1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/prctl.h> 6 #include <sys/resource.h> 7 #include <sys/shm.h> 8 9 #include "qemu.h" 10 #include "user/tswap-target.h" 11 #include "exec/page-protection.h" 12 #include "user/guest-base.h" 13 #include "user-internals.h" 14 #include "signal-common.h" 15 #include "loader.h" 16 #include "user-mmap.h" 17 #include "disas/disas.h" 18 #include "qemu/bitops.h" 19 #include "qemu/path.h" 20 #include "qemu/queue.h" 21 #include "qemu/guest-random.h" 22 #include "qemu/units.h" 23 #include "qemu/selfmap.h" 24 #include "qemu/lockable.h" 25 #include "qapi/error.h" 26 #include "qemu/error-report.h" 27 #include "target_signal.h" 28 #include "tcg/debuginfo.h" 29 30 #ifdef TARGET_ARM 31 #include "target/arm/cpu-features.h" 32 #endif 33 34 #ifdef _ARCH_PPC64 35 #undef ARCH_DLINFO 36 #undef ELF_PLATFORM 37 #undef ELF_HWCAP 38 #undef ELF_HWCAP2 39 #undef ELF_CLASS 40 #undef ELF_DATA 41 #undef ELF_ARCH 42 #endif 43 44 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE 45 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0 46 #endif 47 48 typedef struct { 49 const uint8_t *image; 50 const uint32_t *relocs; 51 unsigned image_size; 52 unsigned reloc_count; 53 unsigned sigreturn_ofs; 54 unsigned rt_sigreturn_ofs; 55 } VdsoImageInfo; 56 57 #define ELF_OSABI ELFOSABI_SYSV 58 59 /* from personality.h */ 60 61 /* 62 * Flags for bug emulation. 63 * 64 * These occupy the top three bytes. 65 */ 66 enum { 67 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 68 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 69 descriptors (signal handling) */ 70 MMAP_PAGE_ZERO = 0x0100000, 71 ADDR_COMPAT_LAYOUT = 0x0200000, 72 READ_IMPLIES_EXEC = 0x0400000, 73 ADDR_LIMIT_32BIT = 0x0800000, 74 SHORT_INODE = 0x1000000, 75 WHOLE_SECONDS = 0x2000000, 76 STICKY_TIMEOUTS = 0x4000000, 77 ADDR_LIMIT_3GB = 0x8000000, 78 }; 79 80 /* 81 * Personality types. 82 * 83 * These go in the low byte. Avoid using the top bit, it will 84 * conflict with error returns. 85 */ 86 enum { 87 PER_LINUX = 0x0000, 88 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 89 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 90 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 91 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 92 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 93 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 94 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 95 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 96 PER_BSD = 0x0006, 97 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 98 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 99 PER_LINUX32 = 0x0008, 100 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 101 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 102 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 103 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 104 PER_RISCOS = 0x000c, 105 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 106 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 107 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 108 PER_HPUX = 0x0010, 109 PER_MASK = 0x00ff, 110 }; 111 112 /* 113 * Return the base personality without flags. 114 */ 115 #define personality(pers) (pers & PER_MASK) 116 117 int info_is_fdpic(struct image_info *info) 118 { 119 return info->personality == PER_LINUX_FDPIC; 120 } 121 122 /* this flag is uneffective under linux too, should be deleted */ 123 #ifndef MAP_DENYWRITE 124 #define MAP_DENYWRITE 0 125 #endif 126 127 /* should probably go in elf.h */ 128 #ifndef ELIBBAD 129 #define ELIBBAD 80 130 #endif 131 132 #if TARGET_BIG_ENDIAN 133 #define ELF_DATA ELFDATA2MSB 134 #else 135 #define ELF_DATA ELFDATA2LSB 136 #endif 137 138 #ifdef TARGET_ABI_MIPSN32 139 typedef abi_ullong target_elf_greg_t; 140 #define tswapreg(ptr) tswap64(ptr) 141 #else 142 typedef abi_ulong target_elf_greg_t; 143 #define tswapreg(ptr) tswapal(ptr) 144 #endif 145 146 #ifdef USE_UID16 147 typedef abi_ushort target_uid_t; 148 typedef abi_ushort target_gid_t; 149 #else 150 typedef abi_uint target_uid_t; 151 typedef abi_uint target_gid_t; 152 #endif 153 typedef abi_int target_pid_t; 154 155 #ifdef TARGET_I386 156 157 #define ELF_HWCAP get_elf_hwcap() 158 159 static uint32_t get_elf_hwcap(void) 160 { 161 X86CPU *cpu = X86_CPU(thread_cpu); 162 163 return cpu->env.features[FEAT_1_EDX]; 164 } 165 166 #ifdef TARGET_X86_64 167 #define ELF_CLASS ELFCLASS64 168 #define ELF_ARCH EM_X86_64 169 170 #define ELF_PLATFORM "x86_64" 171 172 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 173 { 174 regs->rax = 0; 175 regs->rsp = infop->start_stack; 176 regs->rip = infop->entry; 177 } 178 179 #define ELF_NREG 27 180 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 181 182 /* 183 * Note that ELF_NREG should be 29 as there should be place for 184 * TRAPNO and ERR "registers" as well but linux doesn't dump 185 * those. 186 * 187 * See linux kernel: arch/x86/include/asm/elf.h 188 */ 189 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 190 { 191 (*regs)[0] = tswapreg(env->regs[15]); 192 (*regs)[1] = tswapreg(env->regs[14]); 193 (*regs)[2] = tswapreg(env->regs[13]); 194 (*regs)[3] = tswapreg(env->regs[12]); 195 (*regs)[4] = tswapreg(env->regs[R_EBP]); 196 (*regs)[5] = tswapreg(env->regs[R_EBX]); 197 (*regs)[6] = tswapreg(env->regs[11]); 198 (*regs)[7] = tswapreg(env->regs[10]); 199 (*regs)[8] = tswapreg(env->regs[9]); 200 (*regs)[9] = tswapreg(env->regs[8]); 201 (*regs)[10] = tswapreg(env->regs[R_EAX]); 202 (*regs)[11] = tswapreg(env->regs[R_ECX]); 203 (*regs)[12] = tswapreg(env->regs[R_EDX]); 204 (*regs)[13] = tswapreg(env->regs[R_ESI]); 205 (*regs)[14] = tswapreg(env->regs[R_EDI]); 206 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 207 (*regs)[16] = tswapreg(env->eip); 208 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 209 (*regs)[18] = tswapreg(env->eflags); 210 (*regs)[19] = tswapreg(env->regs[R_ESP]); 211 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 212 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 213 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 214 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 215 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 216 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 217 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 218 } 219 220 #if ULONG_MAX > UINT32_MAX 221 #define INIT_GUEST_COMMPAGE 222 static bool init_guest_commpage(void) 223 { 224 /* 225 * The vsyscall page is at a high negative address aka kernel space, 226 * which means that we cannot actually allocate it with target_mmap. 227 * We still should be able to use page_set_flags, unless the user 228 * has specified -R reserved_va, which would trigger an assert(). 229 */ 230 if (reserved_va != 0 && 231 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) { 232 error_report("Cannot allocate vsyscall page"); 233 exit(EXIT_FAILURE); 234 } 235 page_set_flags(TARGET_VSYSCALL_PAGE, 236 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK, 237 PAGE_EXEC | PAGE_VALID); 238 return true; 239 } 240 #endif 241 #else 242 243 /* 244 * This is used to ensure we don't load something for the wrong architecture. 245 */ 246 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 247 248 /* 249 * These are used to set parameters in the core dumps. 250 */ 251 #define ELF_CLASS ELFCLASS32 252 #define ELF_ARCH EM_386 253 254 #define ELF_PLATFORM get_elf_platform() 255 #define EXSTACK_DEFAULT true 256 257 static const char *get_elf_platform(void) 258 { 259 static char elf_platform[] = "i386"; 260 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 261 if (family > 6) { 262 family = 6; 263 } 264 if (family >= 3) { 265 elf_platform[1] = '0' + family; 266 } 267 return elf_platform; 268 } 269 270 static inline void init_thread(struct target_pt_regs *regs, 271 struct image_info *infop) 272 { 273 regs->esp = infop->start_stack; 274 regs->eip = infop->entry; 275 276 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 277 starts %edx contains a pointer to a function which might be 278 registered using `atexit'. This provides a mean for the 279 dynamic linker to call DT_FINI functions for shared libraries 280 that have been loaded before the code runs. 281 282 A value of 0 tells we have no such handler. */ 283 regs->edx = 0; 284 } 285 286 #define ELF_NREG 17 287 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 288 289 /* 290 * Note that ELF_NREG should be 19 as there should be place for 291 * TRAPNO and ERR "registers" as well but linux doesn't dump 292 * those. 293 * 294 * See linux kernel: arch/x86/include/asm/elf.h 295 */ 296 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 297 { 298 (*regs)[0] = tswapreg(env->regs[R_EBX]); 299 (*regs)[1] = tswapreg(env->regs[R_ECX]); 300 (*regs)[2] = tswapreg(env->regs[R_EDX]); 301 (*regs)[3] = tswapreg(env->regs[R_ESI]); 302 (*regs)[4] = tswapreg(env->regs[R_EDI]); 303 (*regs)[5] = tswapreg(env->regs[R_EBP]); 304 (*regs)[6] = tswapreg(env->regs[R_EAX]); 305 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 306 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 307 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 308 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 309 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 310 (*regs)[12] = tswapreg(env->eip); 311 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 312 (*regs)[14] = tswapreg(env->eflags); 313 (*regs)[15] = tswapreg(env->regs[R_ESP]); 314 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 315 } 316 317 /* 318 * i386 is the only target which supplies AT_SYSINFO for the vdso. 319 * All others only supply AT_SYSINFO_EHDR. 320 */ 321 #define DLINFO_ARCH_ITEMS (vdso_info != NULL) 322 #define ARCH_DLINFO \ 323 do { \ 324 if (vdso_info) { \ 325 NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \ 326 } \ 327 } while (0) 328 329 #endif /* TARGET_X86_64 */ 330 331 #define VDSO_HEADER "vdso.c.inc" 332 333 #define USE_ELF_CORE_DUMP 334 #define ELF_EXEC_PAGESIZE 4096 335 336 #endif /* TARGET_I386 */ 337 338 #ifdef TARGET_ARM 339 340 #ifndef TARGET_AARCH64 341 /* 32 bit ARM definitions */ 342 343 #define ELF_ARCH EM_ARM 344 #define ELF_CLASS ELFCLASS32 345 #define EXSTACK_DEFAULT true 346 347 static inline void init_thread(struct target_pt_regs *regs, 348 struct image_info *infop) 349 { 350 abi_long stack = infop->start_stack; 351 memset(regs, 0, sizeof(*regs)); 352 353 regs->uregs[16] = ARM_CPU_MODE_USR; 354 if (infop->entry & 1) { 355 regs->uregs[16] |= CPSR_T; 356 } 357 regs->uregs[15] = infop->entry & 0xfffffffe; 358 regs->uregs[13] = infop->start_stack; 359 /* FIXME - what to for failure of get_user()? */ 360 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 361 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 362 /* XXX: it seems that r0 is zeroed after ! */ 363 regs->uregs[0] = 0; 364 /* For uClinux PIC binaries. */ 365 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 366 regs->uregs[10] = infop->start_data; 367 368 /* Support ARM FDPIC. */ 369 if (info_is_fdpic(infop)) { 370 /* As described in the ABI document, r7 points to the loadmap info 371 * prepared by the kernel. If an interpreter is needed, r8 points 372 * to the interpreter loadmap and r9 points to the interpreter 373 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 374 * r9 points to the main program PT_DYNAMIC info. 375 */ 376 regs->uregs[7] = infop->loadmap_addr; 377 if (infop->interpreter_loadmap_addr) { 378 /* Executable is dynamically loaded. */ 379 regs->uregs[8] = infop->interpreter_loadmap_addr; 380 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 381 } else { 382 regs->uregs[8] = 0; 383 regs->uregs[9] = infop->pt_dynamic_addr; 384 } 385 } 386 } 387 388 #define ELF_NREG 18 389 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 390 391 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 392 { 393 (*regs)[0] = tswapreg(env->regs[0]); 394 (*regs)[1] = tswapreg(env->regs[1]); 395 (*regs)[2] = tswapreg(env->regs[2]); 396 (*regs)[3] = tswapreg(env->regs[3]); 397 (*regs)[4] = tswapreg(env->regs[4]); 398 (*regs)[5] = tswapreg(env->regs[5]); 399 (*regs)[6] = tswapreg(env->regs[6]); 400 (*regs)[7] = tswapreg(env->regs[7]); 401 (*regs)[8] = tswapreg(env->regs[8]); 402 (*regs)[9] = tswapreg(env->regs[9]); 403 (*regs)[10] = tswapreg(env->regs[10]); 404 (*regs)[11] = tswapreg(env->regs[11]); 405 (*regs)[12] = tswapreg(env->regs[12]); 406 (*regs)[13] = tswapreg(env->regs[13]); 407 (*regs)[14] = tswapreg(env->regs[14]); 408 (*regs)[15] = tswapreg(env->regs[15]); 409 410 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 411 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 412 } 413 414 #define USE_ELF_CORE_DUMP 415 #define ELF_EXEC_PAGESIZE 4096 416 417 enum 418 { 419 ARM_HWCAP_ARM_SWP = 1 << 0, 420 ARM_HWCAP_ARM_HALF = 1 << 1, 421 ARM_HWCAP_ARM_THUMB = 1 << 2, 422 ARM_HWCAP_ARM_26BIT = 1 << 3, 423 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 424 ARM_HWCAP_ARM_FPA = 1 << 5, 425 ARM_HWCAP_ARM_VFP = 1 << 6, 426 ARM_HWCAP_ARM_EDSP = 1 << 7, 427 ARM_HWCAP_ARM_JAVA = 1 << 8, 428 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 429 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 430 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 431 ARM_HWCAP_ARM_NEON = 1 << 12, 432 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 433 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 434 ARM_HWCAP_ARM_TLS = 1 << 15, 435 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 436 ARM_HWCAP_ARM_IDIVA = 1 << 17, 437 ARM_HWCAP_ARM_IDIVT = 1 << 18, 438 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 439 ARM_HWCAP_ARM_LPAE = 1 << 20, 440 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 441 ARM_HWCAP_ARM_FPHP = 1 << 22, 442 ARM_HWCAP_ARM_ASIMDHP = 1 << 23, 443 ARM_HWCAP_ARM_ASIMDDP = 1 << 24, 444 ARM_HWCAP_ARM_ASIMDFHM = 1 << 25, 445 ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26, 446 ARM_HWCAP_ARM_I8MM = 1 << 27, 447 }; 448 449 enum { 450 ARM_HWCAP2_ARM_AES = 1 << 0, 451 ARM_HWCAP2_ARM_PMULL = 1 << 1, 452 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 453 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 454 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 455 ARM_HWCAP2_ARM_SB = 1 << 5, 456 ARM_HWCAP2_ARM_SSBS = 1 << 6, 457 }; 458 459 /* The commpage only exists for 32 bit kernels */ 460 461 #define HI_COMMPAGE (intptr_t)0xffff0f00u 462 463 static bool init_guest_commpage(void) 464 { 465 ARMCPU *cpu = ARM_CPU(thread_cpu); 466 int host_page_size = qemu_real_host_page_size(); 467 abi_ptr commpage; 468 void *want; 469 void *addr; 470 471 /* 472 * M-profile allocates maximum of 2GB address space, so can never 473 * allocate the commpage. Skip it. 474 */ 475 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 476 return true; 477 } 478 479 commpage = HI_COMMPAGE & -host_page_size; 480 want = g2h_untagged(commpage); 481 addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE, 482 MAP_ANONYMOUS | MAP_PRIVATE | 483 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE), 484 -1, 0); 485 486 if (addr == MAP_FAILED) { 487 perror("Allocating guest commpage"); 488 exit(EXIT_FAILURE); 489 } 490 if (addr != want) { 491 return false; 492 } 493 494 /* Set kernel helper versions; rest of page is 0. */ 495 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 496 497 if (mprotect(addr, host_page_size, PROT_READ)) { 498 perror("Protecting guest commpage"); 499 exit(EXIT_FAILURE); 500 } 501 502 page_set_flags(commpage, commpage | (host_page_size - 1), 503 PAGE_READ | PAGE_EXEC | PAGE_VALID); 504 return true; 505 } 506 507 #define ELF_HWCAP get_elf_hwcap() 508 #define ELF_HWCAP2 get_elf_hwcap2() 509 510 uint32_t get_elf_hwcap(void) 511 { 512 ARMCPU *cpu = ARM_CPU(thread_cpu); 513 uint32_t hwcaps = 0; 514 515 hwcaps |= ARM_HWCAP_ARM_SWP; 516 hwcaps |= ARM_HWCAP_ARM_HALF; 517 hwcaps |= ARM_HWCAP_ARM_THUMB; 518 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 519 520 /* probe for the extra features */ 521 #define GET_FEATURE(feat, hwcap) \ 522 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 523 524 #define GET_FEATURE_ID(feat, hwcap) \ 525 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 526 527 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 528 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 529 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 530 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 531 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 532 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 533 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 534 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 535 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 536 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 537 538 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 539 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 540 hwcaps |= ARM_HWCAP_ARM_VFPv3; 541 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 542 hwcaps |= ARM_HWCAP_ARM_VFPD32; 543 } else { 544 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 545 } 546 } 547 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 548 /* 549 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same 550 * isar_feature function for both. The kernel reports them as two hwcaps. 