1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/path.h" 11 #include "qemu/queue.h" 12 #include "qemu/guest-random.h" 13 #include "qemu/units.h" 14 #include "qemu/selfmap.h" 15 16 #ifdef _ARCH_PPC64 17 #undef ARCH_DLINFO 18 #undef ELF_PLATFORM 19 #undef ELF_HWCAP 20 #undef ELF_HWCAP2 21 #undef ELF_CLASS 22 #undef ELF_DATA 23 #undef ELF_ARCH 24 #endif 25 26 #define ELF_OSABI ELFOSABI_SYSV 27 28 /* from personality.h */ 29 30 /* 31 * Flags for bug emulation. 32 * 33 * These occupy the top three bytes. 34 */ 35 enum { 36 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 37 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 38 descriptors (signal handling) */ 39 MMAP_PAGE_ZERO = 0x0100000, 40 ADDR_COMPAT_LAYOUT = 0x0200000, 41 READ_IMPLIES_EXEC = 0x0400000, 42 ADDR_LIMIT_32BIT = 0x0800000, 43 SHORT_INODE = 0x1000000, 44 WHOLE_SECONDS = 0x2000000, 45 STICKY_TIMEOUTS = 0x4000000, 46 ADDR_LIMIT_3GB = 0x8000000, 47 }; 48 49 /* 50 * Personality types. 51 * 52 * These go in the low byte. Avoid using the top bit, it will 53 * conflict with error returns. 54 */ 55 enum { 56 PER_LINUX = 0x0000, 57 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 58 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 59 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 60 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 61 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 62 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 63 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 64 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 65 PER_BSD = 0x0006, 66 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 67 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 68 PER_LINUX32 = 0x0008, 69 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 70 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 71 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 72 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 73 PER_RISCOS = 0x000c, 74 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 75 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 76 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 77 PER_HPUX = 0x0010, 78 PER_MASK = 0x00ff, 79 }; 80 81 /* 82 * Return the base personality without flags. 83 */ 84 #define personality(pers) (pers & PER_MASK) 85 86 int info_is_fdpic(struct image_info *info) 87 { 88 return info->personality == PER_LINUX_FDPIC; 89 } 90 91 /* this flag is uneffective under linux too, should be deleted */ 92 #ifndef MAP_DENYWRITE 93 #define MAP_DENYWRITE 0 94 #endif 95 96 /* should probably go in elf.h */ 97 #ifndef ELIBBAD 98 #define ELIBBAD 80 99 #endif 100 101 #ifdef TARGET_WORDS_BIGENDIAN 102 #define ELF_DATA ELFDATA2MSB 103 #else 104 #define ELF_DATA ELFDATA2LSB 105 #endif 106 107 #ifdef TARGET_ABI_MIPSN32 108 typedef abi_ullong target_elf_greg_t; 109 #define tswapreg(ptr) tswap64(ptr) 110 #else 111 typedef abi_ulong target_elf_greg_t; 112 #define tswapreg(ptr) tswapal(ptr) 113 #endif 114 115 #ifdef USE_UID16 116 typedef abi_ushort target_uid_t; 117 typedef abi_ushort target_gid_t; 118 #else 119 typedef abi_uint target_uid_t; 120 typedef abi_uint target_gid_t; 121 #endif 122 typedef abi_int target_pid_t; 123 124 #ifdef TARGET_I386 125 126 #define ELF_PLATFORM get_elf_platform() 127 128 static const char *get_elf_platform(void) 129 { 130 static char elf_platform[] = "i386"; 131 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 132 if (family > 6) 133 family = 6; 134 if (family >= 3) 135 elf_platform[1] = '0' + family; 136 return elf_platform; 137 } 138 139 #define ELF_HWCAP get_elf_hwcap() 140 141 static uint32_t get_elf_hwcap(void) 142 { 143 X86CPU *cpu = X86_CPU(thread_cpu); 144 145 return cpu->env.features[FEAT_1_EDX]; 146 } 147 148 #ifdef TARGET_X86_64 149 #define ELF_START_MMAP 0x2aaaaab000ULL 150 151 #define ELF_CLASS ELFCLASS64 152 #define ELF_ARCH EM_X86_64 153 154 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 155 { 156 regs->rax = 0; 157 regs->rsp = infop->start_stack; 158 regs->rip = infop->entry; 159 } 160 161 #define ELF_NREG 27 162 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 163 164 /* 165 * Note that ELF_NREG should be 29 as there should be place for 166 * TRAPNO and ERR "registers" as well but linux doesn't dump 167 * those. 168 * 169 * See linux kernel: arch/x86/include/asm/elf.h 170 */ 171 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 172 { 173 (*regs)[0] = env->regs[15]; 174 (*regs)[1] = env->regs[14]; 175 (*regs)[2] = env->regs[13]; 176 (*regs)[3] = env->regs[12]; 177 (*regs)[4] = env->regs[R_EBP]; 178 (*regs)[5] = env->regs[R_EBX]; 179 (*regs)[6] = env->regs[11]; 180 (*regs)[7] = env->regs[10]; 181 (*regs)[8] = env->regs[9]; 182 (*regs)[9] = env->regs[8]; 183 (*regs)[10] = env->regs[R_EAX]; 184 (*regs)[11] = env->regs[R_ECX]; 185 (*regs)[12] = env->regs[R_EDX]; 186 (*regs)[13] = env->regs[R_ESI]; 187 (*regs)[14] = env->regs[R_EDI]; 188 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 189 (*regs)[16] = env->eip; 190 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 191 (*regs)[18] = env->eflags; 192 (*regs)[19] = env->regs[R_ESP]; 193 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 194 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 195 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 196 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 197 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 198 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 199 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 200 } 201 202 #else 203 204 #define ELF_START_MMAP 0x80000000 205 206 /* 207 * This is used to ensure we don't load something for the wrong architecture. 208 */ 209 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 210 211 /* 212 * These are used to set parameters in the core dumps. 213 */ 214 #define ELF_CLASS ELFCLASS32 215 #define ELF_ARCH EM_386 216 217 static inline void init_thread(struct target_pt_regs *regs, 218 struct image_info *infop) 219 { 220 regs->esp = infop->start_stack; 221 regs->eip = infop->entry; 222 223 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 224 starts %edx contains a pointer to a function which might be 225 registered using `atexit'. This provides a mean for the 226 dynamic linker to call DT_FINI functions for shared libraries 227 that have been loaded before the code runs. 228 229 A value of 0 tells we have no such handler. */ 230 regs->edx = 0; 231 } 232 233 #define ELF_NREG 17 234 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 235 236 /* 237 * Note that ELF_NREG should be 19 as there should be place for 238 * TRAPNO and ERR "registers" as well but linux doesn't dump 239 * those. 240 * 241 * See linux kernel: arch/x86/include/asm/elf.h 242 */ 243 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 244 { 245 (*regs)[0] = env->regs[R_EBX]; 246 (*regs)[1] = env->regs[R_ECX]; 247 (*regs)[2] = env->regs[R_EDX]; 248 (*regs)[3] = env->regs[R_ESI]; 249 (*regs)[4] = env->regs[R_EDI]; 250 (*regs)[5] = env->regs[R_EBP]; 251 (*regs)[6] = env->regs[R_EAX]; 252 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 253 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 254 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 255 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 256 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 257 (*regs)[12] = env->eip; 258 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 259 (*regs)[14] = env->eflags; 260 (*regs)[15] = env->regs[R_ESP]; 261 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 262 } 263 #endif 264 265 #define USE_ELF_CORE_DUMP 266 #define ELF_EXEC_PAGESIZE 4096 267 268 #endif 269 270 #ifdef TARGET_ARM 271 272 #ifndef TARGET_AARCH64 273 /* 32 bit ARM definitions */ 274 275 #define ELF_START_MMAP 0x80000000 276 277 #define ELF_ARCH EM_ARM 278 #define ELF_CLASS ELFCLASS32 279 280 static inline void init_thread(struct target_pt_regs *regs, 281 struct image_info *infop) 282 { 283 abi_long stack = infop->start_stack; 284 memset(regs, 0, sizeof(*regs)); 285 286 regs->uregs[16] = ARM_CPU_MODE_USR; 287 if (infop->entry & 1) { 288 regs->uregs[16] |= CPSR_T; 289 } 290 regs->uregs[15] = infop->entry & 0xfffffffe; 291 regs->uregs[13] = infop->start_stack; 292 /* FIXME - what to for failure of get_user()? */ 293 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 294 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 295 /* XXX: it seems that r0 is zeroed after ! */ 296 regs->uregs[0] = 0; 297 /* For uClinux PIC binaries. */ 298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 299 regs->uregs[10] = infop->start_data; 300 301 /* Support ARM FDPIC. */ 302 if (info_is_fdpic(infop)) { 303 /* As described in the ABI document, r7 points to the loadmap info 304 * prepared by the kernel. If an interpreter is needed, r8 points 305 * to the interpreter loadmap and r9 points to the interpreter 306 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 307 * r9 points to the main program PT_DYNAMIC info. 308 */ 309 regs->uregs[7] = infop->loadmap_addr; 310 if (infop->interpreter_loadmap_addr) { 311 /* Executable is dynamically loaded. */ 312 regs->uregs[8] = infop->interpreter_loadmap_addr; 313 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 314 } else { 315 regs->uregs[8] = 0; 316 regs->uregs[9] = infop->pt_dynamic_addr; 317 } 318 } 319 } 320 321 #define ELF_NREG 18 322 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 323 324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 325 { 326 (*regs)[0] = tswapreg(env->regs[0]); 327 (*regs)[1] = tswapreg(env->regs[1]); 328 (*regs)[2] = tswapreg(env->regs[2]); 329 (*regs)[3] = tswapreg(env->regs[3]); 330 (*regs)[4] = tswapreg(env->regs[4]); 331 (*regs)[5] = tswapreg(env->regs[5]); 332 (*regs)[6] = tswapreg(env->regs[6]); 333 (*regs)[7] = tswapreg(env->regs[7]); 334 (*regs)[8] = tswapreg(env->regs[8]); 335 (*regs)[9] = tswapreg(env->regs[9]); 336 (*regs)[10] = tswapreg(env->regs[10]); 337 (*regs)[11] = tswapreg(env->regs[11]); 338 (*regs)[12] = tswapreg(env->regs[12]); 339 (*regs)[13] = tswapreg(env->regs[13]); 340 (*regs)[14] = tswapreg(env->regs[14]); 341 (*regs)[15] = tswapreg(env->regs[15]); 342 343 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 344 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 345 } 346 347 #define USE_ELF_CORE_DUMP 348 #define ELF_EXEC_PAGESIZE 4096 349 350 enum 351 { 352 ARM_HWCAP_ARM_SWP = 1 << 0, 353 ARM_HWCAP_ARM_HALF = 1 << 1, 354 ARM_HWCAP_ARM_THUMB = 1 << 2, 355 ARM_HWCAP_ARM_26BIT = 1 << 3, 356 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 357 ARM_HWCAP_ARM_FPA = 1 << 5, 358 ARM_HWCAP_ARM_VFP = 1 << 6, 359 ARM_HWCAP_ARM_EDSP = 1 << 7, 360 ARM_HWCAP_ARM_JAVA = 1 << 8, 361 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 362 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 363 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 364 ARM_HWCAP_ARM_NEON = 1 << 12, 365 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 366 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 367 ARM_HWCAP_ARM_TLS = 1 << 15, 368 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 369 ARM_HWCAP_ARM_IDIVA = 1 << 17, 370 ARM_HWCAP_ARM_IDIVT = 1 << 18, 371 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 372 ARM_HWCAP_ARM_LPAE = 1 << 20, 373 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 374 }; 375 376 enum { 377 ARM_HWCAP2_ARM_AES = 1 << 0, 378 ARM_HWCAP2_ARM_PMULL = 1 << 1, 379 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 380 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 381 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 382 }; 383 384 /* The commpage only exists for 32 bit kernels */ 385 386 #define ARM_COMMPAGE (intptr_t)0xffff0f00u 387 388 static bool init_guest_commpage(void) 389 { 390 void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size); 391 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 392 MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); 393 394 if (addr == MAP_FAILED) { 395 perror("Allocating guest commpage"); 396 exit(EXIT_FAILURE); 397 } 398 if (addr != want) { 399 return false; 400 } 401 402 /* Set kernel helper versions; rest of page is 0. */ 403 __put_user(5, (uint32_t *)g2h(0xffff0ffcu)); 404 405 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 406 perror("Protecting guest commpage"); 407 exit(EXIT_FAILURE); 408 } 409 return true; 410 } 411 412 #define ELF_HWCAP get_elf_hwcap() 413 #define ELF_HWCAP2 get_elf_hwcap2() 414 415 static uint32_t get_elf_hwcap(void) 416 { 417 ARMCPU *cpu = ARM_CPU(thread_cpu); 418 uint32_t hwcaps = 0; 419 420 hwcaps |= ARM_HWCAP_ARM_SWP; 421 hwcaps |= ARM_HWCAP_ARM_HALF; 422 hwcaps |= ARM_HWCAP_ARM_THUMB; 423 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 424 425 /* probe for the extra features */ 426 #define GET_FEATURE(feat, hwcap) \ 427 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 428 429 #define GET_FEATURE_ID(feat, hwcap) \ 430 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 431 432 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 433 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 434 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 435 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 436 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 437 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 438 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 439 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 440 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 441 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 442 443 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 444 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 445 hwcaps |= ARM_HWCAP_ARM_VFPv3; 446 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 447 hwcaps |= ARM_HWCAP_ARM_VFPD32; 448 } else { 449 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 450 } 451 } 452 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 453 454 return hwcaps; 455 } 456 457 static uint32_t get_elf_hwcap2(void) 458 { 459 ARMCPU *cpu = ARM_CPU(thread_cpu); 460 uint32_t hwcaps = 0; 461 462 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 463 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 464 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 