xref: /openbmc/qemu/linux-user/elfload.c (revision 5c65eed6)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 int info_is_fdpic(struct image_info *info)
82 {
83     return info->personality == PER_LINUX_FDPIC;
84 }
85 
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90 
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95 
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA        ELFDATA2MSB
98 #else
99 #define ELF_DATA        ELFDATA2LSB
100 #endif
101 
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong      target_elf_greg_t;
104 #define tswapreg(ptr)   tswap64(ptr)
105 #else
106 typedef abi_ulong       target_elf_greg_t;
107 #define tswapreg(ptr)   tswapal(ptr)
108 #endif
109 
110 #ifdef USE_UID16
111 typedef abi_ushort      target_uid_t;
112 typedef abi_ushort      target_gid_t;
113 #else
114 typedef abi_uint        target_uid_t;
115 typedef abi_uint        target_gid_t;
116 #endif
117 typedef abi_int         target_pid_t;
118 
119 #ifdef TARGET_I386
120 
121 #define ELF_PLATFORM get_elf_platform()
122 
123 static const char *get_elf_platform(void)
124 {
125     static char elf_platform[] = "i386";
126     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127     if (family > 6)
128         family = 6;
129     if (family >= 3)
130         elf_platform[1] = '0' + family;
131     return elf_platform;
132 }
133 
134 #define ELF_HWCAP get_elf_hwcap()
135 
136 static uint32_t get_elf_hwcap(void)
137 {
138     X86CPU *cpu = X86_CPU(thread_cpu);
139 
140     return cpu->env.features[FEAT_1_EDX];
141 }
142 
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145 
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151     regs->rax = 0;
152     regs->rsp = infop->start_stack;
153     regs->rip = infop->entry;
154 }
155 
156 #define ELF_NREG    27
157 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
158 
159 /*
160  * Note that ELF_NREG should be 29 as there should be place for
161  * TRAPNO and ERR "registers" as well but linux doesn't dump
162  * those.
163  *
164  * See linux kernel: arch/x86/include/asm/elf.h
165  */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168     (*regs)[0] = env->regs[15];
169     (*regs)[1] = env->regs[14];
170     (*regs)[2] = env->regs[13];
171     (*regs)[3] = env->regs[12];
172     (*regs)[4] = env->regs[R_EBP];
173     (*regs)[5] = env->regs[R_EBX];
174     (*regs)[6] = env->regs[11];
175     (*regs)[7] = env->regs[10];
176     (*regs)[8] = env->regs[9];
177     (*regs)[9] = env->regs[8];
178     (*regs)[10] = env->regs[R_EAX];
179     (*regs)[11] = env->regs[R_ECX];
180     (*regs)[12] = env->regs[R_EDX];
181     (*regs)[13] = env->regs[R_ESI];
182     (*regs)[14] = env->regs[R_EDI];
183     (*regs)[15] = env->regs[R_EAX]; /* XXX */
184     (*regs)[16] = env->eip;
185     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186     (*regs)[18] = env->eflags;
187     (*regs)[19] = env->regs[R_ESP];
188     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196 
197 #else
198 
199 #define ELF_START_MMAP 0x80000000
200 
201 /*
202  * This is used to ensure we don't load something for the wrong architecture.
203  */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205 
206 /*
207  * These are used to set parameters in the core dumps.
208  */
209 #define ELF_CLASS       ELFCLASS32
210 #define ELF_ARCH        EM_386
211 
212 static inline void init_thread(struct target_pt_regs *regs,
213                                struct image_info *infop)
214 {
215     regs->esp = infop->start_stack;
216     regs->eip = infop->entry;
217 
218     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219        starts %edx contains a pointer to a function which might be
220        registered using `atexit'.  This provides a mean for the
221        dynamic linker to call DT_FINI functions for shared libraries
222        that have been loaded before the code runs.
223 
224        A value of 0 tells we have no such handler.  */
225     regs->edx = 0;
226 }
227 
228 #define ELF_NREG    17
229 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
230 
231 /*
232  * Note that ELF_NREG should be 19 as there should be place for
233  * TRAPNO and ERR "registers" as well but linux doesn't dump
234  * those.
235  *
236  * See linux kernel: arch/x86/include/asm/elf.h
237  */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240     (*regs)[0] = env->regs[R_EBX];
241     (*regs)[1] = env->regs[R_ECX];
242     (*regs)[2] = env->regs[R_EDX];
243     (*regs)[3] = env->regs[R_ESI];
244     (*regs)[4] = env->regs[R_EDI];
245     (*regs)[5] = env->regs[R_EBP];
246     (*regs)[6] = env->regs[R_EAX];
247     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251     (*regs)[11] = env->regs[R_EAX]; /* XXX */
252     (*regs)[12] = env->eip;
253     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254     (*regs)[14] = env->eflags;
255     (*regs)[15] = env->regs[R_ESP];
256     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259 
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE       4096
262 
263 #endif
264 
265 #ifdef TARGET_ARM
266 
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269 
270 #define ELF_START_MMAP 0x80000000
271 
272 #define ELF_ARCH        EM_ARM
273 #define ELF_CLASS       ELFCLASS32
274 
275 static inline void init_thread(struct target_pt_regs *regs,
276                                struct image_info *infop)
277 {
278     abi_long stack = infop->start_stack;
279     memset(regs, 0, sizeof(*regs));
280 
281     regs->uregs[16] = ARM_CPU_MODE_USR;
282     if (infop->entry & 1) {
283         regs->uregs[16] |= CPSR_T;
284     }
285     regs->uregs[15] = infop->entry & 0xfffffffe;
286     regs->uregs[13] = infop->start_stack;
287     /* FIXME - what to for failure of get_user()? */
288     get_user_ual(regs->uregs[2], stack + 8); /* envp */
289     get_user_ual(regs->uregs[1], stack + 4); /* envp */
290     /* XXX: it seems that r0 is zeroed after ! */
291     regs->uregs[0] = 0;
292     /* For uClinux PIC binaries.  */
293     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294     regs->uregs[10] = infop->start_data;
295 
296     /* Support ARM FDPIC.  */
297     if (info_is_fdpic(infop)) {
298         /* As described in the ABI document, r7 points to the loadmap info
299          * prepared by the kernel. If an interpreter is needed, r8 points
300          * to the interpreter loadmap and r9 points to the interpreter
301          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302          * r9 points to the main program PT_DYNAMIC info.
303          */
304         regs->uregs[7] = infop->loadmap_addr;
305         if (infop->interpreter_loadmap_addr) {
306             /* Executable is dynamically loaded.  */
307             regs->uregs[8] = infop->interpreter_loadmap_addr;
308             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309         } else {
310             regs->uregs[8] = 0;
311             regs->uregs[9] = infop->pt_dynamic_addr;
312         }
313     }
314 }
315 
316 #define ELF_NREG    18
317 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
318 
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321     (*regs)[0] = tswapreg(env->regs[0]);
322     (*regs)[1] = tswapreg(env->regs[1]);
323     (*regs)[2] = tswapreg(env->regs[2]);
324     (*regs)[3] = tswapreg(env->regs[3]);
325     (*regs)[4] = tswapreg(env->regs[4]);
326     (*regs)[5] = tswapreg(env->regs[5]);
327     (*regs)[6] = tswapreg(env->regs[6]);
328     (*regs)[7] = tswapreg(env->regs[7]);
329     (*regs)[8] = tswapreg(env->regs[8]);
330     (*regs)[9] = tswapreg(env->regs[9]);
331     (*regs)[10] = tswapreg(env->regs[10]);
332     (*regs)[11] = tswapreg(env->regs[11]);
333     (*regs)[12] = tswapreg(env->regs[12]);
334     (*regs)[13] = tswapreg(env->regs[13]);
335     (*regs)[14] = tswapreg(env->regs[14]);
336     (*regs)[15] = tswapreg(env->regs[15]);
337 
338     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341 
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE       4096
344 
345 enum
346 {
347     ARM_HWCAP_ARM_SWP       = 1 << 0,
348     ARM_HWCAP_ARM_HALF      = 1 << 1,
349     ARM_HWCAP_ARM_THUMB     = 1 << 2,
350     ARM_HWCAP_ARM_26BIT     = 1 << 3,
351     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352     ARM_HWCAP_ARM_FPA       = 1 << 5,
353     ARM_HWCAP_ARM_VFP       = 1 << 6,
354     ARM_HWCAP_ARM_EDSP      = 1 << 7,
355     ARM_HWCAP_ARM_JAVA      = 1 << 8,
356     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
357     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
358     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
359     ARM_HWCAP_ARM_NEON      = 1 << 12,
360     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
361     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
362     ARM_HWCAP_ARM_TLS       = 1 << 15,
363     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
364     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
365     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
366     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
367     ARM_HWCAP_ARM_LPAE      = 1 << 20,
368     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
369 };
370 
371 enum {
372     ARM_HWCAP2_ARM_AES      = 1 << 0,
373     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
374     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
375     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
376     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
377 };
378 
379 /* The commpage only exists for 32 bit kernels */
380 
381 /* Return 1 if the proposed guest space is suitable for the guest.
382  * Return 0 if the proposed guest space isn't suitable, but another
383  * address space should be tried.
384  * Return -1 if there is no way the proposed guest space can be
385  * valid regardless of the base.
386  * The guest code may leave a page mapped and populate it if the
387  * address is suitable.
388  */
389 static int init_guest_commpage(unsigned long guest_base,
390                                unsigned long guest_size)
391 {
392     unsigned long real_start, test_page_addr;
393 
394     /* We need to check that we can force a fault on access to the
395      * commpage at 0xffff0fxx
396      */
397     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398 
399     /* If the commpage lies within the already allocated guest space,
400      * then there is no way we can allocate it.
401      *
402      * You may be thinking that that this check is redundant because
403      * we already validated the guest size against MAX_RESERVED_VA;
404      * but if qemu_host_page_mask is unusually large, then
405      * test_page_addr may be lower.
406      */
407     if (test_page_addr >= guest_base
408         && test_page_addr < (guest_base + guest_size)) {
409         return -1;
410     }
411 
412     /* Note it needs to be writeable to let us initialise it */
413     real_start = (unsigned long)
414                  mmap((void *)test_page_addr, qemu_host_page_size,
415                      PROT_READ | PROT_WRITE,
416                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417 
418     /* If we can't map it then try another address */
419     if (real_start == -1ul) {
420         return 0;
421     }
422 
423     if (real_start != test_page_addr) {
424         /* OS didn't put the page where we asked - unmap and reject */
425         munmap((void *)real_start, qemu_host_page_size);
426         return 0;
427     }
428 
429     /* Leave the page mapped
430      * Populate it (mmap should have left it all 0'd)
431      */
432 
433     /* Kernel helper versions */
434     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435 
436     /* Now it's populated make it RO */
437     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438         perror("Protecting guest commpage");
439         exit(-1);
440     }
441 
442     return 1; /* All good */
443 }
444 
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447 
448 static uint32_t get_elf_hwcap(void)
449 {
450     ARMCPU *cpu = ARM_CPU(thread_cpu);
451     uint32_t hwcaps = 0;
452 
453     hwcaps |= ARM_HWCAP_ARM_SWP;
454     hwcaps |= ARM_HWCAP_ARM_HALF;
455     hwcaps |= ARM_HWCAP_ARM_THUMB;
456     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457 
458     /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461 
462 #define GET_FEATURE_ID(feat, hwcap) \
463     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464 
465     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
467     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
472     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
474     GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
475     GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
476     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479      * to our VFP_FP16 feature bit.