551 */ 552 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP); 553 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP); 554 GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP); 555 GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM); 556 GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16); 557 GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM); 558 559 return hwcaps; 560 } 561 562 uint64_t get_elf_hwcap2(void) 563 { 564 ARMCPU *cpu = ARM_CPU(thread_cpu); 565 uint64_t hwcaps = 0; 566 567 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 568 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 569 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 570 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 571 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 572 GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB); 573 GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS); 574 return hwcaps; 575 } 576 577 const char *elf_hwcap_str(uint32_t bit) 578 { 579 static const char *hwcap_str[] = { 580 [__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp", 581 [__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half", 582 [__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb", 583 [__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit", 584 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult", 585 [__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa", 586 [__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp", 587 [__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp", 588 [__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java", 589 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt", 590 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch", 591 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee", 592 [__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon", 593 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3", 594 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16", 595 [__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls", 596 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4", 597 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva", 598 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt", 599 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32", 600 [__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae", 601 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm", 602 [__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp", 603 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp", 604 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp", 605 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm", 606 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16", 607 [__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm", 608 }; 609 610 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 611 } 612 613 const char *elf_hwcap2_str(uint32_t bit) 614 { 615 static const char *hwcap_str[] = { 616 [__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes", 617 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull", 618 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1", 619 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2", 620 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32", 621 [__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb", 622 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs", 623 }; 624 625 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 626 } 627 628 #undef GET_FEATURE 629 #undef GET_FEATURE_ID 630 631 #define ELF_PLATFORM get_elf_platform() 632 633 static const char *get_elf_platform(void) 634 { 635 CPUARMState *env = cpu_env(thread_cpu); 636 637 #if TARGET_BIG_ENDIAN 638 # define END "b" 639 #else 640 # define END "l" 641 #endif 642 643 if (arm_feature(env, ARM_FEATURE_V8)) { 644 return "v8" END; 645 } else if (arm_feature(env, ARM_FEATURE_V7)) { 646 if (arm_feature(env, ARM_FEATURE_M)) { 647 return "v7m" END; 648 } else { 649 return "v7" END; 650 } 651 } else if (arm_feature(env, ARM_FEATURE_V6)) { 652 return "v6" END; 653 } else if (arm_feature(env, ARM_FEATURE_V5)) { 654 return "v5" END; 655 } else { 656 return "v4" END; 657 } 658 659 #undef END 660 } 661 662 #else 663 /* 64 bit ARM definitions */ 664 665 #define ELF_ARCH EM_AARCH64 666 #define ELF_CLASS ELFCLASS64 667 #if TARGET_BIG_ENDIAN 668 # define ELF_PLATFORM "aarch64_be" 669 #else 670 # define ELF_PLATFORM "aarch64" 671 #endif 672 673 static inline void init_thread(struct target_pt_regs *regs, 674 struct image_info *infop) 675 { 676 abi_long stack = infop->start_stack; 677 memset(regs, 0, sizeof(*regs)); 678 679 regs->pc = infop->entry & ~0x3ULL; 680 regs->sp = stack; 681 } 682 683 #define ELF_NREG 34 684 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 685 686 static void elf_core_copy_regs(target_elf_gregset_t *regs, 687 const CPUARMState *env) 688 { 689 int i; 690 691 for (i = 0; i < 32; i++) { 692 (*regs)[i] = tswapreg(env->xregs[i]); 693 } 694 (*regs)[32] = tswapreg(env->pc); 695 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 696 } 697 698 #define USE_ELF_CORE_DUMP 699 #define ELF_EXEC_PAGESIZE 4096 700 701 enum { 702 ARM_HWCAP_A64_FP = 1 << 0, 703 ARM_HWCAP_A64_ASIMD = 1 << 1, 704 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 705 ARM_HWCAP_A64_AES = 1 << 3, 706 ARM_HWCAP_A64_PMULL = 1 << 4, 707 ARM_HWCAP_A64_SHA1 = 1 << 5, 708 ARM_HWCAP_A64_SHA2 = 1 << 6, 709 ARM_HWCAP_A64_CRC32 = 1 << 7, 710 ARM_HWCAP_A64_ATOMICS = 1 << 8, 711 ARM_HWCAP_A64_FPHP = 1 << 9, 712 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 713 ARM_HWCAP_A64_CPUID = 1 << 11, 714 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 715 ARM_HWCAP_A64_JSCVT = 1 << 13, 716 ARM_HWCAP_A64_FCMA = 1 << 14, 717 ARM_HWCAP_A64_LRCPC = 1 << 15, 718 ARM_HWCAP_A64_DCPOP = 1 << 16, 719 ARM_HWCAP_A64_SHA3 = 1 << 17, 720 ARM_HWCAP_A64_SM3 = 1 << 18, 721 ARM_HWCAP_A64_SM4 = 1 << 19, 722 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 723 ARM_HWCAP_A64_SHA512 = 1 << 21, 724 ARM_HWCAP_A64_SVE = 1 << 22, 725 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 726 ARM_HWCAP_A64_DIT = 1 << 24, 727 ARM_HWCAP_A64_USCAT = 1 << 25, 728 ARM_HWCAP_A64_ILRCPC = 1 << 26, 729 ARM_HWCAP_A64_FLAGM = 1 << 27, 730 ARM_HWCAP_A64_SSBS = 1 << 28, 731 ARM_HWCAP_A64_SB = 1 << 29, 732 ARM_HWCAP_A64_PACA = 1 << 30, 733 ARM_HWCAP_A64_PACG = 1UL << 31, 734 735 ARM_HWCAP2_A64_DCPODP = 1 << 0, 736 ARM_HWCAP2_A64_SVE2 = 1 << 1, 737 ARM_HWCAP2_A64_SVEAES = 1 << 2, 738 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 739 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 740 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 741 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 742 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 743 ARM_HWCAP2_A64_FRINT = 1 << 8, 744 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 745 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 746 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 747 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 748 ARM_HWCAP2_A64_I8MM = 1 << 13, 749 ARM_HWCAP2_A64_BF16 = 1 << 14, 750 ARM_HWCAP2_A64_DGH = 1 << 15, 751 ARM_HWCAP2_A64_RNG = 1 << 16, 752 ARM_HWCAP2_A64_BTI = 1 << 17, 753 ARM_HWCAP2_A64_MTE = 1 << 18, 754 ARM_HWCAP2_A64_ECV = 1 << 19, 755 ARM_HWCAP2_A64_AFP = 1 << 20, 756 ARM_HWCAP2_A64_RPRES = 1 << 21, 757 ARM_HWCAP2_A64_MTE3 = 1 << 22, 758 ARM_HWCAP2_A64_SME = 1 << 23, 759 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 760 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 761 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 762 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 763 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 764 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 765 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 766 ARM_HWCAP2_A64_WFXT = 1ULL << 31, 767 ARM_HWCAP2_A64_EBF16 = 1ULL << 32, 768 ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33, 769 ARM_HWCAP2_A64_CSSC = 1ULL << 34, 770 ARM_HWCAP2_A64_RPRFM = 1ULL << 35, 771 ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36, 772 ARM_HWCAP2_A64_SME2 = 1ULL << 37, 773 ARM_HWCAP2_A64_SME2P1 = 1ULL << 38, 774 ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39, 775 ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40, 776 ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41, 777 ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42, 778 ARM_HWCAP2_A64_MOPS = 1ULL << 43, 779 ARM_HWCAP2_A64_HBC = 1ULL << 44, 780 }; 781 782 #define ELF_HWCAP get_elf_hwcap() 783 #define ELF_HWCAP2 get_elf_hwcap2() 784 785 #define GET_FEATURE_ID(feat, hwcap) \ 786 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 787 788 uint32_t get_elf_hwcap(void) 789 { 790 ARMCPU *cpu = ARM_CPU(thread_cpu); 791 uint32_t hwcaps = 0; 792 793 hwcaps |= ARM_HWCAP_A64_FP; 794 hwcaps |= ARM_HWCAP_A64_ASIMD; 795 hwcaps |= ARM_HWCAP_A64_CPUID; 796 797 /* probe for the extra features */ 798 799 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 800 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 801 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 802 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 803 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 804 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 805 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 806 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 807 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 808 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 809 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 810 GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT); 811 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 812 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 813 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 814 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 815 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 816 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 817 GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT); 818 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 819 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 820 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 821 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 822 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 823 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 824 825 return hwcaps; 826 } 827 828 uint64_t get_elf_hwcap2(void) 829 { 830 ARMCPU *cpu = ARM_CPU(thread_cpu); 831 uint64_t hwcaps = 0; 832 833 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 834 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 835 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 836 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 837 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 838 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 839 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 840 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 841 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 842 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 843 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 844 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 845 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 846 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 847 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 848 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 849 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 850 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 851 GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3); 852 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 853 ARM_HWCAP2_A64_SME_F32F32 | 854 ARM_HWCAP2_A64_SME_B16F32 | 855 ARM_HWCAP2_A64_SME_F16F32 | 856 ARM_HWCAP2_A64_SME_I8I32)); 857 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 858 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 859 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 860 GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC); 861 GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS); 862 863 return hwcaps; 864 } 865 866 const char *elf_hwcap_str(uint32_t bit) 867 { 868 static const char *hwcap_str[] = { 869 [__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp", 870 [__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd", 871 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm", 872 [__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes", 873 [__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull", 874 [__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1", 875 [__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2", 876 [__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32", 877 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics", 878 [__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp", 879 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp", 880 [__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid", 881 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm", 882 [__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt", 883 [__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma", 884 [__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc", 885 [__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop", 886 [__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3", 887 [__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3", 888 [__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4", 889 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp", 890 [__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512", 891 [__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve", 892 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm", 893 [__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit", 894 [__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat", 895 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc", 896 [__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm", 897 [__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs", 898 [__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb", 899 [__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca", 900 [__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg", 901 }; 902 903 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 904 } 905 906 const char *elf_hwcap2_str(uint32_t bit) 907 { 908 static const char *hwcap_str[] = { 909 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp", 910 [__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2", 911 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes", 912 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull", 913 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm", 914 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3", 915 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4", 916 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2", 917 [__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint", 918 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm", 919 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm", 920 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm", 921 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16", 922 [__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm", 923 [__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16", 924 [__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh", 925 [__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng", 926 [__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti", 927 [__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte", 928 [__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv", 929 [__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp", 930 [__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres", 931 [__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3", 932 [__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme", 933 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64", 934 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64", 935 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32", 936 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32", 937 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32", 938 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32", 939 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64", 940 [__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt", 941 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16", 942 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16", 943 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc", 944 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm", 945 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1", 946 [__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2", 947 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1", 948 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32", 949 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32", 950 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16", 951 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16", 952 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops", 953 [__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc", 954 }; 955 956 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 957 } 958 959 #undef GET_FEATURE_ID 960 961 #endif /* not TARGET_AARCH64 */ 962 963 #if TARGET_BIG_ENDIAN 964 # define VDSO_HEADER "vdso-be.c.inc" 965 #else 966 # define VDSO_HEADER "vdso-le.c.inc" 967 #endif 968 969 #endif /* TARGET_ARM */ 970 971 #ifdef TARGET_SPARC 972 973 #ifndef TARGET_SPARC64 974 # define ELF_CLASS ELFCLASS32 975 # define ELF_ARCH EM_SPARC 976 #elif defined(TARGET_ABI32) 977 # define ELF_CLASS ELFCLASS32 978 # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC) 979 #else 980 # define ELF_CLASS ELFCLASS64 981 # define ELF_ARCH EM_SPARCV9 982 #endif 983 984 #include "elf.h" 985 986 #define ELF_HWCAP get_elf_hwcap() 987 988 static uint32_t get_elf_hwcap(void) 989 { 990 /* There are not many sparc32 hwcap bits -- we have all of them. */ 991 uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | 992 HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV; 993 994 #ifdef TARGET_SPARC64 995 CPUSPARCState *env = cpu_env(thread_cpu); 996 uint32_t features = env->def.features; 997 998 r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS; 999 /* 32x32 multiply and divide are efficient. */ 1000 r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32; 1001 /* We don't have an internal feature bit for this. */ 1002 r |= HWCAP_SPARC_POPC; 1003 r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0; 1004 r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0; 1005 r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0; 1006 #endif 1007 1008 return r; 1009 } 1010 1011 static inline void init_thread(struct target_pt_regs *regs, 1012 struct image_info *infop) 1013 { 1014 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 1015 regs->pc = infop->entry; 1016 regs->npc = regs->pc + 4; 1017 regs->y = 0; 1018 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 1019 - TARGET_STACK_BIAS); 1020 } 1021 #endif /* TARGET_SPARC */ 1022 1023 #ifdef TARGET_PPC 1024 1025 #define ELF_MACHINE PPC_ELF_MACHINE 1026 1027 #if defined(TARGET_PPC64) 1028 1029 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 1030 1031 #define ELF_CLASS ELFCLASS64 1032 1033 #else 1034 1035 #define ELF_CLASS ELFCLASS32 1036 #define EXSTACK_DEFAULT true 1037 1038 #endif 1039 1040 #define ELF_ARCH EM_PPC 1041 1042 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 1043 See arch/powerpc/include/asm/cputable.h. */ 1044 enum { 1045 QEMU_PPC_FEATURE_32 = 0x80000000, 1046 QEMU_PPC_FEATURE_64 = 0x40000000, 1047 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 1048 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 1049 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 1050 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 1051 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 1052 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 1053 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 1054 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 1055 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 1056 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 1057 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 1058 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 1059 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 1060 QEMU_PPC_FEATURE_CELL = 0x00010000, 1061 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 1062 QEMU_PPC_FEATURE_SMT = 0x00004000, 1063 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 1064 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 1065 QEMU_PPC_FEATURE_PA6T = 0x00000800, 1066 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 1067 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 1068 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 1069 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 1070 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 1071 1072 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 1073 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 1074 1075 /* Feature definitions in AT_HWCAP2. */ 1076 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 1077 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 1078 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 1079 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 1080 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 1081 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 1082 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 1083 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 1084 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 1085 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 1086 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 1087 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 1088 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 1089 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 1090 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 1091 }; 1092 1093 #define ELF_HWCAP get_elf_hwcap() 1094 1095 static uint32_t get_elf_hwcap(void) 1096 { 1097 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 1098 uint32_t features = 0; 1099 1100 /* We don't have to be terribly complete here; the high points are 1101 Altivec/FP/SPE support. Anything else is just a bonus. */ 1102 #define GET_FEATURE(flag, feature) \ 1103 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 1104 #define GET_FEATURE2(flags, feature) \ 1105 do { \ 1106 if ((cpu->env.insns_flags2 & flags) == flags) { \ 1107 features |= feature; \ 1108 } \ 1109 } while (0) 1110 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 1111 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 1112 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 1113 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 1114 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 1115 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 1116 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 1117 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 1118 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 1119 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 1120 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 1121 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 1122 QEMU_PPC_FEATURE_ARCH_2_06); 1123 #undef GET_FEATURE 1124 #undef GET_FEATURE2 1125 1126 return features; 1127 } 1128 1129 #define ELF_HWCAP2 get_elf_hwcap2() 1130 1131 static uint32_t get_elf_hwcap2(void) 1132 { 1133 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 1134 uint32_t features = 0; 1135 1136 #define GET_FEATURE(flag, feature) \ 1137 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 1138 #define GET_FEATURE2(flag, feature) \ 1139 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 1140 1141 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 1142 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 1143 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 1144 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 1145 QEMU_PPC_FEATURE2_VEC_CRYPTO); 1146 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 1147 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 1148 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 1149 QEMU_PPC_FEATURE2_MMA); 1150 1151 #undef GET_FEATURE 1152 #undef GET_FEATURE2 1153 1154 return features; 1155 } 1156 1157 /* 1158 * The requirements here are: 1159 * - keep the final alignment of sp (sp & 0xf) 1160 * - make sure the 32-bit value at the first 16 byte aligned position of 1161 * AUXV is greater than 16 for glibc compatibility. 1162 * AT_IGNOREPPC is used for that. 1163 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 1164 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 1165 */ 1166 #define DLINFO_ARCH_ITEMS 5 1167 #define ARCH_DLINFO \ 1168 do { \ 1169 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 1170 /* \ 1171 * Handle glibc compatibility: these magic entries must \ 1172 * be at the lowest addresses in the final auxv. \ 1173 */ \ 1174 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 1175 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 1176 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 1177 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 1178 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 1179 } while (0) 1180 1181 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 1182 { 1183 _regs->gpr[1] = infop->start_stack; 1184 #if defined(TARGET_PPC64) 1185 if (get_ppc64_abi(infop) < 2) { 1186 uint64_t val; 1187 get_user_u64(val, infop->entry + 8); 1188 _regs->gpr[2] = val + infop->load_bias; 1189 get_user_u64(val, infop->entry); 1190 infop->entry = val + infop->load_bias; 1191 } else { 1192 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 1193 } 1194 #endif 1195 _regs->nip = infop->entry; 1196 } 1197 1198 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 1199 #define ELF_NREG 48 1200 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1201 1202 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 1203 { 1204 int i; 1205 target_ulong ccr = 0; 1206 1207 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 1208 (*regs)[i] = tswapreg(env->gpr[i]); 1209 } 1210 1211 (*regs)[32] = tswapreg(env->nip); 1212 (*regs)[33] = tswapreg(env->msr); 1213 (*regs)[35] = tswapreg(env->ctr); 1214 (*regs)[36] = tswapreg(env->lr); 1215 (*regs)[37] = tswapreg(cpu_read_xer(env)); 1216 1217 ccr = ppc_get_cr(env); 1218 (*regs)[38] = tswapreg(ccr); 1219 } 1220 1221 #define USE_ELF_CORE_DUMP 1222 #define ELF_EXEC_PAGESIZE 4096 1223 1224 #ifndef TARGET_PPC64 1225 # define VDSO_HEADER "vdso-32.c.inc" 1226 #elif TARGET_BIG_ENDIAN 1227 # define VDSO_HEADER "vdso-64.c.inc" 1228 #else 1229 # define VDSO_HEADER "vdso-64le.c.inc" 1230 #endif 1231 1232 #endif 1233 1234 #ifdef TARGET_LOONGARCH64 1235 1236 #define ELF_CLASS ELFCLASS64 1237 #define ELF_ARCH EM_LOONGARCH 1238 #define EXSTACK_DEFAULT true 1239 1240 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 1241 1242 #define VDSO_HEADER "vdso.c.inc" 1243 1244 static inline void init_thread(struct target_pt_regs *regs, 1245 struct image_info *infop) 1246 { 1247 /*Set crmd PG,DA = 1,0 */ 1248 regs->csr.crmd = 2 << 3; 1249 regs->csr.era = infop->entry; 1250 regs->regs[3] = infop->start_stack; 1251 } 1252 1253 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 1254 #define ELF_NREG 45 1255 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1256 1257 enum { 1258 TARGET_EF_R0 = 0, 1259 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 1260 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1261 }; 1262 1263 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1264 const CPULoongArchState *env) 1265 { 1266 int i; 1267 1268 (*regs)[TARGET_EF_R0] = 0; 1269 1270 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1271 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1272 } 1273 1274 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1275 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1276 } 1277 1278 #define USE_ELF_CORE_DUMP 1279 #define ELF_EXEC_PAGESIZE 4096 1280 1281 #define ELF_HWCAP get_elf_hwcap() 1282 1283 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1284 enum { 1285 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1286 HWCAP_LOONGARCH_LAM = (1 << 1), 1287 HWCAP_LOONGARCH_UAL = (1 << 2), 1288 HWCAP_LOONGARCH_FPU = (1 << 3), 1289 HWCAP_LOONGARCH_LSX = (1 << 4), 1290 HWCAP_LOONGARCH_LASX = (1 << 5), 1291 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1292 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1293 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1294 HWCAP_LOONGARCH_LVZ = (1 << 9), 1295 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1296 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1297 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1298 }; 1299 1300 static uint32_t get_elf_hwcap(void) 1301 { 1302 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1303 uint32_t hwcaps = 0; 1304 1305 hwcaps |= HWCAP_LOONGARCH_CRC32; 1306 1307 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1308 hwcaps |= HWCAP_LOONGARCH_UAL; 1309 } 1310 1311 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1312 hwcaps |= HWCAP_LOONGARCH_FPU; 1313 } 1314 1315 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1316 hwcaps |= HWCAP_LOONGARCH_LAM; 1317 } 1318 1319 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) { 1320 hwcaps |= HWCAP_LOONGARCH_LSX; 1321 } 1322 1323 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) { 1324 hwcaps |= HWCAP_LOONGARCH_LASX; 1325 } 1326 1327 return hwcaps; 1328 } 1329 1330 #define ELF_PLATFORM "loongarch" 1331 1332 #endif /* TARGET_LOONGARCH64 */ 1333 1334 #ifdef TARGET_MIPS 1335 1336 #ifdef TARGET_MIPS64 1337 #define ELF_CLASS ELFCLASS64 1338 #else 1339 #define ELF_CLASS ELFCLASS32 1340 #endif 1341 #define ELF_ARCH EM_MIPS 1342 #define EXSTACK_DEFAULT true 1343 1344 #ifdef TARGET_ABI_MIPSN32 1345 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1346 #else 1347 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1348 #endif 1349 1350 #define ELF_BASE_PLATFORM get_elf_base_platform() 1351 1352 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ 1353 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ 1354 { return _base_platform; } } while (0) 1355 1356 static const char *get_elf_base_platform(void) 1357 { 1358 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1359 1360 /* 64 bit ISAs goes first */ 1361 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); 1362 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); 1363 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); 1364 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); 1365 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); 1366 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); 1367 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); 1368 1369 /* 32 bit ISAs */ 1370 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); 1371 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); 1372 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); 1373 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); 1374 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); 1375 1376 /* Fallback */ 1377 return "mips"; 1378 } 1379 #undef MATCH_PLATFORM_INSN 1380 1381 static inline void init_thread(struct target_pt_regs *regs, 1382 struct image_info *infop) 1383 { 1384 regs->cp0_status = 2 << CP0St_KSU; 1385 regs->cp0_epc = infop->entry; 1386 regs->regs[29] = infop->start_stack; 1387 } 1388 1389 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1390 #define ELF_NREG 45 1391 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1392 1393 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1394 enum { 1395 #ifdef TARGET_MIPS64 1396 TARGET_EF_R0 = 0, 1397 #else 1398 TARGET_EF_R0 = 6, 1399 #endif 1400 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1401 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1402 TARGET_EF_LO = TARGET_EF_R0 + 32, 1403 TARGET_EF_HI = TARGET_EF_R0 + 33, 1404 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1405 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1406 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1407 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1408 }; 1409 1410 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1411 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1412 { 1413 int i; 1414 1415 for (i = 0; i < TARGET_EF_R0; i++) { 1416 (*regs)[i] = 0; 1417 } 1418 (*regs)[TARGET_EF_R0] = 0; 1419 1420 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1421 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1422 } 1423 1424 (*regs)[TARGET_EF_R26] = 0; 1425 (*regs)[TARGET_EF_R27] = 0; 1426 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1427 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1428 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1429 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1430 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1431 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1432 } 1433 1434 #define USE_ELF_CORE_DUMP 1435 #define ELF_EXEC_PAGESIZE 4096 1436 1437 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1438 enum { 1439 HWCAP_MIPS_R6 = (1 << 0), 1440 HWCAP_MIPS_MSA = (1 << 1), 1441 HWCAP_MIPS_CRC32 = (1 << 2), 1442 HWCAP_MIPS_MIPS16 = (1 << 3), 1443 HWCAP_MIPS_MDMX = (1 << 4), 1444 HWCAP_MIPS_MIPS3D = (1 << 5), 1445 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1446 HWCAP_MIPS_DSP = (1 << 7), 1447 HWCAP_MIPS_DSP2 = (1 << 8), 1448 HWCAP_MIPS_DSP3 = (1 << 9), 1449 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1450 HWCAP_LOONGSON_MMI = (1 << 11), 1451 HWCAP_LOONGSON_EXT = (1 << 12), 1452 HWCAP_LOONGSON_EXT2 = (1 << 13), 1453 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1454 }; 1455 1456 #define ELF_HWCAP get_elf_hwcap() 1457 1458 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1459 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1460 1461 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1462 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1463 1464 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1465 do { \ 1466 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1467 hwcaps |= _hwcap; \ 1468 } \ 1469 } while (0) 1470 1471 static uint32_t get_elf_hwcap(void) 1472 { 1473 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1474 uint32_t hwcaps = 0; 1475 1476 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1477 2, HWCAP_MIPS_R6); 1478 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1479 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1480 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1481 1482 return hwcaps; 1483 } 1484 1485 #undef GET_FEATURE_REG_EQU 1486 #undef GET_FEATURE_REG_SET 1487 #undef