465 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 466 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 467 return hwcaps; 468 } 469 470 #undef GET_FEATURE 471 #undef GET_FEATURE_ID 472 473 #define ELF_PLATFORM get_elf_platform() 474 475 static const char *get_elf_platform(void) 476 { 477 CPUARMState *env = thread_cpu->env_ptr; 478 479 #ifdef TARGET_WORDS_BIGENDIAN 480 # define END "b" 481 #else 482 # define END "l" 483 #endif 484 485 if (arm_feature(env, ARM_FEATURE_V8)) { 486 return "v8" END; 487 } else if (arm_feature(env, ARM_FEATURE_V7)) { 488 if (arm_feature(env, ARM_FEATURE_M)) { 489 return "v7m" END; 490 } else { 491 return "v7" END; 492 } 493 } else if (arm_feature(env, ARM_FEATURE_V6)) { 494 return "v6" END; 495 } else if (arm_feature(env, ARM_FEATURE_V5)) { 496 return "v5" END; 497 } else { 498 return "v4" END; 499 } 500 501 #undef END 502 } 503 504 #else 505 /* 64 bit ARM definitions */ 506 #define ELF_START_MMAP 0x80000000 507 508 #define ELF_ARCH EM_AARCH64 509 #define ELF_CLASS ELFCLASS64 510 #ifdef TARGET_WORDS_BIGENDIAN 511 # define ELF_PLATFORM "aarch64_be" 512 #else 513 # define ELF_PLATFORM "aarch64" 514 #endif 515 516 static inline void init_thread(struct target_pt_regs *regs, 517 struct image_info *infop) 518 { 519 abi_long stack = infop->start_stack; 520 memset(regs, 0, sizeof(*regs)); 521 522 regs->pc = infop->entry & ~0x3ULL; 523 regs->sp = stack; 524 } 525 526 #define ELF_NREG 34 527 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 528 529 static void elf_core_copy_regs(target_elf_gregset_t *regs, 530 const CPUARMState *env) 531 { 532 int i; 533 534 for (i = 0; i < 32; i++) { 535 (*regs)[i] = tswapreg(env->xregs[i]); 536 } 537 (*regs)[32] = tswapreg(env->pc); 538 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 539 } 540 541 #define USE_ELF_CORE_DUMP 542 #define ELF_EXEC_PAGESIZE 4096 543 544 enum { 545 ARM_HWCAP_A64_FP = 1 << 0, 546 ARM_HWCAP_A64_ASIMD = 1 << 1, 547 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 548 ARM_HWCAP_A64_AES = 1 << 3, 549 ARM_HWCAP_A64_PMULL = 1 << 4, 550 ARM_HWCAP_A64_SHA1 = 1 << 5, 551 ARM_HWCAP_A64_SHA2 = 1 << 6, 552 ARM_HWCAP_A64_CRC32 = 1 << 7, 553 ARM_HWCAP_A64_ATOMICS = 1 << 8, 554 ARM_HWCAP_A64_FPHP = 1 << 9, 555 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 556 ARM_HWCAP_A64_CPUID = 1 << 11, 557 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 558 ARM_HWCAP_A64_JSCVT = 1 << 13, 559 ARM_HWCAP_A64_FCMA = 1 << 14, 560 ARM_HWCAP_A64_LRCPC = 1 << 15, 561 ARM_HWCAP_A64_DCPOP = 1 << 16, 562 ARM_HWCAP_A64_SHA3 = 1 << 17, 563 ARM_HWCAP_A64_SM3 = 1 << 18, 564 ARM_HWCAP_A64_SM4 = 1 << 19, 565 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 566 ARM_HWCAP_A64_SHA512 = 1 << 21, 567 ARM_HWCAP_A64_SVE = 1 << 22, 568 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 569 ARM_HWCAP_A64_DIT = 1 << 24, 570 ARM_HWCAP_A64_USCAT = 1 << 25, 571 ARM_HWCAP_A64_ILRCPC = 1 << 26, 572 ARM_HWCAP_A64_FLAGM = 1 << 27, 573 ARM_HWCAP_A64_SSBS = 1 << 28, 574 ARM_HWCAP_A64_SB = 1 << 29, 575 ARM_HWCAP_A64_PACA = 1 << 30, 576 ARM_HWCAP_A64_PACG = 1UL << 31, 577 578 ARM_HWCAP2_A64_DCPODP = 1 << 0, 579 ARM_HWCAP2_A64_SVE2 = 1 << 1, 580 ARM_HWCAP2_A64_SVEAES = 1 << 2, 581 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 582 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 583 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 584 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 585 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 586 ARM_HWCAP2_A64_FRINT = 1 << 8, 587 }; 588 589 #define ELF_HWCAP get_elf_hwcap() 590 #define ELF_HWCAP2 get_elf_hwcap2() 591 592 #define GET_FEATURE_ID(feat, hwcap) \ 593 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 594 595 static uint32_t get_elf_hwcap(void) 596 { 597 ARMCPU *cpu = ARM_CPU(thread_cpu); 598 uint32_t hwcaps = 0; 599 600 hwcaps |= ARM_HWCAP_A64_FP; 601 hwcaps |= ARM_HWCAP_A64_ASIMD; 602 hwcaps |= ARM_HWCAP_A64_CPUID; 603 604 /* probe for the extra features */ 605 606 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 607 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 608 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 609 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 610 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 611 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 612 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 613 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 614 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 615 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 616 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 617 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 618 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 619 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 620 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 621 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 622 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 623 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 624 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 625 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 626 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 627 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 628 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 629 630 return hwcaps; 631 } 632 633 static uint32_t get_elf_hwcap2(void) 634 { 635 ARMCPU *cpu = ARM_CPU(thread_cpu); 636 uint32_t hwcaps = 0; 637 638 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 639 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 640 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 641 642 return hwcaps; 643 } 644 645 #undef GET_FEATURE_ID 646 647 #endif /* not TARGET_AARCH64 */ 648 #endif /* TARGET_ARM */ 649 650 #ifdef TARGET_SPARC 651 #ifdef TARGET_SPARC64 652 653 #define ELF_START_MMAP 0x80000000 654 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 655 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 656 #ifndef TARGET_ABI32 657 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 658 #else 659 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 660 #endif 661 662 #define ELF_CLASS ELFCLASS64 663 #define ELF_ARCH EM_SPARCV9 664 665 #define STACK_BIAS 2047 666 667 static inline void init_thread(struct target_pt_regs *regs, 668 struct image_info *infop) 669 { 670 #ifndef TARGET_ABI32 671 regs->tstate = 0; 672 #endif 673 regs->pc = infop->entry; 674 regs->npc = regs->pc + 4; 675 regs->y = 0; 676 #ifdef TARGET_ABI32 677 regs->u_regs[14] = infop->start_stack - 16 * 4; 678 #else 679 if (personality(infop->personality) == PER_LINUX32) 680 regs->u_regs[14] = infop->start_stack - 16 * 4; 681 else 682 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 683 #endif 684 } 685 686 #else 687 #define ELF_START_MMAP 0x80000000 688 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 689 | HWCAP_SPARC_MULDIV) 690 691 #define ELF_CLASS ELFCLASS32 692 #define ELF_ARCH EM_SPARC 693 694 static inline void init_thread(struct target_pt_regs *regs, 695 struct image_info *infop) 696 { 697 regs->psr = 0; 698 regs->pc = infop->entry; 699 regs->npc = regs->pc + 4; 700 regs->y = 0; 701 regs->u_regs[14] = infop->start_stack - 16 * 4; 702 } 703 704 #endif 705 #endif 706 707 #ifdef TARGET_PPC 708 709 #define ELF_MACHINE PPC_ELF_MACHINE 710 #define ELF_START_MMAP 0x80000000 711 712 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 713 714 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 715 716 #define ELF_CLASS ELFCLASS64 717 718 #else 719 720 #define ELF_CLASS ELFCLASS32 721 722 #endif 723 724 #define ELF_ARCH EM_PPC 725 726 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 727 See arch/powerpc/include/asm/cputable.h. */ 728 enum { 729 QEMU_PPC_FEATURE_32 = 0x80000000, 730 QEMU_PPC_FEATURE_64 = 0x40000000, 731 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 732 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 733 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 734 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 735 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 736 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 737 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 738 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 739 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 740 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 741 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 742 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 743 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 744 QEMU_PPC_FEATURE_CELL = 0x00010000, 745 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 746 QEMU_PPC_FEATURE_SMT = 0x00004000, 747 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 748 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 749 QEMU_PPC_FEATURE_PA6T = 0x00000800, 750 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 751 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 752 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 753 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 754 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 755 756 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 757 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 758 759 /* Feature definitions in AT_HWCAP2. */ 760 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 761 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 762 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 763 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 764 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 765 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 766 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 767 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 768 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 769 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 770 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 771 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 772 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 773 }; 774 775 #define ELF_HWCAP get_elf_hwcap() 776 777 static uint32_t get_elf_hwcap(void) 778 { 779 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 780 uint32_t features = 0; 781 782 /* We don't have to be terribly complete here; the high points are 783 Altivec/FP/SPE support. Anything else is just a bonus. */ 784 #define GET_FEATURE(flag, feature) \ 785 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 786 #define GET_FEATURE2(flags, feature) \ 787 do { \ 788 if ((cpu->env.insns_flags2 & flags) == flags) { \ 789 features |= feature; \ 790 } \ 791 } while (0) 792 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 793 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 794 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 795 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 796 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 797 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 798 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 799 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 800 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 801 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 802 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 803 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 804 QEMU_PPC_FEATURE_ARCH_2_06); 805 #undef GET_FEATURE 806 #undef GET_FEATURE2 807 808 return features; 809 } 810 811 #define ELF_HWCAP2 get_elf_hwcap2() 812 813 static uint32_t get_elf_hwcap2(void) 814 { 815 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 816 uint32_t features = 0; 817 818 #define GET_FEATURE(flag, feature) \ 819 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 820 #define GET_FEATURE2(flag, feature) \ 821 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 822 823 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 824 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 825 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 826 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 827 QEMU_PPC_FEATURE2_VEC_CRYPTO); 828 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 829 QEMU_PPC_FEATURE2_DARN); 830 831 #undef GET_FEATURE 832 #undef GET_FEATURE2 833 834 return features; 835 } 836 837 /* 838 * The requirements here are: 839 * - keep the final alignment of sp (sp & 0xf) 840 * - make sure the 32-bit value at the first 16 byte aligned position of 841 * AUXV is greater than 16 for glibc compatibility. 