1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/path.h" 11 #include "qemu/guest-random.h" 12 13 #ifdef _ARCH_PPC64 14 #undef ARCH_DLINFO 15 #undef ELF_PLATFORM 16 #undef ELF_HWCAP 17 #undef ELF_HWCAP2 18 #undef ELF_CLASS 19 #undef ELF_DATA 20 #undef ELF_ARCH 21 #endif 22 23 #define ELF_OSABI ELFOSABI_SYSV 24 25 /* from personality.h */ 26 27 /* 28 * Flags for bug emulation. 29 * 30 * These occupy the top three bytes. 31 */ 32 enum { 33 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 34 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 35 descriptors (signal handling) */ 36 MMAP_PAGE_ZERO = 0x0100000, 37 ADDR_COMPAT_LAYOUT = 0x0200000, 38 READ_IMPLIES_EXEC = 0x0400000, 39 ADDR_LIMIT_32BIT = 0x0800000, 40 SHORT_INODE = 0x1000000, 41 WHOLE_SECONDS = 0x2000000, 42 STICKY_TIMEOUTS = 0x4000000, 43 ADDR_LIMIT_3GB = 0x8000000, 44 }; 45 46 /* 47 * Personality types. 48 * 49 * These go in the low byte. Avoid using the top bit, it will 50 * conflict with error returns. 51 */ 52 enum { 53 PER_LINUX = 0x0000, 54 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 55 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 56 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 57 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 58 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 59 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 60 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 61 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 62 PER_BSD = 0x0006, 63 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 64 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 65 PER_LINUX32 = 0x0008, 66 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 67 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 68 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 69 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 70 PER_RISCOS = 0x000c, 71 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 72 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 73 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 74 PER_HPUX = 0x0010, 75 PER_MASK = 0x00ff, 76 }; 77 78 /* 79 * Return the base personality without flags. 80 */ 81 #define personality(pers) (pers & PER_MASK) 82 83 int info_is_fdpic(struct image_info *info) 84 { 85 return info->personality == PER_LINUX_FDPIC; 86 } 87 88 /* this flag is uneffective under linux too, should be deleted */ 89 #ifndef MAP_DENYWRITE 90 #define MAP_DENYWRITE 0 91 #endif 92 93 /* should probably go in elf.h */ 94 #ifndef ELIBBAD 95 #define ELIBBAD 80 96 #endif 97 98 #ifdef TARGET_WORDS_BIGENDIAN 99 #define ELF_DATA ELFDATA2MSB 100 #else 101 #define ELF_DATA ELFDATA2LSB 102 #endif 103 104 #ifdef TARGET_ABI_MIPSN32 105 typedef abi_ullong target_elf_greg_t; 106 #define tswapreg(ptr) tswap64(ptr) 107 #else 108 typedef abi_ulong target_elf_greg_t; 109 #define tswapreg(ptr) tswapal(ptr) 110 #endif 111 112 #ifdef USE_UID16 113 typedef abi_ushort target_uid_t; 114 typedef abi_ushort target_gid_t; 115 #else 116 typedef abi_uint target_uid_t; 117 typedef abi_uint target_gid_t; 118 #endif 119 typedef abi_int target_pid_t; 120 121 #ifdef TARGET_I386 122 123 #define ELF_PLATFORM get_elf_platform() 124 125 static const char *get_elf_platform(void) 126 { 127 static char elf_platform[] = "i386"; 128 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 129 if (family > 6) 130 family = 6; 131 if (family >= 3) 132 elf_platform[1] = '0' + family; 133 return elf_platform; 134 } 135 136 #define ELF_HWCAP get_elf_hwcap() 137 138 static uint32_t get_elf_hwcap(void) 139 { 140 X86CPU *cpu = X86_CPU(thread_cpu); 141 142 return cpu->env.features[FEAT_1_EDX]; 143 } 144 145 #ifdef TARGET_X86_64 146 #define ELF_START_MMAP 0x2aaaaab000ULL 147 148 #define ELF_CLASS ELFCLASS64 149 #define ELF_ARCH EM_X86_64 150 151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 152 { 153 regs->rax = 0; 154 regs->rsp = infop->start_stack; 155 regs->rip = infop->entry; 156 } 157 158 #define ELF_NREG 27 159 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 160 161 /* 162 * Note that ELF_NREG should be 29 as there should be place for 163 * TRAPNO and ERR "registers" as well but linux doesn't dump 164 * those. 165 * 166 * See linux kernel: arch/x86/include/asm/elf.h 167 */ 168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 169 { 170 (*regs)[0] = env->regs[15]; 171 (*regs)[1] = env->regs[14]; 172 (*regs)[2] = env->regs[13]; 173 (*regs)[3] = env->regs[12]; 174 (*regs)[4] = env->regs[R_EBP]; 175 (*regs)[5] = env->regs[R_EBX]; 176 (*regs)[6] = env->regs[11]; 177 (*regs)[7] = env->regs[10]; 178 (*regs)[8] = env->regs[9]; 179 (*regs)[9] = env->regs[8]; 180 (*regs)[10] = env->regs[R_EAX]; 181 (*regs)[11] = env->regs[R_ECX]; 182 (*regs)[12] = env->regs[R_EDX]; 183 (*regs)[13] = env->regs[R_ESI]; 184 (*regs)[14] = env->regs[R_EDI]; 185 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 186 (*regs)[16] = env->eip; 187 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 188 (*regs)[18] = env->eflags; 189 (*regs)[19] = env->regs[R_ESP]; 190 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 191 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 192 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 193 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 194 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 195 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 196 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 197 } 198 199 #else 200 201 #define ELF_START_MMAP 0x80000000 202 203 /* 204 * This is used to ensure we don't load something for the wrong architecture. 205 */ 206 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 207 208 /* 209 * These are used to set parameters in the core dumps. 210 */ 211 #define ELF_CLASS ELFCLASS32 212 #define ELF_ARCH EM_386 213 214 static inline void init_thread(struct target_pt_regs *regs, 215 struct image_info *infop) 216 { 217 regs->esp = infop->start_stack; 218 regs->eip = infop->entry; 219 220 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 221 starts %edx contains a pointer to a function which might be 222 registered using `atexit'. This provides a mean for the 223 dynamic linker to call DT_FINI functions for shared libraries 224 that have been loaded before the code runs. 225 226 A value of 0 tells we have no such handler. */ 227 regs->edx = 0; 228 } 229 230 #define ELF_NREG 17 231 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 232 233 /* 234 * Note that ELF_NREG should be 19 as there should be place for 235 * TRAPNO and ERR "registers" as well but linux doesn't dump 236 * those. 237 * 238 * See linux kernel: arch/x86/include/asm/elf.h 239 */ 240 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 241 { 242 (*regs)[0] = env->regs[R_EBX]; 243 (*regs)[1] = env->regs[R_ECX]; 244 (*regs)[2] = env->regs[R_EDX]; 245 (*regs)[3] = env->regs[R_ESI]; 246 (*regs)[4] = env->regs[R_EDI]; 247 (*regs)[5] = env->regs[R_EBP]; 248 (*regs)[6] = env->regs[R_EAX]; 249 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 250 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 251 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 252 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 253 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 254 (*regs)[12] = env->eip; 255 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 256 (*regs)[14] = env->eflags; 257 (*regs)[15] = env->regs[R_ESP]; 258 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 259 } 260 #endif 261 262 #define USE_ELF_CORE_DUMP 263 #define ELF_EXEC_PAGESIZE 4096 264 265 #endif 266 267 #ifdef TARGET_ARM 268 269 #ifndef TARGET_AARCH64 270 /* 32 bit ARM definitions */ 271 272 #define ELF_START_MMAP 0x80000000 273 274 #define ELF_ARCH EM_ARM 275 #define ELF_CLASS ELFCLASS32 276 277 static inline void init_thread(struct target_pt_regs *regs, 278 struct image_info *infop) 279 { 280 abi_long stack = infop->start_stack; 281 memset(regs, 0, sizeof(*regs)); 282 283 regs->uregs[16] = ARM_CPU_MODE_USR; 284 if (infop->entry & 1) { 285 regs->uregs[16] |= CPSR_T; 286 } 287 regs->uregs[15] = infop->entry & 0xfffffffe; 288 regs->uregs[13] = infop->start_stack; 289 /* FIXME - what to for failure of get_user()? */ 290 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 291 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 292 /* XXX: it seems that r0 is zeroed after ! */ 293 regs->uregs[0] = 0; 294 /* For uClinux PIC binaries. */ 295 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 296 regs->uregs[10] = infop->start_data; 297 298 /* Support ARM FDPIC. */ 299 if (info_is_fdpic(infop)) { 300 /* As described in the ABI document, r7 points to the loadmap info 301 * prepared by the kernel. If an interpreter is needed, r8 points 302 * to the interpreter loadmap and r9 points to the interpreter 303 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 304 * r9 points to the main program PT_DYNAMIC info. 305 */ 306 regs->uregs[7] = infop->loadmap_addr; 307 if (infop->interpreter_loadmap_addr) { 308 /* Executable is dynamically loaded. */ 309 regs->uregs[8] = infop->interpreter_loadmap_addr; 310 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 311 } else { 312 regs->uregs[8] = 0; 313 regs->uregs[9] = infop->pt_dynamic_addr; 314 } 315 } 316 } 317 318 #define ELF_NREG 18 319 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 320 321 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 322 { 323 (*regs)[0] = tswapreg(env->regs[0]); 324 (*regs)[1] = tswapreg(env->regs[1]); 325 (*regs)[2] = tswapreg(env->regs[2]); 326 (*regs)[3] = tswapreg(env->regs[3]); 327 (*regs)[4] = tswapreg(env->regs[4]); 328 (*regs)[5] = tswapreg(env->regs[5]); 329 (*regs)[6] = tswapreg(env->regs[6]); 330 (*regs)[7] = tswapreg(env->regs[7]); 331 (*regs)[8] = tswapreg(env->regs[8]); 332 (*regs)[9] = tswapreg(env->regs[9]); 333 (*regs)[10] = tswapreg(env->regs[10]); 334 (*regs)[11] = tswapreg(env->regs[11]); 335 (*regs)[12] = tswapreg(env->regs[12]); 336 (*regs)[13] = tswapreg(env->regs[13]); 337 (*regs)[14] = tswapreg(env->regs[14]); 338 (*regs)[15] = tswapreg(env->regs[15]); 339 340 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 341 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 342 } 343 344 #define USE_ELF_CORE_DUMP 345 #define ELF_EXEC_PAGESIZE 4096 346 347 enum 348 { 349 ARM_HWCAP_ARM_SWP = 1 << 0, 350 ARM_HWCAP_ARM_HALF = 1 << 1, 351 ARM_HWCAP_ARM_THUMB = 1 << 2, 352 ARM_HWCAP_ARM_26BIT = 1 << 3, 353 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 354 ARM_HWCAP_ARM_FPA = 1 << 5, 355 ARM_HWCAP_ARM_VFP = 1 << 6, 356 ARM_HWCAP_ARM_EDSP = 1 << 7, 357 ARM_HWCAP_ARM_JAVA = 1 << 8, 358 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 359 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 360 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 361 ARM_HWCAP_ARM_NEON = 1 << 12, 362 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 363 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 364 ARM_HWCAP_ARM_TLS = 1 << 15, 365 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 366 ARM_HWCAP_ARM_IDIVA = 1 << 17, 367 ARM_HWCAP_ARM_IDIVT = 1 << 18, 368 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 369 ARM_HWCAP_ARM_LPAE = 1 << 20, 370 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 371 }; 372 373 enum { 374 ARM_HWCAP2_ARM_AES = 1 << 0, 375 ARM_HWCAP2_ARM_PMULL = 1 << 1, 376 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 377 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 378 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 379 }; 380 381 /* The commpage only exists for 32 bit kernels */ 382 383 /* Return 1 if the proposed guest space is suitable for the guest. 384 * Return 0 if the proposed guest space isn't suitable, but another 385 * address space should be tried. 386 * Return -1 if there is no way the proposed guest space can be 387 * valid regardless of the base. 388 * The guest code may leave a page mapped and populate it if the 389 * address is suitable. 390 */ 391 static int init_guest_commpage(unsigned long guest_base, 392 unsigned long guest_size) 393 { 394 unsigned long real_start, test_page_addr; 395 396 /* We need to check that we can force a fault on access to the 397 * commpage at 0xffff0fxx 398 */ 399 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 400 401 /* If the commpage lies within the already allocated guest space, 402 * then there is no way we can allocate it. 403 * 404 * You may be thinking that that this check is redundant because 405 * we already validated the guest size against MAX_RESERVED_VA; 406 * but if qemu_host_page_mask is unusually large, then 407 * test_page_addr may be lower. 