1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 int info_is_fdpic(struct image_info *info) 82 { 83 return info->personality == PER_LINUX_FDPIC; 84 } 85 86 /* this flag is uneffective under linux too, should be deleted */ 87 #ifndef MAP_DENYWRITE 88 #define MAP_DENYWRITE 0 89 #endif 90 91 /* should probably go in elf.h */ 92 #ifndef ELIBBAD 93 #define ELIBBAD 80 94 #endif 95 96 #ifdef TARGET_WORDS_BIGENDIAN 97 #define ELF_DATA ELFDATA2MSB 98 #else 99 #define ELF_DATA ELFDATA2LSB 100 #endif 101 102 #ifdef TARGET_ABI_MIPSN32 103 typedef abi_ullong target_elf_greg_t; 104 #define tswapreg(ptr) tswap64(ptr) 105 #else 106 typedef abi_ulong target_elf_greg_t; 107 #define tswapreg(ptr) tswapal(ptr) 108 #endif 109 110 #ifdef USE_UID16 111 typedef abi_ushort target_uid_t; 112 typedef abi_ushort target_gid_t; 113 #else 114 typedef abi_uint target_uid_t; 115 typedef abi_uint target_gid_t; 116 #endif 117 typedef abi_int target_pid_t; 118 119 #ifdef TARGET_I386 120 121 #define ELF_PLATFORM get_elf_platform() 122 123 static const char *get_elf_platform(void) 124 { 125 static char elf_platform[] = "i386"; 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 127 if (family > 6) 128 family = 6; 129 if (family >= 3) 130 elf_platform[1] = '0' + family; 131 return elf_platform; 132 } 133 134 #define ELF_HWCAP get_elf_hwcap() 135 136 static uint32_t get_elf_hwcap(void) 137 { 138 X86CPU *cpu = X86_CPU(thread_cpu); 139 140 return cpu->env.features[FEAT_1_EDX]; 141 } 142 143 #ifdef TARGET_X86_64 144 #define ELF_START_MMAP 0x2aaaaab000ULL 145 146 #define ELF_CLASS ELFCLASS64 147 #define ELF_ARCH EM_X86_64 148 149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 150 { 151 regs->rax = 0; 152 regs->rsp = infop->start_stack; 153 regs->rip = infop->entry; 154 } 155 156 #define ELF_NREG 27 157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 158 159 /* 160 * Note that ELF_NREG should be 29 as there should be place for 161 * TRAPNO and ERR "registers" as well but linux doesn't dump 162 * those. 163 * 164 * See linux kernel: arch/x86/include/asm/elf.h 165 */ 166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 167 { 168 (*regs)[0] = env->regs[15]; 169 (*regs)[1] = env->regs[14]; 170 (*regs)[2] = env->regs[13]; 171 (*regs)[3] = env->regs[12]; 172 (*regs)[4] = env->regs[R_EBP]; 173 (*regs)[5] = env->regs[R_EBX]; 174 (*regs)[6] = env->regs[11]; 175 (*regs)[7] = env->regs[10]; 176 (*regs)[8] = env->regs[9]; 177 (*regs)[9] = env->regs[8]; 178 (*regs)[10] = env->regs[R_EAX]; 179 (*regs)[11] = env->regs[R_ECX]; 180 (*regs)[12] = env->regs[R_EDX]; 181 (*regs)[13] = env->regs[R_ESI]; 182 (*regs)[14] = env->regs[R_EDI]; 183 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 184 (*regs)[16] = env->eip; 185 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 186 (*regs)[18] = env->eflags; 187 (*regs)[19] = env->regs[R_ESP]; 188 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 189 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 190 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 191 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 192 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 193 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 194 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 195 } 196 197 #else 198 199 #define ELF_START_MMAP 0x80000000 200 201 /* 202 * This is used to ensure we don't load something for the wrong architecture. 203 */ 204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 205 206 /* 207 * These are used to set parameters in the core dumps. 208 */ 209 #define ELF_CLASS ELFCLASS32 210 #define ELF_ARCH EM_386 211 212 static inline void init_thread(struct target_pt_regs *regs, 213 struct image_info *infop) 214 { 215 regs->esp = infop->start_stack; 216 regs->eip = infop->entry; 217 218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 219 starts %edx contains a pointer to a function which might be 220 registered using `atexit'. This provides a mean for the 221 dynamic linker to call DT_FINI functions for shared libraries 222 that have been loaded before the code runs. 223 224 A value of 0 tells we have no such handler. */ 225 regs->edx = 0; 226 } 227 228 #define ELF_NREG 17 229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 230 231 /* 232 * Note that ELF_NREG should be 19 as there should be place for 233 * TRAPNO and ERR "registers" as well but linux doesn't dump 234 * those. 235 * 236 * See linux kernel: arch/x86/include/asm/elf.h 237 */ 238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 239 { 240 (*regs)[0] = env->regs[R_EBX]; 241 (*regs)[1] = env->regs[R_ECX]; 242 (*regs)[2] = env->regs[R_EDX]; 243 (*regs)[3] = env->regs[R_ESI]; 244 (*regs)[4] = env->regs[R_EDI]; 245 (*regs)[5] = env->regs[R_EBP]; 246 (*regs)[6] = env->regs[R_EAX]; 247 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 248 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 249 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 250 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 251 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 252 (*regs)[12] = env->eip; 253 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 254 (*regs)[14] = env->eflags; 255 (*regs)[15] = env->regs[R_ESP]; 256 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 257 } 258 #endif 259 260 #define USE_ELF_CORE_DUMP 261 #define ELF_EXEC_PAGESIZE 4096 262 263 #endif 264 265 #ifdef TARGET_ARM 266 267 #ifndef TARGET_AARCH64 268 /* 32 bit ARM definitions */ 269 270 #define ELF_START_MMAP 0x80000000 271 272 #define ELF_ARCH EM_ARM 273 #define ELF_CLASS ELFCLASS32 274 275 static inline void init_thread(struct target_pt_regs *regs, 276 struct image_info *infop) 277 { 278 abi_long stack = infop->start_stack; 279 memset(regs, 0, sizeof(*regs)); 280 281 regs->uregs[16] = ARM_CPU_MODE_USR; 