GET_FEATURE_INSN 1488 1489 #endif /* TARGET_MIPS */ 1490 1491 #ifdef TARGET_MICROBLAZE 1492 1493 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1494 1495 #define ELF_CLASS ELFCLASS32 1496 #define ELF_ARCH EM_MICROBLAZE 1497 1498 static inline void init_thread(struct target_pt_regs *regs, 1499 struct image_info *infop) 1500 { 1501 regs->pc = infop->entry; 1502 regs->r1 = infop->start_stack; 1503 1504 } 1505 1506 #define ELF_EXEC_PAGESIZE 4096 1507 1508 #define USE_ELF_CORE_DUMP 1509 #define ELF_NREG 38 1510 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1511 1512 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1513 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1514 { 1515 int i, pos = 0; 1516 1517 for (i = 0; i < 32; i++) { 1518 (*regs)[pos++] = tswapreg(env->regs[i]); 1519 } 1520 1521 (*regs)[pos++] = tswapreg(env->pc); 1522 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1523 (*regs)[pos++] = 0; 1524 (*regs)[pos++] = tswapreg(env->ear); 1525 (*regs)[pos++] = 0; 1526 (*regs)[pos++] = tswapreg(env->esr); 1527 } 1528 1529 #endif /* TARGET_MICROBLAZE */ 1530 1531 #ifdef TARGET_OPENRISC 1532 1533 #define ELF_ARCH EM_OPENRISC 1534 #define ELF_CLASS ELFCLASS32 1535 #define ELF_DATA ELFDATA2MSB 1536 1537 static inline void init_thread(struct target_pt_regs *regs, 1538 struct image_info *infop) 1539 { 1540 regs->pc = infop->entry; 1541 regs->gpr[1] = infop->start_stack; 1542 } 1543 1544 #define USE_ELF_CORE_DUMP 1545 #define ELF_EXEC_PAGESIZE 8192 1546 1547 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1548 #define ELF_NREG 34 /* gprs and pc, sr */ 1549 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1550 1551 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1552 const CPUOpenRISCState *env) 1553 { 1554 int i; 1555 1556 for (i = 0; i < 32; i++) { 1557 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1558 } 1559 (*regs)[32] = tswapreg(env->pc); 1560 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1561 } 1562 #define ELF_HWCAP 0 1563 #define ELF_PLATFORM NULL 1564 1565 #endif /* TARGET_OPENRISC */ 1566 1567 #ifdef TARGET_SH4 1568 1569 #define ELF_CLASS ELFCLASS32 1570 #define ELF_ARCH EM_SH 1571 1572 static inline void init_thread(struct target_pt_regs *regs, 1573 struct image_info *infop) 1574 { 1575 /* Check other registers XXXXX */ 1576 regs->pc = infop->entry; 1577 regs->regs[15] = infop->start_stack; 1578 } 1579 1580 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1581 #define ELF_NREG 23 1582 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1583 1584 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1585 enum { 1586 TARGET_REG_PC = 16, 1587 TARGET_REG_PR = 17, 1588 TARGET_REG_SR = 18, 1589 TARGET_REG_GBR = 19, 1590 TARGET_REG_MACH = 20, 1591 TARGET_REG_MACL = 21, 1592 TARGET_REG_SYSCALL = 22 1593 }; 1594 1595 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1596 const CPUSH4State *env) 1597 { 1598 int i; 1599 1600 for (i = 0; i < 16; i++) { 1601 (*regs)[i] = tswapreg(env->gregs[i]); 1602 } 1603 1604 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1605 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1606 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1607 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1608 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1609 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1610 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1611 } 1612 1613 #define USE_ELF_CORE_DUMP 1614 #define ELF_EXEC_PAGESIZE 4096 1615 1616 enum { 1617 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1618 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1619 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1620 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1621 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1622 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1623 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1624 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1625 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1626 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1627 }; 1628 1629 #define ELF_HWCAP get_elf_hwcap() 1630 1631 static uint32_t get_elf_hwcap(void) 1632 { 1633 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1634 uint32_t hwcap = 0; 1635 1636 hwcap |= SH_CPU_HAS_FPU; 1637 1638 if (cpu->env.features & SH_FEATURE_SH4A) { 1639 hwcap |= SH_CPU_HAS_LLSC; 1640 } 1641 1642 return hwcap; 1643 } 1644 1645 #endif 1646 1647 #ifdef TARGET_CRIS 1648 1649 #define ELF_CLASS ELFCLASS32 1650 #define ELF_ARCH EM_CRIS 1651 1652 static inline void init_thread(struct target_pt_regs *regs, 1653 struct image_info *infop) 1654 { 1655 regs->erp = infop->entry; 1656 } 1657 1658 #define ELF_EXEC_PAGESIZE 8192 1659 1660 #endif 1661 1662 #ifdef TARGET_M68K 1663 1664 #define ELF_CLASS ELFCLASS32 1665 #define ELF_ARCH EM_68K 1666 1667 /* ??? Does this need to do anything? 1668 #define ELF_PLAT_INIT(_r) */ 1669 1670 static inline void init_thread(struct target_pt_regs *regs, 1671 struct image_info *infop) 1672 { 1673 regs->usp = infop->start_stack; 1674 regs->sr = 0; 1675 regs->pc = infop->entry; 1676 } 1677 1678 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1679 #define ELF_NREG 20 1680 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1681 1682 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1683 { 1684 (*regs)[0] = tswapreg(env->dregs[1]); 1685 (*regs)[1] = tswapreg(env->dregs[2]); 1686 (*regs)[2] = tswapreg(env->dregs[3]); 1687 (*regs)[3] = tswapreg(env->dregs[4]); 1688 (*regs)[4] = tswapreg(env->dregs[5]); 1689 (*regs)[5] = tswapreg(env->dregs[6]); 1690 (*regs)[6] = tswapreg(env->dregs[7]); 1691 (*regs)[7] = tswapreg(env->aregs[0]); 1692 (*regs)[8] = tswapreg(env->aregs[1]); 1693 (*regs)[9] = tswapreg(env->aregs[2]); 1694 (*regs)[10] = tswapreg(env->aregs[3]); 1695 (*regs)[11] = tswapreg(env->aregs[4]); 1696 (*regs)[12] = tswapreg(env->aregs[5]); 1697 (*regs)[13] = tswapreg(env->aregs[6]); 1698 (*regs)[14] = tswapreg(env->dregs[0]); 1699 (*regs)[15] = tswapreg(env->aregs[7]); 1700 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1701 (*regs)[17] = tswapreg(env->sr); 1702 (*regs)[18] = tswapreg(env->pc); 1703 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1704 } 1705 1706 #define USE_ELF_CORE_DUMP 1707 #define ELF_EXEC_PAGESIZE 8192 1708 1709 #endif 1710 1711 #ifdef TARGET_ALPHA 1712 1713 #define ELF_CLASS ELFCLASS64 1714 #define ELF_ARCH EM_ALPHA 1715 1716 static inline void init_thread(struct target_pt_regs *regs, 1717 struct image_info *infop) 1718 { 1719 regs->pc = infop->entry; 1720 regs->ps = 8; 1721 regs->usp = infop->start_stack; 1722 } 1723 1724 #define ELF_EXEC_PAGESIZE 8192 1725 1726 #endif /* TARGET_ALPHA */ 1727 1728 #ifdef TARGET_S390X 1729 1730 #define ELF_CLASS ELFCLASS64 1731 #define ELF_DATA ELFDATA2MSB 1732 #define ELF_ARCH EM_S390 1733 1734 #include "elf.h" 1735 1736 #define ELF_HWCAP get_elf_hwcap() 1737 1738 #define GET_FEATURE(_feat, _hwcap) \ 1739 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1740 1741 uint32_t get_elf_hwcap(void) 1742 { 1743 /* 1744 * Let's assume we always have esan3 and zarch. 1745 * 31-bit processes can use 64-bit registers (high gprs). 1746 */ 1747 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1748 1749 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1750 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1751 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1752 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1753 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1754 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1755 hwcap |= HWCAP_S390_ETF3EH; 1756 } 1757 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1758 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1759 GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2); 1760 1761 return hwcap; 1762 } 1763 1764 const char *elf_hwcap_str(uint32_t bit) 1765 { 1766 static const char *hwcap_str[] = { 1767 [HWCAP_S390_NR_ESAN3] = "esan3", 1768 [HWCAP_S390_NR_ZARCH] = "zarch", 1769 [HWCAP_S390_NR_STFLE] = "stfle", 1770 [HWCAP_S390_NR_MSA] = "msa", 1771 [HWCAP_S390_NR_LDISP] = "ldisp", 1772 [HWCAP_S390_NR_EIMM] = "eimm", 1773 [HWCAP_S390_NR_DFP] = "dfp", 1774 [HWCAP_S390_NR_HPAGE] = "edat", 1775 [HWCAP_S390_NR_ETF3EH] = "etf3eh", 1776 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs", 1777 [HWCAP_S390_NR_TE] = "te", 1778 [HWCAP_S390_NR_VXRS] = "vx", 1779 [HWCAP_S390_NR_VXRS_BCD] = "vxd", 1780 [HWCAP_S390_NR_VXRS_EXT] = "vxe", 1781 [HWCAP_S390_NR_GS] = "gs", 1782 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2", 1783 [HWCAP_S390_NR_VXRS_PDE] = "vxp", 1784 [HWCAP_S390_NR_SORT] = "sort", 1785 [HWCAP_S390_NR_DFLT] = "dflt", 1786 [HWCAP_S390_NR_NNPA] = "nnpa", 1787 [HWCAP_S390_NR_PCI_MIO] = "pcimio", 1788 [HWCAP_S390_NR_SIE] = "sie", 1789 }; 1790 1791 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 1792 } 1793 1794 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1795 { 1796 regs->psw.addr = infop->entry; 1797 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \ 1798 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \ 1799 PSW_MASK_32; 1800 regs->gprs[15] = infop->start_stack; 1801 } 1802 1803 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1804 #define ELF_NREG 27 1805 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1806 1807 enum { 1808 TARGET_REG_PSWM = 0, 1809 TARGET_REG_PSWA = 1, 1810 TARGET_REG_GPRS = 2, 1811 TARGET_REG_ARS = 18, 1812 TARGET_REG_ORIG_R2 = 26, 1813 }; 1814 1815 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1816 const CPUS390XState *env) 1817 { 1818 int i; 1819 uint32_t *aregs; 1820 1821 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1822 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1823 for (i = 0; i < 16; i++) { 1824 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1825 } 1826 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1827 for (i = 0; i < 16; i++) { 1828 aregs[i] = tswap32(env->aregs[i]); 1829 } 1830 (*regs)[TARGET_REG_ORIG_R2] = 0; 1831 } 1832 1833 #define USE_ELF_CORE_DUMP 1834 #define ELF_EXEC_PAGESIZE 4096 1835 1836 #define VDSO_HEADER "vdso.c.inc" 1837 1838 #endif /* TARGET_S390X */ 1839 1840 #ifdef TARGET_RISCV 1841 1842 #define ELF_ARCH EM_RISCV 1843 1844 #ifdef TARGET_RISCV32 1845 #define ELF_CLASS ELFCLASS32 1846 #define VDSO_HEADER "vdso-32.c.inc" 1847 #else 1848 #define ELF_CLASS ELFCLASS64 1849 #define VDSO_HEADER "vdso-64.c.inc" 1850 #endif 1851 1852 #define ELF_HWCAP get_elf_hwcap() 1853 1854 static uint32_t get_elf_hwcap(void) 1855 { 1856 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1857 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1858 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1859 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C') 1860 | MISA_BIT('V'); 1861 1862 return cpu->env.misa_ext & mask; 1863 #undef MISA_BIT 1864 } 1865 1866 static inline void init_thread(struct target_pt_regs *regs, 1867 struct image_info *infop) 1868 { 1869 regs->sepc = infop->entry; 1870 regs->sp = infop->start_stack; 1871 } 1872 1873 #define ELF_EXEC_PAGESIZE 4096 1874 1875 #endif /* TARGET_RISCV */ 1876 1877 #ifdef TARGET_HPPA 1878 1879 #define ELF_CLASS ELFCLASS32 1880 #define ELF_ARCH EM_PARISC 1881 #define ELF_PLATFORM "PARISC" 1882 #define STACK_GROWS_DOWN 0 1883 #define STACK_ALIGNMENT 64 1884 1885 #define VDSO_HEADER "vdso.c.inc" 1886 1887 static inline void init_thread(struct target_pt_regs *regs, 1888 struct image_info *infop) 1889 { 1890 regs->iaoq[0] = infop->entry | PRIV_USER; 1891 regs->iaoq[1] = regs->iaoq[0] + 4; 1892 regs->gr[23] = 0; 1893 regs->gr[24] = infop->argv; 1894 regs->gr[25] = infop->argc; 1895 /* The top-of-stack contains a linkage buffer. */ 1896 regs->gr[30] = infop->start_stack + 64; 1897 regs->gr[31] = infop->entry; 1898 } 1899 1900 #define LO_COMMPAGE 0 1901 1902 static bool init_guest_commpage(void) 1903 { 1904 /* If reserved_va, then we have already mapped 0 page on the host. */ 1905 if (!reserved_va) { 1906 void *want, *addr; 1907 1908 want = g2h_untagged(LO_COMMPAGE); 1909 addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE, 1910 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0); 1911 if (addr == MAP_FAILED) { 1912 perror("Allocating guest commpage"); 1913 exit(EXIT_FAILURE); 1914 } 1915 if (addr != want) { 1916 return false; 1917 } 1918 } 1919 1920 /* 1921 * On Linux, page zero is normally marked execute only + gateway. 1922 * Normal read or write is supposed to fail (thus PROT_NONE above), 1923 * but specific offsets have kernel code mapped to raise permissions 1924 * and implement syscalls. Here, simply mark the page executable. 1925 * Special case the entry points during translation (see do_page_zero). 1926 */ 1927 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1928 PAGE_EXEC | PAGE_VALID); 1929 return true; 1930 } 1931 1932 #endif /* TARGET_HPPA */ 1933 1934 #ifdef TARGET_XTENSA 1935 1936 #define ELF_CLASS ELFCLASS32 1937 #define ELF_ARCH EM_XTENSA 1938 1939 static inline void init_thread(struct target_pt_regs *regs, 1940 struct image_info *infop) 1941 { 1942 regs->windowbase = 0; 1943 regs->windowstart = 1; 1944 regs->areg[1] = infop->start_stack; 1945 regs->pc = infop->entry; 1946 if (info_is_fdpic(infop)) { 1947 regs->areg[4] = infop->loadmap_addr; 1948 regs->areg[5] = infop->interpreter_loadmap_addr; 1949 if (infop->interpreter_loadmap_addr) { 1950 regs->areg[6] = infop->interpreter_pt_dynamic_addr; 1951 } else { 1952 regs->areg[6] = infop->pt_dynamic_addr; 1953 } 1954 } 1955 } 1956 1957 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1958 #define ELF_NREG 128 1959 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1960 1961 enum { 1962 TARGET_REG_PC, 1963 TARGET_REG_PS, 1964 TARGET_REG_LBEG, 1965 TARGET_REG_LEND, 1966 TARGET_REG_LCOUNT, 1967 TARGET_REG_SAR, 1968 TARGET_REG_WINDOWSTART, 1969 TARGET_REG_WINDOWBASE, 1970 TARGET_REG_THREADPTR, 1971 TARGET_REG_AR0 = 64, 1972 }; 1973 1974 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1975 const CPUXtensaState *env) 1976 { 1977 unsigned i; 1978 1979 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1980 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1981 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1982 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1983 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1984 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1985 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1986 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1987 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1988 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1989 for (i = 0; i < env->config->nareg; ++i) { 1990 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1991 } 1992 } 1993 1994 #define USE_ELF_CORE_DUMP 1995 #define ELF_EXEC_PAGESIZE 4096 1996 1997 #endif /* TARGET_XTENSA */ 1998 1999 #ifdef TARGET_HEXAGON 2000 2001 #define ELF_CLASS ELFCLASS32 2002 #define ELF_ARCH EM_HEXAGON 2003 2004 static inline void init_thread(struct target_pt_regs *regs, 2005 struct image_info *infop) 2006 { 2007 regs->sepc = infop->entry; 2008 regs->sp = infop->start_stack; 2009 } 2010 2011 #endif /* TARGET_HEXAGON */ 2012 2013 #ifndef ELF_BASE_PLATFORM 2014 #define ELF_BASE_PLATFORM (NULL) 2015 #endif 2016 2017 #ifndef ELF_PLATFORM 2018 #define ELF_PLATFORM (NULL) 2019 #endif 2020 2021 #ifndef ELF_MACHINE 2022 #define ELF_MACHINE ELF_ARCH 2023 #endif 2024 2025 #ifndef elf_check_arch 2026 #define elf_check_arch(x) ((x) == ELF_ARCH) 2027 #endif 2028 2029 #ifndef elf_check_abi 2030 #define elf_check_abi(x) (1) 2031 #endif 2032 2033 #ifndef ELF_HWCAP 2034 #define ELF_HWCAP 0 2035 #endif 2036 2037 #ifndef STACK_GROWS_DOWN 2038 #define STACK_GROWS_DOWN 1 2039 #endif 2040 2041 #ifndef STACK_ALIGNMENT 2042 #define STACK_ALIGNMENT 16 2043 #endif 2044 2045 #ifdef TARGET_ABI32 2046 #undef ELF_CLASS 2047 #define ELF_CLASS ELFCLASS32 2048 #undef bswaptls 2049 #define bswaptls(ptr) bswap32s(ptr) 2050 #endif 2051 2052 #ifndef EXSTACK_DEFAULT 2053 #define EXSTACK_DEFAULT false 2054 #endif 2055 2056 #include "elf.h" 2057 2058 /* We must delay the following stanzas until after "elf.h". */ 2059 #if defined(TARGET_AARCH64) 2060 2061 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 2062 const uint32_t *data, 2063 struct image_info *info, 2064 Error **errp) 2065 { 2066 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 2067 if (pr_datasz != sizeof(uint32_t)) { 2068 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 2069 return false; 2070 } 2071 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 2072 info->note_flags = *data; 2073 } 2074 return true; 2075 } 2076 #define ARCH_USE_GNU_PROPERTY 1 2077 2078 #else 2079 2080 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 2081 const uint32_t *data, 2082 struct image_info *info, 2083 Error **errp) 2084 { 2085 g_assert_not_reached(); 2086 } 2087 #define ARCH_USE_GNU_PROPERTY 0 2088 2089 #endif 2090 2091 struct exec 2092 { 2093 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 2094 unsigned int a_text; /* length of text, in bytes */ 2095 unsigned int a_data; /* length of data, in bytes */ 2096 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 2097 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 2098 unsigned int a_entry; /* start address */ 2099 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 2100 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 2101 }; 2102 2103 2104 