1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/bitops.h" 11 #include "qemu/path.h" 12 #include "qemu/queue.h" 13 #include "qemu/guest-random.h" 14 #include "qemu/units.h" 15 #include "qemu/selfmap.h" 16 #include "qapi/error.h" 17 18 #ifdef _ARCH_PPC64 19 #undef ARCH_DLINFO 20 #undef ELF_PLATFORM 21 #undef ELF_HWCAP 22 #undef ELF_HWCAP2 23 #undef ELF_CLASS 24 #undef ELF_DATA 25 #undef ELF_ARCH 26 #endif 27 28 #define ELF_OSABI ELFOSABI_SYSV 29 30 /* from personality.h */ 31 32 /* 33 * Flags for bug emulation. 34 * 35 * These occupy the top three bytes. 36 */ 37 enum { 38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 40 descriptors (signal handling) */ 41 MMAP_PAGE_ZERO = 0x0100000, 42 ADDR_COMPAT_LAYOUT = 0x0200000, 43 READ_IMPLIES_EXEC = 0x0400000, 44 ADDR_LIMIT_32BIT = 0x0800000, 45 SHORT_INODE = 0x1000000, 46 WHOLE_SECONDS = 0x2000000, 47 STICKY_TIMEOUTS = 0x4000000, 48 ADDR_LIMIT_3GB = 0x8000000, 49 }; 50 51 /* 52 * Personality types. 53 * 54 * These go in the low byte. Avoid using the top bit, it will 55 * conflict with error returns. 56 */ 57 enum { 58 PER_LINUX = 0x0000, 59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 67 PER_BSD = 0x0006, 68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 70 PER_LINUX32 = 0x0008, 71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 75 PER_RISCOS = 0x000c, 76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 78 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 79 PER_HPUX = 0x0010, 80 PER_MASK = 0x00ff, 81 }; 82 83 /* 84 * Return the base personality without flags. 85 */ 86 #define personality(pers) (pers & PER_MASK) 87 88 int info_is_fdpic(struct image_info *info) 89 { 90 return info->personality == PER_LINUX_FDPIC; 91 } 92 93 /* this flag is uneffective under linux too, should be deleted */ 94 #ifndef MAP_DENYWRITE 95 #define MAP_DENYWRITE 0 96 #endif 97 98 /* should probably go in elf.h */ 99 #ifndef ELIBBAD 100 #define ELIBBAD 80 101 #endif 102 103 #ifdef TARGET_WORDS_BIGENDIAN 104 #define ELF_DATA ELFDATA2MSB 105 #else 106 #define ELF_DATA ELFDATA2LSB 107 #endif 108 109 #ifdef TARGET_ABI_MIPSN32 110 typedef abi_ullong target_elf_greg_t; 111 #define tswapreg(ptr) tswap64(ptr) 112 #else 113 typedef abi_ulong target_elf_greg_t; 114 #define tswapreg(ptr) tswapal(ptr) 115 #endif 116 117 #ifdef USE_UID16 118 typedef abi_ushort target_uid_t; 119 typedef abi_ushort target_gid_t; 120 #else 121 typedef abi_uint target_uid_t; 122 typedef abi_uint target_gid_t; 123 #endif 124 typedef abi_int target_pid_t; 125 126 #ifdef TARGET_I386 127 128 #define ELF_PLATFORM get_elf_platform() 129 130 static const char *get_elf_platform(void) 131 { 132 static char elf_platform[] = "i386"; 133 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 134 if (family > 6) 135 family = 6; 136 if (family >= 3) 137 elf_platform[1] = '0' + family; 138 return elf_platform; 139 } 140 141 #define ELF_HWCAP get_elf_hwcap() 142 143 static uint32_t get_elf_hwcap(void) 144 { 145 X86CPU *cpu = X86_CPU(thread_cpu); 146 147 return cpu->env.features[FEAT_1_EDX]; 148 } 149 150 #ifdef TARGET_X86_64 151 #define ELF_START_MMAP 0x2aaaaab000ULL 152 153 #define ELF_CLASS ELFCLASS64 154 #define ELF_ARCH EM_X86_64 155 156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 157 { 158 regs->rax = 0; 159 regs->rsp = infop->start_stack; 160 regs->rip = infop->entry; 161 } 162 163 #define ELF_NREG 27 164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 165 166 /* 167 * Note that ELF_NREG should be 29 as there should be place for 168 * TRAPNO and ERR "registers" as well but linux doesn't dump 169 * those. 170 * 171 * See linux kernel: arch/x86/include/asm/elf.h 172 */ 173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 174 { 175 (*regs)[0] = env->regs[15]; 176 (*regs)[1] = env->regs[14]; 177 (*regs)[2] = env->regs[13]; 178 (*regs)[3] = env->regs[12]; 179 (*regs)[4] = env->regs[R_EBP]; 180 (*regs)[5] = env->regs[R_EBX]; 181 (*regs)[6] = env->regs[11]; 182 (*regs)[7] = env->regs[10]; 183 (*regs)[8] = env->regs[9]; 184 (*regs)[9] = env->regs[8]; 185 (*regs)[10] = env->regs[R_EAX]; 186 (*regs)[11] = env->regs[R_ECX]; 187 (*regs)[12] = env->regs[R_EDX]; 188 (*regs)[13] = env->regs[R_ESI]; 189 (*regs)[14] = env->regs[R_EDI]; 190 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 191 (*regs)[16] = env->eip; 192 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 193 (*regs)[18] = env->eflags; 194 (*regs)[19] = env->regs[R_ESP]; 195 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 196 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 197 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 198 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 199 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 200 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 201 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 202 } 203 204 #else 205 206 #define ELF_START_MMAP 0x80000000 207 208 /* 209 * This is used to ensure we don't load something for the wrong architecture. 210 */ 211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 212 213 /* 214 * These are used to set parameters in the core dumps. 215 */ 216 #define ELF_CLASS ELFCLASS32 217 #define ELF_ARCH EM_386 218 219 static inline void init_thread(struct target_pt_regs *regs, 220 struct image_info *infop) 221 { 222 regs->esp = infop->start_stack; 223 regs->eip = infop->entry; 224 225 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 226 starts %edx contains a pointer to a function which might be 227 registered using `atexit'. This provides a mean for the 228 dynamic linker to call DT_FINI functions for shared libraries 229 that have been loaded before the code runs. 230 231 A value of 0 tells we have no such handler. */ 232 regs->edx = 0; 233 } 234 235 #define ELF_NREG 17 236 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 237 238 /* 239 * Note that ELF_NREG should be 19 as there should be place for 240 * TRAPNO and ERR "registers" as well but linux doesn't dump 241 * those. 242 * 243 * See linux kernel: arch/x86/include/asm/elf.h 244 */ 245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 246 { 247 (*regs)[0] = env->regs[R_EBX]; 248 (*regs)[1] = env->regs[R_ECX]; 249 (*regs)[2] = env->regs[R_EDX]; 250 (*regs)[3] = env->regs[R_ESI]; 251 (*regs)[4] = env->regs[R_EDI]; 252 (*regs)[5] = env->regs[R_EBP]; 253 (*regs)[6] = env->regs[R_EAX]; 254 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 255 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 256 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 257 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 258 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 259 (*regs)[12] = env->eip; 260 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 261 (*regs)[14] = env->eflags; 262 (*regs)[15] = env->regs[R_ESP]; 263 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 264 } 265 #endif 266 267 #define USE_ELF_CORE_DUMP 268 #define ELF_EXEC_PAGESIZE 4096 269 270 #endif 271 272 #ifdef TARGET_ARM 273 274 #ifndef TARGET_AARCH64 275 /* 32 bit ARM definitions */ 276 277 #define ELF_START_MMAP 0x80000000 278 279 #define ELF_ARCH EM_ARM 280 #define ELF_CLASS ELFCLASS32 281 282 static inline void init_thread(struct target_pt_regs *regs, 283 struct image_info *infop) 284 { 285 abi_long stack = infop->start_stack; 286 memset(regs, 0, sizeof(*regs)); 287 288 regs->uregs[16] = ARM_CPU_MODE_USR; 289 if (infop->entry & 1) { 290 regs->uregs[16] |= CPSR_T; 291 } 292 regs->uregs[15] = infop->entry & 0xfffffffe; 293 regs->uregs[13] = infop->start_stack; 294 /* FIXME - what to for failure of get_user()? */ 295 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 296 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 297 /* XXX: it seems that r0 is zeroed after ! */ 298 regs->uregs[0] = 0; 299 /* For uClinux PIC binaries. */ 300 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 301 regs->uregs[10] = infop->start_data; 302 303 /* Support ARM FDPIC. */ 304 if (info_is_fdpic(infop)) { 305 /* As described in the ABI document, r7 points to the loadmap info 306 * prepared by the kernel. If an interpreter is needed, r8 points 307 * to the interpreter loadmap and r9 points to the interpreter 308 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 309 * r9 points to the main program PT_DYNAMIC info. 310 */ 311 regs->uregs[7] = infop->loadmap_addr; 312 if (infop->interpreter_loadmap_addr) { 313 /* Executable is dynamically loaded. */ 314 regs->uregs[8] = infop->interpreter_loadmap_addr; 315 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 316 } else { 317 regs->uregs[8] = 0; 318 regs->uregs[9] = infop->pt_dynamic_addr; 319 } 320 } 321 } 322 323 #define ELF_NREG 18 324 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 325 326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 327 { 328 (*regs)[0] = tswapreg(env->regs[0]); 329 (*regs)[1] = tswapreg(env->regs[1]); 330 (*regs)[2] = tswapreg(env->regs[2]); 331 (*regs)[3] = tswapreg(env->regs[3]); 332 (*regs)[4] = tswapreg(env->regs[4]); 333 (*regs)[5] = tswapreg(env->regs[5]); 334 (*regs)[6] = tswapreg(env->regs[6]); 335 (*regs)[7] = tswapreg(env->regs[7]); 336 (*regs)[8] = tswapreg(env->regs[8]); 337 (*regs)[9] = tswapreg(env->regs[9]); 338 (*regs)[10] = tswapreg(env->regs[10]); 339 (*regs)[11] = tswapreg(env->regs[11]); 340 (*regs)[12] = tswapreg(env->regs[12]); 341 (*regs)[13] = tswapreg(env->regs[13]); 342 (*regs)[14] = tswapreg(env->regs[14]); 343 (*regs)[15] = tswapreg(env->regs[15]); 344 345 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 346 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 347 } 348 349 #define USE_ELF_CORE_DUMP 350 #define ELF_EXEC_PAGESIZE 4096 351 352 enum 353 { 354 ARM_HWCAP_ARM_SWP = 1 << 0, 355 ARM_HWCAP_ARM_HALF = 1 << 1, 356 ARM_HWCAP_ARM_THUMB = 1 << 2, 357 ARM_HWCAP_ARM_26BIT = 1 << 3, 358 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 359 ARM_HWCAP_ARM_FPA = 1 << 5, 360 ARM_HWCAP_ARM_VFP = 1 << 6, 361 ARM_HWCAP_ARM_EDSP = 1 << 7, 362 ARM_HWCAP_ARM_JAVA = 1 << 8, 363 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 364 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 365 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 366 ARM_HWCAP_ARM_NEON = 1 << 12, 367 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 368 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 369 ARM_HWCAP_ARM_TLS = 1 << 15, 370 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 371 ARM_HWCAP_ARM_IDIVA = 1 << 17, 372 ARM_HWCAP_ARM_IDIVT = 1 << 18, 373 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 374 ARM_HWCAP_ARM_LPAE = 1 << 20, 375 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 376 }; 377 378 enum { 379 ARM_HWCAP2_ARM_AES = 1 << 0, 380 ARM_HWCAP2_ARM_PMULL = 1 << 1, 381 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 382 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 383 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 384 }; 385 386 /* The commpage only exists for 32 bit kernels */ 387 388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u 389 390 static bool init_guest_commpage(void) 391 { 392 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size); 393 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 394 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 395 396 if (addr == MAP_FAILED) { 397 perror("Allocating guest commpage"); 398 exit(EXIT_FAILURE); 399 } 400 if (addr != want) { 401 return false; 402 } 403 404 /* Set kernel helper versions; rest of page is 0. */ 405 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 406 407 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 408 perror("Protecting guest commpage"); 409 exit(EXIT_FAILURE); 410 } 411 return true; 412 } 413 414 #define ELF_HWCAP get_elf_hwcap() 415 #define ELF_HWCAP2 get_elf_hwcap2() 416 417 static uint32_t get_elf_hwcap(void) 418 { 419 ARMCPU *cpu = ARM_CPU(thread_cpu); 420 uint32_t hwcaps = 0; 421 422 hwcaps |= ARM_HWCAP_ARM_SWP; 423 hwcaps |= ARM_HWCAP_ARM_HALF; 424 hwcaps |= ARM_HWCAP_ARM_THUMB; 425 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 426 427 /* probe for the extra features */ 428 #define GET_FEATURE(feat, hwcap) \ 429 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 430 431 #define GET_FEATURE_ID(feat, hwcap) \ 432 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 433 434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 440 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 441 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 442 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 443 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 444 445 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 446 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 447 hwcaps |= ARM_HWCAP_ARM_VFPv3; 448 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 449 hwcaps |= ARM_HWCAP_ARM_VFPD32; 450 } else { 451 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 452 } 453 } 454 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 455 456 return hwcaps; 457 } 458 459 static uint32_t get_elf_hwcap2(void) 460 { 461 ARMCPU *cpu = ARM_CPU(thread_cpu); 462 uint32_t hwcaps = 0; 463 464 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 465 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 466 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 467 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 468 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 469 return hwcaps; 470 } 471 472 #undef GET_FEATURE 473 #undef GET_FEATURE_ID 474 475 #define ELF_PLATFORM get_elf_platform() 476 477 static const char *get_elf_platform(void) 478 { 479 CPUARMState *env = thread_cpu->env_ptr; 480 481 #ifdef TARGET_WORDS_BIGENDIAN 482 # define END "b" 483 #else 484 # define END "l" 485 #endif 486 487 if (arm_feature(env, ARM_FEATURE_V8)) { 488 return "v8" END; 489 } else if (arm_feature(env, ARM_FEATURE_V7)) { 490 if (arm_feature(env, ARM_FEATURE_M)) { 491 return "v7m" END; 492 } else { 493 return "v7" END; 494 } 495 } else if (arm_feature(env, ARM_FEATURE_V6)) { 496 return "v6" END; 497 } else if (arm_feature(env, ARM_FEATURE_V5)) { 498 return "v5" END; 499 } else { 500 return "v4" END; 501 } 502 503 #undef END 504 } 505 506 #else 507 /* 64 bit ARM definitions */ 508 #define ELF_START_MMAP 0x80000000 509 510 #define ELF_ARCH EM_AARCH64 511 #define ELF_CLASS ELFCLASS64 512 #ifdef TARGET_WORDS_BIGENDIAN 513 # define ELF_PLATFORM "aarch64_be" 514 #else 515 # define ELF_PLATFORM "aarch64" 516 #endif 517 518 static inline void init_thread(struct target_pt_regs *regs, 519 struct image_info *infop) 520 { 521 abi_long stack = infop->start_stack; 522 memset(regs, 0, sizeof(*regs)); 523 524 regs->pc = infop->entry & ~0x3ULL; 525 regs->sp = stack; 526 } 527 528 #define ELF_NREG 34 529 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 530 531 static void elf_core_copy_regs(target_elf_gregset_t *regs, 532 const CPUARMState *env) 533 { 534 int i; 535 536 for (i = 0; i < 32; i++) { 537 (*regs)[i] = tswapreg(env->xregs[i]); 538 } 539 (*regs)[32] = tswapreg(env->pc); 540 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 541 } 542 543 #define USE_ELF_CORE_DUMP 544 #define ELF_EXEC_PAGESIZE 4096 545 546 enum { 547 ARM_HWCAP_A64_FP = 1 << 0, 548 ARM_HWCAP_A64_ASIMD = 1 << 1, 549 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 550 ARM_HWCAP_A64_AES = 1 << 3, 551 ARM_HWCAP_A64_PMULL = 1 << 4, 552 ARM_HWCAP_A64_SHA1 = 1 << 5, 553 ARM_HWCAP_A64_SHA2 = 1 << 6, 554 ARM_HWCAP_A64_CRC32 = 1 << 7, 555 ARM_HWCAP_A64_ATOMICS = 1 << 8, 556 ARM_HWCAP_A64_FPHP = 1 << 9, 557 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 558 ARM_HWCAP_A64_CPUID = 1 << 11, 559 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 560 ARM_HWCAP_A64_JSCVT = 1 << 13, 561 ARM_HWCAP_A64_FCMA = 1 << 14, 562 ARM_HWCAP_A64_LRCPC = 1 << 15, 563 ARM_HWCAP_A64_DCPOP = 1 << 16, 564 ARM_HWCAP_A64_SHA3 = 1 << 17, 565 ARM_HWCAP_A64_SM3 = 1 << 18, 566 ARM_HWCAP_A64_SM4 = 1 << 19, 567 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 568 ARM_HWCAP_A64_SHA512 = 1 << 21, 569 ARM_HWCAP_A64_SVE = 1 << 22, 570 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 571 ARM_HWCAP_A64_DIT = 1 << 24, 572 ARM_HWCAP_A64_USCAT = 1 << 25, 573 ARM_HWCAP_A64_ILRCPC = 1 << 26, 574 ARM_HWCAP_A64_FLAGM = 1 << 27, 575 ARM_HWCAP_A64_SSBS = 1 << 28, 576 ARM_HWCAP_A64_SB = 1 << 29, 577 ARM_HWCAP_A64_PACA = 1 << 30, 578 ARM_HWCAP_A64_PACG = 1UL << 31, 579 580 ARM_HWCAP2_A64_DCPODP = 1 << 0, 581 ARM_HWCAP2_A64_SVE2 = 1 << 1, 582 ARM_HWCAP2_A64_SVEAES = 1 << 2, 583 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 584 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 585 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 586 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 587 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 588 ARM_HWCAP2_A64_FRINT = 1 << 8, 589 }; 590 591 #define ELF_HWCAP get_elf_hwcap() 592 #define ELF_HWCAP2 get_elf_hwcap2() 593 594 #define GET_FEATURE_ID(feat, hwcap) \ 595 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 596 597 static uint32_t get_elf_hwcap(void) 598 { 599 ARMCPU *cpu = ARM_CPU(thread_cpu); 600 uint32_t hwcaps = 0; 601 602 hwcaps |= ARM_HWCAP_A64_FP; 603 hwcaps |= ARM_HWCAP_A64_ASIMD; 604 hwcaps |= ARM_HWCAP_A64_CPUID; 605 606 /* probe for the extra features */ 607 608 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 609 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 610 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 611 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 612 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 613 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 614 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 615 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 616 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 617 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 618 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 619 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 620 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 621 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 622 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 623 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 624 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 625 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 626 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 627 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 628 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 629 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 630 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 631 632 return hwcaps; 633 } 634 635 static uint32_t get_elf_hwcap2(void) 636 { 637 ARMCPU *cpu = ARM_CPU(thread_cpu); 638 uint32_t hwcaps = 0; 639 640 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 641 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 642 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 643 644 return hwcaps; 645 } 646 647 #undef GET_FEATURE_ID 648 649 #endif /* not TARGET_AARCH64 */ 650 #endif /* TARGET_ARM */ 651 652 #ifdef TARGET_SPARC 653 #ifdef TARGET_SPARC64 654 655 #define ELF_START_MMAP 0x80000000 656 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 657 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 658 #ifndef TARGET_ABI32 659 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 660 #else 661 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 662 #endif 663 664 #define ELF_CLASS ELFCLASS64 665 #define ELF_ARCH EM_SPARCV9 666 667 #define STACK_BIAS 2047 668 669 static inline void init_thread(struct target_pt_regs *regs, 670 struct image_info *infop) 671 { 672 #ifndef TARGET_ABI32 673 regs->tstate = 0; 674 #endif 675 regs->pc = infop->entry; 676 regs->npc = regs->pc + 4; 677 regs->y = 0; 678 #ifdef TARGET_ABI32 679 regs->u_regs[14] = infop->start_stack - 16 * 4; 680 #else 681 if (personality(infop->personality) == PER_LINUX32) 682 regs->u_regs[14] = infop->start_stack - 16 * 4; 683 else 684 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 685 #endif 686 } 687 688 #else 689 #define ELF_START_MMAP 0x80000000 690 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 691 | HWCAP_SPARC_MULDIV) 692 693 #define ELF_CLASS ELFCLASS32 694 #define ELF_ARCH EM_SPARC 695 696 static inline void init_thread(struct target_pt_regs *regs, 697 struct image_info *infop) 698 { 699 regs->psr = 0; 700 regs->pc = infop->entry; 701 regs->npc = regs->pc + 4; 702 regs->y = 0; 703 regs->u_regs[14] = infop->start_stack - 16 * 4; 704 } 705 706 #endif 707 #endif 708 709 #ifdef TARGET_PPC 710 711 #define ELF_MACHINE PPC_ELF_MACHINE 712 #define ELF_START_MMAP 0x80000000 713 714 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 715 716 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 717 718 #define ELF_CLASS ELFCLASS64 719 720 #else 721 722 #define ELF_CLASS ELFCLASS32 723 724 #endif 725 726 #define ELF_ARCH EM_PPC 727 728 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 729 See arch/powerpc/include/asm/cputable.h. */ 730 enum { 731 QEMU_PPC_FEATURE_32 = 0x80000000, 732 QEMU_PPC_FEATURE_64 = 0x40000000, 733 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 734 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 735 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 736 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 737 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 738 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 739 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 740 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 741 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 742 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 743 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 744 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 745 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 746 QEMU_PPC_FEATURE_CELL = 0x00010000, 747 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 748 QEMU_PPC_FEATURE_SMT = 0x00004000, 749 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 750 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 751 QEMU_PPC_FEATURE_PA6T = 0x00000800, 752 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 753 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 754 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 755 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 756 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 757 758 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 759 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 760 761 /* Feature definitions in AT_HWCAP2. */ 762 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 763 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 764 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 765 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 766 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 767 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 768 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 769 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 770 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 771 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 772 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 773 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 774 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 775 }; 776 777 #define ELF_HWCAP get_elf_hwcap() 778 779 static uint32_t get_elf_hwcap(void) 780 { 781 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 782 uint32_t features = 0; 783 784 /* We don't have to be terribly complete here; the high points are 785 Altivec/FP/SPE support. Anything else is just a bonus. */ 786 #define GET_FEATURE(flag, feature) \ 787 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 788 #define GET_FEATURE2(flags, feature) \ 789 do { \ 790 if ((cpu->env.insns_flags2 & flags) == flags) { \ 791 features |= feature; \ 792 } \ 793 } while (0) 794 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 795 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 796 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 797 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 798 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 799 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 800 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 801 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 802 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 803 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 804 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 805 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 806 QEMU_PPC_FEATURE_ARCH_2_06); 807 #undef GET_FEATURE 808 #undef GET_FEATURE2 809 810 return features; 811 } 812 813 #define ELF_HWCAP2 get_elf_hwcap2() 814 815 static uint32_t get_elf_hwcap2(void) 816 { 817 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 818 uint32_t features = 0; 819 820 #define GET_FEATURE(flag, feature) \ 821 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 822 #define GET_FEATURE2(flag, feature) \ 823 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 824 825 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 826 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 827 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 828 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 829 QEMU_PPC_FEATURE2_VEC_CRYPTO); 830 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 831 QEMU_PPC_FEATURE2_DARN); 832 833 #undef GET_FEATURE 834 #undef GET_FEATURE2 835 836 return features; 837 } 838 839 /* 840 * The requirements here are: 841 * - keep the final alignment of sp (sp & 0xf) 842 * - make sure the 32-bit value at the first 16 byte aligned position of 843 * AUXV is greater than 16 for glibc compatibility. 844 * AT_IGNOREPPC is used for that. 845 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 846 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 847 */ 848 #define DLINFO_ARCH_ITEMS 5 849 #define ARCH_DLINFO \ 850 do { \ 851 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 852 /* \ 853 * Handle glibc compatibility: these magic entries must \ 854 * be at the lowest addresses in the final auxv. \ 855 */ \ 856 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 857 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 858 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 859 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 860 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 861 } while (0) 862 863 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 864 { 865 _regs->gpr[1] = infop->start_stack; 866 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 867 if (get_ppc64_abi(infop) < 2) { 868 uint64_t val; 869 get_user_u64(val, infop->entry + 8); 870 _regs->gpr[2] = val + infop->load_bias; 871 get_user_u64(val, infop->entry); 872 infop->entry = val + infop->load_bias; 873 } else { 874 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 875 } 876 #endif 877 _regs->nip = infop->entry; 878 } 879 880 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 881 #define ELF_NREG 48 882 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 883 884 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 885 { 886 int i; 887 target_ulong ccr = 0; 888 889 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 890 (*regs)[i] = tswapreg(env->gpr[i]); 891 } 892 893 (*regs)[32] = tswapreg(env->nip); 894 (*regs)[33] = tswapreg(env->msr); 895 (*regs)[35] = tswapreg(env->ctr); 896 (*regs)[36] = tswapreg(env->lr); 897 (*regs)[37] = tswapreg(env->xer); 898 899 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 900 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 901 } 902 (*regs)[38] = tswapreg(ccr); 903 } 904 905 #define USE_ELF_CORE_DUMP 906 #define ELF_EXEC_PAGESIZE 4096 907 908 #endif 909 910 #ifdef TARGET_MIPS 911 912 #define ELF_START_MMAP 0x80000000 913 914 #ifdef TARGET_MIPS64 915 #define ELF_CLASS ELFCLASS64 916 #else 917 #define ELF_CLASS ELFCLASS32 918 #endif 919 #define ELF_ARCH EM_MIPS 920 921 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 922 923 #ifdef TARGET_ABI_MIPSN32 924 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 925 #else 926 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 927 #endif 928 929 static inline void init_thread(struct target_pt_regs *regs, 930 struct image_info *infop) 931 { 932 regs->cp0_status = 2 << CP0St_KSU; 933 regs->cp0_epc = infop->entry; 934 regs->regs[29] = infop->start_stack; 935 } 936 937 /* See linux kernel: arch/mips/include/asm/elf.h. */ 938 #define ELF_NREG 45 939 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 940 941 /* See linux kernel: arch/mips/include/asm/reg.h. */ 942 enum { 943 #ifdef TARGET_MIPS64 944 TARGET_EF_R0 = 0, 945 #else 946 TARGET_EF_R0 = 6, 947 #endif 948 TARGET_EF_R26 = TARGET_EF_R0 + 26, 949 TARGET_EF_R27 = TARGET_EF_R0 + 27, 950 TARGET_EF_LO = TARGET_EF_R0 + 32, 951 TARGET_EF_HI = TARGET_EF_R0 + 33, 952 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 953 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 954 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 955 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 956 }; 957 958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 959 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 960 { 961 int i; 962 963 for (i = 0; i < TARGET_EF_R0; i++) { 964 (*regs)[i] = 0; 965 } 966 (*regs)[TARGET_EF_R0] = 0; 967 968 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 969 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 970 } 971 972 (*regs)[TARGET_EF_R26] = 0; 973 (*regs)[TARGET_EF_R27] = 0; 974 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 975 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 976 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 977 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 978 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 979 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 980 } 981 982 #define USE_ELF_CORE_DUMP 983 #define ELF_EXEC_PAGESIZE 4096 984 985 /* See arch/mips/include/uapi/asm/hwcap.h. */ 986 enum { 987 HWCAP_MIPS_R6 = (1 << 0), 988 HWCAP_MIPS_MSA = (1 << 1), 989 HWCAP_MIPS_CRC32 = (1 << 2), 990 HWCAP_MIPS_MIPS16 = (1 << 3), 991 HWCAP_MIPS_MDMX = (1 << 4), 992 HWCAP_MIPS_MIPS3D = (1 << 5), 993 HWCAP_MIPS_SMARTMIPS = (1 << 6), 994 HWCAP_MIPS_DSP = (1 << 7), 995 HWCAP_MIPS_DSP2 = (1 << 8), 996 HWCAP_MIPS_DSP3 = (1 << 9), 997 HWCAP_MIPS_MIPS16E2 = (1 << 10), 998 HWCAP_LOONGSON_MMI = (1 << 11), 999 HWCAP_LOONGSON_EXT = (1 << 12), 1000 HWCAP_LOONGSON_EXT2 = (1 << 13), 1001 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1002 }; 1003 1004 #define ELF_HWCAP get_elf_hwcap() 