408 */ 409 if (test_page_addr >= guest_base 410 && test_page_addr < (guest_base + guest_size)) { 411 return -1; 412 } 413 414 /* Note it needs to be writeable to let us initialise it */ 415 real_start = (unsigned long) 416 mmap((void *)test_page_addr, qemu_host_page_size, 417 PROT_READ | PROT_WRITE, 418 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 419 420 /* If we can't map it then try another address */ 421 if (real_start == -1ul) { 422 return 0; 423 } 424 425 if (real_start != test_page_addr) { 426 /* OS didn't put the page where we asked - unmap and reject */ 427 munmap((void *)real_start, qemu_host_page_size); 428 return 0; 429 } 430 431 /* Leave the page mapped 432 * Populate it (mmap should have left it all 0'd) 433 */ 434 435 /* Kernel helper versions */ 436 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 437 438 /* Now it's populated make it RO */ 439 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 440 perror("Protecting guest commpage"); 441 exit(-1); 442 } 443 444 return 1; /* All good */ 445 } 446 447 #define ELF_HWCAP get_elf_hwcap() 448 #define ELF_HWCAP2 get_elf_hwcap2() 449 450 static uint32_t get_elf_hwcap(void) 451 { 452 ARMCPU *cpu = ARM_CPU(thread_cpu); 453 uint32_t hwcaps = 0; 454 455 hwcaps |= ARM_HWCAP_ARM_SWP; 456 hwcaps |= ARM_HWCAP_ARM_HALF; 457 hwcaps |= ARM_HWCAP_ARM_THUMB; 458 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 459 460 /* probe for the extra features */ 461 #define GET_FEATURE(feat, hwcap) \ 462 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 463 464 #define GET_FEATURE_ID(feat, hwcap) \ 465 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 466 467 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 468 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 469 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 470 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 471 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 472 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 473 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 474 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 475 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 476 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA); 477 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT); 478 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 479 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 480 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 481 * to our VFP_FP16 feature bit. 482 */ 483 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 484 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 485 486 return hwcaps; 487 } 488 489 static uint32_t get_elf_hwcap2(void) 490 { 491 ARMCPU *cpu = ARM_CPU(thread_cpu); 492 uint32_t hwcaps = 0; 493 494 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 495 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 496 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 497 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 498 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 499 return hwcaps; 500 } 501 502 #undef GET_FEATURE 503 #undef GET_FEATURE_ID 504 505 #define ELF_PLATFORM get_elf_platform() 506 507 static const char *get_elf_platform(void) 508 { 509 CPUARMState *env = thread_cpu->env_ptr; 510 511 #ifdef TARGET_WORDS_BIGENDIAN 512 # define END "b" 513 #else 514 # define END "l" 515 #endif 516 517 if (arm_feature(env, ARM_FEATURE_V8)) { 518 return "v8" END; 519 } else if (arm_feature(env, ARM_FEATURE_V7)) { 520 if (arm_feature(env, ARM_FEATURE_M)) { 521 return "v7m" END; 522 } else { 523 return "v7" END; 524 } 525 } else if (arm_feature(env, ARM_FEATURE_V6)) { 526 return "v6" END; 527 } else if (arm_feature(env, ARM_FEATURE_V5)) { 528 return "v5" END; 529 } else { 530 return "v4" END; 531 } 532 533 #undef END 534 } 535 536 #else 537 /* 64 bit ARM definitions */ 538 #define ELF_START_MMAP 0x80000000 539 540 #define ELF_ARCH EM_AARCH64 541 #define ELF_CLASS ELFCLASS64 542 #ifdef TARGET_WORDS_BIGENDIAN 543 # define ELF_PLATFORM "aarch64_be" 544 #else 545 # define ELF_PLATFORM "aarch64" 546 #endif 547 548 static inline void init_thread(struct target_pt_regs *regs, 549 struct image_info *infop) 550 { 551 abi_long stack = infop->start_stack; 552 memset(regs, 0, sizeof(*regs)); 553 554 regs->pc = infop->entry & ~0x3ULL; 555 regs->sp = stack; 556 } 557 558 #define ELF_NREG 34 559 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 560 561 static void elf_core_copy_regs(target_elf_gregset_t *regs, 562 const CPUARMState *env) 563 { 564 int i; 565 566 for (i = 0; i < 32; i++) { 567 (*regs)[i] = tswapreg(env->xregs[i]); 568 } 569 (*regs)[32] = tswapreg(env->pc); 570 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 571 } 572 573 #define USE_ELF_CORE_DUMP 574 #define ELF_EXEC_PAGESIZE 4096 575 576 enum { 577 ARM_HWCAP_A64_FP = 1 << 0, 578 ARM_HWCAP_A64_ASIMD = 1 << 1, 579 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 580 ARM_HWCAP_A64_AES = 1 << 3, 581 ARM_HWCAP_A64_PMULL = 1 << 4, 582 ARM_HWCAP_A64_SHA1 = 1 << 5, 583 ARM_HWCAP_A64_SHA2 = 1 << 6, 584 ARM_HWCAP_A64_CRC32 = 1 << 7, 585 ARM_HWCAP_A64_ATOMICS = 1 << 8, 586 ARM_HWCAP_A64_FPHP = 1 << 9, 587 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 588 ARM_HWCAP_A64_CPUID = 1 << 11, 589 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 590 ARM_HWCAP_A64_JSCVT = 1 << 13, 591 ARM_HWCAP_A64_FCMA = 1 << 14, 592 ARM_HWCAP_A64_LRCPC = 1 << 15, 593 ARM_HWCAP_A64_DCPOP = 1 << 16, 594 ARM_HWCAP_A64_SHA3 = 1 << 17, 595 ARM_HWCAP_A64_SM3 = 1 << 18, 596 ARM_HWCAP_A64_SM4 = 1 << 19, 597 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 598 ARM_HWCAP_A64_SHA512 = 1 << 21, 599 ARM_HWCAP_A64_SVE = 1 << 22, 600 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 601 ARM_HWCAP_A64_DIT = 1 << 24, 602 ARM_HWCAP_A64_USCAT = 1 << 25, 603 ARM_HWCAP_A64_ILRCPC = 1 << 26, 604 ARM_HWCAP_A64_FLAGM = 1 << 27, 605 ARM_HWCAP_A64_SSBS = 1 << 28, 606 ARM_HWCAP_A64_SB = 1 << 29, 607 ARM_HWCAP_A64_PACA = 1 << 30, 608 ARM_HWCAP_A64_PACG = 1UL << 31, 609 }; 610 611 #define ELF_HWCAP get_elf_hwcap() 612 613 static uint32_t get_elf_hwcap(void) 614 { 615 ARMCPU *cpu = ARM_CPU(thread_cpu); 616 uint32_t hwcaps = 0; 617 618 hwcaps |= ARM_HWCAP_A64_FP; 619 hwcaps |= ARM_HWCAP_A64_ASIMD; 620 hwcaps |= ARM_HWCAP_A64_CPUID; 621 622 /* probe for the extra features */ 623 #define GET_FEATURE_ID(feat, hwcap) \ 624 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 625 626 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 627 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 628 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 629 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 630 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 631 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 632 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 633 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 634 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 635 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 636 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 637 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 638 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 639 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 640 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 641 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 642 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 643 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 644 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 645 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 646 647 #undef GET_FEATURE_ID 648 649 return hwcaps; 650 } 651 652 #endif /* not TARGET_AARCH64 */ 653 #endif /* TARGET_ARM */ 654 655 #ifdef TARGET_SPARC 656 #ifdef TARGET_SPARC64 657 658 #define ELF_START_MMAP 0x80000000 659 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 660 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 661 #ifndef TARGET_ABI32 662 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 663 #else 664 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 665 #endif 666 667 #define ELF_CLASS ELFCLASS64 668 #define ELF_ARCH EM_SPARCV9 669 670 #define STACK_BIAS 2047 671 672 static inline void init_thread(struct target_pt_regs *regs, 673 struct image_info *infop) 674 { 675 #ifndef TARGET_ABI32 676 regs->tstate = 0; 677 #endif 678 regs->pc = infop->entry; 679 regs->npc = regs->pc + 4; 680 regs->y = 0; 681 #ifdef TARGET_ABI32 682 regs->u_regs[14] = infop->start_stack - 16 * 4; 683 #else 684 if (personality(infop->personality) == PER_LINUX32) 685 regs->u_regs[14] = infop->start_stack - 16 * 4; 686 else 687 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 688 #endif 689 } 690 691 #else 692 #define ELF_START_MMAP 0x80000000 693 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 694 | HWCAP_SPARC_MULDIV) 695 696 #define ELF_CLASS ELFCLASS32 697 #define ELF_ARCH EM_SPARC 698 699 static inline void init_thread(struct target_pt_regs *regs, 700 struct image_info *infop) 701 { 702 regs->psr = 0; 703 regs->pc = infop->entry; 704 regs->npc = regs->pc + 4; 705 regs->y = 0; 706 regs->u_regs[14] = infop->start_stack - 16 * 4; 707 } 708 709 #endif 710 #endif 711 712 #ifdef TARGET_PPC 713 714 #define ELF_MACHINE PPC_ELF_MACHINE 715 #define ELF_START_MMAP 0x80000000 716 717 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 718 719 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 720 721 #define ELF_CLASS ELFCLASS64 722 723 #else 724 725 #define ELF_CLASS ELFCLASS32 726 727 #endif 728 729 #define ELF_ARCH EM_PPC 730 731 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 732 See arch/powerpc/include/asm/cputable.h. */ 733 enum { 734 QEMU_PPC_FEATURE_32 = 0x80000000, 735 QEMU_PPC_FEATURE_64 = 0x40000000, 736 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 737 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 738 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 739 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 740 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 741 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 742 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 743 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 744 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 745 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 746 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 747 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 748 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 749 QEMU_PPC_FEATURE_CELL = 0x00010000, 750 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 751 QEMU_PPC_FEATURE_SMT = 0x00004000, 752 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 753 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 754 QEMU_PPC_FEATURE_PA6T = 0x00000800, 755 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 756 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 757 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 758 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 759 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 760 761 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 762 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 763 764 /* Feature definitions in AT_HWCAP2. */ 765 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 766 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 767 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 768 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 769 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 770 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 771 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 772 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 773 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 774 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 775 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 776 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 777 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 778 }; 779 780 #define ELF_HWCAP get_elf_hwcap() 781 782 static uint32_t get_elf_hwcap(void) 783 { 784 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 785 uint32_t features = 0; 786 787 /* We don't have to be terribly complete here; the high points are 788 Altivec/FP/SPE support. Anything else is just a bonus. */ 789 #define GET_FEATURE(flag, feature) \ 790 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 791 #define GET_FEATURE2(flags, feature) \ 792 do { \ 793 if ((cpu->env.insns_flags2 & flags) == flags) { \ 794 features |= feature; \ 795 } \ 796 } while (0) 797 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 798 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 799 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 800 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 801 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 802 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 803 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 804 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 805 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 806 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 807 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 808 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 809 QEMU_PPC_FEATURE_ARCH_2_06); 810 #undef GET_FEATURE 811 #undef GET_FEATURE2 812 813 return features; 814 } 815 816 #define ELF_HWCAP2 get_elf_hwcap2() 817 818 static uint32_t get_elf_hwcap2(void) 819 { 820 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 821 uint32_t features = 0; 822 823 #define GET_FEATURE(flag, feature) \ 824 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 825 #define GET_FEATURE2(flag, feature) \ 826 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 827 828 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 829 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 830 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 831 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 832 QEMU_PPC_FEATURE2_VEC_CRYPTO); 833 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 834 QEMU_PPC_FEATURE2_DARN); 835 836 #undef GET_FEATURE 837 #undef GET_FEATURE2 838 839 return features; 840 } 841 842 /* 843 * The requirements here are: 844 * - keep the final alignment of sp (sp & 0xf) 845 * - make sure the 32-bit value at the first 16 byte aligned position of 846 * AUXV is greater than 16 for glibc compatibility. 