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
584     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
585     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
586     ARM_HWCAP2_A64_FRINT        = 1 << 8,
587 };
588 
589 #define ELF_HWCAP   get_elf_hwcap()
590 #define ELF_HWCAP2  get_elf_hwcap2()
591 
592 #define GET_FEATURE_ID(feat, hwcap) \
593     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
594 
595 static uint32_t get_elf_hwcap(void)
596 {
597     ARMCPU *cpu = ARM_CPU(thread_cpu);
598     uint32_t hwcaps = 0;
599 
600     hwcaps |= ARM_HWCAP_A64_FP;
601     hwcaps |= ARM_HWCAP_A64_ASIMD;
602     hwcaps |= ARM_HWCAP_A64_CPUID;
603 
604     /* probe for the extra features */
605 
606     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
607     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
608     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
609     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
610     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
611     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
612     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
613     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
614     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
615     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
616     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
617     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
618     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
619     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
620     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
621     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
622     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
623     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
624     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
625     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
626     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
627     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
628     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
629 
630     return hwcaps;
631 }
632 
633 static uint32_t get_elf_hwcap2(void)
634 {
635     ARMCPU *cpu = ARM_CPU(thread_cpu);
636     uint32_t hwcaps = 0;
637 
638     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
639     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
640     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
641 
642     return hwcaps;
643 }
644 
645 #undef GET_FEATURE_ID
646 
647 #endif /* not TARGET_AARCH64 */
648 #endif /* TARGET_ARM */
649 
650 #ifdef TARGET_SPARC
651 #ifdef TARGET_SPARC64
652 
653 #define ELF_START_MMAP 0x80000000
654 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
655                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
656 #ifndef TARGET_ABI32
657 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
658 #else
659 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
660 #endif
661 
662 #define ELF_CLASS   ELFCLASS64
663 #define ELF_ARCH    EM_SPARCV9
664 
665 #define STACK_BIAS              2047
666 
667 static inline void init_thread(struct target_pt_regs *regs,
668                                struct image_info *infop)
669 {
670 #ifndef TARGET_ABI32
671     regs->tstate = 0;
672 #endif
673     regs->pc = infop->entry;
674     regs->npc = regs->pc + 4;
675     regs->y = 0;
676 #ifdef TARGET_ABI32
677     regs->u_regs[14] = infop->start_stack - 16 * 4;
678 #else
679     if (personality(infop->personality) == PER_LINUX32)
680         regs->u_regs[14] = infop->start_stack - 16 * 4;
681     else
682         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
683 #endif
684 }
685 
686 #else
687 #define ELF_START_MMAP 0x80000000
688 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
689                     | HWCAP_SPARC_MULDIV)
690 
691 #define ELF_CLASS   ELFCLASS32
692 #define ELF_ARCH    EM_SPARC
693 
694 static inline void init_thread(struct target_pt_regs *regs,
695                                struct image_info *infop)
696 {
697     regs->psr = 0;
698     regs->pc = infop->entry;
699     regs->npc = regs->pc + 4;
700     regs->y = 0;
701     regs->u_regs[14] = infop->start_stack - 16 * 4;
702 }
703 
704 #endif
705 #endif
706 
707 #ifdef TARGET_PPC
708 
709 #define ELF_MACHINE    PPC_ELF_MACHINE
710 #define ELF_START_MMAP 0x80000000
711 
712 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
713 
714 #define elf_check_arch(x) ( (x) == EM_PPC64 )
715 
716 #define ELF_CLASS       ELFCLASS64
717 
718 #else
719 
720 #define ELF_CLASS       ELFCLASS32
721 
722 #endif
723 
724 #define ELF_ARCH        EM_PPC
725 
726 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
727    See arch/powerpc/include/asm/cputable.h.  */
728 enum {
729     QEMU_PPC_FEATURE_32 = 0x80000000,
730     QEMU_PPC_FEATURE_64 = 0x40000000,
731     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
732     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
733     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
734     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
735     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
736     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
737     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
738     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
739     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
740     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
741     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
742     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
743     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
744     QEMU_PPC_FEATURE_CELL = 0x00010000,
745     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
746     QEMU_PPC_FEATURE_SMT = 0x00004000,
747     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
748     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
749     QEMU_PPC_FEATURE_PA6T = 0x00000800,
750     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
751     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
752     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
753     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
754     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
755 
756     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
757     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
758 
759     /* Feature definitions in AT_HWCAP2.  */
760     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
761     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
762     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
763     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
764     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
765     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
766     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
767     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
768     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
769     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
770     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
771     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
772     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
773 };
774 
775 #define ELF_HWCAP get_elf_hwcap()
776 
777 static uint32_t get_elf_hwcap(void)
778 {
779     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
780     uint32_t features = 0;
781 
782     /* We don't have to be terribly complete here; the high points are
783        Altivec/FP/SPE support.  Anything else is just a bonus.  */
784 #define GET_FEATURE(flag, feature)                                      \
785     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
786 #define GET_FEATURE2(flags, feature) \
787     do { \
788         if ((cpu->env.insns_flags2 & flags) == flags) { \
789             features |= feature; \
790         } \
791     } while (0)
792     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
793     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
794     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
795     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
796     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
797     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
798     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
799     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
800     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
801     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
802     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
803                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
804                   QEMU_PPC_FEATURE_ARCH_2_06);
805 #undef GET_FEATURE
806 #undef GET_FEATURE2
807 
808     return features;
809 }
810 
811 #define ELF_HWCAP2 get_elf_hwcap2()
812 
813 static uint32_t get_elf_hwcap2(void)
814 {
815     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
816     uint32_t features = 0;
817 
818 #define GET_FEATURE(flag, feature)                                      \
819     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
820 #define GET_FEATURE2(flag, feature)                                      \
821     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
822 
823     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
824     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
825     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
826                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
827                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
828     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
829                  QEMU_PPC_FEATURE2_DARN);
830 
831 #undef GET_FEATURE
832 #undef GET_FEATURE2
833 
834     return features;
835 }
836 
837 /*
838  * The requirements here are:
839  * - keep the final alignment of sp (sp & 0xf)
840  * - make sure the 32-bit value at the first 16 byte aligned position of
841  *   AUXV is greater than 16 for glibc compatibility.
842  *   AT_IGNOREPPC is used for that.
843  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
844  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
845  */
846 #define DLINFO_ARCH_ITEMS       5
847 #define ARCH_DLINFO                                     \
848     do {                                                \
849         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
850         /*                                              \
851          * Handle glibc compatibility: these magic entries must \
852          * be at the lowest addresses in the final auxv.        \
853          */                                             \
854         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
855         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
856         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
857         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
858         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
859     } while (0)
860 
861 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
862 {
863     _regs->gpr[1] = infop->start_stack;
864 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
865     if (get_ppc64_abi(infop) < 2) {
866         uint64_t val;
867         get_user_u64(val, infop->entry + 8);
868         _regs->gpr[2] = val + infop->load_bias;
869         get_user_u64(val, infop->entry);
870         infop->entry = val + infop->load_bias;
871     } else {
872         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
873     }
874 #endif
875     _regs->nip = infop->entry;
876 }
877 
878 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
879 #define ELF_NREG 48
880 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
881 
882 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
883 {
884     int i;
885     target_ulong ccr = 0;
886 
887     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
888         (*regs)[i] = tswapreg(env->gpr[i]);
889     }
890 
891     (*regs)[32] = tswapreg(env->nip);
892     (*regs)[33] = tswapreg(env->msr);
893     (*regs)[35] = tswapreg(env->ctr);
894     (*regs)[36] = tswapreg(env->lr);
895     (*regs)[37] = tswapreg(env->xer);
896 
897     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
898         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
899     }
900     (*regs)[38] = tswapreg(ccr);
901 }
902 
903 #define USE_ELF_CORE_DUMP
904 #define ELF_EXEC_PAGESIZE       4096
905 
906 #endif
907 
908 #ifdef TARGET_MIPS
909 
910 #define ELF_START_MMAP 0x80000000
911 
912 #ifdef TARGET_MIPS64
913 #define ELF_CLASS   ELFCLASS64
914 #else
915 #define ELF_CLASS   ELFCLASS32
916 #endif
917 #define ELF_ARCH    EM_MIPS
918 
919 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