282 if (infop->entry & 1) { 283 regs->uregs[16] |= CPSR_T; 284 } 285 regs->uregs[15] = infop->entry & 0xfffffffe; 286 regs->uregs[13] = infop->start_stack; 287 /* FIXME - what to for failure of get_user()? */ 288 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 289 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 290 /* XXX: it seems that r0 is zeroed after ! */ 291 regs->uregs[0] = 0; 292 /* For uClinux PIC binaries. */ 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 294 regs->uregs[10] = infop->start_data; 295 296 /* Support ARM FDPIC. */ 297 if (info_is_fdpic(infop)) { 298 /* As described in the ABI document, r7 points to the loadmap info 299 * prepared by the kernel. If an interpreter is needed, r8 points 300 * to the interpreter loadmap and r9 points to the interpreter 301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 302 * r9 points to the main program PT_DYNAMIC info. 303 */ 304 regs->uregs[7] = infop->loadmap_addr; 305 if (infop->interpreter_loadmap_addr) { 306 /* Executable is dynamically loaded. */ 307 regs->uregs[8] = infop->interpreter_loadmap_addr; 308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 309 } else { 310 regs->uregs[8] = 0; 311 regs->uregs[9] = infop->pt_dynamic_addr; 312 } 313 } 314 } 315 316 #define ELF_NREG 18 317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 318 319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 320 { 321 (*regs)[0] = tswapreg(env->regs[0]); 322 (*regs)[1] = tswapreg(env->regs[1]); 323 (*regs)[2] = tswapreg(env->regs[2]); 324 (*regs)[3] = tswapreg(env->regs[3]); 325 (*regs)[4] = tswapreg(env->regs[4]); 326 (*regs)[5] = tswapreg(env->regs[5]); 327 (*regs)[6] = tswapreg(env->regs[6]); 328 (*regs)[7] = tswapreg(env->regs[7]); 329 (*regs)[8] = tswapreg(env->regs[8]); 330 (*regs)[9] = tswapreg(env->regs[9]); 331 (*regs)[10] = tswapreg(env->regs[10]); 332 (*regs)[11] = tswapreg(env->regs[11]); 333 (*regs)[12] = tswapreg(env->regs[12]); 334 (*regs)[13] = tswapreg(env->regs[13]); 335 (*regs)[14] = tswapreg(env->regs[14]); 336 (*regs)[15] = tswapreg(env->regs[15]); 337 338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 340 } 341 342 #define USE_ELF_CORE_DUMP 343 #define ELF_EXEC_PAGESIZE 4096 344 345 enum 346 { 347 ARM_HWCAP_ARM_SWP = 1 << 0, 348 ARM_HWCAP_ARM_HALF = 1 << 1, 349 ARM_HWCAP_ARM_THUMB = 1 << 2, 350 ARM_HWCAP_ARM_26BIT = 1 << 3, 351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 352 ARM_HWCAP_ARM_FPA = 1 << 5, 353 ARM_HWCAP_ARM_VFP = 1 << 6, 354 ARM_HWCAP_ARM_EDSP = 1 << 7, 355 ARM_HWCAP_ARM_JAVA = 1 << 8, 356 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 357 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 358 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 359 ARM_HWCAP_ARM_NEON = 1 << 12, 360 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 362 ARM_HWCAP_ARM_TLS = 1 << 15, 363 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 364 ARM_HWCAP_ARM_IDIVA = 1 << 17, 365 ARM_HWCAP_ARM_IDIVT = 1 << 18, 366 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 367 ARM_HWCAP_ARM_LPAE = 1 << 20, 368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 369 }; 370 371 enum { 372 ARM_HWCAP2_ARM_AES = 1 << 0, 373 ARM_HWCAP2_ARM_PMULL = 1 << 1, 374 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 375 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 376 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 377 }; 378 379 /* The commpage only exists for 32 bit kernels */ 380 381 /* Return 1 if the proposed guest space is suitable for the guest. 382 * Return 0 if the proposed guest space isn't suitable, but another 383 * address space should be tried. 384 * Return -1 if there is no way the proposed guest space can be 385 * valid regardless of the base. 386 * The guest code may leave a page mapped and populate it if the 387 * address is suitable. 388 */ 389 static int init_guest_commpage(unsigned long guest_base, 390 unsigned long guest_size) 391 { 392 unsigned long real_start, test_page_addr; 393 394 /* We need to check that we can force a fault on access to the 395 * commpage at 0xffff0fxx 396 */ 397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 398 399 /* If the commpage lies within the already allocated guest space, 400 * then there is no way we can allocate it. 401 * 402 * You may be thinking that that this check is redundant because 403 * we already validated the guest size against MAX_RESERVED_VA; 404 * but if qemu_host_page_mask is unusually large, then 405 * test_page_addr may be lower. 406 */ 407 if (test_page_addr >= guest_base 408 && test_page_addr < (guest_base + guest_size)) { 409 return -1; 410 } 411 412 /* Note it needs to be writeable to let us initialise it */ 413 real_start = (unsigned long) 414 mmap((void *)test_page_addr, qemu_host_page_size, 415 PROT_READ | PROT_WRITE, 416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 417 418 /* If we can't map it then try another address */ 419 if (real_start == -1ul) { 420 return 0; 421 } 422 423 if (real_start != test_page_addr) { 424 /* OS didn't put the page where we asked - unmap and reject */ 425 munmap((void *)real_start, qemu_host_page_size); 426 return 0; 427 } 428 429 /* Leave the page mapped 430 * Populate it (mmap should have left it all 0'd) 431 */ 432 433 /* Kernel helper versions */ 434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 435 436 /* Now it's populated make it RO */ 437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 438 perror("Protecting guest commpage"); 439 exit(-1); 440 } 441 442 return 1; /* All good */ 443 } 444 445 #define ELF_HWCAP get_elf_hwcap() 446 #define ELF_HWCAP2 get_elf_hwcap2() 447 448 static uint32_t get_elf_hwcap(void) 449 { 450 ARMCPU *cpu = ARM_CPU(thread_cpu); 451 uint32_t hwcaps = 0; 452 453 hwcaps |= ARM_HWCAP_ARM_SWP; 