480      */
481     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
483 
484     return hwcaps;
485 }
486 
487 static uint32_t get_elf_hwcap2(void)
488 {
489     ARMCPU *cpu = ARM_CPU(thread_cpu);
490     uint32_t hwcaps = 0;
491 
492     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
497     return hwcaps;
498 }
499 
500 #undef GET_FEATURE
501 #undef GET_FEATURE_ID
502 
503 #else
504 /* 64 bit ARM definitions */
505 #define ELF_START_MMAP 0x80000000
506 
507 #define ELF_ARCH        EM_AARCH64
508 #define ELF_CLASS       ELFCLASS64
509 #define ELF_PLATFORM    "aarch64"
510 
511 static inline void init_thread(struct target_pt_regs *regs,
512                                struct image_info *infop)
513 {
514     abi_long stack = infop->start_stack;
515     memset(regs, 0, sizeof(*regs));
516 
517     regs->pc = infop->entry & ~0x3ULL;
518     regs->sp = stack;
519 }
520 
521 #define ELF_NREG    34
522 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
523 
524 static void elf_core_copy_regs(target_elf_gregset_t *regs,
525                                const CPUARMState *env)
526 {
527     int i;
528 
529     for (i = 0; i < 32; i++) {
530         (*regs)[i] = tswapreg(env->xregs[i]);
531     }
532     (*regs)[32] = tswapreg(env->pc);
533     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
534 }
535 
536 #define USE_ELF_CORE_DUMP
537 #define ELF_EXEC_PAGESIZE       4096
538 
539 enum {
540     ARM_HWCAP_A64_FP            = 1 << 0,
541     ARM_HWCAP_A64_ASIMD         = 1 << 1,
542     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
543     ARM_HWCAP_A64_AES           = 1 << 3,
544     ARM_HWCAP_A64_PMULL         = 1 << 4,
545     ARM_HWCAP_A64_SHA1          = 1 << 5,
546     ARM_HWCAP_A64_SHA2          = 1 << 6,
547     ARM_HWCAP_A64_CRC32         = 1 << 7,
548     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
549     ARM_HWCAP_A64_FPHP          = 1 << 9,
550     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
551     ARM_HWCAP_A64_CPUID         = 1 << 11,
552     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
553     ARM_HWCAP_A64_JSCVT         = 1 << 13,
554     ARM_HWCAP_A64_FCMA          = 1 << 14,
555     ARM_HWCAP_A64_LRCPC         = 1 << 15,
556     ARM_HWCAP_A64_DCPOP         = 1 << 16,
557     ARM_HWCAP_A64_SHA3          = 1 << 17,
558     ARM_HWCAP_A64_SM3           = 1 << 18,
559     ARM_HWCAP_A64_SM4           = 1 << 19,
560     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
561     ARM_HWCAP_A64_SHA512        = 1 << 21,
562     ARM_HWCAP_A64_SVE           = 1 << 22,
563     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
564     ARM_HWCAP_A64_DIT           = 1 << 24,
565     ARM_HWCAP_A64_USCAT         = 1 << 25,
566     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
567     ARM_HWCAP_A64_FLAGM         = 1 << 27,
568     ARM_HWCAP_A64_SSBS          = 1 << 28,
569     ARM_HWCAP_A64_SB            = 1 << 29,
570     ARM_HWCAP_A64_PACA          = 1 << 30,
571     ARM_HWCAP_A64_PACG          = 1UL << 31,
572 };
573 
574 #define ELF_HWCAP get_elf_hwcap()
575 
576 static uint32_t get_elf_hwcap(void)
577 {
578     ARMCPU *cpu = ARM_CPU(thread_cpu);
579     uint32_t hwcaps = 0;
580 
581     hwcaps |= ARM_HWCAP_A64_FP;
582     hwcaps |= ARM_HWCAP_A64_ASIMD;
583     hwcaps |= ARM_HWCAP_A64_CPUID;
584 
585     /* probe for the extra features */
586 #define GET_FEATURE_ID(feat, hwcap) \
587     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
588 
589     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
590     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
591     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
592     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
593     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
594     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
595     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
596     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
597     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
598     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
599     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
600     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
601     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
602     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
603     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
604     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
605     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
606     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
607 
608 #undef GET_FEATURE_ID
609 
610     return hwcaps;
611 }
612 
613 #endif /* not TARGET_AARCH64 */
614 #endif /* TARGET_ARM */
615 
616 #ifdef TARGET_SPARC
617 #ifdef TARGET_SPARC64
618 
619 #define ELF_START_MMAP 0x80000000
620 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
621                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
622 #ifndef TARGET_ABI32
623 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
624 #else
625 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
626 #endif
627 
628 #define ELF_CLASS   ELFCLASS64
629 #define ELF_ARCH    EM_SPARCV9
630 
631 #define STACK_BIAS              2047
632 
633 static inline void init_thread(struct target_pt_regs *regs,
634                                struct image_info *infop)
635 {
636 #ifndef TARGET_ABI32
637     regs->tstate = 0;
638 #endif
639     regs->pc = infop->entry;
640     regs->npc = regs->pc + 4;
641     regs->y = 0;
642 #ifdef TARGET_ABI32
643     regs->u_regs[14] = infop->start_stack - 16 * 4;
644 #else
645     if (personality(infop->personality) == PER_LINUX32)
646         regs->u_regs[14] = infop->start_stack - 16 * 4;
647     else
648         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
649 #endif
650 }
651 
652 #else
653 #define ELF_START_MMAP 0x80000000
654 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
655                     | HWCAP_SPARC_MULDIV)
656 
657 #define ELF_CLASS   ELFCLASS32
658 #define ELF_ARCH    EM_SPARC
659 
660 static inline void init_thread(struct target_pt_regs *regs,
661                                struct image_info *infop)
662 {
663     regs->psr = 0;
664     regs->pc = infop->entry;
665     regs->npc = regs->pc + 4;
666     regs->y = 0;
667     regs->u_regs[14] = infop->start_stack - 16 * 4;
668 }
669 
670 #endif
671 #endif
672 
673 #ifdef TARGET_PPC
674 
675 #define ELF_MACHINE    PPC_ELF_MACHINE
676 #define ELF_START_MMAP 0x80000000
677 
678 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
679 
680 #define elf_check_arch(x) ( (x) == EM_PPC64 )
681 
682 #define ELF_CLASS       ELFCLASS64
683 
684 #else
685 
686 #define ELF_CLASS       ELFCLASS32
687 
688 #endif
689 
690 #define ELF_ARCH        EM_PPC
691 
692 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
693    See arch/powerpc/include/asm/cputable.h.  */
694 enum {
695     QEMU_PPC_FEATURE_32 = 0x80000000,
696     QEMU_PPC_FEATURE_64 = 0x40000000,
697     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
698     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
699     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
700     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
701     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
702     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
703     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
704     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
705     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
706     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
707     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
708     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
709     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
710     QEMU_PPC_FEATURE_CELL = 0x00010000,
711     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
712     QEMU_PPC_FEATURE_SMT = 0x00004000,
713     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
714     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
715     QEMU_PPC_FEATURE_PA6T = 0x00000800,
716     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
717     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
718     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
719     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
720     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
721 
722     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
723     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
724 
725     /* Feature definitions in AT_HWCAP2.  */
726     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
727     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
728     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
729     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
730     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
731     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
732     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
733 };
734 
735 #define ELF_HWCAP get_elf_hwcap()
736 
737 static uint32_t get_elf_hwcap(void)
738 {
739     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
740     uint32_t features = 0;
741 
742     /* We don't have to be terribly complete here; the high points are
743        Altivec/FP/SPE support.  Anything else is just a bonus.  */
744 #define GET_FEATURE(flag, feature)                                      \
745     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
746 #define GET_FEATURE2(flags, feature) \
747     do { \
748         if ((cpu->env.insns_flags2 & flags) == flags) { \
749             features |= feature; \
750         } \
751     } while (0)
752     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
753     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
754     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
755     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
756     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
757     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
758     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
759     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
760     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
761     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
762     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
763                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
764                   QEMU_PPC_FEATURE_ARCH_2_06);
765 #undef GET_FEATURE
766 #undef GET_FEATURE2
767 
768     return features;
769 }
770 
771 #define ELF_HWCAP2 get_elf_hwcap2()
772 
773 static uint32_t get_elf_hwcap2(void)
774 {
775     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
776     uint32_t features = 0;
777 
778 #define GET_FEATURE(flag, feature)                                      \
779     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
780 #define GET_FEATURE2(flag, feature)                                      \
781     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
782 
783     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
784     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
785     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
786                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
787     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
788 
789 #undef GET_FEATURE
790 #undef GET_FEATURE2
791 
792     return features;
793 }
794 
795 /*
796  * The requirements here are:
797  * - keep the final alignment of sp (sp & 0xf)
798  * - make sure the 32-bit value at the first 16 byte aligned position of
799  *   AUXV is greater than 16 for glibc compatibility.
800  *   AT_IGNOREPPC is used for that.
801  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
802  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
803  */
804 #define DLINFO_ARCH_ITEMS       5
805 #define ARCH_DLINFO                                     \
806     do {                                                \
807         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
808         /*                                              \
809          * Handle glibc compatibility: these magic entries must \
810          * be at the lowest addresses in the final auxv.        \
811          */                                             \
812         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
813         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
814         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
815         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
816         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
817     } while (0)
818 
819 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
820 {
821     _regs->gpr[1] = infop->start_stack;
822 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
823     if (get_ppc64_abi(infop) < 2) {
824         uint64_t val;
825         get_user_u64(val, infop->entry + 8);
826         _regs->gpr[2] = val + infop->load_bias;
827         get_user_u64(val, infop->entry);
828         infop->entry = val + infop->load_bias;
829     } else {
830         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
831     }
832 #endif
833     _regs->nip = infop->entry;
834 }
835 
836 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
837 #define ELF_NREG 48
838 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
839 
840 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
841 {
842     int i;
843     target_ulong ccr = 0;
844 
845     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
846         (*regs)[i] = tswapreg(env->gpr[i]);
847     }
848 
849     (*regs)[32] = tswapreg(env->nip);
850     (*regs)[33] = tswapreg(env->msr);
851     (*regs)[35] = tswapreg(env->ctr);
852     (*regs)[36] = tswapreg(env->lr);
853     (*regs)[37] = tswapreg(env->xer);
854 
855     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
856         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
857     }
858     (*regs)[38] = tswapreg(ccr);
859 }
860 
861 #define USE_ELF_CORE_DUMP
862 #define ELF_EXEC_PAGESIZE       4096
863 
864 #endif
865 
866 #ifdef TARGET_MIPS
867 
868 #define ELF_START_MMAP 0x80000000
869 
870 #ifdef TARGET_MIPS64
871 #define ELF_CLASS   ELFCLASS64
872 #else
873 #define ELF_CLASS   ELFCLASS32
874 #endif
875 #define ELF_ARCH    EM_MIPS
876 
877 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
878 
879 static inline void init_thread(struct target_pt_regs *regs,
880                                struct image_info *infop)
881 {
882     regs->cp0_status = 2 << CP0St_KSU;
883     regs->cp0_epc = infop->entry;
884     regs->regs[29] = infop->start_stack;
885 }
886 
887 /* See linux kernel: arch/mips/include/asm/elf.h.  */
888 #define ELF_NREG 45
889 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
890 
891 /* See linux kernel: arch/mips/include/asm/reg.h.  */
892 enum {
893 #ifdef TARGET_MIPS64
894     TARGET_EF_R0 = 0,
895 #else
896     TARGET_EF_R0 = 6,
897 #endif
898     TARGET_EF_R26 = TARGET_EF_R0 + 26,
899     TARGET_EF_R27 = TARGET_EF_R0 + 27,
900     TARGET_EF_LO = TARGET_EF_R0 + 32,
901     TARGET_EF_HI = TARGET_EF_R0 + 33,
902     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
903     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
904     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
905     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
906 };
907 
908 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
909 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
910 {
911     int i;
912 
913     for (i = 0; i < TARGET_EF_R0; i++) {
914         (*regs)[i] = 0;
915     }
916     (*regs)[TARGET_EF_R0] = 0;
917 
918     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
919         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
920     }
921 
922     (*regs)[TARGET_EF_R26] = 0;
923     (*regs)[TARGET_EF_R27] = 0;
924     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
925     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
926     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
927     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
928     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
929     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
930 }
931 
932 #define USE_ELF_CORE_DUMP
933 #define ELF_EXEC_PAGESIZE        4096
934 
935 /* See arch/mips/include/uapi/asm/hwcap.h.  */
936 enum {
937     HWCAP_MIPS_R6           = (1 << 0),
938     HWCAP_MIPS_MSA          = (1 << 1),
939 };
940 
941 #define ELF_HWCAP get_elf_hwcap()
942 
943 static uint32_t get_elf_hwcap(void)
944 {
945     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
946     uint32_t hwcaps = 0;
947 
948 #define GET_FEATURE(flag, hwcap) \
949     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
950 
951     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
952     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
953 
954 #undef GET_FEATURE
955 
956     return hwcaps;
957 }
958 
959 #endif /* TARGET_MIPS */
960 
961 #ifdef TARGET_MICROBLAZE
962 
963 #define ELF_START_MMAP 0x80000000
964 
965 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
966 
967 #define ELF_CLASS   ELFCLASS32
968 #define ELF_ARCH    EM_MICROBLAZE
969 
970 static inline void init_thread(struct target_pt_regs *regs,
971                                struct image_info *infop)
972 {
973     regs->pc = infop->entry;
974     regs->r1 = infop->start_stack;
975 
976 }
977 
978 #define ELF_EXEC_PAGESIZE        4096
979 
980 #define USE_ELF_CORE_DUMP
981 #define ELF_NREG 38
982 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
983 
984 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
985 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
986 {
987     int i, pos = 0;
988 
989     for (i = 0; i < 32; i++) {
990         (*regs)[pos++] = tswapreg(env->regs[i]);
991     }
992 
993     for (i = 0; i < 6; i++) {