1005 1006 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1007 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1008 1009 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1010 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1011 1012 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1013 do { \ 1014 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1015 hwcaps |= _hwcap; \ 1016 } \ 1017 } while (0) 1018 1019 static uint32_t get_elf_hwcap(void) 1020 { 1021 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1022 uint32_t hwcaps = 0; 1023 1024 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1025 2, HWCAP_MIPS_R6); 1026 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1027 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1028 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1029 1030 return hwcaps; 1031 } 1032 1033 #undef GET_FEATURE_REG_EQU 1034 #undef GET_FEATURE_REG_SET 1035 #undef GET_FEATURE_INSN 1036 1037 #endif /* TARGET_MIPS */ 1038 1039 #ifdef TARGET_MICROBLAZE 1040 1041 #define ELF_START_MMAP 0x80000000 1042 1043 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1044 1045 #define ELF_CLASS ELFCLASS32 1046 #define ELF_ARCH EM_MICROBLAZE 1047 1048 static inline void init_thread(struct target_pt_regs *regs, 1049 struct image_info *infop) 1050 { 1051 regs->pc = infop->entry; 1052 regs->r1 = infop->start_stack; 1053 1054 } 1055 1056 #define ELF_EXEC_PAGESIZE 4096 1057 1058 #define USE_ELF_CORE_DUMP 1059 #define ELF_NREG 38 1060 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1061 1062 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1063 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1064 { 1065 int i, pos = 0; 1066 1067 for (i = 0; i < 32; i++) { 1068 (*regs)[pos++] = tswapreg(env->regs[i]); 1069 } 1070 1071 (*regs)[pos++] = tswapreg(env->pc); 1072 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1073 (*regs)[pos++] = 0; 1074 (*regs)[pos++] = tswapreg(env->ear); 1075 (*regs)[pos++] = 0; 1076 (*regs)[pos++] = tswapreg(env->esr); 1077 } 1078 1079 #endif /* TARGET_MICROBLAZE */ 1080 1081 #ifdef TARGET_NIOS2 1082 1083 #define ELF_START_MMAP 0x80000000 1084 1085 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1086 1087 #define ELF_CLASS ELFCLASS32 1088 #define ELF_ARCH EM_ALTERA_NIOS2 1089 1090 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1091 { 1092 regs->ea = infop->entry; 1093 regs->sp = infop->start_stack; 1094 regs->estatus = 0x3; 1095 } 1096 1097 #define ELF_EXEC_PAGESIZE 4096 1098 1099 #define USE_ELF_CORE_DUMP 1100 #define ELF_NREG 49 1101 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1102 1103 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1104 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1105 const CPUNios2State *env) 1106 { 1107 int i; 1108 1109 (*regs)[0] = -1; 1110 for (i = 1; i < 8; i++) /* r0-r7 */ 1111 (*regs)[i] = tswapreg(env->regs[i + 7]); 1112 1113 for (i = 8; i < 16; i++) /* r8-r15 */ 1114 (*regs)[i] = tswapreg(env->regs[i - 8]); 1115 1116 for (i = 16; i < 24; i++) /* r16-r23 */ 1117 (*regs)[i] = tswapreg(env->regs[i + 7]); 1118 (*regs)[24] = -1; /* R_ET */ 1119 (*regs)[25] = -1; /* R_BT */ 1120 (*regs)[26] = tswapreg(env->regs[R_GP]); 1121 (*regs)[27] = tswapreg(env->regs[R_SP]); 1122 (*regs)[28] = tswapreg(env->regs[R_FP]); 1123 (*regs)[29] = tswapreg(env->regs[R_EA]); 1124 (*regs)[30] = -1; /* R_SSTATUS */ 1125 (*regs)[31] = tswapreg(env->regs[R_RA]); 1126 1127 (*regs)[32] = tswapreg(env->regs[R_PC]); 1128 1129 (*regs)[33] = -1; /* R_STATUS */ 1130 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1131 1132 for (i = 35; i < 49; i++) /* ... */ 1133 (*regs)[i] = -1; 1134 } 1135 1136 #endif /* TARGET_NIOS2 */ 1137 1138 #ifdef TARGET_OPENRISC 1139 1140 #define ELF_START_MMAP 0x08000000 1141 1142 #define ELF_ARCH EM_OPENRISC 1143 #define ELF_CLASS ELFCLASS32 1144 #define ELF_DATA ELFDATA2MSB 1145 1146 static inline void init_thread(struct target_pt_regs *regs, 1147 struct image_info *infop) 1148 { 1149 regs->pc = infop->entry; 1150 regs->gpr[1] = infop->start_stack; 1151 } 1152 1153 #define USE_ELF_CORE_DUMP 1154 #define ELF_EXEC_PAGESIZE 8192 1155 1156 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1157 #define ELF_NREG 34 /* gprs and pc, sr */ 1158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1159 1160 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1161 const CPUOpenRISCState *env) 1162 { 1163 int i; 1164 1165 for (i = 0; i < 32; i++) { 1166 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1167 } 1168 (*regs)[32] = tswapreg(env->pc); 1169 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1170 } 1171 #define ELF_HWCAP 0 1172 #define ELF_PLATFORM NULL 1173 1174 #endif /* TARGET_OPENRISC */ 1175 1176 #ifdef TARGET_SH4 1177 1178 #define ELF_START_MMAP 0x80000000 1179 1180 #define ELF_CLASS ELFCLASS32 1181 #define ELF_ARCH EM_SH 1182 1183 static inline void init_thread(struct target_pt_regs *regs, 1184 struct image_info *infop) 1185 { 1186 /* Check other registers XXXXX */ 1187 regs->pc = infop->entry; 1188 regs->regs[15] = infop->start_stack; 1189 } 1190 1191 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1192 #define ELF_NREG 23 1193 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1194 1195 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1196 enum { 1197 TARGET_REG_PC = 16, 1198 TARGET_REG_PR = 17, 1199 TARGET_REG_SR = 18, 1200 TARGET_REG_GBR = 19, 1201 TARGET_REG_MACH = 20, 1202 TARGET_REG_MACL = 21, 1203 TARGET_REG_SYSCALL = 22 1204 }; 1205 1206 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1207 const CPUSH4State *env) 1208 { 1209 int i; 1210 1211 for (i = 0; i < 16; i++) { 1212 (*regs)[i] = tswapreg(env->gregs[i]); 1213 } 1214 1215 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1216 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1217 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1218 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1219 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1220 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1221 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1222 } 1223 1224 #define USE_ELF_CORE_DUMP 1225 #define ELF_EXEC_PAGESIZE 4096 1226 1227 enum { 1228 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1229 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1230 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1231 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1232 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1233 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1234 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1235 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1236 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1237 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1238 }; 1239 1240 #define ELF_HWCAP get_elf_hwcap() 1241 1242 static uint32_t get_elf_hwcap(void) 1243 { 1244 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1245 uint32_t hwcap = 0; 1246 1247 hwcap |= SH_CPU_HAS_FPU; 1248 1249 if (cpu->env.features & SH_FEATURE_SH4A) { 1250 hwcap |= SH_CPU_HAS_LLSC; 1251 } 1252 1253 return hwcap; 1254 } 1255 1256 #endif 1257 1258 #ifdef TARGET_CRIS 1259 1260 #define ELF_START_MMAP 0x80000000 1261 1262 #define ELF_CLASS ELFCLASS32 1263 #define ELF_ARCH EM_CRIS 1264 1265 static inline void init_thread(struct target_pt_regs *regs, 1266 struct image_info *infop) 1267 { 1268 regs->erp = infop->entry; 1269 } 1270 1271 #define ELF_EXEC_PAGESIZE 8192 1272 1273 #endif 1274 1275 #ifdef TARGET_M68K 1276 1277 #define ELF_START_MMAP 0x80000000 1278 1279 #define ELF_CLASS ELFCLASS32 1280 #define ELF_ARCH EM_68K 1281 1282 /* ??? Does this need to do anything? 1283 #define ELF_PLAT_INIT(_r) */ 1284 1285 static inline void init_thread(struct target_pt_regs *regs, 1286 struct image_info *infop) 1287 { 1288 regs->usp = infop->start_stack; 1289 regs->sr = 0; 1290 regs->pc = infop->entry; 1291 } 1292 1293 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1294 #define ELF_NREG 20 1295 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1296 1297 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1298 { 1299 (*regs)[0] = tswapreg(env->dregs[1]); 1300 (*regs)[1] = tswapreg(env->dregs[2]); 1301 (*regs)[2] = tswapreg(env->dregs[3]); 1302 (*regs)[3] = tswapreg(env->dregs[4]); 1303 (*regs)[4] = tswapreg(env->dregs[5]); 1304 (*regs)[5] = tswapreg(env->dregs[6]); 1305 (*regs)[6] = tswapreg(env->dregs[7]); 1306 (*regs)[7] = tswapreg(env->aregs[0]); 1307 (*regs)[8] = tswapreg(env->aregs[1]); 1308 (*regs)[9] = tswapreg(env->aregs[2]); 1309 (*regs)[10] = tswapreg(env->aregs[3]); 1310 (*regs)[11] = tswapreg(env->aregs[4]); 1311 (*regs)[12] = tswapreg(env->aregs[5]); 1312 (*regs)[13] = tswapreg(env->aregs[6]); 1313 (*regs)[14] = tswapreg(env->dregs[0]); 1314 (*regs)[15] = tswapreg(env->aregs[7]); 1315 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1316 (*regs)[17] = tswapreg(env->sr); 1317 (*regs)[18] = tswapreg(env->pc); 1318 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1319 } 1320 1321 #define USE_ELF_CORE_DUMP 1322 #define ELF_EXEC_PAGESIZE 8192 1323 1324 #endif 1325 1326 #ifdef TARGET_ALPHA 1327 1328 #define ELF_START_MMAP (0x30000000000ULL) 1329 1330 #define ELF_CLASS ELFCLASS64 1331 #define ELF_ARCH EM_ALPHA 1332 1333 static inline void init_thread(struct target_pt_regs *regs, 1334 struct image_info *infop) 1335 { 1336 regs->pc = infop->entry; 1337 regs->ps = 8; 1338 regs->usp = infop->start_stack; 1339 } 1340 1341 #define ELF_EXEC_PAGESIZE 8192 1342 1343 #endif /* TARGET_ALPHA */ 1344 1345 #ifdef TARGET_S390X 1346 1347 #define ELF_START_MMAP (0x20000000000ULL) 1348 1349 #define ELF_CLASS ELFCLASS64 1350 #define ELF_DATA ELFDATA2MSB 1351 #define ELF_ARCH EM_S390 1352 1353 #include "elf.h" 1354 1355 #define ELF_HWCAP get_elf_hwcap() 1356 1357 #define GET_FEATURE(_feat, _hwcap) \ 1358 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1359 1360 static uint32_t get_elf_hwcap(void) 1361 { 1362 /* 1363 * Let's assume we always have esan3 and zarch. 1364 * 31-bit processes can use 64-bit registers (high gprs). 1365 */ 1366 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1367 1368 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1369 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1370 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1371 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1372 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1373 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1374 hwcap |= HWCAP_S390_ETF3EH; 1375 } 1376 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1377 1378 return hwcap; 1379 } 1380 1381 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1382 { 1383 regs->psw.addr = infop->entry; 1384 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1385 regs->gprs[15] = infop->start_stack; 1386 } 1387 1388 #endif /* TARGET_S390X */ 1389 1390 #ifdef TARGET_RISCV 1391 1392 #define ELF_START_MMAP 0x80000000 1393 #define ELF_ARCH EM_RISCV 1394 1395 #ifdef TARGET_RISCV32 1396 #define ELF_CLASS ELFCLASS32 1397 #else 1398 #define ELF_CLASS ELFCLASS64 1399 #endif 1400 1401 static inline void init_thread(struct target_pt_regs *regs, 1402 struct image_info *infop) 1403 { 1404 regs->sepc = infop->entry; 1405 regs->sp = infop->start_stack; 1406 } 1407 1408 #define ELF_EXEC_PAGESIZE 4096 1409 1410 #endif /* TARGET_RISCV */ 1411 1412 #ifdef TARGET_HPPA 1413 1414 #define ELF_START_MMAP 0x80000000 1415 #define ELF_CLASS ELFCLASS32 1416 #define ELF_ARCH EM_PARISC 1417 #define ELF_PLATFORM "PARISC" 1418 #define STACK_GROWS_DOWN 0 1419 #define STACK_ALIGNMENT 64 1420 1421 static inline void init_thread(struct target_pt_regs *regs, 1422 struct image_info *infop) 1423 { 1424 regs->iaoq[0] = infop->entry; 1425 regs->iaoq[1] = infop->entry + 4; 1426 regs->gr[23] = 0; 1427 regs->gr[24] = infop->arg_start; 1428 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1429 /* The top-of-stack contains a linkage buffer. */ 1430 regs->gr[30] = infop->start_stack + 64; 1431 regs->gr[31] = infop->entry; 1432 } 1433 1434 #endif /* TARGET_HPPA */ 1435 1436 #ifdef TARGET_XTENSA 1437 1438 #define ELF_START_MMAP 0x20000000 1439 1440 #define ELF_CLASS ELFCLASS32 1441 #define ELF_ARCH EM_XTENSA 1442 1443 static inline void init_thread(struct target_pt_regs *regs, 1444 struct image_info *infop) 1445 { 1446 regs->windowbase = 0; 1447 regs->windowstart = 1; 1448 regs->areg[1] = infop->start_stack; 1449 regs->pc = infop->entry; 1450 } 1451 1452 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1453 #define ELF_NREG 128 1454 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1455 1456 enum { 1457 TARGET_REG_PC, 1458 TARGET_REG_PS, 1459 TARGET_REG_LBEG, 1460 TARGET_REG_LEND, 1461 TARGET_REG_LCOUNT, 1462 TARGET_REG_SAR, 1463 TARGET_REG_WINDOWSTART, 1464 TARGET_REG_WINDOWBASE, 1465 TARGET_REG_THREADPTR, 1466 TARGET_REG_AR0 = 64, 1467 }; 1468 1469 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1470 const CPUXtensaState *env) 1471 { 1472 unsigned i; 1473 1474 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1475 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1476 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1477 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1478 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1479 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1480 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1481 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1482 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1483 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1484 for (i = 0; i < env->config->nareg; ++i) { 1485 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1486 } 1487 } 1488 1489 #define USE_ELF_CORE_DUMP 1490 #define ELF_EXEC_PAGESIZE 4096 1491 1492 #endif /* TARGET_XTENSA */ 1493 1494 #ifdef TARGET_HEXAGON 1495 1496 #define ELF_START_MMAP 0x20000000 1497 1498 #define ELF_CLASS ELFCLASS32 1499 #define ELF_ARCH EM_HEXAGON 1500 1501 static inline void init_thread(struct target_pt_regs *regs, 1502 struct image_info *infop) 1503 { 1504 regs->sepc = infop->entry; 1505 regs->sp = infop->start_stack; 1506 } 1507 1508 #endif /* TARGET_HEXAGON */ 1509 1510 #ifndef ELF_PLATFORM 1511 #define ELF_PLATFORM (NULL) 1512 #endif 1513 1514 #ifndef ELF_MACHINE 1515 #define ELF_MACHINE ELF_ARCH 1516 #endif 1517 1518 #ifndef elf_check_arch 1519 #define elf_check_arch(x) ((x) == ELF_ARCH) 1520 #endif 1521 1522 #ifndef elf_check_abi 1523 #define elf_check_abi(x) (1) 1524 #endif 1525 1526 #ifndef ELF_HWCAP 1527 #define ELF_HWCAP 0 1528 #endif 1529 1530 #ifndef STACK_GROWS_DOWN 1531 #define STACK_GROWS_DOWN 1 1532 #endif 1533 1534 #ifndef STACK_ALIGNMENT 1535 #define STACK_ALIGNMENT 16 1536 #endif 1537 1538 #ifdef TARGET_ABI32 1539 #undef ELF_CLASS 1540 #define ELF_CLASS ELFCLASS32 1541 #undef bswaptls 1542 #define bswaptls(ptr) bswap32s(ptr) 1543 #endif 1544 1545 #include "elf.h" 1546 1547 /* We must delay the following stanzas until after "elf.h". */ 1548 #if defined(TARGET_AARCH64) 1549 1550 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1551 const uint32_t *data, 1552 struct image_info *info, 1553 Error **errp) 1554 { 1555 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1556 if (pr_datasz != sizeof(uint32_t)) { 1557 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1558 return false; 1559 } 1560 