454 hwcaps |= ARM_HWCAP_ARM_HALF; 455 hwcaps |= ARM_HWCAP_ARM_THUMB; 456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 457 458 /* probe for the extra features */ 459 #define GET_FEATURE(feat, hwcap) \ 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 461 462 #define GET_FEATURE_ID(feat, hwcap) \ 463 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 464 465 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 466 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 467 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 468 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 469 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 470 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 471 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 472 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 473 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 474 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA); 475 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT); 476 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 477 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 478 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 479 * to our VFP_FP16 feature bit. 480 */ 481 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 482 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 483 484 return hwcaps; 485 } 486 487 static uint32_t get_elf_hwcap2(void) 488 { 489 ARMCPU *cpu = ARM_CPU(thread_cpu); 490 uint32_t hwcaps = 0; 491 492 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 493 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 494 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 495 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 496 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 497 return hwcaps; 498 } 499 500 #undef GET_FEATURE 501 #undef GET_FEATURE_ID 502 503 #else 504 /* 64 bit ARM definitions */ 505 #define ELF_START_MMAP 0x80000000 506 507 #define ELF_ARCH EM_AARCH64 508 #define ELF_CLASS ELFCLASS64 509 #define ELF_PLATFORM "aarch64" 510 511 static inline void init_thread(struct target_pt_regs *regs, 512 struct image_info *infop) 513 { 514 abi_long stack = infop->start_stack; 515 memset(regs, 0, sizeof(*regs)); 516 517 regs->pc = infop->entry & ~0x3ULL; 518 regs->sp = stack; 519 } 520 521 #define ELF_NREG 34 522 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 523 524 static void elf_core_copy_regs(target_elf_gregset_t *regs, 525 const CPUARMState *env) 526 { 527 int i; 528 529 for (i = 0; i < 32; i++) { 530 (*regs)[i] = tswapreg(env->xregs[i]); 531 } 532 (*regs)[32] = tswapreg(env->pc); 533 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 534 } 535 536 #define USE_ELF_CORE_DUMP 537 #define ELF_EXEC_PAGESIZE 4096 538 539 enum { 540 ARM_HWCAP_A64_FP = 1 << 0, 541 ARM_HWCAP_A64_ASIMD = 1 << 1, 542 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 543 ARM_HWCAP_A64_AES = 1 << 3, 544 ARM_HWCAP_A64_PMULL = 1 << 4, 545 ARM_HWCAP_A64_SHA1 = 1 << 5, 546 ARM_HWCAP_A64_SHA2 = 1 << 6, 547 ARM_HWCAP_A64_CRC32 = 1 << 7, 548 ARM_HWCAP_A64_ATOMICS = 1 << 8, 549 ARM_HWCAP_A64_FPHP = 1 << 9, 550 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 551 ARM_HWCAP_A64_CPUID = 1 << 11, 552 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 553 ARM_HWCAP_A64_JSCVT = 1 << 13, 554 ARM_HWCAP_A64_FCMA = 1 << 14, 555 ARM_HWCAP_A64_LRCPC = 1 << 15, 556 ARM_HWCAP_A64_DCPOP = 1 << 16, 557 ARM_HWCAP_A64_SHA3 = 1 << 17, 558 ARM_HWCAP_A64_SM3 = 1 << 18, 559 ARM_HWCAP_A64_SM4 = 1 << 19, 560 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 561 ARM_HWCAP_A64_SHA512 = 1 << 21, 562 ARM_HWCAP_A64_SVE = 1 << 22, 563 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 564 ARM_HWCAP_A64_DIT = 1 << 24, 565 ARM_HWCAP_A64_USCAT = 1 << 25, 566 ARM_HWCAP_A64_ILRCPC = 1 << 26, 567 ARM_HWCAP_A64_FLAGM = 1 << 27, 568 ARM_HWCAP_A64_SSBS = 1 << 28, 569 ARM_HWCAP_A64_SB = 1 << 29, 570 ARM_HWCAP_A64_PACA = 1 << 30, 571 ARM_HWCAP_A64_PACG = 1UL << 31, 572 }; 573 574 #define ELF_HWCAP get_elf_hwcap() 575 576 static uint32_t get_elf_hwcap(void) 577 { 578 ARMCPU *cpu = ARM_CPU(thread_cpu); 579 uint32_t hwcaps = 0; 580 581 hwcaps |= ARM_HWCAP_A64_FP; 582 hwcaps |= ARM_HWCAP_A64_ASIMD; 583 hwcaps |= ARM_HWCAP_A64_CPUID; 584 585 /* probe for the extra features */ 586 #define GET_FEATURE_ID(feat, hwcap) \ 587 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 588 589 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 590 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 591 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 592 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 593 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 594 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 595 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 596 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 597 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 598 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 599 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 600 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 601 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 602 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 603 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 604 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 605 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 606 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 607 608 #undef GET_FEATURE_ID 609 610 return hwcaps; 611 } 612 613 #endif /* not TARGET_AARCH64 */ 614 #endif /* TARGET_ARM */ 615 616 #ifdef TARGET_SPARC 617 #ifdef TARGET_SPARC64 618 619 #define ELF_START_MMAP 0x80000000 620 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 621 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 622 #ifndef