994         (*regs)[pos++] = tswapreg(env->sregs[i]);
995     }
996 }
997 
998 #endif /* TARGET_MICROBLAZE */
999 
1000 #ifdef TARGET_NIOS2
1001 
1002 #define ELF_START_MMAP 0x80000000
1003 
1004 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1005 
1006 #define ELF_CLASS   ELFCLASS32
1007 #define ELF_ARCH    EM_ALTERA_NIOS2
1008 
1009 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1010 {
1011     regs->ea = infop->entry;
1012     regs->sp = infop->start_stack;
1013     regs->estatus = 0x3;
1014 }
1015 
1016 #define ELF_EXEC_PAGESIZE        4096
1017 
1018 #define USE_ELF_CORE_DUMP
1019 #define ELF_NREG 49
1020 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1021 
1022 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1023 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1024                                const CPUNios2State *env)
1025 {
1026     int i;
1027 
1028     (*regs)[0] = -1;
1029     for (i = 1; i < 8; i++)    /* r0-r7 */
1030         (*regs)[i] = tswapreg(env->regs[i + 7]);
1031 
1032     for (i = 8; i < 16; i++)   /* r8-r15 */
1033         (*regs)[i] = tswapreg(env->regs[i - 8]);
1034 
1035     for (i = 16; i < 24; i++)  /* r16-r23 */
1036         (*regs)[i] = tswapreg(env->regs[i + 7]);
1037     (*regs)[24] = -1;    /* R_ET */
1038     (*regs)[25] = -1;    /* R_BT */
1039     (*regs)[26] = tswapreg(env->regs[R_GP]);
1040     (*regs)[27] = tswapreg(env->regs[R_SP]);
1041     (*regs)[28] = tswapreg(env->regs[R_FP]);
1042     (*regs)[29] = tswapreg(env->regs[R_EA]);
1043     (*regs)[30] = -1;    /* R_SSTATUS */
1044     (*regs)[31] = tswapreg(env->regs[R_RA]);
1045 
1046     (*regs)[32] = tswapreg(env->regs[R_PC]);
1047 
1048     (*regs)[33] = -1; /* R_STATUS */
1049     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1050 
1051     for (i = 35; i < 49; i++)    /* ... */
1052         (*regs)[i] = -1;
1053 }
1054 
1055 #endif /* TARGET_NIOS2 */
1056 
1057 #ifdef TARGET_OPENRISC
1058 
1059 #define ELF_START_MMAP 0x08000000
1060 
1061 #define ELF_ARCH EM_OPENRISC
1062 #define ELF_CLASS ELFCLASS32
1063 #define ELF_DATA  ELFDATA2MSB
1064 
1065 static inline void init_thread(struct target_pt_regs *regs,
1066                                struct image_info *infop)
1067 {
1068     regs->pc = infop->entry;
1069     regs->gpr[1] = infop->start_stack;
1070 }
1071 
1072 #define USE_ELF_CORE_DUMP
1073 #define ELF_EXEC_PAGESIZE 8192
1074 
1075 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1076 #define ELF_NREG 34 /* gprs and pc, sr */
1077 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1078 
1079 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1080                                const CPUOpenRISCState *env)
1081 {
1082     int i;
1083 
1084     for (i = 0; i < 32; i++) {
1085         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1086     }
1087     (*regs)[32] = tswapreg(env->pc);
1088     (*regs)[33] = tswapreg(cpu_get_sr(env));
1089 }
1090 #define ELF_HWCAP 0
1091 #define ELF_PLATFORM NULL
1092 
1093 #endif /* TARGET_OPENRISC */
1094 
1095 #ifdef TARGET_SH4
1096 
1097 #define ELF_START_MMAP 0x80000000
1098 
1099 #define ELF_CLASS ELFCLASS32
1100 #define ELF_ARCH  EM_SH
1101 
1102 static inline void init_thread(struct target_pt_regs *regs,
1103                                struct image_info *infop)
1104 {
1105     /* Check other registers XXXXX */
1106     regs->pc = infop->entry;
1107     regs->regs[15] = infop->start_stack;
1108 }
1109 
1110 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1111 #define ELF_NREG 23
1112 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1113 
1114 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1115 enum {
1116     TARGET_REG_PC = 16,
1117     TARGET_REG_PR = 17,
1118     TARGET_REG_SR = 18,
1119     TARGET_REG_GBR = 19,
1120     TARGET_REG_MACH = 20,
1121     TARGET_REG_MACL = 21,
1122     TARGET_REG_SYSCALL = 22
1123 };
1124 
1125 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1126                                       const CPUSH4State *env)
1127 {
1128     int i;
1129 
1130     for (i = 0; i < 16; i++) {
1131         (*regs)[i] = tswapreg(env->gregs[i]);
1132     }
1133 
1134     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1135     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1136     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1137     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1138     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1139     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1140     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1141 }
1142 
1143 #define USE_ELF_CORE_DUMP
1144 #define ELF_EXEC_PAGESIZE        4096
1145 
1146 enum {
1147     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1148     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1149     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1150     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1151     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1152     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1153     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1154     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1155     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1156     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1157 };
1158 
1159 #define ELF_HWCAP get_elf_hwcap()
1160 
1161 static uint32_t get_elf_hwcap(void)
1162 {
1163     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1164     uint32_t hwcap = 0;
1165 
1166     hwcap |= SH_CPU_HAS_FPU;
1167 
1168     if (cpu->env.features & SH_FEATURE_SH4A) {
1169         hwcap |= SH_CPU_HAS_LLSC;
1170     }
1171 
1172     return hwcap;
1173 }
1174 
1175 #endif
1176 
1177 #ifdef TARGET_CRIS
1178 
1179 #define ELF_START_MMAP 0x80000000
1180 
1181 #define ELF_CLASS ELFCLASS32
1182 #define ELF_ARCH  EM_CRIS
1183 
1184 static inline void init_thread(struct target_pt_regs *regs,
1185                                struct image_info *infop)
1186 {
1187     regs->erp = infop->entry;
1188 }
1189 
1190 #define ELF_EXEC_PAGESIZE        8192
1191 
1192 #endif
1193 
1194 #ifdef TARGET_M68K
1195 
1196 #define ELF_START_MMAP 0x80000000
1197 
1198 #define ELF_CLASS       ELFCLASS32
1199 #define ELF_ARCH        EM_68K
1200 
1201 /* ??? Does this need to do anything?
1202    #define ELF_PLAT_INIT(_r) */
1203 
1204 static inline void init_thread(struct target_pt_regs *regs,
1205                                struct image_info *infop)
1206 {
1207     regs->usp = infop->start_stack;
1208     regs->sr = 0;
1209     regs->pc = infop->entry;
1210 }
1211 
1212 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1213 #define ELF_NREG 20
1214 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1215 
1216 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1217 {
1218     (*regs)[0] = tswapreg(env->dregs[1]);
1219     (*regs)[1] = tswapreg(env->dregs[2]);
1220     (*regs)[2] = tswapreg(env->dregs[3]);
1221     (*regs)[3] = tswapreg(env->dregs[4]);
1222     (*regs)[4] = tswapreg(env->dregs[5]);
1223     (*regs)[5] = tswapreg(env->dregs[6]);
1224     (*regs)[6] = tswapreg(env->dregs[7]);
1225     (*regs)[7] = tswapreg(env->aregs[0]);
1226     (*regs)[8] = tswapreg(env->aregs[1]);
1227     (*regs)[9] = tswapreg(env->aregs[2]);
1228     (*regs)[10] = tswapreg(env->aregs[3]);
1229     (*regs)[11] = tswapreg(env->aregs[4]);
1230     (*regs)[12] = tswapreg(env->aregs[5]);
1231     (*regs)[13] = tswapreg(env->aregs[6]);
1232     (*regs)[14] = tswapreg(env->dregs[0]);
1233     (*regs)[15] = tswapreg(env->aregs[7]);
1234     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1235     (*regs)[17] = tswapreg(env->sr);
1236     (*regs)[18] = tswapreg(env->pc);
1237     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1238 }
1239 
1240 #define USE_ELF_CORE_DUMP
1241 #define ELF_EXEC_PAGESIZE       8192
1242 
1243 #endif
1244 
1245 #ifdef TARGET_ALPHA
1246 
1247 #define ELF_START_MMAP (0x30000000000ULL)
1248 
1249 #define ELF_CLASS      ELFCLASS64
1250 #define ELF_ARCH       EM_ALPHA
1251 
1252 static inline void init_thread(struct target_pt_regs *regs,
1253                                struct image_info *infop)
1254 {
1255     regs->pc = infop->entry;
1256     regs->ps = 8;
1257     regs->usp = infop->start_stack;
1258 }
1259 
1260 #define ELF_EXEC_PAGESIZE        8192
1261 
1262 #endif /* TARGET_ALPHA */
1263 
1264 #ifdef TARGET_S390X
1265 
1266 #define ELF_START_MMAP (0x20000000000ULL)
1267 
1268 #define ELF_CLASS	ELFCLASS64
1269 #define ELF_DATA	ELFDATA2MSB
1270 #define ELF_ARCH	EM_S390
1271 
1272 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1273 {
1274     regs->psw.addr = infop->entry;
1275     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1276     regs->gprs[15] = infop->start_stack;
1277 }
1278 
1279 #endif /* TARGET_S390X */
1280 
1281 #ifdef TARGET_TILEGX
1282 
1283 /* 42 bits real used address, a half for user mode */
1284 #define ELF_START_MMAP (0x00000020000000000ULL)
1285 
1286 #define elf_check_arch(x) ((x) == EM_TILEGX)
1287 
1288 #define ELF_CLASS   ELFCLASS64
1289 #define ELF_DATA    ELFDATA2LSB
1290 #define ELF_ARCH    EM_TILEGX
1291 
1292 static inline void init_thread(struct target_pt_regs *regs,
1293                                struct image_info *infop)
1294 {
1295     regs->pc = infop->entry;
1296     regs->sp = infop->start_stack;
1297 
1298 }
1299 
1300 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1301 
1302 #endif /* TARGET_TILEGX */
1303 
1304 #ifdef TARGET_RISCV
1305 
1306 #define ELF_START_MMAP 0x80000000
1307 #define ELF_ARCH  EM_RISCV
1308 
1309 #ifdef TARGET_RISCV32
1310 #define ELF_CLASS ELFCLASS32
1311 #else
1312 #define ELF_CLASS ELFCLASS64
1313 #endif
1314 
1315 static inline void init_thread(struct target_pt_regs *regs,
1316                                struct image_info *infop)
1317 {
1318     regs->sepc = infop->entry;
1319     regs->sp = infop->start_stack;
1320 }
1321 
1322 #define ELF_EXEC_PAGESIZE 4096
1323 
1324 #endif /* TARGET_RISCV */
1325 
1326 #ifdef TARGET_HPPA
1327 
1328 #define ELF_START_MMAP  0x80000000
1329 #define ELF_CLASS       ELFCLASS32
1330 #define ELF_ARCH        EM_PARISC
1331 #define ELF_PLATFORM    "PARISC"
1332 #define STACK_GROWS_DOWN 0
1333 #define STACK_ALIGNMENT  64
1334 
1335 static inline void init_thread(struct target_pt_regs *regs,
1336                                struct image_info *infop)
1337 {
1338     regs->iaoq[0] = infop->entry;
1339     regs->iaoq[1] = infop->entry + 4;
1340     regs->gr[23] = 0;
1341     regs->gr[24] = infop->arg_start;
1342     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1343     /* The top-of-stack contains a linkage buffer.  */
1344     regs->gr[30] = infop->start_stack + 64;
1345     regs->gr[31] = infop->entry;
1346 }
1347 
1348 #endif /* TARGET_HPPA */
1349 
1350 #ifdef TARGET_XTENSA
1351 
1352 #define ELF_START_MMAP 0x20000000
1353 
1354 #define ELF_CLASS       ELFCLASS32
1355 #define ELF_ARCH        EM_XTENSA
1356 
1357 static inline void init_thread(struct target_pt_regs *regs,
1358                                struct image_info *infop)
1359 {
1360     regs->windowbase = 0;
1361     regs->windowstart = 1;
1362     regs->areg[1] = infop->start_stack;
1363     regs->pc = infop->entry;
1364 }
1365 
1366 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1367 #define ELF_NREG 128
1368 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1369 
1370 enum {
1371     TARGET_REG_PC,
1372     TARGET_REG_PS,
1373     TARGET_REG_LBEG,
1374     TARGET_REG_LEND,
1375     TARGET_REG_LCOUNT,
1376     TARGET_REG_SAR,
1377     TARGET_REG_WINDOWSTART,
1378     TARGET_REG_WINDOWBASE,
1379     TARGET_REG_THREADPTR,
1380     TARGET_REG_AR0 = 64,
1381 };
1382 
1383 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1384                                const CPUXtensaState *env)
1385 {
1386     unsigned i;
1387 
1388     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1389     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1390     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1391     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1392     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1393     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1394     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1395     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1396     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1397     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1398     for (i = 0; i < env->config->nareg; ++i) {
1399         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1400     }
1401 }
1402 
1403 #define USE_ELF_CORE_DUMP
1404 #define ELF_EXEC_PAGESIZE       4096
1405 
1406 #endif /* TARGET_XTENSA */
1407 
1408 #ifndef ELF_PLATFORM
1409 #define ELF_PLATFORM (NULL)
1410 #endif
1411 
1412 #ifndef ELF_MACHINE
1413 #define ELF_MACHINE ELF_ARCH
1414 #endif
1415 
1416 #ifndef elf_check_arch
1417 #define elf_check_arch(x) ((x) == ELF_ARCH)
1418 #endif
1419 
1420 #ifndef ELF_HWCAP
1421 #define ELF_HWCAP 0
1422 #endif
1423 
1424 #ifndef STACK_GROWS_DOWN
1425 #define STACK_GROWS_DOWN 1
1426 #endif
1427 
1428 #ifndef STACK_ALIGNMENT
1429 #define STACK_ALIGNMENT 16
1430 #endif
1431 
1432 #ifdef TARGET_ABI32
1433 #undef ELF_CLASS
1434 #define ELF_CLASS ELFCLASS32
1435 #undef bswaptls
1436 #define bswaptls(ptr) bswap32s(ptr)
1437 #endif
1438 
1439 #include "elf.h"
1440 
1441 struct exec
1442 {
1443     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1444     unsigned int a_text;   /* length of text, in bytes */
1445     unsigned int a_data;   /* length of data, in bytes */
1446     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1447     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1448     unsigned int a_entry;  /* start address */
1449     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1450     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1451 };
1452 
1453 
1454 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1455 #define OMAGIC 0407
1456 #define NMAGIC 0410
1457 #define ZMAGIC 0413
1458 #define QMAGIC 0314
1459 
1460 /* Necessary parameters */
1461 #define TARGET_ELF_EXEC_PAGESIZE \
1462         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1463          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1464 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1465 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1466                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1467 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1468 
1469 #define DLINFO_ITEMS 15
1470 
1471 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1472 {
1473     memcpy(to, from, n);
1474 }
1475 
1476 #ifdef BSWAP_NEEDED
1477 static void bswap_ehdr(struct elfhdr *ehdr)
1478 {
1479     bswap16s(&ehdr->e_type);            /* Object file type */
1480     bswap16s(&ehdr->e_machine);         /* Architecture */
1481     bswap32s(&ehdr->e_version);         /* Object file version */
1482     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1483     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1484     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1485     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1486     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1487     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1488     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1489     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1490     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1491     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1492 }
1493 
1494 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1495 {
1496     int i;
1497     for (i = 0; i < phnum; ++i, ++phdr) {
1498         bswap32s(&phdr->p_type);        /* Segment type */
1499         bswap32s(&phdr->p_flags);       /* Segment flags */
1500         bswaptls(&phdr->p_offset);      /* Segment file offset */
1501         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1502         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1503         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1504         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1505         bswaptls(&phdr->p_align);       /* Segment alignment */
1506     }
1507 }
1508 
1509 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1510 {
1511     int i;
1512     for (i = 0; i < shnum; ++i, ++shdr) {
1513         bswap32s(&shdr->sh_name);
1514         bswap32s(&shdr->sh_type);
1515         bswaptls(&shdr->sh_flags);
1516         bswaptls(&shdr->sh_addr);
1517         bswaptls(&shdr->sh_offset);
1518         bswaptls(&shdr->sh_size);
1519         bswap32s(&shdr->sh_link);
1520         bswap32s(&shdr->sh_info);
1521         bswaptls(&shdr->sh_addralign);
1522         bswaptls(&shdr->sh_entsize);
1523     }
1524 }
1525 
1526 static void bswap_sym(struct elf_sym *sym)
1527 {
1528     bswap32s(&sym->st_name);
1529     bswaptls(&sym->st_value);
1530     bswaptls(&sym->st_size);
1531     bswap16s(&sym->st_shndx);
1532 }
1533 
1534 #ifdef TARGET_MIPS
1535 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1536 {
1537     bswap16s(&abiflags->version);
1538     bswap32s(&abiflags->ases);
1539     bswap32s(&abiflags->isa_ext);
1540     bswap32s(&abiflags->flags1);
1541     bswap32s(&abiflags->flags2);
1542 }
1543 #endif
1544 #else
1545 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1546 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1547 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1548 static inline void bswap_sym(struct elf_sym *sym) { }
1549 #ifdef TARGET_MIPS
1550 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1551 #endif
1552 #endif
1553 
1554 #ifdef USE_ELF_CORE_DUMP
1555 static int elf_core_dump(int, const CPUArchState *);
1556 #endif /* USE_ELF_CORE_DUMP */
1557 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1558 
1559 /* Verify the portions of EHDR within E_IDENT for the target.