847 * AT_IGNOREPPC is used for that. 848 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 849 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 850 */ 851 #define DLINFO_ARCH_ITEMS 5 852 #define ARCH_DLINFO \ 853 do { \ 854 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 855 /* \ 856 * Handle glibc compatibility: these magic entries must \ 857 * be at the lowest addresses in the final auxv. \ 858 */ \ 859 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 860 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 861 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 862 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 863 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 864 } while (0) 865 866 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 867 { 868 _regs->gpr[1] = infop->start_stack; 869 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 870 if (get_ppc64_abi(infop) < 2) { 871 uint64_t val; 872 get_user_u64(val, infop->entry + 8); 873 _regs->gpr[2] = val + infop->load_bias; 874 get_user_u64(val, infop->entry); 875 infop->entry = val + infop->load_bias; 876 } else { 877 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 878 } 879 #endif 880 _regs->nip = infop->entry; 881 } 882 883 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 884 #define ELF_NREG 48 885 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 886 887 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 888 { 889 int i; 890 target_ulong ccr = 0; 891 892 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 893 (*regs)[i] = tswapreg(env->gpr[i]); 894 } 895 896 (*regs)[32] = tswapreg(env->nip); 897 (*regs)[33] = tswapreg(env->msr); 898 (*regs)[35] = tswapreg(env->ctr); 899 (*regs)[36] = tswapreg(env->lr); 900 (*regs)[37] = tswapreg(env->xer); 901 902 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 903 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 904 } 905 (*regs)[38] = tswapreg(ccr); 906 } 907 908 #define USE_ELF_CORE_DUMP 909 #define ELF_EXEC_PAGESIZE 4096 910 911 #endif 912 913 #ifdef TARGET_MIPS 914 915 #define ELF_START_MMAP 0x80000000 916 917 #ifdef TARGET_MIPS64 918 #define ELF_CLASS ELFCLASS64 919 #else 920 #define ELF_CLASS ELFCLASS32 921 #endif 922 #define ELF_ARCH EM_MIPS 923 924 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 925 926 static inline void init_thread(struct target_pt_regs *regs, 927 struct image_info *infop) 928 { 929 regs->cp0_status = 2 << CP0St_KSU; 930 regs->cp0_epc = infop->entry; 931 regs->regs[29] = infop->start_stack; 932 } 933 934 /* See linux kernel: arch/mips/include/asm/elf.h. */ 935 #define ELF_NREG 45 936 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 937 938 /* See linux kernel: arch/mips/include/asm/reg.h. */ 939 enum { 940 #ifdef TARGET_MIPS64 941 TARGET_EF_R0 = 0, 942 #else 943 TARGET_EF_R0 = 6, 944 #endif 945 TARGET_EF_R26 = TARGET_EF_R0 + 26, 946 TARGET_EF_R27 = TARGET_EF_R0 + 27, 947 TARGET_EF_LO = TARGET_EF_R0 + 32, 948 TARGET_EF_HI = TARGET_EF_R0 + 33, 949 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 950 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 951 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 952 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 953 }; 954 955 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 956 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 957 { 958 int i; 959 960 for (i = 0; i < TARGET_EF_R0; i++) { 961 (*regs)[i] = 0; 962 } 963 (*regs)[TARGET_EF_R0] = 0; 964 965 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 966 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 967 } 968 969 (*regs)[TARGET_EF_R26] = 0; 970 (*regs)[TARGET_EF_R27] = 0; 971 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 972 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 973 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 974 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 975 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 976 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 977 } 978 979 #define USE_ELF_CORE_DUMP 980 #define ELF_EXEC_PAGESIZE 4096 981 982 /* See arch/mips/include/uapi/asm/hwcap.h. */ 983 enum { 984 HWCAP_MIPS_R6 = (1 << 0), 985 HWCAP_MIPS_MSA = (1 << 1), 986 }; 987 988 #define ELF_HWCAP get_elf_hwcap() 989 990 static uint32_t get_elf_hwcap(void) 991 { 992 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 993 uint32_t hwcaps = 0; 994 995 #define GET_FEATURE(flag, hwcap) \ 996 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 997 998 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 999 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 1000 1001 #undef GET_FEATURE 1002 1003 return hwcaps; 1004 } 1005 1006 #endif /* TARGET_MIPS */ 1007 1008 #ifdef TARGET_MICROBLAZE 1009 1010 #define ELF_START_MMAP 0x80000000 1011 1012 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1013 1014 #define ELF_CLASS ELFCLASS32 1015 #define ELF_ARCH EM_MICROBLAZE 1016 1017 static inline void init_thread(struct target_pt_regs *regs, 1018 struct image_info *infop) 1019 { 1020 regs->pc = infop->entry; 1021 regs->r1 = infop->start_stack; 1022 1023 } 1024 1025 #define ELF_EXEC_PAGESIZE 4096 1026 1027 #define USE_ELF_CORE_DUMP 1028 #define ELF_NREG 38 1029 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1030 1031 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1032 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1033 { 1034 int i, pos = 0; 1035 1036 for (i = 0; i < 32; i++) { 1037 (*regs)[pos++] = tswapreg(env->regs[i]); 1038 } 1039 1040 for (i = 0; i < 6; i++) { 1041 (*regs)[pos++] = tswapreg(env->sregs[i]); 1042 } 1043 } 1044 1045 #endif /* TARGET_MICROBLAZE */ 1046 1047 #ifdef TARGET_NIOS2 1048 1049 #define ELF_START_MMAP 0x80000000 1050 1051 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1052 1053 #define ELF_CLASS ELFCLASS32 1054 #define ELF_ARCH EM_ALTERA_NIOS2 1055 1056 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1057 { 1058 regs->ea = infop->entry; 1059 regs->sp = infop->start_stack; 1060 regs->estatus = 0x3; 1061 } 1062 1063 #define ELF_EXEC_PAGESIZE 4096 1064 1065 #define USE_ELF_CORE_DUMP 1066 #define ELF_NREG 49 1067 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1068 1069 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1070 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1071 const CPUNios2State *env) 1072 { 1073 int i; 1074 1075 (*regs)[0] = -1; 1076 for (i = 1; i < 8; i++) /* r0-r7 */ 1077 (*regs)[i] = tswapreg(env->regs[i + 7]); 1078 1079 for (i = 8; i < 16; i++) /* r8-r15 */ 1080 (*regs)[i] = tswapreg(env->regs[i - 8]); 1081 1082 for (i = 16; i < 24; i++) /* r16-r23 */ 1083 (*regs)[i] = tswapreg(env->regs[i + 7]); 1084 (*regs)[24] = -1; /* R_ET */ 1085 (*regs)[25] = -1; /* R_BT */ 1086 (*regs)[26] = tswapreg(env->regs[R_GP]); 1087 (*regs)[27] = tswapreg(env->regs[R_SP]); 1088 (*regs)[28] = tswapreg(env->regs[R_FP]); 1089 (*regs)[29] = tswapreg(env->regs[R_EA]); 1090 (*regs)[30] = -1; /* R_SSTATUS */ 1091 (*regs)[31] = tswapreg(env->regs[R_RA]); 1092 1093 (*regs)[32] = tswapreg(env->regs[R_PC]); 1094 1095 (*regs)[33] = -1; /* R_STATUS */ 1096 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1097 1098 for (i = 35; i < 49; i++) /* ... */ 1099 (*regs)[i] = -1; 1100 } 1101 1102 #endif /* TARGET_NIOS2 */ 1103 1104 #ifdef TARGET_OPENRISC 1105 1106 #define ELF_START_MMAP 0x08000000 1107 1108 #define ELF_ARCH EM_OPENRISC 1109 #define ELF_CLASS ELFCLASS32 1110 #define ELF_DATA ELFDATA2MSB 1111 1112 static inline void init_thread(struct target_pt_regs *regs, 1113 struct image_info *infop) 1114 { 1115 regs->pc = infop->entry; 1116 regs->gpr[1] = infop->start_stack; 1117 } 1118 1119 #define USE_ELF_CORE_DUMP 1120 #define ELF_EXEC_PAGESIZE 8192 1121 1122 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1123 #define ELF_NREG 34 /* gprs and pc, sr */ 1124 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1125 1126 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1127 const CPUOpenRISCState *env) 1128 { 1129 int i; 1130 1131 for (i = 0; i < 32; i++) { 1132 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1133 } 1134 (*regs)[32] = tswapreg(env->pc); 1135 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1136 } 1137 #define ELF_HWCAP 0 1138 #define ELF_PLATFORM NULL 1139 1140 #endif /* TARGET_OPENRISC */ 1141 1142 #ifdef TARGET_SH4 1143 1144 #define ELF_START_MMAP 0x80000000 1145 1146 #define ELF_CLASS ELFCLASS32 1147 #define ELF_ARCH EM_SH 1148 1149 static inline void init_thread(struct target_pt_regs *regs, 1150 struct image_info *infop) 1151 { 1152 /* Check other registers XXXXX */ 1153 regs->pc = infop->entry; 1154 regs->regs[15] = infop->start_stack; 1155 } 1156 1157 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1158 #define ELF_NREG 23 1159 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1160 1161 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1162 enum { 1163 TARGET_REG_PC = 16, 1164 TARGET_REG_PR = 17, 1165 TARGET_REG_SR = 18, 1166 TARGET_REG_GBR = 19, 1167 TARGET_REG_MACH = 20, 1168 TARGET_REG_MACL = 21, 1169 TARGET_REG_SYSCALL = 22 1170 }; 1171 1172 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1173 const CPUSH4State *env) 1174 { 1175 int i; 1176 1177 for (i = 0; i < 16; i++) { 1178 (*regs)[i] = tswapreg(env->gregs[i]); 1179 } 1180 1181 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1182 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1183 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1184 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1185 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1186 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1187 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1188 } 1189 1190 #define USE_ELF_CORE_DUMP 1191 #define ELF_EXEC_PAGESIZE 4096 1192 1193 enum { 1194 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1195 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1196 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1197 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1198 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1199 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1200 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1201 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1202 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1203 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1204 }; 1205 1206 #define ELF_HWCAP get_elf_hwcap() 1207 1208 static uint32_t get_elf_hwcap(void) 1209 { 1210 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1211 uint32_t hwcap = 0; 1212 1213 hwcap |= SH_CPU_HAS_FPU; 1214 1215 if (cpu->env.features & SH_FEATURE_SH4A) { 1216 hwcap |= SH_CPU_HAS_LLSC; 1217 } 1218 1219 return hwcap; 1220 } 1221 1222 #endif 1223 1224 #ifdef TARGET_CRIS 1225 1226 #define ELF_START_MMAP 0x80000000 1227 1228 #define ELF_CLASS ELFCLASS32 1229 #define ELF_ARCH EM_CRIS 1230 1231 static inline void init_thread(struct target_pt_regs *regs, 1232 struct image_info *infop) 1233 { 1234 regs->erp = infop->entry; 1235 } 1236 1237 #define ELF_EXEC_PAGESIZE 8192 1238 1239 #endif 1240 1241 #ifdef TARGET_M68K 1242 1243 #define ELF_START_MMAP 0x80000000 1244 1245 #define ELF_CLASS ELFCLASS32 1246 #define ELF_ARCH EM_68K 1247 1248 /* ??? Does this need to do anything? 1249 #define ELF_PLAT_INIT(_r) */ 1250 1251 static inline void init_thread(struct target_pt_regs *regs, 1252 struct image_info *infop) 1253 { 1254 regs->usp = infop->start_stack; 1255 regs->sr = 0; 1256 regs->pc = infop->entry; 1257 } 1258 1259 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1260 #define ELF_NREG 20 1261 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1262 1263 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1264 { 1265 (*regs)[0] = tswapreg(env->dregs[1]); 1266 (*regs)[1] = tswapreg(env->dregs[2]); 1267 (*regs)[2] = tswapreg(env->dregs[3]); 1268 (*regs)[3] = tswapreg(env->dregs[4]); 1269 (*regs)[4] = tswapreg(env->dregs[5]); 1270 (*regs)[5] = tswapreg(env->dregs[6]); 1271 (*regs)[6] = tswapreg(env->dregs[7]); 1272 (*regs)[7] = tswapreg(env->aregs[0]); 1273 (*regs)[8] = tswapreg(env->aregs[1]); 1274 (*regs)[9] = tswapreg(env->aregs[2]); 1275 (*regs)[10] = tswapreg(env->aregs[3]); 1276 (*regs)[11] = tswapreg(env->aregs[4]); 1277 (*regs)[12] = tswapreg(env->aregs[5]); 1278 (*regs)[13] = tswapreg(env->aregs[6]); 1279 (*regs)[14] = tswapreg(env->dregs[0]); 1280 (*regs)[15] = tswapreg(env->aregs[7]); 1281 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1282 (*regs)[17] = tswapreg(env->sr); 1283 (*regs)[18] = tswapreg(env->pc); 1284 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1285 } 1286 1287 #define USE_ELF_CORE_DUMP 1288 #define ELF_EXEC_PAGESIZE 8192 1289 1290 #endif 1291 1292 #ifdef TARGET_ALPHA 1293 1294 #define ELF_START_MMAP (0x30000000000ULL) 1295 1296 #define ELF_CLASS ELFCLASS64 1297 #define ELF_ARCH EM_ALPHA 1298 1299 static inline void init_thread(struct target_pt_regs *regs, 1300 struct image_info *infop) 1301 { 1302 regs->pc = infop->entry; 1303 regs->ps = 8; 1304 regs->usp = infop->start_stack; 1305 } 1306 1307 #define ELF_EXEC_PAGESIZE 8192 1308 1309 #endif /* TARGET_ALPHA */ 1310 1311 #ifdef TARGET_S390X 1312 1313 #define ELF_START_MMAP (0x20000000000ULL) 1314 1315 #define ELF_CLASS ELFCLASS64 1316 #define ELF_DATA ELFDATA2MSB 1317 #define ELF_ARCH EM_S390 1318 1319 #include "elf.h" 1320 1321 #define ELF_HWCAP get_elf_hwcap() 1322 1323 #define GET_FEATURE(_feat, _hwcap) \ 1324 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1325 1326 static uint32_t get_elf_hwcap(void) 1327 { 1328 /* 1329 * Let's assume we always have esan3 and zarch. 1330 * 31-bit processes can use 64-bit registers (high gprs). 