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 2105 #define OMAGIC 0407 2106 #define NMAGIC 0410 2107 #define ZMAGIC 0413 2108 #define QMAGIC 0314 2109 2110 #define DLINFO_ITEMS 16 2111 2112 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 2113 { 2114 memcpy(to, from, n); 2115 } 2116 2117 #ifdef BSWAP_NEEDED 2118 static void bswap_ehdr(struct elfhdr *ehdr) 2119 { 2120 bswap16s(&ehdr->e_type); /* Object file type */ 2121 bswap16s(&ehdr->e_machine); /* Architecture */ 2122 bswap32s(&ehdr->e_version); /* Object file version */ 2123 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 2124 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 2125 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 2126 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 2127 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 2128 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 2129 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 2130 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 2131 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 2132 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 2133 } 2134 2135 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 2136 { 2137 int i; 2138 for (i = 0; i < phnum; ++i, ++phdr) { 2139 bswap32s(&phdr->p_type); /* Segment type */ 2140 bswap32s(&phdr->p_flags); /* Segment flags */ 2141 bswaptls(&phdr->p_offset); /* Segment file offset */ 2142 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 2143 bswaptls(&phdr->p_paddr); /* Segment physical address */ 2144 bswaptls(&phdr->p_filesz); /* Segment size in file */ 2145 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 2146 bswaptls(&phdr->p_align); /* Segment alignment */ 2147 } 2148 } 2149 2150 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 2151 { 2152 int i; 2153 for (i = 0; i < shnum; ++i, ++shdr) { 2154 bswap32s(&shdr->sh_name); 2155 bswap32s(&shdr->sh_type); 2156 bswaptls(&shdr->sh_flags); 2157 bswaptls(&shdr->sh_addr); 2158 bswaptls(&shdr->sh_offset); 2159 bswaptls(&shdr->sh_size); 2160 bswap32s(&shdr->sh_link); 2161 bswap32s(&shdr->sh_info); 2162 bswaptls(&shdr->sh_addralign); 2163 bswaptls(&shdr->sh_entsize); 2164 } 2165 } 2166 2167 static void bswap_sym(struct elf_sym *sym) 2168 { 2169 bswap32s(&sym->st_name); 2170 bswaptls(&sym->st_value); 2171 bswaptls(&sym->st_size); 2172 bswap16s(&sym->st_shndx); 2173 } 2174 2175 #ifdef TARGET_MIPS 2176 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 2177 { 2178 bswap16s(&abiflags->version); 2179 bswap32s(&abiflags->ases); 2180 bswap32s(&abiflags->isa_ext); 2181 bswap32s(&abiflags->flags1); 2182 bswap32s(&abiflags->flags2); 2183 } 2184 #endif 2185 #else 2186 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 2187 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 2188 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 2189 static inline void bswap_sym(struct elf_sym *sym) { } 2190 #ifdef TARGET_MIPS 2191 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 2192 #endif 2193 #endif 2194 2195 #ifdef USE_ELF_CORE_DUMP 2196 static int elf_core_dump(int, const CPUArchState *); 2197 #endif /* USE_ELF_CORE_DUMP */ 2198 static void load_symbols(struct elfhdr *hdr, const ImageSource *src, 2199 abi_ulong load_bias); 2200 2201 /* Verify the portions of EHDR within E_IDENT for the target. 2202 This can be performed before bswapping the entire header. */ 2203 static bool elf_check_ident(struct elfhdr *ehdr) 2204 { 2205 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 2206 && ehdr->e_ident[EI_MAG1] == ELFMAG1 2207 && ehdr->e_ident[EI_MAG2] == ELFMAG2 2208 && ehdr->e_ident[EI_MAG3] == ELFMAG3 2209 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 2210 && ehdr->e_ident[EI_DATA] == ELF_DATA 2211 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 2212 } 2213 2214 /* Verify the portions of EHDR outside of E_IDENT for the target. 2215 This has to wait until after bswapping the header. */ 2216 static bool elf_check_ehdr(struct elfhdr *ehdr) 2217 { 2218 return (elf_check_arch(ehdr->e_machine) 2219 && elf_check_abi(ehdr->e_flags) 2220 && ehdr->e_ehsize == sizeof(struct elfhdr) 2221 && ehdr->e_phentsize == sizeof(struct elf_phdr) 2222 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 2223 } 2224 2225 /* 2226 * 'copy_elf_strings()' copies argument/envelope strings from user 2227 * memory to free pages in kernel mem. These are in a format ready 2228 * to be put directly into the top of new user memory. 2229 * 2230 */ 2231 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2232 abi_ulong p, abi_ulong stack_limit) 2233 { 2234 char *tmp; 2235 int len, i; 2236 abi_ulong top = p; 2237 2238 if (!p) { 2239 return 0; /* bullet-proofing */ 2240 } 2241 2242 if (STACK_GROWS_DOWN) { 2243 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2244 for (i = argc - 1; i >= 0; --i) { 2245 tmp = argv[i]; 2246 if (!tmp) { 2247 fprintf(stderr, "VFS: argc is wrong"); 2248 exit(-1); 2249 } 2250 len = strlen(tmp) + 1; 2251 tmp += len; 2252 2253 if (len > (p - stack_limit)) { 2254 return 0; 2255 } 2256 while (len) { 2257 int bytes_to_copy = (len > offset) ? offset : len; 2258 tmp -= bytes_to_copy; 2259 p -= bytes_to_copy; 2260 offset -= bytes_to_copy; 2261 len -= bytes_to_copy; 2262 2263 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2264 2265 if (offset == 0) { 2266 memcpy_to_target(p, scratch, top - p); 2267 top = p; 2268 offset = TARGET_PAGE_SIZE; 2269 } 2270 } 2271 } 2272 if (p != top) { 2273 memcpy_to_target(p, scratch + offset, top - p); 2274 } 2275 } else { 2276 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2277 for (i = 0; i < argc; ++i) { 2278 tmp = argv[i]; 2279 if (!tmp) { 2280 fprintf(stderr, "VFS: argc is wrong"); 2281 exit(-1); 2282 } 2283 len = strlen(tmp) + 1; 2284 if (len > (stack_limit - p)) { 2285 return 0; 2286 } 2287 while (len) { 2288 int bytes_to_copy = (len > remaining) ? remaining : len; 2289 2290 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2291 2292 tmp += bytes_to_copy; 2293 remaining -= bytes_to_copy; 2294 p += bytes_to_copy; 2295 len -= bytes_to_copy; 2296 2297 if (remaining == 0) { 2298 memcpy_to_target(top, scratch, p - top); 2299 top = p; 2300 remaining = TARGET_PAGE_SIZE; 2301 } 2302 } 2303 } 2304 if (p != top) { 2305 memcpy_to_target(top, scratch, p - top); 2306 } 2307 } 2308 2309 return p; 2310 } 2311 2312 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2313 * argument/environment space. Newer kernels (>2.6.33) allow more, 2314 * dependent on stack size, but guarantee at least 32 pages for 2315 * backwards compatibility. 2316 */ 2317 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2318 2319 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2320 struct image_info *info) 2321 { 2322 abi_ulong size, error, guard; 2323 int prot; 2324 2325 size = guest_stack_size; 2326 if (size < STACK_LOWER_LIMIT) { 2327 size = STACK_LOWER_LIMIT; 2328 } 2329 2330 if (STACK_GROWS_DOWN) { 2331 guard = TARGET_PAGE_SIZE; 2332 if (guard < qemu_real_host_page_size()) { 2333 guard = qemu_real_host_page_size(); 2334 } 2335 } else { 2336 /* no guard page for hppa target where stack grows upwards. */ 2337 guard = 0; 2338 } 2339 2340 prot = PROT_READ | PROT_WRITE; 2341 if (info->exec_stack) { 2342 prot |= PROT_EXEC; 2343 } 2344 error = target_mmap(0, size + guard, prot, 2345 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2346 if (error == -1) { 2347 perror("mmap stack"); 2348 exit(-1); 2349 } 2350 2351 /* We reserve one extra page at the top of the stack as guard. */ 2352 if (STACK_GROWS_DOWN) { 2353 target_mprotect(error, guard, PROT_NONE); 2354 info->stack_limit = error + guard; 2355 return info->stack_limit + size - sizeof(void *); 2356 } else { 2357 info->stack_limit = error + size; 2358 return error; 2359 } 2360 } 2361 2362 /** 2363 * zero_bss: 2364 * 2365 * Map and zero the bss. We need to explicitly zero any fractional pages 2366 * after the data section (i.e. bss). Return false on mapping failure. 2367 */ 2368 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, 2369 int prot, Error **errp) 2370 { 2371 abi_ulong align_bss; 2372 2373 /* We only expect writable bss; the code segment shouldn't need this. */ 2374 if (!(prot & PROT_WRITE)) { 2375 error_setg(errp, "PT_LOAD with non-writable bss"); 2376 return false; 2377 } 2378 2379 align_bss = TARGET_PAGE_ALIGN(start_bss); 2380 end_bss = TARGET_PAGE_ALIGN(end_bss); 2381 2382 if (start_bss < align_bss) { 2383 int flags = page_get_flags(start_bss); 2384 2385 if (!(flags & PAGE_RWX)) { 2386 /* 2387 * The whole address space of the executable was reserved 2388 * at the start, therefore all pages will be VALID. 2389 * But assuming there are no PROT_NONE PT_LOAD segments, 2390 * a PROT_NONE page means no data all bss, and we can 2391 * simply extend the new anon mapping back to the start 2392 * of the page of bss. 2393 */ 2394 align_bss -= TARGET_PAGE_SIZE; 2395 } else { 2396 /* 2397 * The start of the bss shares a page with something. 2398 * The only thing that we expect is the data section, 2399 * which would already be marked writable. 2400 * Overlapping the RX code segment seems malformed. 2401 */ 2402 if (!(flags & PAGE_WRITE)) { 2403 error_setg(errp, "PT_LOAD with bss overlapping " 2404 "non-writable page"); 2405 return false; 2406 } 2407 2408 /* The page is already mapped and writable. */ 2409 memset(g2h_untagged(start_bss), 0, align_bss - start_bss); 2410 } 2411 } 2412 2413 if (align_bss < end_bss && 2414 target_mmap(align_bss, end_bss - align_bss, prot, 2415 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { 2416 error_setg_errno(errp, errno, "Error mapping bss"); 2417 return false; 2418 } 2419 return true; 2420 } 2421 2422 #if defined(TARGET_ARM) 2423 static int elf_is_fdpic(struct elfhdr *exec) 2424 { 2425 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2426 } 2427 #elif defined(TARGET_XTENSA) 2428 static int elf_is_fdpic(struct elfhdr *exec) 2429 { 2430 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; 2431 } 2432 #else 2433 /* Default implementation, always false. */ 2434 static int elf_is_fdpic(struct elfhdr *exec) 2435 { 2436 return 0; 2437 } 2438 #endif 2439 2440 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2441 { 2442 uint16_t n; 2443 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2444 2445 /* elf32_fdpic_loadseg */ 2446 n = info->nsegs; 2447 while (n--) { 2448 sp -= 12; 2449 put_user_u32(loadsegs[n].addr, sp+0); 2450 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2451 put_user_u32(loadsegs[n].p_memsz, sp+8); 2452 } 2453 2454 /* elf32_fdpic_loadmap */ 2455 sp -= 4; 2456 put_user_u16(0, sp+0); /* version */ 2457 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2458 2459 info->personality = PER_LINUX_FDPIC; 2460 info->loadmap_addr = sp; 2461 2462 return sp; 2463 } 2464 2465 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2466 struct elfhdr *exec, 2467 struct image_info *info, 2468 struct image_info *interp_info, 2469 struct image_info *vdso_info) 2470 { 2471 abi_ulong sp; 2472 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2473 int size; 2474 int i; 2475 abi_ulong u_rand_bytes; 2476 uint8_t k_rand_bytes[16]; 2477 abi_ulong u_platform, u_base_platform; 2478 const char *k_platform, *k_base_platform; 2479 const int n = sizeof(elf_addr_t); 2480 2481 sp = p; 2482 2483 /* Needs to be before we load the env/argc/... */ 2484 if (elf_is_fdpic(exec)) { 2485 /* Need 4 byte alignment for these structs */ 2486 sp &= ~3; 2487 sp = loader_build_fdpic_loadmap(info, sp); 2488 info->other_info = interp_info; 2489 if (interp_info) { 2490 interp_info->other_info = info; 2491 sp = loader_build_fdpic_loadmap(interp_info, sp); 2492 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2493 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2494 } else { 2495 info->interpreter_loadmap_addr = 0; 2496 info->interpreter_pt_dynamic_addr = 0; 2497 } 2498 } 2499 2500 u_base_platform = 0; 2501 k_base_platform = ELF_BASE_PLATFORM; 2502 if (k_base_platform) { 2503 size_t len = strlen(k_base_platform) + 1; 2504 if (STACK_GROWS_DOWN) { 2505 sp -= (len + n - 1) & ~(n - 1); 2506 u_base_platform = sp; 2507 /* FIXME - check return value of memcpy_to_target() for failure */ 2508 memcpy_to_target(sp, k_base_platform, len); 2509 } else { 2510 memcpy_to_target(sp, k_base_platform, len); 2511 u_base_platform = sp; 2512 sp += len + 1; 2513 } 2514 } 2515 2516 u_platform = 0; 2517 k_platform = ELF_PLATFORM; 2518 if (k_platform) { 2519 size_t len = strlen(k_platform) + 1; 2520 if (STACK_GROWS_DOWN) { 2521 sp -= (len + n - 1) & ~(n - 1); 2522 u_platform = sp; 2523 /* FIXME - check return value of memcpy_to_target() for failure */ 2524 memcpy_to_target(sp, k_platform, len); 2525 } else { 2526 memcpy_to_target(sp, k_platform, len); 2527 u_platform = sp; 2528 sp += len + 1; 2529 } 2530 } 2531 2532 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2533 * the argv and envp pointers. 2534 */ 2535 if (STACK_GROWS_DOWN) { 2536 sp = QEMU_ALIGN_DOWN(sp, 16); 2537 } else { 2538 sp = QEMU_ALIGN_UP(sp, 16); 2539 } 2540 2541 /* 2542 * Generate 16 random bytes for userspace PRNG seeding. 2543 */ 2544 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2545 if (STACK_GROWS_DOWN) { 2546 sp -= 16; 2547 u_rand_bytes = sp; 2548 /* FIXME - check return value of memcpy_to_target() for failure */ 2549 memcpy_to_target(sp, k_rand_bytes, 16); 2550 } else { 2551 memcpy_to_target(sp, k_rand_bytes, 16); 2552 u_rand_bytes = sp; 2553 sp += 16; 2554 } 2555 2556 size = (DLINFO_ITEMS + 1) * 2; 2557 if (k_base_platform) { 2558 size += 2; 2559 } 2560 if (k_platform) { 2561 size += 2; 2562 } 2563 if (vdso_info) { 2564 size += 2; 2565 } 2566 #ifdef DLINFO_ARCH_ITEMS 2567 size += DLINFO_ARCH_ITEMS * 2; 2568 #endif 2569 #ifdef ELF_HWCAP2 2570 size += 2; 2571 #endif 2572 info->auxv_len = size * n; 2573 2574 size += envc + argc + 2; 2575 size += 1; /* argc itself */ 2576 size *= n; 2577 2578 /* Allocate space and finalize stack alignment for entry now. */ 2579 if (STACK_GROWS_DOWN) { 2580 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2581 sp = u_argc; 2582 } else { 2583 u_argc = sp; 2584 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2585 } 2586 2587 u_argv = u_argc + n; 2588 u_envp = u_argv + (argc + 1) * n; 2589 u_auxv = u_envp + (envc + 1) * n; 2590 info->saved_auxv = u_auxv; 2591 info->argc = argc; 2592 info->envc = envc; 2593 info->argv = u_argv; 2594 info->envp = u_envp; 2595 2596 /* This is correct because Linux defines 2597 * elf_addr_t as Elf32_Off / Elf64_Off 2598 */ 2599 #define NEW_AUX_ENT(id, val) do { \ 2600 put_user_ual(id, u_auxv); u_auxv += n; \ 2601 put_user_ual(val, u_auxv); u_auxv += n; \ 2602 } while(0) 2603 2604 #ifdef ARCH_DLINFO 2605 /* 2606 * ARCH_DLINFO must come first so platform specific code can enforce 2607 * special alignment requirements on the AUXV if necessary (eg. PPC). 2608 */ 2609 ARCH_DLINFO; 2610 #endif 2611 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2612 * on info->auxv_len will trigger. 2613 */ 2614 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2615 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2616 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2617 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2618 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2619 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2620 NEW_AUX_ENT(AT_ENTRY, info->entry); 2621 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2622 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2623 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2624 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2625 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2626 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2627 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2628 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2629 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2630 2631 #ifdef ELF_HWCAP2 2632 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2633 #endif 2634 2635 if (u_base_platform) { 2636 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); 2637 } 2638 if (u_platform) { 2639 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2640 } 2641 if (vdso_info) { 2642 NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr); 2643 } 2644 NEW_AUX_ENT (AT_NULL, 0); 2645 #undef NEW_AUX_ENT 2646 2647 /* Check that our initial calculation of the auxv length matches how much 2648 * we actually put into it. 2649 */ 2650 assert(info->auxv_len == u_auxv - info->saved_auxv); 2651 2652 put_user_ual(argc, u_argc); 2653 2654 p = info->arg_strings; 2655 for (i = 0; i < argc; ++i) { 2656 put_user_ual(p, u_argv); 2657 u_argv += n; 2658 p += target_strlen(p) + 1; 2659 } 2660 put_user_ual(0, u_argv); 2661 2662 p = info->env_strings; 2663 for (i = 0; i < envc; ++i) { 2664 put_user_ual(p, u_envp); 2665 u_envp += n; 2666 p += target_strlen(p) + 1; 2667 } 2668 put_user_ual(0, u_envp); 2669 2670 return sp; 2671 } 2672 2673 #if defined(HI_COMMPAGE) 2674 #define LO_COMMPAGE -1 2675 #elif defined(LO_COMMPAGE) 2676 #define HI_COMMPAGE 0 2677 #else 2678 #define HI_COMMPAGE 0 2679 #define LO_COMMPAGE -1 2680 #ifndef INIT_GUEST_COMMPAGE 2681 #define init_guest_commpage() true 2682 #endif 2683 #endif 2684 2685 /** 2686 * pgb_try_mmap: 2687 * @addr: host start address 2688 * @addr_last: host last address 2689 * @keep: do not unmap the probe region 2690 * 2691 * Return 1 if [@addr, @addr_last] is not mapped in the host, 2692 * return 0 if it is not available to map, and -1 on mmap error. 