1560    This can be performed before bswapping the entire header.  */
1561 static bool elf_check_ident(struct elfhdr *ehdr)
1562 {
1563     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1564             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1565             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1566             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1567             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1568             && ehdr->e_ident[EI_DATA] == ELF_DATA
1569             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1570 }
1571 
1572 /* Verify the portions of EHDR outside of E_IDENT for the target.
1573    This has to wait until after bswapping the header.  */
1574 static bool elf_check_ehdr(struct elfhdr *ehdr)
1575 {
1576     return (elf_check_arch(ehdr->e_machine)
1577             && ehdr->e_ehsize == sizeof(struct elfhdr)
1578             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1579             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1580 }
1581 
1582 /*
1583  * 'copy_elf_strings()' copies argument/envelope strings from user
1584  * memory to free pages in kernel mem. These are in a format ready
1585  * to be put directly into the top of new user memory.
1586  *
1587  */
1588 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1589                                   abi_ulong p, abi_ulong stack_limit)
1590 {
1591     char *tmp;
1592     int len, i;
1593     abi_ulong top = p;
1594 
1595     if (!p) {
1596         return 0;       /* bullet-proofing */
1597     }
1598 
1599     if (STACK_GROWS_DOWN) {
1600         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1601         for (i = argc - 1; i >= 0; --i) {
1602             tmp = argv[i];
1603             if (!tmp) {
1604                 fprintf(stderr, "VFS: argc is wrong");
1605                 exit(-1);
1606             }
1607             len = strlen(tmp) + 1;
1608             tmp += len;
1609 
1610             if (len > (p - stack_limit)) {
1611                 return 0;
1612             }
1613             while (len) {
1614                 int bytes_to_copy = (len > offset) ? offset : len;
1615                 tmp -= bytes_to_copy;
1616                 p -= bytes_to_copy;
1617                 offset -= bytes_to_copy;
1618                 len -= bytes_to_copy;
1619 
1620                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1621 
1622                 if (offset == 0) {
1623                     memcpy_to_target(p, scratch, top - p);
1624                     top = p;
1625                     offset = TARGET_PAGE_SIZE;
1626                 }
1627             }
1628         }
1629         if (p != top) {
1630             memcpy_to_target(p, scratch + offset, top - p);
1631         }
1632     } else {
1633         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1634         for (i = 0; i < argc; ++i) {
1635             tmp = argv[i];
1636             if (!tmp) {
1637                 fprintf(stderr, "VFS: argc is wrong");
1638                 exit(-1);
1639             }
1640             len = strlen(tmp) + 1;
1641             if (len > (stack_limit - p)) {
1642                 return 0;
1643             }
1644             while (len) {
1645                 int bytes_to_copy = (len > remaining) ? remaining : len;
1646 
1647                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1648 
1649                 tmp += bytes_to_copy;
1650                 remaining -= bytes_to_copy;
1651                 p += bytes_to_copy;
1652                 len -= bytes_to_copy;
1653 
1654                 if (remaining == 0) {
1655                     memcpy_to_target(top, scratch, p - top);
1656                     top = p;
1657                     remaining = TARGET_PAGE_SIZE;
1658                 }
1659             }
1660         }
1661         if (p != top) {
1662             memcpy_to_target(top, scratch, p - top);
1663         }
1664     }
1665 
1666     return p;
1667 }
1668 
1669 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1670  * argument/environment space. Newer kernels (>2.6.33) allow more,
1671  * dependent on stack size, but guarantee at least 32 pages for
1672  * backwards compatibility.
1673  */
1674 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1675 
1676 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1677                                  struct image_info *info)
1678 {
1679     abi_ulong size, error, guard;
1680 
1681     size = guest_stack_size;
1682     if (size < STACK_LOWER_LIMIT) {
1683         size = STACK_LOWER_LIMIT;
1684     }
1685     guard = TARGET_PAGE_SIZE;
1686     if (guard < qemu_real_host_page_size) {
1687         guard = qemu_real_host_page_size;
1688     }
1689 
1690     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1691                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1692     if (error == -1) {
1693         perror("mmap stack");
1694         exit(-1);
1695     }
1696 
1697     /* We reserve one extra page at the top of the stack as guard.  */
1698     if (STACK_GROWS_DOWN) {
1699         target_mprotect(error, guard, PROT_NONE);
1700         info->stack_limit = error + guard;
1701         return info->stack_limit + size - sizeof(void *);
1702     } else {
1703         target_mprotect(error + size, guard, PROT_NONE);
1704         info->stack_limit = error + size;
1705         return error;
1706     }
1707 }
1708 
1709 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1710    after the data section (i.e. bss).  */
1711 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1712 {
1713     uintptr_t host_start, host_map_start, host_end;
1714 
1715     last_bss = TARGET_PAGE_ALIGN(last_bss);
1716 
1717     /* ??? There is confusion between qemu_real_host_page_size and
1718        qemu_host_page_size here and elsewhere in target_mmap, which
1719        may lead to the end of the data section mapping from the file
1720        not being mapped.  At least there was an explicit test and
1721        comment for that here, suggesting that "the file size must
1722        be known".  The comment probably pre-dates the introduction
1723        of the fstat system call in target_mmap which does in fact
1724        find out the size.  What isn't clear is if the workaround
1725        here is still actually needed.  For now, continue with it,
1726        but merge it with the "normal" mmap that would allocate the bss.  */
1727 
1728     host_start = (uintptr_t) g2h(elf_bss);
1729     host_end = (uintptr_t) g2h(last_bss);
1730     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1731 
1732     if (host_map_start < host_end) {
1733         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1734                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1735         if (p == MAP_FAILED) {
1736             perror("cannot mmap brk");
1737             exit(-1);
1738         }
1739     }
1740 
1741     /* Ensure that the bss page(s) are valid */
1742     if ((page_get_flags(last_bss-1) & prot) != prot) {
1743         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1744     }
1745 
1746     if (host_start < host_map_start) {
1747         memset((void *)host_start, 0, host_map_start - host_start);
1748     }
1749 }
1750 
1751 #ifdef TARGET_ARM
1752 static int elf_is_fdpic(struct elfhdr *exec)
1753 {
1754     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1755 }
1756 #else
1757 /* Default implementation, always false.  */
1758 static int elf_is_fdpic(struct elfhdr *exec)
1759 {
1760     return 0;
1761 }
1762 #endif
1763 
1764 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1765 {
1766     uint16_t n;
1767     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1768 
1769     /* elf32_fdpic_loadseg */
1770     n = info->nsegs;
1771     while (n--) {
1772         sp -= 12;
1773         put_user_u32(loadsegs[n].addr, sp+0);
1774         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1775         put_user_u32(loadsegs[n].p_memsz, sp+8);
1776     }
1777 
1778     /* elf32_fdpic_loadmap */
1779     sp -= 4;
1780     put_user_u16(0, sp+0); /* version */
1781     put_user_u16(info->nsegs, sp+2); /* nsegs */
1782 
1783     info->personality = PER_LINUX_FDPIC;
1784     info->loadmap_addr = sp;
1785 
1786     return sp;
1787 }
1788 
1789 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1790                                    struct elfhdr *exec,
1791                                    struct image_info *info,
1792                                    struct image_info *interp_info)
1793 {
1794     abi_ulong sp;
1795     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1796     int size;
1797     int i;
1798     abi_ulong u_rand_bytes;
1799     uint8_t k_rand_bytes[16];
1800     abi_ulong u_platform;
1801     const char *k_platform;
1802     const int n = sizeof(elf_addr_t);
1803 
1804     sp = p;
1805 
1806     /* Needs to be before we load the env/argc/... */
1807     if (elf_is_fdpic(exec)) {
1808         /* Need 4 byte alignment for these structs */
1809         sp &= ~3;
1810         sp = loader_build_fdpic_loadmap(info, sp);
1811         info->other_info = interp_info;
1812         if (interp_info) {
1813             interp_info->other_info = info;
1814             sp = loader_build_fdpic_loadmap(interp_info, sp);
1815             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1816             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1817         } else {
1818             info->interpreter_loadmap_addr = 0;
1819             info->interpreter_pt_dynamic_addr = 0;
1820         }
1821     }
1822 
1823     u_platform = 0;
1824     k_platform = ELF_PLATFORM;
1825     if (k_platform) {
1826         size_t len = strlen(k_platform) + 1;
1827         if (STACK_GROWS_DOWN) {
1828             sp -= (len + n - 1) & ~(n - 1);
1829             u_platform = sp;
1830             /* FIXME - check return value of memcpy_to_target() for failure */
1831             memcpy_to_target(sp, k_platform, len);
1832         } else {
1833             memcpy_to_target(sp, k_platform, len);
1834             u_platform = sp;
1835             sp += len + 1;
1836         }
1837     }
1838 
1839     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1840      * the argv and envp pointers.
1841      */
1842     if (STACK_GROWS_DOWN) {
1843         sp = QEMU_ALIGN_DOWN(sp, 16);
1844     } else {
1845         sp = QEMU_ALIGN_UP(sp, 16);
1846     }
1847 
1848     /*
1849      * Generate 16 random bytes for userspace PRNG seeding (not
1850      * cryptically secure but it's not the aim of QEMU).