1331 */ 1332 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1333 1334 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1335 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1336 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1337 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1338 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1339 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1340 hwcap |= HWCAP_S390_ETF3EH; 1341 } 1342 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1343 1344 return hwcap; 1345 } 1346 1347 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1348 { 1349 regs->psw.addr = infop->entry; 1350 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1351 regs->gprs[15] = infop->start_stack; 1352 } 1353 1354 #endif /* TARGET_S390X */ 1355 1356 #ifdef TARGET_TILEGX 1357 1358 /* 42 bits real used address, a half for user mode */ 1359 #define ELF_START_MMAP (0x00000020000000000ULL) 1360 1361 #define elf_check_arch(x) ((x) == EM_TILEGX) 1362 1363 #define ELF_CLASS ELFCLASS64 1364 #define ELF_DATA ELFDATA2LSB 1365 #define ELF_ARCH EM_TILEGX 1366 1367 static inline void init_thread(struct target_pt_regs *regs, 1368 struct image_info *infop) 1369 { 1370 regs->pc = infop->entry; 1371 regs->sp = infop->start_stack; 1372 1373 } 1374 1375 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1376 1377 #endif /* TARGET_TILEGX */ 1378 1379 #ifdef TARGET_RISCV 1380 1381 #define ELF_START_MMAP 0x80000000 1382 #define ELF_ARCH EM_RISCV 1383 1384 #ifdef TARGET_RISCV32 1385 #define ELF_CLASS ELFCLASS32 1386 #else 1387 #define ELF_CLASS ELFCLASS64 1388 #endif 1389 1390 static inline void init_thread(struct target_pt_regs *regs, 1391 struct image_info *infop) 1392 { 1393 regs->sepc = infop->entry; 1394 regs->sp = infop->start_stack; 1395 } 1396 1397 #define ELF_EXEC_PAGESIZE 4096 1398 1399 #endif /* TARGET_RISCV */ 1400 1401 #ifdef TARGET_HPPA 1402 1403 #define ELF_START_MMAP 0x80000000 1404 #define ELF_CLASS ELFCLASS32 1405 #define ELF_ARCH EM_PARISC 1406 #define ELF_PLATFORM "PARISC" 1407 #define STACK_GROWS_DOWN 0 1408 #define STACK_ALIGNMENT 64 1409 1410 static inline void init_thread(struct target_pt_regs *regs, 1411 struct image_info *infop) 1412 { 1413 regs->iaoq[0] = infop->entry; 1414 regs->iaoq[1] = infop->entry + 4; 1415 regs->gr[23] = 0; 1416 regs->gr[24] = infop->arg_start; 1417 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1418 /* The top-of-stack contains a linkage buffer. */ 1419 regs->gr[30] = infop->start_stack + 64; 1420 regs->gr[31] = infop->entry; 1421 } 1422 1423 #endif /* TARGET_HPPA */ 1424 1425 #ifdef TARGET_XTENSA 1426 1427 #define ELF_START_MMAP 0x20000000 1428 1429 #define ELF_CLASS ELFCLASS32 1430 #define ELF_ARCH EM_XTENSA 1431 1432 static inline void init_thread(struct target_pt_regs *regs, 1433 struct image_info *infop) 1434 { 1435 regs->windowbase = 0; 1436 regs->windowstart = 1; 1437 regs->areg[1] = infop->start_stack; 1438 regs->pc = infop->entry; 1439 } 1440 1441 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1442 #define ELF_NREG 128 1443 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1444 1445 enum { 1446 TARGET_REG_PC, 1447 TARGET_REG_PS, 1448 TARGET_REG_LBEG, 1449 TARGET_REG_LEND, 1450 TARGET_REG_LCOUNT, 1451 TARGET_REG_SAR, 1452 TARGET_REG_WINDOWSTART, 1453 TARGET_REG_WINDOWBASE, 1454 TARGET_REG_THREADPTR, 1455 TARGET_REG_AR0 = 64, 1456 }; 1457 1458 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1459 const CPUXtensaState *env) 1460 { 1461 unsigned i; 1462 1463 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1464 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1465 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1466 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1467 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1468 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1469 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1470 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1471 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1472 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1473 for (i = 0; i < env->config->nareg; ++i) { 1474 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1475 } 1476 } 1477 1478 #define USE_ELF_CORE_DUMP 1479 #define ELF_EXEC_PAGESIZE 4096 1480 1481 #endif /* TARGET_XTENSA */ 1482 1483 #ifndef ELF_PLATFORM 1484 #define ELF_PLATFORM (NULL) 1485 #endif 1486 1487 #ifndef ELF_MACHINE 1488 #define ELF_MACHINE ELF_ARCH 1489 #endif 1490 1491 #ifndef elf_check_arch 1492 #define elf_check_arch(x) ((x) == ELF_ARCH) 1493 #endif 1494 1495 #ifndef ELF_HWCAP 1496 #define ELF_HWCAP 0 1497 #endif 1498 1499 #ifndef STACK_GROWS_DOWN 1500 #define STACK_GROWS_DOWN 1 1501 #endif 1502 1503 #ifndef STACK_ALIGNMENT 1504 #define STACK_ALIGNMENT 16 1505 #endif 1506 1507 #ifdef TARGET_ABI32 1508 #undef ELF_CLASS 1509 #define ELF_CLASS ELFCLASS32 1510 #undef bswaptls 1511 #define bswaptls(ptr) bswap32s(ptr) 1512 #endif 1513 1514 #include "elf.h" 1515 1516 struct exec 1517 { 1518 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1519 unsigned int a_text; /* length of text, in bytes */ 1520 unsigned int a_data; /* length of data, in bytes */ 1521 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1522 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1523 unsigned int a_entry; /* start address */ 1524 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1525 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1526 }; 1527 1528 1529 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1530 #define OMAGIC 0407 1531 #define NMAGIC 0410 1532 #define ZMAGIC 0413 1533 #define QMAGIC 0314 1534 1535 /* Necessary parameters */ 1536 #define TARGET_ELF_EXEC_PAGESIZE \ 1537 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1538 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1539 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1540 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1541 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1542 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1543 1544 #define DLINFO_ITEMS 15 1545 1546 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1547 { 1548 memcpy(to, from, n); 1549 } 1550 1551 #ifdef BSWAP_NEEDED 1552 static void bswap_ehdr(struct elfhdr *ehdr) 1553 { 1554 bswap16s(&ehdr->e_type); /* Object file type */ 1555 bswap16s(&ehdr->e_machine); /* Architecture */ 1556 bswap32s(&ehdr->e_version); /* Object file version */ 1557 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1558 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1559 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1560 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1561 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1562 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1563 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1564 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1565 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1566 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1567 } 1568 1569 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1570 { 1571 int i; 1572 for (i = 0; i < phnum; ++i, ++phdr) { 1573 bswap32s(&phdr->p_type); /* Segment type */ 1574 bswap32s(&phdr->p_flags); /* Segment flags */ 1575 bswaptls(&phdr->p_offset); /* Segment file offset */ 1576 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1577 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1578 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1579 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1580 bswaptls(&phdr->p_align); /* Segment alignment */ 1581 } 1582 } 1583 1584 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1585 { 1586 int i; 1587 for (i = 0; i < shnum; ++i, ++shdr) { 1588 bswap32s(&shdr->sh_name); 1589 bswap32s(&shdr->sh_type); 1590 bswaptls(&shdr->sh_flags); 1591 bswaptls(&shdr->sh_addr); 1592 bswaptls(&shdr->sh_offset); 1593 bswaptls(&shdr->sh_size); 1594 bswap32s(&shdr->sh_link); 1595 bswap32s(&shdr->sh_info); 1596 bswaptls(&shdr->sh_addralign); 1597 bswaptls(&shdr->sh_entsize); 1598 } 1599 } 1600 1601 static void bswap_sym(struct elf_sym *sym) 1602 { 1603 bswap32s(&sym->st_name); 1604 bswaptls(&sym->st_value); 1605 bswaptls(&sym->st_size); 1606 bswap16s(&sym->st_shndx); 1607 } 1608 1609 #ifdef TARGET_MIPS 1610 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1611 { 1612 bswap16s(&abiflags->version); 1613 bswap32s(&abiflags->ases); 1614 bswap32s(&abiflags->isa_ext); 1615 bswap32s(&abiflags->flags1); 1616 bswap32s(&abiflags->flags2); 1617 } 1618 #endif 1619 #else 1620 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1621 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1622 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1623 static inline void bswap_sym(struct elf_sym *sym) { } 1624 #ifdef TARGET_MIPS 1625 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1626 #endif 1627 #endif 1628 1629 #ifdef USE_ELF_CORE_DUMP 1630 static int elf_core_dump(int, const CPUArchState *); 1631 #endif /* USE_ELF_CORE_DUMP */ 1632 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1633 1634 /* Verify the portions of EHDR within E_IDENT for the target. 1635 This can be performed before bswapping the entire header. */ 1636 static bool elf_check_ident(struct elfhdr *ehdr) 1637 { 1638 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1639 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1640 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1641 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1642 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1643 && ehdr->e_ident[EI_DATA] == ELF_DATA 1644 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1645 } 1646 1647 /* Verify the portions of EHDR outside of E_IDENT for the target. 1648 This has to wait until after bswapping the header. */ 1649 static bool elf_check_ehdr(struct elfhdr *ehdr) 1650 { 1651 return (elf_check_arch(ehdr->e_machine) 1652 && ehdr->e_ehsize == sizeof(struct elfhdr) 1653 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1654 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1655 } 1656 1657 /* 1658 * 'copy_elf_strings()' copies argument/envelope strings from user 1659 * memory to free pages in kernel mem. These are in a format ready 1660 * to be put directly into the top of new user memory. 1661 * 1662 */ 1663 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1664 abi_ulong p, abi_ulong stack_limit) 1665 { 1666 char *tmp; 1667 int len, i; 1668 abi_ulong top = p; 1669 1670 if (!p) { 1671 return 0; /* bullet-proofing */ 1672 } 1673 1674 if (STACK_GROWS_DOWN) { 1675 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1676 for (i = argc - 1; i >= 0; --i) { 1677 tmp = argv[i]; 1678 if (!tmp) { 1679 fprintf(stderr, "VFS: argc is wrong"); 1680 exit(-1); 1681 } 1682 len = strlen(tmp) + 1; 1683 tmp += len; 1684 1685 if (len > (p - stack_limit)) { 1686 return 0; 1687 } 1688 while (len) { 1689 int bytes_to_copy = (len > offset) ? offset : len; 1690 tmp -= bytes_to_copy; 1691 p -= bytes_to_copy; 1692 offset -= bytes_to_copy; 1693 len -= bytes_to_copy; 1694 1695 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1696 1697 if (offset == 0) { 1698 memcpy_to_target(p, scratch, top - p); 1699 top = p; 1700 offset = TARGET_PAGE_SIZE; 1701 } 1702 } 1703 } 1704 if (p != top) { 1705 memcpy_to_target(p, scratch + offset, top - p); 1706 } 1707 } else { 1708 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1709 for (i = 0; i < argc; ++i) { 1710 tmp = argv[i]; 1711 if (!tmp) { 1712 fprintf(stderr, "VFS: argc is wrong"); 1713 exit(-1); 1714 } 1715 len = strlen(tmp) + 1; 1716 if (len > (stack_limit - p)) { 1717 return 0; 1718 } 1719 while (len) { 1720 int bytes_to_copy = (len > remaining) ? remaining : len; 1721 1722 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1723 1724 tmp += bytes_to_copy; 1725 remaining -= bytes_to_copy; 1726 p += bytes_to_copy; 1727 len -= bytes_to_copy; 1728 1729 if (remaining == 0) { 1730 memcpy_to_target(top, scratch, p - top); 1731 top = p; 1732 remaining = TARGET_PAGE_SIZE; 1733 } 1734 } 1735 } 1736 if (p != top) { 1737 memcpy_to_target(top, scratch, p - top); 1738 } 1739 } 1740 1741 return p; 1742 } 1743 1744 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1745 * argument/environment space. Newer kernels (>2.6.33) allow more, 1746 * dependent on stack size, but guarantee at least 32 pages for 1747 * backwards compatibility. 1748 */ 1749 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1750 1751 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1752 struct image_info *info) 1753 { 1754 abi_ulong size, error, guard; 1755 1756 size = guest_stack_size; 1757 if (size < STACK_LOWER_LIMIT) { 1758 size = STACK_LOWER_LIMIT; 1759 } 1760 guard = TARGET_PAGE_SIZE; 1761 if (guard < qemu_real_host_page_size) { 1762 guard = qemu_real_host_page_size; 1763 } 1764 1765 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1766 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1767 if (error == -1) { 1768 perror("mmap stack"); 1769 exit(-1); 1770 } 1771 1772 /* We reserve one extra page at the top of the stack as guard. */ 1773 if (STACK_GROWS_DOWN) { 1774 target_mprotect(error, guard, PROT_NONE); 1775 info->stack_limit = error + guard; 1776 return info->stack_limit + size - sizeof(void *); 1777 } else { 1778 target_mprotect(error + size, guard, PROT_NONE); 1779 info->stack_limit = error + size; 1780 return error; 1781 } 1782 } 1783 1784 /* Map and zero the bss. We need to explicitly zero any fractional pages 1785 after the data section (i.e. bss). */ 1786 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1787 { 1788 uintptr_t host_start, host_map_start, host_end; 1789 1790 last_bss = TARGET_PAGE_ALIGN(last_bss); 1791 1792 /* ??? There is confusion between qemu_real_host_page_size and 1793 qemu_host_page_size here and elsewhere in target_mmap, which 1794 may lead to the end of the data section mapping from the file 1795 not being mapped. At least there was an explicit test and 1796 comment for that here, suggesting that "the file size must 1797 be known". The comment probably pre-dates the introduction 1798 of the fstat system call in target_mmap which does in fact 1799 find out the size. What isn't clear is if the workaround 1800 here is still actually needed. For now, continue with it, 1801 but merge it with the "normal" mmap that would allocate the bss. */ 1802 1803 host_start = (uintptr_t) g2h(elf_bss); 1804 host_end = (uintptr_t) g2h(last_bss); 1805 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1806 1807 if (host_map_start < host_end) { 1808 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1809 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1810 if (p == MAP_FAILED) { 1811 perror("cannot mmap brk"); 1812 exit(-1); 1813 } 1814 } 1815 1816 /* Ensure that the bss page(s) are valid */ 1817 if ((page_get_flags(last_bss-1) & prot) != prot) { 1818 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1819 } 1820 1821 if (host_start < host_map_start) { 1822 memset((void *)host_start, 0, host_map_start - host_start); 1823 } 1824 } 1825 1826 #ifdef TARGET_ARM 1827 static int elf_is_fdpic(struct elfhdr *exec) 1828 { 1829 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1830 } 1831 #else 1832 /* Default implementation, always false. */ 1833 static int elf_is_fdpic(struct elfhdr *exec) 1834 { 1835 return 0; 1836 } 1837 #endif 1838 1839 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1840 { 1841 uint16_t n; 1842 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1843 1844 /* elf32_fdpic_loadseg */ 1845 n = info->nsegs; 1846 while (n--) { 1847 sp -= 12; 1848 put_user_u32(loadsegs[n].addr, sp+0); 1849 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1850 put_user_u32(loadsegs[n].p_memsz, sp+8); 1851 } 1852 1853 /* elf32_fdpic_loadmap */ 1854 sp -= 4; 1855 put_user_u16(0, sp+0); /* version */ 1856 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1857 1858 info->personality = PER_LINUX_FDPIC; 1859 info->loadmap_addr = sp; 1860 1861 return sp; 1862 } 1863 1864 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1865 struct elfhdr *exec, 1866 struct image_info *info, 1867 struct image_info *interp_info) 1868 { 1869 abi_ulong sp; 1870 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1871 int size; 1872 int i; 1873 abi_ulong u_rand_bytes; 1874 uint8_t k_rand_bytes[16]; 1875 abi_ulong u_platform; 1876 const char *k_platform; 1877 const int n = sizeof(elf_addr_t); 1878 1879 sp = p; 1880 1881 /* Needs to be before we load the env/argc/... */ 1882 if (elf_is_fdpic(exec)) { 1883 /* Need 4 byte alignment for these structs */ 1884 sp &= ~3; 1885 sp = loader_build_fdpic_loadmap(info, sp); 1886 info->other_info = interp_info; 1887 if (interp_info) { 1888 interp_info->other_info = info; 1889 sp = loader_build_fdpic_loadmap(interp_info, sp); 1890 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1891 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1892 } else { 1893 info->interpreter_loadmap_addr = 0; 1894 info->interpreter_pt_dynamic_addr = 0; 1895 } 1896 } 1897 1898 u_platform = 0; 1899 k_platform = ELF_PLATFORM; 1900 if (k_platform) { 1901 size_t len = strlen(k_platform) + 1; 1902 if (STACK_GROWS_DOWN) { 1903 sp -= (len + n - 1) & ~(n - 1); 1904 u_platform = sp; 1905 /* FIXME - check return value of memcpy_to_target() for failure */ 1906 memcpy_to_target(sp, k_platform, len); 1907 } else { 1908 memcpy_to_target(sp, k_platform, len); 1909 u_platform = sp; 1910 sp += len + 1; 1911 } 1912 } 1913 1914 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1915 * the argv and envp pointers. 