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1561 info->note_flags = *data; 1562 } 1563 return true; 1564 } 1565 #define ARCH_USE_GNU_PROPERTY 1 1566 1567 #else 1568 1569 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1570 const uint32_t *data, 1571 struct image_info *info, 1572 Error **errp) 1573 { 1574 g_assert_not_reached(); 1575 } 1576 #define ARCH_USE_GNU_PROPERTY 0 1577 1578 #endif 1579 1580 struct exec 1581 { 1582 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1583 unsigned int a_text; /* length of text, in bytes */ 1584 unsigned int a_data; /* length of data, in bytes */ 1585 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1586 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1587 unsigned int a_entry; /* start address */ 1588 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1589 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1590 }; 1591 1592 1593 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1594 #define OMAGIC 0407 1595 #define NMAGIC 0410 1596 #define ZMAGIC 0413 1597 #define QMAGIC 0314 1598 1599 /* Necessary parameters */ 1600 #define TARGET_ELF_EXEC_PAGESIZE \ 1601 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1602 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1603 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1604 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1605 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1606 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1607 1608 #define DLINFO_ITEMS 16 1609 1610 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1611 { 1612 memcpy(to, from, n); 1613 } 1614 1615 #ifdef BSWAP_NEEDED 1616 static void bswap_ehdr(struct elfhdr *ehdr) 1617 { 1618 bswap16s(&ehdr->e_type); /* Object file type */ 1619 bswap16s(&ehdr->e_machine); /* Architecture */ 1620 bswap32s(&ehdr->e_version); /* Object file version */ 1621 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1622 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1623 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1624 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1625 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1626 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1627 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1628 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1629 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1630 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1631 } 1632 1633 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1634 { 1635 int i; 1636 for (i = 0; i < phnum; ++i, ++phdr) { 1637 bswap32s(&phdr->p_type); /* Segment type */ 1638 bswap32s(&phdr->p_flags); /* Segment flags */ 1639 bswaptls(&phdr->p_offset); /* Segment file offset */ 1640 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1641 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1642 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1643 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1644 bswaptls(&phdr->p_align); /* Segment alignment */ 1645 } 1646 } 1647 1648 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1649 { 1650 int i; 1651 for (i = 0; i < shnum; ++i, ++shdr) { 1652 bswap32s(&shdr->sh_name); 1653 bswap32s(&shdr->sh_type); 1654 bswaptls(&shdr->sh_flags); 1655 bswaptls(&shdr->sh_addr); 1656 bswaptls(&shdr->sh_offset); 1657 bswaptls(&shdr->sh_size); 1658 bswap32s(&shdr->sh_link); 1659 bswap32s(&shdr->sh_info); 1660 bswaptls(&shdr->sh_addralign); 1661 bswaptls(&shdr->sh_entsize); 1662 } 1663 } 1664 1665 static void bswap_sym(struct elf_sym *sym) 1666 { 1667 bswap32s(&sym->st_name); 1668 bswaptls(&sym->st_value); 1669 bswaptls(&sym->st_size); 1670 bswap16s(&sym->st_shndx); 1671 } 1672 1673 #ifdef TARGET_MIPS 1674 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1675 { 1676 bswap16s(&abiflags->version); 1677 bswap32s(&abiflags->ases); 1678 bswap32s(&abiflags->isa_ext); 1679 bswap32s(&abiflags->flags1); 1680 bswap32s(&abiflags->flags2); 1681 } 1682 #endif 1683 #else 1684 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1685 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1686 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1687 static inline void bswap_sym(struct elf_sym *sym) { } 1688 #ifdef TARGET_MIPS 1689 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1690 #endif 1691 #endif 1692 1693 #ifdef USE_ELF_CORE_DUMP 1694 static int elf_core_dump(int, const CPUArchState *); 1695 #endif /* USE_ELF_CORE_DUMP */ 1696 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1697 1698 /* Verify the portions of EHDR within E_IDENT for the target. 1699 This can be performed before bswapping the entire header. */ 1700 static bool elf_check_ident(struct elfhdr *ehdr) 1701 { 1702 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1703 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1704 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1705 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1706 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1707 && ehdr->e_ident[EI_DATA] == ELF_DATA 1708 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1709 } 1710 1711 /* Verify the portions of EHDR outside of E_IDENT for the target. 1712 This has to wait until after bswapping the header. */ 1713 static bool elf_check_ehdr(struct elfhdr *ehdr) 1714 { 1715 return (elf_check_arch(ehdr->e_machine) 1716 && elf_check_abi(ehdr->e_flags) 1717 && ehdr->e_ehsize == sizeof(struct elfhdr) 1718 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1719 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1720 } 1721 1722 /* 1723 * 'copy_elf_strings()' copies argument/envelope strings from user 1724 * memory to free pages in kernel mem. These are in a format ready 1725 * to be put directly into the top of new user memory. 1726 * 1727 */ 1728 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1729 abi_ulong p, abi_ulong stack_limit) 1730 { 1731 char *tmp; 1732 int len, i; 1733 abi_ulong top = p; 1734 1735 if (!p) { 1736 return 0; /* bullet-proofing */ 1737 } 1738 1739 if (STACK_GROWS_DOWN) { 1740 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1741 for (i = argc - 1; i >= 0; --i) { 1742 tmp = argv[i]; 1743 if (!tmp) { 1744 fprintf(stderr, "VFS: argc is wrong"); 1745 exit(-1); 1746 } 1747 len = strlen(tmp) + 1; 1748 tmp += len; 1749 1750 if (len > (p - stack_limit)) { 1751 return 0; 1752 } 1753 while (len) { 1754 int bytes_to_copy = (len > offset) ? offset : len; 1755 tmp -= bytes_to_copy; 1756 p -= bytes_to_copy; 1757 offset -= bytes_to_copy; 1758 len -= bytes_to_copy; 1759 1760 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1761 1762 if (offset == 0) { 1763 memcpy_to_target(p, scratch, top - p); 1764 top = p; 1765 offset = TARGET_PAGE_SIZE; 1766 } 1767 } 1768 } 1769 if (p != top) { 1770 memcpy_to_target(p, scratch + offset, top - p); 1771 } 1772 } else { 1773 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1774 for (i = 0; i < argc; ++i) { 1775 tmp = argv[i]; 1776 if (!tmp) { 1777 fprintf(stderr, "VFS: argc is wrong"); 1778 exit(-1); 1779 } 1780 len = strlen(tmp) + 1; 1781 if (len > (stack_limit - p)) { 1782 return 0; 1783 } 1784 while (len) { 1785 int bytes_to_copy = (len > remaining) ? remaining : len; 1786 1787 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1788 1789 tmp += bytes_to_copy; 1790 remaining -= bytes_to_copy; 1791 p += bytes_to_copy; 1792 len -= bytes_to_copy; 1793 1794 if (remaining == 0) { 1795 memcpy_to_target(top, scratch, p - top); 1796 top = p; 1797 remaining = TARGET_PAGE_SIZE; 1798 } 1799 } 1800 } 1801 if (p != top) { 1802 memcpy_to_target(top, scratch, p - top); 1803 } 1804 } 1805 1806 return p; 1807 } 1808 1809 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1810 * argument/environment space. Newer kernels (>2.6.33) allow more, 1811 * dependent on stack size, but guarantee at least 32 pages for 1812 * backwards compatibility. 1813 */ 1814 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1815 1816 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1817 struct image_info *info) 1818 { 1819 abi_ulong size, error, guard; 1820 1821 size = guest_stack_size; 1822 if (size < STACK_LOWER_LIMIT) { 1823 size = STACK_LOWER_LIMIT; 1824 } 1825 guard = TARGET_PAGE_SIZE; 1826 if (guard < qemu_real_host_page_size) { 1827 guard = qemu_real_host_page_size; 1828 } 1829 1830 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1831 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1832 if (error == -1) { 1833 perror("mmap stack"); 1834 exit(-1); 1835 } 1836 1837 /* We reserve one extra page at the top of the stack as guard. */ 1838 if (STACK_GROWS_DOWN) { 1839 target_mprotect(error, guard, PROT_NONE); 1840 info->stack_limit = error + guard; 1841 return info->stack_limit + size - sizeof(void *); 1842 } else { 1843 target_mprotect(error + size, guard, PROT_NONE); 1844 info->stack_limit = error + size; 1845 return error; 1846 } 1847 } 1848 1849 /* Map and zero the bss. We need to explicitly zero any fractional pages 1850 after the data section (i.e. bss). */ 1851 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1852 { 1853 uintptr_t host_start, host_map_start, host_end; 1854 1855 last_bss = TARGET_PAGE_ALIGN(last_bss); 1856 1857 /* ??? There is confusion between qemu_real_host_page_size and 1858 qemu_host_page_size here and elsewhere in target_mmap, which 1859 may lead to the end of the data section mapping from the file 1860 not being mapped. At least there was an explicit test and 1861 comment for that here, suggesting that "the file size must 1862 be known". The comment probably pre-dates the introduction 1863 of the fstat system call in target_mmap which does in fact 1864 find out the size. What isn't clear is if the workaround 1865 here is still actually needed. For now, continue with it, 1866 but merge it with the "normal" mmap that would allocate the bss. */ 1867 1868 host_start = (uintptr_t) g2h_untagged(elf_bss); 1869 host_end = (uintptr_t) g2h_untagged(last_bss); 1870 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1871 1872 if (host_map_start < host_end) { 1873 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1874 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1875 if (p == MAP_FAILED) { 1876 perror("cannot mmap brk"); 1877 exit(-1); 1878 } 1879 } 1880 1881 /* Ensure that the bss page(s) are valid */ 1882 if ((page_get_flags(last_bss-1) & prot) != prot) { 1883 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1884 } 1885 1886 if (host_start < host_map_start) { 1887 memset((void *)host_start, 0, host_map_start - host_start); 1888 } 1889 } 1890 1891 #ifdef TARGET_ARM 1892 static int elf_is_fdpic(struct elfhdr *exec) 1893 { 1894 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1895 } 1896 #else 1897 /* Default implementation, always false. */ 1898 static int elf_is_fdpic(struct elfhdr *exec) 1899 { 1900 return 0; 1901 } 1902 #endif 1903 1904 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1905 { 1906 uint16_t n; 1907 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1908 1909 /* elf32_fdpic_loadseg */ 1910 n = info->nsegs; 1911 while (n--) { 1912 sp -= 12; 1913 put_user_u32(loadsegs[n].addr, sp+0); 1914 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1915 put_user_u32(loadsegs[n].p_memsz, sp+8); 1916 } 1917 1918 /* elf32_fdpic_loadmap */ 1919 sp -= 4; 1920 put_user_u16(0, sp+0); /* version */ 1921 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1922 1923 info->personality = PER_LINUX_FDPIC; 1924 info->loadmap_addr = sp; 1925 1926 return sp; 1927 } 1928 1929 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1930 struct elfhdr *exec, 1931 struct image_info *info, 1932 struct image_info *interp_info) 1933 { 1934 abi_ulong sp; 1935 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1936 int size; 1937 int i; 1938 abi_ulong u_rand_bytes; 1939 uint8_t k_rand_bytes[16]; 1940 abi_ulong u_platform; 1941 const char *k_platform; 1942 const int n = sizeof(elf_addr_t); 1943 1944 sp = p; 1945 1946 /* Needs to be before we load the env/argc/... */ 1947 if (elf_is_fdpic(exec)) { 1948 /* Need 4 byte alignment for these structs */ 1949 sp &= ~3; 1950 sp = loader_build_fdpic_loadmap(info, sp); 1951 info->other_info = interp_info; 1952 if (interp_info) { 1953 interp_info->other_info = info; 1954 sp = loader_build_fdpic_loadmap(interp_info, sp); 1955 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1956 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1957 } else { 1958 info->interpreter_loadmap_addr = 0; 1959 info->interpreter_pt_dynamic_addr = 0; 1960 } 1961 } 1962 1963 u_platform = 0; 1964 k_platform = ELF_PLATFORM; 1965 if (k_platform) { 1966 size_t len = strlen(k_platform) + 1; 1967 if (STACK_GROWS_DOWN) { 1968 sp -= (len + n - 1) & ~(n - 1); 1969 u_platform = sp; 1970 /* FIXME - check return value of memcpy_to_target() for failure */ 1971 memcpy_to_target(sp, k_platform, len); 1972 } else { 1973 memcpy_to_target(sp, k_platform, len); 1974 u_platform = sp; 1975 sp += len + 1; 1976 } 1977 } 1978 1979 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1980 * the argv and envp pointers. 1981 */ 1982 if (STACK_GROWS_DOWN) { 1983 sp = QEMU_ALIGN_DOWN(sp, 16); 1984 } else { 1985 sp = QEMU_ALIGN_UP(sp, 16); 1986 } 1987 1988 /* 1989 * Generate 16 random bytes for userspace PRNG seeding. 1990 */ 1991 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 1992 if (STACK_GROWS_DOWN) { 1993 sp -= 16; 1994 u_rand_bytes = sp; 1995 /* FIXME - check return value of memcpy_to_target() for failure */ 1996 memcpy_to_target(sp, k_rand_bytes, 16); 1997 } else { 1998 memcpy_to_target(sp, k_rand_bytes, 16); 1999 u_rand_bytes = sp; 2000 sp += 16; 2001 } 2002 2003 size = (DLINFO_ITEMS + 1) * 2; 2004 if (k_platform) 2005 size += 2; 2006 #ifdef DLINFO_ARCH_ITEMS 2007 size += DLINFO_ARCH_ITEMS * 2; 2008 #endif 2009 #ifdef ELF_HWCAP2 2010 size += 2; 2011 #endif 2012 info->auxv_len = size * n; 2013 2014 size += envc + argc + 2; 2015 size += 1; /* argc itself */ 2016 size *= n; 2017 2018 /* Allocate space and finalize stack alignment for entry now. */ 2019 if (STACK_GROWS_DOWN) { 2020 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2021 sp = u_argc; 2022 } else { 2023 u_argc = sp; 2024 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2025 } 2026 2027 u_argv = u_argc + n; 2028 u_envp = u_argv + (argc + 1) * n; 2029 u_auxv = u_envp + (envc + 1) * n; 2030 info->saved_auxv = u_auxv; 2031 info->arg_start = u_argv; 2032 info->arg_end = u_argv + argc * n; 2033 2034 /* This is correct because Linux defines 2035 * elf_addr_t as Elf32_Off / Elf64_Off 2036 */ 2037 #define NEW_AUX_ENT(id, val) do { \ 2038 put_user_ual(id, u_auxv); u_auxv += n; \ 2039 put_user_ual(val, u_auxv); u_auxv += n; \ 2040 } while(0) 2041 2042 #ifdef ARCH_DLINFO 2043 /* 2044 * ARCH_DLINFO must come first so platform specific code can enforce 2045 * special alignment requirements on the AUXV if necessary (eg. PPC). 2046 */ 2047 ARCH_DLINFO; 2048 #endif 2049 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2050 * on info->auxv_len will trigger. 