1851      */
1852     for (i = 0; i < 16; i++) {
1853         k_rand_bytes[i] = rand();
1854     }
1855     if (STACK_GROWS_DOWN) {
1856         sp -= 16;
1857         u_rand_bytes = sp;
1858         /* FIXME - check return value of memcpy_to_target() for failure */
1859         memcpy_to_target(sp, k_rand_bytes, 16);
1860     } else {
1861         memcpy_to_target(sp, k_rand_bytes, 16);
1862         u_rand_bytes = sp;
1863         sp += 16;
1864     }
1865 
1866     size = (DLINFO_ITEMS + 1) * 2;
1867     if (k_platform)
1868         size += 2;
1869 #ifdef DLINFO_ARCH_ITEMS
1870     size += DLINFO_ARCH_ITEMS * 2;
1871 #endif
1872 #ifdef ELF_HWCAP2
1873     size += 2;
1874 #endif
1875     info->auxv_len = size * n;
1876 
1877     size += envc + argc + 2;
1878     size += 1;  /* argc itself */
1879     size *= n;
1880 
1881     /* Allocate space and finalize stack alignment for entry now.  */
1882     if (STACK_GROWS_DOWN) {
1883         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1884         sp = u_argc;
1885     } else {
1886         u_argc = sp;
1887         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1888     }
1889 
1890     u_argv = u_argc + n;
1891     u_envp = u_argv + (argc + 1) * n;
1892     u_auxv = u_envp + (envc + 1) * n;
1893     info->saved_auxv = u_auxv;
1894     info->arg_start = u_argv;
1895     info->arg_end = u_argv + argc * n;
1896 
1897     /* This is correct because Linux defines
1898      * elf_addr_t as Elf32_Off / Elf64_Off
1899      */
1900 #define NEW_AUX_ENT(id, val) do {               \
1901         put_user_ual(id, u_auxv);  u_auxv += n; \
1902         put_user_ual(val, u_auxv); u_auxv += n; \
1903     } while(0)
1904 
1905 #ifdef ARCH_DLINFO
1906     /*
1907      * ARCH_DLINFO must come first so platform specific code can enforce
1908      * special alignment requirements on the AUXV if necessary (eg. PPC).
1909      */
1910     ARCH_DLINFO;
1911 #endif
1912     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1913      * on info->auxv_len will trigger.
1914      */
1915     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1916     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1917     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1918     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1919         /* Target doesn't support host page size alignment */
1920         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1921     } else {
1922         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1923                                                qemu_host_page_size)));
1924     }
1925     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1926     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1927     NEW_AUX_ENT(AT_ENTRY, info->entry);
1928     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1929     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1930     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1931     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1932     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1933     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1934     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1935     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1936 
1937 #ifdef ELF_HWCAP2
1938     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1939 #endif
1940 
1941     if (u_platform) {
1942         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1943     }
1944     NEW_AUX_ENT (AT_NULL, 0);
1945 #undef NEW_AUX_ENT
1946 
1947     /* Check that our initial calculation of the auxv length matches how much
1948      * we actually put into it.
1949      */
1950     assert(info->auxv_len == u_auxv - info->saved_auxv);
1951 
1952     put_user_ual(argc, u_argc);
1953 
1954     p = info->arg_strings;
1955     for (i = 0; i < argc; ++i) {
1956         put_user_ual(p, u_argv);
1957         u_argv += n;
1958         p += target_strlen(p) + 1;
1959     }
1960     put_user_ual(0, u_argv);
1961 
1962     p = info->env_strings;
1963     for (i = 0; i < envc; ++i) {
1964         put_user_ual(p, u_envp);
1965         u_envp += n;
1966         p += target_strlen(p) + 1;
1967     }
1968     put_user_ual(0, u_envp);
1969 
1970     return sp;
1971 }
1972 
1973 unsigned long init_guest_space(unsigned long host_start,
1974                                unsigned long host_size,
1975                                unsigned long guest_start,
1976                                bool fixed)
1977 {
1978     unsigned long current_start, aligned_start;
1979     int flags;
1980 
1981     assert(host_start || host_size);
1982 
1983     /* If just a starting address is given, then just verify that
1984      * address.  */
1985     if (host_start && !host_size) {
1986 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1987         if (init_guest_commpage(host_start, host_size) != 1) {
1988             return (unsigned long)-1;
1989         }
1990 #endif
1991         return host_start;
1992     }
1993 
1994     /* Setup the initial flags and start address.  */
1995     current_start = host_start & qemu_host_page_mask;
1996     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1997     if (fixed) {
1998         flags |= MAP_FIXED;
1999     }
2000 
2001     /* Otherwise, a non-zero size region of memory needs to be mapped
2002      * and validated.  */
2003 
2004 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2005     /* On 32-bit ARM, we need to map not just the usable memory, but
2006      * also the commpage.  Try to find a suitable place by allocating
2007      * a big chunk for all of it.  If host_start, then the naive
2008      * strategy probably does good enough.
2009      */
2010     if (!host_start) {
2011         unsigned long guest_full_size, host_full_size, real_start;
2012 
2013         guest_full_size =
2014             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2015         host_full_size = guest_full_size - guest_start;
2016         real_start = (unsigned long)
2017             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2018         if (real_start == (unsigned long)-1) {
2019             if (host_size < host_full_size - qemu_host_page_size) {
2020                 /* We failed to map a continous segment, but we're
2021                  * allowed to have a gap between the usable memory and
2022                  * the commpage where other things can be mapped.
2023                  * This sparseness gives us more flexibility to find
2024                  * an address range.
2025                  */
2026                 goto naive;
2027             }
2028             return (unsigned long)-1;
2029         }
2030         munmap((void *)real_start, host_full_size);
2031         if (real_start & ~qemu_host_page_mask) {
2032             /* The same thing again, but with an extra qemu_host_page_size
2033              * so that we can shift around alignment.
2034              */
2035             unsigned long real_size = host_full_size + qemu_host_page_size;
2036             real_start = (unsigned long)
2037                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2038             if (real_start == (unsigned long)-1) {
2039                 if (host_size < host_full_size - qemu_host_page_size) {
2040                     goto naive;
2041                 }
2042                 return (unsigned long)-1;
2043             }
2044             munmap((void *)real_start, real_size);
2045             real_start = HOST_PAGE_ALIGN(real_start);
2046         }
2047         current_start = real_start;
2048     }
2049  naive:
2050 #endif
2051 
2052     while (1) {
2053         unsigned long real_start, real_size, aligned_size;
2054         aligned_size = real_size = host_size;
2055 
2056         /* Do not use mmap_find_vma here because that is limited to the
2057          * guest address space.  We are going to make the
2058          * guest address space fit whatever we're given.
2059          */
2060         real_start = (unsigned long)
2061             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2062         if (real_start == (unsigned long)-1) {
2063             return (unsigned long)-1;
2064         }
2065 
2066         /* Check to see if the address is valid.  */
2067         if (host_start && real_start != current_start) {
2068             goto try_again;
2069         }
2070 
2071         /* Ensure the address is properly aligned.  */
2072         if (real_start & ~qemu_host_page_mask) {
2073             /* Ideally, we adjust like
2074              *
2075              *    pages: [  ][  ][  ][  ][  ]
2076              *      old:   [   real   ]
2077              *             [ aligned  ]
2078              *      new:   [     real     ]
2079              *               [ aligned  ]
2080              *
2081              * But if there is something else mapped right after it,
2082              * then obviously it won't have room to grow, and the
2083              * kernel will put the new larger real someplace else with
2084              * unknown alignment (if we made it to here, then
2085              * fixed=false).  Which is why we grow real by a full page
2086              * size, instead of by part of one; so that even if we get
2087              * moved, we can still guarantee alignment.  But this does
2088              * mean that there is a padding of < 1 page both before
2089              * and after the aligned range; the "after" could could
2090              * cause problems for ARM emulation where it could butt in
2091              * to where we need to put the commpage.
2092              */
2093             munmap((void *)real_start, host_size);
2094             real_size = aligned_size + qemu_host_page_size;
2095             real_start = (unsigned long)
2096                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2097             if (real_start == (unsigned long)-1) {
2098                 return (unsigned long)-1;
2099             }
2100             aligned_start = HOST_PAGE_ALIGN(real_start);
2101         } else {
2102             aligned_start = real_start;
2103         }
2104 
2105 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2106         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2107         int valid = init_guest_commpage(aligned_start - guest_start,
2108                                         aligned_size + guest_start);
2109         if (valid == -1) {
2110             munmap((void *)real_start, real_size);
2111             return (unsigned long)-1;
2112         } else if (valid == 0) {
2113             goto try_again;
2114         }
2115 #endif
2116 
2117         /* If nothing has said `return -1` or `goto try_again` yet,
2118          * then the address we have is good.
2119          */
2120         break;
2121 
2122     try_again:
2123         /* That address didn't work.  Unmap and try a different one.
2124          * The address the host picked because is typically right at
2125          * the top of the host address space and leaves the guest with
2126          * no usable address space.  Resort to a linear search.  We
2127          * already compensated for mmap_min_addr, so this should not
2128          * happen often.  Probably means we got unlucky and host
2129          * address space randomization put a shared library somewhere
2130          * inconvenient.
2131          *
2132          * This is probably a good strategy if host_start, but is
2133          * probably a bad strategy if not, which means we got here
2134          * because of trouble with ARM commpage setup.
2135          */
2136         munmap((void *)real_start, real_size);
2137         current_start += qemu_host_page_size;
2138         if (host_start == current_start) {
2139             /* Theoretically possible if host doesn't have any suitably
2140              * aligned areas.  Normally the first mmap will fail.
2141              */
2142             return (unsigned long)-1;
2143         }
2144     }
2145 
2146     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2147 
2148     return aligned_start;
2149 }
2150 
2151 static void probe_guest_base(const char *image_name,
2152                              abi_ulong loaddr, abi_ulong hiaddr)
2153 {
2154     /* Probe for a suitable guest base address, if the user has not set
2155      * it explicitly, and set guest_base appropriately.
2156      * In case of error we will print a suitable message and exit.
2157      */
2158     const char *errmsg;
2159     if (!have_guest_base && !reserved_va) {
2160         unsigned long host_start, real_start, host_size;
2161 
2162         /* Round addresses to page boundaries.  */
2163         loaddr &= qemu_host_page_mask;
2164         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2165 
2166         if (loaddr < mmap_min_addr) {
2167             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2168         } else {
2169             host_start = loaddr;
2170             if (host_start != loaddr) {
2171                 errmsg = "Address overflow loading ELF binary";
2172                 goto exit_errmsg;
2173             }
2174         }
2175         host_size = hiaddr - loaddr;
2176 
2177         /* Setup the initial guest memory space with ranges gleaned from
2178          * the ELF image that is being loaded.
2179          */
2180         real_start = init_guest_space(host_start, host_size, loaddr, false);
2181         if (real_start == (unsigned long)-1) {
2182             errmsg = "Unable to find space for application";
2183             goto exit_errmsg;
2184         }
2185         guest_base = real_start - loaddr;
2186 
2187         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2188                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2189                       loaddr, real_start);
2190     }
2191     return;
2192 
2193 exit_errmsg:
2194     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2195     exit(-1);
2196 }
2197 
2198 
2199 /* Load an ELF image into the address space.
2200 
2201    IMAGE_NAME is the filename of the image, to use in error messages.
2202    IMAGE_FD is the open file descriptor for the image.
2203 
2204    BPRM_BUF is a copy of the beginning of the file; this of course
2205    contains the elf file header at offset 0.  It is assumed that this
2206    buffer is sufficiently aligned to present no problems to the host
2207    in accessing data at aligned offsets within the buffer.