1916 */ 1917 if (STACK_GROWS_DOWN) { 1918 sp = QEMU_ALIGN_DOWN(sp, 16); 1919 } else { 1920 sp = QEMU_ALIGN_UP(sp, 16); 1921 } 1922 1923 /* 1924 * Generate 16 random bytes for userspace PRNG seeding. 1925 */ 1926 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 1927 if (STACK_GROWS_DOWN) { 1928 sp -= 16; 1929 u_rand_bytes = sp; 1930 /* FIXME - check return value of memcpy_to_target() for failure */ 1931 memcpy_to_target(sp, k_rand_bytes, 16); 1932 } else { 1933 memcpy_to_target(sp, k_rand_bytes, 16); 1934 u_rand_bytes = sp; 1935 sp += 16; 1936 } 1937 1938 size = (DLINFO_ITEMS + 1) * 2; 1939 if (k_platform) 1940 size += 2; 1941 #ifdef DLINFO_ARCH_ITEMS 1942 size += DLINFO_ARCH_ITEMS * 2; 1943 #endif 1944 #ifdef ELF_HWCAP2 1945 size += 2; 1946 #endif 1947 info->auxv_len = size * n; 1948 1949 size += envc + argc + 2; 1950 size += 1; /* argc itself */ 1951 size *= n; 1952 1953 /* Allocate space and finalize stack alignment for entry now. */ 1954 if (STACK_GROWS_DOWN) { 1955 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1956 sp = u_argc; 1957 } else { 1958 u_argc = sp; 1959 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1960 } 1961 1962 u_argv = u_argc + n; 1963 u_envp = u_argv + (argc + 1) * n; 1964 u_auxv = u_envp + (envc + 1) * n; 1965 info->saved_auxv = u_auxv; 1966 info->arg_start = u_argv; 1967 info->arg_end = u_argv + argc * n; 1968 1969 /* This is correct because Linux defines 1970 * elf_addr_t as Elf32_Off / Elf64_Off 1971 */ 1972 #define NEW_AUX_ENT(id, val) do { \ 1973 put_user_ual(id, u_auxv); u_auxv += n; \ 1974 put_user_ual(val, u_auxv); u_auxv += n; \ 1975 } while(0) 1976 1977 #ifdef ARCH_DLINFO 1978 /* 1979 * ARCH_DLINFO must come first so platform specific code can enforce 1980 * special alignment requirements on the AUXV if necessary (eg. PPC). 1981 */ 1982 ARCH_DLINFO; 1983 #endif 1984 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1985 * on info->auxv_len will trigger. 1986 */ 1987 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1988 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1989 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1990 if ((info->alignment & ~qemu_host_page_mask) != 0) { 1991 /* Target doesn't support host page size alignment */ 1992 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1993 } else { 1994 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 1995 qemu_host_page_size))); 1996 } 1997 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1998 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1999 NEW_AUX_ENT(AT_ENTRY, info->entry); 2000 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2001 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2002 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2003 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2004 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2005 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2006 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2007 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2008 2009 #ifdef ELF_HWCAP2 2010 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2011 #endif 2012 2013 if (u_platform) { 2014 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2015 } 2016 NEW_AUX_ENT (AT_NULL, 0); 2017 #undef NEW_AUX_ENT 2018 2019 /* Check that our initial calculation of the auxv length matches how much 2020 * we actually put into it. 2021 */ 2022 assert(info->auxv_len == u_auxv - info->saved_auxv); 2023 2024 put_user_ual(argc, u_argc); 2025 2026 p = info->arg_strings; 2027 for (i = 0; i < argc; ++i) { 2028 put_user_ual(p, u_argv); 2029 u_argv += n; 2030 p += target_strlen(p) + 1; 2031 } 2032 put_user_ual(0, u_argv); 2033 2034 p = info->env_strings; 2035 for (i = 0; i < envc; ++i) { 2036 put_user_ual(p, u_envp); 2037 u_envp += n; 2038 p += target_strlen(p) + 1; 2039 } 2040 put_user_ual(0, u_envp); 2041 2042 return sp; 2043 } 2044 2045 unsigned long init_guest_space(unsigned long host_start, 2046 unsigned long host_size, 2047 unsigned long guest_start, 2048 bool fixed) 2049 { 2050 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2051 unsigned long align = MAX(SHMLBA, qemu_host_page_size); 2052 unsigned long current_start, aligned_start; 2053 int flags; 2054 2055 assert(host_start || host_size); 2056 2057 /* If just a starting address is given, then just verify that 2058 * address. */ 2059 if (host_start && !host_size) { 2060 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2061 if (init_guest_commpage(host_start, host_size) != 1) { 2062 return (unsigned long)-1; 2063 } 2064 #endif 2065 return host_start; 2066 } 2067 2068 /* Setup the initial flags and start address. */ 2069 current_start = host_start & -align; 2070 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2071 if (fixed) { 2072 flags |= MAP_FIXED; 2073 } 2074 2075 /* Otherwise, a non-zero size region of memory needs to be mapped 2076 * and validated. */ 2077 2078 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2079 /* On 32-bit ARM, we need to map not just the usable memory, but 2080 * also the commpage. Try to find a suitable place by allocating 2081 * a big chunk for all of it. If host_start, then the naive 2082 * strategy probably does good enough. 2083 */ 2084 if (!host_start) { 2085 unsigned long guest_full_size, host_full_size, real_start; 2086 2087 guest_full_size = 2088 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 2089 host_full_size = guest_full_size - guest_start; 2090 real_start = (unsigned long) 2091 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 2092 if (real_start == (unsigned long)-1) { 2093 if (host_size < host_full_size - qemu_host_page_size) { 2094 /* We failed to map a continous segment, but we're 2095 * allowed to have a gap between the usable memory and 2096 * the commpage where other things can be mapped. 2097 * This sparseness gives us more flexibility to find 2098 * an address range. 2099 */ 2100 goto naive; 2101 } 2102 return (unsigned long)-1; 2103 } 2104 munmap((void *)real_start, host_full_size); 2105 if (real_start & (align - 1)) { 2106 /* The same thing again, but with extra 2107 * so that we can shift around alignment. 2108 */ 2109 unsigned long real_size = host_full_size + qemu_host_page_size; 2110 real_start = (unsigned long) 2111 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 2112 if (real_start == (unsigned long)-1) { 2113 if (host_size < host_full_size - qemu_host_page_size) { 2114 goto naive; 2115 } 2116 return (unsigned long)-1; 2117 } 2118 munmap((void *)real_start, real_size); 2119 real_start = ROUND_UP(real_start, align); 2120 } 2121 current_start = real_start; 2122 } 2123 naive: 2124 #endif 2125 2126 while (1) { 2127 unsigned long real_start, real_size, aligned_size; 2128 aligned_size = real_size = host_size; 2129 2130 /* Do not use mmap_find_vma here because that is limited to the 2131 * guest address space. We are going to make the 2132 * guest address space fit whatever we're given. 2133 */ 2134 real_start = (unsigned long) 2135 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2136 if (real_start == (unsigned long)-1) { 2137 return (unsigned long)-1; 2138 } 2139 2140 /* Check to see if the address is valid. */ 2141 if (host_start && real_start != current_start) { 2142 goto try_again; 2143 } 2144 2145 /* Ensure the address is properly aligned. */ 2146 if (real_start & (align - 1)) { 2147 /* Ideally, we adjust like 2148 * 2149 * pages: [ ][ ][ ][ ][ ] 2150 * old: [ real ] 2151 * [ aligned ] 2152 * new: [ real ] 2153 * [ aligned ] 2154 * 2155 * But if there is something else mapped right after it, 2156 * then obviously it won't have room to grow, and the 2157 * kernel will put the new larger real someplace else with 2158 * unknown alignment (if we made it to here, then 2159 * fixed=false). Which is why we grow real by a full page 2160 * size, instead of by part of one; so that even if we get 2161 * moved, we can still guarantee alignment. But this does 2162 * mean that there is a padding of < 1 page both before 2163 * and after the aligned range; the "after" could could 2164 * cause problems for ARM emulation where it could butt in 2165 * to where we need to put the commpage. 2166 */ 2167 munmap((void *)real_start, host_size); 2168 real_size = aligned_size + qemu_host_page_size; 2169 real_start = (unsigned long) 2170 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2171 if (real_start == (unsigned long)-1) { 2172 return (unsigned long)-1; 2173 } 2174 aligned_start = ROUND_UP(real_start, align); 2175 } else { 2176 aligned_start = real_start; 2177 } 2178 2179 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2180 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2181 int valid = init_guest_commpage(aligned_start - guest_start, 2182 aligned_size + guest_start); 2183 if (valid == -1) { 2184 munmap((void *)real_start, real_size); 2185 return (unsigned long)-1; 2186 } else if (valid == 0) { 2187 goto try_again; 2188 } 2189 #endif 2190 2191 /* If nothing has said `return -1` or `goto try_again` yet, 2192 * then the address we have is good. 2193 */ 2194 break; 2195 2196 try_again: 2197 /* That address didn't work. Unmap and try a different one. 2198 * The address the host picked because is typically right at 2199 * the top of the host address space and leaves the guest with 2200 * no usable address space. Resort to a linear search. We 2201 * already compensated for mmap_min_addr, so this should not 2202 * happen often. Probably means we got unlucky and host 2203 * address space randomization put a shared library somewhere 2204 * inconvenient. 2205 * 2206 * This is probably a good strategy if host_start, but is 2207 * probably a bad strategy if not, which means we got here 2208 * because of trouble with ARM commpage setup. 2209 */ 2210 munmap((void *)real_start, real_size); 2211 current_start += align; 2212 if (host_start == current_start) { 2213 /* Theoretically possible if host doesn't have any suitably 2214 * aligned areas. Normally the first mmap will fail. 2215 */ 2216 return (unsigned long)-1; 2217 } 2218 } 2219 2220 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2221 2222 return aligned_start; 2223 } 2224 2225 static void probe_guest_base(const char *image_name, 2226 abi_ulong loaddr, abi_ulong hiaddr) 2227 { 2228 /* Probe for a suitable guest base address, if the user has not set 2229 * it explicitly, and set guest_base appropriately. 2230 * In case of error we will print a suitable message and exit. 2231 */ 2232 const char *errmsg; 2233 if (!have_guest_base && !reserved_va) { 2234 unsigned long host_start, real_start, host_size; 2235 2236 /* Round addresses to page boundaries. */ 2237 loaddr &= qemu_host_page_mask; 2238 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2239 2240 if (loaddr < mmap_min_addr) { 2241 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2242 } else { 2243 host_start = loaddr; 2244 if (host_start != loaddr) { 2245 errmsg = "Address overflow loading ELF binary"; 2246 goto exit_errmsg; 2247 } 2248 } 2249 host_size = hiaddr - loaddr; 2250 2251 /* Setup the initial guest memory space with ranges gleaned from 2252 * the ELF image that is being loaded. 2253 */ 2254 real_start = init_guest_space(host_start, host_size, loaddr, false); 2255 if (real_start == (unsigned long)-1) { 2256 errmsg = "Unable to find space for application"; 2257 goto exit_errmsg; 2258 } 2259 guest_base = real_start - loaddr; 2260 2261 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2262 TARGET_ABI_FMT_lx " to 0x%lx\n", 2263 loaddr, real_start); 2264 } 2265 return; 2266 2267 exit_errmsg: 2268 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2269 exit(-1); 2270 } 2271 2272 2273 /* Load an ELF image into the address space. 2274 2275 IMAGE_NAME is the filename of the image, to use in error messages. 2276 IMAGE_FD is the open file descriptor for the image. 2277 2278 BPRM_BUF is a copy of the beginning of the file; this of course 2279 contains the elf file header at offset 0. It is assumed that this 2280 buffer is sufficiently aligned to present no problems to the host 2281 in accessing data at aligned offsets within the buffer. 