TARGET_ABI32 623 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 624 #else 625 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 626 #endif 627 628 #define ELF_CLASS ELFCLASS64 629 #define ELF_ARCH EM_SPARCV9 630 631 #define STACK_BIAS 2047 632 633 static inline void init_thread(struct target_pt_regs *regs, 634 struct image_info *infop) 635 { 636 #ifndef TARGET_ABI32 637 regs->tstate = 0; 638 #endif 639 regs->pc = infop->entry; 640 regs->npc = regs->pc + 4; 641 regs->y = 0; 642 #ifdef TARGET_ABI32 643 regs->u_regs[14] = infop->start_stack - 16 * 4; 644 #else 645 if (personality(infop->personality) == PER_LINUX32) 646 regs->u_regs[14] = infop->start_stack - 16 * 4; 647 else 648 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 649 #endif 650 } 651 652 #else 653 #define ELF_START_MMAP 0x80000000 654 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 655 | HWCAP_SPARC_MULDIV) 656 657 #define ELF_CLASS ELFCLASS32 658 #define ELF_ARCH EM_SPARC 659 660 static inline void init_thread(struct target_pt_regs *regs, 661 struct image_info *infop) 662 { 663 regs->psr = 0; 664 regs->pc = infop->entry; 665 regs->npc = regs->pc + 4; 666 regs->y = 0; 667 regs->u_regs[14] = infop->start_stack - 16 * 4; 668 } 669 670 #endif 671 #endif 672 673 #ifdef TARGET_PPC 674 675 #define ELF_MACHINE PPC_ELF_MACHINE 676 #define ELF_START_MMAP 0x80000000 677 678 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 679 680 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 681 682 #define ELF_CLASS ELFCLASS64 683 684 #else 685 686 #define ELF_CLASS ELFCLASS32 687 688 #endif 689 690 #define ELF_ARCH EM_PPC 691 692 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 693 See arch/powerpc/include/asm/cputable.h. */ 694 enum { 695 QEMU_PPC_FEATURE_32 = 0x80000000, 696 QEMU_PPC_FEATURE_64 = 0x40000000, 697 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 698 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 699 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 700 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 701 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 702 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 703 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 704 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 705 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 706 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 707 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 708 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 709 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 710 QEMU_PPC_FEATURE_CELL = 0x00010000, 711 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 712 QEMU_PPC_FEATURE_SMT = 0x00004000, 713 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 714 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 715 QEMU_PPC_FEATURE_PA6T = 0x00000800, 716 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 717 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 718 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 719 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 720 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 721 722 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 723 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 724 725 /* Feature definitions in AT_HWCAP2. */ 726 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 727 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 728 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 729 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 730 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 731 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 732 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 733 }; 734 735 #define ELF_HWCAP get_elf_hwcap() 736 737 static uint32_t get_elf_hwcap(void) 738 { 739 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 740 uint32_t features = 0; 741 742 /* We don't have to be terribly complete here; the high points are 743 Altivec/FP/SPE support. Anything else is just a bonus. */ 744 #define GET_FEATURE(flag, feature) \ 745 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 746 #define GET_FEATURE2(flags, feature) \ 747 do { \ 748 if ((cpu->env.insns_flags2 & flags) == flags) { \ 749 features |= feature; \ 750 } \ 751 } while (0) 752 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 753 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 754 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 755 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 756 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 757 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 758 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 759 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 760 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 761 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 762 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 763 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 764 QEMU_PPC_FEATURE_ARCH_2_06); 765 #undef GET_FEATURE 766 #undef GET_FEATURE2 767 768 return features; 769 } 770 771 #define ELF_HWCAP2 get_elf_hwcap2() 772 773 static uint32_t get_elf_hwcap2(void) 774 { 775 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 776 uint32_t features = 0; 777 778 #define GET_FEATURE(flag, feature) \ 779 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 780 #define GET_FEATURE2(flag, feature) \ 781 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 782 783 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 784 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 785 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 786 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 787 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00); 788 789 #undef GET_FEATURE 790 #undef GET_FEATURE2 791 792 return features; 793 } 794 795 /* 796 * The requirements here are: 797 * - keep the final alignment of sp (sp & 0xf) 798 * - make sure the 32-bit value at the first 16 byte aligned position of 799 * AUXV is greater than 16 for glibc compatibility. 