2208 
2209    On return: INFO values will be filled in, as necessary or available.  */
2210 
2211 static void load_elf_image(const char *image_name, int image_fd,
2212                            struct image_info *info, char **pinterp_name,
2213                            char bprm_buf[BPRM_BUF_SIZE])
2214 {
2215     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2216     struct elf_phdr *phdr;
2217     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2218     int i, retval;
2219     const char *errmsg;
2220 
2221     /* First of all, some simple consistency checks */
2222     errmsg = "Invalid ELF image for this architecture";
2223     if (!elf_check_ident(ehdr)) {
2224         goto exit_errmsg;
2225     }
2226     bswap_ehdr(ehdr);
2227     if (!elf_check_ehdr(ehdr)) {
2228         goto exit_errmsg;
2229     }
2230 
2231     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2232     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2233         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2234     } else {
2235         phdr = (struct elf_phdr *) alloca(i);
2236         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2237         if (retval != i) {
2238             goto exit_read;
2239         }
2240     }
2241     bswap_phdr(phdr, ehdr->e_phnum);
2242 
2243     info->nsegs = 0;
2244     info->pt_dynamic_addr = 0;
2245 
2246     mmap_lock();
2247 
2248     /* Find the maximum size of the image and allocate an appropriate
2249        amount of memory to handle that.  */
2250     loaddr = -1, hiaddr = 0;
2251     info->alignment = 0;
2252     for (i = 0; i < ehdr->e_phnum; ++i) {
2253         if (phdr[i].p_type == PT_LOAD) {
2254             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2255             if (a < loaddr) {
2256                 loaddr = a;
2257             }
2258             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2259             if (a > hiaddr) {
2260                 hiaddr = a;
2261             }
2262             ++info->nsegs;
2263             info->alignment |= phdr[i].p_align;
2264         }
2265     }
2266 
2267     load_addr = loaddr;
2268     if (ehdr->e_type == ET_DYN) {
2269         /* The image indicates that it can be loaded anywhere.  Find a
2270            location that can hold the memory space required.  If the
2271            image is pre-linked, LOADDR will be non-zero.  Since we do
2272            not supply MAP_FIXED here we'll use that address if and
2273            only if it remains available.  */
2274         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2275                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2276                                 -1, 0);
2277         if (load_addr == -1) {
2278             goto exit_perror;
2279         }
2280     } else if (pinterp_name != NULL) {
2281         /* This is the main executable.  Make sure that the low
2282            address does not conflict with MMAP_MIN_ADDR or the
2283            QEMU application itself.  */
2284         probe_guest_base(image_name, loaddr, hiaddr);
2285     }
2286     load_bias = load_addr - loaddr;
2287 
2288     if (elf_is_fdpic(ehdr)) {
2289         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2290             g_malloc(sizeof(*loadsegs) * info->nsegs);
2291 
2292         for (i = 0; i < ehdr->e_phnum; ++i) {
2293             switch (phdr[i].p_type) {
2294             case PT_DYNAMIC:
2295                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2296                 break;
2297             case PT_LOAD:
2298                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2299                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2300                 loadsegs->p_memsz = phdr[i].p_memsz;
2301                 ++loadsegs;
2302                 break;
2303             }
2304         }
2305     }
2306 
2307     info->load_bias = load_bias;
2308     info->load_addr = load_addr;
2309     info->entry = ehdr->e_entry + load_bias;
2310     info->start_code = -1;
2311     info->end_code = 0;
2312     info->start_data = -1;
2313     info->end_data = 0;
2314     info->brk = 0;
2315     info->elf_flags = ehdr->e_flags;
2316 
2317     for (i = 0; i < ehdr->e_phnum; i++) {
2318         struct elf_phdr *eppnt = phdr + i;
2319         if (eppnt->p_type == PT_LOAD) {
2320             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2321             int elf_prot = 0;
2322 
2323             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2324             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2325             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2326 
2327             vaddr = load_bias + eppnt->p_vaddr;
2328             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2329             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2330             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2331 
2332             error = target_mmap(vaddr_ps, vaddr_len,
2333                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2334                                 image_fd, eppnt->p_offset - vaddr_po);
2335             if (error == -1) {
2336                 goto exit_perror;
2337             }
2338 
2339             vaddr_ef = vaddr + eppnt->p_filesz;
2340             vaddr_em = vaddr + eppnt->p_memsz;
2341 
2342             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2343             if (vaddr_ef < vaddr_em) {
2344                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2345             }
2346 
2347             /* Find the full program boundaries.  */
2348             if (elf_prot & PROT_EXEC) {
2349                 if (vaddr < info->start_code) {
2350                     info->start_code = vaddr;
2351                 }
2352                 if (vaddr_ef > info->end_code) {
2353                     info->end_code = vaddr_ef;
2354                 }
2355             }
2356             if (elf_prot & PROT_WRITE) {
2357                 if (vaddr < info->start_data) {
2358                     info->start_data = vaddr;
2359                 }
2360                 if (vaddr_ef > info->end_data) {
2361                     info->end_data = vaddr_ef;
2362                 }
2363                 if (vaddr_em > info->brk) {
2364                     info->brk = vaddr_em;
2365                 }
2366             }
2367         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2368             char *interp_name;
2369 
2370             if (*pinterp_name) {
2371                 errmsg = "Multiple PT_INTERP entries";
2372                 goto exit_errmsg;
2373             }
2374             interp_name = malloc(eppnt->p_filesz);
2375             if (!interp_name) {
2376                 goto exit_perror;
2377             }
2378 
2379             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2380                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2381                        eppnt->p_filesz);
2382             } else {
2383                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2384                                eppnt->p_offset);
2385                 if (retval != eppnt->p_filesz) {
2386                     goto exit_perror;
2387                 }
2388             }
2389             if (interp_name[eppnt->p_filesz - 1] != 0) {
2390                 errmsg = "Invalid PT_INTERP entry";
2391                 goto exit_errmsg;
2392             }
2393             *pinterp_name = interp_name;
2394 #ifdef TARGET_MIPS
2395         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2396             Mips_elf_abiflags_v0 abiflags;
2397             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2398                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2399                 goto exit_errmsg;
2400             }
2401             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2402                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2403                        sizeof(Mips_elf_abiflags_v0));
2404             } else {
2405                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2406                                eppnt->p_offset);
2407                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2408                     goto exit_perror;
2409                 }
2410             }
2411             bswap_mips_abiflags(&abiflags);
2412             info->fp_abi = abiflags.fp_abi;
2413 #endif
2414         }
2415     }
2416 
2417     if (info->end_data == 0) {
2418         info->start_data = info->end_code;
2419         info->end_data = info->end_code;
2420         info->brk = info->end_code;
2421     }
2422 
2423     if (qemu_log_enabled()) {
2424         load_symbols(ehdr, image_fd, load_bias);
2425     }
2426 
2427     mmap_unlock();
2428 
2429     close(image_fd);
2430     return;
2431 
2432  exit_read:
2433     if (retval >= 0) {
2434         errmsg = "Incomplete read of file header";
2435         goto exit_errmsg;
2436     }
2437  exit_perror:
2438     errmsg = strerror(errno);
2439  exit_errmsg:
2440     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2441     exit(-1);
2442 }
2443 
2444 static void load_elf_interp(const char *filename, struct image_info *info,
2445                             char bprm_buf[BPRM_BUF_SIZE])
2446 {
2447     int fd, retval;
2448 
2449     fd = open(path(filename), O_RDONLY);
2450     if (fd < 0) {
2451         goto exit_perror;
2452     }
2453 
2454     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2455     if (retval < 0) {
2456         goto exit_perror;
2457     }
2458     if (retval < BPRM_BUF_SIZE) {
2459         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2460     }
2461 
2462     load_elf_image(filename, fd, info, NULL, bprm_buf);
2463     return;
2464 
2465  exit_perror:
2466     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2467     exit(-1);
2468 }
2469 
2470 static int symfind(const void *s0, const void *s1)
2471 {
2472     target_ulong addr = *(target_ulong *)s0;
2473     struct elf_sym *sym = (struct elf_sym *)s1;
2474     int result = 0;
2475     if (addr < sym->st_value) {
2476         result = -1;
2477     } else if (addr >= sym->st_value + sym->st_size) {
2478         result = 1;
2479     }
2480     return result;
2481 }
2482 
2483 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2484 {
2485 #if ELF_CLASS == ELFCLASS32
2486     struct elf_sym *syms = s->disas_symtab.elf32;
2487 #else
2488     struct elf_sym *syms = s->disas_symtab.elf64;
2489 #endif
2490 
2491     // binary search
2492     struct elf_sym *sym;
2493 
2494     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2495     if (sym != NULL) {
2496         return s->disas_strtab + sym->st_name;
2497     }
2498 
2499     return "";
2500 }
2501 
2502 /* FIXME: This should use elf_ops.h  */
2503 static int symcmp(const void *s0, const void *s1)
2504 {
2505     struct elf_sym *sym0 = (struct elf_sym *)s0;
2506     struct elf_sym *sym1 = (struct elf_sym *)s1;
2507     return (sym0->st_value < sym1->st_value)
2508         ? -1
2509         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2510 }
2511 
2512 /* Best attempt to load symbols from this ELF object. */
2513 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2514 {
2515     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2516     uint64_t segsz;
2517     struct elf_shdr *shdr;
2518     char *strings = NULL;
2519     struct syminfo *s = NULL;
2520     struct elf_sym *new_syms, *syms = NULL;
2521 
2522     shnum = hdr->e_shnum;
2523     i = shnum * sizeof(struct elf_shdr);
2524     shdr = (struct elf_shdr *)alloca(i);
2525     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2526         return;
2527     }
2528 
2529     bswap_shdr(shdr, shnum);
2530     for (i = 0; i < shnum; ++i) {
2531         if (shdr[i].sh_type == SHT_SYMTAB) {
2532             sym_idx = i;
2533             str_idx = shdr[i].sh_link;
2534             goto found;
2535         }
2536     }
2537 
2538     /* There will be no symbol table if the file was stripped.  */
2539     return;
2540 
2541  found:
2542     /* Now know where the strtab and symtab are.  Snarf them.  */
2543     s = g_try_new(struct syminfo, 1);
2544     if (!s) {
2545         goto give_up;
2546     }
2547 
2548     segsz = shdr[str_idx].sh_size;
2549     s->disas_strtab = strings = g_try_malloc(segsz);
2550     if (!strings ||
2551         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2552         goto give_up;
2553     }
2554 
2555     segsz = shdr[sym_idx].sh_size;
2556     syms = g_try_malloc(segsz);
2557     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2558         goto give_up;
2559     }
2560 
2561     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2562         /* Implausibly large symbol table: give up rather than ploughing
2563          * on with the number of symbols calculation overflowing
2564          */
2565         goto give_up;
2566     }
2567     nsyms = segsz / sizeof(struct elf_sym);
2568     for (i = 0; i < nsyms; ) {
2569         bswap_sym(syms + i);
2570         /* Throw away entries which we do not need.  */
2571         if (syms[i].st_shndx == SHN_UNDEF
2572             || syms[i].st_shndx >= SHN_LORESERVE
2573             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2574             if (i < --nsyms) {
2575                 syms[i] = syms[nsyms];
2576             }
2577         } else {
2578 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2579             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2580             syms[i].st_value &= ~(target_ulong)1;
2581 #endif
2582             syms[i].st_value += load_bias;
2583             i++;
2584         }
2585     }
2586 
2587     /* No "useful" symbol.  */
2588     if (nsyms == 0) {
2589         goto give_up;
2590     }
2591 
2592     /* Attempt to free the storage associated with the local symbols
2593        that we threw away.  Whether or not this has any effect on the
2594        memory allocation depends on the malloc implementation and how
2595        many symbols we managed to discard.  */
2596     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2597     if (new_syms == NULL) {
2598         goto give_up;
2599     }
2600     syms = new_syms;
2601 
2602     qsort(syms, nsyms, sizeof(*syms), symcmp);
2603 
2604     s->disas_num_syms = nsyms;
2605 #if ELF_CLASS == ELFCLASS32
2606     s->disas_symtab.elf32 = syms;
2607 #else
2608     s->disas_symtab.elf64 = syms;
2609 #endif
2610     s->lookup_symbol = lookup_symbolxx;
2611     s->next = syminfos;
2612     syminfos = s;
2613 
2614     return;
2615 
2616 give_up:
2617     g_free(s);
2618     g_free(strings);
2619     g_free(syms);
2620 }
2621 
2622 uint32_t get_elf_eflags(int fd)
2623 {
2624     struct elfhdr ehdr;
2625     off_t offset;
2626     int ret;
2627 
2628     /* Read ELF header */
2629     offset = lseek(fd, 0, SEEK_SET);
2630     if (offset == (off_t) -1) {
2631         return 0;
2632     }
2633     ret = read(fd, &ehdr, sizeof(ehdr));
2634     if (ret < sizeof(ehdr)) {
2635         return 0;
2636     }
2637     offset = lseek(fd, offset, SEEK_SET);
2638     if (offset == (off_t) -1) {
2639         return 0;
2640     }
2641 
2642     /* Check ELF signature */
2643     if (!elf_check_ident(&ehdr)) {
2644         return 0;
2645     }
2646 
2647     /* check header */
2648     bswap_ehdr(&ehdr);
2649     if (!elf_check_ehdr(&ehdr)) {
2650         return 0;
2651     }
2652 
2653     /* return architecture id */
2654     return ehdr.e_flags;
2655 }
2656 
2657 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2658 {
2659     struct image_info interp_info;
2660     struct elfhdr elf_ex;
2661     char *elf_interpreter = NULL;
2662     char *scratch;
2663 
2664     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2665 
2666     load_elf_image(bprm->filename, bprm->fd, info,
2667                    &elf_interpreter, bprm->buf);
2668 
2669     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2670        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2671        when we load the interpreter.  */
2672     elf_ex = *(struct elfhdr *)bprm->buf;
2673 
2674     /* Do this so that we can load the interpreter, if need be.  We will
2675        change some of these later */
2676     bprm->p = setup_arg_pages(bprm, info);
2677 
2678     scratch = g_new0(char, TARGET_PAGE_SIZE);
2679     if (STACK_GROWS_DOWN) {
2680         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2681                                    bprm->p, info->stack_limit);
2682         info->file_string = bprm->p;
2683         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2684                                    bprm->p, info->stack_limit);
2685         info->env_strings = bprm->p;
2686         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2687                                    bprm->p, info->stack_limit);
2688         info->arg_strings = bprm->p;
2689     } else {
2690         info->arg_strings = bprm->p;
2691         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2692                                    bprm->p, info->stack_limit);
2693         info->env_strings = bprm->p;
2694         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2695                                    bprm->p, info->stack_limit);
2696         info->file_string = bprm->p;
2697         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2698                                    bprm->p, info->stack_limit);
2699     }
2700 
2701     g_free(scratch);
2702 
2703     if (!bprm->p) {
2704         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2705         exit(-1);
2706     }
2707 
2708     if (elf_interpreter) {
2709         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2710 
2711         /* If the program interpreter is one of these two, then assume
2712            an iBCS2 image.  Otherwise assume a native linux image.  */
2713 
2714         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2715             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2716             info->personality = PER_SVR4;
2717 
2718             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2719                and some applications "depend" upon this behavior.  Since
2720                we do not have the power to recompile these, we emulate
2721                the SVr4 behavior.  Sigh.  */
2722             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2723                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2724         }
2725 #ifdef TARGET_MIPS
2726         info->interp_fp_abi = interp_info.fp_abi;
2727 #endif
2728     }
2729 
2730     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2731                                 info, (elf_interpreter ? &interp_info : NULL));
2732     info->start_stack = bprm->p;
2733 
2734     /* If we have an interpreter, set that as the program's entry point.