842 * AT_IGNOREPPC is used for that. 843 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 844 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 845 */ 846 #define DLINFO_ARCH_ITEMS 5 847 #define ARCH_DLINFO \ 848 do { \ 849 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 850 /* \ 851 * Handle glibc compatibility: these magic entries must \ 852 * be at the lowest addresses in the final auxv. \ 853 */ \ 854 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 855 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 856 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 857 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 858 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 859 } while (0) 860 861 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 862 { 863 _regs->gpr[1] = infop->start_stack; 864 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 865 if (get_ppc64_abi(infop) < 2) { 866 uint64_t val; 867 get_user_u64(val, infop->entry + 8); 868 _regs->gpr[2] = val + infop->load_bias; 869 get_user_u64(val, infop->entry); 870 infop->entry = val + infop->load_bias; 871 } else { 872 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 873 } 874 #endif 875 _regs->nip = infop->entry; 876 } 877 878 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 879 #define ELF_NREG 48 880 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 881 882 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 883 { 884 int i; 885 target_ulong ccr = 0; 886 887 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 888 (*regs)[i] = tswapreg(env->gpr[i]); 889 } 890 891 (*regs)[32] = tswapreg(env->nip); 892 (*regs)[33] = tswapreg(env->msr); 893 (*regs)[35] = tswapreg(env->ctr); 894 (*regs)[36] = tswapreg(env->lr); 895 (*regs)[37] = tswapreg(env->xer); 896 897 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 898 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 899 } 900 (*regs)[38] = tswapreg(ccr); 901 } 902 903 #define USE_ELF_CORE_DUMP 904 #define ELF_EXEC_PAGESIZE 4096 905 906 #endif 907 908 #ifdef TARGET_MIPS 909 910 #define ELF_START_MMAP 0x80000000 911 912 #ifdef TARGET_MIPS64 913 #define ELF_CLASS ELFCLASS64 914 #else 915 #define ELF_CLASS ELFCLASS32 916 #endif 917 #define ELF_ARCH EM_MIPS 918 919 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 920 921 static inline void init_thread(struct target_pt_regs *regs, 922 struct image_info *infop) 923 { 924 regs->cp0_status = 2 << CP0St_KSU; 925 regs->cp0_epc = infop->entry; 926 regs->regs[29] = infop->start_stack; 927 } 928 929 /* See linux kernel: arch/mips/include/asm/elf.h. */ 930 #define ELF_NREG 45 931 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 932 933 /* See linux kernel: arch/mips/include/asm/reg.h. */ 934 enum { 935 #ifdef TARGET_MIPS64 936 TARGET_EF_R0 = 0, 937 #else 938 TARGET_EF_R0 = 6, 939 #endif 940 TARGET_EF_R26 = TARGET_EF_R0 + 26, 941 TARGET_EF_R27 = TARGET_EF_R0 + 27, 942 TARGET_EF_LO = TARGET_EF_R0 + 32, 943 TARGET_EF_HI = TARGET_EF_R0 + 33, 944 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 945 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 946 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 947 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 948 }; 949 950 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 951 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 952 { 953 int i; 954 955 for (i = 0; i < TARGET_EF_R0; i++) { 956 (*regs)[i] = 0; 957 } 958 (*regs)[TARGET_EF_R0] = 0; 959 960 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 961 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 962 } 963 964 (*regs)[TARGET_EF_R26] = 0; 965 (*regs)[TARGET_EF_R27] = 0; 966 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 967 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 968 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 969 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 970 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 971 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 972 } 973 974 #define USE_ELF_CORE_DUMP 975 #define ELF_EXEC_PAGESIZE 4096 976 977 /* See arch/mips/include/uapi/asm/hwcap.h. */ 978 enum { 979 HWCAP_MIPS_R6 = (1 << 0), 980 HWCAP_MIPS_MSA = (1 << 1), 981 }; 982 983 #define ELF_HWCAP get_elf_hwcap() 984 985 static uint32_t get_elf_hwcap(void) 986 { 987 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 988 uint32_t hwcaps = 0; 989 990 #define GET_FEATURE(flag, hwcap) \ 991 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 992 993 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 994 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 995 996 #undef GET_FEATURE 997 998 return hwcaps; 999 } 1000 1001 #endif /* TARGET_MIPS */ 1002 1003 #ifdef TARGET_MICROBLAZE 1004 1005 #define ELF_START_MMAP 0x80000000 1006 1007 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1008 1009 #define ELF_CLASS ELFCLASS32 1010 #define ELF_ARCH EM_MICROBLAZE 1011 1012 static inline void init_thread(struct target_pt_regs *regs, 1013 struct image_info *infop) 1014 { 1015 regs->pc = infop->entry; 1016 regs->r1 = infop->start_stack; 1017 1018 } 1019 1020 #define ELF_EXEC_PAGESIZE 4096 1021 1022 #define USE_ELF_CORE_DUMP 1023 #define ELF_NREG 38 1024 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1025 1026 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1027 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1028 { 1029 int i, pos = 0; 1030 1031 for (i = 0; i < 32; i++) { 1032 (*regs)[pos++] = tswapreg(env->regs[i]); 1033 } 1034 1035 for (i = 0; i < 6; i++) { 1036 (*regs)[pos++] = tswapreg(env->sregs[i]); 1037 } 1038 } 1039 1040 #endif /* TARGET_MICROBLAZE */ 1041 1042 #ifdef TARGET_NIOS2 1043 1044 #define ELF_START_MMAP 0x80000000 1045 1046 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1047 1048 #define ELF_CLASS ELFCLASS32 1049 #define ELF_ARCH EM_ALTERA_NIOS2 1050 1051 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1052 { 1053 regs->ea = infop->entry; 1054 regs->sp = infop->start_stack; 1055 regs->estatus = 0x3; 1056 } 1057 1058 #define ELF_EXEC_PAGESIZE 4096 1059 1060 #define USE_ELF_CORE_DUMP 1061 #define ELF_NREG 49 1062 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1063 1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1065 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1066 const CPUNios2State *env) 1067 { 1068 int i; 1069 1070 (*regs)[0] = -1; 1071 for (i = 1; i < 8; i++) /* r0-r7 */ 1072 (*regs)[i] = tswapreg(env->regs[i + 7]); 1073 1074 for (i = 8; i < 16; i++) /* r8-r15 */ 1075 (*regs)[i] = tswapreg(env->regs[i - 8]); 1076 1077 for (i = 16; i < 24; i++) /* r16-r23 */ 1078 (*regs)[i] = tswapreg(env->regs[i + 7]); 1079 (*regs)[24] = -1; /* R_ET */ 1080 (*regs)[25] = -1; /* R_BT */ 1081 (*regs)[26] = tswapreg(env->regs[R_GP]); 1082 (*regs)[27] = tswapreg(env->regs[R_SP]); 1083 (*regs)[28] = tswapreg(env->regs[R_FP]); 1084 (*regs)[29] = tswapreg(env->regs[R_EA]); 1085 (*regs)[30] = -1; /* R_SSTATUS */ 1086 (*regs)[31] = tswapreg(env->regs[R_RA]); 1087 1088 (*regs)[32] = tswapreg(env->regs[R_PC]); 1089 1090 (*regs)[33] = -1; /* R_STATUS */ 1091 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1092 1093 for (i = 35; i < 49; i++) /* ... */ 1094 (*regs)[i] = -1; 1095 } 1096 1097 #endif /* TARGET_NIOS2 */ 1098 1099 #ifdef TARGET_OPENRISC 1100 1101 #define ELF_START_MMAP 0x08000000 1102 1103 #define ELF_ARCH EM_OPENRISC 1104 #define ELF_CLASS ELFCLASS32 1105 #define ELF_DATA ELFDATA2MSB 1106 1107 static inline void init_thread(struct target_pt_regs *regs, 1108 struct image_info *infop) 1109 { 1110 regs->pc = infop->entry; 1111 regs->gpr[1] = infop->start_stack; 1112 } 1113 1114 #define USE_ELF_CORE_DUMP 1115 #define ELF_EXEC_PAGESIZE 8192 1116 1117 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1118 #define ELF_NREG 34 /* gprs and pc, sr */ 1119 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1120 1121 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1122 const CPUOpenRISCState *env) 1123 { 1124 int i; 1125 1126 for (i = 0; i < 32; i++) { 1127 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1128 } 1129 (*regs)[32] = tswapreg(env->pc); 1130 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1131 } 1132 #define ELF_HWCAP 0 1133 #define ELF_PLATFORM NULL 1134 1135 #endif /* TARGET_OPENRISC */ 1136 1137 #ifdef TARGET_SH4 1138 1139 #define ELF_START_MMAP 0x80000000 1140 1141 #define ELF_CLASS ELFCLASS32 1142 #define ELF_ARCH EM_SH 1143 1144 static inline void init_thread(struct target_pt_regs *regs, 1145 struct image_info *infop) 1146 { 1147 /* Check other registers XXXXX */ 1148 regs->pc = infop->entry; 1149 regs->regs[15] = infop->start_stack; 1150 } 1151 1152 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1153 #define ELF_NREG 23 1154 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1155 1156 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1157 enum { 1158 TARGET_REG_PC = 16, 1159 TARGET_REG_PR = 17, 1160 TARGET_REG_SR = 18, 1161 TARGET_REG_GBR = 19, 1162 TARGET_REG_MACH = 20, 1163 TARGET_REG_MACL = 21, 1164 TARGET_REG_SYSCALL = 22 1165 }; 1166 1167 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1168 const CPUSH4State *env) 1169 { 1170 int i; 1171 1172 for (i = 0; i < 16; i++) { 1173 (*regs)[i] = tswapreg(env->gregs[i]); 1174 } 1175 1176 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1177 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1178 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1179 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1180 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1181 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1182 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1183 } 1184 1185 #define USE_ELF_CORE_DUMP 1186 #define ELF_EXEC_PAGESIZE 4096 1187 1188 enum { 1189 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1190 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1191 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1192 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1193 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1194 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1195 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1196 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1197 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1198 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1199 }; 1200 1201 #define ELF_HWCAP get_elf_hwcap() 1202 1203 static uint32_t get_elf_hwcap(void) 1204 { 1205 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1206 uint32_t hwcap = 0; 1207 1208 hwcap |= SH_CPU_HAS_FPU; 1209 1210 if (cpu->env.features & SH_FEATURE_SH4A) { 1211 hwcap |= SH_CPU_HAS_LLSC; 1212 } 1213 1214 return hwcap; 1215 } 1216 1217 #endif 1218 1219 #ifdef TARGET_CRIS 1220 1221 #define ELF_START_MMAP 0x80000000 1222 1223 #define ELF_CLASS ELFCLASS32 1224 #define ELF_ARCH EM_CRIS 1225 1226 static inline void init_thread(struct target_pt_regs *regs, 1227 struct image_info *infop) 1228 { 1229 regs->erp = infop->entry; 1230 } 1231 1232 #define ELF_EXEC_PAGESIZE 8192 1233 1234 #endif 1235 1236 #ifdef TARGET_M68K 1237 1238 #define ELF_START_MMAP 0x80000000 1239 1240 #define ELF_CLASS ELFCLASS32 1241 #define ELF_ARCH EM_68K 1242 1243 /* ??? Does this need to do anything? 1244 #define ELF_PLAT_INIT(_r) */ 1245 1246 static inline void init_thread(struct target_pt_regs *regs, 1247 struct image_info *infop) 1248 { 1249 regs->usp = infop->start_stack; 1250 regs->sr = 0; 1251 regs->pc = infop->entry; 1252 } 1253 1254 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1255 #define ELF_NREG 20 1256 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1257 1258 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1259 { 1260 (*regs)[0] = tswapreg(env->dregs[1]); 1261 (*regs)[1] = tswapreg(env->dregs[2]); 1262 (*regs)[2] = tswapreg(env->dregs[3]); 1263 (*regs)[3] = tswapreg(env->dregs[4]); 1264 (*regs)[4] = tswapreg(env->dregs[5]); 1265 (*regs)[5] = tswapreg(env->dregs[6]); 1266 (*regs)[6] = tswapreg(env->dregs[7]); 1267 (*regs)[7] = tswapreg(env->aregs[0]); 1268 (*regs)[8] = tswapreg(env->aregs[1]); 1269 (*regs)[9] = tswapreg(env->aregs[2]); 1270 (*regs)[10] = tswapreg(env->aregs[3]); 1271 (*regs)[11] = tswapreg(env->aregs[4]); 1272 (*regs)[12] = tswapreg(env->aregs[5]); 1273 (*regs)[13] = tswapreg(env->aregs[6]); 1274 (*regs)[14] = tswapreg(env->dregs[0]); 1275 (*regs)[15] = tswapreg(env->aregs[7]); 1276 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1277 (*regs)[17] = tswapreg(env->sr); 1278 (*regs)[18] = tswapreg(env->pc); 1279 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1280 } 1281 1282 #define USE_ELF_CORE_DUMP 1283 #define ELF_EXEC_PAGESIZE 8192 1284 1285 #endif 1286 1287 #ifdef TARGET_ALPHA 1288 1289 #define ELF_START_MMAP (0x30000000000ULL) 1290 1291 #define ELF_CLASS ELFCLASS64 1292 #define ELF_ARCH EM_ALPHA 1293 1294 static inline void init_thread(struct target_pt_regs *regs, 1295 struct image_info *infop) 1296 { 1297 regs->pc = infop->entry; 1298 regs->ps = 8; 1299 regs->usp = infop->start_stack; 1300 } 1301 1302 #define ELF_EXEC_PAGESIZE 8192 1303 1304 #endif /* TARGET_ALPHA */ 1305 1306 #ifdef TARGET_S390X 1307 1308 #define ELF_START_MMAP (0x20000000000ULL) 1309 1310 #define ELF_CLASS ELFCLASS64 1311 #define ELF_DATA ELFDATA2MSB 1312 #define ELF_ARCH EM_S390 1313 1314 #include "elf.h" 1315 1316 #define ELF_HWCAP get_elf_hwcap() 1317 1318 #define GET_FEATURE(_feat, _hwcap) \ 1319 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1320 1321 static uint32_t get_elf_hwcap(void) 1322 { 1323 /* 1324 * Let's assume we always have esan3 and zarch. 1325 * 31-bit processes can use 64-bit registers (high gprs). 1326 */ 1327 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1328 1329 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1330 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1331 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1332 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1333 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1334 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1335 hwcap |= HWCAP_S390_ETF3EH; 1336 } 1337 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1338 1339 return hwcap; 1340 } 1341 1342 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1343 { 1344 regs->psw.addr = infop->entry; 1345 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1346 regs->gprs[15] = infop->start_stack; 1347 } 1348 1349 #endif /* TARGET_S390X */ 1350 1351 #ifdef TARGET_TILEGX 1352 1353 /* 42 bits real used address, a half for user mode */ 1354 #define ELF_START_MMAP (0x00000020000000000ULL) 1355 1356 #define elf_check_arch(x) ((x) == EM_TILEGX) 1357 1358 #define ELF_CLASS ELFCLASS64 1359 #define ELF_DATA ELFDATA2LSB 1360 #define ELF_ARCH EM_TILEGX 1361 1362 static inline void init_thread(struct target_pt_regs *regs, 1363 struct image_info *infop) 1364 { 1365 regs->pc = infop->entry; 1366 regs->sp = infop->start_stack; 1367 1368 } 1369 1370 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1371 1372 #endif /* TARGET_TILEGX */ 1373 1374 #ifdef TARGET_RISCV 1375 1376 #define ELF_START_MMAP 0x80000000 1377 #define ELF_ARCH EM_RISCV 1378 1379 #ifdef TARGET_RISCV32 1380 #define ELF_CLASS ELFCLASS32 1381 #else 1382 #define ELF_CLASS ELFCLASS64 1383 #endif 1384 1385 static inline void init_thread(struct target_pt_regs *regs, 1386 struct image_info *infop) 1387 { 1388 regs->sepc = infop->entry; 1389 regs->sp = infop->start_stack; 1390 } 1391 1392 #define ELF_EXEC_PAGESIZE 4096 1393 1394 #endif /* TARGET_RISCV */ 1395 1396 #ifdef TARGET_HPPA 1397 1398 #define ELF_START_MMAP 0x80000000 1399 #define ELF_CLASS ELFCLASS32 1400 #define ELF_ARCH EM_PARISC 1401 #define ELF_PLATFORM "PARISC" 1402 #define STACK_GROWS_DOWN 0 1403 #define STACK_ALIGNMENT 64 1404 1405 static inline void init_thread(struct target_pt_regs *regs, 1406 struct image_info *infop) 1407 { 1408 regs->iaoq[0] = infop->entry; 1409 regs->iaoq[1] = infop->entry + 4; 1410 regs->gr[23] = 0; 1411 regs->gr[24] = infop->arg_start; 1412 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1413 /* The top-of-stack contains a linkage buffer. */ 1414 regs->gr[30] = infop->start_stack + 64; 1415 regs->gr[31] = infop->entry; 1416 } 1417 1418 #endif /* TARGET_HPPA */ 1419 1420 #ifdef TARGET_XTENSA 1421 1422 #define ELF_START_MMAP 0x20000000 1423 1424 #define ELF_CLASS ELFCLASS32 1425 #define ELF_ARCH EM_XTENSA 1426 1427 static inline void init_thread(struct target_pt_regs *regs, 1428 struct image_info *infop) 1429 { 1430 regs->windowbase = 0; 1431 regs->windowstart = 1; 1432 regs->areg[1] = infop->start_stack; 1433 regs->pc = infop->entry; 1434 } 1435 1436 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1437 #define ELF_NREG 128 1438 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1439 1440 enum { 1441 TARGET_REG_PC, 1442 TARGET_REG_PS, 1443 TARGET_REG_LBEG, 1444 TARGET_REG_LEND, 1445 TARGET_REG_LCOUNT, 1446 TARGET_REG_SAR, 1447 TARGET_REG_WINDOWSTART, 1448 TARGET_REG_WINDOWBASE, 1449 TARGET_REG_THREADPTR, 1450 TARGET_REG_AR0 = 64, 1451 }; 1452 1453 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1454 const CPUXtensaState *env) 1455 { 1456 unsigned i; 1457 1458 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1459 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1460 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1461 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1462 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1463 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1464 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1465 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1466 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1467 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1468 for (i = 0; i < env->config->nareg; ++i) { 1469 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1470 } 1471 } 1472 1473 #define USE_ELF_CORE_DUMP 1474 #define ELF_EXEC_PAGESIZE 4096 1475 1476 #endif /* TARGET_XTENSA */ 1477 1478 #ifndef ELF_PLATFORM 1479 #define ELF_PLATFORM (NULL) 1480 #endif 1481 1482 #ifndef ELF_MACHINE 1483 #define ELF_MACHINE ELF_ARCH 1484 #endif 1485 1486 #ifndef elf_check_arch 1487 #define elf_check_arch(x) ((x) == ELF_ARCH) 1488 #endif 1489 1490 #ifndef ELF_HWCAP 1491 #define ELF_HWCAP 0 1492 #endif 1493 1494 #ifndef STACK_GROWS_DOWN 1495 #define STACK_GROWS_DOWN 1 1496 #endif 1497 1498 #ifndef STACK_ALIGNMENT 1499 #define STACK_ALIGNMENT 16 1500 #endif 1501 1502 #ifdef TARGET_ABI32 1503 #undef ELF_CLASS 1504 #define ELF_CLASS ELFCLASS32 1505 #undef bswaptls 1506 #define bswaptls(ptr) bswap32s(ptr) 1507 #endif 1508 1509 #include "elf.h" 1510 1511 struct exec 1512 { 1513 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1514 unsigned int a_text; /* length of text, in bytes */ 1515 unsigned int a_data; /* length of data, in bytes */ 1516 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1517 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1518 unsigned int a_entry; /* start address */ 1519 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1520 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1521 }; 1522 1523 1524 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1525 #define OMAGIC 0407 1526 #define NMAGIC 0410 1527 #define ZMAGIC 0413 1528 #define QMAGIC 0314 1529 1530 /* Necessary parameters */ 1531 #define TARGET_ELF_EXEC_PAGESIZE \ 1532 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1533 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1534 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1535 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1536 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1537 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1538 1539 #define DLINFO_ITEMS 16 1540 1541 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1542 { 1543 memcpy(to, from, n); 1544 } 1545 1546 #ifdef BSWAP_NEEDED 1547 static void bswap_ehdr(struct elfhdr *ehdr) 1548 { 1549 bswap16s(&ehdr->e_type); /* Object file type */ 1550 bswap16s(&ehdr->e_machine); /* Architecture */ 1551 bswap32s(&ehdr->e_version); /* Object file version */ 1552 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1553 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1554 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1555 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1556 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1557 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1558 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1559 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1560 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1561 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1562 } 1563 1564 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1565 { 1566 int i; 1567 for (i = 0; i < phnum; ++i, ++phdr) { 1568 bswap32s(&phdr->p_type); /* Segment type */ 1569 bswap32s(&phdr->p_flags); /* Segment flags */ 1570 bswaptls(&phdr->p_offset); /* Segment file offset */ 1571 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1572 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1573 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1574 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1575 bswaptls(&phdr->p_align); /* Segment alignment */ 1576 } 1577 } 1578 1579 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1580 { 1581 int i; 1582 for (i = 0; i < shnum; ++i, ++shdr) { 1583 bswap32s(&shdr->sh_name); 1584 bswap32s(&shdr->sh_type); 1585 bswaptls(&shdr->sh_flags); 1586 bswaptls(&shdr->sh_addr); 1587 bswaptls(&shdr->sh_offset); 1588 bswaptls(&shdr->sh_size); 1589 bswap32s(&shdr->sh_link); 1590 bswap32s(&shdr->sh_info); 1591 bswaptls(&shdr->sh_addralign); 1592 bswaptls(&shdr->sh_entsize); 1593 } 1594 } 1595 1596 static void bswap_sym(struct elf_sym *sym) 1597 { 1598 bswap32s(&sym->st_name); 1599 bswaptls(&sym->st_value); 1600 bswaptls(&sym->st_size); 1601 bswap16s(&sym->st_shndx); 1602 } 1603 1604 #ifdef TARGET_MIPS 1605 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1606 { 1607 bswap16s(&abiflags->version); 1608 bswap32s(&abiflags->ases); 1609 bswap32s(&abiflags->isa_ext); 1610 bswap32s(&abiflags->flags1); 1611 bswap32s(&abiflags->flags2); 1612 } 1613 #endif 1614 #else 1615 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1616 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1617 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1618 static inline void bswap_sym(struct elf_sym *sym) { } 1619 #ifdef TARGET_MIPS 1620 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1621 #endif 1622 #endif 1623 1624 #ifdef USE_ELF_CORE_DUMP 1625 static int elf_core_dump(int, const CPUArchState *); 1626 #endif /* USE_ELF_CORE_DUMP */ 1627 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1628 1629 /* Verify the portions of EHDR within E_IDENT for the target. 1630 This can be performed before bswapping the entire header. */ 1631 static bool elf_check_ident(struct elfhdr *ehdr) 1632 { 1633 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1634 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1635 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1636 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1637 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1638 && ehdr->e_ident[EI_DATA] == ELF_DATA 1639 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1640 } 1641 1642 /* Verify the portions of EHDR outside of E_IDENT for the target. 1643 This has to wait until after bswapping the header. */ 1644 static bool elf_check_ehdr(struct elfhdr *ehdr) 1645 { 1646 return (elf_check_arch(ehdr->e_machine) 1647 && ehdr->e_ehsize == sizeof(struct elfhdr) 1648 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1649 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1650 } 1651 1652 /* 1653 * 'copy_elf_strings()' copies argument/envelope strings from user 1654 * memory to free pages in kernel mem. These are in a format ready 1655 * to be put directly into the top of new user memory. 1656 * 1657 */ 1658 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1659 abi_ulong p, abi_ulong stack_limit) 1660 { 1661 char *tmp; 1662 int len, i; 1663 abi_ulong top = p; 1664 1665 if (!p) { 1666 return 0; /* bullet-proofing */ 1667 } 1668 1669 if (STACK_GROWS_DOWN) { 1670 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1671 for (i = argc - 1; i >= 0; --i) { 1672 tmp = argv[i]; 1673 if (!tmp) { 1674 fprintf(stderr, "VFS: argc is wrong"); 1675 exit(-1); 1676 } 1677 len = strlen(tmp) + 1; 1678 tmp += len; 1679 1680 if (len > (p - stack_limit)) { 1681 return 0; 1682 } 1683 while (len) { 1684 int bytes_to_copy = (len > offset) ? offset : len; 1685 tmp -= bytes_to_copy; 1686 p -= bytes_to_copy; 1687 offset -= bytes_to_copy; 1688 len -= bytes_to_copy; 1689 1690 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1691 1692 if (offset == 0) { 1693 memcpy_to_target(p, scratch, top - p); 1694 top = p; 1695 offset = TARGET_PAGE_SIZE; 1696 } 1697 } 1698 } 1699 if (p != top) { 1700 memcpy_to_target(p, scratch + offset, top - p); 1701 } 1702 } else { 1703 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1704 for (i = 0; i < argc; ++i) { 1705 tmp = argv[i]; 1706 if (!tmp) { 1707 fprintf(stderr, "VFS: argc is wrong"); 1708 exit(-1); 1709 } 1710 len = strlen(tmp) + 1; 1711 if (len > (stack_limit - p)) { 1712 return 0; 1713 } 1714 while (len) { 1715 int bytes_to_copy = (len > remaining) ? remaining : len; 1716 1717 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1718 1719 tmp += bytes_to_copy; 1720 remaining -= bytes_to_copy; 1721 p += bytes_to_copy; 1722 len -= bytes_to_copy; 1723 1724 if (remaining == 0) { 1725 memcpy_to_target(top, scratch, p - top); 1726 top = p; 1727 remaining = TARGET_PAGE_SIZE; 1728 } 1729 } 1730 } 1731 if (p != top) { 1732 memcpy_to_target(top, scratch, p - top); 1733 } 1734 } 1735 1736 return p; 1737 } 1738 1739 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1740 * argument/environment space. Newer kernels (>2.6.33) allow more, 1741 * dependent on stack size, but guarantee at least 32 pages for 1742 * backwards compatibility. 1743 */ 1744 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1745 1746 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1747 struct image_info *info) 1748 { 1749 abi_ulong size, error, guard; 1750 1751 size = guest_stack_size; 1752 if (size < STACK_LOWER_LIMIT) { 1753 size = STACK_LOWER_LIMIT; 1754 } 1755 guard = TARGET_PAGE_SIZE; 1756 if (guard < qemu_real_host_page_size) { 1757 guard = qemu_real_host_page_size; 1758 } 1759 1760 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1761 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1762 if (error == -1) { 1763 perror("mmap stack"); 1764 exit(-1); 1765 } 1766 1767 /* We reserve one extra page at the top of the stack as guard. */ 1768 if (STACK_GROWS_DOWN) { 1769 target_mprotect(error, guard, PROT_NONE); 1770 info->stack_limit = error + guard; 1771 return info->stack_limit + size - sizeof(void *); 1772 } else { 1773 target_mprotect(error + size, guard, PROT_NONE); 1774 info->stack_limit = error + size; 1775 return error; 1776 } 1777 } 1778 1779 /* Map and zero the bss. We need to explicitly zero any fractional pages 1780 after the data section (i.e. bss). */ 1781 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1782 { 1783 uintptr_t host_start, host_map_start, host_end; 1784 1785 last_bss = TARGET_PAGE_ALIGN(last_bss); 1786 1787 /* ??? There is confusion between qemu_real_host_page_size and 1788 qemu_host_page_size here and elsewhere in target_mmap, which 1789 may lead to the end of the data section mapping from the file 1790 not being mapped. At least there was an explicit test and 1791 comment for that here, suggesting that "the file size must 1792 be known". The comment probably pre-dates the introduction 1793 of the fstat system call in target_mmap which does in fact 1794 find out the size. What isn't clear is if the workaround 1795 here is still actually needed. For now, continue with it, 1796 but merge it with the "normal" mmap that would allocate the bss. */ 1797 1798 host_start = (uintptr_t) g2h(elf_bss); 1799 host_end = (uintptr_t) g2h(last_bss); 1800 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1801 1802 if (host_map_start < host_end) { 1803 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1804 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1805 if (p == MAP_FAILED) { 1806 perror("cannot mmap brk"); 1807 exit(-1); 1808 } 1809 } 1810 1811 /* Ensure that the bss page(s) are valid */ 1812 if ((page_get_flags(last_bss-1) & prot) != prot) { 1813 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1814 } 1815 1816 if (host_start < host_map_start) { 1817 memset((void *)host_start, 0, host_map_start - host_start); 1818 } 1819 } 1820 1821 #ifdef TARGET_ARM 1822 static int elf_is_fdpic(struct elfhdr *exec) 1823 { 1824 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1825 } 1826 #else 1827 /* Default implementation, always false. */ 1828 static int elf_is_fdpic(struct elfhdr *exec) 1829 { 1830 return 0; 1831 } 1832 #endif 1833 1834 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1835 { 1836 uint16_t n; 1837 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1838 1839 /* elf32_fdpic_loadseg */ 1840 n = info->nsegs; 1841 while (n--) { 1842 sp -= 12; 1843 put_user_u32(loadsegs[n].addr, sp+0); 1844 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1845 put_user_u32(loadsegs[n].p_memsz, sp+8); 1846 } 1847 1848 /* elf32_fdpic_loadmap */ 1849 sp -= 4; 1850 put_user_u16(0, sp+0); /* version */ 1851 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1852 1853 info->personality = PER_LINUX_FDPIC; 1854 info->loadmap_addr = sp; 1855 1856 return sp; 1857 } 1858 1859 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1860 struct elfhdr *exec, 1861 struct image_info *info, 1862 struct image_info *interp_info) 1863 { 1864 abi_ulong sp; 1865 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1866 int size; 1867 int i; 1868 abi_ulong u_rand_bytes; 1869 uint8_t k_rand_bytes[16]; 1870 abi_ulong u_platform; 1871 const char *k_platform; 1872 const int n = sizeof(elf_addr_t); 1873 1874 sp = p; 1875 1876 /* Needs to be before we load the env/argc/... */ 1877 if (elf_is_fdpic(exec)) { 1878 /* Need 4 byte alignment for these structs */ 1879 sp &= ~3; 1880 sp = loader_build_fdpic_loadmap(info, sp); 1881 info->other_info = interp_info; 1882 if (interp_info) { 1883 interp_info->other_info = info; 1884 sp = loader_build_fdpic_loadmap(interp_info, sp); 1885 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1886 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1887 } else { 1888 info->interpreter_loadmap_addr = 0; 1889 info->interpreter_pt_dynamic_addr = 0; 1890 } 1891 } 1892 1893 u_platform = 0; 1894 k_platform = ELF_PLATFORM; 1895 if (k_platform) { 1896 size_t len = strlen(k_platform) + 1; 1897 if (STACK_GROWS_DOWN) { 1898 sp -= (len + n - 1) & ~(n - 1); 1899 u_platform = sp; 1900 /* FIXME - check return value of memcpy_to_target() for failure */ 1901 memcpy_to_target(sp, k_platform, len); 1902 } else { 1903 memcpy_to_target(sp, k_platform, len); 1904 u_platform = sp; 1905 sp += len + 1; 1906 } 1907 } 1908 1909 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1910 * the argv and envp pointers. 