920 
921 #ifdef TARGET_ABI_MIPSN32
922 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
923 #else
924 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
925 #endif
926 
927 static inline void init_thread(struct target_pt_regs *regs,
928                                struct image_info *infop)
929 {
930     regs->cp0_status = 2 << CP0St_KSU;
931     regs->cp0_epc = infop->entry;
932     regs->regs[29] = infop->start_stack;
933 }
934 
935 /* See linux kernel: arch/mips/include/asm/elf.h.  */
936 #define ELF_NREG 45
937 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
938 
939 /* See linux kernel: arch/mips/include/asm/reg.h.  */
940 enum {
941 #ifdef TARGET_MIPS64
942     TARGET_EF_R0 = 0,
943 #else
944     TARGET_EF_R0 = 6,
945 #endif
946     TARGET_EF_R26 = TARGET_EF_R0 + 26,
947     TARGET_EF_R27 = TARGET_EF_R0 + 27,
948     TARGET_EF_LO = TARGET_EF_R0 + 32,
949     TARGET_EF_HI = TARGET_EF_R0 + 33,
950     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
951     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
952     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
953     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
954 };
955 
956 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
957 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
958 {
959     int i;
960 
961     for (i = 0; i < TARGET_EF_R0; i++) {
962         (*regs)[i] = 0;
963     }
964     (*regs)[TARGET_EF_R0] = 0;
965 
966     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
967         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
968     }
969 
970     (*regs)[TARGET_EF_R26] = 0;
971     (*regs)[TARGET_EF_R27] = 0;
972     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
973     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
974     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
975     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
976     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
977     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
978 }
979 
980 #define USE_ELF_CORE_DUMP
981 #define ELF_EXEC_PAGESIZE        4096
982 
983 /* See arch/mips/include/uapi/asm/hwcap.h.  */
984 enum {
985     HWCAP_MIPS_R6           = (1 << 0),
986     HWCAP_MIPS_MSA          = (1 << 1),
987 };
988 
989 #define ELF_HWCAP get_elf_hwcap()
990 
991 static uint32_t get_elf_hwcap(void)
992 {
993     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
994     uint32_t hwcaps = 0;
995 
996 #define GET_FEATURE(flag, hwcap) \
997     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
998 
999     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
1000     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1001 
1002 #undef GET_FEATURE
1003 
1004     return hwcaps;
1005 }
1006 
1007 #endif /* TARGET_MIPS */
1008 
1009 #ifdef TARGET_MICROBLAZE
1010 
1011 #define ELF_START_MMAP 0x80000000
1012 
1013 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1014 
1015 #define ELF_CLASS   ELFCLASS32
1016 #define ELF_ARCH    EM_MICROBLAZE
1017 
1018 static inline void init_thread(struct target_pt_regs *regs,
1019                                struct image_info *infop)
1020 {
1021     regs->pc = infop->entry;
1022     regs->r1 = infop->start_stack;
1023 
1024 }
1025 
1026 #define ELF_EXEC_PAGESIZE        4096
1027 
1028 #define USE_ELF_CORE_DUMP
1029 #define ELF_NREG 38
1030 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1031 
1032 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1033 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1034 {
1035     int i, pos = 0;
1036 
1037     for (i = 0; i < 32; i++) {
1038         (*regs)[pos++] = tswapreg(env->regs[i]);
1039     }
1040 
1041     (*regs)[pos++] = tswapreg(env->pc);
1042     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1043     (*regs)[pos++] = 0;
1044     (*regs)[pos++] = tswapreg(env->ear);
1045     (*regs)[pos++] = 0;
1046     (*regs)[pos++] = tswapreg(env->esr);
1047 }
1048 
1049 #endif /* TARGET_MICROBLAZE */
1050 
1051 #ifdef TARGET_NIOS2
1052 
1053 #define ELF_START_MMAP 0x80000000
1054 
1055 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1056 
1057 #define ELF_CLASS   ELFCLASS32
1058 #define ELF_ARCH    EM_ALTERA_NIOS2
1059 
1060 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1061 {
1062     regs->ea = infop->entry;
1063     regs->sp = infop->start_stack;
1064     regs->estatus = 0x3;
1065 }
1066 
1067 #define ELF_EXEC_PAGESIZE        4096
1068 
1069 #define USE_ELF_CORE_DUMP
1070 #define ELF_NREG 49
1071 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1072 
1073 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1074 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1075                                const CPUNios2State *env)
1076 {
1077     int i;
1078 
1079     (*regs)[0] = -1;
1080     for (i = 1; i < 8; i++)    /* r0-r7 */
1081         (*regs)[i] = tswapreg(env->regs[i + 7]);
1082 
1083     for (i = 8; i < 16; i++)   /* r8-r15 */
1084         (*regs)[i] = tswapreg(env->regs[i - 8]);
1085 
1086     for (i = 16; i < 24; i++)  /* r16-r23 */
1087         (*regs)[i] = tswapreg(env->regs[i + 7]);
1088     (*regs)[24] = -1;    /* R_ET */
1089     (*regs)[25] = -1;    /* R_BT */
1090     (*regs)[26] = tswapreg(env->regs[R_GP]);
1091     (*regs)[27] = tswapreg(env->regs[R_SP]);
1092     (*regs)[28] = tswapreg(env->regs[R_FP]);
1093     (*regs)[29] = tswapreg(env->regs[R_EA]);
1094     (*regs)[30] = -1;    /* R_SSTATUS */
1095     (*regs)[31] = tswapreg(env->regs[R_RA]);
1096 
1097     (*regs)[32] = tswapreg(env->regs[R_PC]);
1098 
1099     (*regs)[33] = -1; /* R_STATUS */
1100     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1101 
1102     for (i = 35; i < 49; i++)    /* ... */
1103         (*regs)[i] = -1;
1104 }
1105 
1106 #endif /* TARGET_NIOS2 */
1107 
1108 #ifdef TARGET_OPENRISC
1109 
1110 #define ELF_START_MMAP 0x08000000
1111 
1112 #define ELF_ARCH EM_OPENRISC
1113 #define ELF_CLASS ELFCLASS32
1114 #define ELF_DATA  ELFDATA2MSB
1115 
1116 static inline void init_thread(struct target_pt_regs *regs,
1117                                struct image_info *infop)
1118 {
1119     regs->pc = infop->entry;
1120     regs->gpr[1] = infop->start_stack;
1121 }
1122 
1123 #define USE_ELF_CORE_DUMP
1124 #define ELF_EXEC_PAGESIZE 8192
1125 
1126 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1127 #define ELF_NREG 34 /* gprs and pc, sr */
1128 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1129 
1130 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1131                                const CPUOpenRISCState *env)
1132 {
1133     int i;
1134 
1135     for (i = 0; i < 32; i++) {
1136         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1137     }
1138     (*regs)[32] = tswapreg(env->pc);
1139     (*regs)[33] = tswapreg(cpu_get_sr(env));
1140 }
1141 #define ELF_HWCAP 0
1142 #define ELF_PLATFORM NULL
1143 
1144 #endif /* TARGET_OPENRISC */
1145 
1146 #ifdef TARGET_SH4
1147 
1148 #define ELF_START_MMAP 0x80000000
1149 
1150 #define ELF_CLASS ELFCLASS32
1151 #define ELF_ARCH  EM_SH
1152 
1153 static inline void init_thread(struct target_pt_regs *regs,
1154                                struct image_info *infop)
1155 {
1156     /* Check other registers XXXXX */
1157     regs->pc = infop->entry;
1158     regs->regs[15] = infop->start_stack;
1159 }
1160 
1161 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1162 #define ELF_NREG 23
1163 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1164 
1165 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1166 enum {
1167     TARGET_REG_PC = 16,
1168     TARGET_REG_PR = 17,
1169     TARGET_REG_SR = 18,
1170     TARGET_REG_GBR = 19,
1171     TARGET_REG_MACH = 20,
1172     TARGET_REG_MACL = 21,
1173     TARGET_REG_SYSCALL = 22
1174 };
1175 
1176 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1177                                       const CPUSH4State *env)
1178 {
1179     int i;
1180 
1181     for (i = 0; i < 16; i++) {
1182         (*regs)[i] = tswapreg(env->gregs[i]);
1183     }
1184 
1185     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1186     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1187     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1188     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1189     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1190     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1191     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1192 }
1193 
1194 #define USE_ELF_CORE_DUMP
1195 #define ELF_EXEC_PAGESIZE        4096
1196 
1197 enum {
1198     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1199     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1200     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1201     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1202     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1203     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1204     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1205     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1206     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1207     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1208 };
1209 
1210 #define ELF_HWCAP get_elf_hwcap()
1211 
1212 static uint32_t get_elf_hwcap(void)
1213 {
1214     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1215     uint32_t hwcap = 0;
1216 
1217     hwcap |= SH_CPU_HAS_FPU;
1218 
1219     if (cpu->env.features & SH_FEATURE_SH4A) {
1220         hwcap |= SH_CPU_HAS_LLSC;
1221     }
1222 
1223     return hwcap;
1224 }
1225 
1226 #endif
1227 
1228 #ifdef TARGET_CRIS
1229 
1230 #define ELF_START_MMAP 0x80000000
1231 
1232 #define ELF_CLASS ELFCLASS32
1233 #define ELF_ARCH  EM_CRIS
1234 
1235 static inline void init_thread(struct target_pt_regs *regs,
1236                                struct image_info *infop)
1237 {
1238     regs->erp = infop->entry;
1239 }
1240 
1241 #define ELF_EXEC_PAGESIZE        8192
1242 
1243 #endif
1244 
1245 #ifdef TARGET_M68K
1246 
1247 #define ELF_START_MMAP 0x80000000
1248 
1249 #define ELF_CLASS       ELFCLASS32
1250 #define ELF_ARCH        EM_68K
1251 
1252 /* ??? Does this need to do anything?
1253    #define ELF_PLAT_INIT(_r) */
1254 
1255 static inline void init_thread(struct target_pt_regs *regs,
1256                                struct image_info *infop)
1257 {
1258     regs->usp = infop->start_stack;
1259     regs->sr = 0;
1260     regs->pc = infop->entry;
1261 }
1262 
1263 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1264 #define ELF_NREG 20
1265 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1266 
1267 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1268 {
1269     (*regs)[0] = tswapreg(env->dregs[1]);
1270     (*regs)[1] = tswapreg(env->dregs[2]);
1271     (*regs)[2] = tswapreg(env->dregs[3]);
1272     (*regs)[3] = tswapreg(env->dregs[4]);
1273     (*regs)[4] = tswapreg(env->dregs[5]);
1274     (*regs)[5] = tswapreg(env->dregs[6]);
1275     (*regs)[6] = tswapreg(env->dregs[7]);
1276     (*regs)[7] = tswapreg(env->aregs[0]);
1277     (*regs)[8] = tswapreg(env->aregs[1]);
1278     (*regs)[9] = tswapreg(env->aregs[2]);
1279     (*regs)[10] = tswapreg(env->aregs[3]);
1280     (*regs)[11] = tswapreg(env->aregs[4]);
1281     (*regs)[12] = tswapreg(env->aregs[5]);
1282     (*regs)[13] = tswapreg(env->aregs[6]);
1283     (*regs)[14] = tswapreg(env->dregs[0]);
1284     (*regs)[15] = tswapreg(env->aregs[7]);
1285     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1286     (*regs)[17] = tswapreg(env->sr);
1287     (*regs)[18] = tswapreg(env->pc);
1288     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1289 }
1290 
1291 #define USE_ELF_CORE_DUMP
1292 #define ELF_EXEC_PAGESIZE       8192
1293 
1294 #endif
1295 
1296 #ifdef TARGET_ALPHA
1297 
1298 #define ELF_START_MMAP (0x30000000000ULL)
1299 
1300 #define ELF_CLASS      ELFCLASS64
1301 #define ELF_ARCH       EM_ALPHA
1302 
1303 static inline void init_thread(struct target_pt_regs *regs,
1304                                struct image_info *infop)
1305 {
1306     regs->pc = infop->entry;
1307     regs->ps = 8;
1308     regs->usp = infop->start_stack;
1309 }
1310 
1311 #define ELF_EXEC_PAGESIZE        8192
1312 
1313 #endif /* TARGET_ALPHA */
1314 
1315 #ifdef TARGET_S390X
1316 
1317 #define ELF_START_MMAP (0x20000000000ULL)
1318 
1319 #define ELF_CLASS	ELFCLASS64
1320 #define ELF_DATA	ELFDATA2MSB
1321 #define ELF_ARCH	EM_S390
1322 
1323 #include "elf.h"
1324 
1325 #define ELF_HWCAP get_elf_hwcap()
1326 
1327 #define GET_FEATURE(_feat, _hwcap) \
1328     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1329 
1330 static uint32_t get_elf_hwcap(void)
1331 {
1332     /*
1333      * Let's assume we always have esan3 and zarch.
1334      * 31-bit processes can use 64-bit registers (high gprs).