2282 2283 On return: INFO values will be filled in, as necessary or available. */ 2284 2285 static void load_elf_image(const char *image_name, int image_fd, 2286 struct image_info *info, char **pinterp_name, 2287 char bprm_buf[BPRM_BUF_SIZE]) 2288 { 2289 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2290 struct elf_phdr *phdr; 2291 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2292 int i, retval; 2293 const char *errmsg; 2294 2295 /* First of all, some simple consistency checks */ 2296 errmsg = "Invalid ELF image for this architecture"; 2297 if (!elf_check_ident(ehdr)) { 2298 goto exit_errmsg; 2299 } 2300 bswap_ehdr(ehdr); 2301 if (!elf_check_ehdr(ehdr)) { 2302 goto exit_errmsg; 2303 } 2304 2305 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2306 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2307 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2308 } else { 2309 phdr = (struct elf_phdr *) alloca(i); 2310 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2311 if (retval != i) { 2312 goto exit_read; 2313 } 2314 } 2315 bswap_phdr(phdr, ehdr->e_phnum); 2316 2317 info->nsegs = 0; 2318 info->pt_dynamic_addr = 0; 2319 2320 mmap_lock(); 2321 2322 /* Find the maximum size of the image and allocate an appropriate 2323 amount of memory to handle that. */ 2324 loaddr = -1, hiaddr = 0; 2325 info->alignment = 0; 2326 for (i = 0; i < ehdr->e_phnum; ++i) { 2327 if (phdr[i].p_type == PT_LOAD) { 2328 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2329 if (a < loaddr) { 2330 loaddr = a; 2331 } 2332 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2333 if (a > hiaddr) { 2334 hiaddr = a; 2335 } 2336 ++info->nsegs; 2337 info->alignment |= phdr[i].p_align; 2338 } 2339 } 2340 2341 load_addr = loaddr; 2342 if (ehdr->e_type == ET_DYN) { 2343 /* The image indicates that it can be loaded anywhere. Find a 2344 location that can hold the memory space required. If the 2345 image is pre-linked, LOADDR will be non-zero. Since we do 2346 not supply MAP_FIXED here we'll use that address if and 2347 only if it remains available. */ 2348 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2349 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2350 -1, 0); 2351 if (load_addr == -1) { 2352 goto exit_perror; 2353 } 2354 } else if (pinterp_name != NULL) { 2355 /* This is the main executable. Make sure that the low 2356 address does not conflict with MMAP_MIN_ADDR or the 2357 QEMU application itself. */ 2358 probe_guest_base(image_name, loaddr, hiaddr); 2359 } 2360 load_bias = load_addr - loaddr; 2361 2362 if (elf_is_fdpic(ehdr)) { 2363 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2364 g_malloc(sizeof(*loadsegs) * info->nsegs); 2365 2366 for (i = 0; i < ehdr->e_phnum; ++i) { 2367 switch (phdr[i].p_type) { 2368 case PT_DYNAMIC: 2369 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2370 break; 2371 case PT_LOAD: 2372 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2373 loadsegs->p_vaddr = phdr[i].p_vaddr; 2374 loadsegs->p_memsz = phdr[i].p_memsz; 2375 ++loadsegs; 2376 break; 2377 } 2378 } 2379 } 2380 2381 info->load_bias = load_bias; 2382 info->load_addr = load_addr; 2383 info->entry = ehdr->e_entry + load_bias; 2384 info->start_code = -1; 2385 info->end_code = 0; 2386 info->start_data = -1; 2387 info->end_data = 0; 2388 info->brk = 0; 2389 info->elf_flags = ehdr->e_flags; 2390 2391 for (i = 0; i < ehdr->e_phnum; i++) { 2392 struct elf_phdr *eppnt = phdr + i; 2393 if (eppnt->p_type == PT_LOAD) { 2394 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2395 int elf_prot = 0; 2396 2397 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2398 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2399 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2400 2401 vaddr = load_bias + eppnt->p_vaddr; 2402 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2403 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2404 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2405 2406 /* 2407 * Some segments may be completely empty without any backing file 2408 * segment, in that case just let zero_bss allocate an empty buffer 2409 * for it. 2410 */ 2411 if (eppnt->p_filesz != 0) { 2412 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2413 MAP_PRIVATE | MAP_FIXED, 2414 image_fd, eppnt->p_offset - vaddr_po); 2415 2416 if (error == -1) { 2417 goto exit_perror; 2418 } 2419 } 2420 2421 vaddr_ef = vaddr + eppnt->p_filesz; 2422 vaddr_em = vaddr + eppnt->p_memsz; 2423 2424 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2425 if (vaddr_ef < vaddr_em) { 2426 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2427 } 2428 2429 /* Find the full program boundaries. */ 2430 if (elf_prot & PROT_EXEC) { 2431 if (vaddr < info->start_code) { 2432 info->start_code = vaddr; 2433 } 2434 if (vaddr_ef > info->end_code) { 2435 info->end_code = vaddr_ef; 2436 } 2437 } 2438 if (elf_prot & PROT_WRITE) { 2439 if (vaddr < info->start_data) { 2440 info->start_data = vaddr; 2441 } 2442 if (vaddr_ef > info->end_data) { 2443 info->end_data = vaddr_ef; 2444 } 2445 if (vaddr_em > info->brk) { 2446 info->brk = vaddr_em; 2447 } 2448 } 2449 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2450 char *interp_name; 2451 2452 if (*pinterp_name) { 2453 errmsg = "Multiple PT_INTERP entries"; 2454 goto exit_errmsg; 2455 } 2456 interp_name = malloc(eppnt->p_filesz); 2457 if (!interp_name) { 2458 goto exit_perror; 2459 } 2460 2461 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2462 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2463 eppnt->p_filesz); 2464 } else { 2465 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2466 eppnt->p_offset); 2467 if (retval != eppnt->p_filesz) { 2468 goto exit_perror; 2469 } 2470 } 2471 if (interp_name[eppnt->p_filesz - 1] != 0) { 2472 errmsg = "Invalid PT_INTERP entry"; 2473 goto exit_errmsg; 2474 } 2475 *pinterp_name = interp_name; 2476 #ifdef TARGET_MIPS 2477 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2478 Mips_elf_abiflags_v0 abiflags; 2479 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2480 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2481 goto exit_errmsg; 2482 } 2483 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2484 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2485 sizeof(Mips_elf_abiflags_v0)); 2486 } else { 2487 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2488 eppnt->p_offset); 2489 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2490 goto exit_perror; 2491 } 2492 } 2493 bswap_mips_abiflags(&abiflags); 2494 info->fp_abi = abiflags.fp_abi; 2495 #endif 2496 } 2497 } 2498 2499 if (info->end_data == 0) { 2500 info->start_data = info->end_code; 2501 info->end_data = info->end_code; 2502 info->brk = info->end_code; 2503 } 2504 2505 if (qemu_log_enabled()) { 2506 load_symbols(ehdr, image_fd, load_bias); 2507 } 2508 2509 mmap_unlock(); 2510 2511 close(image_fd); 2512 return; 2513 2514 exit_read: 2515 if (retval >= 0) { 2516 errmsg = "Incomplete read of file header"; 2517 goto exit_errmsg; 2518 } 2519 exit_perror: 2520 errmsg = strerror(errno); 2521 exit_errmsg: 2522 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2523 exit(-1); 2524 } 2525 2526 static void load_elf_interp(const char *filename, struct image_info *info, 2527 char bprm_buf[BPRM_BUF_SIZE]) 2528 { 2529 int fd, retval; 2530 2531 fd = open(path(filename), O_RDONLY); 2532 if (fd < 0) { 2533 goto exit_perror; 2534 } 2535 2536 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2537 if (retval < 0) { 2538 goto exit_perror; 2539 } 2540 if (retval < BPRM_BUF_SIZE) { 2541 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2542 } 2543 2544 load_elf_image(filename, fd, info, NULL, bprm_buf); 2545 return; 2546 2547 exit_perror: 2548 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2549 exit(-1); 2550 } 2551 2552 static int symfind(const void *s0, const void *s1) 2553 { 2554 target_ulong addr = *(target_ulong *)s0; 2555 struct elf_sym *sym = (struct elf_sym *)s1; 2556 int result = 0; 2557 if (addr < sym->st_value) { 2558 result = -1; 2559 } else if (addr >= sym->st_value + sym->st_size) { 2560 result = 1; 2561 } 2562 return result; 2563 } 2564 2565 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2566 { 2567 #if ELF_CLASS == ELFCLASS32 2568 struct elf_sym *syms = s->disas_symtab.elf32; 2569 #else 2570 struct elf_sym *syms = s->disas_symtab.elf64; 2571 #endif 2572 2573 // binary search 2574 struct elf_sym *sym; 2575 2576 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2577 if (sym != NULL) { 2578 return s->disas_strtab + sym->st_name; 2579 } 2580 2581 return ""; 2582 } 2583 2584 /* FIXME: This should use elf_ops.h */ 2585 static int symcmp(const void *s0, const void *s1) 2586 { 2587 struct elf_sym *sym0 = (struct elf_sym *)s0; 2588 struct elf_sym *sym1 = (struct elf_sym *)s1; 2589 return (sym0->st_value < sym1->st_value) 2590 ? -1 2591 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2592 } 2593 2594 /* Best attempt to load symbols from this ELF object. */ 2595 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2596 { 2597 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2598 uint64_t segsz; 2599 struct elf_shdr *shdr; 2600 char *strings = NULL; 2601 struct syminfo *s = NULL; 2602 struct elf_sym *new_syms, *syms = NULL; 2603 2604 shnum = hdr->e_shnum; 2605 i = shnum * sizeof(struct elf_shdr); 2606 shdr = (struct elf_shdr *)alloca(i); 2607 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2608 return; 2609 } 2610 2611 bswap_shdr(shdr, shnum); 2612 for (i = 0; i < shnum; ++i) { 2613 if (shdr[i].sh_type == SHT_SYMTAB) { 2614 sym_idx = i; 2615 str_idx = shdr[i].sh_link; 2616 goto found; 2617 } 2618 } 2619 2620 /* There will be no symbol table if the file was stripped. */ 2621 return; 2622 2623 found: 2624 /* Now know where the strtab and symtab are. Snarf them. */ 2625 s = g_try_new(struct syminfo, 1); 2626 if (!s) { 2627 goto give_up; 2628 } 2629 2630 segsz = shdr[str_idx].sh_size; 2631 s->disas_strtab = strings = g_try_malloc(segsz); 2632 if (!strings || 2633 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2634 goto give_up; 2635 } 2636 2637 segsz = shdr[sym_idx].sh_size; 2638 syms = g_try_malloc(segsz); 2639 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2640 goto give_up; 2641 } 2642 2643 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2644 /* Implausibly large symbol table: give up rather than ploughing 2645 * on with the number of symbols calculation overflowing 2646 */ 2647 goto give_up; 2648 } 2649 nsyms = segsz / sizeof(struct elf_sym); 2650 for (i = 0; i < nsyms; ) { 2651 bswap_sym(syms + i); 2652 /* Throw away entries which we do not need. */ 2653 if (syms[i].st_shndx == SHN_UNDEF 2654 || syms[i].st_shndx >= SHN_LORESERVE 2655 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2656 if (i < --nsyms) { 2657 syms[i] = syms[nsyms]; 2658 } 2659 } else { 2660 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2661 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2662 syms[i].st_value &= ~(target_ulong)1; 2663 #endif 2664 syms[i].st_value += load_bias; 2665 i++; 2666 } 2667 } 2668 2669 /* No "useful" symbol. */ 2670 if (nsyms == 0) { 2671 goto give_up; 2672 } 2673 2674 /* Attempt to free the storage associated with the local symbols 2675 that we threw away. Whether or not this has any effect on the 2676 memory allocation depends on the malloc implementation and how 2677 many symbols we managed to discard. */ 2678 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2679 if (new_syms == NULL) { 2680 goto give_up; 2681 } 2682 syms = new_syms; 2683 2684 qsort(syms, nsyms, sizeof(*syms), symcmp); 2685 2686 s->disas_num_syms = nsyms; 2687 #if ELF_CLASS == ELFCLASS32 2688 s->disas_symtab.elf32 = syms; 2689 #else 2690 s->disas_symtab.elf64 = syms; 2691 #endif 2692 s->lookup_symbol = lookup_symbolxx; 2693 s->next = syminfos; 2694 syminfos = s; 2695 2696 return; 2697 2698 give_up: 2699 g_free(s); 2700 g_free(strings); 2701 g_free(syms); 2702 } 2703 2704 uint32_t get_elf_eflags(int fd) 2705 { 2706 struct elfhdr ehdr; 2707 off_t offset; 2708 int ret; 2709 2710 /* Read ELF header */ 2711 offset = lseek(fd, 0, SEEK_SET); 2712 if (offset == (off_t) -1) { 2713 return 0; 2714 } 2715 ret = read(fd, &ehdr, sizeof(ehdr)); 2716 if (ret < sizeof(ehdr)) { 2717 return 0; 2718 } 2719 offset = lseek(fd, offset, SEEK_SET); 2720 if (offset == (off_t) -1) { 2721 return 0; 2722 } 2723 2724 /* Check ELF signature */ 2725 if (!elf_check_ident(&ehdr)) { 2726 return 0; 2727 } 2728 2729 /* check header */ 2730 bswap_ehdr(&ehdr); 2731 if (!elf_check_ehdr(&ehdr)) { 2732 return 0; 2733 } 2734 2735 /* return architecture id */ 2736 return ehdr.e_flags; 2737 } 2738 2739 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2740 { 2741 struct image_info interp_info; 2742 struct elfhdr elf_ex; 2743 char *elf_interpreter = NULL; 2744 char *scratch; 2745 2746 memset(&interp_info, 0, sizeof(interp_info)); 2747 #ifdef TARGET_MIPS 2748 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 2749 #endif 2750 2751 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2752 2753 load_elf_image(bprm->filename, bprm->fd, info, 2754 &elf_interpreter, bprm->buf); 2755 2756 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2757 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2758 when we load the interpreter. */ 2759 elf_ex = *(struct elfhdr *)bprm->buf; 2760 2761 /* Do this so that we can load the interpreter, if need be. We will 2762 change some of these later */ 2763 bprm->p = setup_arg_pages(bprm, info); 2764 2765 scratch = g_new0(char, TARGET_PAGE_SIZE); 2766 if (STACK_GROWS_DOWN) { 2767 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2768 bprm->p, info->stack_limit); 2769 info->file_string = bprm->p; 2770 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2771 bprm->p, info->stack_limit); 2772 info->env_strings = bprm->p; 2773 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2774 bprm->p, info->stack_limit); 2775 info->arg_strings = bprm->p; 2776 } else { 2777 info->arg_strings = bprm->p; 2778 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2779 bprm->p, info->stack_limit); 2780 info->env_strings = bprm->p; 2781 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2782 bprm->p, info->stack_limit); 2783 info->file_string = bprm->p; 2784 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2785 bprm->p, info->stack_limit); 2786 } 2787 2788 g_free(scratch); 2789 2790 if (!bprm->p) { 2791 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2792 exit(-1); 2793 } 2794 2795 if (elf_interpreter) { 2796 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2797 2798 /* If the program interpreter is one of these two, then assume 2799 an iBCS2 image. Otherwise assume a native linux image. */ 2800 2801 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2802 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2803 info->personality = PER_SVR4; 2804 2805 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2806 and some applications "depend" upon this behavior. Since 2807 we do not have the power to recompile these, we emulate 2808 the SVr4 behavior. Sigh. */ 2809 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2810 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2811 } 2812 #ifdef TARGET_MIPS 2813 info->interp_fp_abi = interp_info.fp_abi; 2814 #endif 2815 } 2816 2817 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2818 info, (elf_interpreter ? &interp_info : NULL)); 2819 info->start_stack = bprm->p; 2820 2821 /* If we have an interpreter, set that as the program's entry point. 