1911 */ 1912 if (STACK_GROWS_DOWN) { 1913 sp = QEMU_ALIGN_DOWN(sp, 16); 1914 } else { 1915 sp = QEMU_ALIGN_UP(sp, 16); 1916 } 1917 1918 /* 1919 * Generate 16 random bytes for userspace PRNG seeding. 1920 */ 1921 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 1922 if (STACK_GROWS_DOWN) { 1923 sp -= 16; 1924 u_rand_bytes = sp; 1925 /* FIXME - check return value of memcpy_to_target() for failure */ 1926 memcpy_to_target(sp, k_rand_bytes, 16); 1927 } else { 1928 memcpy_to_target(sp, k_rand_bytes, 16); 1929 u_rand_bytes = sp; 1930 sp += 16; 1931 } 1932 1933 size = (DLINFO_ITEMS + 1) * 2; 1934 if (k_platform) 1935 size += 2; 1936 #ifdef DLINFO_ARCH_ITEMS 1937 size += DLINFO_ARCH_ITEMS * 2; 1938 #endif 1939 #ifdef ELF_HWCAP2 1940 size += 2; 1941 #endif 1942 info->auxv_len = size * n; 1943 1944 size += envc + argc + 2; 1945 size += 1; /* argc itself */ 1946 size *= n; 1947 1948 /* Allocate space and finalize stack alignment for entry now. */ 1949 if (STACK_GROWS_DOWN) { 1950 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1951 sp = u_argc; 1952 } else { 1953 u_argc = sp; 1954 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1955 } 1956 1957 u_argv = u_argc + n; 1958 u_envp = u_argv + (argc + 1) * n; 1959 u_auxv = u_envp + (envc + 1) * n; 1960 info->saved_auxv = u_auxv; 1961 info->arg_start = u_argv; 1962 info->arg_end = u_argv + argc * n; 1963 1964 /* This is correct because Linux defines 1965 * elf_addr_t as Elf32_Off / Elf64_Off 1966 */ 1967 #define NEW_AUX_ENT(id, val) do { \ 1968 put_user_ual(id, u_auxv); u_auxv += n; \ 1969 put_user_ual(val, u_auxv); u_auxv += n; \ 1970 } while(0) 1971 1972 #ifdef ARCH_DLINFO 1973 /* 1974 * ARCH_DLINFO must come first so platform specific code can enforce 1975 * special alignment requirements on the AUXV if necessary (eg. PPC). 1976 */ 1977 ARCH_DLINFO; 1978 #endif 1979 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1980 * on info->auxv_len will trigger. 1981 */ 1982 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1983 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1984 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1985 if ((info->alignment & ~qemu_host_page_mask) != 0) { 1986 /* Target doesn't support host page size alignment */ 1987 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1988 } else { 1989 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 1990 qemu_host_page_size))); 1991 } 1992 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1993 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1994 NEW_AUX_ENT(AT_ENTRY, info->entry); 1995 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1996 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1997 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1998 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1999 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2000 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2001 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2002 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2003 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2004 2005 #ifdef ELF_HWCAP2 2006 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2007 #endif 2008 2009 if (u_platform) { 2010 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2011 } 2012 NEW_AUX_ENT (AT_NULL, 0); 2013 #undef NEW_AUX_ENT 2014 2015 /* Check that our initial calculation of the auxv length matches how much 2016 * we actually put into it. 2017 */ 2018 assert(info->auxv_len == u_auxv - info->saved_auxv); 2019 2020 put_user_ual(argc, u_argc); 2021 2022 p = info->arg_strings; 2023 for (i = 0; i < argc; ++i) { 2024 put_user_ual(p, u_argv); 2025 u_argv += n; 2026 p += target_strlen(p) + 1; 2027 } 2028 put_user_ual(0, u_argv); 2029 2030 p = info->env_strings; 2031 for (i = 0; i < envc; ++i) { 2032 put_user_ual(p, u_envp); 2033 u_envp += n; 2034 p += target_strlen(p) + 1; 2035 } 2036 put_user_ual(0, u_envp); 2037 2038 return sp; 2039 } 2040 2041 #ifndef ARM_COMMPAGE 2042 #define ARM_COMMPAGE 0 2043 #define init_guest_commpage() true 2044 #endif 2045 2046 static void pgb_fail_in_use(const char *image_name) 2047 { 2048 error_report("%s: requires virtual address space that is in use " 2049 "(omit the -B option or choose a different value)", 2050 image_name); 2051 exit(EXIT_FAILURE); 2052 } 2053 2054 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2055 abi_ulong guest_hiaddr, long align) 2056 { 2057 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2058 void *addr, *test; 2059 2060 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2061 fprintf(stderr, "Requested guest base 0x%lx does not satisfy " 2062 "host minimum alignment (0x%lx)\n", 2063 guest_base, align); 2064 exit(EXIT_FAILURE); 2065 } 2066 2067 /* Sanity check the guest binary. */ 2068 if (reserved_va) { 2069 if (guest_hiaddr > reserved_va) { 2070 error_report("%s: requires more than reserved virtual " 2071 "address space (0x%" PRIx64 " > 0x%lx)", 2072 image_name, (uint64_t)guest_hiaddr, reserved_va); 2073 exit(EXIT_FAILURE); 2074 } 2075 } else { 2076 #if HOST_LONG_BITS < TARGET_ABI_BITS 2077 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2078 error_report("%s: requires more virtual address space " 2079 "than the host can provide (0x%" PRIx64 ")", 2080 image_name, (uint64_t)guest_hiaddr - guest_base); 2081 exit(EXIT_FAILURE); 2082 } 2083 #endif 2084 } 2085 2086 /* 2087 * Expand the allocation to the entire reserved_va. 2088 * Exclude the mmap_min_addr hole. 2089 */ 2090 if (reserved_va) { 2091 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2092 : mmap_min_addr - guest_base); 2093 guest_hiaddr = reserved_va; 2094 } 2095 2096 /* Reserve the address space for the binary, or reserved_va. */ 2097 test = g2h(guest_loaddr); 2098 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2099 if (test != addr) { 2100 pgb_fail_in_use(image_name); 2101 } 2102 } 2103 2104 /* Return value for guest_base, or -1 if no hole found. */ 2105 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2106 long align) 2107 { 2108 GSList *maps, *iter; 2109 uintptr_t this_start, this_end, next_start, brk; 2110 intptr_t ret = -1; 2111 2112 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2113 2114 maps = read_self_maps(); 2115 2116 /* Read brk after we've read the maps, which will malloc. */ 2117 brk = (uintptr_t)sbrk(0); 2118 2119 /* The first hole is before the first map entry. */ 2120 this_start = mmap_min_addr; 2121 2122 for (iter = maps; iter; 2123 this_start = next_start, iter = g_slist_next(iter)) { 2124 uintptr_t align_start, hole_size; 2125 2126 this_end = ((MapInfo *)iter->data)->start; 2127 next_start = ((MapInfo *)iter->data)->end; 2128 align_start = ROUND_UP(this_start, align); 2129 2130 /* Skip holes that are too small. */ 2131 if (align_start >= this_end) { 2132 continue; 2133 } 2134 hole_size = this_end - align_start; 2135 if (hole_size < guest_size) { 2136 continue; 2137 } 2138 2139 /* If this hole contains brk, give ourselves some room to grow. */ 2140 if (this_start <= brk && brk < this_end) { 2141 hole_size -= guest_size; 2142 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2143 align_start += 1 * GiB; 2144 } else if (hole_size >= 16 * MiB) { 2145 align_start += 16 * MiB; 2146 } else { 2147 align_start = (this_end - guest_size) & -align; 2148 if (align_start < this_start) { 2149 continue; 2150 } 2151 } 2152 } 2153 2154 /* Record the lowest successful match. */ 2155 if (ret < 0) { 2156 ret = align_start - guest_loaddr; 2157 } 2158 /* If this hole contains the identity map, select it. */ 2159 if (align_start <= guest_loaddr && 2160 guest_loaddr + guest_size <= this_end) { 2161 ret = 0; 2162 } 2163 /* If this hole ends above the identity map, stop looking. */ 2164 if (this_end >= guest_loaddr) { 2165 break; 2166 } 2167 } 2168 free_self_maps(maps); 2169 2170 return ret; 2171 } 2172 2173 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2174 abi_ulong orig_hiaddr, long align) 2175 { 2176 uintptr_t loaddr = orig_loaddr; 2177 uintptr_t hiaddr = orig_hiaddr; 2178 uintptr_t addr; 2179 2180 if (hiaddr != orig_hiaddr) { 2181 error_report("%s: requires virtual address space that the " 2182 "host cannot provide (0x%" PRIx64 ")", 2183 image_name, (uint64_t)orig_hiaddr); 2184 exit(EXIT_FAILURE); 2185 } 2186 2187 loaddr &= -align; 2188 if (ARM_COMMPAGE) { 2189 /* 2190 * Extend the allocation to include the commpage. 2191 * For a 64-bit host, this is just 4GiB; for a 32-bit host, 2192 * the address arithmetic will wrap around, but the difference 2193 * will produce the correct allocation size. 2194 */ 2195 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2196 hiaddr = (uintptr_t)4 << 30; 2197 } else { 2198 loaddr = ARM_COMMPAGE & -align; 2199 } 2200 } 2201 2202 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align); 2203 if (addr == -1) { 2204 /* 2205 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation 2206 * that can satisfy both. But as the normal arm32 link base address 2207 * is ~32k, and we extend down to include the commpage, making the 2208 * overhead only ~96k, this is unlikely. 2209 */ 2210 error_report("%s: Unable to allocate %#zx bytes of " 2211 "virtual address space", image_name, 2212 (size_t)(hiaddr - loaddr)); 2213 exit(EXIT_FAILURE); 2214 } 2215 2216 guest_base = addr; 2217 } 2218 2219 static void pgb_dynamic(const char *image_name, long align) 2220 { 2221 /* 2222 * The executable is dynamic and does not require a fixed address. 2223 * All we need is a commpage that satisfies align. 2224 * If we do not need a commpage, leave guest_base == 0. 2225 */ 2226 if (ARM_COMMPAGE) { 2227 uintptr_t addr, commpage; 2228 2229 /* 64-bit hosts should have used reserved_va. */ 2230 assert(sizeof(uintptr_t) == 4); 2231 2232 /* 2233 * By putting the commpage at the first hole, that puts guest_base 2234 * just above that, and maximises the positive guest addresses. 2235 */ 2236 commpage = ARM_COMMPAGE & -align; 2237 addr = pgb_find_hole(commpage, -commpage, align); 2238 assert(addr != -1); 2239 guest_base = addr; 2240 } 2241 } 2242 2243 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2244 abi_ulong guest_hiaddr, long align) 2245 { 2246 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2247 void *addr, *test; 2248 2249 if (guest_hiaddr > reserved_va) { 2250 error_report("%s: requires more than reserved virtual " 2251 "address space (0x%" PRIx64 " > 0x%lx)", 2252 image_name, (uint64_t)guest_hiaddr, reserved_va); 2253 exit(EXIT_FAILURE); 2254 } 2255 2256 /* Widen the "image" to the entire reserved address space. */ 2257 pgb_static(image_name, 0, reserved_va, align); 2258 2259 /* Reserve the memory on the host. */ 2260 assert(guest_base != 0); 2261 test = g2h(0); 2262 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2263 if (addr == MAP_FAILED) { 2264 error_report("Unable to reserve 0x%lx bytes of virtual address " 2265 "space for use as guest address space (check your " 2266 "virtual memory ulimit setting or reserve less " 2267 "using -R option)", reserved_va); 2268 exit(EXIT_FAILURE); 2269 } 2270 assert(addr == test); 2271 } 2272 2273 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2274 abi_ulong guest_hiaddr) 2275 { 2276 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2277 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2278 2279 if (have_guest_base) { 2280 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2281 } else if (reserved_va) { 2282 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2283 } else if (guest_loaddr) { 2284 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2285 } else { 2286 pgb_dynamic(image_name, align); 2287 } 2288 2289 /* Reserve and initialize the commpage. */ 2290 if (!init_guest_commpage()) { 2291 /* 2292 * With have_guest_base, the user has selected the address and 2293 * we are trying to work with that. Otherwise, we have selected 2294 * free space and init_guest_commpage must succeeded. 2295 */ 2296 assert(have_guest_base); 2297 pgb_fail_in_use(image_name); 2298 } 2299 2300 assert(QEMU_IS_ALIGNED(guest_base, align)); 2301 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2302 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2303 } 2304 2305 /* Load an ELF image into the address space. 2306 2307 IMAGE_NAME is the filename of the image, to use in error messages. 2308 IMAGE_FD is the open file descriptor for the image. 2309 2310 BPRM_BUF is a copy of the beginning of the file; this of course 2311 contains the elf file header at offset 0. It is assumed that this 2312 buffer is sufficiently aligned to present no problems to the host 2313 in accessing data at aligned offsets within the buffer. 