1335      */
1336     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1337 
1338     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1339     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1340     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1341     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1342     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1343         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1344         hwcap |= HWCAP_S390_ETF3EH;
1345     }
1346     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1347 
1348     return hwcap;
1349 }
1350 
1351 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1352 {
1353     regs->psw.addr = infop->entry;
1354     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1355     regs->gprs[15] = infop->start_stack;
1356 }
1357 
1358 #endif /* TARGET_S390X */
1359 
1360 #ifdef TARGET_TILEGX
1361 
1362 /* 42 bits real used address, a half for user mode */
1363 #define ELF_START_MMAP (0x00000020000000000ULL)
1364 
1365 #define elf_check_arch(x) ((x) == EM_TILEGX)
1366 
1367 #define ELF_CLASS   ELFCLASS64
1368 #define ELF_DATA    ELFDATA2LSB
1369 #define ELF_ARCH    EM_TILEGX
1370 
1371 static inline void init_thread(struct target_pt_regs *regs,
1372                                struct image_info *infop)
1373 {
1374     regs->pc = infop->entry;
1375     regs->sp = infop->start_stack;
1376 
1377 }
1378 
1379 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1380 
1381 #endif /* TARGET_TILEGX */
1382 
1383 #ifdef TARGET_RISCV
1384 
1385 #define ELF_START_MMAP 0x80000000
1386 #define ELF_ARCH  EM_RISCV
1387 
1388 #ifdef TARGET_RISCV32
1389 #define ELF_CLASS ELFCLASS32
1390 #else
1391 #define ELF_CLASS ELFCLASS64
1392 #endif
1393 
1394 static inline void init_thread(struct target_pt_regs *regs,
1395                                struct image_info *infop)
1396 {
1397     regs->sepc = infop->entry;
1398     regs->sp = infop->start_stack;
1399 }
1400 
1401 #define ELF_EXEC_PAGESIZE 4096
1402 
1403 #endif /* TARGET_RISCV */
1404 
1405 #ifdef TARGET_HPPA
1406 
1407 #define ELF_START_MMAP  0x80000000
1408 #define ELF_CLASS       ELFCLASS32
1409 #define ELF_ARCH        EM_PARISC
1410 #define ELF_PLATFORM    "PARISC"
1411 #define STACK_GROWS_DOWN 0
1412 #define STACK_ALIGNMENT  64
1413 
1414 static inline void init_thread(struct target_pt_regs *regs,
1415                                struct image_info *infop)
1416 {
1417     regs->iaoq[0] = infop->entry;
1418     regs->iaoq[1] = infop->entry + 4;
1419     regs->gr[23] = 0;
1420     regs->gr[24] = infop->arg_start;
1421     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1422     /* The top-of-stack contains a linkage buffer.  */
1423     regs->gr[30] = infop->start_stack + 64;
1424     regs->gr[31] = infop->entry;
1425 }
1426 
1427 #endif /* TARGET_HPPA */
1428 
1429 #ifdef TARGET_XTENSA
1430 
1431 #define ELF_START_MMAP 0x20000000
1432 
1433 #define ELF_CLASS       ELFCLASS32
1434 #define ELF_ARCH        EM_XTENSA
1435 
1436 static inline void init_thread(struct target_pt_regs *regs,
1437                                struct image_info *infop)
1438 {
1439     regs->windowbase = 0;
1440     regs->windowstart = 1;
1441     regs->areg[1] = infop->start_stack;
1442     regs->pc = infop->entry;
1443 }
1444 
1445 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1446 #define ELF_NREG 128
1447 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1448 
1449 enum {
1450     TARGET_REG_PC,
1451     TARGET_REG_PS,
1452     TARGET_REG_LBEG,
1453     TARGET_REG_LEND,
1454     TARGET_REG_LCOUNT,
1455     TARGET_REG_SAR,
1456     TARGET_REG_WINDOWSTART,
1457     TARGET_REG_WINDOWBASE,
1458     TARGET_REG_THREADPTR,
1459     TARGET_REG_AR0 = 64,
1460 };
1461 
1462 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1463                                const CPUXtensaState *env)
1464 {
1465     unsigned i;
1466 
1467     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1468     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1469     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1470     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1471     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1472     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1473     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1474     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1475     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1476     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1477     for (i = 0; i < env->config->nareg; ++i) {
1478         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1479     }
1480 }
1481 
1482 #define USE_ELF_CORE_DUMP
1483 #define ELF_EXEC_PAGESIZE       4096
1484 
1485 #endif /* TARGET_XTENSA */
1486 
1487 #ifndef ELF_PLATFORM
1488 #define ELF_PLATFORM (NULL)
1489 #endif
1490 
1491 #ifndef ELF_MACHINE
1492 #define ELF_MACHINE ELF_ARCH
1493 #endif
1494 
1495 #ifndef elf_check_arch
1496 #define elf_check_arch(x) ((x) == ELF_ARCH)
1497 #endif
1498 
1499 #ifndef elf_check_abi
1500 #define elf_check_abi(x) (1)
1501 #endif
1502 
1503 #ifndef ELF_HWCAP
1504 #define ELF_HWCAP 0
1505 #endif
1506 
1507 #ifndef STACK_GROWS_DOWN
1508 #define STACK_GROWS_DOWN 1
1509 #endif
1510 
1511 #ifndef STACK_ALIGNMENT
1512 #define STACK_ALIGNMENT 16
1513 #endif
1514 
1515 #ifdef TARGET_ABI32
1516 #undef ELF_CLASS
1517 #define ELF_CLASS ELFCLASS32
1518 #undef bswaptls
1519 #define bswaptls(ptr) bswap32s(ptr)
1520 #endif
1521 
1522 #include "elf.h"
1523 
1524 struct exec
1525 {
1526     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1527     unsigned int a_text;   /* length of text, in bytes */
1528     unsigned int a_data;   /* length of data, in bytes */
1529     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1530     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1531     unsigned int a_entry;  /* start address */
1532     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1533     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1534 };
1535 
1536 
1537 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1538 #define OMAGIC 0407
1539 #define NMAGIC 0410
1540 #define ZMAGIC 0413
1541 #define QMAGIC 0314
1542 
1543 /* Necessary parameters */
1544 #define TARGET_ELF_EXEC_PAGESIZE \
1545         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1546          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1547 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1548 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1549                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1550 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1551 
1552 #define DLINFO_ITEMS 16
1553 
1554 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1555 {
1556     memcpy(to, from, n);
1557 }
1558 
1559 #ifdef BSWAP_NEEDED
1560 static void bswap_ehdr(struct elfhdr *ehdr)
1561 {
1562     bswap16s(&ehdr->e_type);            /* Object file type */
1563     bswap16s(&ehdr->e_machine);         /* Architecture */
1564     bswap32s(&ehdr->e_version);         /* Object file version */
1565     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1566     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1567     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1568     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1569     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1570     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1571     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1572     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1573     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1574     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1575 }
1576 
1577 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1578 {
1579     int i;
1580     for (i = 0; i < phnum; ++i, ++phdr) {
1581         bswap32s(&phdr->p_type);        /* Segment type */
1582         bswap32s(&phdr->p_flags);       /* Segment flags */
1583         bswaptls(&phdr->p_offset);      /* Segment file offset */
1584         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1585         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1586         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1587         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1588         bswaptls(&phdr->p_align);       /* Segment alignment */
1589     }
1590 }
1591 
1592 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1593 {
1594     int i;
1595     for (i = 0; i < shnum; ++i, ++shdr) {
1596         bswap32s(&shdr->sh_name);
1597         bswap32s(&shdr->sh_type);
1598         bswaptls(&shdr->sh_flags);
1599         bswaptls(&shdr->sh_addr);
1600         bswaptls(&shdr->sh_offset);
1601         bswaptls(&shdr->sh_size);
1602         bswap32s(&shdr->sh_link);
1603         bswap32s(&shdr->sh_info);
1604         bswaptls(&shdr->sh_addralign);
1605         bswaptls(&shdr->sh_entsize);
1606     }
1607 }
1608 
1609 static void bswap_sym(struct elf_sym *sym)
1610 {
1611     bswap32s(&sym->st_name);
1612     bswaptls(&sym->st_value);
1613     bswaptls(&sym->st_size);
1614     bswap16s(&sym->st_shndx);
1615 }
1616 
1617 #ifdef TARGET_MIPS
1618 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1619 {
1620     bswap16s(&abiflags->version);
1621     bswap32s(&abiflags->ases);
1622     bswap32s(&abiflags->isa_ext);
1623     bswap32s(&abiflags->flags1);
1624     bswap32s(&abiflags->flags2);
1625 }
1626 #endif
1627 #else
1628 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1629 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1630 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1631 static inline void bswap_sym(struct elf_sym *sym) { }
1632 #ifdef TARGET_MIPS
1633 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1634 #endif
1635 #endif
1636 
1637 #ifdef USE_ELF_CORE_DUMP
1638 static int elf_core_dump(int, const CPUArchState *);
1639 #endif /* USE_ELF_CORE_DUMP */
1640 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1641 
1642 /* Verify the portions of EHDR within E_IDENT for the target.
1643    This can be performed before bswapping the entire header.  */
1644 static bool elf_check_ident(struct elfhdr *ehdr)
1645 {
1646     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1647             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1648             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1649             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1650             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1651             && ehdr->e_ident[EI_DATA] == ELF_DATA
1652             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1653 }
1654 
1655 /* Verify the portions of EHDR outside of E_IDENT for the target.
1656    This has to wait until after bswapping the header.  */
1657 static bool elf_check_ehdr(struct elfhdr *ehdr)
1658 {
1659     return (elf_check_arch(ehdr->e_machine)
1660             && elf_check_abi(ehdr->e_flags)
1661             && ehdr->e_ehsize == sizeof(struct elfhdr)
1662             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1663             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1664 }
1665 
1666 /*
1667  * 'copy_elf_strings()' copies argument/envelope strings from user
1668  * memory to free pages in kernel mem. These are in a format ready
1669  * to be put directly into the top of new user memory.
1670  *
1671  */
1672 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1673                                   abi_ulong p, abi_ulong stack_limit)
1674 {
1675     char *tmp;
1676     int len, i;
1677     abi_ulong top = p;
1678 
1679     if (!p) {
1680         return 0;       /* bullet-proofing */
1681     }
1682 
1683     if (STACK_GROWS_DOWN) {
1684         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1685         for (i = argc - 1; i >= 0; --i) {
1686             tmp = argv[i];
1687             if (!tmp) {
1688                 fprintf(stderr, "VFS: argc is wrong");
1689                 exit(-1);
1690             }
1691             len = strlen(tmp) + 1;
1692             tmp += len;
1693 
1694             if (len > (p - stack_limit)) {
1695                 return 0;
1696             }
1697             while (len) {
1698                 int bytes_to_copy = (len > offset) ? offset : len;
1699                 tmp -= bytes_to_copy;
1700                 p -= bytes_to_copy;
1701                 offset -= bytes_to_copy;
1702                 len -= bytes_to_copy;
1703 
1704                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1705 
1706                 if (offset == 0) {
1707                     memcpy_to_target(p, scratch, top - p);
1708                     top = p;
1709                     offset = TARGET_PAGE_SIZE;
1710                 }
1711             }
1712         }
1713         if (p != top) {
1714             memcpy_to_target(p, scratch + offset, top - p);
1715         }
1716     } else {
1717         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1718         for (i = 0; i < argc; ++i) {
1719             tmp = argv[i];
1720             if (!tmp) {
1721                 fprintf(stderr, "VFS: argc is wrong");
1722                 exit(-1);
1723             }
1724             len = strlen(tmp) + 1;
1725             if (len > (stack_limit - p)) {
1726                 return 0;
1727             }
1728             while (len) {
1729                 int bytes_to_copy = (len > remaining) ? remaining : len;
1730 
1731                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1732 
1733                 tmp += bytes_to_copy;
1734                 remaining -= bytes_to_copy;
1735                 p += bytes_to_copy;
1736                 len -= bytes_to_copy;
1737 
1738                 if (remaining == 0) {
1739                     memcpy_to_target(top, scratch, p - top);
1740                     top = p;
1741                     remaining = TARGET_PAGE_SIZE;
1742                 }
1743             }
1744         }
1745         if (p != top) {
1746             memcpy_to_target(top, scratch, p - top);
1747         }
1748     }
1749 
1750     return p;
1751 }
1752 
1753 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1754  * argument/environment space. Newer kernels (>2.6.33) allow more,
1755  * dependent on stack size, but guarantee at least 32 pages for
1756  * backwards compatibility.
1757  */
1758 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1759 
1760 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1761                                  struct image_info *info)
1762 {
1763     abi_ulong size, error, guard;
1764 
1765     size = guest_stack_size;
1766     if (size < STACK_LOWER_LIMIT) {
1767         size = STACK_LOWER_LIMIT;
1768     }
1769     guard = TARGET_PAGE_SIZE;
1770     if (guard < qemu_real_host_page_size) {
1771         guard = qemu_real_host_page_size;
1772     }
1773 
1774     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1775                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1776     if (error == -1) {
1777         perror("mmap stack");
1778         exit(-1);
1779     }
1780 
1781     /* We reserve one extra page at the top of the stack as guard.  */
1782     if (STACK_GROWS_DOWN) {
1783         target_mprotect(error, guard, PROT_NONE);
1784         info->stack_limit = error + guard;
1785         return info->stack_limit + size - sizeof(void *);
1786     } else {
1787         target_mprotect(error + size, guard, PROT_NONE);
1788         info->stack_limit = error + size;
1789         return error;
1790     }
1791 }
1792 
1793 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1794    after the data section (i.e. bss).  */
1795 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1796 {
1797     uintptr_t host_start, host_map_start, host_end;
1798 
1799     last_bss = TARGET_PAGE_ALIGN(last_bss);
1800 
1801     /* ??? There is confusion between qemu_real_host_page_size and
1802        qemu_host_page_size here and elsewhere in target_mmap, which
1803        may lead to the end of the data section mapping from the file
1804        not being mapped.  At least there was an explicit test and
1805        comment for that here, suggesting that "the file size must
1806        be known".  The comment probably pre-dates the introduction
1807        of the fstat system call in target_mmap which does in fact
1808        find out the size.  What isn't clear is if the workaround
1809        here is still actually needed.  For now, continue with it,
1810        but merge it with the "normal" mmap that would allocate the bss.  */
1811 
1812     host_start = (uintptr_t) g2h(elf_bss);
1813     host_end = (uintptr_t) g2h(last_bss);
1814     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1815 
1816     if (host_map_start < host_end) {
1817         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1818                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1819         if (p == MAP_FAILED) {
1820             perror("cannot mmap brk");
1821             exit(-1);
1822         }
1823     }
1824 
1825     /* Ensure that the bss page(s) are valid */
1826     if ((page_get_flags(last_bss-1) & prot) != prot) {
1827         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1828     }
1829 
1830     if (host_start < host_map_start) {
1831         memset((void *)host_start, 0, host_map_start - host_start);
1832     }
1833 }
1834 
1835 #ifdef TARGET_ARM
1836 static int elf_is_fdpic(struct elfhdr *exec)
1837 {
1838     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1839 }
1840 #else
1841 /* Default implementation, always false.  */
1842 static int elf_is_fdpic(struct elfhdr *exec)
1843 {
1844     return 0;
1845 }
1846 #endif
1847 
1848 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1849 {
1850     uint16_t n;
1851     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1852 
1853     /* elf32_fdpic_loadseg */
1854     n = info->nsegs;
1855     while (n--) {
1856         sp -= 12;
1857         put_user_u32(loadsegs[n].addr, sp+0);
1858         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1859         put_user_u32(loadsegs[n].p_memsz, sp+8);
1860     }
1861 
1862     /* elf32_fdpic_loadmap */
1863     sp -= 4;
1864     put_user_u16(0, sp+0); /* version */
1865     put_user_u16(info->nsegs, sp+2); /* nsegs */
1866 
1867     info->personality = PER_LINUX_FDPIC;
1868     info->loadmap_addr = sp;
1869 
1870     return sp;
1871 }
1872 
1873 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1874                                    struct elfhdr *exec,
1875                                    struct image_info *info,
1876                                    struct image_info *interp_info)
1877 {
1878     abi_ulong sp;
1879     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1880     int size;
1881     int i;
1882     abi_ulong u_rand_bytes;
1883     uint8_t k_rand_bytes[16];
1884     abi_ulong u_platform;
1885     const char *k_platform;
1886     const int n = sizeof(elf_addr_t);
1887 
1888     sp = p;
1889 
1890     /* Needs to be before we load the env/argc/... */
1891     if (elf_is_fdpic(exec)) {
1892         /* Need 4 byte alignment for these structs */
1893         sp &= ~3;
1894         sp = loader_build_fdpic_loadmap(info, sp);
1895         info->other_info = interp_info;
1896         if (interp_info) {
1897             interp_info->other_info = info;
1898             sp = loader_build_fdpic_loadmap(interp_info, sp);
1899             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1900             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1901         } else {
1902             info->interpreter_loadmap_addr = 0;
1903             info->interpreter_pt_dynamic_addr = 0;
1904         }
1905     }
1906 
1907     u_platform = 0;
1908     k_platform = ELF_PLATFORM;
1909     if (k_platform) {
1910         size_t len = strlen(k_platform) + 1;
1911         if (STACK_GROWS_DOWN) {
1912             sp -= (len + n - 1) & ~(n - 1);
1913             u_platform = sp;
1914             /* FIXME - check return value of memcpy_to_target() for failure */
1915             memcpy_to_target(sp, k_platform, len);
1916         } else {
1917             memcpy_to_target(sp, k_platform, len);
1918             u_platform = sp;
1919             sp += len + 1;
1920         }
1921     }
1922 
1923     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1924      * the argv and envp pointers.