800 * AT_IGNOREPPC is used for that. 801 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 802 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 803 */ 804 #define DLINFO_ARCH_ITEMS 5 805 #define ARCH_DLINFO \ 806 do { \ 807 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 808 /* \ 809 * Handle glibc compatibility: these magic entries must \ 810 * be at the lowest addresses in the final auxv. \ 811 */ \ 812 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 813 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 814 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 815 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 816 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 817 } while (0) 818 819 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 820 { 821 _regs->gpr[1] = infop->start_stack; 822 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 823 if (get_ppc64_abi(infop) < 2) { 824 uint64_t val; 825 get_user_u64(val, infop->entry + 8); 826 _regs->gpr[2] = val + infop->load_bias; 827 get_user_u64(val, infop->entry); 828 infop->entry = val + infop->load_bias; 829 } else { 830 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 831 } 832 #endif 833 _regs->nip = infop->entry; 834 } 835 836 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 837 #define ELF_NREG 48 838 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 839 840 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 841 { 842 int i; 843 target_ulong ccr = 0; 844 845 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 846 (*regs)[i] = tswapreg(env->gpr[i]); 847 } 848 849 (*regs)[32] = tswapreg(env->nip); 850 (*regs)[33] = tswapreg(env->msr); 851 (*regs)[35] = tswapreg(env->ctr); 852 (*regs)[36] = tswapreg(env->lr); 853 (*regs)[37] = tswapreg(env->xer); 854 855 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 856 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 857 } 858 (*regs)[38] = tswapreg(ccr); 859 } 860 861 #define USE_ELF_CORE_DUMP 862 #define ELF_EXEC_PAGESIZE 4096 863 864 #endif 865 866 #ifdef TARGET_MIPS 867 868 #define ELF_START_MMAP 0x80000000 869 870 #ifdef TARGET_MIPS64 871 #define ELF_CLASS ELFCLASS64 872 #else 873 #define ELF_CLASS ELFCLASS32 874 #endif 875 #define ELF_ARCH EM_MIPS 876 877 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 878 879 static inline void init_thread(struct target_pt_regs *regs, 880 struct image_info *infop) 881 { 882 regs->cp0_status = 2 << CP0St_KSU; 883 regs->cp0_epc = infop->entry; 884 regs->regs[29] = infop->start_stack; 885 } 886 887 /* See linux kernel: arch/mips/include/asm/elf.h. */ 888 #define ELF_NREG 45 889 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 890 891 /* See linux kernel: arch/mips/include/asm/reg.h. */ 892 enum { 893 #ifdef TARGET_MIPS64 894 TARGET_EF_R0 = 0, 895 #else 896 TARGET_EF_R0 = 6, 897 #endif 898 TARGET_EF_R26 = TARGET_EF_R0 + 26, 899 TARGET_EF_R27 = TARGET_EF_R0 + 27, 900 TARGET_EF_LO = TARGET_EF_R0 + 32, 901 TARGET_EF_HI = TARGET_EF_R0 + 33, 902 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 903 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 904 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 905 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 906 }; 907 908 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 909 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 910 { 911 int i; 912 913 for (i = 0; i < TARGET_EF_R0; i++) { 914 (*regs)[i] = 0; 915 } 916 (*regs)[TARGET_EF_R0] = 0; 917 918 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 919 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 920 } 921 922 (*regs)[TARGET_EF_R26] = 0; 923 (*regs)[TARGET_EF_R27] = 0; 924 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 925 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 926 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 927 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 928 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 929 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 930 } 931 932 #define USE_ELF_CORE_DUMP 933 #define ELF_EXEC_PAGESIZE 4096 934 935 /* See arch/mips/include/uapi/asm/hwcap.h. */ 936 enum { 937 HWCAP_MIPS_R6 = (1 << 0), 938 HWCAP_MIPS_MSA = (1 << 1), 939 }; 940 941 #define ELF_HWCAP get_elf_hwcap() 942 943 static uint32_t get_elf_hwcap(void) 944 { 945 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 946 uint32_t hwcaps = 0; 947 948 #define GET_FEATURE(flag, hwcap) \ 949 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 950 951 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 952 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 953 954 #undef GET_FEATURE 955 956 return hwcaps; 957 } 958 959 #endif /* TARGET_MIPS */ 960 961 #ifdef TARGET_MICROBLAZE 962 963 #define ELF_START_MMAP 0x80000000 964 965 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 966 967 #define ELF_CLASS ELFCLASS32 968 #define ELF_ARCH EM_MICROBLAZE 969 970 static inline void init_thread(struct target_pt_regs *regs, 971 struct image_info *infop) 972 { 973 regs->pc = infop->entry; 974 regs->r1 = infop->start_stack; 975 976 } 977 978 #define ELF_EXEC_PAGESIZE 4096 979 980 #define USE_ELF_CORE_DUMP 981 #define ELF_NREG 38 982 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 983 984 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 985 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 986 { 987 int i, pos = 0; 988 989 for (i = 0; i < 32; i++) { 990 (*regs)[pos++] = tswapreg(env->regs[i]); 991 } 