2051 */ 2052 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2053 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2054 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2055 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2056 /* Target doesn't support host page size alignment */ 2057 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2058 } else { 2059 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2060 qemu_host_page_size))); 2061 } 2062 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2063 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2064 NEW_AUX_ENT(AT_ENTRY, info->entry); 2065 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2066 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2067 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2068 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2069 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2070 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2071 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2072 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2073 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2074 2075 #ifdef ELF_HWCAP2 2076 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2077 #endif 2078 2079 if (u_platform) { 2080 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2081 } 2082 NEW_AUX_ENT (AT_NULL, 0); 2083 #undef NEW_AUX_ENT 2084 2085 /* Check that our initial calculation of the auxv length matches how much 2086 * we actually put into it. 2087 */ 2088 assert(info->auxv_len == u_auxv - info->saved_auxv); 2089 2090 put_user_ual(argc, u_argc); 2091 2092 p = info->arg_strings; 2093 for (i = 0; i < argc; ++i) { 2094 put_user_ual(p, u_argv); 2095 u_argv += n; 2096 p += target_strlen(p) + 1; 2097 } 2098 put_user_ual(0, u_argv); 2099 2100 p = info->env_strings; 2101 for (i = 0; i < envc; ++i) { 2102 put_user_ual(p, u_envp); 2103 u_envp += n; 2104 p += target_strlen(p) + 1; 2105 } 2106 put_user_ual(0, u_envp); 2107 2108 return sp; 2109 } 2110 2111 #ifndef ARM_COMMPAGE 2112 #define ARM_COMMPAGE 0 2113 #define init_guest_commpage() true 2114 #endif 2115 2116 static void pgb_fail_in_use(const char *image_name) 2117 { 2118 error_report("%s: requires virtual address space that is in use " 2119 "(omit the -B option or choose a different value)", 2120 image_name); 2121 exit(EXIT_FAILURE); 2122 } 2123 2124 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2125 abi_ulong guest_hiaddr, long align) 2126 { 2127 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2128 void *addr, *test; 2129 2130 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2131 fprintf(stderr, "Requested guest base %p does not satisfy " 2132 "host minimum alignment (0x%lx)\n", 2133 (void *)guest_base, align); 2134 exit(EXIT_FAILURE); 2135 } 2136 2137 /* Sanity check the guest binary. */ 2138 if (reserved_va) { 2139 if (guest_hiaddr > reserved_va) { 2140 error_report("%s: requires more than reserved virtual " 2141 "address space (0x%" PRIx64 " > 0x%lx)", 2142 image_name, (uint64_t)guest_hiaddr, reserved_va); 2143 exit(EXIT_FAILURE); 2144 } 2145 } else { 2146 #if HOST_LONG_BITS < TARGET_ABI_BITS 2147 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2148 error_report("%s: requires more virtual address space " 2149 "than the host can provide (0x%" PRIx64 ")", 2150 image_name, (uint64_t)guest_hiaddr - guest_base); 2151 exit(EXIT_FAILURE); 2152 } 2153 #endif 2154 } 2155 2156 /* 2157 * Expand the allocation to the entire reserved_va. 2158 * Exclude the mmap_min_addr hole. 2159 */ 2160 if (reserved_va) { 2161 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2162 : mmap_min_addr - guest_base); 2163 guest_hiaddr = reserved_va; 2164 } 2165 2166 /* Reserve the address space for the binary, or reserved_va. */ 2167 test = g2h_untagged(guest_loaddr); 2168 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2169 if (test != addr) { 2170 pgb_fail_in_use(image_name); 2171 } 2172 } 2173 2174 /** 2175 * pgd_find_hole_fallback: potential mmap address 2176 * @guest_size: size of available space 2177 * @brk: location of break 2178 * @align: memory alignment 2179 * 2180 * This is a fallback method for finding a hole in the host address 2181 * space if we don't have the benefit of being able to access 2182 * /proc/self/map. It can potentially take a very long time as we can 2183 * only dumbly iterate up the host address space seeing if the 2184 * allocation would work. 2185 */ 2186 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2187 long align, uintptr_t offset) 2188 { 2189 uintptr_t base; 2190 2191 /* Start (aligned) at the bottom and work our way up */ 2192 base = ROUND_UP(mmap_min_addr, align); 2193 2194 while (true) { 2195 uintptr_t align_start, end; 2196 align_start = ROUND_UP(base, align); 2197 end = align_start + guest_size + offset; 2198 2199 /* if brk is anywhere in the range give ourselves some room to grow. */ 2200 if (align_start <= brk && brk < end) { 2201 base = brk + (16 * MiB); 2202 continue; 2203 } else if (align_start + guest_size < align_start) { 2204 /* we have run out of space */ 2205 return -1; 2206 } else { 2207 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2208 MAP_FIXED_NOREPLACE; 2209 void * mmap_start = mmap((void *) align_start, guest_size, 2210 PROT_NONE, flags, -1, 0); 2211 if (mmap_start != MAP_FAILED) { 2212 munmap(mmap_start, guest_size); 2213 if (mmap_start == (void *) align_start) { 2214 return (uintptr_t) mmap_start + offset; 2215 } 2216 } 2217 base += qemu_host_page_size; 2218 } 2219 } 2220 } 2221 2222 /* Return value for guest_base, or -1 if no hole found. */ 2223 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2224 long align, uintptr_t offset) 2225 { 2226 GSList *maps, *iter; 2227 uintptr_t this_start, this_end, next_start, brk; 2228 intptr_t ret = -1; 2229 2230 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2231 2232 maps = read_self_maps(); 2233 2234 /* Read brk after we've read the maps, which will malloc. */ 2235 brk = (uintptr_t)sbrk(0); 2236 2237 if (!maps) { 2238 ret = pgd_find_hole_fallback(guest_size, brk, align, offset); 2239 return ret == -1 ? -1 : ret - guest_loaddr; 2240 } 2241 2242 /* The first hole is before the first map entry. */ 2243 this_start = mmap_min_addr; 2244 2245 for (iter = maps; iter; 2246 this_start = next_start, iter = g_slist_next(iter)) { 2247 uintptr_t align_start, hole_size; 2248 2249 this_end = ((MapInfo *)iter->data)->start; 2250 next_start = ((MapInfo *)iter->data)->end; 2251 align_start = ROUND_UP(this_start + offset, align); 2252 2253 /* Skip holes that are too small. */ 2254 if (align_start >= this_end) { 2255 continue; 2256 } 2257 hole_size = this_end - align_start; 2258 if (hole_size < guest_size) { 2259 continue; 2260 } 2261 2262 /* If this hole contains brk, give ourselves some room to grow. */ 2263 if (this_start <= brk && brk < this_end) { 2264 hole_size -= guest_size; 2265 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2266 align_start += 1 * GiB; 2267 } else if (hole_size >= 16 * MiB) { 2268 align_start += 16 * MiB; 2269 } else { 2270 align_start = (this_end - guest_size) & -align; 2271 if (align_start < this_start) { 2272 continue; 2273 } 2274 } 2275 } 2276 2277 /* Record the lowest successful match. */ 2278 if (ret < 0) { 2279 ret = align_start - guest_loaddr; 2280 } 2281 /* If this hole contains the identity map, select it. */ 2282 if (align_start <= guest_loaddr && 2283 guest_loaddr + guest_size <= this_end) { 2284 ret = 0; 2285 } 2286 /* If this hole ends above the identity map, stop looking. */ 2287 if (this_end >= guest_loaddr) { 2288 break; 2289 } 2290 } 2291 free_self_maps(maps); 2292 2293 return ret; 2294 } 2295 2296 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2297 abi_ulong orig_hiaddr, long align) 2298 { 2299 uintptr_t loaddr = orig_loaddr; 2300 uintptr_t hiaddr = orig_hiaddr; 2301 uintptr_t offset = 0; 2302 uintptr_t addr; 2303 2304 if (hiaddr != orig_hiaddr) { 2305 error_report("%s: requires virtual address space that the " 2306 "host cannot provide (0x%" PRIx64 ")", 2307 image_name, (uint64_t)orig_hiaddr); 2308 exit(EXIT_FAILURE); 2309 } 2310 2311 loaddr &= -align; 2312 if (ARM_COMMPAGE) { 2313 /* 2314 * Extend the allocation to include the commpage. 2315 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2316 * need to ensure there is space bellow the guest_base so we 2317 * can map the commpage in the place needed when the address 2318 * arithmetic wraps around. 2319 */ 2320 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2321 hiaddr = (uintptr_t) 4 << 30; 2322 } else { 2323 offset = -(ARM_COMMPAGE & -align); 2324 } 2325 } 2326 2327 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2328 if (addr == -1) { 2329 /* 2330 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation 2331 * that can satisfy both. But as the normal arm32 link base address 2332 * is ~32k, and we extend down to include the commpage, making the 2333 * overhead only ~96k, this is unlikely. 2334 */ 2335 error_report("%s: Unable to allocate %#zx bytes of " 2336 "virtual address space", image_name, 2337 (size_t)(hiaddr - loaddr)); 2338 exit(EXIT_FAILURE); 2339 } 2340 2341 guest_base = addr; 2342 } 2343 2344 static void pgb_dynamic(const char *image_name, long align) 2345 { 2346 /* 2347 * The executable is dynamic and does not require a fixed address. 2348 * All we need is a commpage that satisfies align. 2349 * If we do not need a commpage, leave guest_base == 0. 2350 */ 2351 if (ARM_COMMPAGE) { 2352 uintptr_t addr, commpage; 2353 2354 /* 64-bit hosts should have used reserved_va. */ 2355 assert(sizeof(uintptr_t) == 4); 2356 2357 /* 2358 * By putting the commpage at the first hole, that puts guest_base 2359 * just above that, and maximises the positive guest addresses. 2360 */ 2361 commpage = ARM_COMMPAGE & -align; 2362 addr = pgb_find_hole(commpage, -commpage, align, 0); 2363 assert(addr != -1); 2364 guest_base = addr; 2365 } 2366 } 2367 2368 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2369 abi_ulong guest_hiaddr, long align) 2370 { 2371 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2372 void *addr, *test; 2373 2374 if (guest_hiaddr > reserved_va) { 2375 error_report("%s: requires more than reserved virtual " 2376 "address space (0x%" PRIx64 " > 0x%lx)", 2377 image_name, (uint64_t)guest_hiaddr, reserved_va); 2378 exit(EXIT_FAILURE); 2379 } 2380 2381 /* Widen the "image" to the entire reserved address space. */ 2382 pgb_static(image_name, 0, reserved_va, align); 2383 2384 /* osdep.h defines this as 0 if it's missing */ 2385 flags |= MAP_FIXED_NOREPLACE; 2386 2387 /* Reserve the memory on the host. */ 2388 assert(guest_base != 0); 2389 test = g2h_untagged(0); 2390 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2391 if (addr == MAP_FAILED || addr != test) { 2392 error_report("Unable to reserve 0x%lx bytes of virtual address " 2393 "space at %p (%s) for use as guest address space (check your" 2394 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2395 "using -R option)", reserved_va, test, strerror(errno)); 2396 exit(EXIT_FAILURE); 2397 } 2398 } 2399 2400 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2401 abi_ulong guest_hiaddr) 2402 { 2403 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2404 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2405 2406 if (have_guest_base) { 2407 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2408 } else if (reserved_va) { 2409 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2410 } else if (guest_loaddr) { 2411 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2412 } else { 2413 pgb_dynamic(image_name, align); 2414 } 2415 2416 /* Reserve and initialize the commpage. */ 2417 if (!init_guest_commpage()) { 2418 /* 2419 * With have_guest_base, the user has selected the address and 2420 * we are trying to work with that. Otherwise, we have selected 2421 * free space and init_guest_commpage must succeeded. 2422 */ 2423 assert(have_guest_base); 2424 pgb_fail_in_use(image_name); 2425 } 2426 2427 assert(QEMU_IS_ALIGNED(guest_base, align)); 2428 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2429 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2430 } 2431 2432 enum { 2433 /* The string "GNU\0" as a magic number. */ 2434 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2435 NOTE_DATA_SZ = 1 * KiB, 2436 NOTE_NAME_SZ = 4, 2437 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2438 }; 2439 2440 /* 2441 * Process a single gnu_property entry. 2442 * Return false for error. 2443 */ 2444 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2445 struct image_info *info, bool have_prev_type, 2446 uint32_t *prev_type, Error **errp) 2447 { 2448 uint32_t pr_type, pr_datasz, step; 2449 2450 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2451 goto error_data; 2452 } 2453 datasz -= *off; 2454 data += *off / sizeof(uint32_t); 2455 2456 if (datasz < 2 * sizeof(uint32_t)) { 2457 goto error_data; 2458 } 2459 pr_type = data[0]; 2460 pr_datasz = data[1]; 2461 data += 2; 2462 datasz -= 2 * sizeof(uint32_t); 2463 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2464 if (step > datasz) { 2465 goto error_data; 2466 } 2467 2468 /* Properties are supposed to be unique and sorted on pr_type. */ 2469 if (have_prev_type && pr_type <= *prev_type) { 2470 if (pr_type == *prev_type) { 2471 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2472 } else { 2473 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2474 } 2475 return false; 2476 } 2477 *prev_type = pr_type; 2478 2479 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2480 return false; 2481 } 2482 2483 *off += 2 * sizeof(uint32_t) + step; 2484 return true; 2485 2486 error_data: 2487 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2488 return false; 2489 } 2490 2491 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2492 static bool parse_elf_properties(int image_fd, 2493 struct image_info *info, 2494 const struct elf_phdr *phdr, 2495 char bprm_buf[BPRM_BUF_SIZE], 2496 Error **errp) 2497 { 2498 union { 2499 struct elf_note nhdr; 2500 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2501 } note; 2502 2503 int n, off, datasz; 2504 bool have_prev_type; 2505 uint32_t prev_type; 2506 2507 /* Unless the arch requires properties, ignore them. */ 2508 if (!ARCH_USE_GNU_PROPERTY) { 2509 return true; 2510 } 2511 2512 /* If the properties are crazy large, that's too bad. */ 2513 n = phdr->p_filesz; 2514 if (n > sizeof(note)) { 2515 error_setg(errp, "PT_GNU_PROPERTY too large"); 2516 return false; 2517 } 2518 if (n < sizeof(note.nhdr)) { 2519 error_setg(errp, "PT_GNU_PROPERTY too small"); 2520 return false; 2521 } 2522 2523 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2524 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2525 } else { 2526 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2527 if (len != n) { 2528 error_setg_errno(errp, errno, "Error reading file header"); 2529 return false; 2530 } 2531 } 2532 2533 /* 2534 * The contents of a valid PT_GNU_PROPERTY is a sequence 2535 * of uint32_t -- swap them all now. 2536 */ 2537 #ifdef BSWAP_NEEDED 2538 for (int i = 0; i < n / 4; i++) { 2539 bswap32s(note.data + i); 2540 } 2541 #endif 2542 2543 /* 2544 * Note that nhdr is 3 words, and that the "name" described by namesz 2545 * immediately follows nhdr and is thus at the 4th word. Further, all 2546 * of the inputs to the kernel's round_up are multiples of 4. 