1925      */
1926     if (STACK_GROWS_DOWN) {
1927         sp = QEMU_ALIGN_DOWN(sp, 16);
1928     } else {
1929         sp = QEMU_ALIGN_UP(sp, 16);
1930     }
1931 
1932     /*
1933      * Generate 16 random bytes for userspace PRNG seeding.
1934      */
1935     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1936     if (STACK_GROWS_DOWN) {
1937         sp -= 16;
1938         u_rand_bytes = sp;
1939         /* FIXME - check return value of memcpy_to_target() for failure */
1940         memcpy_to_target(sp, k_rand_bytes, 16);
1941     } else {
1942         memcpy_to_target(sp, k_rand_bytes, 16);
1943         u_rand_bytes = sp;
1944         sp += 16;
1945     }
1946 
1947     size = (DLINFO_ITEMS + 1) * 2;
1948     if (k_platform)
1949         size += 2;
1950 #ifdef DLINFO_ARCH_ITEMS
1951     size += DLINFO_ARCH_ITEMS * 2;
1952 #endif
1953 #ifdef ELF_HWCAP2
1954     size += 2;
1955 #endif
1956     info->auxv_len = size * n;
1957 
1958     size += envc + argc + 2;
1959     size += 1;  /* argc itself */
1960     size *= n;
1961 
1962     /* Allocate space and finalize stack alignment for entry now.  */
1963     if (STACK_GROWS_DOWN) {
1964         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1965         sp = u_argc;
1966     } else {
1967         u_argc = sp;
1968         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1969     }
1970 
1971     u_argv = u_argc + n;
1972     u_envp = u_argv + (argc + 1) * n;
1973     u_auxv = u_envp + (envc + 1) * n;
1974     info->saved_auxv = u_auxv;
1975     info->arg_start = u_argv;
1976     info->arg_end = u_argv + argc * n;
1977 
1978     /* This is correct because Linux defines
1979      * elf_addr_t as Elf32_Off / Elf64_Off
1980      */
1981 #define NEW_AUX_ENT(id, val) do {               \
1982         put_user_ual(id, u_auxv);  u_auxv += n; \
1983         put_user_ual(val, u_auxv); u_auxv += n; \
1984     } while(0)
1985 
1986 #ifdef ARCH_DLINFO
1987     /*
1988      * ARCH_DLINFO must come first so platform specific code can enforce
1989      * special alignment requirements on the AUXV if necessary (eg. PPC).
1990      */
1991     ARCH_DLINFO;
1992 #endif
1993     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1994      * on info->auxv_len will trigger.
1995      */
1996     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1997     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1998     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1999     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2000         /* Target doesn't support host page size alignment */
2001         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2002     } else {
2003         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2004                                                qemu_host_page_size)));
2005     }
2006     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2007     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2008     NEW_AUX_ENT(AT_ENTRY, info->entry);
2009     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2010     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2011     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2012     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2013     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2014     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2015     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2016     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2017     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2018 
2019 #ifdef ELF_HWCAP2
2020     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2021 #endif
2022 
2023     if (u_platform) {
2024         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2025     }
2026     NEW_AUX_ENT (AT_NULL, 0);
2027 #undef NEW_AUX_ENT
2028 
2029     /* Check that our initial calculation of the auxv length matches how much
2030      * we actually put into it.
2031      */
2032     assert(info->auxv_len == u_auxv - info->saved_auxv);
2033 
2034     put_user_ual(argc, u_argc);
2035 
2036     p = info->arg_strings;
2037     for (i = 0; i < argc; ++i) {
2038         put_user_ual(p, u_argv);
2039         u_argv += n;
2040         p += target_strlen(p) + 1;
2041     }
2042     put_user_ual(0, u_argv);
2043 
2044     p = info->env_strings;
2045     for (i = 0; i < envc; ++i) {
2046         put_user_ual(p, u_envp);
2047         u_envp += n;
2048         p += target_strlen(p) + 1;
2049     }
2050     put_user_ual(0, u_envp);
2051 
2052     return sp;
2053 }
2054 
2055 #ifndef ARM_COMMPAGE
2056 #define ARM_COMMPAGE 0
2057 #define init_guest_commpage() true
2058 #endif
2059 
2060 static void pgb_fail_in_use(const char *image_name)
2061 {
2062     error_report("%s: requires virtual address space that is in use "
2063                  "(omit the -B option or choose a different value)",
2064                  image_name);
2065     exit(EXIT_FAILURE);
2066 }
2067 
2068 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2069                                 abi_ulong guest_hiaddr, long align)
2070 {
2071     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2072     void *addr, *test;
2073 
2074     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2075         fprintf(stderr, "Requested guest base 0x%lx does not satisfy "
2076                 "host minimum alignment (0x%lx)\n",
2077                 guest_base, align);
2078         exit(EXIT_FAILURE);
2079     }
2080 
2081     /* Sanity check the guest binary. */
2082     if (reserved_va) {
2083         if (guest_hiaddr > reserved_va) {
2084             error_report("%s: requires more than reserved virtual "
2085                          "address space (0x%" PRIx64 " > 0x%lx)",
2086                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2087             exit(EXIT_FAILURE);
2088         }
2089     } else {
2090 #if HOST_LONG_BITS < TARGET_ABI_BITS
2091         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2092             error_report("%s: requires more virtual address space "
2093                          "than the host can provide (0x%" PRIx64 ")",
2094                          image_name, (uint64_t)guest_hiaddr - guest_base);
2095             exit(EXIT_FAILURE);
2096         }
2097 #endif
2098     }
2099 
2100     /*
2101      * Expand the allocation to the entire reserved_va.
2102      * Exclude the mmap_min_addr hole.
2103      */
2104     if (reserved_va) {
2105         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2106                         : mmap_min_addr - guest_base);
2107         guest_hiaddr = reserved_va;
2108     }
2109 
2110     /* Reserve the address space for the binary, or reserved_va. */
2111     test = g2h(guest_loaddr);
2112     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2113     if (test != addr) {
2114         pgb_fail_in_use(image_name);
2115     }
2116 }
2117 
2118 /**
2119  * pgd_find_hole_fallback: potential mmap address
2120  * @guest_size: size of available space
2121  * @brk: location of break
2122  * @align: memory alignment
2123  *
2124  * This is a fallback method for finding a hole in the host address
2125  * space if we don't have the benefit of being able to access
2126  * /proc/self/map. It can potentially take a very long time as we can
2127  * only dumbly iterate up the host address space seeing if the
2128  * allocation would work.
2129  */
2130 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2131                                         long align, uintptr_t offset)
2132 {
2133     uintptr_t base;
2134 
2135     /* Start (aligned) at the bottom and work our way up */
2136     base = ROUND_UP(mmap_min_addr, align);
2137 
2138     while (true) {
2139         uintptr_t align_start, end;
2140         align_start = ROUND_UP(base, align);
2141         end = align_start + guest_size + offset;
2142 
2143         /* if brk is anywhere in the range give ourselves some room to grow. */
2144         if (align_start <= brk && brk < end) {
2145             base = brk + (16 * MiB);
2146             continue;
2147         } else if (align_start + guest_size < align_start) {
2148             /* we have run out of space */
2149             return -1;
2150         } else {
2151             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2152                 MAP_FIXED_NOREPLACE;
2153             void * mmap_start = mmap((void *) align_start, guest_size,
2154                                      PROT_NONE, flags, -1, 0);
2155             if (mmap_start != MAP_FAILED) {
2156                 munmap((void *) align_start, guest_size);
2157                 if (MAP_FIXED_NOREPLACE || mmap_start == (void *) align_start) {
2158                     return (uintptr_t) mmap_start + offset;
2159                 }
2160             }
2161             base += qemu_host_page_size;
2162         }
2163     }
2164 }
2165 
2166 /* Return value for guest_base, or -1 if no hole found. */
2167 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2168                                long align, uintptr_t offset)
2169 {
2170     GSList *maps, *iter;
2171     uintptr_t this_start, this_end, next_start, brk;
2172     intptr_t ret = -1;
2173 
2174     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2175 
2176     maps = read_self_maps();
2177 
2178     /* Read brk after we've read the maps, which will malloc. */
2179     brk = (uintptr_t)sbrk(0);
2180 
2181     if (!maps) {
2182         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2183     }
2184 
2185     /* The first hole is before the first map entry. */
2186     this_start = mmap_min_addr;
2187 
2188     for (iter = maps; iter;
2189          this_start = next_start, iter = g_slist_next(iter)) {
2190         uintptr_t align_start, hole_size;
2191 
2192         this_end = ((MapInfo *)iter->data)->start;
2193         next_start = ((MapInfo *)iter->data)->end;
2194         align_start = ROUND_UP(this_start + offset, align);
2195 
2196         /* Skip holes that are too small. */
2197         if (align_start >= this_end) {
2198             continue;
2199         }
2200         hole_size = this_end - align_start;
2201         if (hole_size < guest_size) {
2202             continue;
2203         }
2204 
2205         /* If this hole contains brk, give ourselves some room to grow. */
2206         if (this_start <= brk && brk < this_end) {
2207             hole_size -= guest_size;
2208             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2209                 align_start += 1 * GiB;
2210             } else if (hole_size >= 16 * MiB) {
2211                 align_start += 16 * MiB;
2212             } else {
2213                 align_start = (this_end - guest_size) & -align;
2214                 if (align_start < this_start) {
2215                     continue;
2216                 }
2217             }
2218         }
2219 
2220         /* Record the lowest successful match. */
2221         if (ret < 0) {
2222             ret = align_start - guest_loaddr;
2223         }
2224         /* If this hole contains the identity map, select it. */
2225         if (align_start <= guest_loaddr &&
2226             guest_loaddr + guest_size <= this_end) {
2227             ret = 0;
2228         }
2229         /* If this hole ends above the identity map, stop looking. */
2230         if (this_end >= guest_loaddr) {
2231             break;
2232         }
2233     }
2234     free_self_maps(maps);
2235 
2236     return ret;
2237 }
2238 
2239 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2240                        abi_ulong orig_hiaddr, long align)
2241 {
2242     uintptr_t loaddr = orig_loaddr;
2243     uintptr_t hiaddr = orig_hiaddr;
2244     uintptr_t offset = 0;
2245     uintptr_t addr;
2246 
2247     if (hiaddr != orig_hiaddr) {
2248         error_report("%s: requires virtual address space that the "
2249                      "host cannot provide (0x%" PRIx64 ")",
2250                      image_name, (uint64_t)orig_hiaddr);
2251         exit(EXIT_FAILURE);
2252     }
2253 
2254     loaddr &= -align;
2255     if (ARM_COMMPAGE) {
2256         /*
2257          * Extend the allocation to include the commpage.