2314 2315 On return: INFO values will be filled in, as necessary or available. */ 2316 2317 static void load_elf_image(const char *image_name, int image_fd, 2318 struct image_info *info, char **pinterp_name, 2319 char bprm_buf[BPRM_BUF_SIZE]) 2320 { 2321 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2322 struct elf_phdr *phdr; 2323 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2324 int i, retval; 2325 const char *errmsg; 2326 2327 /* First of all, some simple consistency checks */ 2328 errmsg = "Invalid ELF image for this architecture"; 2329 if (!elf_check_ident(ehdr)) { 2330 goto exit_errmsg; 2331 } 2332 bswap_ehdr(ehdr); 2333 if (!elf_check_ehdr(ehdr)) { 2334 goto exit_errmsg; 2335 } 2336 2337 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2338 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2339 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2340 } else { 2341 phdr = (struct elf_phdr *) alloca(i); 2342 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2343 if (retval != i) { 2344 goto exit_read; 2345 } 2346 } 2347 bswap_phdr(phdr, ehdr->e_phnum); 2348 2349 info->nsegs = 0; 2350 info->pt_dynamic_addr = 0; 2351 2352 mmap_lock(); 2353 2354 /* Find the maximum size of the image and allocate an appropriate 2355 amount of memory to handle that. */ 2356 loaddr = -1, hiaddr = 0; 2357 info->alignment = 0; 2358 for (i = 0; i < ehdr->e_phnum; ++i) { 2359 if (phdr[i].p_type == PT_LOAD) { 2360 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2361 if (a < loaddr) { 2362 loaddr = a; 2363 } 2364 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2365 if (a > hiaddr) { 2366 hiaddr = a; 2367 } 2368 ++info->nsegs; 2369 info->alignment |= phdr[i].p_align; 2370 } 2371 } 2372 2373 if (pinterp_name != NULL) { 2374 /* 2375 * This is the main executable. 2376 * 2377 * Reserve extra space for brk. 2378 * We hold on to this space while placing the interpreter 2379 * and the stack, lest they be placed immediately after 2380 * the data segment and block allocation from the brk. 2381 * 2382 * 16MB is chosen as "large enough" without being so large 2383 * as to allow the result to not fit with a 32-bit guest on 2384 * a 32-bit host. 2385 */ 2386 info->reserve_brk = 16 * MiB; 2387 hiaddr += info->reserve_brk; 2388 2389 if (ehdr->e_type == ET_EXEC) { 2390 /* 2391 * Make sure that the low address does not conflict with 2392 * MMAP_MIN_ADDR or the QEMU application itself. 2393 */ 2394 probe_guest_base(image_name, loaddr, hiaddr); 2395 } else { 2396 /* 2397 * The binary is dynamic, but we still need to 2398 * select guest_base. In this case we pass a size. 2399 */ 2400 probe_guest_base(image_name, 0, hiaddr - loaddr); 2401 } 2402 } 2403 2404 /* 2405 * Reserve address space for all of this. 2406 * 2407 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2408 * exactly the address range that is required. 2409 * 2410 * Otherwise this is ET_DYN, and we are searching for a location 2411 * that can hold the memory space required. If the image is 2412 * pre-linked, LOADDR will be non-zero, and the kernel should 2413 * honor that address if it happens to be free. 2414 * 2415 * In both cases, we will overwrite pages in this range with mappings 2416 * from the executable. 2417 */ 2418 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2419 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2420 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2421 -1, 0); 2422 if (load_addr == -1) { 2423 goto exit_perror; 2424 } 2425 load_bias = load_addr - loaddr; 2426 2427 if (elf_is_fdpic(ehdr)) { 2428 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2429 g_malloc(sizeof(*loadsegs) * info->nsegs); 2430 2431 for (i = 0; i < ehdr->e_phnum; ++i) { 2432 switch (phdr[i].p_type) { 2433 case PT_DYNAMIC: 2434 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2435 break; 2436 case PT_LOAD: 2437 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2438 loadsegs->p_vaddr = phdr[i].p_vaddr; 2439 loadsegs->p_memsz = phdr[i].p_memsz; 2440 ++loadsegs; 2441 break; 2442 } 2443 } 2444 } 2445 2446 info->load_bias = load_bias; 2447 info->code_offset = load_bias; 2448 info->data_offset = load_bias; 2449 info->load_addr = load_addr; 2450 info->entry = ehdr->e_entry + load_bias; 2451 info->start_code = -1; 2452 info->end_code = 0; 2453 info->start_data = -1; 2454 info->end_data = 0; 2455 info->brk = 0; 2456 info->elf_flags = ehdr->e_flags; 2457 2458 for (i = 0; i < ehdr->e_phnum; i++) { 2459 struct elf_phdr *eppnt = phdr + i; 2460 if (eppnt->p_type == PT_LOAD) { 2461 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2462 int elf_prot = 0; 2463 2464 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2465 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2466 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2467 2468 vaddr = load_bias + eppnt->p_vaddr; 2469 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2470 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2471 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2472 2473 /* 2474 * Some segments may be completely empty without any backing file 2475 * segment, in that case just let zero_bss allocate an empty buffer 2476 * for it. 2477 */ 2478 if (eppnt->p_filesz != 0) { 2479 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2480 MAP_PRIVATE | MAP_FIXED, 2481 image_fd, eppnt->p_offset - vaddr_po); 2482 2483 if (error == -1) { 2484 goto exit_perror; 2485 } 2486 } 2487 2488 vaddr_ef = vaddr + eppnt->p_filesz; 2489 vaddr_em = vaddr + eppnt->p_memsz; 2490 2491 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2492 if (vaddr_ef < vaddr_em) { 2493 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2494 } 2495 2496 /* Find the full program boundaries. */ 2497 if (elf_prot & PROT_EXEC) { 2498 if (vaddr < info->start_code) { 2499 info->start_code = vaddr; 2500 } 2501 if (vaddr_ef > info->end_code) { 2502 info->end_code = vaddr_ef; 2503 } 2504 } 2505 if (elf_prot & PROT_WRITE) { 2506 if (vaddr < info->start_data) { 2507 info->start_data = vaddr; 2508 } 2509 if (vaddr_ef > info->end_data) { 2510 info->end_data = vaddr_ef; 2511 } 2512 if (vaddr_em > info->brk) { 2513 info->brk = vaddr_em; 2514 } 2515 } 2516 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2517 char *interp_name; 2518 2519 if (*pinterp_name) { 2520 errmsg = "Multiple PT_INTERP entries"; 2521 goto exit_errmsg; 2522 } 2523 interp_name = malloc(eppnt->p_filesz); 2524 if (!interp_name) { 2525 goto exit_perror; 2526 } 2527 2528 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2529 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2530 eppnt->p_filesz); 2531 } else { 2532 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2533 eppnt->p_offset); 2534 if (retval != eppnt->p_filesz) { 2535 goto exit_perror; 2536 } 2537 } 2538 if (interp_name[eppnt->p_filesz - 1] != 0) { 2539 errmsg = "Invalid PT_INTERP entry"; 2540 goto exit_errmsg; 2541 } 2542 *pinterp_name = interp_name; 2543 #ifdef TARGET_MIPS 2544 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2545 Mips_elf_abiflags_v0 abiflags; 2546 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2547 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2548 goto exit_errmsg; 2549 } 2550 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2551 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2552 sizeof(Mips_elf_abiflags_v0)); 2553 } else { 2554 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2555 eppnt->p_offset); 2556 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2557 goto exit_perror; 2558 } 2559 } 2560 bswap_mips_abiflags(&abiflags); 2561 info->fp_abi = abiflags.fp_abi; 2562 #endif 2563 } 2564 } 2565 2566 if (info->end_data == 0) { 2567 info->start_data = info->end_code; 2568 info->end_data = info->end_code; 2569 info->brk = info->end_code; 2570 } 2571 2572 if (qemu_log_enabled()) { 2573 load_symbols(ehdr, image_fd, load_bias); 2574 } 2575 2576 mmap_unlock(); 2577 2578 close(image_fd); 2579 return; 2580 2581 exit_read: 2582 if (retval >= 0) { 2583 errmsg = "Incomplete read of file header"; 2584 goto exit_errmsg; 2585 } 2586 exit_perror: 2587 errmsg = strerror(errno); 2588 exit_errmsg: 2589 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2590 exit(-1); 2591 } 2592 2593 static void load_elf_interp(const char *filename, struct image_info *info, 2594 char bprm_buf[BPRM_BUF_SIZE]) 2595 { 2596 int fd, retval; 2597 2598 fd = open(path(filename), O_RDONLY); 2599 if (fd < 0) { 2600 goto exit_perror; 2601 } 2602 2603 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2604 if (retval < 0) { 2605 goto exit_perror; 2606 } 2607 if (retval < BPRM_BUF_SIZE) { 2608 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2609 } 2610 2611 load_elf_image(filename, fd, info, NULL, bprm_buf); 2612 return; 2613 2614 exit_perror: 2615 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2616 exit(-1); 2617 } 2618 2619 static int symfind(const void *s0, const void *s1) 2620 { 2621 target_ulong addr = *(target_ulong *)s0; 2622 struct elf_sym *sym = (struct elf_sym *)s1; 2623 int result = 0; 2624 if (addr < sym->st_value) { 2625 result = -1; 2626 } else if (addr >= sym->st_value + sym->st_size) { 2627 result = 1; 2628 } 2629 return result; 2630 } 2631 2632 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2633 { 2634 #if ELF_CLASS == ELFCLASS32 2635 struct elf_sym *syms = s->disas_symtab.elf32; 2636 #else 2637 struct elf_sym *syms = s->disas_symtab.elf64; 2638 #endif 2639 2640 // binary search 2641 struct elf_sym *sym; 2642 2643 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2644 if (sym != NULL) { 2645 return s->disas_strtab + sym->st_name; 2646 } 2647 2648 return ""; 2649 } 2650 2651 /* FIXME: This should use elf_ops.h */ 2652 static int symcmp(const void *s0, const void *s1) 2653 { 2654 struct elf_sym *sym0 = (struct elf_sym *)s0; 2655 struct elf_sym *sym1 = (struct elf_sym *)s1; 2656 return (sym0->st_value < sym1->st_value) 2657 ? -1 2658 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2659 } 2660 2661 /* Best attempt to load symbols from this ELF object. */ 2662 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2663 { 2664 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2665 uint64_t segsz; 2666 struct elf_shdr *shdr; 2667 char *strings = NULL; 2668 struct syminfo *s = NULL; 2669 struct elf_sym *new_syms, *syms = NULL; 2670 2671 shnum = hdr->e_shnum; 2672 i = shnum * sizeof(struct elf_shdr); 2673 shdr = (struct elf_shdr *)alloca(i); 2674 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2675 return; 2676 } 2677 2678 bswap_shdr(shdr, shnum); 2679 for (i = 0; i < shnum; ++i) { 2680 if (shdr[i].sh_type == SHT_SYMTAB) { 2681 sym_idx = i; 2682 str_idx = shdr[i].sh_link; 2683 goto found; 2684 } 2685 } 2686 2687 /* There will be no symbol table if the file was stripped. */ 2688 return; 2689 2690 found: 2691 /* Now know where the strtab and symtab are. Snarf them. */ 2692 s = g_try_new(struct syminfo, 1); 2693 if (!s) { 2694 goto give_up; 2695 } 2696 2697 segsz = shdr[str_idx].sh_size; 2698 s->disas_strtab = strings = g_try_malloc(segsz); 2699 if (!strings || 2700 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2701 goto give_up; 2702 } 2703 2704 segsz = shdr[sym_idx].sh_size; 2705 syms = g_try_malloc(segsz); 2706 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2707 goto give_up; 2708 } 2709 2710 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2711 /* Implausibly large symbol table: give up rather than ploughing 2712 * on with the number of symbols calculation overflowing 2713 */ 2714 goto give_up; 2715 } 2716 nsyms = segsz / sizeof(struct elf_sym); 2717 for (i = 0; i < nsyms; ) { 2718 bswap_sym(syms + i); 2719 /* Throw away entries which we do not need. */ 2720 if (syms[i].st_shndx == SHN_UNDEF 2721 || syms[i].st_shndx >= SHN_LORESERVE 2722 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2723 if (i < --nsyms) { 2724 syms[i] = syms[nsyms]; 2725 } 2726 } else { 2727 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2728 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2729 syms[i].st_value &= ~(target_ulong)1; 2730 #endif 2731 syms[i].st_value += load_bias; 2732 i++; 2733 } 2734 } 2735 2736 /* No "useful" symbol. */ 2737 if (nsyms == 0) { 2738 goto give_up; 2739 } 2740 2741 /* Attempt to free the storage associated with the local symbols 2742 that we threw away. Whether or not this has any effect on the 2743 memory allocation depends on the malloc implementation and how 2744 many symbols we managed to discard. */ 2745 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2746 if (new_syms == NULL) { 2747 goto give_up; 2748 } 2749 syms = new_syms; 2750 2751 qsort(syms, nsyms, sizeof(*syms), symcmp); 2752 2753 s->disas_num_syms = nsyms; 2754 #if ELF_CLASS == ELFCLASS32 2755 s->disas_symtab.elf32 = syms; 2756 #else 2757 s->disas_symtab.elf64 = syms; 2758 #endif 2759 s->lookup_symbol = lookup_symbolxx; 2760 s->next = syminfos; 2761 syminfos = s; 2762 2763 return; 2764 2765 give_up: 2766 g_free(s); 2767 g_free(strings); 2768 g_free(syms); 2769 } 2770 2771 uint32_t get_elf_eflags(int fd) 2772 { 2773 struct elfhdr ehdr; 2774 off_t offset; 2775 int ret; 2776 2777 /* Read ELF header */ 2778 offset = lseek(fd, 0, SEEK_SET); 2779 if (offset == (off_t) -1) { 2780 return 0; 2781 } 2782 ret = read(fd, &ehdr, sizeof(ehdr)); 2783 if (ret < sizeof(ehdr)) { 2784 return 0; 2785 } 2786 offset = lseek(fd, offset, SEEK_SET); 2787 if (offset == (off_t) -1) { 2788 return 0; 2789 } 2790 2791 /* Check ELF signature */ 2792 if (!elf_check_ident(&ehdr)) { 2793 return 0; 2794 } 2795 2796 /* check header */ 2797 bswap_ehdr(&ehdr); 2798 if (!elf_check_ehdr(&ehdr)) { 2799 return 0; 2800 } 2801 2802 /* return architecture id */ 2803 return ehdr.e_flags; 2804 } 2805 2806 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2807 { 2808 struct image_info interp_info; 2809 struct elfhdr elf_ex; 2810 char *elf_interpreter = NULL; 2811 char *scratch; 2812 2813 memset(&interp_info, 0, sizeof(interp_info)); 2814 #ifdef TARGET_MIPS 2815 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 2816 #endif 2817 2818 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2819 2820 load_elf_image(bprm->filename, bprm->fd, info, 2821 &elf_interpreter, bprm->buf); 2822 2823 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2824 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2825 when we load the interpreter. */ 2826 elf_ex = *(struct elfhdr *)bprm->buf; 2827 2828 /* Do this so that we can load the interpreter, if need be. We will 2829 change some of these later */ 2830 bprm->p = setup_arg_pages(bprm, info); 2831 2832 scratch = g_new0(char, TARGET_PAGE_SIZE); 2833 if (STACK_GROWS_DOWN) { 2834 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2835 bprm->p, info->stack_limit); 2836 info->file_string = bprm->p; 2837 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2838 bprm->p, info->stack_limit); 2839 info->env_strings = bprm->p; 2840 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2841 bprm->p, info->stack_limit); 2842 info->arg_strings = bprm->p; 2843 } else { 2844 info->arg_strings = bprm->p; 2845 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2846 bprm->p, info->stack_limit); 2847 info->env_strings = bprm->p; 2848 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2849 bprm->p, info->stack_limit); 2850 info->file_string = bprm->p; 2851 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2852 bprm->p, info->stack_limit); 2853 } 2854 2855 g_free(scratch); 2856 2857 if (!bprm->p) { 2858 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2859 exit(-1); 2860 } 2861 2862 if (elf_interpreter) { 2863 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2864 2865 /* If the program interpreter is one of these two, then assume 2866 an iBCS2 image. Otherwise assume a native linux image. */ 2867 2868 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2869 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2870 info->personality = PER_SVR4; 2871 2872 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2873 and some applications "depend" upon this behavior. Since 2874 we do not have the power to recompile these, we emulate 2875 the SVr4 behavior. Sigh. */ 2876 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2877 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2878 } 2879 #ifdef TARGET_MIPS 2880 info->interp_fp_abi = interp_info.fp_abi; 2881 #endif 2882 } 2883 2884 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2885 info, (elf_interpreter ? &interp_info : NULL)); 2886 info->start_stack = bprm->p; 2887 2888 /* If we have an interpreter, set that as the program's entry point. 