2547 */ 2548 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2549 note.nhdr.n_namesz != NOTE_NAME_SZ || 2550 note.data[3] != GNU0_MAGIC) { 2551 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2552 return false; 2553 } 2554 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2555 2556 datasz = note.nhdr.n_descsz + off; 2557 if (datasz > n) { 2558 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2559 return false; 2560 } 2561 2562 have_prev_type = false; 2563 prev_type = 0; 2564 while (1) { 2565 if (off == datasz) { 2566 return true; /* end, exit ok */ 2567 } 2568 if (!parse_elf_property(note.data, &off, datasz, info, 2569 have_prev_type, &prev_type, errp)) { 2570 return false; 2571 } 2572 have_prev_type = true; 2573 } 2574 } 2575 2576 /* Load an ELF image into the address space. 2577 2578 IMAGE_NAME is the filename of the image, to use in error messages. 2579 IMAGE_FD is the open file descriptor for the image. 2580 2581 BPRM_BUF is a copy of the beginning of the file; this of course 2582 contains the elf file header at offset 0. It is assumed that this 2583 buffer is sufficiently aligned to present no problems to the host 2584 in accessing data at aligned offsets within the buffer. 2585 2586 On return: INFO values will be filled in, as necessary or available. */ 2587 2588 static void load_elf_image(const char *image_name, int image_fd, 2589 struct image_info *info, char **pinterp_name, 2590 char bprm_buf[BPRM_BUF_SIZE]) 2591 { 2592 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2593 struct elf_phdr *phdr; 2594 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2595 int i, retval, prot_exec; 2596 Error *err = NULL; 2597 2598 /* First of all, some simple consistency checks */ 2599 if (!elf_check_ident(ehdr)) { 2600 error_setg(&err, "Invalid ELF image for this architecture"); 2601 goto exit_errmsg; 2602 } 2603 bswap_ehdr(ehdr); 2604 if (!elf_check_ehdr(ehdr)) { 2605 error_setg(&err, "Invalid ELF image for this architecture"); 2606 goto exit_errmsg; 2607 } 2608 2609 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2610 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2611 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2612 } else { 2613 phdr = (struct elf_phdr *) alloca(i); 2614 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2615 if (retval != i) { 2616 goto exit_read; 2617 } 2618 } 2619 bswap_phdr(phdr, ehdr->e_phnum); 2620 2621 info->nsegs = 0; 2622 info->pt_dynamic_addr = 0; 2623 2624 mmap_lock(); 2625 2626 /* 2627 * Find the maximum size of the image and allocate an appropriate 2628 * amount of memory to handle that. Locate the interpreter, if any. 2629 */ 2630 loaddr = -1, hiaddr = 0; 2631 info->alignment = 0; 2632 for (i = 0; i < ehdr->e_phnum; ++i) { 2633 struct elf_phdr *eppnt = phdr + i; 2634 if (eppnt->p_type == PT_LOAD) { 2635 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 2636 if (a < loaddr) { 2637 loaddr = a; 2638 } 2639 a = eppnt->p_vaddr + eppnt->p_memsz; 2640 if (a > hiaddr) { 2641 hiaddr = a; 2642 } 2643 ++info->nsegs; 2644 info->alignment |= eppnt->p_align; 2645 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2646 g_autofree char *interp_name = NULL; 2647 2648 if (*pinterp_name) { 2649 error_setg(&err, "Multiple PT_INTERP entries"); 2650 goto exit_errmsg; 2651 } 2652 2653 interp_name = g_malloc(eppnt->p_filesz); 2654 2655 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2656 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2657 eppnt->p_filesz); 2658 } else { 2659 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2660 eppnt->p_offset); 2661 if (retval != eppnt->p_filesz) { 2662 goto exit_read; 2663 } 2664 } 2665 if (interp_name[eppnt->p_filesz - 1] != 0) { 2666 error_setg(&err, "Invalid PT_INTERP entry"); 2667 goto exit_errmsg; 2668 } 2669 *pinterp_name = g_steal_pointer(&interp_name); 2670 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 2671 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 2672 goto exit_errmsg; 2673 } 2674 } 2675 } 2676 2677 if (pinterp_name != NULL) { 2678 /* 2679 * This is the main executable. 2680 * 2681 * Reserve extra space for brk. 2682 * We hold on to this space while placing the interpreter 2683 * and the stack, lest they be placed immediately after 2684 * the data segment and block allocation from the brk. 2685 * 2686 * 16MB is chosen as "large enough" without being so large 2687 * as to allow the result to not fit with a 32-bit guest on 2688 * a 32-bit host. 2689 */ 2690 info->reserve_brk = 16 * MiB; 2691 hiaddr += info->reserve_brk; 2692 2693 if (ehdr->e_type == ET_EXEC) { 2694 /* 2695 * Make sure that the low address does not conflict with 2696 * MMAP_MIN_ADDR or the QEMU application itself. 2697 */ 2698 probe_guest_base(image_name, loaddr, hiaddr); 2699 } else { 2700 /* 2701 * The binary is dynamic, but we still need to 2702 * select guest_base. In this case we pass a size. 2703 */ 2704 probe_guest_base(image_name, 0, hiaddr - loaddr); 2705 } 2706 } 2707 2708 /* 2709 * Reserve address space for all of this. 2710 * 2711 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2712 * exactly the address range that is required. 2713 * 2714 * Otherwise this is ET_DYN, and we are searching for a location 2715 * that can hold the memory space required. If the image is 2716 * pre-linked, LOADDR will be non-zero, and the kernel should 2717 * honor that address if it happens to be free. 2718 * 2719 * In both cases, we will overwrite pages in this range with mappings 2720 * from the executable. 2721 */ 2722 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2723 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2724 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2725 -1, 0); 2726 if (load_addr == -1) { 2727 goto exit_mmap; 2728 } 2729 load_bias = load_addr - loaddr; 2730 2731 if (elf_is_fdpic(ehdr)) { 2732 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2733 g_malloc(sizeof(*loadsegs) * info->nsegs); 2734 2735 for (i = 0; i < ehdr->e_phnum; ++i) { 2736 switch (phdr[i].p_type) { 2737 case PT_DYNAMIC: 2738 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2739 break; 2740 case PT_LOAD: 2741 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2742 loadsegs->p_vaddr = phdr[i].p_vaddr; 2743 loadsegs->p_memsz = phdr[i].p_memsz; 2744 ++loadsegs; 2745 break; 2746 } 2747 } 2748 } 2749 2750 info->load_bias = load_bias; 2751 info->code_offset = load_bias; 2752 info->data_offset = load_bias; 2753 info->load_addr = load_addr; 2754 info->entry = ehdr->e_entry + load_bias; 2755 info->start_code = -1; 2756 info->end_code = 0; 2757 info->start_data = -1; 2758 info->end_data = 0; 2759 info->brk = 0; 2760 info->elf_flags = ehdr->e_flags; 2761 2762 prot_exec = PROT_EXEC; 2763 #ifdef TARGET_AARCH64 2764 /* 2765 * If the BTI feature is present, this indicates that the executable 2766 * pages of the startup binary should be mapped with PROT_BTI, so that 2767 * branch targets are enforced. 2768 * 2769 * The startup binary is either the interpreter or the static executable. 2770 * The interpreter is responsible for all pages of a dynamic executable. 2771 * 2772 * Elf notes are backward compatible to older cpus. 2773 * Do not enable BTI unless it is supported. 2774 */ 2775 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 2776 && (pinterp_name == NULL || *pinterp_name == 0) 2777 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 2778 prot_exec |= TARGET_PROT_BTI; 2779 } 2780 #endif 2781 2782 for (i = 0; i < ehdr->e_phnum; i++) { 2783 struct elf_phdr *eppnt = phdr + i; 2784 if (eppnt->p_type == PT_LOAD) { 2785 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2786 int elf_prot = 0; 2787 2788 if (eppnt->p_flags & PF_R) { 2789 elf_prot |= PROT_READ; 2790 } 2791 if (eppnt->p_flags & PF_W) { 2792 elf_prot |= PROT_WRITE; 2793 } 2794 if (eppnt->p_flags & PF_X) { 2795 elf_prot |= prot_exec; 2796 } 2797 2798 vaddr = load_bias + eppnt->p_vaddr; 2799 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2800 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2801 2802 vaddr_ef = vaddr + eppnt->p_filesz; 2803 vaddr_em = vaddr + eppnt->p_memsz; 2804 2805 /* 2806 * Some segments may be completely empty, with a non-zero p_memsz 2807 * but no backing file segment. 2808 */ 2809 if (eppnt->p_filesz != 0) { 2810 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2811 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2812 MAP_PRIVATE | MAP_FIXED, 2813 image_fd, eppnt->p_offset - vaddr_po); 2814 2815 if (error == -1) { 2816 goto exit_mmap; 2817 } 2818 2819 /* 2820 * If the load segment requests extra zeros (e.g. bss), map it. 2821 */ 2822 if (eppnt->p_filesz < eppnt->p_memsz) { 2823 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2824 } 2825 } else if (eppnt->p_memsz != 0) { 2826 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 2827 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2828 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 2829 -1, 0); 2830 2831 if (error == -1) { 2832 goto exit_mmap; 2833 } 2834 } 2835 2836 /* Find the full program boundaries. */ 2837 if (elf_prot & PROT_EXEC) { 2838 if (vaddr < info->start_code) { 2839 info->start_code = vaddr; 2840 } 2841 if (vaddr_ef > info->end_code) { 2842 info->end_code = vaddr_ef; 2843 } 2844 } 2845 if (elf_prot & PROT_WRITE) { 2846 if (vaddr < info->start_data) { 2847 info->start_data = vaddr; 2848 } 2849 if (vaddr_ef > info->end_data) { 2850 info->end_data = vaddr_ef; 2851 } 2852 } 2853 if (vaddr_em > info->brk) { 2854 info->brk = vaddr_em; 2855 } 2856 #ifdef TARGET_MIPS 2857 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2858 Mips_elf_abiflags_v0 abiflags; 2859 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2860 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 2861 goto exit_errmsg; 2862 } 2863 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2864 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2865 sizeof(Mips_elf_abiflags_v0)); 2866 } else { 2867 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2868 eppnt->p_offset); 2869 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2870 goto exit_read; 2871 } 2872 } 2873 bswap_mips_abiflags(&abiflags); 2874 info->fp_abi = abiflags.fp_abi; 2875 #endif 2876 } 2877 } 2878 2879 if (info->end_data == 0) { 2880 info->start_data = info->end_code; 2881 info->end_data = info->end_code; 2882 } 2883 2884 if (qemu_log_enabled()) { 2885 load_symbols(ehdr, image_fd, load_bias); 2886 } 2887 2888 mmap_unlock(); 2889 2890 close(image_fd); 2891 return; 2892 2893 exit_read: 2894 if (retval >= 0) { 2895 error_setg(&err, "Incomplete read of file header"); 2896 } else { 2897 error_setg_errno(&err, errno, "Error reading file header"); 2898 } 2899 goto exit_errmsg; 2900 exit_mmap: 2901 error_setg_errno(&err, errno, "Error mapping file"); 2902 goto exit_errmsg; 2903 exit_errmsg: 2904 error_reportf_err(err, "%s: ", image_name); 2905 exit(-1); 2906 } 2907 2908 static void load_elf_interp(const char *filename, struct image_info *info, 2909 char bprm_buf[BPRM_BUF_SIZE]) 2910 { 2911 int fd, retval; 2912 Error *err = NULL; 2913 2914 fd = open(path(filename), O_RDONLY); 2915 if (fd < 0) { 2916 error_setg_file_open(&err, errno, filename); 2917 error_report_err(err); 2918 exit(-1); 2919 } 2920 2921 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2922 if (retval < 0) { 2923 error_setg_errno(&err, errno, "Error reading file header"); 2924 error_reportf_err(err, "%s: ", filename); 2925 exit(-1); 2926 } 2927 2928 if (retval < BPRM_BUF_SIZE) { 2929 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2930 } 2931 2932 load_elf_image(filename, fd, info, NULL, bprm_buf); 2933 } 2934 2935 static int symfind(const void *s0, const void *s1) 2936 { 2937 target_ulong addr = *(target_ulong *)s0; 2938 struct elf_sym *sym = (struct elf_sym *)s1; 2939 int result = 0; 2940 if (addr < sym->st_value) { 2941 result = -1; 2942 } else if (addr >= sym->st_value + sym->st_size) { 2943 result = 1; 2944 } 2945 return result; 2946 } 2947 2948 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2949 { 2950 #if ELF_CLASS == ELFCLASS32 2951 struct elf_sym *syms = s->disas_symtab.elf32; 2952 #else 2953 struct elf_sym *syms = s->disas_symtab.elf64; 2954 #endif 2955 2956 // binary search 2957 struct elf_sym *sym; 2958 2959 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2960 if (sym != NULL) { 2961 return s->disas_strtab + sym->st_name; 2962 } 2963 2964 return ""; 2965 } 2966 2967 /* FIXME: This should use elf_ops.h */ 2968 static int symcmp(const void *s0, const void *s1) 2969 { 2970 struct elf_sym *sym0 = (struct elf_sym *)s0; 2971 struct elf_sym *sym1 = (struct elf_sym *)s1; 2972 return (sym0->st_value < sym1->st_value) 2973 ? -1 2974 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2975 } 2976 2977 /* Best attempt to load symbols from this ELF object. */ 2978 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2979 { 2980 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2981 uint64_t segsz; 2982 struct elf_shdr *shdr; 2983 char *strings = NULL; 2984 struct syminfo *s = NULL; 2985 struct elf_sym *new_syms, *syms = NULL; 2986 2987 shnum = hdr->e_shnum; 2988 i = shnum * sizeof(struct elf_shdr); 2989 shdr = (struct elf_shdr *)alloca(i); 2990 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2991 return; 2992 } 2993 2994 bswap_shdr(shdr, shnum); 2995 for (i = 0; i < shnum; ++i) { 2996 if (shdr[i].sh_type == SHT_SYMTAB) { 2997 sym_idx = i; 2998 str_idx = shdr[i].sh_link; 2999 goto found; 3000 } 3001 } 3002 3003 /* There will be no symbol table if the file was stripped. */ 3004 return; 3005 3006 found: 3007 /* Now know where the strtab and symtab are. Snarf them. */ 3008 s = g_try_new(struct syminfo, 1); 3009 if (!s) { 3010 goto give_up; 3011 } 3012 3013 segsz = shdr[str_idx].sh_size; 3014 s->disas_strtab = strings = g_try_malloc(segsz); 3015 if (!strings || 3016 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3017 goto give_up; 3018 } 3019 3020 segsz = shdr[sym_idx].sh_size; 3021 syms = g_try_malloc(segsz); 3022 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3023 goto give_up; 3024 } 3025 3026 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3027 /* Implausibly large symbol table: give up rather than ploughing 3028 * on with the number of symbols calculation overflowing 3029 */ 3030 goto give_up; 3031 } 3032 nsyms = segsz / sizeof(struct elf_sym); 3033 for (i = 0; i < nsyms; ) { 3034 bswap_sym(syms + i); 3035 /* Throw away entries which we do not need. */ 3036 if (syms[i].st_shndx == SHN_UNDEF 3037 || syms[i].st_shndx >= SHN_LORESERVE 3038 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3039 if (i < --nsyms) { 3040 syms[i] = syms[nsyms]; 3041 } 3042 } else { 3043 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3044 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3045 syms[i].st_value &= ~(target_ulong)1; 3046 #endif 3047 syms[i].st_value += load_bias; 3048 i++; 3049 } 3050 } 3051 3052 /* No "useful" symbol. */ 3053 if (nsyms == 0) { 3054 goto give_up; 3055 } 3056 3057 /* Attempt to free the storage associated with the local symbols 3058 that we threw away. Whether or not this has any effect on the 3059 memory allocation depends on the malloc implementation and how 3060 many symbols we managed to discard. */ 3061 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3062 if (new_syms == NULL) { 3063 goto give_up; 3064 } 3065 syms = new_syms; 3066 3067 qsort(syms, nsyms, sizeof(*syms), symcmp); 3068 3069 s->disas_num_syms = nsyms; 3070 #if ELF_CLASS == ELFCLASS32 3071 s->disas_symtab.elf32 = syms; 3072 #else 3073 s->disas_symtab.elf64 = syms; 3074 #endif 3075 s->lookup_symbol = lookup_symbolxx; 3076 s->next = syminfos; 3077 