992 993 for (i = 0; i < 6; i++) { 994 (*regs)[pos++] = tswapreg(env->sregs[i]); 995 } 996 } 997 998 #endif /* TARGET_MICROBLAZE */ 999 1000 #ifdef TARGET_NIOS2 1001 1002 #define ELF_START_MMAP 0x80000000 1003 1004 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1005 1006 #define ELF_CLASS ELFCLASS32 1007 #define ELF_ARCH EM_ALTERA_NIOS2 1008 1009 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1010 { 1011 regs->ea = infop->entry; 1012 regs->sp = infop->start_stack; 1013 regs->estatus = 0x3; 1014 } 1015 1016 #define ELF_EXEC_PAGESIZE 4096 1017 1018 #define USE_ELF_CORE_DUMP 1019 #define ELF_NREG 49 1020 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1021 1022 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1023 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1024 const CPUNios2State *env) 1025 { 1026 int i; 1027 1028 (*regs)[0] = -1; 1029 for (i = 1; i < 8; i++) /* r0-r7 */ 1030 (*regs)[i] = tswapreg(env->regs[i + 7]); 1031 1032 for (i = 8; i < 16; i++) /* r8-r15 */ 1033 (*regs)[i] = tswapreg(env->regs[i - 8]); 1034 1035 for (i = 16; i < 24; i++) /* r16-r23 */ 1036 (*regs)[i] = tswapreg(env->regs[i + 7]); 1037 (*regs)[24] = -1; /* R_ET */ 1038 (*regs)[25] = -1; /* R_BT */ 1039 (*regs)[26] = tswapreg(env->regs[R_GP]); 1040 (*regs)[27] = tswapreg(env->regs[R_SP]); 1041 (*regs)[28] = tswapreg(env->regs[R_FP]); 1042 (*regs)[29] = tswapreg(env->regs[R_EA]); 1043 (*regs)[30] = -1; /* R_SSTATUS */ 1044 (*regs)[31] = tswapreg(env->regs[R_RA]); 1045 1046 (*regs)[32] = tswapreg(env->regs[R_PC]); 1047 1048 (*regs)[33] = -1; /* R_STATUS */ 1049 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1050 1051 for (i = 35; i < 49; i++) /* ... */ 1052 (*regs)[i] = -1; 1053 } 1054 1055 #endif /* TARGET_NIOS2 */ 1056 1057 #ifdef TARGET_OPENRISC 1058 1059 #define ELF_START_MMAP 0x08000000 1060 1061 #define ELF_ARCH EM_OPENRISC 1062 #define ELF_CLASS ELFCLASS32 1063 #define ELF_DATA ELFDATA2MSB 1064 1065 static inline void init_thread(struct target_pt_regs *regs, 1066 struct image_info *infop) 1067 { 1068 regs->pc = infop->entry; 1069 regs->gpr[1] = infop->start_stack; 1070 } 1071 1072 #define USE_ELF_CORE_DUMP 1073 #define ELF_EXEC_PAGESIZE 8192 1074 1075 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1076 #define ELF_NREG 34 /* gprs and pc, sr */ 1077 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1078 1079 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1080 const CPUOpenRISCState *env) 1081 { 1082 int i; 1083 1084 for (i = 0; i < 32; i++) { 1085 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1086 } 1087 (*regs)[32] = tswapreg(env->pc); 1088 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1089 } 1090 #define ELF_HWCAP 0 1091 #define ELF_PLATFORM NULL 1092 1093 #endif /* TARGET_OPENRISC */ 1094 1095 #ifdef TARGET_SH4 1096 1097 #define ELF_START_MMAP 0x80000000 1098 1099 #define ELF_CLASS ELFCLASS32 1100 #define ELF_ARCH EM_SH 1101 1102 static inline void init_thread(struct target_pt_regs *regs, 1103 struct image_info *infop) 1104 { 1105 /* Check other registers XXXXX */ 1106 regs->pc = infop->entry; 1107 regs->regs[15] = infop->start_stack; 1108 } 1109 1110 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1111 #define ELF_NREG 23 1112 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1113 1114 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1115 enum { 1116 TARGET_REG_PC = 16, 1117 TARGET_REG_PR = 17, 1118 TARGET_REG_SR = 18, 1119 TARGET_REG_GBR = 19, 1120 TARGET_REG_MACH = 20, 1121 TARGET_REG_MACL = 21, 1122 TARGET_REG_SYSCALL = 22 1123 }; 1124 1125 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1126 const CPUSH4State *env) 1127 { 1128 int i; 1129 1130 for (i = 0; i < 16; i++) { 1131 (*regs)[i] = tswapreg(env->gregs[i]); 1132 } 1133 1134 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1135 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1136 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1137 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1138 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1139 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1140 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1141 } 1142 1143 #define USE_ELF_CORE_DUMP 1144 #define ELF_EXEC_PAGESIZE 4096 1145 1146 enum { 1147 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1148 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1149 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1150 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1151 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1152 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1153 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1154 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1155 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1156 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1157 }; 1158 1159 #define ELF_HWCAP get_elf_hwcap() 1160 1161 static uint32_t get_elf_hwcap(void) 1162 { 1163 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1164 uint32_t hwcap = 0; 1165 1166 hwcap |= SH_CPU_HAS_FPU; 1167 1168 if (cpu->env.features & SH_FEATURE_SH4A) { 1169 hwcap |= SH_CPU_HAS_LLSC; 1170 } 1171 1172 return hwcap; 1173 } 1174 1175 #endif 1176 1177 #ifdef TARGET_CRIS 1178 1179 #define ELF_START_MMAP 0x80000000 1180 1181 #define ELF_CLASS ELFCLASS32 1182 #define ELF_ARCH EM_CRIS 1183 1184 static inline void init_thread(struct target_pt_regs *regs, 1185 struct image_info *infop) 1186 { 1187 regs->erp = infop->entry; 1188 } 1189 1190 #define ELF_EXEC_PAGESIZE 8192 1191 1192 #endif 1193 1194 #ifdef TARGET_M68K 1195 1196 #define ELF_START_MMAP 0x80000000 1197 1198 #define ELF_CLASS ELFCLASS32 1199 #define ELF_ARCH EM_68K 1200 1201 /* ??? Does this need to do anything? 