2258          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2259          * need to ensure there is space bellow the guest_base so we
2260          * can map the commpage in the place needed when the address
2261          * arithmetic wraps around.
2262          */
2263         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2264             hiaddr = (uintptr_t) 4 << 30;
2265         } else {
2266             offset = -(ARM_COMMPAGE & -align);
2267         }
2268     }
2269 
2270     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2271     if (addr == -1) {
2272         /*
2273          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2274          * that can satisfy both.  But as the normal arm32 link base address
2275          * is ~32k, and we extend down to include the commpage, making the
2276          * overhead only ~96k, this is unlikely.
2277          */
2278         error_report("%s: Unable to allocate %#zx bytes of "
2279                      "virtual address space", image_name,
2280                      (size_t)(hiaddr - loaddr));
2281         exit(EXIT_FAILURE);
2282     }
2283 
2284     guest_base = addr;
2285 }
2286 
2287 static void pgb_dynamic(const char *image_name, long align)
2288 {
2289     /*
2290      * The executable is dynamic and does not require a fixed address.
2291      * All we need is a commpage that satisfies align.
2292      * If we do not need a commpage, leave guest_base == 0.
2293      */
2294     if (ARM_COMMPAGE) {
2295         uintptr_t addr, commpage;
2296 
2297         /* 64-bit hosts should have used reserved_va. */
2298         assert(sizeof(uintptr_t) == 4);
2299 
2300         /*
2301          * By putting the commpage at the first hole, that puts guest_base
2302          * just above that, and maximises the positive guest addresses.
2303          */
2304         commpage = ARM_COMMPAGE & -align;
2305         addr = pgb_find_hole(commpage, -commpage, align, 0);
2306         assert(addr != -1);
2307         guest_base = addr;
2308     }
2309 }
2310 
2311 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2312                             abi_ulong guest_hiaddr, long align)
2313 {
2314     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2315     void *addr, *test;
2316 
2317     if (guest_hiaddr > reserved_va) {
2318         error_report("%s: requires more than reserved virtual "
2319                      "address space (0x%" PRIx64 " > 0x%lx)",
2320                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2321         exit(EXIT_FAILURE);
2322     }
2323 
2324     /* Widen the "image" to the entire reserved address space. */
2325     pgb_static(image_name, 0, reserved_va, align);
2326 
2327     /* osdep.h defines this as 0 if it's missing */
2328     flags |= MAP_FIXED_NOREPLACE;
2329 
2330     /* Reserve the memory on the host. */
2331     assert(guest_base != 0);
2332     test = g2h(0);
2333     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2334     if (addr == MAP_FAILED) {
2335         error_report("Unable to reserve 0x%lx bytes of virtual address "
2336                      "space (%s) for use as guest address space (check your "
2337                      "virtual memory ulimit setting or reserve less "
2338                      "using -R option)", reserved_va, strerror(errno));
2339         exit(EXIT_FAILURE);
2340     }
2341     assert(addr == test);
2342 }
2343 
2344 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2345                       abi_ulong guest_hiaddr)
2346 {
2347     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2348     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2349 
2350     if (have_guest_base) {
2351         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2352     } else if (reserved_va) {
2353         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2354     } else if (guest_loaddr) {
2355         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2356     } else {
2357         pgb_dynamic(image_name, align);
2358     }
2359 
2360     /* Reserve and initialize the commpage. */
2361     if (!init_guest_commpage()) {
2362         /*
2363          * With have_guest_base, the user has selected the address and
2364          * we are trying to work with that.  Otherwise, we have selected
2365          * free space and init_guest_commpage must succeeded.
2366          */
2367         assert(have_guest_base);
2368         pgb_fail_in_use(image_name);
2369     }
2370 
2371     assert(QEMU_IS_ALIGNED(guest_base, align));
2372     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2373                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2374 }
2375 
2376 /* Load an ELF image into the address space.
2377 
2378    IMAGE_NAME is the filename of the image, to use in error messages.
2379    IMAGE_FD is the open file descriptor for the image.
2380 
2381    BPRM_BUF is a copy of the beginning of the file; this of course
2382    contains the elf file header at offset 0.  It is assumed that this
2383    buffer is sufficiently aligned to present no problems to the host
2384    in accessing data at aligned offsets within the buffer.
2385 
2386    On return: INFO values will be filled in, as necessary or available.  */
2387 
2388 static void load_elf_image(const char *image_name, int image_fd,
2389                            struct image_info *info, char **pinterp_name,
2390                            char bprm_buf[BPRM_BUF_SIZE])
2391 {
2392     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2393     struct elf_phdr *phdr;
2394     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2395     int i, retval;
2396     const char *errmsg;
2397 
2398     /* First of all, some simple consistency checks */
2399     errmsg = "Invalid ELF image for this architecture";
2400     if (!elf_check_ident(ehdr)) {
2401         goto exit_errmsg;
2402     }
2403     bswap_ehdr(ehdr);
2404     if (!elf_check_ehdr(ehdr)) {
2405         goto exit_errmsg;
2406     }
2407 
2408     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2409     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2410         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2411     } else {
2412         phdr = (struct elf_phdr *) alloca(i);
2413         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2414         if (retval != i) {
2415             goto exit_read;
2416         }
2417     }
2418     bswap_phdr(phdr, ehdr->e_phnum);
2419 
2420     info->nsegs = 0;
2421     info->pt_dynamic_addr = 0;
2422 
2423     mmap_lock();
2424 
2425     /* Find the maximum size of the image and allocate an appropriate
2426        amount of memory to handle that.  */
2427     loaddr = -1, hiaddr = 0;
2428     info->alignment = 0;
2429     for (i = 0; i < ehdr->e_phnum; ++i) {
2430         if (phdr[i].p_type == PT_LOAD) {
2431             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2432             if (a < loaddr) {
2433                 loaddr = a;
2434             }
2435             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2436             if (a > hiaddr) {
2437                 hiaddr = a;
2438             }
2439             ++info->nsegs;
2440             info->alignment |= phdr[i].p_align;
2441         }
2442     }
2443 
2444     if (pinterp_name != NULL) {
2445         /*
2446          * This is the main executable.
2447          *
2448          * Reserve extra space for brk.
2449          * We hold on to this space while placing the interpreter
2450          * and the stack, lest they be placed immediately after
2451          * the data segment and block allocation from the brk.
2452          *
2453          * 16MB is chosen as "large enough" without being so large
2454          * as to allow the result to not fit with a 32-bit guest on
2455          * a 32-bit host.
2456          */
2457         info->reserve_brk = 16 * MiB;
2458         hiaddr += info->reserve_brk;
2459 
2460         if (ehdr->e_type == ET_EXEC) {
2461             /*
2462              * Make sure that the low address does not conflict with
2463              * MMAP_MIN_ADDR or the QEMU application itself.
2464              */
2465             probe_guest_base(image_name, loaddr, hiaddr);
2466         } else {
2467             /*
2468              * The binary is dynamic, but we still need to
2469              * select guest_base.  In this case we pass a size.
2470              */
2471             probe_guest_base(image_name, 0, hiaddr - loaddr);
2472         }
2473     }
2474 
2475     /*
2476      * Reserve address space for all of this.
2477      *
2478      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2479      * exactly the address range that is required.
2480      *
2481      * Otherwise this is ET_DYN, and we are searching for a location
2482      * that can hold the memory space required.  If the image is
2483      * pre-linked, LOADDR will be non-zero, and the kernel should
2484      * honor that address if it happens to be free.
2485      *
2486      * In both cases, we will overwrite pages in this range with mappings
2487      * from the executable.
2488      */
2489     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2490                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2491                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2492                             -1, 0);
2493     if (load_addr == -1) {
2494         goto exit_perror;
2495     }
2496     load_bias = load_addr - loaddr;
2497 
2498     if (elf_is_fdpic(ehdr)) {
2499         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2500             g_malloc(sizeof(*loadsegs) * info->nsegs);
2501 
2502         for (i = 0; i < ehdr->e_phnum; ++i) {
2503             switch (phdr[i].p_type) {
2504             case PT_DYNAMIC:
2505                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2506                 break;
2507             case PT_LOAD:
2508                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2509                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2510                 loadsegs->p_memsz = phdr[i].p_memsz;
2511                 ++loadsegs;
2512                 break;
2513             }
2514         }
2515     }
2516 
2517     info->load_bias = load_bias;
2518     info->code_offset = load_bias;
2519     info->data_offset = load_bias;
2520     info->load_addr = load_addr;
2521     info->entry = ehdr->e_entry + load_bias;
2522     info->start_code = -1;
2523     info->end_code = 0;
2524     info->start_data = -1;
2525     info->end_data = 0;
2526     info->brk = 0;
2527     info->elf_flags = ehdr->e_flags;
2528 
2529     for (i = 0; i < ehdr->e_phnum; i++) {
2530         struct elf_phdr *eppnt = phdr + i;
2531         if (eppnt->p_type == PT_LOAD) {
2532             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2533             int elf_prot = 0;
2534 
2535             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2536             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2537             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2538 
2539             vaddr = load_bias + eppnt->p_vaddr;
2540             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2541             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2542             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2543 
2544             /*
2545              * Some segments may be completely empty without any backing file
2546              * segment, in that case just let zero_bss allocate an empty buffer
2547              * for it.