2693 * If @keep, the region is left mapped on success, otherwise unmapped. 2694 */ 2695 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep) 2696 { 2697 size_t size = addr_last - addr + 1; 2698 void *p = mmap((void *)addr, size, PROT_NONE, 2699 MAP_ANONYMOUS | MAP_PRIVATE | 2700 MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0); 2701 int ret; 2702 2703 if (p == MAP_FAILED) { 2704 return errno == EEXIST ? 0 : -1; 2705 } 2706 ret = p == (void *)addr; 2707 if (!keep || !ret) { 2708 munmap(p, size); 2709 } 2710 return ret; 2711 } 2712 2713 /** 2714 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk) 2715 * @addr: host address 2716 * @addr_last: host last address 2717 * @brk: host brk 2718 * 2719 * Like pgb_try_mmap, but additionally reserve some memory following brk. 2720 */ 2721 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last, 2722 uintptr_t brk, bool keep) 2723 { 2724 uintptr_t brk_last = brk + 16 * MiB - 1; 2725 2726 /* Do not map anything close to the host brk. */ 2727 if (addr <= brk_last && brk <= addr_last) { 2728 return 0; 2729 } 2730 return pgb_try_mmap(addr, addr_last, keep); 2731 } 2732 2733 /** 2734 * pgb_try_mmap_set: 2735 * @ga: set of guest addrs 2736 * @base: guest_base 2737 * @brk: host brk 2738 * 2739 * Return true if all @ga can be mapped by the host at @base. 2740 * On success, retain the mapping at index 0 for reserved_va. 2741 */ 2742 2743 typedef struct PGBAddrs { 2744 uintptr_t bounds[3][2]; /* start/last pairs */ 2745 int nbounds; 2746 } PGBAddrs; 2747 2748 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk) 2749 { 2750 for (int i = ga->nbounds - 1; i >= 0; --i) { 2751 if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base, 2752 ga->bounds[i][1] + base, 2753 brk, i == 0 && reserved_va) <= 0) { 2754 return false; 2755 } 2756 } 2757 return true; 2758 } 2759 2760 /** 2761 * pgb_addr_set: 2762 * @ga: output set of guest addrs 2763 * @guest_loaddr: guest image low address 2764 * @guest_loaddr: guest image high address 2765 * @identity: create for identity mapping 2766 * 2767 * Fill in @ga with the image, COMMPAGE and NULL page. 2768 */ 2769 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr, 2770 abi_ulong guest_hiaddr, bool try_identity) 2771 { 2772 int n; 2773 2774 /* 2775 * With a low commpage, or a guest mapped very low, 2776 * we may not be able to use the identity map. 2777 */ 2778 if (try_identity) { 2779 if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) { 2780 return false; 2781 } 2782 if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) { 2783 return false; 2784 } 2785 } 2786 2787 memset(ga, 0, sizeof(*ga)); 2788 n = 0; 2789 2790 if (reserved_va) { 2791 ga->bounds[n][0] = try_identity ? mmap_min_addr : 0; 2792 ga->bounds[n][1] = reserved_va; 2793 n++; 2794 /* LO_COMMPAGE and NULL handled by reserving from 0. */ 2795 } else { 2796 /* Add any LO_COMMPAGE or NULL page. */ 2797 if (LO_COMMPAGE != -1) { 2798 ga->bounds[n][0] = 0; 2799 ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1; 2800 n++; 2801 } else if (!try_identity) { 2802 ga->bounds[n][0] = 0; 2803 ga->bounds[n][1] = TARGET_PAGE_SIZE - 1; 2804 n++; 2805 } 2806 2807 /* Add the guest image for ET_EXEC. */ 2808 if (guest_loaddr) { 2809 ga->bounds[n][0] = guest_loaddr; 2810 ga->bounds[n][1] = guest_hiaddr; 2811 n++; 2812 } 2813 } 2814 2815 /* 2816 * Temporarily disable 2817 * "comparison is always false due to limited range of data type" 2818 * due to comparison between unsigned and (possible) 0. 2819 */ 2820 #pragma GCC diagnostic push 2821 #pragma GCC diagnostic ignored "-Wtype-limits" 2822 2823 /* Add any HI_COMMPAGE not covered by reserved_va. */ 2824 if (reserved_va < HI_COMMPAGE) { 2825 ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask(); 2826 ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1; 2827 n++; 2828 } 2829 2830 #pragma GCC diagnostic pop 2831 2832 ga->nbounds = n; 2833 return true; 2834 } 2835 2836 static void pgb_fail_in_use(const char *image_name) 2837 { 2838 error_report("%s: requires virtual address space that is in use " 2839 "(omit the -B option or choose a different value)", 2840 image_name); 2841 exit(EXIT_FAILURE); 2842 } 2843 2844 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr, 2845 uintptr_t guest_hiaddr, uintptr_t align) 2846 { 2847 PGBAddrs ga; 2848 uintptr_t brk = (uintptr_t)sbrk(0); 2849 2850 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2851 fprintf(stderr, "Requested guest base %p does not satisfy " 2852 "host minimum alignment (0x%" PRIxPTR ")\n", 2853 (void *)guest_base, align); 2854 exit(EXIT_FAILURE); 2855 } 2856 2857 if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base) 2858 || !pgb_try_mmap_set(&ga, guest_base, brk)) { 2859 pgb_fail_in_use(image_name); 2860 } 2861 } 2862 2863 /** 2864 * pgb_find_fallback: 2865 * 2866 * This is a fallback method for finding holes in the host address space 2867 * if we don't have the benefit of being able to access /proc/self/map. 2868 * It can potentially take a very long time as we can only dumbly iterate 2869 * up the host address space seeing if the allocation would work. 2870 */ 2871 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align, 2872 uintptr_t brk) 2873 { 2874 /* TODO: come up with a better estimate of how much to skip. */ 2875 uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB; 2876 2877 for (uintptr_t base = skip; ; base += skip) { 2878 base = ROUND_UP(base, align); 2879 if (pgb_try_mmap_set(ga, base, brk)) { 2880 return base; 2881 } 2882 if (base >= -skip) { 2883 return -1; 2884 } 2885 } 2886 } 2887 2888 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base, 2889 IntervalTreeRoot *root) 2890 { 2891 for (int i = ga->nbounds - 1; i >= 0; --i) { 2892 uintptr_t s = base + ga->bounds[i][0]; 2893 uintptr_t l = base + ga->bounds[i][1]; 2894 IntervalTreeNode *n; 2895 2896 if (l < s) { 2897 /* Wraparound. Skip to advance S to mmap_min_addr. */ 2898 return mmap_min_addr - s; 2899 } 2900 2901 n = interval_tree_iter_first(root, s, l); 2902 if (n != NULL) { 2903 /* Conflict. Skip to advance S to LAST + 1. */ 2904 return n->last - s + 1; 2905 } 2906 } 2907 return 0; /* success */ 2908 } 2909 2910 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root, 2911 uintptr_t align, uintptr_t brk) 2912 { 2913 uintptr_t last = mmap_min_addr; 2914 uintptr_t base, skip; 2915 2916 while (true) { 2917 base = ROUND_UP(last, align); 2918 if (base < last) { 2919 return -1; 2920 } 2921 2922 skip = pgb_try_itree(ga, base, root); 2923 if (skip == 0) { 2924 break; 2925 } 2926 2927 last = base + skip; 2928 if (last < base) { 2929 return -1; 2930 } 2931 } 2932 2933 /* 2934 * We've chosen 'base' based on holes in the interval tree, 2935 * but we don't yet know if it is a valid host address. 2936 * Because it is the first matching hole, if the host addresses 2937 * are invalid we know there are no further matches. 2938 */ 2939 return pgb_try_mmap_set(ga, base, brk) ? base : -1; 2940 } 2941 2942 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr, 2943 uintptr_t guest_hiaddr, uintptr_t align) 2944 { 2945 IntervalTreeRoot *root; 2946 uintptr_t brk, ret; 2947 PGBAddrs ga; 2948 2949 /* Try the identity map first. */ 2950 if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) { 2951 brk = (uintptr_t)sbrk(0); 2952 if (pgb_try_mmap_set(&ga, 0, brk)) { 2953 guest_base = 0; 2954 return; 2955 } 2956 } 2957 2958 /* 2959 * Rebuild the address set for non-identity map. 2960 * This differs in the mapping of the guest NULL page. 2961 */ 2962 pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false); 2963 2964 root = read_self_maps(); 2965 2966 /* Read brk after we've read the maps, which will malloc. */ 2967 brk = (uintptr_t)sbrk(0); 2968 2969 if (!root) { 2970 ret = pgb_find_fallback(&ga, align, brk); 2971 } else { 2972 /* 2973 * Reserve the area close to the host brk. 2974 * This will be freed with the rest of the tree. 2975 */ 2976 IntervalTreeNode *b = g_new0(IntervalTreeNode, 1); 2977 b->start = brk; 2978 b->last = brk + 16 * MiB - 1; 2979 interval_tree_insert(b, root); 2980 2981 ret = pgb_find_itree(&ga, root, align, brk); 2982 free_self_maps(root); 2983 } 2984 2985 if (ret == -1) { 2986 int w = TARGET_LONG_BITS / 4; 2987 2988 error_report("%s: Unable to find a guest_base to satisfy all " 2989 "guest address mapping requirements", image_name); 2990 2991 for (int i = 0; i < ga.nbounds; ++i) { 2992 error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n", 2993 w, (uint64_t)ga.bounds[i][0], 2994 w, (uint64_t)ga.bounds[i][1]); 2995 } 2996 exit(EXIT_FAILURE); 2997 } 2998 guest_base = ret; 2999 } 3000 3001 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 3002 abi_ulong guest_hiaddr) 3003 { 3004 /* In order to use host shmat, we must be able to honor SHMLBA. */ 3005 uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE); 3006 3007 /* Sanity check the guest binary. */ 3008 if (reserved_va) { 3009 if (guest_hiaddr > reserved_va) { 3010 error_report("%s: requires more than reserved virtual " 3011 "address space (0x%" PRIx64 " > 0x%lx)", 3012 image_name, (uint64_t)guest_hiaddr, reserved_va); 3013 exit(EXIT_FAILURE); 3014 } 3015 } else { 3016 if (guest_hiaddr != (uintptr_t)guest_hiaddr) { 3017 error_report("%s: requires more virtual address space " 3018 "than the host can provide (0x%" PRIx64 ")", 3019 image_name, (uint64_t)guest_hiaddr + 1); 3020 exit(EXIT_FAILURE); 3021 } 3022 } 3023 3024 if (have_guest_base) { 3025 pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align); 3026 } else { 3027 pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align); 3028 } 3029 3030 /* Reserve and initialize the commpage. */ 3031 if (!init_guest_commpage()) { 3032 /* We have already probed for the commpage being free. */ 3033 g_assert_not_reached(); 3034 } 3035 3036 assert(QEMU_IS_ALIGNED(guest_base, align)); 3037 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 3038 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 3039 } 3040 3041 enum { 3042 /* The string "GNU\0" as a magic number. */ 3043 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 3044 NOTE_DATA_SZ = 1 * KiB, 3045 NOTE_NAME_SZ = 4, 3046 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 3047 }; 3048 3049 /* 3050 * Process a single gnu_property entry. 3051 * Return false for error. 3052 */ 3053 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 3054 struct image_info *info, bool have_prev_type, 3055 uint32_t *prev_type, Error **errp) 3056 { 3057 uint32_t pr_type, pr_datasz, step; 3058 3059 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 3060 goto error_data; 3061 } 3062 datasz -= *off; 3063 data += *off / sizeof(uint32_t); 3064 3065 if (datasz < 2 * sizeof(uint32_t)) { 3066 goto error_data; 3067 } 3068 pr_type = data[0]; 3069 pr_datasz = data[1]; 3070 data += 2; 3071 datasz -= 2 * sizeof(uint32_t); 3072 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 3073 if (step > datasz) { 3074 goto error_data; 3075 } 3076 3077 /* Properties are supposed to be unique and sorted on pr_type. */ 3078 if (have_prev_type && pr_type <= *prev_type) { 3079 if (pr_type == *prev_type) { 3080 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 3081 } else { 3082 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 3083 } 3084 return false; 3085 } 3086 *prev_type = pr_type; 3087 3088 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 3089 return false; 3090 } 3091 3092 *off += 2 * sizeof(uint32_t) + step; 3093 return true; 3094 3095 error_data: 3096 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 3097 return false; 3098 } 3099 3100 /* Process NT_GNU_PROPERTY_TYPE_0. */ 3101 static bool parse_elf_properties(const ImageSource *src, 3102 struct image_info *info, 3103 const struct elf_phdr *phdr, 3104 Error **errp) 3105 { 3106 union { 3107 struct elf_note nhdr; 3108 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 3109 } note; 3110 3111 int n, off, datasz; 3112 bool have_prev_type; 3113 uint32_t prev_type; 3114 3115 /* Unless the arch requires properties, ignore them. */ 3116 if (!ARCH_USE_GNU_PROPERTY) { 3117 return true; 3118 } 3119 3120 /* If the properties are crazy large, that's too bad. */ 3121 n = phdr->p_filesz; 3122 if (n > sizeof(note)) { 3123 error_setg(errp, "PT_GNU_PROPERTY too large"); 3124 return false; 3125 } 3126 if (n < sizeof(note.nhdr)) { 3127 error_setg(errp, "PT_GNU_PROPERTY too small"); 3128 return false; 3129 } 3130 3131 if (!imgsrc_read(¬e, phdr->p_offset, n, src, errp)) { 3132 return false; 3133 } 3134 3135 /* 3136 * The contents of a valid PT_GNU_PROPERTY is a sequence 3137 * of uint32_t -- swap them all now. 3138 */ 3139 #ifdef BSWAP_NEEDED 3140 for (int i = 0; i < n / 4; i++) { 3141 bswap32s(note.data + i); 3142 } 3143 #endif 3144 3145 /* 3146 * Note that nhdr is 3 words, and that the "name" described by namesz 3147 * immediately follows nhdr and is thus at the 4th word. Further, all 3148 * of the inputs to the kernel's round_up are multiples of 4. 3149 */ 3150 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 3151 note.nhdr.n_namesz != NOTE_NAME_SZ || 3152 note.data[3] != GNU0_MAGIC) { 3153 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 3154 return false; 3155 } 3156 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 3157 3158 datasz = note.nhdr.n_descsz + off; 3159 if (datasz > n) { 3160 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 3161 return false; 3162 } 3163 3164 have_prev_type = false; 3165 prev_type = 0; 3166 while (1) { 3167 if (off == datasz) { 3168 return true; /* end, exit ok */ 3169 } 3170 if (!parse_elf_property(note.data, &off, datasz, info, 3171 have_prev_type, &prev_type, errp)) { 3172 return false; 3173 } 3174 have_prev_type = true; 3175 } 3176 } 3177 3178 /** 3179 * load_elf_image: Load an ELF image into the address space. 3180 * @image_name: the filename of the image, to use in error messages. 3181 * @src: the ImageSource from which to read. 3182 * @info: info collected from the loaded image. 3183 * @ehdr: the ELF header, not yet bswapped. 3184 * @pinterp_name: record any PT_INTERP string found. 3185 * 3186 * On return: @info values will be filled in, as necessary or available. 3187 */ 3188 3189 static void load_elf_image(const char *image_name, const ImageSource *src, 3190 struct image_info *info, struct elfhdr *ehdr, 3191 char **pinterp_name) 3192 { 3193 g_autofree struct elf_phdr *phdr = NULL; 3194 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 3195 int i, prot_exec; 3196 Error *err = NULL; 3197 3198 /* 3199 * First of all, some simple consistency checks. 3200 * Note that we rely on the bswapped ehdr staying in bprm_buf, 3201 * for later use by load_elf_binary and create_elf_tables. 3202 */ 3203 if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) { 3204 goto exit_errmsg; 3205 } 3206 if (!elf_check_ident(ehdr)) { 3207 error_setg(&err, "Invalid ELF image for this architecture"); 3208 goto exit_errmsg; 3209 } 3210 bswap_ehdr(ehdr); 3211 if (!elf_check_ehdr(ehdr)) { 3212 error_setg(&err, "Invalid ELF image for this architecture"); 3213 goto exit_errmsg; 3214 } 3215 3216 phdr = imgsrc_read_alloc(ehdr->e_phoff, 3217 ehdr->e_phnum * sizeof(struct elf_phdr), 3218 src, &err); 3219 if (phdr == NULL) { 3220 goto exit_errmsg; 3221 } 3222 bswap_phdr(phdr, ehdr->e_phnum); 3223 3224 info->nsegs = 0; 3225 info->pt_dynamic_addr = 0; 3226 3227 mmap_lock(); 3228 3229 /* 3230 * Find the maximum size of the image and allocate an appropriate 3231 * amount of memory to handle that. Locate the interpreter, if any. 3232 */ 3233 loaddr = -1, hiaddr = 0; 3234 info->alignment = 0; 3235 info->exec_stack = EXSTACK_DEFAULT; 3236 for (i = 0; i < ehdr->e_phnum; ++i) { 3237 struct elf_phdr *eppnt = phdr + i; 3238 if (eppnt->p_type == PT_LOAD) { 3239 abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK; 3240 if (a < loaddr) { 3241 loaddr = a; 3242 } 3243 a = eppnt->p_vaddr + eppnt->p_memsz - 1; 3244 if (a > hiaddr) { 3245 hiaddr = a; 3246 } 3247 ++info->nsegs; 3248 info->alignment |= eppnt->p_align; 3249 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 3250 g_autofree char *interp_name = NULL; 3251 3252 if (*pinterp_name) { 3253 error_setg(&err, "Multiple PT_INTERP entries"); 3254 goto exit_errmsg; 3255 } 3256 3257 interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz, 3258 src, &err); 3259 if (interp_name == NULL) { 3260 goto exit_errmsg; 3261 } 3262 if (interp_name[eppnt->p_filesz - 1] != 0) { 3263 error_setg(&err, "Invalid PT_INTERP entry"); 3264 goto exit_errmsg; 3265 } 3266 *pinterp_name = g_steal_pointer(&interp_name); 3267 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 3268 if (!parse_elf_properties(src, info, eppnt, &err)) { 3269 goto exit_errmsg; 3270 } 3271 } else if (eppnt->p_type == PT_GNU_STACK) { 3272 info->exec_stack = eppnt->p_flags & PF_X; 3273 } 3274 } 3275 3276 load_addr = loaddr; 3277 3278 if (pinterp_name != NULL) { 3279 if (ehdr->e_type == ET_EXEC) { 3280 /* 3281 * Make sure that the low address does not conflict with 3282 * MMAP_MIN_ADDR or the QEMU application itself. 3283 */ 3284 probe_guest_base(image_name, loaddr, hiaddr); 3285 } else { 3286 abi_ulong align; 3287 3288 /* 3289 * The binary is dynamic, but we still need to 3290 * select guest_base. In this case we pass a size. 3291 */ 3292 probe_guest_base(image_name, 0, hiaddr - loaddr); 3293 3294 /* 3295 * Avoid collision with the loader by providing a different 3296 * default load address. 