syminfos = s; 3078 3079 return; 3080 3081 give_up: 3082 g_free(s); 3083 g_free(strings); 3084 g_free(syms); 3085 } 3086 3087 uint32_t get_elf_eflags(int fd) 3088 { 3089 struct elfhdr ehdr; 3090 off_t offset; 3091 int ret; 3092 3093 /* Read ELF header */ 3094 offset = lseek(fd, 0, SEEK_SET); 3095 if (offset == (off_t) -1) { 3096 return 0; 3097 } 3098 ret = read(fd, &ehdr, sizeof(ehdr)); 3099 if (ret < sizeof(ehdr)) { 3100 return 0; 3101 } 3102 offset = lseek(fd, offset, SEEK_SET); 3103 if (offset == (off_t) -1) { 3104 return 0; 3105 } 3106 3107 /* Check ELF signature */ 3108 if (!elf_check_ident(&ehdr)) { 3109 return 0; 3110 } 3111 3112 /* check header */ 3113 bswap_ehdr(&ehdr); 3114 if (!elf_check_ehdr(&ehdr)) { 3115 return 0; 3116 } 3117 3118 /* return architecture id */ 3119 return ehdr.e_flags; 3120 } 3121 3122 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3123 { 3124 struct image_info interp_info; 3125 struct elfhdr elf_ex; 3126 char *elf_interpreter = NULL; 3127 char *scratch; 3128 3129 memset(&interp_info, 0, sizeof(interp_info)); 3130 #ifdef TARGET_MIPS 3131 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3132 #endif 3133 3134 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3135 3136 load_elf_image(bprm->filename, bprm->fd, info, 3137 &elf_interpreter, bprm->buf); 3138 3139 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3140 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3141 when we load the interpreter. */ 3142 elf_ex = *(struct elfhdr *)bprm->buf; 3143 3144 /* Do this so that we can load the interpreter, if need be. We will 3145 change some of these later */ 3146 bprm->p = setup_arg_pages(bprm, info); 3147 3148 scratch = g_new0(char, TARGET_PAGE_SIZE); 3149 if (STACK_GROWS_DOWN) { 3150 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3151 bprm->p, info->stack_limit); 3152 info->file_string = bprm->p; 3153 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3154 bprm->p, info->stack_limit); 3155 info->env_strings = bprm->p; 3156 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3157 bprm->p, info->stack_limit); 3158 info->arg_strings = bprm->p; 3159 } else { 3160 info->arg_strings = bprm->p; 3161 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3162 bprm->p, info->stack_limit); 3163 info->env_strings = bprm->p; 3164 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3165 bprm->p, info->stack_limit); 3166 info->file_string = bprm->p; 3167 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3168 bprm->p, info->stack_limit); 3169 } 3170 3171 g_free(scratch); 3172 3173 if (!bprm->p) { 3174 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3175 exit(-1); 3176 } 3177 3178 if (elf_interpreter) { 3179 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3180 3181 /* If the program interpreter is one of these two, then assume 3182 an iBCS2 image. Otherwise assume a native linux image. */ 3183 3184 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3185 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3186 info->personality = PER_SVR4; 3187 3188 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3189 and some applications "depend" upon this behavior. Since 3190 we do not have the power to recompile these, we emulate 3191 the SVr4 behavior. Sigh. */ 3192 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3193 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3194 } 3195 #ifdef TARGET_MIPS 3196 info->interp_fp_abi = interp_info.fp_abi; 3197 #endif 3198 } 3199 3200 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3201 info, (elf_interpreter ? &interp_info : NULL)); 3202 info->start_stack = bprm->p; 3203 3204 /* If we have an interpreter, set that as the program's entry point. 3205 Copy the load_bias as well, to help PPC64 interpret the entry 3206 point as a function descriptor. Do this after creating elf tables 3207 so that we copy the original program entry point into the AUXV. */ 3208 if (elf_interpreter) { 3209 info->load_bias = interp_info.load_bias; 3210 info->entry = interp_info.entry; 3211 g_free(elf_interpreter); 3212 } 3213 3214 #ifdef USE_ELF_CORE_DUMP 3215 bprm->core_dump = &elf_core_dump; 3216 #endif 3217 3218 /* 3219 * If we reserved extra space for brk, release it now. 3220 * The implementation of do_brk in syscalls.c expects to be able 3221 * to mmap pages in this space. 3222 */ 3223 if (info->reserve_brk) { 3224 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3225 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3226 target_munmap(start_brk, end_brk - start_brk); 3227 } 3228 3229 return 0; 3230 } 3231 3232 #ifdef USE_ELF_CORE_DUMP 3233 /* 3234 * Definitions to generate Intel SVR4-like core files. 3235 * These mostly have the same names as the SVR4 types with "target_elf_" 3236 * tacked on the front to prevent clashes with linux definitions, 3237 * and the typedef forms have been avoided. This is mostly like 3238 * the SVR4 structure, but more Linuxy, with things that Linux does 3239 * not support and which gdb doesn't really use excluded. 3240 * 3241 * Fields we don't dump (their contents is zero) in linux-user qemu 3242 * are marked with XXX. 3243 * 3244 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3245 * 3246 * Porting ELF coredump for target is (quite) simple process. First you 3247 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3248 * the target resides): 3249 * 3250 * #define USE_ELF_CORE_DUMP 3251 * 3252 * Next you define type of register set used for dumping. ELF specification 3253 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3254 * 3255 * typedef <target_regtype> target_elf_greg_t; 3256 * #define ELF_NREG <number of registers> 3257 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3258 * 3259 * Last step is to implement target specific function that copies registers 3260 * from given cpu into just specified register set. Prototype is: 3261 * 3262 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3263 * const CPUArchState *env); 3264 * 3265 * Parameters: 3266 * regs - copy register values into here (allocated and zeroed by caller) 3267 * env - copy registers from here 3268 * 3269 * Example for ARM target is provided in this file. 3270 */ 3271 3272 /* An ELF note in memory */ 3273 struct memelfnote { 3274 const char *name; 3275 size_t namesz; 3276 size_t namesz_rounded; 3277 int type; 3278 size_t datasz; 3279 size_t datasz_rounded; 3280 void *data; 3281 size_t notesz; 3282 }; 3283 3284 struct target_elf_siginfo { 3285 abi_int si_signo; /* signal number */ 3286 abi_int si_code; /* extra code */ 3287 abi_int si_errno; /* errno */ 3288 }; 3289 3290 struct target_elf_prstatus { 3291 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3292 abi_short pr_cursig; /* Current signal */ 3293 abi_ulong pr_sigpend; /* XXX */ 3294 abi_ulong pr_sighold; /* XXX */ 3295 target_pid_t pr_pid; 3296 target_pid_t pr_ppid; 3297 target_pid_t pr_pgrp; 3298 target_pid_t pr_sid; 3299 struct target_timeval pr_utime; /* XXX User time */ 3300 struct target_timeval pr_stime; /* XXX System time */ 3301 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3302 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3303 target_elf_gregset_t pr_reg; /* GP registers */ 3304 abi_int pr_fpvalid; /* XXX */ 3305 }; 3306 3307 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3308 3309 struct target_elf_prpsinfo { 3310 char pr_state; /* numeric process state */ 3311 char pr_sname; /* char for pr_state */ 3312 char pr_zomb; /* zombie */ 3313 char pr_nice; /* nice val */ 3314 abi_ulong pr_flag; /* flags */ 3315 target_uid_t pr_uid; 3316 target_gid_t pr_gid; 3317 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3318 /* Lots missing */ 3319 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3320 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3321 }; 3322 3323 /* Here is the structure in which status of each thread is captured. */ 3324 struct elf_thread_status { 3325 QTAILQ_ENTRY(elf_thread_status) ets_link; 3326 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3327 #if 0 3328 elf_fpregset_t fpu; /* NT_PRFPREG */ 3329 struct task_struct *thread; 3330 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3331 #endif 3332 struct memelfnote notes[1]; 3333 int num_notes; 3334 }; 3335 3336 struct elf_note_info { 3337 struct memelfnote *notes; 3338 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3339 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3340 3341 QTAILQ_HEAD(, elf_thread_status) thread_list; 3342 #if 0 3343 /* 3344 * Current version of ELF coredump doesn't support 3345 * dumping fp regs etc. 3346 */ 3347 elf_fpregset_t *fpu; 3348 elf_fpxregset_t *xfpu; 3349 int thread_status_size; 3350 #endif 3351 int notes_size; 3352 int numnote; 3353 }; 3354 3355 struct vm_area_struct { 3356 target_ulong vma_start; /* start vaddr of memory region */ 3357 target_ulong vma_end; /* end vaddr of memory region */ 3358 abi_ulong vma_flags; /* protection etc. flags for the region */ 3359 QTAILQ_ENTRY(vm_area_struct) vma_link; 3360 }; 3361 3362 struct mm_struct { 3363 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3364 int mm_count; /* number of mappings */ 3365 }; 3366 3367 static struct mm_struct *vma_init(void); 3368 static void vma_delete(struct mm_struct *); 3369 static int vma_add_mapping(struct mm_struct *, target_ulong, 3370 target_ulong, abi_ulong); 3371 static int vma_get_mapping_count(const struct mm_struct *); 3372 static struct vm_area_struct *vma_first(const struct mm_struct *); 3373 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3374 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3375 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3376 unsigned long flags); 3377 3378 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3379 static void fill_note(struct memelfnote *, const char *, int, 3380 unsigned int, void *); 3381 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3382 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3383 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3384 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3385 static size_t note_size(const struct memelfnote *); 3386 static void free_note_info(struct elf_note_info *); 3387 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3388 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3389 static int core_dump_filename(const TaskState *, char *, size_t); 3390 3391 static int dump_write(int, const void *, size_t); 3392 static int write_note(struct memelfnote *, int); 3393 static int write_note_info(struct elf_note_info *, int); 3394 3395 #ifdef BSWAP_NEEDED 3396 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3397 { 3398 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3399 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3400 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3401 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3402 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3403 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3404 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3405 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3406 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3407 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3408 /* cpu times are not filled, so we skip them */ 3409 /* regs should be in correct format already */ 3410 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3411 } 3412 3413 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3414 { 3415 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3416 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3417 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3418 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3419 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3420 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3421 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3422 } 3423 3424 static void bswap_note(struct elf_note *en) 3425 { 3426 bswap32s(&en->n_namesz); 3427 bswap32s(&en->n_descsz); 3428 bswap32s(&en->n_type); 3429 } 3430 #else 3431 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3432 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3433 static inline void bswap_note(struct elf_note *en) { } 3434 #endif /* BSWAP_NEEDED */ 3435 3436 /* 3437 * Minimal support for linux memory regions. These are needed 3438 * when we are finding out what memory exactly belongs to 3439 * emulated process. No locks needed here, as long as 3440 * thread that received the signal is stopped. 3441 */ 3442 3443 static struct mm_struct *vma_init(void) 3444 { 3445 struct mm_struct *mm; 3446 3447 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3448 return (NULL); 3449 3450 mm->mm_count = 0; 3451 QTAILQ_INIT(&mm->mm_mmap); 3452 3453 return (mm); 3454 } 3455 3456 static void vma_delete(struct mm_struct *mm) 3457 { 3458 struct vm_area_struct *vma; 3459 3460 while ((vma = vma_first(mm)) != NULL) { 3461 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3462 g_free(vma); 3463 } 3464 g_free(mm); 3465 } 3466 3467 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3468 target_ulong end, abi_ulong flags) 3469 { 3470 struct vm_area_struct *vma; 3471 3472 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3473 return (-1); 3474 3475 vma->vma_start = start; 3476 vma->vma_end = end; 3477 vma->vma_flags = flags; 3478 3479 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3480 mm->mm_count++; 3481 3482 return (0); 3483 } 3484 3485 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3486 { 3487 return (QTAILQ_FIRST(&mm->mm_mmap)); 3488 } 3489 3490 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3491 { 3492 return (QTAILQ_NEXT(vma, vma_link)); 3493 } 3494 3495 static int vma_get_mapping_count(const struct mm_struct *mm) 3496 { 3497 return (mm->mm_count); 3498 } 3499 3500 /* 3501 * Calculate file (dump) size of given memory region. 3502 */ 3503 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3504 { 3505 /* if we cannot even read the first page, skip it */ 3506 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3507 return (0); 3508 3509 /* 3510 * Usually we don't dump executable pages as they contain 3511 * non-writable code that debugger can read directly from 3512 * target library etc. However, thread stacks are marked 3513 * also executable so we read in first page of given region 3514 * and check whether it contains elf header. If there is 3515 * no elf header, we dump it. 3516 */ 3517 if (vma->vma_flags & PROT_EXEC) { 3518 char page[TARGET_PAGE_SIZE]; 3519 3520 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3521 return 0; 3522 } 3523 if ((page[EI_MAG0] == ELFMAG0) && 3524 (page[EI_MAG1] == ELFMAG1) && 3525 (page[EI_MAG2] == ELFMAG2) && 3526 (page[EI_MAG3] == ELFMAG3)) { 3527 /* 3528 * Mappings are possibly from ELF binary. Don't dump 3529 * them. 3530 */ 3531 return (0); 3532 } 3533 } 3534 3535 return (vma->vma_end - vma->vma_start); 3536 } 3537 3538 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3539 unsigned long flags) 3540 { 3541 struct mm_struct *mm = (struct mm_struct *)priv; 3542 3543 vma_add_mapping(mm, start, end, flags); 3544 return (0); 3545 } 3546 3547 static void fill_note(struct memelfnote *note, const char *name, int type, 3548 unsigned int sz, void *data) 3549 { 3550 unsigned int namesz; 3551 3552 namesz = strlen(name) + 1; 3553 note->name = name; 3554 note->namesz = namesz; 3555 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3556 note->type = type; 3557 note->datasz = sz; 3558 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3559 3560 note->data = data; 3561 3562 /* 3563 * We calculate rounded up note size here as specified by 3564 * ELF document. 