2548              */
2549             if (eppnt->p_filesz != 0) {
2550                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2551                                     MAP_PRIVATE | MAP_FIXED,
2552                                     image_fd, eppnt->p_offset - vaddr_po);
2553 
2554                 if (error == -1) {
2555                     goto exit_perror;
2556                 }
2557             }
2558 
2559             vaddr_ef = vaddr + eppnt->p_filesz;
2560             vaddr_em = vaddr + eppnt->p_memsz;
2561 
2562             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2563             if (vaddr_ef < vaddr_em) {
2564                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2565             }
2566 
2567             /* Find the full program boundaries.  */
2568             if (elf_prot & PROT_EXEC) {
2569                 if (vaddr < info->start_code) {
2570                     info->start_code = vaddr;
2571                 }
2572                 if (vaddr_ef > info->end_code) {
2573                     info->end_code = vaddr_ef;
2574                 }
2575             }
2576             if (elf_prot & PROT_WRITE) {
2577                 if (vaddr < info->start_data) {
2578                     info->start_data = vaddr;
2579                 }
2580                 if (vaddr_ef > info->end_data) {
2581                     info->end_data = vaddr_ef;
2582                 }
2583                 if (vaddr_em > info->brk) {
2584                     info->brk = vaddr_em;
2585                 }
2586             }
2587         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2588             char *interp_name;
2589 
2590             if (*pinterp_name) {
2591                 errmsg = "Multiple PT_INTERP entries";
2592                 goto exit_errmsg;
2593             }
2594             interp_name = malloc(eppnt->p_filesz);
2595             if (!interp_name) {
2596                 goto exit_perror;
2597             }
2598 
2599             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2600                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2601                        eppnt->p_filesz);
2602             } else {
2603                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2604                                eppnt->p_offset);
2605                 if (retval != eppnt->p_filesz) {
2606                     goto exit_perror;
2607                 }
2608             }
2609             if (interp_name[eppnt->p_filesz - 1] != 0) {
2610                 errmsg = "Invalid PT_INTERP entry";
2611                 goto exit_errmsg;
2612             }
2613             *pinterp_name = interp_name;
2614 #ifdef TARGET_MIPS
2615         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2616             Mips_elf_abiflags_v0 abiflags;
2617             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2618                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2619                 goto exit_errmsg;
2620             }
2621             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2622                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2623                        sizeof(Mips_elf_abiflags_v0));
2624             } else {
2625                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2626                                eppnt->p_offset);
2627                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2628                     goto exit_perror;
2629                 }
2630             }
2631             bswap_mips_abiflags(&abiflags);
2632             info->fp_abi = abiflags.fp_abi;
2633 #endif
2634         }
2635     }
2636 
2637     if (info->end_data == 0) {
2638         info->start_data = info->end_code;
2639         info->end_data = info->end_code;
2640         info->brk = info->end_code;
2641     }
2642 
2643     if (qemu_log_enabled()) {
2644         load_symbols(ehdr, image_fd, load_bias);
2645     }
2646 
2647     mmap_unlock();
2648 
2649     close(image_fd);
2650     return;
2651 
2652  exit_read:
2653     if (retval >= 0) {
2654         errmsg = "Incomplete read of file header";
2655         goto exit_errmsg;
2656     }
2657  exit_perror:
2658     errmsg = strerror(errno);
2659  exit_errmsg:
2660     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2661     exit(-1);
2662 }
2663 
2664 static void load_elf_interp(const char *filename, struct image_info *info,
2665                             char bprm_buf[BPRM_BUF_SIZE])
2666 {
2667     int fd, retval;
2668 
2669     fd = open(path(filename), O_RDONLY);
2670     if (fd < 0) {
2671         goto exit_perror;
2672     }
2673 
2674     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2675     if (retval < 0) {
2676         goto exit_perror;
2677     }
2678     if (retval < BPRM_BUF_SIZE) {
2679         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2680     }
2681 
2682     load_elf_image(filename, fd, info, NULL, bprm_buf);
2683     return;
2684 
2685  exit_perror:
2686     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2687     exit(-1);
2688 }
2689 
2690 static int symfind(const void *s0, const void *s1)
2691 {
2692     target_ulong addr = *(target_ulong *)s0;
2693     struct elf_sym *sym = (struct elf_sym *)s1;
2694     int result = 0;
2695     if (addr < sym->st_value) {
2696         result = -1;
2697     } else if (addr >= sym->st_value + sym->st_size) {
2698         result = 1;
2699     }
2700     return result;
2701 }
2702 
2703 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2704 {
2705 #if ELF_CLASS == ELFCLASS32
2706     struct elf_sym *syms = s->disas_symtab.elf32;
2707 #else
2708     struct elf_sym *syms = s->disas_symtab.elf64;
2709 #endif
2710 
2711     // binary search
2712     struct elf_sym *sym;
2713 
2714     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2715     if (sym != NULL) {
2716         return s->disas_strtab + sym->st_name;
2717     }
2718 
2719     return "";
2720 }
2721 
2722 /* FIXME: This should use elf_ops.h  */
2723 static int symcmp(const void *s0, const void *s1)
2724 {
2725     struct elf_sym *sym0 = (struct elf_sym *)s0;
2726     struct elf_sym *sym1 = (struct elf_sym *)s1;
2727     return (sym0->st_value < sym1->st_value)
2728         ? -1
2729         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2730 }
2731 
2732 /* Best attempt to load symbols from this ELF object. */
2733 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2734 {
2735     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2736     uint64_t segsz;
2737     struct elf_shdr *shdr;
2738     char *strings = NULL;
2739     struct syminfo *s = NULL;
2740     struct elf_sym *new_syms, *syms = NULL;
2741 
2742     shnum = hdr->e_shnum;
2743     i = shnum * sizeof(struct elf_shdr);
2744     shdr = (struct elf_shdr *)alloca(i);
2745     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2746         return;
2747     }
2748 
2749     bswap_shdr(shdr, shnum);
2750     for (i = 0; i < shnum; ++i) {
2751         if (shdr[i].sh_type == SHT_SYMTAB) {
2752             sym_idx = i;
2753             str_idx = shdr[i].sh_link;
2754             goto found;
2755         }
2756     }
2757 
2758     /* There will be no symbol table if the file was stripped.  */
2759     return;
2760 
2761  found:
2762     /* Now know where the strtab and symtab are.  Snarf them.  */
2763     s = g_try_new(struct syminfo, 1);
2764     if (!s) {
2765         goto give_up;
2766     }
2767 
2768     segsz = shdr[str_idx].sh_size;
2769     s->disas_strtab = strings = g_try_malloc(segsz);
2770     if (!strings ||
2771         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2772         goto give_up;
2773     }
2774 
2775     segsz = shdr[sym_idx].sh_size;
2776     syms = g_try_malloc(segsz);
2777     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2778         goto give_up;
2779     }
2780 
2781     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2782         /* Implausibly large symbol table: give up rather than ploughing
2783          * on with the number of symbols calculation overflowing
2784          */
2785         goto give_up;
2786     }
2787     nsyms = segsz / sizeof(struct elf_sym);
2788     for (i = 0; i < nsyms; ) {
2789         bswap_sym(syms + i);
2790         /* Throw away entries which we do not need.  */
2791         if (syms[i].st_shndx == SHN_UNDEF
2792             || syms[i].st_shndx >= SHN_LORESERVE
2793             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2794             if (i < --nsyms) {
2795                 syms[i] = syms[nsyms];
2796             }
2797         } else {
2798 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2799             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2800             syms[i].st_value &= ~(target_ulong)1;
2801 #endif
2802             syms[i].st_value += load_bias;
2803             i++;
2804         }
2805     }
2806 
2807     /* No "useful" symbol.  */
2808     if (nsyms == 0) {
2809         goto give_up;
2810     }
2811 
2812     /* Attempt to free the storage associated with the local symbols
2813        that we threw away.  Whether or not this has any effect on the
2814        memory allocation depends on the malloc implementation and how
2815        many symbols we managed to discard.  */
2816     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2817     if (new_syms == NULL) {
2818         goto give_up;
2819     }
2820     syms = new_syms;
2821 
2822     qsort(syms, nsyms, sizeof(*syms), symcmp);
2823 
2824     s->disas_num_syms = nsyms;
2825 #if ELF_CLASS == ELFCLASS32
2826     s->disas_symtab.elf32 = syms;
2827 #else
2828     s->disas_symtab.elf64 = syms;
2829 #endif
2830     s->lookup_symbol = lookup_symbolxx;
2831     s->next = syminfos;
2832     syminfos = s;
2833 
2834     return;
2835 
2836 give_up:
2837     g_free(s);
2838     g_free(strings);
2839     g_free(syms);
2840 }
2841 
2842 uint32_t get_elf_eflags(int fd)
2843 {
2844     struct elfhdr ehdr;
2845     off_t offset;
2846     int ret;
2847 
2848     /* Read ELF header */
2849     offset = lseek(fd, 0, SEEK_SET);
2850     if (offset == (off_t) -1) {
2851         return 0;
2852     }
2853     ret = read(fd, &ehdr, sizeof(ehdr));
2854     if (ret < sizeof(ehdr)) {
2855         return 0;
2856     }
2857     offset = lseek(fd, offset, SEEK_SET);
2858     if (offset == (off_t) -1) {
2859         return 0;
2860     }
2861 
2862     /* Check ELF signature */
2863     if (!elf_check_ident(&ehdr)) {
2864         return 0;
2865     }
2866 
2867     /* check header */
2868     bswap_ehdr(&ehdr);
2869     if (!elf_check_ehdr(&ehdr)) {
2870         return 0;
2871     }
2872 
2873     /* return architecture id */
2874     return ehdr.e_flags;
2875 }
2876 
2877 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2878 {
2879     struct image_info interp_info;
2880     struct elfhdr elf_ex;
2881     char *elf_interpreter = NULL;
2882     char *scratch;
2883 
2884     memset(&interp_info, 0, sizeof(interp_info));
2885 #ifdef TARGET_MIPS
2886     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2887 #endif
2888 
2889     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2890 
2891     load_elf_image(bprm->filename, bprm->fd, info,
2892                    &elf_interpreter, bprm->buf);
2893 
2894     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2895        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2896        when we load the interpreter.  */
2897     elf_ex = *(struct elfhdr *)bprm->buf;
2898 
2899     /* Do this so that we can load the interpreter, if need be.  We will
2900        change some of these later */
2901     bprm->p = setup_arg_pages(bprm, info);
2902 
2903     scratch = g_new0(char, TARGET_PAGE_SIZE);
2904     if (STACK_GROWS_DOWN) {
2905         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2906                                    bprm->p, info->stack_limit);
2907         info->file_string = bprm->p;
2908         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2909                                    bprm->p, info->stack_limit);
2910         info->env_strings = bprm->p;
2911         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2912                                    bprm->p, info->stack_limit);
2913         info->arg_strings = bprm->p;
2914     } else {
2915         info->arg_strings = bprm->p;
2916         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2917                                    bprm->p, info->stack_limit);
2918         info->env_strings = bprm->p;
2919         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2920                                    bprm->p, info->stack_limit);
2921         info->file_string = bprm->p;
2922         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2923                                    bprm->p, info->stack_limit);
2924     }
2925 
2926     g_free(scratch);
2927 
2928     if (!bprm->p) {
2929         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2930         exit(-1);
2931     }
2932 
2933     if (elf_interpreter) {
2934         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2935 
2936         /* If the program interpreter is one of these two, then assume
2937            an iBCS2 image.  Otherwise assume a native linux image.  */
2938 
2939         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2940             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2941             info->personality = PER_SVR4;
2942 
2943             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2944                and some applications "depend" upon this behavior.  Since
2945                we do not have the power to recompile these, we emulate
2946                the SVr4 behavior.  Sigh.  */
2947             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2948                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2949         }
2950 #ifdef TARGET_MIPS
2951         info->interp_fp_abi = interp_info.fp_abi;
2952 #endif
2953     }
2954 
2955     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2956                                 info, (elf_interpreter ? &interp_info : NULL));
2957     info->start_stack = bprm->p;
2958 
2959     /* If we have an interpreter, set that as the program's entry point.
2960        Copy the load_bias as well, to help PPC64 interpret the entry
2961        point as a function descriptor.  Do this after creating elf tables
2962        so that we copy the original program entry point into the AUXV.  */
2963     if (elf_interpreter) {
2964         info->load_bias = interp_info.load_bias;
2965         info->entry = interp_info.entry;
2966         free(elf_interpreter);
2967     }
2968 
2969 #ifdef USE_ELF_CORE_DUMP
2970     bprm->core_dump = &elf_core_dump;
2971 #endif
2972 
2973     /*
2974      * If we reserved extra space for brk, release it now.
2975      * The implementation of do_brk in syscalls.c expects to be able
2976      * to mmap pages in this space.
2977      */
2978     if (info->reserve_brk) {
2979         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
2980         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
2981         target_munmap(start_brk, end_brk - start_brk);
2982     }
2983 
2984     return 0;
2985 }
2986 
2987 #ifdef USE_ELF_CORE_DUMP
2988 /*
2989  * Definitions to generate Intel SVR4-like core files.
2990  * These mostly have the same names as the SVR4 types with "target_elf_"
2991  * tacked on the front to prevent clashes with linux definitions,
2992  * and the typedef forms have been avoided.  This is mostly like
2993  * the SVR4 structure, but more Linuxy, with things that Linux does
2994  * not support and which gdb doesn't really use excluded.
2995  *
2996  * Fields we don't dump (their contents is zero) in linux-user qemu
2997  * are marked with XXX.
2998  *
2999  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3000  *
3001  * Porting ELF coredump for target is (quite) simple process.  First you
3002  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3003  * the target resides):
3004  *
3005  * #define USE_ELF_CORE_DUMP
3006  *
3007  * Next you define type of register set used for dumping.  ELF specification
3008  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3009  *
3010  * typedef <target_regtype> target_elf_greg_t;
3011  * #define ELF_NREG <number of registers>
3012  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3013  *
3014  * Last step is to implement target specific function that copies registers
3015  * from given cpu into just specified register set.  Prototype is:
3016  *
3017  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3018  *                                const CPUArchState *env);
3019  *
3020  * Parameters:
3021  *     regs - copy register values into here (allocated and zeroed by caller)
3022  *     env - copy registers from here
3023  *
3024  * Example for ARM target is provided in this file.