3297 */ 3298 load_addr += elf_et_dyn_base; 3299 3300 /* 3301 * TODO: Better support for mmap alignment is desirable. 3302 * Since we do not have complete control over the guest 3303 * address space, we prefer the kernel to choose some address 3304 * rather than force the use of LOAD_ADDR via MAP_FIXED. 3305 * But without MAP_FIXED we cannot guarantee alignment, 3306 * only suggest it. 3307 */ 3308 align = pow2ceil(info->alignment); 3309 if (align) { 3310 load_addr &= -align; 3311 } 3312 } 3313 } 3314 3315 /* 3316 * Reserve address space for all of this. 3317 * 3318 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get 3319 * exactly the address range that is required. Without reserved_va, 3320 * the guest address space is not isolated. We have attempted to avoid 3321 * conflict with the host program itself via probe_guest_base, but using 3322 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check. 3323 * 3324 * Otherwise this is ET_DYN, and we are searching for a location 3325 * that can hold the memory space required. If the image is 3326 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should 3327 * honor that address if it happens to be free. 3328 * 3329 * In both cases, we will overwrite pages in this range with mappings 3330 * from the executable. 3331 */ 3332 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE, 3333 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3334 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0), 3335 -1, 0); 3336 if (load_addr == -1) { 3337 goto exit_mmap; 3338 } 3339 load_bias = load_addr - loaddr; 3340 3341 if (elf_is_fdpic(ehdr)) { 3342 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3343 g_malloc(sizeof(*loadsegs) * info->nsegs); 3344 3345 for (i = 0; i < ehdr->e_phnum; ++i) { 3346 switch (phdr[i].p_type) { 3347 case PT_DYNAMIC: 3348 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3349 break; 3350 case PT_LOAD: 3351 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3352 loadsegs->p_vaddr = phdr[i].p_vaddr; 3353 loadsegs->p_memsz = phdr[i].p_memsz; 3354 ++loadsegs; 3355 break; 3356 } 3357 } 3358 } 3359 3360 info->load_bias = load_bias; 3361 info->code_offset = load_bias; 3362 info->data_offset = load_bias; 3363 info->load_addr = load_addr; 3364 info->entry = ehdr->e_entry + load_bias; 3365 info->start_code = -1; 3366 info->end_code = 0; 3367 info->start_data = -1; 3368 info->end_data = 0; 3369 /* Usual start for brk is after all sections of the main executable. */ 3370 info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias); 3371 info->elf_flags = ehdr->e_flags; 3372 3373 prot_exec = PROT_EXEC; 3374 #ifdef TARGET_AARCH64 3375 /* 3376 * If the BTI feature is present, this indicates that the executable 3377 * pages of the startup binary should be mapped with PROT_BTI, so that 3378 * branch targets are enforced. 3379 * 3380 * The startup binary is either the interpreter or the static executable. 3381 * The interpreter is responsible for all pages of a dynamic executable. 3382 * 3383 * Elf notes are backward compatible to older cpus. 3384 * Do not enable BTI unless it is supported. 3385 */ 3386 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3387 && (pinterp_name == NULL || *pinterp_name == 0) 3388 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3389 prot_exec |= TARGET_PROT_BTI; 3390 } 3391 #endif 3392 3393 for (i = 0; i < ehdr->e_phnum; i++) { 3394 struct elf_phdr *eppnt = phdr + i; 3395 if (eppnt->p_type == PT_LOAD) { 3396 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 3397 int elf_prot = 0; 3398 3399 if (eppnt->p_flags & PF_R) { 3400 elf_prot |= PROT_READ; 3401 } 3402 if (eppnt->p_flags & PF_W) { 3403 elf_prot |= PROT_WRITE; 3404 } 3405 if (eppnt->p_flags & PF_X) { 3406 elf_prot |= prot_exec; 3407 } 3408 3409 vaddr = load_bias + eppnt->p_vaddr; 3410 vaddr_po = vaddr & ~TARGET_PAGE_MASK; 3411 vaddr_ps = vaddr & TARGET_PAGE_MASK; 3412 3413 vaddr_ef = vaddr + eppnt->p_filesz; 3414 vaddr_em = vaddr + eppnt->p_memsz; 3415 3416 /* 3417 * Some segments may be completely empty, with a non-zero p_memsz 3418 * but no backing file segment. 3419 */ 3420 if (eppnt->p_filesz != 0) { 3421 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 3422 elf_prot, MAP_PRIVATE | MAP_FIXED, 3423 src, eppnt->p_offset - vaddr_po); 3424 if (error == -1) { 3425 goto exit_mmap; 3426 } 3427 } 3428 3429 /* If the load segment requests extra zeros (e.g. bss), map it. */ 3430 if (vaddr_ef < vaddr_em && 3431 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) { 3432 goto exit_errmsg; 3433 } 3434 3435 /* Find the full program boundaries. */ 3436 if (elf_prot & PROT_EXEC) { 3437 if (vaddr < info->start_code) { 3438 info->start_code = vaddr; 3439 } 3440 if (vaddr_ef > info->end_code) { 3441 info->end_code = vaddr_ef; 3442 } 3443 } 3444 if (elf_prot & PROT_WRITE) { 3445 if (vaddr < info->start_data) { 3446 info->start_data = vaddr; 3447 } 3448 if (vaddr_ef > info->end_data) { 3449 info->end_data = vaddr_ef; 3450 } 3451 } 3452 #ifdef TARGET_MIPS 3453 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3454 Mips_elf_abiflags_v0 abiflags; 3455 3456 if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags), 3457 src, &err)) { 3458 goto exit_errmsg; 3459 } 3460 bswap_mips_abiflags(&abiflags); 3461 info->fp_abi = abiflags.fp_abi; 3462 #endif 3463 } 3464 } 3465 3466 if (info->end_data == 0) { 3467 info->start_data = info->end_code; 3468 info->end_data = info->end_code; 3469 } 3470 3471 if (qemu_log_enabled()) { 3472 load_symbols(ehdr, src, load_bias); 3473 } 3474 3475 debuginfo_report_elf(image_name, src->fd, load_bias); 3476 3477 mmap_unlock(); 3478 3479 close(src->fd); 3480 return; 3481 3482 exit_mmap: 3483 error_setg_errno(&err, errno, "Error mapping file"); 3484 goto exit_errmsg; 3485 exit_errmsg: 3486 error_reportf_err(err, "%s: ", image_name); 3487 exit(-1); 3488 } 3489 3490 static void load_elf_interp(const char *filename, struct image_info *info, 3491 char bprm_buf[BPRM_BUF_SIZE]) 3492 { 3493 struct elfhdr ehdr; 3494 ImageSource src; 3495 int fd, retval; 3496 Error *err = NULL; 3497 3498 fd = open(path(filename), O_RDONLY); 3499 if (fd < 0) { 3500 error_setg_file_open(&err, errno, filename); 3501 error_report_err(err); 3502 exit(-1); 3503 } 3504 3505 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3506 if (retval < 0) { 3507 error_setg_errno(&err, errno, "Error reading file header"); 3508 error_reportf_err(err, "%s: ", filename); 3509 exit(-1); 3510 } 3511 3512 src.fd = fd; 3513 src.cache = bprm_buf; 3514 src.cache_size = retval; 3515 3516 load_elf_image(filename, &src, info, &ehdr, NULL); 3517 } 3518 3519 #ifdef VDSO_HEADER 3520 #include VDSO_HEADER 3521 #define vdso_image_info() &vdso_image_info 3522 #else 3523 #define vdso_image_info() NULL 3524 #endif 3525 3526 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso) 3527 { 3528 ImageSource src; 3529 struct elfhdr ehdr; 3530 abi_ulong load_bias, load_addr; 3531 3532 src.fd = -1; 3533 src.cache = vdso->image; 3534 src.cache_size = vdso->image_size; 3535 3536 load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL); 3537 load_addr = info->load_addr; 3538 load_bias = info->load_bias; 3539 3540 /* 3541 * We need to relocate the VDSO image. The one built into the kernel 3542 * is built for a fixed address. The one built for QEMU is not, since 3543 * that requires close control of the guest address space. 3544 * We pre-processed the image to locate all of the addresses that need 3545 * to be updated. 3546 */ 3547 for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) { 3548 abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]); 3549 *addr = tswapal(tswapal(*addr) + load_bias); 3550 } 3551 3552 /* Install signal trampolines, if present. */ 3553 if (vdso->sigreturn_ofs) { 3554 default_sigreturn = load_addr + vdso->sigreturn_ofs; 3555 } 3556 if (vdso->rt_sigreturn_ofs) { 3557 default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs; 3558 } 3559 3560 /* Remove write from VDSO segment. */ 3561 target_mprotect(info->start_data, info->end_data - info->start_data, 3562 PROT_READ | PROT_EXEC); 3563 } 3564 3565 static int symfind(const void *s0, const void *s1) 3566 { 3567 struct elf_sym *sym = (struct elf_sym *)s1; 3568 __typeof(sym->st_value) addr = *(uint64_t *)s0; 3569 int result = 0; 3570 3571 if (addr < sym->st_value) { 3572 result = -1; 3573 } else if (addr >= sym->st_value + sym->st_size) { 3574 result = 1; 3575 } 3576 return result; 3577 } 3578 3579 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) 3580 { 3581 #if ELF_CLASS == ELFCLASS32 3582 struct elf_sym *syms = s->disas_symtab.elf32; 3583 #else 3584 struct elf_sym *syms = s->disas_symtab.elf64; 3585 #endif 3586 3587 // binary search 3588 struct elf_sym *sym; 3589 3590 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3591 if (sym != NULL) { 3592 return s->disas_strtab + sym->st_name; 3593 } 3594 3595 return ""; 3596 } 3597 3598 /* FIXME: This should use elf_ops.h.inc */ 3599 static int symcmp(const void *s0, const void *s1) 3600 { 3601 struct elf_sym *sym0 = (struct elf_sym *)s0; 3602 struct elf_sym *sym1 = (struct elf_sym *)s1; 3603 return (sym0->st_value < sym1->st_value) 3604 ? -1 3605 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3606 } 3607 3608 /* Best attempt to load symbols from this ELF object. */ 3609 static void load_symbols(struct elfhdr *hdr, const ImageSource *src, 3610 abi_ulong load_bias) 3611 { 3612 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3613 g_autofree struct elf_shdr *shdr = NULL; 3614 char *strings = NULL; 3615 struct elf_sym *syms = NULL; 3616 struct elf_sym *new_syms; 3617 uint64_t segsz; 3618 3619 shnum = hdr->e_shnum; 3620 shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr), 3621 src, NULL); 3622 if (shdr == NULL) { 3623 return; 3624 } 3625 3626 bswap_shdr(shdr, shnum); 3627 for (i = 0; i < shnum; ++i) { 3628 if (shdr[i].sh_type == SHT_SYMTAB) { 3629 sym_idx = i; 3630 str_idx = shdr[i].sh_link; 3631 goto found; 3632 } 3633 } 3634 3635 /* There will be no symbol table if the file was stripped. */ 3636 return; 3637 3638 found: 3639 /* Now know where the strtab and symtab are. Snarf them. */ 3640 3641 segsz = shdr[str_idx].sh_size; 3642 strings = g_try_malloc(segsz); 3643 if (!strings) { 3644 goto give_up; 3645 } 3646 if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) { 3647 goto give_up; 3648 } 3649 3650 segsz = shdr[sym_idx].sh_size; 3651 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3652 /* 3653 * Implausibly large symbol table: give up rather than ploughing 3654 * on with the number of symbols calculation overflowing. 3655 */ 3656 goto give_up; 3657 } 3658 nsyms = segsz / sizeof(struct elf_sym); 3659 syms = g_try_malloc(segsz); 3660 if (!syms) { 3661 goto give_up; 3662 } 3663 if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) { 3664 goto give_up; 3665 } 3666 3667 for (i = 0; i < nsyms; ) { 3668 bswap_sym(syms + i); 3669 /* Throw away entries which we do not need. */ 3670 if (syms[i].st_shndx == SHN_UNDEF 3671 || syms[i].st_shndx >= SHN_LORESERVE 3672 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3673 if (i < --nsyms) { 3674 syms[i] = syms[nsyms]; 3675 } 3676 } else { 3677 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3678 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3679 syms[i].st_value &= ~(target_ulong)1; 3680 #endif 3681 syms[i].st_value += load_bias; 3682 i++; 3683 } 3684 } 3685 3686 /* No "useful" symbol. */ 3687 if (nsyms == 0) { 3688 goto give_up; 3689 } 3690 3691 /* 3692 * Attempt to free the storage associated with the local symbols 3693 * that we threw away. Whether or not this has any effect on the 3694 * memory allocation depends on the malloc implementation and how 3695 * many symbols we managed to discard. 3696 */ 3697 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3698 if (new_syms == NULL) { 3699 goto give_up; 3700 } 3701 syms = new_syms; 3702 3703 qsort(syms, nsyms, sizeof(*syms), symcmp); 3704 3705 { 3706 struct syminfo *s = g_new(struct syminfo, 1); 3707 3708 s->disas_strtab = strings; 3709 s->disas_num_syms = nsyms; 3710 #if ELF_CLASS == ELFCLASS32 3711 s->disas_symtab.elf32 = syms; 3712 #else 3713 s->disas_symtab.elf64 = syms; 3714 #endif 3715 s->lookup_symbol = lookup_symbolxx; 3716 s->next = syminfos; 3717 syminfos = s; 3718 } 3719 return; 3720 3721 give_up: 3722 g_free(strings); 3723 g_free(syms); 3724 } 3725 3726 uint32_t get_elf_eflags(int fd) 3727 { 3728 struct elfhdr ehdr; 3729 off_t offset; 3730 int ret; 3731 3732 /* Read ELF header */ 3733 offset = lseek(fd, 0, SEEK_SET); 3734 if (offset == (off_t) -1) { 3735 return 0; 3736 } 3737 ret = read(fd, &ehdr, sizeof(ehdr)); 3738 if (ret < sizeof(ehdr)) { 3739 return 0; 3740 } 3741 offset = lseek(fd, offset, SEEK_SET); 3742 if (offset == (off_t) -1) { 3743 return 0; 3744 } 3745 3746 /* Check ELF signature */ 3747 if (!elf_check_ident(&ehdr)) { 3748 return 0; 3749 } 3750 3751 /* check header */ 3752 bswap_ehdr(&ehdr); 3753 if (!elf_check_ehdr(&ehdr)) { 3754 return 0; 3755 } 3756 3757 /* return architecture id */ 3758 return ehdr.e_flags; 3759 } 3760 3761 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3762 { 3763 /* 3764 * We need a copy of the elf header for passing to create_elf_tables. 3765 * We will have overwritten the original when we re-use bprm->buf 3766 * while loading the interpreter. Allocate the storage for this now 3767 * and let elf_load_image do any swapping that may be required. 3768 */ 3769 struct elfhdr ehdr; 3770 struct image_info interp_info, vdso_info; 3771 char *elf_interpreter = NULL; 3772 char *scratch; 3773 3774 memset(&interp_info, 0, sizeof(interp_info)); 3775 #ifdef TARGET_MIPS 3776 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3777 #endif 3778 3779 load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter); 3780 3781 /* Do this so that we can load the interpreter, if need be. We will 3782 change some of these later */ 3783 bprm->p = setup_arg_pages(bprm, info); 3784 3785 scratch = g_new0(char, TARGET_PAGE_SIZE); 3786 if (STACK_GROWS_DOWN) { 3787 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3788 bprm->p, info->stack_limit); 3789 info->file_string = bprm->p; 3790 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3791 bprm->p, info->stack_limit); 3792 info->env_strings = bprm->p; 3793 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3794 bprm->p, info->stack_limit); 3795 info->arg_strings = bprm->p; 3796 } else { 3797 info->arg_strings = bprm->p; 3798 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3799 bprm->p, info->stack_limit); 3800 info->env_strings = bprm->p; 3801 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3802 bprm->p, info->stack_limit); 3803 info->file_string = bprm->p; 3804 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3805 bprm->p, info->stack_limit); 3806 } 3807 3808 g_free(scratch); 3809 3810 if (!bprm->p) { 3811 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3812 exit(-1); 3813 } 3814 3815 if (elf_interpreter) { 3816 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3817 3818 /* 3819 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky 3820 * with the mappings the interpreter can be loaded above but 3821 * near the main executable, which can leave very little room 3822 * for the heap. 3823 * If the current brk has less than 16MB, use the end of the 3824 * interpreter. 3825 */ 3826 if (interp_info.brk > info->brk && 3827 interp_info.load_bias - info->brk < 16 * MiB) { 3828 info->brk = interp_info.brk; 3829 } 3830 3831 /* If the program interpreter is one of these two, then assume 3832 an iBCS2 image. Otherwise assume a native linux image. */ 3833 3834 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3835 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3836 info->personality = PER_SVR4; 3837 3838 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3839 and some applications "depend" upon this behavior. Since 3840 we do not have the power to recompile these, we emulate 3841 the SVr4 behavior. Sigh. */ 3842 target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC, 3843 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS, 3844 -1, 0); 3845 } 3846 #ifdef TARGET_MIPS 3847 info->interp_fp_abi = interp_info.fp_abi; 3848 #endif 3849 } 3850 3851 /* 3852 * Load a vdso if available, which will amongst other things contain the 3853 * signal trampolines. Otherwise, allocate a separate page for them. 3854 */ 3855 const VdsoImageInfo *vdso = vdso_image_info(); 3856 if (vdso) { 3857 load_elf_vdso(&vdso_info, vdso); 3858 info->vdso = vdso_info.load_bias; 3859 } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3860 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3861 PROT_READ | PROT_WRITE, 3862 MAP_PRIVATE | MAP_ANON, -1, 0); 3863 if (tramp_page == -1) { 3864 return -errno; 3865 } 3866 3867 setup_sigtramp(tramp_page); 3868 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3869 } 3870 3871 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info, 3872 elf_interpreter ? &interp_info : NULL, 3873 vdso ? &vdso_info : NULL); 3874 info->start_stack = bprm->p; 3875 3876 /* If we have an interpreter, set that as the program's entry point. 3877 Copy the load_bias as well, to help PPC64 interpret the entry 3878 point as a function descriptor. Do this after creating elf tables 3879 so that we copy the original program entry point into the AUXV. */ 3880 if (elf_interpreter) { 3881 info->load_bias = interp_info.load_bias; 3882 info->entry = interp_info.entry; 3883 g_free(elf_interpreter); 3884 } 3885 3886 #ifdef USE_ELF_CORE_DUMP 3887 bprm->core_dump = &elf_core_dump; 3888 #endif 3889 3890 return 0; 3891 } 3892 3893 #ifdef USE_ELF_CORE_DUMP 3894 #include "exec/translate-all.h" 3895 3896 /* 3897 * Definitions to generate Intel SVR4-like core files. 