2822 Copy the load_bias as well, to help PPC64 interpret the entry 2823 point as a function descriptor. Do this after creating elf tables 2824 so that we copy the original program entry point into the AUXV. */ 2825 if (elf_interpreter) { 2826 info->load_bias = interp_info.load_bias; 2827 info->entry = interp_info.entry; 2828 free(elf_interpreter); 2829 } 2830 2831 #ifdef USE_ELF_CORE_DUMP 2832 bprm->core_dump = &elf_core_dump; 2833 #endif 2834 2835 return 0; 2836 } 2837 2838 #ifdef USE_ELF_CORE_DUMP 2839 /* 2840 * Definitions to generate Intel SVR4-like core files. 2841 * These mostly have the same names as the SVR4 types with "target_elf_" 2842 * tacked on the front to prevent clashes with linux definitions, 2843 * and the typedef forms have been avoided. This is mostly like 2844 * the SVR4 structure, but more Linuxy, with things that Linux does 2845 * not support and which gdb doesn't really use excluded. 2846 * 2847 * Fields we don't dump (their contents is zero) in linux-user qemu 2848 * are marked with XXX. 2849 * 2850 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2851 * 2852 * Porting ELF coredump for target is (quite) simple process. First you 2853 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2854 * the target resides): 2855 * 2856 * #define USE_ELF_CORE_DUMP 2857 * 2858 * Next you define type of register set used for dumping. ELF specification 2859 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2860 * 2861 * typedef <target_regtype> target_elf_greg_t; 2862 * #define ELF_NREG <number of registers> 2863 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2864 * 2865 * Last step is to implement target specific function that copies registers 2866 * from given cpu into just specified register set. Prototype is: 2867 * 2868 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2869 * const CPUArchState *env); 2870 * 2871 * Parameters: 2872 * regs - copy register values into here (allocated and zeroed by caller) 2873 * env - copy registers from here 2874 * 2875 * Example for ARM target is provided in this file. 2876 */ 2877 2878 /* An ELF note in memory */ 2879 struct memelfnote { 2880 const char *name; 2881 size_t namesz; 2882 size_t namesz_rounded; 2883 int type; 2884 size_t datasz; 2885 size_t datasz_rounded; 2886 void *data; 2887 size_t notesz; 2888 }; 2889 2890 struct target_elf_siginfo { 2891 abi_int si_signo; /* signal number */ 2892 abi_int si_code; /* extra code */ 2893 abi_int si_errno; /* errno */ 2894 }; 2895 2896 struct target_elf_prstatus { 2897 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2898 abi_short pr_cursig; /* Current signal */ 2899 abi_ulong pr_sigpend; /* XXX */ 2900 abi_ulong pr_sighold; /* XXX */ 2901 target_pid_t pr_pid; 2902 target_pid_t pr_ppid; 2903 target_pid_t pr_pgrp; 2904 target_pid_t pr_sid; 2905 struct target_timeval pr_utime; /* XXX User time */ 2906 struct target_timeval pr_stime; /* XXX System time */ 2907 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2908 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2909 target_elf_gregset_t pr_reg; /* GP registers */ 2910 abi_int pr_fpvalid; /* XXX */ 2911 }; 2912 2913 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2914 2915 struct target_elf_prpsinfo { 2916 char pr_state; /* numeric process state */ 2917 char pr_sname; /* char for pr_state */ 2918 char pr_zomb; /* zombie */ 2919 char pr_nice; /* nice val */ 2920 abi_ulong pr_flag; /* flags */ 2921 target_uid_t pr_uid; 2922 target_gid_t pr_gid; 2923 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2924 /* Lots missing */ 2925 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 2926 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2927 }; 2928 2929 /* Here is the structure in which status of each thread is captured. */ 2930 struct elf_thread_status { 2931 QTAILQ_ENTRY(elf_thread_status) ets_link; 2932 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2933 #if 0 2934 elf_fpregset_t fpu; /* NT_PRFPREG */ 2935 struct task_struct *thread; 2936 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2937 #endif 2938 struct memelfnote notes[1]; 2939 int num_notes; 2940 }; 2941 2942 struct elf_note_info { 2943 struct memelfnote *notes; 2944 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2945 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2946 2947 QTAILQ_HEAD(, elf_thread_status) thread_list; 2948 #if 0 2949 /* 2950 * Current version of ELF coredump doesn't support 2951 * dumping fp regs etc. 2952 */ 2953 elf_fpregset_t *fpu; 2954 elf_fpxregset_t *xfpu; 2955 int thread_status_size; 2956 #endif 2957 int notes_size; 2958 int numnote; 2959 }; 2960 2961 struct vm_area_struct { 2962 target_ulong vma_start; /* start vaddr of memory region */ 2963 target_ulong vma_end; /* end vaddr of memory region */ 2964 abi_ulong vma_flags; /* protection etc. flags for the region */ 2965 QTAILQ_ENTRY(vm_area_struct) vma_link; 2966 }; 2967 2968 struct mm_struct { 2969 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2970 int mm_count; /* number of mappings */ 2971 }; 2972 2973 static struct mm_struct *vma_init(void); 2974 static void vma_delete(struct mm_struct *); 2975 static int vma_add_mapping(struct mm_struct *, target_ulong, 2976 target_ulong, abi_ulong); 2977 static int vma_get_mapping_count(const struct mm_struct *); 2978 static struct vm_area_struct *vma_first(const struct mm_struct *); 2979 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2980 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2981 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2982 unsigned long flags); 2983 2984 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2985 static void fill_note(struct memelfnote *, const char *, int, 2986 unsigned int, void *); 2987 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2988 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2989 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2990 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2991 static size_t note_size(const struct memelfnote *); 2992 static void free_note_info(struct elf_note_info *); 2993 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2994 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2995 static int core_dump_filename(const TaskState *, char *, size_t); 2996 2997 static int dump_write(int, const void *, size_t); 2998 static int write_note(struct memelfnote *, int); 2999 static int write_note_info(struct elf_note_info *, int); 3000 3001 #ifdef BSWAP_NEEDED 3002 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3003 { 3004 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3005 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3006 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3007 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3008 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3009 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3010 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3011 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3012 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3013 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3014 /* cpu times are not filled, so we skip them */ 3015 /* regs should be in correct format already */ 3016 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3017 } 3018 3019 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3020 { 3021 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3022 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3023 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3024 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3025 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3026 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3027 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3028 } 3029 3030 static void bswap_note(struct elf_note *en) 3031 { 3032 bswap32s(&en->n_namesz); 3033 bswap32s(&en->n_descsz); 3034 bswap32s(&en->n_type); 3035 } 3036 #else 3037 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3038 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3039 static inline void bswap_note(struct elf_note *en) { } 3040 #endif /* BSWAP_NEEDED */ 3041 3042 /* 3043 * Minimal support for linux memory regions. These are needed 3044 * when we are finding out what memory exactly belongs to 3045 * emulated process. No locks needed here, as long as 3046 * thread that received the signal is stopped. 3047 */ 3048 3049 static struct mm_struct *vma_init(void) 3050 { 3051 struct mm_struct *mm; 3052 3053 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3054 return (NULL); 3055 3056 mm->mm_count = 0; 3057 QTAILQ_INIT(&mm->mm_mmap); 3058 3059 return (mm); 3060 } 3061 3062 static void vma_delete(struct mm_struct *mm) 3063 { 3064 struct vm_area_struct *vma; 3065 3066 while ((vma = vma_first(mm)) != NULL) { 3067 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3068 g_free(vma); 3069 } 3070 g_free(mm); 3071 } 3072 3073 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3074 target_ulong end, abi_ulong flags) 3075 { 3076 struct vm_area_struct *vma; 3077 3078 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3079 return (-1); 3080 3081 vma->vma_start = start; 3082 vma->vma_end = end; 3083 vma->vma_flags = flags; 3084 3085 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3086 mm->mm_count++; 3087 3088 return (0); 3089 } 3090 3091 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3092 { 3093 return (QTAILQ_FIRST(&mm->mm_mmap)); 3094 } 3095 3096 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3097 { 3098 return (QTAILQ_NEXT(vma, vma_link)); 3099 } 3100 3101 static int vma_get_mapping_count(const struct mm_struct *mm) 3102 { 3103 return (mm->mm_count); 3104 } 3105 3106 /* 3107 * Calculate file (dump) size of given memory region. 3108 */ 3109 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3110 { 3111 /* if we cannot even read the first page, skip it */ 3112 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3113 return (0); 3114 3115 /* 3116 * Usually we don't dump executable pages as they contain 3117 * non-writable code that debugger can read directly from 3118 * target library etc. However, thread stacks are marked 3119 * also executable so we read in first page of given region 3120 * and check whether it contains elf header. If there is 3121 * no elf header, we dump it. 3122 */ 3123 if (vma->vma_flags & PROT_EXEC) { 3124 char page[TARGET_PAGE_SIZE]; 3125 3126 copy_from_user(page, vma->vma_start, sizeof (page)); 3127 if ((page[EI_MAG0] == ELFMAG0) && 3128 (page[EI_MAG1] == ELFMAG1) && 3129 (page[EI_MAG2] == ELFMAG2) && 3130 (page[EI_MAG3] == ELFMAG3)) { 3131 /* 3132 * Mappings are possibly from ELF binary. Don't dump 3133 * them. 3134 */ 3135 return (0); 3136 } 3137 } 3138 3139 return (vma->vma_end - vma->vma_start); 3140 } 3141 3142 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3143 unsigned long flags) 3144 { 3145 struct mm_struct *mm = (struct mm_struct *)priv; 3146 3147 vma_add_mapping(mm, start, end, flags); 3148 return (0); 3149 } 3150 3151 static void fill_note(struct memelfnote *note, const char *name, int type, 3152 unsigned int sz, void *data) 3153 { 3154 unsigned int namesz; 3155 3156 namesz = strlen(name) + 1; 3157 note->name = name; 3158 note->namesz = namesz; 3159 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3160 note->type = type; 3161 note->datasz = sz; 3162 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3163 3164 note->data = data; 3165 3166 /* 3167 * We calculate rounded up note size here as specified by 3168 * ELF document. 