2889 Copy the load_bias as well, to help PPC64 interpret the entry 2890 point as a function descriptor. Do this after creating elf tables 2891 so that we copy the original program entry point into the AUXV. */ 2892 if (elf_interpreter) { 2893 info->load_bias = interp_info.load_bias; 2894 info->entry = interp_info.entry; 2895 free(elf_interpreter); 2896 } 2897 2898 #ifdef USE_ELF_CORE_DUMP 2899 bprm->core_dump = &elf_core_dump; 2900 #endif 2901 2902 /* 2903 * If we reserved extra space for brk, release it now. 2904 * The implementation of do_brk in syscalls.c expects to be able 2905 * to mmap pages in this space. 2906 */ 2907 if (info->reserve_brk) { 2908 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 2909 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 2910 target_munmap(start_brk, end_brk - start_brk); 2911 } 2912 2913 return 0; 2914 } 2915 2916 #ifdef USE_ELF_CORE_DUMP 2917 /* 2918 * Definitions to generate Intel SVR4-like core files. 2919 * These mostly have the same names as the SVR4 types with "target_elf_" 2920 * tacked on the front to prevent clashes with linux definitions, 2921 * and the typedef forms have been avoided. This is mostly like 2922 * the SVR4 structure, but more Linuxy, with things that Linux does 2923 * not support and which gdb doesn't really use excluded. 2924 * 2925 * Fields we don't dump (their contents is zero) in linux-user qemu 2926 * are marked with XXX. 2927 * 2928 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2929 * 2930 * Porting ELF coredump for target is (quite) simple process. First you 2931 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2932 * the target resides): 2933 * 2934 * #define USE_ELF_CORE_DUMP 2935 * 2936 * Next you define type of register set used for dumping. ELF specification 2937 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2938 * 2939 * typedef <target_regtype> target_elf_greg_t; 2940 * #define ELF_NREG <number of registers> 2941 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2942 * 2943 * Last step is to implement target specific function that copies registers 2944 * from given cpu into just specified register set. Prototype is: 2945 * 2946 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2947 * const CPUArchState *env); 2948 * 2949 * Parameters: 2950 * regs - copy register values into here (allocated and zeroed by caller) 2951 * env - copy registers from here 2952 * 2953 * Example for ARM target is provided in this file. 2954 */ 2955 2956 /* An ELF note in memory */ 2957 struct memelfnote { 2958 const char *name; 2959 size_t namesz; 2960 size_t namesz_rounded; 2961 int type; 2962 size_t datasz; 2963 size_t datasz_rounded; 2964 void *data; 2965 size_t notesz; 2966 }; 2967 2968 struct target_elf_siginfo { 2969 abi_int si_signo; /* signal number */ 2970 abi_int si_code; /* extra code */ 2971 abi_int si_errno; /* errno */ 2972 }; 2973 2974 struct target_elf_prstatus { 2975 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2976 abi_short pr_cursig; /* Current signal */ 2977 abi_ulong pr_sigpend; /* XXX */ 2978 abi_ulong pr_sighold; /* XXX */ 2979 target_pid_t pr_pid; 2980 target_pid_t pr_ppid; 2981 target_pid_t pr_pgrp; 2982 target_pid_t pr_sid; 2983 struct target_timeval pr_utime; /* XXX User time */ 2984 struct target_timeval pr_stime; /* XXX System time */ 2985 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2986 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2987 target_elf_gregset_t pr_reg; /* GP registers */ 2988 abi_int pr_fpvalid; /* XXX */ 2989 }; 2990 2991 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2992 2993 struct target_elf_prpsinfo { 2994 char pr_state; /* numeric process state */ 2995 char pr_sname; /* char for pr_state */ 2996 char pr_zomb; /* zombie */ 2997 char pr_nice; /* nice val */ 2998 abi_ulong pr_flag; /* flags */ 2999 target_uid_t pr_uid; 3000 target_gid_t pr_gid; 3001 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3002 /* Lots missing */ 3003 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3004 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3005 }; 3006 3007 /* Here is the structure in which status of each thread is captured. */ 3008 struct elf_thread_status { 3009 QTAILQ_ENTRY(elf_thread_status) ets_link; 3010 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3011 #if 0 3012 elf_fpregset_t fpu; /* NT_PRFPREG */ 3013 struct task_struct *thread; 3014 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3015 #endif 3016 struct memelfnote notes[1]; 3017 int num_notes; 3018 }; 3019 3020 struct elf_note_info { 3021 struct memelfnote *notes; 3022 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3023 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3024 3025 QTAILQ_HEAD(, elf_thread_status) thread_list; 3026 #if 0 3027 /* 3028 * Current version of ELF coredump doesn't support 3029 * dumping fp regs etc. 3030 */ 3031 elf_fpregset_t *fpu; 3032 elf_fpxregset_t *xfpu; 3033 int thread_status_size; 3034 #endif 3035 int notes_size; 3036 int numnote; 3037 }; 3038 3039 struct vm_area_struct { 3040 target_ulong vma_start; /* start vaddr of memory region */ 3041 target_ulong vma_end; /* end vaddr of memory region */ 3042 abi_ulong vma_flags; /* protection etc. flags for the region */ 3043 QTAILQ_ENTRY(vm_area_struct) vma_link; 3044 }; 3045 3046 struct mm_struct { 3047 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3048 int mm_count; /* number of mappings */ 3049 }; 3050 3051 static struct mm_struct *vma_init(void); 3052 static void vma_delete(struct mm_struct *); 3053 static int vma_add_mapping(struct mm_struct *, target_ulong, 3054 target_ulong, abi_ulong); 3055 static int vma_get_mapping_count(const struct mm_struct *); 3056 static struct vm_area_struct *vma_first(const struct mm_struct *); 3057 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3058 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3059 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3060 unsigned long flags); 3061 3062 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3063 static void fill_note(struct memelfnote *, const char *, int, 3064 unsigned int, void *); 3065 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3066 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3067 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3068 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3069 static size_t note_size(const struct memelfnote *); 3070 static void free_note_info(struct elf_note_info *); 3071 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3072 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3073 static int core_dump_filename(const TaskState *, char *, size_t); 3074 3075 static int dump_write(int, const void *, size_t); 3076 static int write_note(struct memelfnote *, int); 3077 static int write_note_info(struct elf_note_info *, int); 3078 3079 #ifdef BSWAP_NEEDED 3080 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3081 { 3082 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3083 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3084 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3085 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3086 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3087 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3088 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3089 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3090 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3091 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3092 /* cpu times are not filled, so we skip them */ 3093 /* regs should be in correct format already */ 3094 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3095 } 3096 3097 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3098 { 3099 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3100 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3101 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3102 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3103 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3104 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3105 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3106 } 3107 3108 static void bswap_note(struct elf_note *en) 3109 { 3110 bswap32s(&en->n_namesz); 3111 bswap32s(&en->n_descsz); 3112 bswap32s(&en->n_type); 3113 } 3114 #else 3115 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3116 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3117 static inline void bswap_note(struct elf_note *en) { } 3118 #endif /* BSWAP_NEEDED */ 3119 3120 /* 3121 * Minimal support for linux memory regions. These are needed 3122 * when we are finding out what memory exactly belongs to 3123 * emulated process. No locks needed here, as long as 3124 * thread that received the signal is stopped. 3125 */ 3126 3127 static struct mm_struct *vma_init(void) 3128 { 3129 struct mm_struct *mm; 3130 3131 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3132 return (NULL); 3133 3134 mm->mm_count = 0; 3135 QTAILQ_INIT(&mm->mm_mmap); 3136 3137 return (mm); 3138 } 3139 3140 static void vma_delete(struct mm_struct *mm) 3141 { 3142 struct vm_area_struct *vma; 3143 3144 while ((vma = vma_first(mm)) != NULL) { 3145 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3146 g_free(vma); 3147 } 3148 g_free(mm); 3149 } 3150 3151 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3152 target_ulong end, abi_ulong flags) 3153 { 3154 struct vm_area_struct *vma; 3155 3156 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3157 return (-1); 3158 3159 vma->vma_start = start; 3160 vma->vma_end = end; 3161 vma->vma_flags = flags; 3162 3163 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3164 mm->mm_count++; 3165 3166 return (0); 3167 } 3168 3169 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3170 { 3171 return (QTAILQ_FIRST(&mm->mm_mmap)); 3172 } 3173 3174 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3175 { 3176 return (QTAILQ_NEXT(vma, vma_link)); 3177 } 3178 3179 static int vma_get_mapping_count(const struct mm_struct *mm) 3180 { 3181 return (mm->mm_count); 3182 } 3183 3184 /* 3185 * Calculate file (dump) size of given memory region. 3186 */ 3187 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3188 { 3189 /* if we cannot even read the first page, skip it */ 3190 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3191 return (0); 3192 3193 /* 3194 * Usually we don't dump executable pages as they contain 3195 * non-writable code that debugger can read directly from 3196 * target library etc. However, thread stacks are marked 3197 * also executable so we read in first page of given region 3198 * and check whether it contains elf header. If there is 3199 * no elf header, we dump it. 3200 */ 3201 if (vma->vma_flags & PROT_EXEC) { 3202 char page[TARGET_PAGE_SIZE]; 3203 3204 copy_from_user(page, vma->vma_start, sizeof (page)); 3205 if ((page[EI_MAG0] == ELFMAG0) && 3206 (page[EI_MAG1] == ELFMAG1) && 3207 (page[EI_MAG2] == ELFMAG2) && 3208 (page[EI_MAG3] == ELFMAG3)) { 3209 /* 3210 * Mappings are possibly from ELF binary. Don't dump 3211 * them. 3212 */ 3213 return (0); 3214 } 3215 } 3216 3217 return (vma->vma_end - vma->vma_start); 3218 } 3219 3220 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3221 unsigned long flags) 3222 { 3223 struct mm_struct *mm = (struct mm_struct *)priv; 3224 3225 vma_add_mapping(mm, start, end, flags); 3226 return (0); 3227 } 3228 3229 static void fill_note(struct memelfnote *note, const char *name, int type, 3230 unsigned int sz, void *data) 3231 { 3232 unsigned int namesz; 3233 3234 namesz = strlen(name) + 1; 3235 note->name = name; 3236 note->namesz = namesz; 3237 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3238 note->type = type; 3239 note->datasz = sz; 3240 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3241 3242 note->data = data; 3243 3244 /* 3245 * We calculate rounded up note size here as specified by 3246 * ELF document. 