2735        Copy the load_bias as well, to help PPC64 interpret the entry
2736        point as a function descriptor.  Do this after creating elf tables
2737        so that we copy the original program entry point into the AUXV.  */
2738     if (elf_interpreter) {
2739         info->load_bias = interp_info.load_bias;
2740         info->entry = interp_info.entry;
2741         free(elf_interpreter);
2742     }
2743 
2744 #ifdef USE_ELF_CORE_DUMP
2745     bprm->core_dump = &elf_core_dump;
2746 #endif
2747 
2748     return 0;
2749 }
2750 
2751 #ifdef USE_ELF_CORE_DUMP
2752 /*
2753  * Definitions to generate Intel SVR4-like core files.
2754  * These mostly have the same names as the SVR4 types with "target_elf_"
2755  * tacked on the front to prevent clashes with linux definitions,
2756  * and the typedef forms have been avoided.  This is mostly like
2757  * the SVR4 structure, but more Linuxy, with things that Linux does
2758  * not support and which gdb doesn't really use excluded.
2759  *
2760  * Fields we don't dump (their contents is zero) in linux-user qemu
2761  * are marked with XXX.
2762  *
2763  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2764  *
2765  * Porting ELF coredump for target is (quite) simple process.  First you
2766  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2767  * the target resides):
2768  *
2769  * #define USE_ELF_CORE_DUMP
2770  *
2771  * Next you define type of register set used for dumping.  ELF specification
2772  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2773  *
2774  * typedef <target_regtype> target_elf_greg_t;
2775  * #define ELF_NREG <number of registers>
2776  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2777  *
2778  * Last step is to implement target specific function that copies registers
2779  * from given cpu into just specified register set.  Prototype is:
2780  *
2781  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2782  *                                const CPUArchState *env);
2783  *
2784  * Parameters:
2785  *     regs - copy register values into here (allocated and zeroed by caller)
2786  *     env - copy registers from here
2787  *
2788  * Example for ARM target is provided in this file.
2789  */
2790 
2791 /* An ELF note in memory */
2792 struct memelfnote {
2793     const char *name;
2794     size_t     namesz;
2795     size_t     namesz_rounded;
2796     int        type;
2797     size_t     datasz;
2798     size_t     datasz_rounded;
2799     void       *data;
2800     size_t     notesz;
2801 };
2802 
2803 struct target_elf_siginfo {
2804     abi_int    si_signo; /* signal number */
2805     abi_int    si_code;  /* extra code */
2806     abi_int    si_errno; /* errno */
2807 };
2808 
2809 struct target_elf_prstatus {
2810     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2811     abi_short          pr_cursig;    /* Current signal */
2812     abi_ulong          pr_sigpend;   /* XXX */
2813     abi_ulong          pr_sighold;   /* XXX */
2814     target_pid_t       pr_pid;
2815     target_pid_t       pr_ppid;
2816     target_pid_t       pr_pgrp;
2817     target_pid_t       pr_sid;
2818     struct target_timeval pr_utime;  /* XXX User time */
2819     struct target_timeval pr_stime;  /* XXX System time */
2820     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2821     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2822     target_elf_gregset_t      pr_reg;       /* GP registers */
2823     abi_int            pr_fpvalid;   /* XXX */
2824 };
2825 
2826 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2827 
2828 struct target_elf_prpsinfo {
2829     char         pr_state;       /* numeric process state */
2830     char         pr_sname;       /* char for pr_state */
2831     char         pr_zomb;        /* zombie */
2832     char         pr_nice;        /* nice val */
2833     abi_ulong    pr_flag;        /* flags */
2834     target_uid_t pr_uid;
2835     target_gid_t pr_gid;
2836     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2837     /* Lots missing */
2838     char    pr_fname[16];           /* filename of executable */
2839     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2840 };
2841 
2842 /* Here is the structure in which status of each thread is captured. */
2843 struct elf_thread_status {
2844     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2845     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2846 #if 0
2847     elf_fpregset_t fpu;             /* NT_PRFPREG */
2848     struct task_struct *thread;
2849     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2850 #endif
2851     struct memelfnote notes[1];
2852     int num_notes;
2853 };
2854 
2855 struct elf_note_info {
2856     struct memelfnote   *notes;
2857     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2858     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2859 
2860     QTAILQ_HEAD(, elf_thread_status) thread_list;
2861 #if 0
2862     /*
2863      * Current version of ELF coredump doesn't support
2864      * dumping fp regs etc.
2865      */
2866     elf_fpregset_t *fpu;
2867     elf_fpxregset_t *xfpu;
2868     int thread_status_size;
2869 #endif
2870     int notes_size;
2871     int numnote;
2872 };
2873 
2874 struct vm_area_struct {
2875     target_ulong   vma_start;  /* start vaddr of memory region */
2876     target_ulong   vma_end;    /* end vaddr of memory region */
2877     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2878     QTAILQ_ENTRY(vm_area_struct) vma_link;
2879 };
2880 
2881 struct mm_struct {
2882     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2883     int mm_count;           /* number of mappings */
2884 };
2885 
2886 static struct mm_struct *vma_init(void);
2887 static void vma_delete(struct mm_struct *);
2888 static int vma_add_mapping(struct mm_struct *, target_ulong,
2889                            target_ulong, abi_ulong);
2890 static int vma_get_mapping_count(const struct mm_struct *);
2891 static struct vm_area_struct *vma_first(const struct mm_struct *);
2892 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2893 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2894 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2895                       unsigned long flags);
2896 
2897 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2898 static void fill_note(struct memelfnote *, const char *, int,
2899                       unsigned int, void *);
2900 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2901 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2902 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2903 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2904 static size_t note_size(const struct memelfnote *);
2905 static void free_note_info(struct elf_note_info *);
2906 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2907 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2908 static int core_dump_filename(const TaskState *, char *, size_t);
2909 
2910 static int dump_write(int, const void *, size_t);
2911 static int write_note(struct memelfnote *, int);
2912 static int write_note_info(struct elf_note_info *, int);
2913 
2914 #ifdef BSWAP_NEEDED
2915 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2916 {
2917     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2918     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2919     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2920     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2921     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2922     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2923     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2924     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2925     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2926     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2927     /* cpu times are not filled, so we skip them */
2928     /* regs should be in correct format already */
2929     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2930 }
2931 
2932 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2933 {
2934     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2935     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2936     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2937     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2938     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2939     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2940     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2941 }
2942 
2943 static void bswap_note(struct elf_note *en)
2944 {
2945     bswap32s(&en->n_namesz);
2946     bswap32s(&en->n_descsz);
2947     bswap32s(&en->n_type);
2948 }
2949 #else
2950 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2951 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2952 static inline void bswap_note(struct elf_note *en) { }
2953 #endif /* BSWAP_NEEDED */
2954 
2955 /*
2956  * Minimal support for linux memory regions.  These are needed
2957  * when we are finding out what memory exactly belongs to
2958  * emulated process.  No locks needed here, as long as
2959  * thread that received the signal is stopped.
2960  */
2961 
2962 static struct mm_struct *vma_init(void)
2963 {
2964     struct mm_struct *mm;
2965 
2966     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2967         return (NULL);
2968 
2969     mm->mm_count = 0;
2970     QTAILQ_INIT(&mm->mm_mmap);
2971 
2972     return (mm);
2973 }
2974 
2975 static void vma_delete(struct mm_struct *mm)
2976 {
2977     struct vm_area_struct *vma;
2978 
2979     while ((vma = vma_first(mm)) != NULL) {
2980         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2981         g_free(vma);
2982     }
2983     g_free(mm);
2984 }
2985 
2986 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2987                            target_ulong end, abi_ulong flags)
2988 {
2989     struct vm_area_struct *vma;
2990 
2991     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2992         return (-1);
2993 
2994     vma->vma_start = start;
2995     vma->vma_end = end;
2996     vma->vma_flags = flags;
2997 
2998     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2999     mm->mm_count++;
3000 
3001     return (0);
3002 }
3003 
3004 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3005 {
3006     return (QTAILQ_FIRST(&mm->mm_mmap));
3007 }
3008 
3009 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3010 {
3011     return (QTAILQ_NEXT(vma, vma_link));
3012 }
3013 
3014 static int vma_get_mapping_count(const struct mm_struct *mm)
3015 {
3016     return (mm->mm_count);
3017 }
3018 
3019 /*
3020  * Calculate file (dump) size of given memory region.
3021  */
3022 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3023 {
3024     /* if we cannot even read the first page, skip it */
3025     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3026         return (0);
3027 
3028     /*
3029      * Usually we don't dump executable pages as they contain
3030      * non-writable code that debugger can read directly from
3031      * target library etc.  However, thread stacks are marked
3032      * also executable so we read in first page of given region
3033      * and check whether it contains elf header.  If there is
3034      * no elf header, we dump it.
3035      */
3036     if (vma->vma_flags & PROT_EXEC) {
3037         char page[TARGET_PAGE_SIZE];
3038 
3039         copy_from_user(page, vma->vma_start, sizeof (page));
3040         if ((page[EI_MAG0] == ELFMAG0) &&
3041             (page[EI_MAG1] == ELFMAG1) &&
3042             (page[EI_MAG2] == ELFMAG2) &&
3043             (page[EI_MAG3] == ELFMAG3)) {
3044             /*
3045              * Mappings are possibly from ELF binary.  Don't dump
3046              * them.
3047              */
3048             return (0);
3049         }
3050     }
3051 
3052     return (vma->vma_end - vma->vma_start);
3053 }
3054 
3055 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3056                       unsigned long flags)
3057 {
3058     struct mm_struct *mm = (struct mm_struct *)priv;
3059 
3060     vma_add_mapping(mm, start, end, flags);
3061     return (0);
3062 }
3063 
3064 static void fill_note(struct memelfnote *note, const char *name, int type,
3065                       unsigned int sz, void *data)
3066 {
3067     unsigned int namesz;
3068 
3069     namesz = strlen(name) + 1;
3070     note->name = name;
3071     note->namesz = namesz;
3072     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3073     note->type = type;
3074     note->datasz = sz;
3075     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3076 
3077     note->data = data;
3078 
3079     /*
3080      * We calculate rounded up note size here as specified by
3081      * ELF document.
3082      */
3083     note->notesz = sizeof (struct elf_note) +
3084         note->namesz_rounded + note->datasz_rounded;
3085 }
3086 
3087 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3088                             uint32_t flags)
3089 {
3090     (void) memset(elf, 0, sizeof(*elf));
3091 
3092     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3093     elf->e_ident[EI_CLASS] = ELF_CLASS;
3094     elf->e_ident[EI_DATA] = ELF_DATA;
3095     elf->e_ident[EI_VERSION] = EV_CURRENT;
3096     elf->e_ident[EI_OSABI] = ELF_OSABI;
3097 
3098     elf->e_type = ET_CORE;
3099     elf->e_machine = machine;
3100     elf->e_version = EV_CURRENT;
3101     elf->e_phoff = sizeof(struct elfhdr);
3102     elf->e_flags = flags;
3103     elf->e_ehsize = sizeof(struct elfhdr);
3104     elf->e_phentsize = sizeof(struct elf_phdr);
3105     elf->e_phnum = segs;
3106 
3107     bswap_ehdr(elf);
3108 }
3109 
3110 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3111 {
3112     phdr->p_type = PT_NOTE;
3113     phdr->p_offset = offset;
3114     phdr->p_vaddr = 0;
3115     phdr->p_paddr = 0;
3116     phdr->p_filesz = sz;
3117     phdr->p_memsz = 0;
3118     phdr->p_flags = 0;
3119     phdr->p_align = 0;
3120 
3121     bswap_phdr(phdr, 1);
3122 }
3123 
3124 static size_t note_size(const struct memelfnote *note)
3125 {
3126     return (note->notesz);
3127 }
3128 
3129 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3130                           const TaskState *ts, int signr)
3131 {
3132     (void) memset(prstatus, 0, sizeof (*prstatus));
3133     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3134     prstatus->pr_pid = ts->ts_tid;
3135     prstatus->pr_ppid = getppid();
3136     prstatus->pr_pgrp = getpgrp();
3137     prstatus->pr_sid = getsid(0);
3138 
3139     bswap_prstatus(prstatus);
3140 }
3141 
3142 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3143 {
3144     char *base_filename;
3145     unsigned int i, len;
3146 
3147     (void) memset(psinfo, 0, sizeof (*psinfo));
3148 
3149     len = ts->info->arg_end - ts->info->arg_start;
3150     if (len >= ELF_PRARGSZ)
3151         len = ELF_PRARGSZ - 1;
3152     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3153         return -EFAULT;
3154     for (i = 0; i < len; i++)
3155         if (psinfo->pr_psargs[i] == 0)
3156             psinfo->pr_psargs[i] = ' ';
3157     psinfo->pr_psargs[len] = 0;
3158 
3159     psinfo->pr_pid = getpid();
3160     psinfo->pr_ppid = getppid();
3161     psinfo->pr_pgrp = getpgrp();
3162     psinfo->pr_sid = getsid(0);
3163     psinfo->pr_uid = getuid();
3164     psinfo->pr_gid = getgid();
3165 
3166     base_filename = g_path_get_basename(ts->bprm->filename);
3167     /*
3168      * Using strncpy here is fine: at max-length,
3169      * this field is not NUL-terminated.