3898 * These mostly have the same names as the SVR4 types with "target_elf_" 3899 * tacked on the front to prevent clashes with linux definitions, 3900 * and the typedef forms have been avoided. This is mostly like 3901 * the SVR4 structure, but more Linuxy, with things that Linux does 3902 * not support and which gdb doesn't really use excluded. 3903 * 3904 * Fields we don't dump (their contents is zero) in linux-user qemu 3905 * are marked with XXX. 3906 * 3907 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3908 * 3909 * Porting ELF coredump for target is (quite) simple process. First you 3910 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3911 * the target resides): 3912 * 3913 * #define USE_ELF_CORE_DUMP 3914 * 3915 * Next you define type of register set used for dumping. ELF specification 3916 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3917 * 3918 * typedef <target_regtype> target_elf_greg_t; 3919 * #define ELF_NREG <number of registers> 3920 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3921 * 3922 * Last step is to implement target specific function that copies registers 3923 * from given cpu into just specified register set. Prototype is: 3924 * 3925 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3926 * const CPUArchState *env); 3927 * 3928 * Parameters: 3929 * regs - copy register values into here (allocated and zeroed by caller) 3930 * env - copy registers from here 3931 * 3932 * Example for ARM target is provided in this file. 3933 */ 3934 3935 struct target_elf_siginfo { 3936 abi_int si_signo; /* signal number */ 3937 abi_int si_code; /* extra code */ 3938 abi_int si_errno; /* errno */ 3939 }; 3940 3941 struct target_elf_prstatus { 3942 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3943 abi_short pr_cursig; /* Current signal */ 3944 abi_ulong pr_sigpend; /* XXX */ 3945 abi_ulong pr_sighold; /* XXX */ 3946 target_pid_t pr_pid; 3947 target_pid_t pr_ppid; 3948 target_pid_t pr_pgrp; 3949 target_pid_t pr_sid; 3950 struct target_timeval pr_utime; /* XXX User time */ 3951 struct target_timeval pr_stime; /* XXX System time */ 3952 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3953 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3954 target_elf_gregset_t pr_reg; /* GP registers */ 3955 abi_int pr_fpvalid; /* XXX */ 3956 }; 3957 3958 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3959 3960 struct target_elf_prpsinfo { 3961 char pr_state; /* numeric process state */ 3962 char pr_sname; /* char for pr_state */ 3963 char pr_zomb; /* zombie */ 3964 char pr_nice; /* nice val */ 3965 abi_ulong pr_flag; /* flags */ 3966 target_uid_t pr_uid; 3967 target_gid_t pr_gid; 3968 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3969 /* Lots missing */ 3970 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3971 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3972 }; 3973 3974 #ifdef BSWAP_NEEDED 3975 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3976 { 3977 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3978 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3979 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3980 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3981 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3982 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3983 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3984 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3985 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3986 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3987 /* cpu times are not filled, so we skip them */ 3988 /* regs should be in correct format already */ 3989 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3990 } 3991 3992 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3993 { 3994 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3995 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3996 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3997 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3998 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3999 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 4000 psinfo->pr_sid = tswap32(psinfo->pr_sid); 4001 } 4002 4003 static void bswap_note(struct elf_note *en) 4004 { 4005 bswap32s(&en->n_namesz); 4006 bswap32s(&en->n_descsz); 4007 bswap32s(&en->n_type); 4008 } 4009 #else 4010 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 4011 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 4012 static inline void bswap_note(struct elf_note *en) { } 4013 #endif /* BSWAP_NEEDED */ 4014 4015 /* 4016 * Calculate file (dump) size of given memory region. 4017 */ 4018 static size_t vma_dump_size(target_ulong start, target_ulong end, 4019 unsigned long flags) 4020 { 4021 /* The area must be readable. */ 4022 if (!(flags & PAGE_READ)) { 4023 return 0; 4024 } 4025 4026 /* 4027 * Usually we don't dump executable pages as they contain 4028 * non-writable code that debugger can read directly from 4029 * target library etc. If there is no elf header, we dump it. 4030 */ 4031 if (!(flags & PAGE_WRITE_ORG) && 4032 (flags & PAGE_EXEC) && 4033 memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) { 4034 return 0; 4035 } 4036 4037 return end - start; 4038 } 4039 4040 static size_t size_note(const char *name, size_t datasz) 4041 { 4042 size_t namesz = strlen(name) + 1; 4043 4044 namesz = ROUND_UP(namesz, 4); 4045 datasz = ROUND_UP(datasz, 4); 4046 4047 return sizeof(struct elf_note) + namesz + datasz; 4048 } 4049 4050 static void *fill_note(void **pptr, int type, const char *name, size_t datasz) 4051 { 4052 void *ptr = *pptr; 4053 struct elf_note *n = ptr; 4054 size_t namesz = strlen(name) + 1; 4055 4056 n->n_namesz = namesz; 4057 n->n_descsz = datasz; 4058 n->n_type = type; 4059 bswap_note(n); 4060 4061 ptr += sizeof(*n); 4062 memcpy(ptr, name, namesz); 4063 4064 namesz = ROUND_UP(namesz, 4); 4065 datasz = ROUND_UP(datasz, 4); 4066 4067 *pptr = ptr + namesz + datasz; 4068 return ptr + namesz; 4069 } 4070 4071 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 4072 uint32_t flags) 4073 { 4074 memcpy(elf->e_ident, ELFMAG, SELFMAG); 4075 4076 elf->e_ident[EI_CLASS] = ELF_CLASS; 4077 elf->e_ident[EI_DATA] = ELF_DATA; 4078 elf->e_ident[EI_VERSION] = EV_CURRENT; 4079 elf->e_ident[EI_OSABI] = ELF_OSABI; 4080 4081 elf->e_type = ET_CORE; 4082 elf->e_machine = machine; 4083 elf->e_version = EV_CURRENT; 4084 elf->e_phoff = sizeof(struct elfhdr); 4085 elf->e_flags = flags; 4086 elf->e_ehsize = sizeof(struct elfhdr); 4087 elf->e_phentsize = sizeof(struct elf_phdr); 4088 elf->e_phnum = segs; 4089 4090 bswap_ehdr(elf); 4091 } 4092 4093 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset) 4094 { 4095 phdr->p_type = PT_NOTE; 4096 phdr->p_offset = offset; 4097 phdr->p_filesz = sz; 4098 4099 bswap_phdr(phdr, 1); 4100 } 4101 4102 static void fill_prstatus_note(void *data, const TaskState *ts, 4103 CPUState *cpu, int signr) 4104 { 4105 /* 4106 * Because note memory is only aligned to 4, and target_elf_prstatus 4107 * may well have higher alignment requirements, fill locally and 4108 * memcpy to the destination afterward. 4109 */ 4110 struct target_elf_prstatus prstatus = { 4111 .pr_info.si_signo = signr, 4112 .pr_cursig = signr, 4113 .pr_pid = ts->ts_tid, 4114 .pr_ppid = getppid(), 4115 .pr_pgrp = getpgrp(), 4116 .pr_sid = getsid(0), 4117 }; 4118 4119 elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu)); 4120 bswap_prstatus(&prstatus); 4121 memcpy(data, &prstatus, sizeof(prstatus)); 4122 } 4123 4124 static void fill_prpsinfo_note(void *data, const TaskState *ts) 4125 { 4126 /* 4127 * Because note memory is only aligned to 4, and target_elf_prpsinfo 4128 * may well have higher alignment requirements, fill locally and 4129 * memcpy to the destination afterward. 4130 */ 4131 struct target_elf_prpsinfo psinfo = { 4132 .pr_pid = getpid(), 4133 .pr_ppid = getppid(), 4134 .pr_pgrp = getpgrp(), 4135 .pr_sid = getsid(0), 4136 .pr_uid = getuid(), 4137 .pr_gid = getgid(), 4138 }; 4139 char *base_filename; 4140 size_t len; 4141 4142 len = ts->info->env_strings - ts->info->arg_strings; 4143 len = MIN(len, ELF_PRARGSZ); 4144 memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len); 4145 for (size_t i = 0; i < len; i++) { 4146 if (psinfo.pr_psargs[i] == 0) { 4147 psinfo.pr_psargs[i] = ' '; 4148 } 4149 } 4150 4151 base_filename = g_path_get_basename(ts->bprm->filename); 4152 /* 4153 * Using strncpy here is fine: at max-length, 4154 * this field is not NUL-terminated. 4155 */ 4156 strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname)); 4157 g_free(base_filename); 4158 4159 bswap_psinfo(&psinfo); 4160 memcpy(data, &psinfo, sizeof(psinfo)); 4161 } 4162 4163 static void fill_auxv_note(void *data, const TaskState *ts) 4164 { 4165 memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len); 4166 } 4167 4168 /* 4169 * Constructs name of coredump file. We have following convention 4170 * for the name: 4171 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4172 * 4173 * Returns the filename 4174 */ 4175 static char *core_dump_filename(const TaskState *ts) 4176 { 4177 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4178 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4179 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4180 4181 return g_strdup_printf("qemu_%s_%s_%d.core", 4182 base_filename, nowstr, (int)getpid()); 4183 } 4184 4185 static int dump_write(int fd, const void *ptr, size_t size) 4186 { 4187 const char *bufp = (const char *)ptr; 4188 ssize_t bytes_written, bytes_left; 4189 4190 bytes_written = 0; 4191 bytes_left = size; 4192 4193 /* 4194 * In normal conditions, single write(2) should do but 4195 * in case of socket etc. this mechanism is more portable. 4196 */ 4197 do { 4198 bytes_written = write(fd, bufp, bytes_left); 4199 if (bytes_written < 0) { 4200 if (errno == EINTR) 4201 continue; 4202 return (-1); 4203 } else if (bytes_written == 0) { /* eof */ 4204 return (-1); 4205 } 4206 bufp += bytes_written; 4207 bytes_left -= bytes_written; 4208 } while (bytes_left > 0); 4209 4210 return (0); 4211 } 4212 4213 static int wmr_page_unprotect_regions(void *opaque, target_ulong start, 4214 target_ulong end, unsigned long flags) 4215 { 4216 if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) { 4217 size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size()); 4218 4219 while (1) { 4220 page_unprotect(start, 0); 4221 if (end - start <= step) { 4222 break; 4223 } 4224 start += step; 4225 } 4226 } 4227 return 0; 4228 } 4229 4230 typedef struct { 4231 unsigned count; 4232 size_t size; 4233 } CountAndSizeRegions; 4234 4235 static int wmr_count_and_size_regions(void *opaque, target_ulong start, 4236 target_ulong end, unsigned long flags) 4237 { 4238 CountAndSizeRegions *css = opaque; 4239 4240 css->count++; 4241 css->size += vma_dump_size(start, end, flags); 4242 return 0; 4243 } 4244 4245 typedef struct { 4246 struct elf_phdr *phdr; 4247 off_t offset; 4248 } FillRegionPhdr; 4249 4250 static int wmr_fill_region_phdr(void *opaque, target_ulong start, 4251 target_ulong end, unsigned long flags) 4252 { 4253 FillRegionPhdr *d = opaque; 4254 struct elf_phdr *phdr = d->phdr; 4255 4256 phdr->p_type = PT_LOAD; 4257 phdr->p_vaddr = start; 4258 phdr->p_paddr = 0; 4259 phdr->p_filesz = vma_dump_size(start, end, flags); 4260 phdr->p_offset = d->offset; 4261 d->offset += phdr->p_filesz; 4262 phdr->p_memsz = end - start; 4263 phdr->p_flags = (flags & PAGE_READ ? PF_R : 0) 4264 | (flags & PAGE_WRITE_ORG ? PF_W : 0) 4265 | (flags & PAGE_EXEC ? PF_X : 0); 4266 phdr->p_align = ELF_EXEC_PAGESIZE; 4267 4268 bswap_phdr(phdr, 1); 4269 d->phdr = phdr + 1; 4270 return 0; 4271 } 4272 4273 static int wmr_write_region(void *opaque, target_ulong start, 4274 target_ulong end, unsigned long flags) 4275 { 4276 int fd = *(int *)opaque; 4277 size_t size = vma_dump_size(start, end, flags); 4278 4279 if (!size) { 4280 return 0; 4281 } 4282 return dump_write(fd, g2h_untagged(start), size); 4283 } 4284 4285 /* 4286 * Write out ELF coredump. 4287 * 4288 * See documentation of ELF object file format in: 4289 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4290 * 4291 * Coredump format in linux is following: 4292 * 4293 * 0 +----------------------+ \ 4294 * | ELF header | ET_CORE | 4295 * +----------------------+ | 4296 * | ELF program headers | |--- headers 4297 * | - NOTE section | | 4298 * | - PT_LOAD sections | | 4299 * +----------------------+ / 4300 * | NOTEs: | 4301 * | - NT_PRSTATUS | 4302 * | - NT_PRSINFO | 4303 * | - NT_AUXV | 4304 * +----------------------+ <-- aligned to target page 4305 * | Process memory dump | 4306 * : : 4307 * . . 4308 * : : 4309 * | | 4310 * +----------------------+ 4311 * 4312 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4313 * NT_PRSINFO -> struct elf_prpsinfo 4314 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4315 * 4316 * Format follows System V format as close as possible. Current 4317 * version limitations are as follows: 4318 * - no floating point registers are dumped 4319 * 4320 * Function returns 0 in case of success, negative errno otherwise. 4321 * 4322 * TODO: make this work also during runtime: it should be 4323 * possible to force coredump from running process and then 4324 * continue processing. For example qemu could set up SIGUSR2 4325 * handler (provided that target process haven't registered 4326 * handler for that) that does the dump when signal is received. 4327 */ 4328 static int elf_core_dump(int signr, const CPUArchState *env) 4329 { 4330 const CPUState *cpu = env_cpu((CPUArchState *)env); 4331 const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu); 4332 struct rlimit dumpsize; 4333 CountAndSizeRegions css; 4334 off_t offset, note_offset, data_offset; 4335 size_t note_size; 4336 int cpus, ret; 4337 int fd = -1; 4338 CPUState *cpu_iter; 4339 4340 if (prctl(PR_GET_DUMPABLE) == 0) { 4341 return 0; 4342 } 4343 4344 if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) { 4345 return 0; 4346 } 4347 4348 cpu_list_lock(); 4349 mmap_lock(); 4350 4351 /* By unprotecting, we merge vmas that might be split. */ 4352 walk_memory_regions(NULL, wmr_page_unprotect_regions); 4353 4354 /* 4355 * Walk through target process memory mappings and 4356 * set up structure containing this information. 4357 */ 4358 memset(&css, 0, sizeof(css)); 4359 walk_memory_regions(&css, wmr_count_and_size_regions); 4360 4361 cpus = 0; 4362 CPU_FOREACH(cpu_iter) { 4363 cpus++; 4364 } 4365 4366 offset = sizeof(struct elfhdr); 4367 offset += (css.count + 1) * sizeof(struct elf_phdr); 4368 note_offset = offset; 4369 4370 offset += size_note("CORE", ts->info->auxv_len); 4371 offset += size_note("CORE", sizeof(struct target_elf_prpsinfo)); 4372 offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus; 4373 note_size = offset - note_offset; 4374 data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE); 4375 4376 /* Do not dump if the corefile size exceeds the limit. */ 4377 if (dumpsize.rlim_cur != RLIM_INFINITY 4378 && dumpsize.rlim_cur < data_offset + css.size) { 4379 errno = 0; 4380 goto out; 4381 } 4382 4383 { 4384 g_autofree char *corefile = core_dump_filename(ts); 4385 fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC, 4386 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); 4387 } 4388 if (fd < 0) { 4389 goto out; 4390 } 4391 4392 /* 4393 * There is a fair amount of alignment padding within the notes 4394 * as well as preceeding the process memory. Allocate a zeroed 4395 * block to hold it all. Write all of the headers directly into 4396 * this buffer and then write it out as a block. 4397 */ 4398 { 4399 g_autofree void *header = g_malloc0(data_offset); 4400 FillRegionPhdr frp; 4401 void *hptr, *dptr; 4402 4403 /* Create elf file header. */ 4404 hptr = header; 4405 fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0); 4406 hptr += sizeof(struct elfhdr); 4407 4408 /* Create elf program headers. */ 4409 fill_elf_note_phdr(hptr, note_size, note_offset); 4410 hptr += sizeof(struct elf_phdr); 4411 4412 frp.phdr = hptr; 4413 frp.offset = data_offset; 4414 walk_memory_regions(&frp, wmr_fill_region_phdr); 4415 hptr = frp.phdr; 4416 4417 /* Create the notes. */ 4418 dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len); 4419 fill_auxv_note(dptr, ts); 4420 4421 dptr = fill_note(&hptr, NT_PRPSINFO, "CORE", 4422 sizeof(struct target_elf_prpsinfo)); 4423 fill_prpsinfo_note(dptr, ts); 4424 4425 CPU_FOREACH(cpu_iter) { 4426 dptr = fill_note(&hptr, NT_PRSTATUS, "CORE", 4427 sizeof(struct target_elf_prstatus)); 4428 fill_prstatus_note(dptr, ts, cpu_iter, 4429 cpu_iter == cpu ? signr : 0); 4430 } 4431 4432 if (dump_write(fd, header, data_offset) < 0) { 4433 goto out; 4434 } 4435 } 4436 4437 /* 4438 * Finally write process memory into the corefile as well. 4439 */ 4440 if (walk_memory_regions(&fd, wmr_write_region) < 0) { 4441 goto out; 4442 } 4443 errno = 0; 4444 4445 out: 4446 ret = -errno; 4447 mmap_unlock(); 4448 cpu_list_unlock(); 4449 if (fd >= 0) { 4450 close(fd); 4451 } 4452 return ret; 4453 } 4454 #endif /* USE_ELF_CORE_DUMP */ 4455 4456 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4457 { 4458 init_thread(regs, infop); 4459 } 4460