3565 */ 3566 note->notesz = sizeof (struct elf_note) + 3567 note->namesz_rounded + note->datasz_rounded; 3568 } 3569 3570 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3571 uint32_t flags) 3572 { 3573 (void) memset(elf, 0, sizeof(*elf)); 3574 3575 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3576 elf->e_ident[EI_CLASS] = ELF_CLASS; 3577 elf->e_ident[EI_DATA] = ELF_DATA; 3578 elf->e_ident[EI_VERSION] = EV_CURRENT; 3579 elf->e_ident[EI_OSABI] = ELF_OSABI; 3580 3581 elf->e_type = ET_CORE; 3582 elf->e_machine = machine; 3583 elf->e_version = EV_CURRENT; 3584 elf->e_phoff = sizeof(struct elfhdr); 3585 elf->e_flags = flags; 3586 elf->e_ehsize = sizeof(struct elfhdr); 3587 elf->e_phentsize = sizeof(struct elf_phdr); 3588 elf->e_phnum = segs; 3589 3590 bswap_ehdr(elf); 3591 } 3592 3593 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3594 { 3595 phdr->p_type = PT_NOTE; 3596 phdr->p_offset = offset; 3597 phdr->p_vaddr = 0; 3598 phdr->p_paddr = 0; 3599 phdr->p_filesz = sz; 3600 phdr->p_memsz = 0; 3601 phdr->p_flags = 0; 3602 phdr->p_align = 0; 3603 3604 bswap_phdr(phdr, 1); 3605 } 3606 3607 static size_t note_size(const struct memelfnote *note) 3608 { 3609 return (note->notesz); 3610 } 3611 3612 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3613 const TaskState *ts, int signr) 3614 { 3615 (void) memset(prstatus, 0, sizeof (*prstatus)); 3616 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3617 prstatus->pr_pid = ts->ts_tid; 3618 prstatus->pr_ppid = getppid(); 3619 prstatus->pr_pgrp = getpgrp(); 3620 prstatus->pr_sid = getsid(0); 3621 3622 bswap_prstatus(prstatus); 3623 } 3624 3625 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3626 { 3627 char *base_filename; 3628 unsigned int i, len; 3629 3630 (void) memset(psinfo, 0, sizeof (*psinfo)); 3631 3632 len = ts->info->arg_end - ts->info->arg_start; 3633 if (len >= ELF_PRARGSZ) 3634 len = ELF_PRARGSZ - 1; 3635 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3636 return -EFAULT; 3637 for (i = 0; i < len; i++) 3638 if (psinfo->pr_psargs[i] == 0) 3639 psinfo->pr_psargs[i] = ' '; 3640 psinfo->pr_psargs[len] = 0; 3641 3642 psinfo->pr_pid = getpid(); 3643 psinfo->pr_ppid = getppid(); 3644 psinfo->pr_pgrp = getpgrp(); 3645 psinfo->pr_sid = getsid(0); 3646 psinfo->pr_uid = getuid(); 3647 psinfo->pr_gid = getgid(); 3648 3649 base_filename = g_path_get_basename(ts->bprm->filename); 3650 /* 3651 * Using strncpy here is fine: at max-length, 3652 * this field is not NUL-terminated. 3653 */ 3654 (void) strncpy(psinfo->pr_fname, base_filename, 3655 sizeof(psinfo->pr_fname)); 3656 3657 g_free(base_filename); 3658 bswap_psinfo(psinfo); 3659 return (0); 3660 } 3661 3662 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3663 { 3664 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3665 elf_addr_t orig_auxv = auxv; 3666 void *ptr; 3667 int len = ts->info->auxv_len; 3668 3669 /* 3670 * Auxiliary vector is stored in target process stack. It contains 3671 * {type, value} pairs that we need to dump into note. This is not 3672 * strictly necessary but we do it here for sake of completeness. 3673 */ 3674 3675 /* read in whole auxv vector and copy it to memelfnote */ 3676 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3677 if (ptr != NULL) { 3678 fill_note(note, "CORE", NT_AUXV, len, ptr); 3679 unlock_user(ptr, auxv, len); 3680 } 3681 } 3682 3683 /* 3684 * Constructs name of coredump file. We have following convention 3685 * for the name: 3686 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3687 * 3688 * Returns 0 in case of success, -1 otherwise (errno is set). 3689 */ 3690 static int core_dump_filename(const TaskState *ts, char *buf, 3691 size_t bufsize) 3692 { 3693 char timestamp[64]; 3694 char *base_filename = NULL; 3695 struct timeval tv; 3696 struct tm tm; 3697 3698 assert(bufsize >= PATH_MAX); 3699 3700 if (gettimeofday(&tv, NULL) < 0) { 3701 (void) fprintf(stderr, "unable to get current timestamp: %s", 3702 strerror(errno)); 3703 return (-1); 3704 } 3705 3706 base_filename = g_path_get_basename(ts->bprm->filename); 3707 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3708 localtime_r(&tv.tv_sec, &tm)); 3709 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3710 base_filename, timestamp, (int)getpid()); 3711 g_free(base_filename); 3712 3713 return (0); 3714 } 3715 3716 static int dump_write(int fd, const void *ptr, size_t size) 3717 { 3718 const char *bufp = (const char *)ptr; 3719 ssize_t bytes_written, bytes_left; 3720 struct rlimit dumpsize; 3721 off_t pos; 3722 3723 bytes_written = 0; 3724 getrlimit(RLIMIT_CORE, &dumpsize); 3725 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3726 if (errno == ESPIPE) { /* not a seekable stream */ 3727 bytes_left = size; 3728 } else { 3729 return pos; 3730 } 3731 } else { 3732 if (dumpsize.rlim_cur <= pos) { 3733 return -1; 3734 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3735 bytes_left = size; 3736 } else { 3737 size_t limit_left=dumpsize.rlim_cur - pos; 3738 bytes_left = limit_left >= size ? size : limit_left ; 3739 } 3740 } 3741 3742 /* 3743 * In normal conditions, single write(2) should do but 3744 * in case of socket etc. this mechanism is more portable. 3745 */ 3746 do { 3747 bytes_written = write(fd, bufp, bytes_left); 3748 if (bytes_written < 0) { 3749 if (errno == EINTR) 3750 continue; 3751 return (-1); 3752 } else if (bytes_written == 0) { /* eof */ 3753 return (-1); 3754 } 3755 bufp += bytes_written; 3756 bytes_left -= bytes_written; 3757 } while (bytes_left > 0); 3758 3759 return (0); 3760 } 3761 3762 static int write_note(struct memelfnote *men, int fd) 3763 { 3764 struct elf_note en; 3765 3766 en.n_namesz = men->namesz; 3767 en.n_type = men->type; 3768 en.n_descsz = men->datasz; 3769 3770 bswap_note(&en); 3771 3772 if (dump_write(fd, &en, sizeof(en)) != 0) 3773 return (-1); 3774 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3775 return (-1); 3776 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3777 return (-1); 3778 3779 return (0); 3780 } 3781 3782 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3783 { 3784 CPUState *cpu = env_cpu((CPUArchState *)env); 3785 TaskState *ts = (TaskState *)cpu->opaque; 3786 struct elf_thread_status *ets; 3787 3788 ets = g_malloc0(sizeof (*ets)); 3789 ets->num_notes = 1; /* only prstatus is dumped */ 3790 fill_prstatus(&ets->prstatus, ts, 0); 3791 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3792 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3793 &ets->prstatus); 3794 3795 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3796 3797 info->notes_size += note_size(&ets->notes[0]); 3798 } 3799 3800 static void init_note_info(struct elf_note_info *info) 3801 { 3802 /* Initialize the elf_note_info structure so that it is at 3803 * least safe to call free_note_info() on it. Must be 3804 * called before calling fill_note_info(). 3805 */ 3806 memset(info, 0, sizeof (*info)); 3807 QTAILQ_INIT(&info->thread_list); 3808 } 3809 3810 static int fill_note_info(struct elf_note_info *info, 3811 long signr, const CPUArchState *env) 3812 { 3813 #define NUMNOTES 3 3814 CPUState *cpu = env_cpu((CPUArchState *)env); 3815 TaskState *ts = (TaskState *)cpu->opaque; 3816 int i; 3817 3818 info->notes = g_new0(struct memelfnote, NUMNOTES); 3819 if (info->notes == NULL) 3820 return (-ENOMEM); 3821 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3822 if (info->prstatus == NULL) 3823 return (-ENOMEM); 3824 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3825 if (info->prstatus == NULL) 3826 return (-ENOMEM); 3827 3828 /* 3829 * First fill in status (and registers) of current thread 3830 * including process info & aux vector. 3831 */ 3832 fill_prstatus(info->prstatus, ts, signr); 3833 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3834 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3835 sizeof (*info->prstatus), info->prstatus); 3836 fill_psinfo(info->psinfo, ts); 3837 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3838 sizeof (*info->psinfo), info->psinfo); 3839 fill_auxv_note(&info->notes[2], ts); 3840 info->numnote = 3; 3841 3842 info->notes_size = 0; 3843 for (i = 0; i < info->numnote; i++) 3844 info->notes_size += note_size(&info->notes[i]); 3845 3846 /* read and fill status of all threads */ 3847 cpu_list_lock(); 3848 CPU_FOREACH(cpu) { 3849 if (cpu == thread_cpu) { 3850 continue; 3851 } 3852 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3853 } 3854 cpu_list_unlock(); 3855 3856 return (0); 3857 } 3858 3859 static void free_note_info(struct elf_note_info *info) 3860 { 3861 struct elf_thread_status *ets; 3862 3863 while (!QTAILQ_EMPTY(&info->thread_list)) { 3864 ets = QTAILQ_FIRST(&info->thread_list); 3865 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3866 g_free(ets); 3867 } 3868 3869 g_free(info->prstatus); 3870 g_free(info->psinfo); 3871 g_free(info->notes); 3872 } 3873 3874 static int write_note_info(struct elf_note_info *info, int fd) 3875 { 3876 struct elf_thread_status *ets; 3877 int i, error = 0; 3878 3879 /* write prstatus, psinfo and auxv for current thread */ 3880 for (i = 0; i < info->numnote; i++) 3881 if ((error = write_note(&info->notes[i], fd)) != 0) 3882 return (error); 3883 3884 /* write prstatus for each thread */ 3885 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3886 if ((error = write_note(&ets->notes[0], fd)) != 0) 3887 return (error); 3888 } 3889 3890 return (0); 3891 } 3892 3893 /* 3894 * Write out ELF coredump. 3895 * 3896 * See documentation of ELF object file format in: 3897 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3898 * 3899 * Coredump format in linux is following: 3900 * 3901 * 0 +----------------------+ \ 3902 * | ELF header | ET_CORE | 3903 * +----------------------+ | 3904 * | ELF program headers | |--- headers 3905 * | - NOTE section | | 3906 * | - PT_LOAD sections | | 3907 * +----------------------+ / 3908 * | NOTEs: | 3909 * | - NT_PRSTATUS | 3910 * | - NT_PRSINFO | 3911 * | - NT_AUXV | 3912 * +----------------------+ <-- aligned to target page 3913 * | Process memory dump | 3914 * : : 3915 * . . 3916 * : : 3917 * | | 3918 * +----------------------+ 3919 * 3920 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3921 * NT_PRSINFO -> struct elf_prpsinfo 3922 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3923 * 3924 * Format follows System V format as close as possible. Current 3925 * version limitations are as follows: 3926 * - no floating point registers are dumped 3927 * 3928 * Function returns 0 in case of success, negative errno otherwise. 3929 * 3930 * TODO: make this work also during runtime: it should be 3931 * possible to force coredump from running process and then 3932 * continue processing. For example qemu could set up SIGUSR2 3933 * handler (provided that target process haven't registered 3934 * handler for that) that does the dump when signal is received. 3935 */ 3936 static int elf_core_dump(int signr, const CPUArchState *env) 3937 { 3938 const CPUState *cpu = env_cpu((CPUArchState *)env); 3939 const TaskState *ts = (const TaskState *)cpu->opaque; 3940 struct vm_area_struct *vma = NULL; 3941 char corefile[PATH_MAX]; 3942 struct elf_note_info info; 3943 struct elfhdr elf; 3944 struct elf_phdr phdr; 3945 struct rlimit dumpsize; 3946 struct mm_struct *mm = NULL; 3947 off_t offset = 0, data_offset = 0; 3948 int segs = 0; 3949 int fd = -1; 3950 3951 init_note_info(&info); 3952 3953 errno = 0; 3954 getrlimit(RLIMIT_CORE, &dumpsize); 3955 if (dumpsize.rlim_cur == 0) 3956 return 0; 3957 3958 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3959 return (-errno); 3960 3961 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3962 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3963 return (-errno); 3964 3965 /* 3966 * Walk through target process memory mappings and 3967 * set up structure containing this information. After 3968 * this point vma_xxx functions can be used. 3969 */ 3970 if ((mm = vma_init()) == NULL) 3971 goto out; 3972 3973 walk_memory_regions(mm, vma_walker); 3974 segs = vma_get_mapping_count(mm); 3975 3976 /* 3977 * Construct valid coredump ELF header. We also 3978 * add one more segment for notes. 3979 */ 3980 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3981 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3982 goto out; 3983 3984 /* fill in the in-memory version of notes */ 3985 if (fill_note_info(&info, signr, env) < 0) 3986 goto out; 3987 3988 offset += sizeof (elf); /* elf header */ 3989 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3990 3991 /* write out notes program header */ 3992 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3993 3994 offset += info.notes_size; 3995 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3996 goto out; 3997 3998 /* 3999 * ELF specification wants data to start at page boundary so 4000 * we align it here. 4001 */ 4002 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4003 4004 /* 4005 * Write program headers for memory regions mapped in 4006 * the target process. 4007 */ 4008 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4009 (void) memset(&phdr, 0, sizeof (phdr)); 4010 4011 phdr.p_type = PT_LOAD; 4012 phdr.p_offset = offset; 4013 phdr.p_vaddr = vma->vma_start; 4014 phdr.p_paddr = 0; 4015 phdr.p_filesz = vma_dump_size(vma); 4016 offset += phdr.p_filesz; 4017 phdr.p_memsz = vma->vma_end - vma->vma_start; 4018 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4019 if (vma->vma_flags & PROT_WRITE) 4020 phdr.p_flags |= PF_W; 4021 if (vma->vma_flags & PROT_EXEC) 4022 phdr.p_flags |= PF_X; 4023 phdr.p_align = ELF_EXEC_PAGESIZE; 4024 4025 bswap_phdr(&phdr, 1); 4026 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4027 goto out; 4028 } 4029 } 4030 4031 /* 4032 * Next we write notes just after program headers. No 4033 * alignment needed here. 4034 */ 4035 if (write_note_info(&info, fd) < 0) 4036 goto out; 4037 4038 /* align data to page boundary */ 4039 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4040 goto out; 4041 4042 /* 4043 * Finally we can dump process memory into corefile as well. 4044 */ 4045 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4046 abi_ulong addr; 4047 abi_ulong end; 4048 4049 end = vma->vma_start + vma_dump_size(vma); 4050 4051 for (addr = vma->vma_start; addr < end; 4052 addr += TARGET_PAGE_SIZE) { 4053 char page[TARGET_PAGE_SIZE]; 4054 int error; 4055 4056 /* 4057 * Read in page from target process memory and 4058 * write it to coredump file. 4059 */ 4060 error = copy_from_user(page, addr, sizeof (page)); 4061 if (error != 0) { 4062 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4063 addr); 4064 errno = -error; 4065 goto out; 4066 } 4067 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4068 goto out; 4069 } 4070 } 4071 4072 out: 4073 free_note_info(&info); 4074 if (mm != NULL) 4075 vma_delete(mm); 4076 (void) close(fd); 4077 4078 if (errno != 0) 4079 return (-errno); 4080 return (0); 4081 } 4082 #endif /* USE_ELF_CORE_DUMP */ 4083 4084 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4085 { 4086 init_thread(regs, infop); 4087 } 4088