1202 #define ELF_PLAT_INIT(_r) */ 1203 1204 static inline void init_thread(struct target_pt_regs *regs, 1205 struct image_info *infop) 1206 { 1207 regs->usp = infop->start_stack; 1208 regs->sr = 0; 1209 regs->pc = infop->entry; 1210 } 1211 1212 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1213 #define ELF_NREG 20 1214 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1215 1216 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1217 { 1218 (*regs)[0] = tswapreg(env->dregs[1]); 1219 (*regs)[1] = tswapreg(env->dregs[2]); 1220 (*regs)[2] = tswapreg(env->dregs[3]); 1221 (*regs)[3] = tswapreg(env->dregs[4]); 1222 (*regs)[4] = tswapreg(env->dregs[5]); 1223 (*regs)[5] = tswapreg(env->dregs[6]); 1224 (*regs)[6] = tswapreg(env->dregs[7]); 1225 (*regs)[7] = tswapreg(env->aregs[0]); 1226 (*regs)[8] = tswapreg(env->aregs[1]); 1227 (*regs)[9] = tswapreg(env->aregs[2]); 1228 (*regs)[10] = tswapreg(env->aregs[3]); 1229 (*regs)[11] = tswapreg(env->aregs[4]); 1230 (*regs)[12] = tswapreg(env->aregs[5]); 1231 (*regs)[13] = tswapreg(env->aregs[6]); 1232 (*regs)[14] = tswapreg(env->dregs[0]); 1233 (*regs)[15] = tswapreg(env->aregs[7]); 1234 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1235 (*regs)[17] = tswapreg(env->sr); 1236 (*regs)[18] = tswapreg(env->pc); 1237 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1238 } 1239 1240 #define USE_ELF_CORE_DUMP 1241 #define ELF_EXEC_PAGESIZE 8192 1242 1243 #endif 1244 1245 #ifdef TARGET_ALPHA 1246 1247 #define ELF_START_MMAP (0x30000000000ULL) 1248 1249 #define ELF_CLASS ELFCLASS64 1250 #define ELF_ARCH EM_ALPHA 1251 1252 static inline void init_thread(struct target_pt_regs *regs, 1253 struct image_info *infop) 1254 { 1255 regs->pc = infop->entry; 1256 regs->ps = 8; 1257 regs->usp = infop->start_stack; 1258 } 1259 1260 #define ELF_EXEC_PAGESIZE 8192 1261 1262 #endif /* TARGET_ALPHA */ 1263 1264 #ifdef TARGET_S390X 1265 1266 #define ELF_START_MMAP (0x20000000000ULL) 1267 1268 #define ELF_CLASS ELFCLASS64 1269 #define ELF_DATA ELFDATA2MSB 1270 #define ELF_ARCH EM_S390 1271 1272 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1273 { 1274 regs->psw.addr = infop->entry; 1275 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1276 regs->gprs[15] = infop->start_stack; 1277 } 1278 1279 #endif /* TARGET_S390X */ 1280 1281 #ifdef TARGET_TILEGX 1282 1283 /* 42 bits real used address, a half for user mode */ 1284 #define ELF_START_MMAP (0x00000020000000000ULL) 1285 1286 #define elf_check_arch(x) ((x) == EM_TILEGX) 1287 1288 #define ELF_CLASS ELFCLASS64 1289 #define ELF_DATA ELFDATA2LSB 1290 #define ELF_ARCH EM_TILEGX 1291 1292 static inline void init_thread(struct target_pt_regs *regs, 1293 struct image_info *infop) 1294 { 1295 regs->pc = infop->entry; 1296 regs->sp = infop->start_stack; 1297 1298 } 1299 1300 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1301 1302 #endif /* TARGET_TILEGX */ 1303 1304 #ifdef TARGET_RISCV 1305 1306 #define ELF_START_MMAP 0x80000000 1307 #define ELF_ARCH EM_RISCV 1308 1309 #ifdef TARGET_RISCV32 1310 #define ELF_CLASS ELFCLASS32 1311 #else 1312 #define ELF_CLASS ELFCLASS64 1313 #endif 1314 1315 static inline void init_thread(struct target_pt_regs *regs, 1316 struct image_info *infop) 1317 { 1318 regs->sepc = infop->entry; 1319 regs->sp = infop->start_stack; 1320 } 1321 1322 #define ELF_EXEC_PAGESIZE 4096 1323 1324 #endif /* TARGET_RISCV */ 1325 1326 #ifdef TARGET_HPPA 1327 1328 #define ELF_START_MMAP 0x80000000 1329 #define ELF_CLASS ELFCLASS32 1330 #define ELF_ARCH EM_PARISC 1331 #define ELF_PLATFORM "PARISC" 1332 #define STACK_GROWS_DOWN 0 1333 #define STACK_ALIGNMENT 64 1334 1335 static inline void init_thread(struct target_pt_regs *regs, 1336 struct image_info *infop) 1337 { 1338 regs->iaoq[0] = infop->entry; 1339 regs->iaoq[1] = infop->entry + 4; 1340 regs->gr[23] = 0; 1341 regs->gr[24] = infop->arg_start; 1342 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1343 /* The top-of-stack contains a linkage buffer. */ 1344 regs->gr[30] = infop->start_stack + 64; 1345 regs->gr[31] = infop->entry; 1346 } 1347 1348 #endif /* TARGET_HPPA */ 1349 1350 #ifdef TARGET_XTENSA 1351 1352 #define ELF_START_MMAP 0x20000000 1353 1354 #define ELF_CLASS ELFCLASS32 1355 #define ELF_ARCH EM_XTENSA 1356 1357 static inline void init_thread(struct target_pt_regs *regs, 1358 struct image_info *infop) 1359 { 1360 regs->windowbase = 0; 1361 regs->windowstart = 1; 1362 regs->areg[1] = infop->start_stack; 1363 regs->pc = infop->entry; 1364 } 1365 1366 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1367 #define ELF_NREG 128 1368 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1369 1370 enum { 1371 TARGET_REG_PC, 1372 TARGET_REG_PS, 1373 TARGET_REG_LBEG, 1374 TARGET_REG_LEND, 1375 TARGET_REG_LCOUNT, 1376 TARGET_REG_SAR, 1377 TARGET_REG_WINDOWSTART, 1378 TARGET_REG_WINDOWBASE, 1379 TARGET_REG_THREADPTR, 1380 TARGET_REG_AR0 = 64, 1381 }; 1382 1383 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1384 const CPUXtensaState *env) 1385 { 1386 unsigned i; 1387 1388 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1389 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1390 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1391 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1392 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1393 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1394 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1395 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1396 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1397 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1398 for (i = 0; i < env->config->nareg; ++i) { 1399 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1400 } 1401 } 1402 1403 #define USE_ELF_CORE_DUMP 1404 #define ELF_EXEC_PAGESIZE 4096 1405 1406 #endif /* TARGET_XTENSA */ 1407 1408 #ifndef