3025  */
3026 
3027 /* An ELF note in memory */
3028 struct memelfnote {
3029     const char *name;
3030     size_t     namesz;
3031     size_t     namesz_rounded;
3032     int        type;
3033     size_t     datasz;
3034     size_t     datasz_rounded;
3035     void       *data;
3036     size_t     notesz;
3037 };
3038 
3039 struct target_elf_siginfo {
3040     abi_int    si_signo; /* signal number */
3041     abi_int    si_code;  /* extra code */
3042     abi_int    si_errno; /* errno */
3043 };
3044 
3045 struct target_elf_prstatus {
3046     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3047     abi_short          pr_cursig;    /* Current signal */
3048     abi_ulong          pr_sigpend;   /* XXX */
3049     abi_ulong          pr_sighold;   /* XXX */
3050     target_pid_t       pr_pid;
3051     target_pid_t       pr_ppid;
3052     target_pid_t       pr_pgrp;
3053     target_pid_t       pr_sid;
3054     struct target_timeval pr_utime;  /* XXX User time */
3055     struct target_timeval pr_stime;  /* XXX System time */
3056     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3057     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3058     target_elf_gregset_t      pr_reg;       /* GP registers */
3059     abi_int            pr_fpvalid;   /* XXX */
3060 };
3061 
3062 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3063 
3064 struct target_elf_prpsinfo {
3065     char         pr_state;       /* numeric process state */
3066     char         pr_sname;       /* char for pr_state */
3067     char         pr_zomb;        /* zombie */
3068     char         pr_nice;        /* nice val */
3069     abi_ulong    pr_flag;        /* flags */
3070     target_uid_t pr_uid;
3071     target_gid_t pr_gid;
3072     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3073     /* Lots missing */
3074     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3075     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3076 };
3077 
3078 /* Here is the structure in which status of each thread is captured. */
3079 struct elf_thread_status {
3080     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3081     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3082 #if 0
3083     elf_fpregset_t fpu;             /* NT_PRFPREG */
3084     struct task_struct *thread;
3085     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3086 #endif
3087     struct memelfnote notes[1];
3088     int num_notes;
3089 };
3090 
3091 struct elf_note_info {
3092     struct memelfnote   *notes;
3093     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3094     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3095 
3096     QTAILQ_HEAD(, elf_thread_status) thread_list;
3097 #if 0
3098     /*
3099      * Current version of ELF coredump doesn't support
3100      * dumping fp regs etc.
3101      */
3102     elf_fpregset_t *fpu;
3103     elf_fpxregset_t *xfpu;
3104     int thread_status_size;
3105 #endif
3106     int notes_size;
3107     int numnote;
3108 };
3109 
3110 struct vm_area_struct {
3111     target_ulong   vma_start;  /* start vaddr of memory region */
3112     target_ulong   vma_end;    /* end vaddr of memory region */
3113     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3114     QTAILQ_ENTRY(vm_area_struct) vma_link;
3115 };
3116 
3117 struct mm_struct {
3118     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3119     int mm_count;           /* number of mappings */
3120 };
3121 
3122 static struct mm_struct *vma_init(void);
3123 static void vma_delete(struct mm_struct *);
3124 static int vma_add_mapping(struct mm_struct *, target_ulong,
3125                            target_ulong, abi_ulong);
3126 static int vma_get_mapping_count(const struct mm_struct *);
3127 static struct vm_area_struct *vma_first(const struct mm_struct *);
3128 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3129 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3130 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3131                       unsigned long flags);
3132 
3133 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3134 static void fill_note(struct memelfnote *, const char *, int,
3135                       unsigned int, void *);
3136 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3137 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3138 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3139 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3140 static size_t note_size(const struct memelfnote *);
3141 static void free_note_info(struct elf_note_info *);
3142 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3143 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3144 static int core_dump_filename(const TaskState *, char *, size_t);
3145 
3146 static int dump_write(int, const void *, size_t);
3147 static int write_note(struct memelfnote *, int);
3148 static int write_note_info(struct elf_note_info *, int);
3149 
3150 #ifdef BSWAP_NEEDED
3151 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3152 {
3153     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3154     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3155     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3156     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3157     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3158     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3159     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3160     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3161     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3162     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3163     /* cpu times are not filled, so we skip them */
3164     /* regs should be in correct format already */
3165     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3166 }
3167 
3168 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3169 {
3170     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3171     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3172     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3173     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3174     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3175     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3176     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3177 }
3178 
3179 static void bswap_note(struct elf_note *en)
3180 {
3181     bswap32s(&en->n_namesz);
3182     bswap32s(&en->n_descsz);
3183     bswap32s(&en->n_type);
3184 }
3185 #else
3186 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3187 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3188 static inline void bswap_note(struct elf_note *en) { }
3189 #endif /* BSWAP_NEEDED */
3190 
3191 /*
3192  * Minimal support for linux memory regions.  These are needed
3193  * when we are finding out what memory exactly belongs to
3194  * emulated process.  No locks needed here, as long as
3195  * thread that received the signal is stopped.
3196  */
3197 
3198 static struct mm_struct *vma_init(void)
3199 {
3200     struct mm_struct *mm;
3201 
3202     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3203         return (NULL);
3204 
3205     mm->mm_count = 0;
3206     QTAILQ_INIT(&mm->mm_mmap);
3207 
3208     return (mm);
3209 }
3210 
3211 static void vma_delete(struct mm_struct *mm)
3212 {
3213     struct vm_area_struct *vma;
3214 
3215     while ((vma = vma_first(mm)) != NULL) {
3216         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3217         g_free(vma);
3218     }
3219     g_free(mm);
3220 }
3221 
3222 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3223                            target_ulong end, abi_ulong flags)
3224 {
3225     struct vm_area_struct *vma;
3226 
3227     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3228         return (-1);
3229 
3230     vma->vma_start = start;
3231     vma->vma_end = end;
3232     vma->vma_flags = flags;
3233 
3234     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3235     mm->mm_count++;
3236 
3237     return (0);
3238 }
3239 
3240 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3241 {
3242     return (QTAILQ_FIRST(&mm->mm_mmap));
3243 }
3244 
3245 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3246 {
3247     return (QTAILQ_NEXT(vma, vma_link));
3248 }
3249 
3250 static int vma_get_mapping_count(const struct mm_struct *mm)
3251 {
3252     return (mm->mm_count);
3253 }
3254 
3255 /*
3256  * Calculate file (dump) size of given memory region.
3257  */
3258 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3259 {
3260     /* if we cannot even read the first page, skip it */
3261     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3262         return (0);
3263 
3264     /*
3265      * Usually we don't dump executable pages as they contain
3266      * non-writable code that debugger can read directly from
3267      * target library etc.  However, thread stacks are marked
3268      * also executable so we read in first page of given region
3269      * and check whether it contains elf header.  If there is
3270      * no elf header, we dump it.
3271      */
3272     if (vma->vma_flags & PROT_EXEC) {
3273         char page[TARGET_PAGE_SIZE];
3274 
3275         copy_from_user(page, vma->vma_start, sizeof (page));
3276         if ((page[EI_MAG0] == ELFMAG0) &&
3277             (page[EI_MAG1] == ELFMAG1) &&
3278             (page[EI_MAG2] == ELFMAG2) &&
3279             (page[EI_MAG3] == ELFMAG3)) {
3280             /*
3281              * Mappings are possibly from ELF binary.  Don't dump
3282              * them.
3283              */
3284             return (0);
3285         }
3286     }
3287 
3288     return (vma->vma_end - vma->vma_start);
3289 }
3290 
3291 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3292                       unsigned long flags)
3293 {
3294     struct mm_struct *mm = (struct mm_struct *)priv;
3295 
3296     vma_add_mapping(mm, start, end, flags);
3297     return (0);
3298 }
3299 
3300 static void fill_note(struct memelfnote *note, const char *name, int type,
3301                       unsigned int sz, void *data)
3302 {
3303     unsigned int namesz;
3304 
3305     namesz = strlen(name) + 1;
3306     note->name = name;
3307     note->namesz = namesz;
3308     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3309     note->type = type;
3310     note->datasz = sz;
3311     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3312 
3313     note->data = data;
3314 
3315     /*
3316      * We calculate rounded up note size here as specified by
3317      * ELF document.
3318      */
3319     note->notesz = sizeof (struct elf_note) +
3320         note->namesz_rounded + note->datasz_rounded;
3321 }
3322 
3323 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3324                             uint32_t flags)
3325 {
3326     (void) memset(elf, 0, sizeof(*elf));
3327 
3328     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3329     elf->e_ident[EI_CLASS] = ELF_CLASS;
3330     elf->e_ident[EI_DATA] = ELF_DATA;
3331     elf->e_ident[EI_VERSION] = EV_CURRENT;
3332     elf->e_ident[EI_OSABI] = ELF_OSABI;
3333 
3334     elf->e_type = ET_CORE;
3335     elf->e_machine = machine;
3336     elf->e_version = EV_CURRENT;
3337     elf->e_phoff = sizeof(struct elfhdr);
3338     elf->e_flags = flags;
3339     elf->e_ehsize = sizeof(struct elfhdr);
3340     elf->e_phentsize = sizeof(struct elf_phdr);
3341     elf->e_phnum = segs;
3342 
3343     bswap_ehdr(elf);
3344 }
3345 
3346 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3347 {
3348     phdr->p_type = PT_NOTE;
3349     phdr->p_offset = offset;
3350     phdr->p_vaddr = 0;
3351     phdr->p_paddr = 0;
3352     phdr->p_filesz = sz;
3353     phdr->p_memsz = 0;
3354     phdr->p_flags = 0;
3355     phdr->p_align = 0;
3356 
3357     bswap_phdr(phdr, 1);
3358 }
3359 
3360 static size_t note_size(const struct memelfnote *note)
3361 {
3362     return (note->notesz);
3363 }
3364 
3365 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3366                           const TaskState *ts, int signr)
3367 {
3368     (void) memset(prstatus, 0, sizeof (*prstatus));
3369     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3370     prstatus->pr_pid = ts->ts_tid;
3371     prstatus->pr_ppid = getppid();
3372     prstatus->pr_pgrp = getpgrp();
3373     prstatus->pr_sid = getsid(0);
3374 
3375     bswap_prstatus(prstatus);
3376 }
3377 
3378 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3379 {
3380     char *base_filename;
3381     unsigned int i, len;
3382 
3383     (void) memset(psinfo, 0, sizeof (*psinfo));
3384 
3385     len = ts->info->arg_end - ts->info->arg_start;
3386     if (len >= ELF_PRARGSZ)
3387         len = ELF_PRARGSZ - 1;
3388     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3389         return -EFAULT;
3390     for (i = 0; i < len; i++)
3391         if (psinfo->pr_psargs[i] == 0)
3392             psinfo->pr_psargs[i] = ' ';
3393     psinfo->pr_psargs[len] = 0;
3394 
3395     psinfo->pr_pid = getpid();
3396     psinfo->pr_ppid = getppid();
3397     psinfo->pr_pgrp = getpgrp();
3398     psinfo->pr_sid = getsid(0);
3399     psinfo->pr_uid = getuid();
3400     psinfo->pr_gid = getgid();
3401 
3402     base_filename = g_path_get_basename(ts->bprm->filename);
3403     /*
3404      * Using strncpy here is fine: at max-length,
3405      * this field is not NUL-terminated.
3406      */
3407     (void) strncpy(psinfo->pr_fname, base_filename,
3408                    sizeof(psinfo->pr_fname));
3409 
3410     g_free(base_filename);
3411     bswap_psinfo(psinfo);
3412     return (0);
3413 }
3414 
3415 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3416 {
3417     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3418     elf_addr_t orig_auxv = auxv;
3419     void *ptr;
3420     int len = ts->info->auxv_len;
3421 
3422     /*
3423      * Auxiliary vector is stored in target process stack.  It contains
3424      * {type, value} pairs that we need to dump into note.  This is not
3425      * strictly necessary but we do it here for sake of completeness.
3426      */
3427 
3428     /* read in whole auxv vector and copy it to memelfnote */
3429     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3430     if (ptr != NULL) {
3431         fill_note(note, "CORE", NT_AUXV, len, ptr);
3432         unlock_user(ptr, auxv, len);
3433     }
3434 }
3435 
3436 /*
3437  * Constructs name of coredump file.  We have following convention
3438  * for the name:
3439  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3440  *
3441  * Returns 0 in case of success, -1 otherwise (errno is set).