3170      */
3171     (void) strncpy(psinfo->pr_fname, base_filename,
3172                    sizeof(psinfo->pr_fname));
3173 
3174     g_free(base_filename);
3175     bswap_psinfo(psinfo);
3176     return (0);
3177 }
3178 
3179 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3180 {
3181     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3182     elf_addr_t orig_auxv = auxv;
3183     void *ptr;
3184     int len = ts->info->auxv_len;
3185 
3186     /*
3187      * Auxiliary vector is stored in target process stack.  It contains
3188      * {type, value} pairs that we need to dump into note.  This is not
3189      * strictly necessary but we do it here for sake of completeness.
3190      */
3191 
3192     /* read in whole auxv vector and copy it to memelfnote */
3193     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3194     if (ptr != NULL) {
3195         fill_note(note, "CORE", NT_AUXV, len, ptr);
3196         unlock_user(ptr, auxv, len);
3197     }
3198 }
3199 
3200 /*
3201  * Constructs name of coredump file.  We have following convention
3202  * for the name:
3203  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3204  *
3205  * Returns 0 in case of success, -1 otherwise (errno is set).
3206  */
3207 static int core_dump_filename(const TaskState *ts, char *buf,
3208                               size_t bufsize)
3209 {
3210     char timestamp[64];
3211     char *base_filename = NULL;
3212     struct timeval tv;
3213     struct tm tm;
3214 
3215     assert(bufsize >= PATH_MAX);
3216 
3217     if (gettimeofday(&tv, NULL) < 0) {
3218         (void) fprintf(stderr, "unable to get current timestamp: %s",
3219                        strerror(errno));
3220         return (-1);
3221     }
3222 
3223     base_filename = g_path_get_basename(ts->bprm->filename);
3224     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3225                     localtime_r(&tv.tv_sec, &tm));
3226     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3227                     base_filename, timestamp, (int)getpid());
3228     g_free(base_filename);
3229 
3230     return (0);
3231 }
3232 
3233 static int dump_write(int fd, const void *ptr, size_t size)
3234 {
3235     const char *bufp = (const char *)ptr;
3236     ssize_t bytes_written, bytes_left;
3237     struct rlimit dumpsize;
3238     off_t pos;
3239 
3240     bytes_written = 0;
3241     getrlimit(RLIMIT_CORE, &dumpsize);
3242     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3243         if (errno == ESPIPE) { /* not a seekable stream */
3244             bytes_left = size;
3245         } else {
3246             return pos;
3247         }
3248     } else {
3249         if (dumpsize.rlim_cur <= pos) {
3250             return -1;
3251         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3252             bytes_left = size;
3253         } else {
3254             size_t limit_left=dumpsize.rlim_cur - pos;
3255             bytes_left = limit_left >= size ? size : limit_left ;
3256         }
3257     }
3258 
3259     /*
3260      * In normal conditions, single write(2) should do but
3261      * in case of socket etc. this mechanism is more portable.
3262      */
3263     do {
3264         bytes_written = write(fd, bufp, bytes_left);
3265         if (bytes_written < 0) {
3266             if (errno == EINTR)
3267                 continue;
3268             return (-1);
3269         } else if (bytes_written == 0) { /* eof */
3270             return (-1);
3271         }
3272         bufp += bytes_written;
3273         bytes_left -= bytes_written;
3274     } while (bytes_left > 0);
3275 
3276     return (0);
3277 }
3278 
3279 static int write_note(struct memelfnote *men, int fd)
3280 {
3281     struct elf_note en;
3282 
3283     en.n_namesz = men->namesz;
3284     en.n_type = men->type;
3285     en.n_descsz = men->datasz;
3286 
3287     bswap_note(&en);
3288 
3289     if (dump_write(fd, &en, sizeof(en)) != 0)
3290         return (-1);
3291     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3292         return (-1);
3293     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3294         return (-1);
3295 
3296     return (0);
3297 }
3298 
3299 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3300 {
3301     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3302     TaskState *ts = (TaskState *)cpu->opaque;
3303     struct elf_thread_status *ets;
3304 
3305     ets = g_malloc0(sizeof (*ets));
3306     ets->num_notes = 1; /* only prstatus is dumped */
3307     fill_prstatus(&ets->prstatus, ts, 0);
3308     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3309     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3310               &ets->prstatus);
3311 
3312     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3313 
3314     info->notes_size += note_size(&ets->notes[0]);
3315 }
3316 
3317 static void init_note_info(struct elf_note_info *info)
3318 {
3319     /* Initialize the elf_note_info structure so that it is at
3320      * least safe to call free_note_info() on it. Must be
3321      * called before calling fill_note_info().
3322      */
3323     memset(info, 0, sizeof (*info));
3324     QTAILQ_INIT(&info->thread_list);
3325 }
3326 
3327 static int fill_note_info(struct elf_note_info *info,
3328                           long signr, const CPUArchState *env)
3329 {
3330 #define NUMNOTES 3
3331     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3332     TaskState *ts = (TaskState *)cpu->opaque;
3333     int i;
3334 
3335     info->notes = g_new0(struct memelfnote, NUMNOTES);
3336     if (info->notes == NULL)
3337         return (-ENOMEM);
3338     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3339     if (info->prstatus == NULL)
3340         return (-ENOMEM);
3341     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3342     if (info->prstatus == NULL)
3343         return (-ENOMEM);
3344 
3345     /*
3346      * First fill in status (and registers) of current thread
3347      * including process info & aux vector.
3348      */
3349     fill_prstatus(info->prstatus, ts, signr);
3350     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3351     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3352               sizeof (*info->prstatus), info->prstatus);
3353     fill_psinfo(info->psinfo, ts);
3354     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3355               sizeof (*info->psinfo), info->psinfo);
3356     fill_auxv_note(&info->notes[2], ts);
3357     info->numnote = 3;
3358 
3359     info->notes_size = 0;
3360     for (i = 0; i < info->numnote; i++)
3361         info->notes_size += note_size(&info->notes[i]);
3362 
3363     /* read and fill status of all threads */
3364     cpu_list_lock();
3365     CPU_FOREACH(cpu) {
3366         if (cpu == thread_cpu) {
3367             continue;
3368         }
3369         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3370     }
3371     cpu_list_unlock();
3372 
3373     return (0);
3374 }
3375 
3376 static void free_note_info(struct elf_note_info *info)
3377 {
3378     struct elf_thread_status *ets;
3379 
3380     while (!QTAILQ_EMPTY(&info->thread_list)) {
3381         ets = QTAILQ_FIRST(&info->thread_list);
3382         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3383         g_free(ets);
3384     }
3385 
3386     g_free(info->prstatus);
3387     g_free(info->psinfo);
3388     g_free(info->notes);
3389 }
3390 
3391 static int write_note_info(struct elf_note_info *info, int fd)
3392 {
3393     struct elf_thread_status *ets;
3394     int i, error = 0;
3395 
3396     /* write prstatus, psinfo and auxv for current thread */
3397     for (i = 0; i < info->numnote; i++)
3398         if ((error = write_note(&info->notes[i], fd)) != 0)
3399             return (error);
3400 
3401     /* write prstatus for each thread */
3402     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3403         if ((error = write_note(&ets->notes[0], fd)) != 0)
3404             return (error);
3405     }
3406 
3407     return (0);
3408 }
3409 
3410 /*
3411  * Write out ELF coredump.
3412  *
3413  * See documentation of ELF object file format in:
3414  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3415  *
3416  * Coredump format in linux is following:
3417  *
3418  * 0   +----------------------+         \
3419  *     | ELF header           | ET_CORE  |
3420  *     +----------------------+          |
3421  *     | ELF program headers  |          |--- headers
3422  *     | - NOTE section       |          |
3423  *     | - PT_LOAD sections   |          |
3424  *     +----------------------+         /
3425  *     | NOTEs:               |
3426  *     | - NT_PRSTATUS        |
3427  *     | - NT_PRSINFO         |
3428  *     | - NT_AUXV            |
3429  *     +----------------------+ <-- aligned to target page
3430  *     | Process memory dump  |
3431  *     :                      :
3432  *     .                      .
3433  *     :                      :
3434  *     |                      |
3435  *     +----------------------+
3436  *
3437  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3438  * NT_PRSINFO  -> struct elf_prpsinfo
3439  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3440  *
3441  * Format follows System V format as close as possible.  Current
3442  * version limitations are as follows:
3443  *     - no floating point registers are dumped
3444  *
3445  * Function returns 0 in case of success, negative errno otherwise.
3446  *
3447  * TODO: make this work also during runtime: it should be
3448  * possible to force coredump from running process and then
3449  * continue processing.  For example qemu could set up SIGUSR2
3450  * handler (provided that target process haven't registered
3451  * handler for that) that does the dump when signal is received.
3452  */
3453 static int elf_core_dump(int signr, const CPUArchState *env)
3454 {
3455     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3456     const TaskState *ts = (const TaskState *)cpu->opaque;
3457     struct vm_area_struct *vma = NULL;
3458     char corefile[PATH_MAX];
3459     struct elf_note_info info;
3460     struct elfhdr elf;
3461     struct elf_phdr phdr;
3462     struct rlimit dumpsize;
3463     struct mm_struct *mm = NULL;
3464     off_t offset = 0, data_offset = 0;
3465     int segs = 0;
3466     int fd = -1;
3467 
3468     init_note_info(&info);
3469 
3470     errno = 0;
3471     getrlimit(RLIMIT_CORE, &dumpsize);
3472     if (dumpsize.rlim_cur == 0)
3473         return 0;
3474 
3475     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3476         return (-errno);
3477 
3478     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3479                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3480         return (-errno);
3481 
3482     /*
3483      * Walk through target process memory mappings and
3484      * set up structure containing this information.  After
3485      * this point vma_xxx functions can be used.
3486      */
3487     if ((mm = vma_init()) == NULL)
3488         goto out;
3489 
3490     walk_memory_regions(mm, vma_walker);
3491     segs = vma_get_mapping_count(mm);
3492 
3493     /*
3494      * Construct valid coredump ELF header.  We also
3495      * add one more segment for notes.
3496      */
3497     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3498     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3499         goto out;
3500 
3501     /* fill in the in-memory version of notes */
3502     if (fill_note_info(&info, signr, env) < 0)
3503         goto out;
3504 
3505     offset += sizeof (elf);                             /* elf header */
3506     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3507 
3508     /* write out notes program header */
3509     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3510 
3511     offset += info.notes_size;
3512     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3513         goto out;
3514 
3515     /*
3516      * ELF specification wants data to start at page boundary so
3517      * we align it here.
3518      */
3519     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3520 
3521     /*
3522      * Write program headers for memory regions mapped in
3523      * the target process.
3524      */
3525     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3526         (void) memset(&phdr, 0, sizeof (phdr));
3527 
3528         phdr.p_type = PT_LOAD;
3529         phdr.p_offset = offset;
3530         phdr.p_vaddr = vma->vma_start;
3531         phdr.p_paddr = 0;
3532         phdr.p_filesz = vma_dump_size(vma);
3533         offset += phdr.p_filesz;
3534         phdr.p_memsz = vma->vma_end - vma->vma_start;
3535         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3536         if (vma->vma_flags & PROT_WRITE)
3537             phdr.p_flags |= PF_W;
3538         if (vma->vma_flags & PROT_EXEC)
3539             phdr.p_flags |= PF_X;
3540         phdr.p_align = ELF_EXEC_PAGESIZE;
3541 
3542         bswap_phdr(&phdr, 1);
3543         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3544             goto out;
3545         }
3546     }
3547 
3548     /*
3549      * Next we write notes just after program headers.  No
3550      * alignment needed here.
3551      */
3552     if (write_note_info(&info, fd) < 0)
3553         goto out;
3554 
3555     /* align data to page boundary */
3556     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3557         goto out;
3558 
3559     /*
3560      * Finally we can dump process memory into corefile as well.
3561      */
3562     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3563         abi_ulong addr;
3564         abi_ulong end;
3565 
3566         end = vma->vma_start + vma_dump_size(vma);
3567 
3568         for (addr = vma->vma_start; addr < end;
3569              addr += TARGET_PAGE_SIZE) {
3570             char page[TARGET_PAGE_SIZE];
3571             int error;
3572 
3573             /*
3574              *  Read in page from target process memory and
3575              *  write it to coredump file.
3576              */
3577             error = copy_from_user(page, addr, sizeof (page));
3578             if (error != 0) {
3579                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3580                                addr);
3581                 errno = -error;
3582                 goto out;
3583             }
3584             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3585                 goto out;
3586         }
3587     }
3588 
3589  out:
3590     free_note_info(&info);
3591     if (mm != NULL)
3592         vma_delete(mm);
3593     (void) close(fd);
3594 
3595     if (errno != 0)
3596         return (-errno);
3597     return (0);
3598 }
3599 #endif /* USE_ELF_CORE_DUMP */
3600 
3601 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3602 {
3603     init_thread(regs, infop);
3604 }
3605