3169 */ 3170 note->notesz = sizeof (struct elf_note) + 3171 note->namesz_rounded + note->datasz_rounded; 3172 } 3173 3174 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3175 uint32_t flags) 3176 { 3177 (void) memset(elf, 0, sizeof(*elf)); 3178 3179 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3180 elf->e_ident[EI_CLASS] = ELF_CLASS; 3181 elf->e_ident[EI_DATA] = ELF_DATA; 3182 elf->e_ident[EI_VERSION] = EV_CURRENT; 3183 elf->e_ident[EI_OSABI] = ELF_OSABI; 3184 3185 elf->e_type = ET_CORE; 3186 elf->e_machine = machine; 3187 elf->e_version = EV_CURRENT; 3188 elf->e_phoff = sizeof(struct elfhdr); 3189 elf->e_flags = flags; 3190 elf->e_ehsize = sizeof(struct elfhdr); 3191 elf->e_phentsize = sizeof(struct elf_phdr); 3192 elf->e_phnum = segs; 3193 3194 bswap_ehdr(elf); 3195 } 3196 3197 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3198 { 3199 phdr->p_type = PT_NOTE; 3200 phdr->p_offset = offset; 3201 phdr->p_vaddr = 0; 3202 phdr->p_paddr = 0; 3203 phdr->p_filesz = sz; 3204 phdr->p_memsz = 0; 3205 phdr->p_flags = 0; 3206 phdr->p_align = 0; 3207 3208 bswap_phdr(phdr, 1); 3209 } 3210 3211 static size_t note_size(const struct memelfnote *note) 3212 { 3213 return (note->notesz); 3214 } 3215 3216 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3217 const TaskState *ts, int signr) 3218 { 3219 (void) memset(prstatus, 0, sizeof (*prstatus)); 3220 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3221 prstatus->pr_pid = ts->ts_tid; 3222 prstatus->pr_ppid = getppid(); 3223 prstatus->pr_pgrp = getpgrp(); 3224 prstatus->pr_sid = getsid(0); 3225 3226 bswap_prstatus(prstatus); 3227 } 3228 3229 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3230 { 3231 char *base_filename; 3232 unsigned int i, len; 3233 3234 (void) memset(psinfo, 0, sizeof (*psinfo)); 3235 3236 len = ts->info->arg_end - ts->info->arg_start; 3237 if (len >= ELF_PRARGSZ) 3238 len = ELF_PRARGSZ - 1; 3239 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3240 return -EFAULT; 3241 for (i = 0; i < len; i++) 3242 if (psinfo->pr_psargs[i] == 0) 3243 psinfo->pr_psargs[i] = ' '; 3244 psinfo->pr_psargs[len] = 0; 3245 3246 psinfo->pr_pid = getpid(); 3247 psinfo->pr_ppid = getppid(); 3248 psinfo->pr_pgrp = getpgrp(); 3249 psinfo->pr_sid = getsid(0); 3250 psinfo->pr_uid = getuid(); 3251 psinfo->pr_gid = getgid(); 3252 3253 base_filename = g_path_get_basename(ts->bprm->filename); 3254 /* 3255 * Using strncpy here is fine: at max-length, 3256 * this field is not NUL-terminated. 3257 */ 3258 (void) strncpy(psinfo->pr_fname, base_filename, 3259 sizeof(psinfo->pr_fname)); 3260 3261 g_free(base_filename); 3262 bswap_psinfo(psinfo); 3263 return (0); 3264 } 3265 3266 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3267 { 3268 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3269 elf_addr_t orig_auxv = auxv; 3270 void *ptr; 3271 int len = ts->info->auxv_len; 3272 3273 /* 3274 * Auxiliary vector is stored in target process stack. It contains 3275 * {type, value} pairs that we need to dump into note. This is not 3276 * strictly necessary but we do it here for sake of completeness. 3277 */ 3278 3279 /* read in whole auxv vector and copy it to memelfnote */ 3280 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3281 if (ptr != NULL) { 3282 fill_note(note, "CORE", NT_AUXV, len, ptr); 3283 unlock_user(ptr, auxv, len); 3284 } 3285 } 3286 3287 /* 3288 * Constructs name of coredump file. We have following convention 3289 * for the name: 3290 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3291 * 3292 * Returns 0 in case of success, -1 otherwise (errno is set). 3293 */ 3294 static int core_dump_filename(const TaskState *ts, char *buf, 3295 size_t bufsize) 3296 { 3297 char timestamp[64]; 3298 char *base_filename = NULL; 3299 struct timeval tv; 3300 struct tm tm; 3301 3302 assert(bufsize >= PATH_MAX); 3303 3304 if (gettimeofday(&tv, NULL) < 0) { 3305 (void) fprintf(stderr, "unable to get current timestamp: %s", 3306 strerror(errno)); 3307 return (-1); 3308 } 3309 3310 base_filename = g_path_get_basename(ts->bprm->filename); 3311 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3312 localtime_r(&tv.tv_sec, &tm)); 3313 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3314 base_filename, timestamp, (int)getpid()); 3315 g_free(base_filename); 3316 3317 return (0); 3318 } 3319 3320 static int dump_write(int fd, const void *ptr, size_t size) 3321 { 3322 const char *bufp = (const char *)ptr; 3323 ssize_t bytes_written, bytes_left; 3324 struct rlimit dumpsize; 3325 off_t pos; 3326 3327 bytes_written = 0; 3328 getrlimit(RLIMIT_CORE, &dumpsize); 3329 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3330 if (errno == ESPIPE) { /* not a seekable stream */ 3331 bytes_left = size; 3332 } else { 3333 return pos; 3334 } 3335 } else { 3336 if (dumpsize.rlim_cur <= pos) { 3337 return -1; 3338 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3339 bytes_left = size; 3340 } else { 3341 size_t limit_left=dumpsize.rlim_cur - pos; 3342 bytes_left = limit_left >= size ? size : limit_left ; 3343 } 3344 } 3345 3346 /* 3347 * In normal conditions, single write(2) should do but 3348 * in case of socket etc. this mechanism is more portable. 3349 */ 3350 do { 3351 bytes_written = write(fd, bufp, bytes_left); 3352 if (bytes_written < 0) { 3353 if (errno == EINTR) 3354 continue; 3355 return (-1); 3356 } else if (bytes_written == 0) { /* eof */ 3357 return (-1); 3358 } 3359 bufp += bytes_written; 3360 bytes_left -= bytes_written; 3361 } while (bytes_left > 0); 3362 3363 return (0); 3364 } 3365 3366 static int write_note(struct memelfnote *men, int fd) 3367 { 3368 struct elf_note en; 3369 3370 en.n_namesz = men->namesz; 3371 en.n_type = men->type; 3372 en.n_descsz = men->datasz; 3373 3374 bswap_note(&en); 3375 3376 if (dump_write(fd, &en, sizeof(en)) != 0) 3377 return (-1); 3378 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3379 return (-1); 3380 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3381 return (-1); 3382 3383 return (0); 3384 } 3385 3386 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3387 { 3388 CPUState *cpu = env_cpu((CPUArchState *)env); 3389 TaskState *ts = (TaskState *)cpu->opaque; 3390 struct elf_thread_status *ets; 3391 3392 ets = g_malloc0(sizeof (*ets)); 3393 ets->num_notes = 1; /* only prstatus is dumped */ 3394 fill_prstatus(&ets->prstatus, ts, 0); 3395 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3396 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3397 &ets->prstatus); 3398 3399 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3400 3401 info->notes_size += note_size(&ets->notes[0]); 3402 } 3403 3404 static void init_note_info(struct elf_note_info *info) 3405 { 3406 /* Initialize the elf_note_info structure so that it is at 3407 * least safe to call free_note_info() on it. Must be 3408 * called before calling fill_note_info(). 3409 */ 3410 memset(info, 0, sizeof (*info)); 3411 QTAILQ_INIT(&info->thread_list); 3412 } 3413 3414 static int fill_note_info(struct elf_note_info *info, 3415 long signr, const CPUArchState *env) 3416 { 3417 #define NUMNOTES 3 3418 CPUState *cpu = env_cpu((CPUArchState *)env); 3419 TaskState *ts = (TaskState *)cpu->opaque; 3420 int i; 3421 3422 info->notes = g_new0(struct memelfnote, NUMNOTES); 3423 if (info->notes == NULL) 3424 return (-ENOMEM); 3425 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3426 if (info->prstatus == NULL) 3427 return (-ENOMEM); 3428 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3429 if (info->prstatus == NULL) 3430 return (-ENOMEM); 3431 3432 /* 3433 * First fill in status (and registers) of current thread 3434 * including process info & aux vector. 3435 */ 3436 fill_prstatus(info->prstatus, ts, signr); 3437 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3438 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3439 sizeof (*info->prstatus), info->prstatus); 3440 fill_psinfo(info->psinfo, ts); 3441 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3442 sizeof (*info->psinfo), info->psinfo); 3443 fill_auxv_note(&info->notes[2], ts); 3444 info->numnote = 3; 3445 3446 info->notes_size = 0; 3447 for (i = 0; i < info->numnote; i++) 3448 info->notes_size += note_size(&info->notes[i]); 3449 3450 /* read and fill status of all threads */ 3451 cpu_list_lock(); 3452 CPU_FOREACH(cpu) { 3453 if (cpu == thread_cpu) { 3454 continue; 3455 } 3456 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3457 } 3458 cpu_list_unlock(); 3459 3460 return (0); 3461 } 3462 3463 static void free_note_info(struct elf_note_info *info) 3464 { 3465 struct elf_thread_status *ets; 3466 3467 while (!QTAILQ_EMPTY(&info->thread_list)) { 3468 ets = QTAILQ_FIRST(&info->thread_list); 3469 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3470 g_free(ets); 3471 } 3472 3473 g_free(info->prstatus); 3474 g_free(info->psinfo); 3475 g_free(info->notes); 3476 } 3477 3478 static int write_note_info(struct elf_note_info *info, int fd) 3479 { 3480 struct elf_thread_status *ets; 3481 int i, error = 0; 3482 3483 /* write prstatus, psinfo and auxv for current thread */ 3484 for (i = 0; i < info->numnote; i++) 3485 if ((error = write_note(&info->notes[i], fd)) != 0) 3486 return (error); 3487 3488 /* write prstatus for each thread */ 3489 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3490 if ((error = write_note(&ets->notes[0], fd)) != 0) 3491 return (error); 3492 } 3493 3494 return (0); 3495 } 3496 3497 /* 3498 * Write out ELF coredump. 3499 * 3500 * See documentation of ELF object file format in: 3501 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3502 * 3503 * Coredump format in linux is following: 3504 * 3505 * 0 +----------------------+ \ 3506 * | ELF header | ET_CORE | 3507 * +----------------------+ | 3508 * | ELF program headers | |--- headers 3509 * | - NOTE section | | 3510 * | - PT_LOAD sections | | 3511 * +----------------------+ / 3512 * | NOTEs: | 3513 * | - NT_PRSTATUS | 3514 * | - NT_PRSINFO | 3515 * | - NT_AUXV | 3516 * +----------------------+ <-- aligned to target page 3517 * | Process memory dump | 3518 * : : 3519 * . . 3520 * : : 3521 * | | 3522 * +----------------------+ 3523 * 3524 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3525 * NT_PRSINFO -> struct elf_prpsinfo 3526 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3527 * 3528 * Format follows System V format as close as possible. Current 3529 * version limitations are as follows: 3530 * - no floating point registers are dumped 3531 * 3532 * Function returns 0 in case of success, negative errno otherwise. 3533 * 3534 * TODO: make this work also during runtime: it should be 3535 * possible to force coredump from running process and then 3536 * continue processing. For example qemu could set up SIGUSR2 3537 * handler (provided that target process haven't registered 3538 * handler for that) that does the dump when signal is received. 3539 */ 3540 static int elf_core_dump(int signr, const CPUArchState *env) 3541 { 3542 const CPUState *cpu = env_cpu((CPUArchState *)env); 3543 const TaskState *ts = (const TaskState *)cpu->opaque; 3544 struct vm_area_struct *vma = NULL; 3545 char corefile[PATH_MAX]; 3546 struct elf_note_info info; 3547 struct elfhdr elf; 3548 struct elf_phdr phdr; 3549 struct rlimit dumpsize; 3550 struct mm_struct *mm = NULL; 3551 off_t offset = 0, data_offset = 0; 3552 int segs = 0; 3553 int fd = -1; 3554 3555 init_note_info(&info); 3556 3557 errno = 0; 3558 getrlimit(RLIMIT_CORE, &dumpsize); 3559 if (dumpsize.rlim_cur == 0) 3560 return 0; 3561 3562 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3563 return (-errno); 3564 3565 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3566 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3567 return (-errno); 3568 3569 /* 3570 * Walk through target process memory mappings and 3571 * set up structure containing this information. After 3572 * this point vma_xxx functions can be used. 3573 */ 3574 if ((mm = vma_init()) == NULL) 3575 goto out; 3576 3577 walk_memory_regions(mm, vma_walker); 3578 segs = vma_get_mapping_count(mm); 3579 3580 /* 3581 * Construct valid coredump ELF header. We also 3582 * add one more segment for notes. 3583 */ 3584 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3585 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3586 goto out; 3587 3588 /* fill in the in-memory version of notes */ 3589 if (fill_note_info(&info, signr, env) < 0) 3590 goto out; 3591 3592 offset += sizeof (elf); /* elf header */ 3593 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3594 3595 /* write out notes program header */ 3596 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3597 3598 offset += info.notes_size; 3599 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3600 goto out; 3601 3602 /* 3603 * ELF specification wants data to start at page boundary so 3604 * we align it here. 3605 */ 3606 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3607 3608 /* 3609 * Write program headers for memory regions mapped in 3610 * the target process. 3611 */ 3612 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3613 (void) memset(&phdr, 0, sizeof (phdr)); 3614 3615 phdr.p_type = PT_LOAD; 3616 phdr.p_offset = offset; 3617 phdr.p_vaddr = vma->vma_start; 3618 phdr.p_paddr = 0; 3619 phdr.p_filesz = vma_dump_size(vma); 3620 offset += phdr.p_filesz; 3621 phdr.p_memsz = vma->vma_end - vma->vma_start; 3622 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3623 if (vma->vma_flags & PROT_WRITE) 3624 phdr.p_flags |= PF_W; 3625 if (vma->vma_flags & PROT_EXEC) 3626 phdr.p_flags |= PF_X; 3627 phdr.p_align = ELF_EXEC_PAGESIZE; 3628 3629 bswap_phdr(&phdr, 1); 3630 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3631 goto out; 3632 } 3633 } 3634 3635 /* 3636 * Next we write notes just after program headers. No 3637 * alignment needed here. 3638 */ 3639 if (write_note_info(&info, fd) < 0) 3640 goto out; 3641 3642 /* align data to page boundary */ 3643 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3644 goto out; 3645 3646 /* 3647 * Finally we can dump process memory into corefile as well. 3648 */ 3649 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3650 abi_ulong addr; 3651 abi_ulong end; 3652 3653 end = vma->vma_start + vma_dump_size(vma); 3654 3655 for (addr = vma->vma_start; addr < end; 3656 addr += TARGET_PAGE_SIZE) { 3657 char page[TARGET_PAGE_SIZE]; 3658 int error; 3659 3660 /* 3661 * Read in page from target process memory and 3662 * write it to coredump file. 3663 */ 3664 error = copy_from_user(page, addr, sizeof (page)); 3665 if (error != 0) { 3666 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3667 addr); 3668 errno = -error; 3669 goto out; 3670 } 3671 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3672 goto out; 3673 } 3674 } 3675 3676 out: 3677 free_note_info(&info); 3678 if (mm != NULL) 3679 vma_delete(mm); 3680 (void) close(fd); 3681 3682 if (errno != 0) 3683 return (-errno); 3684 return (0); 3685 } 3686 #endif /* USE_ELF_CORE_DUMP */ 3687 3688 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3689 { 3690 init_thread(regs, infop); 3691 } 3692