3442  */
3443 static int core_dump_filename(const TaskState *ts, char *buf,
3444                               size_t bufsize)
3445 {
3446     char timestamp[64];
3447     char *base_filename = NULL;
3448     struct timeval tv;
3449     struct tm tm;
3450 
3451     assert(bufsize >= PATH_MAX);
3452 
3453     if (gettimeofday(&tv, NULL) < 0) {
3454         (void) fprintf(stderr, "unable to get current timestamp: %s",
3455                        strerror(errno));
3456         return (-1);
3457     }
3458 
3459     base_filename = g_path_get_basename(ts->bprm->filename);
3460     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3461                     localtime_r(&tv.tv_sec, &tm));
3462     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3463                     base_filename, timestamp, (int)getpid());
3464     g_free(base_filename);
3465 
3466     return (0);
3467 }
3468 
3469 static int dump_write(int fd, const void *ptr, size_t size)
3470 {
3471     const char *bufp = (const char *)ptr;
3472     ssize_t bytes_written, bytes_left;
3473     struct rlimit dumpsize;
3474     off_t pos;
3475 
3476     bytes_written = 0;
3477     getrlimit(RLIMIT_CORE, &dumpsize);
3478     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3479         if (errno == ESPIPE) { /* not a seekable stream */
3480             bytes_left = size;
3481         } else {
3482             return pos;
3483         }
3484     } else {
3485         if (dumpsize.rlim_cur <= pos) {
3486             return -1;
3487         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3488             bytes_left = size;
3489         } else {
3490             size_t limit_left=dumpsize.rlim_cur - pos;
3491             bytes_left = limit_left >= size ? size : limit_left ;
3492         }
3493     }
3494 
3495     /*
3496      * In normal conditions, single write(2) should do but
3497      * in case of socket etc. this mechanism is more portable.
3498      */
3499     do {
3500         bytes_written = write(fd, bufp, bytes_left);
3501         if (bytes_written < 0) {
3502             if (errno == EINTR)
3503                 continue;
3504             return (-1);
3505         } else if (bytes_written == 0) { /* eof */
3506             return (-1);
3507         }
3508         bufp += bytes_written;
3509         bytes_left -= bytes_written;
3510     } while (bytes_left > 0);
3511 
3512     return (0);
3513 }
3514 
3515 static int write_note(struct memelfnote *men, int fd)
3516 {
3517     struct elf_note en;
3518 
3519     en.n_namesz = men->namesz;
3520     en.n_type = men->type;
3521     en.n_descsz = men->datasz;
3522 
3523     bswap_note(&en);
3524 
3525     if (dump_write(fd, &en, sizeof(en)) != 0)
3526         return (-1);
3527     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3528         return (-1);
3529     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3530         return (-1);
3531 
3532     return (0);
3533 }
3534 
3535 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3536 {
3537     CPUState *cpu = env_cpu((CPUArchState *)env);
3538     TaskState *ts = (TaskState *)cpu->opaque;
3539     struct elf_thread_status *ets;
3540 
3541     ets = g_malloc0(sizeof (*ets));
3542     ets->num_notes = 1; /* only prstatus is dumped */
3543     fill_prstatus(&ets->prstatus, ts, 0);
3544     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3545     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3546               &ets->prstatus);
3547 
3548     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3549 
3550     info->notes_size += note_size(&ets->notes[0]);
3551 }
3552 
3553 static void init_note_info(struct elf_note_info *info)
3554 {
3555     /* Initialize the elf_note_info structure so that it is at
3556      * least safe to call free_note_info() on it. Must be
3557      * called before calling fill_note_info().
3558      */
3559     memset(info, 0, sizeof (*info));
3560     QTAILQ_INIT(&info->thread_list);
3561 }
3562 
3563 static int fill_note_info(struct elf_note_info *info,
3564                           long signr, const CPUArchState *env)
3565 {
3566 #define NUMNOTES 3
3567     CPUState *cpu = env_cpu((CPUArchState *)env);
3568     TaskState *ts = (TaskState *)cpu->opaque;
3569     int i;
3570 
3571     info->notes = g_new0(struct memelfnote, NUMNOTES);
3572     if (info->notes == NULL)
3573         return (-ENOMEM);
3574     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3575     if (info->prstatus == NULL)
3576         return (-ENOMEM);
3577     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3578     if (info->prstatus == NULL)
3579         return (-ENOMEM);
3580 
3581     /*
3582      * First fill in status (and registers) of current thread
3583      * including process info & aux vector.
3584      */
3585     fill_prstatus(info->prstatus, ts, signr);
3586     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3587     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3588               sizeof (*info->prstatus), info->prstatus);
3589     fill_psinfo(info->psinfo, ts);
3590     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3591               sizeof (*info->psinfo), info->psinfo);
3592     fill_auxv_note(&info->notes[2], ts);
3593     info->numnote = 3;
3594 
3595     info->notes_size = 0;
3596     for (i = 0; i < info->numnote; i++)
3597         info->notes_size += note_size(&info->notes[i]);
3598 
3599     /* read and fill status of all threads */
3600     cpu_list_lock();
3601     CPU_FOREACH(cpu) {
3602         if (cpu == thread_cpu) {
3603             continue;
3604         }
3605         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3606     }
3607     cpu_list_unlock();
3608 
3609     return (0);
3610 }
3611 
3612 static void free_note_info(struct elf_note_info *info)
3613 {
3614     struct elf_thread_status *ets;
3615 
3616     while (!QTAILQ_EMPTY(&info->thread_list)) {
3617         ets = QTAILQ_FIRST(&info->thread_list);
3618         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3619         g_free(ets);
3620     }
3621 
3622     g_free(info->prstatus);
3623     g_free(info->psinfo);
3624     g_free(info->notes);
3625 }
3626 
3627 static int write_note_info(struct elf_note_info *info, int fd)
3628 {
3629     struct elf_thread_status *ets;
3630     int i, error = 0;
3631 
3632     /* write prstatus, psinfo and auxv for current thread */
3633     for (i = 0; i < info->numnote; i++)
3634         if ((error = write_note(&info->notes[i], fd)) != 0)
3635             return (error);
3636 
3637     /* write prstatus for each thread */
3638     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3639         if ((error = write_note(&ets->notes[0], fd)) != 0)
3640             return (error);
3641     }
3642 
3643     return (0);
3644 }
3645 
3646 /*
3647  * Write out ELF coredump.
3648  *
3649  * See documentation of ELF object file format in:
3650  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3651  *
3652  * Coredump format in linux is following:
3653  *
3654  * 0   +----------------------+         \
3655  *     | ELF header           | ET_CORE  |
3656  *     +----------------------+          |
3657  *     | ELF program headers  |          |--- headers
3658  *     | - NOTE section       |          |
3659  *     | - PT_LOAD sections   |          |
3660  *     +----------------------+         /
3661  *     | NOTEs:               |
3662  *     | - NT_PRSTATUS        |
3663  *     | - NT_PRSINFO         |
3664  *     | - NT_AUXV            |
3665  *     +----------------------+ <-- aligned to target page
3666  *     | Process memory dump  |
3667  *     :                      :
3668  *     .                      .
3669  *     :                      :
3670  *     |                      |
3671  *     +----------------------+
3672  *
3673  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3674  * NT_PRSINFO  -> struct elf_prpsinfo
3675  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3676  *
3677  * Format follows System V format as close as possible.  Current
3678  * version limitations are as follows:
3679  *     - no floating point registers are dumped
3680  *
3681  * Function returns 0 in case of success, negative errno otherwise.
3682  *
3683  * TODO: make this work also during runtime: it should be
3684  * possible to force coredump from running process and then
3685  * continue processing.  For example qemu could set up SIGUSR2
3686  * handler (provided that target process haven't registered
3687  * handler for that) that does the dump when signal is received.
3688  */
3689 static int elf_core_dump(int signr, const CPUArchState *env)
3690 {
3691     const CPUState *cpu = env_cpu((CPUArchState *)env);
3692     const TaskState *ts = (const TaskState *)cpu->opaque;
3693     struct vm_area_struct *vma = NULL;
3694     char corefile[PATH_MAX];
3695     struct elf_note_info info;
3696     struct elfhdr elf;
3697     struct elf_phdr phdr;
3698     struct rlimit dumpsize;
3699     struct mm_struct *mm = NULL;
3700     off_t offset = 0, data_offset = 0;
3701     int segs = 0;
3702     int fd = -1;
3703 
3704     init_note_info(&info);
3705 
3706     errno = 0;
3707     getrlimit(RLIMIT_CORE, &dumpsize);
3708     if (dumpsize.rlim_cur == 0)
3709         return 0;
3710 
3711     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3712         return (-errno);
3713 
3714     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3715                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3716         return (-errno);
3717 
3718     /*
3719      * Walk through target process memory mappings and
3720      * set up structure containing this information.  After
3721      * this point vma_xxx functions can be used.
3722      */
3723     if ((mm = vma_init()) == NULL)
3724         goto out;
3725 
3726     walk_memory_regions(mm, vma_walker);
3727     segs = vma_get_mapping_count(mm);
3728 
3729     /*
3730      * Construct valid coredump ELF header.  We also
3731      * add one more segment for notes.
3732      */
3733     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3734     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3735         goto out;
3736 
3737     /* fill in the in-memory version of notes */
3738     if (fill_note_info(&info, signr, env) < 0)
3739         goto out;
3740 
3741     offset += sizeof (elf);                             /* elf header */
3742     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3743 
3744     /* write out notes program header */
3745     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3746 
3747     offset += info.notes_size;
3748     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3749         goto out;
3750 
3751     /*
3752      * ELF specification wants data to start at page boundary so
3753      * we align it here.
3754      */
3755     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3756 
3757     /*
3758      * Write program headers for memory regions mapped in
3759      * the target process.
3760      */
3761     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3762         (void) memset(&phdr, 0, sizeof (phdr));
3763 
3764         phdr.p_type = PT_LOAD;
3765         phdr.p_offset = offset;
3766         phdr.p_vaddr = vma->vma_start;
3767         phdr.p_paddr = 0;
3768         phdr.p_filesz = vma_dump_size(vma);
3769         offset += phdr.p_filesz;
3770         phdr.p_memsz = vma->vma_end - vma->vma_start;
3771         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3772         if (vma->vma_flags & PROT_WRITE)
3773             phdr.p_flags |= PF_W;
3774         if (vma->vma_flags & PROT_EXEC)
3775             phdr.p_flags |= PF_X;
3776         phdr.p_align = ELF_EXEC_PAGESIZE;
3777 
3778         bswap_phdr(&phdr, 1);
3779         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3780             goto out;
3781         }
3782     }
3783 
3784     /*
3785      * Next we write notes just after program headers.  No
3786      * alignment needed here.
3787      */
3788     if (write_note_info(&info, fd) < 0)
3789         goto out;
3790 
3791     /* align data to page boundary */
3792     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3793         goto out;
3794 
3795     /*
3796      * Finally we can dump process memory into corefile as well.
3797      */
3798     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3799         abi_ulong addr;
3800         abi_ulong end;
3801 
3802         end = vma->vma_start + vma_dump_size(vma);
3803 
3804         for (addr = vma->vma_start; addr < end;
3805              addr += TARGET_PAGE_SIZE) {
3806             char page[TARGET_PAGE_SIZE];
3807             int error;
3808 
3809             /*
3810              *  Read in page from target process memory and
3811              *  write it to coredump file.
3812              */
3813             error = copy_from_user(page, addr, sizeof (page));
3814             if (error != 0) {
3815                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3816                                addr);
3817                 errno = -error;
3818                 goto out;
3819             }
3820             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3821                 goto out;
3822         }
3823     }
3824 
3825  out:
3826     free_note_info(&info);
3827     if (mm != NULL)
3828         vma_delete(mm);
3829     (void) close(fd);
3830 
3831     if (errno != 0)
3832         return (-errno);
3833     return (0);
3834 }
3835 #endif /* USE_ELF_CORE_DUMP */
3836 
3837 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3838 {
3839     init_thread(regs, infop);
3840 }
3841