3247 */ 3248 note->notesz = sizeof (struct elf_note) + 3249 note->namesz_rounded + note->datasz_rounded; 3250 } 3251 3252 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3253 uint32_t flags) 3254 { 3255 (void) memset(elf, 0, sizeof(*elf)); 3256 3257 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3258 elf->e_ident[EI_CLASS] = ELF_CLASS; 3259 elf->e_ident[EI_DATA] = ELF_DATA; 3260 elf->e_ident[EI_VERSION] = EV_CURRENT; 3261 elf->e_ident[EI_OSABI] = ELF_OSABI; 3262 3263 elf->e_type = ET_CORE; 3264 elf->e_machine = machine; 3265 elf->e_version = EV_CURRENT; 3266 elf->e_phoff = sizeof(struct elfhdr); 3267 elf->e_flags = flags; 3268 elf->e_ehsize = sizeof(struct elfhdr); 3269 elf->e_phentsize = sizeof(struct elf_phdr); 3270 elf->e_phnum = segs; 3271 3272 bswap_ehdr(elf); 3273 } 3274 3275 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3276 { 3277 phdr->p_type = PT_NOTE; 3278 phdr->p_offset = offset; 3279 phdr->p_vaddr = 0; 3280 phdr->p_paddr = 0; 3281 phdr->p_filesz = sz; 3282 phdr->p_memsz = 0; 3283 phdr->p_flags = 0; 3284 phdr->p_align = 0; 3285 3286 bswap_phdr(phdr, 1); 3287 } 3288 3289 static size_t note_size(const struct memelfnote *note) 3290 { 3291 return (note->notesz); 3292 } 3293 3294 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3295 const TaskState *ts, int signr) 3296 { 3297 (void) memset(prstatus, 0, sizeof (*prstatus)); 3298 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3299 prstatus->pr_pid = ts->ts_tid; 3300 prstatus->pr_ppid = getppid(); 3301 prstatus->pr_pgrp = getpgrp(); 3302 prstatus->pr_sid = getsid(0); 3303 3304 bswap_prstatus(prstatus); 3305 } 3306 3307 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3308 { 3309 char *base_filename; 3310 unsigned int i, len; 3311 3312 (void) memset(psinfo, 0, sizeof (*psinfo)); 3313 3314 len = ts->info->arg_end - ts->info->arg_start; 3315 if (len >= ELF_PRARGSZ) 3316 len = ELF_PRARGSZ - 1; 3317 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3318 return -EFAULT; 3319 for (i = 0; i < len; i++) 3320 if (psinfo->pr_psargs[i] == 0) 3321 psinfo->pr_psargs[i] = ' '; 3322 psinfo->pr_psargs[len] = 0; 3323 3324 psinfo->pr_pid = getpid(); 3325 psinfo->pr_ppid = getppid(); 3326 psinfo->pr_pgrp = getpgrp(); 3327 psinfo->pr_sid = getsid(0); 3328 psinfo->pr_uid = getuid(); 3329 psinfo->pr_gid = getgid(); 3330 3331 base_filename = g_path_get_basename(ts->bprm->filename); 3332 /* 3333 * Using strncpy here is fine: at max-length, 3334 * this field is not NUL-terminated. 3335 */ 3336 (void) strncpy(psinfo->pr_fname, base_filename, 3337 sizeof(psinfo->pr_fname)); 3338 3339 g_free(base_filename); 3340 bswap_psinfo(psinfo); 3341 return (0); 3342 } 3343 3344 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3345 { 3346 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3347 elf_addr_t orig_auxv = auxv; 3348 void *ptr; 3349 int len = ts->info->auxv_len; 3350 3351 /* 3352 * Auxiliary vector is stored in target process stack. It contains 3353 * {type, value} pairs that we need to dump into note. This is not 3354 * strictly necessary but we do it here for sake of completeness. 3355 */ 3356 3357 /* read in whole auxv vector and copy it to memelfnote */ 3358 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3359 if (ptr != NULL) { 3360 fill_note(note, "CORE", NT_AUXV, len, ptr); 3361 unlock_user(ptr, auxv, len); 3362 } 3363 } 3364 3365 /* 3366 * Constructs name of coredump file. We have following convention 3367 * for the name: 3368 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3369 * 3370 * Returns 0 in case of success, -1 otherwise (errno is set). 3371 */ 3372 static int core_dump_filename(const TaskState *ts, char *buf, 3373 size_t bufsize) 3374 { 3375 char timestamp[64]; 3376 char *base_filename = NULL; 3377 struct timeval tv; 3378 struct tm tm; 3379 3380 assert(bufsize >= PATH_MAX); 3381 3382 if (gettimeofday(&tv, NULL) < 0) { 3383 (void) fprintf(stderr, "unable to get current timestamp: %s", 3384 strerror(errno)); 3385 return (-1); 3386 } 3387 3388 base_filename = g_path_get_basename(ts->bprm->filename); 3389 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3390 localtime_r(&tv.tv_sec, &tm)); 3391 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3392 base_filename, timestamp, (int)getpid()); 3393 g_free(base_filename); 3394 3395 return (0); 3396 } 3397 3398 static int dump_write(int fd, const void *ptr, size_t size) 3399 { 3400 const char *bufp = (const char *)ptr; 3401 ssize_t bytes_written, bytes_left; 3402 struct rlimit dumpsize; 3403 off_t pos; 3404 3405 bytes_written = 0; 3406 getrlimit(RLIMIT_CORE, &dumpsize); 3407 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3408 if (errno == ESPIPE) { /* not a seekable stream */ 3409 bytes_left = size; 3410 } else { 3411 return pos; 3412 } 3413 } else { 3414 if (dumpsize.rlim_cur <= pos) { 3415 return -1; 3416 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3417 bytes_left = size; 3418 } else { 3419 size_t limit_left=dumpsize.rlim_cur - pos; 3420 bytes_left = limit_left >= size ? size : limit_left ; 3421 } 3422 } 3423 3424 /* 3425 * In normal conditions, single write(2) should do but 3426 * in case of socket etc. this mechanism is more portable. 3427 */ 3428 do { 3429 bytes_written = write(fd, bufp, bytes_left); 3430 if (bytes_written < 0) { 3431 if (errno == EINTR) 3432 continue; 3433 return (-1); 3434 } else if (bytes_written == 0) { /* eof */ 3435 return (-1); 3436 } 3437 bufp += bytes_written; 3438 bytes_left -= bytes_written; 3439 } while (bytes_left > 0); 3440 3441 return (0); 3442 } 3443 3444 static int write_note(struct memelfnote *men, int fd) 3445 { 3446 struct elf_note en; 3447 3448 en.n_namesz = men->namesz; 3449 en.n_type = men->type; 3450 en.n_descsz = men->datasz; 3451 3452 bswap_note(&en); 3453 3454 if (dump_write(fd, &en, sizeof(en)) != 0) 3455 return (-1); 3456 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3457 return (-1); 3458 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3459 return (-1); 3460 3461 return (0); 3462 } 3463 3464 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3465 { 3466 CPUState *cpu = env_cpu((CPUArchState *)env); 3467 TaskState *ts = (TaskState *)cpu->opaque; 3468 struct elf_thread_status *ets; 3469 3470 ets = g_malloc0(sizeof (*ets)); 3471 ets->num_notes = 1; /* only prstatus is dumped */ 3472 fill_prstatus(&ets->prstatus, ts, 0); 3473 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3474 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3475 &ets->prstatus); 3476 3477 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3478 3479 info->notes_size += note_size(&ets->notes[0]); 3480 } 3481 3482 static void init_note_info(struct elf_note_info *info) 3483 { 3484 /* Initialize the elf_note_info structure so that it is at 3485 * least safe to call free_note_info() on it. Must be 3486 * called before calling fill_note_info(). 3487 */ 3488 memset(info, 0, sizeof (*info)); 3489 QTAILQ_INIT(&info->thread_list); 3490 } 3491 3492 static int fill_note_info(struct elf_note_info *info, 3493 long signr, const CPUArchState *env) 3494 { 3495 #define NUMNOTES 3 3496 CPUState *cpu = env_cpu((CPUArchState *)env); 3497 TaskState *ts = (TaskState *)cpu->opaque; 3498 int i; 3499 3500 info->notes = g_new0(struct memelfnote, NUMNOTES); 3501 if (info->notes == NULL) 3502 return (-ENOMEM); 3503 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3504 if (info->prstatus == NULL) 3505 return (-ENOMEM); 3506 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3507 if (info->prstatus == NULL) 3508 return (-ENOMEM); 3509 3510 /* 3511 * First fill in status (and registers) of current thread 3512 * including process info & aux vector. 3513 */ 3514 fill_prstatus(info->prstatus, ts, signr); 3515 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3516 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3517 sizeof (*info->prstatus), info->prstatus); 3518 fill_psinfo(info->psinfo, ts); 3519 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3520 sizeof (*info->psinfo), info->psinfo); 3521 fill_auxv_note(&info->notes[2], ts); 3522 info->numnote = 3; 3523 3524 info->notes_size = 0; 3525 for (i = 0; i < info->numnote; i++) 3526 info->notes_size += note_size(&info->notes[i]); 3527 3528 /* read and fill status of all threads */ 3529 cpu_list_lock(); 3530 CPU_FOREACH(cpu) { 3531 if (cpu == thread_cpu) { 3532 continue; 3533 } 3534 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3535 } 3536 cpu_list_unlock(); 3537 3538 return (0); 3539 } 3540 3541 static void free_note_info(struct elf_note_info *info) 3542 { 3543 struct elf_thread_status *ets; 3544 3545 while (!QTAILQ_EMPTY(&info->thread_list)) { 3546 ets = QTAILQ_FIRST(&info->thread_list); 3547 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3548 g_free(ets); 3549 } 3550 3551 g_free(info->prstatus); 3552 g_free(info->psinfo); 3553 g_free(info->notes); 3554 } 3555 3556 static int write_note_info(struct elf_note_info *info, int fd) 3557 { 3558 struct elf_thread_status *ets; 3559 int i, error = 0; 3560 3561 /* write prstatus, psinfo and auxv for current thread */ 3562 for (i = 0; i < info->numnote; i++) 3563 if ((error = write_note(&info->notes[i], fd)) != 0) 3564 return (error); 3565 3566 /* write prstatus for each thread */ 3567 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3568 if ((error = write_note(&ets->notes[0], fd)) != 0) 3569 return (error); 3570 } 3571 3572 return (0); 3573 } 3574 3575 /* 3576 * Write out ELF coredump. 3577 * 3578 * See documentation of ELF object file format in: 3579 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3580 * 3581 * Coredump format in linux is following: 3582 * 3583 * 0 +----------------------+ \ 3584 * | ELF header | ET_CORE | 3585 * +----------------------+ | 3586 * | ELF program headers | |--- headers 3587 * | - NOTE section | | 3588 * | - PT_LOAD sections | | 3589 * +----------------------+ / 3590 * | NOTEs: | 3591 * | - NT_PRSTATUS | 3592 * | - NT_PRSINFO | 3593 * | - NT_AUXV | 3594 * +----------------------+ <-- aligned to target page 3595 * | Process memory dump | 3596 * : : 3597 * . . 3598 * : : 3599 * | | 3600 * +----------------------+ 3601 * 3602 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3603 * NT_PRSINFO -> struct elf_prpsinfo 3604 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3605 * 3606 * Format follows System V format as close as possible. Current 3607 * version limitations are as follows: 3608 * - no floating point registers are dumped 3609 * 3610 * Function returns 0 in case of success, negative errno otherwise. 3611 * 3612 * TODO: make this work also during runtime: it should be 3613 * possible to force coredump from running process and then 3614 * continue processing. For example qemu could set up SIGUSR2 3615 * handler (provided that target process haven't registered 3616 * handler for that) that does the dump when signal is received. 3617 */ 3618 static int elf_core_dump(int signr, const CPUArchState *env) 3619 { 3620 const CPUState *cpu = env_cpu((CPUArchState *)env); 3621 const TaskState *ts = (const TaskState *)cpu->opaque; 3622 struct vm_area_struct *vma = NULL; 3623 char corefile[PATH_MAX]; 3624 struct elf_note_info info; 3625 struct elfhdr elf; 3626 struct elf_phdr phdr; 3627 struct rlimit dumpsize; 3628 struct mm_struct *mm = NULL; 3629 off_t offset = 0, data_offset = 0; 3630 int segs = 0; 3631 int fd = -1; 3632 3633 init_note_info(&info); 3634 3635 errno = 0; 3636 getrlimit(RLIMIT_CORE, &dumpsize); 3637 if (dumpsize.rlim_cur == 0) 3638 return 0; 3639 3640 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3641 return (-errno); 3642 3643 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3644 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3645 return (-errno); 3646 3647 /* 3648 * Walk through target process memory mappings and 3649 * set up structure containing this information. After 3650 * this point vma_xxx functions can be used. 3651 */ 3652 if ((mm = vma_init()) == NULL) 3653 goto out; 3654 3655 walk_memory_regions(mm, vma_walker); 3656 segs = vma_get_mapping_count(mm); 3657 3658 /* 3659 * Construct valid coredump ELF header. We also 3660 * add one more segment for notes. 3661 */ 3662 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3663 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3664 goto out; 3665 3666 /* fill in the in-memory version of notes */ 3667 if (fill_note_info(&info, signr, env) < 0) 3668 goto out; 3669 3670 offset += sizeof (elf); /* elf header */ 3671 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3672 3673 /* write out notes program header */ 3674 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3675 3676 offset += info.notes_size; 3677 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3678 goto out; 3679 3680 /* 3681 * ELF specification wants data to start at page boundary so 3682 * we align it here. 3683 */ 3684 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3685 3686 /* 3687 * Write program headers for memory regions mapped in 3688 * the target process. 3689 */ 3690 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3691 (void) memset(&phdr, 0, sizeof (phdr)); 3692 3693 phdr.p_type = PT_LOAD; 3694 phdr.p_offset = offset; 3695 phdr.p_vaddr = vma->vma_start; 3696 phdr.p_paddr = 0; 3697 phdr.p_filesz = vma_dump_size(vma); 3698 offset += phdr.p_filesz; 3699 phdr.p_memsz = vma->vma_end - vma->vma_start; 3700 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3701 if (vma->vma_flags & PROT_WRITE) 3702 phdr.p_flags |= PF_W; 3703 if (vma->vma_flags & PROT_EXEC) 3704 phdr.p_flags |= PF_X; 3705 phdr.p_align = ELF_EXEC_PAGESIZE; 3706 3707 bswap_phdr(&phdr, 1); 3708 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3709 goto out; 3710 } 3711 } 3712 3713 /* 3714 * Next we write notes just after program headers. No 3715 * alignment needed here. 3716 */ 3717 if (write_note_info(&info, fd) < 0) 3718 goto out; 3719 3720 /* align data to page boundary */ 3721 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3722 goto out; 3723 3724 /* 3725 * Finally we can dump process memory into corefile as well. 3726 */ 3727 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3728 abi_ulong addr; 3729 abi_ulong end; 3730 3731 end = vma->vma_start + vma_dump_size(vma); 3732 3733 for (addr = vma->vma_start; addr < end; 3734 addr += TARGET_PAGE_SIZE) { 3735 char page[TARGET_PAGE_SIZE]; 3736 int error; 3737 3738 /* 3739 * Read in page from target process memory and 3740 * write it to coredump file. 3741 */ 3742 error = copy_from_user(page, addr, sizeof (page)); 3743 if (error != 0) { 3744 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3745 addr); 3746 errno = -error; 3747 goto out; 3748 } 3749 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3750 goto out; 3751 } 3752 } 3753 3754 out: 3755 free_note_info(&info); 3756 if (mm != NULL) 3757 vma_delete(mm); 3758 (void) close(fd); 3759 3760 if (errno != 0) 3761 return (-errno); 3762 return (0); 3763 } 3764 #endif /* USE_ELF_CORE_DUMP */ 3765 3766 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3767 { 3768 init_thread(regs, infop); 3769 } 3770