ELF_PLATFORM 1409 #define ELF_PLATFORM (NULL) 1410 #endif 1411 1412 #ifndef ELF_MACHINE 1413 #define ELF_MACHINE ELF_ARCH 1414 #endif 1415 1416 #ifndef elf_check_arch 1417 #define elf_check_arch(x) ((x) == ELF_ARCH) 1418 #endif 1419 1420 #ifndef ELF_HWCAP 1421 #define ELF_HWCAP 0 1422 #endif 1423 1424 #ifndef STACK_GROWS_DOWN 1425 #define STACK_GROWS_DOWN 1 1426 #endif 1427 1428 #ifndef STACK_ALIGNMENT 1429 #define STACK_ALIGNMENT 16 1430 #endif 1431 1432 #ifdef TARGET_ABI32 1433 #undef ELF_CLASS 1434 #define ELF_CLASS ELFCLASS32 1435 #undef bswaptls 1436 #define bswaptls(ptr) bswap32s(ptr) 1437 #endif 1438 1439 #include "elf.h" 1440 1441 struct exec 1442 { 1443 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1444 unsigned int a_text; /* length of text, in bytes */ 1445 unsigned int a_data; /* length of data, in bytes */ 1446 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1447 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1448 unsigned int a_entry; /* start address */ 1449 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1450 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1451 }; 1452 1453 1454 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1455 #define OMAGIC 0407 1456 #define NMAGIC 0410 1457 #define ZMAGIC 0413 1458 #define QMAGIC 0314 1459 1460 /* Necessary parameters */ 1461 #define TARGET_ELF_EXEC_PAGESIZE \ 1462 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1463 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1464 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1465 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1466 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1467 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1468 1469 #define DLINFO_ITEMS 15 1470 1471 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1472 { 1473 memcpy(to, from, n); 1474 } 1475 1476 #ifdef BSWAP_NEEDED 1477 static void bswap_ehdr(struct elfhdr *ehdr) 1478 { 1479 bswap16s(&ehdr->e_type); /* Object file type */ 1480 bswap16s(&ehdr->e_machine); /* Architecture */ 1481 bswap32s(&ehdr->e_version); /* Object file version */ 1482 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1483 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1484 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1485 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1486 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1487 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1488 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1489 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1490 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1491 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1492 } 1493 1494 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1495 { 1496 int i; 1497 for (i = 0; i < phnum; ++i, ++phdr) { 1498 bswap32s(&phdr->p_type); /* Segment type */ 1499 bswap32s(&phdr->p_flags); /* Segment flags */ 1500 bswaptls(&phdr->p_offset); /* Segment file offset */ 1501 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1502 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1503 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1504 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1505 bswaptls(&phdr->p_align); /* Segment alignment */ 1506 } 1507 } 1508 1509 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1510 { 1511 int i; 1512 for (i = 0; i < shnum; ++i, ++shdr) { 1513 bswap32s(&shdr->sh_name); 1514 bswap32s(&shdr->sh_type); 1515 bswaptls(&shdr->sh_flags); 1516 bswaptls(&shdr->sh_addr); 1517 bswaptls(&shdr->sh_offset); 1518 bswaptls(&shdr->sh_size); 1519 bswap32s(&shdr->sh_link); 1520 bswap32s(&shdr->sh_info); 1521 bswaptls(&shdr->sh_addralign); 1522 bswaptls(&shdr->sh_entsize); 1523 } 1524 } 1525 1526 static void bswap_sym(struct elf_sym *sym) 1527 { 1528 bswap32s(&sym->st_name); 1529 bswaptls(&sym->st_value); 1530 bswaptls(&sym->st_size); 1531 bswap16s(&sym->st_shndx); 1532 } 1533 1534 #ifdef TARGET_MIPS 1535 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1536 { 1537 bswap16s(&abiflags->version); 1538 bswap32s(&abiflags->ases); 1539 bswap32s(&abiflags->isa_ext); 1540 bswap32s(&abiflags->flags1); 1541 bswap32s(&abiflags->flags2); 1542 } 1543 #endif 1544 #else 1545 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1546 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1547 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1548 static inline void bswap_sym(struct elf_sym *sym) { } 1549 #ifdef TARGET_MIPS 1550 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1551 #endif 1552 #endif 1553 1554 #ifdef USE_ELF_CORE_DUMP 1555 static int elf_core_dump(int, const CPUArchState *); 1556 #endif /* USE_ELF_CORE_DUMP */ 1557 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1558 1559 /* Verify the portions of EHDR within E_IDENT for the target. 1560 This can be performed before bswapping the entire header. */ 1561 static bool elf_check_ident(struct elfhdr *ehdr) 1562 { 1563 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1564 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1565 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1566 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1567 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1568 && ehdr->e_ident[EI_DATA] == ELF_DATA 1569 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1570 } 1571 1572 /* Verify the portions of EHDR outside of E_IDENT for the target. 1573 This has to wait until after bswapping the header. */ 1574 static bool elf_check_ehdr(struct elfhdr *ehdr) 1575 { 1576 return (elf_check_arch(ehdr->e_machine) 1577 && ehdr->e_ehsize == sizeof(struct elfhdr) 1578 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1579 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1580 } 1581 1582 /* 1583 * 'copy_elf_strings()' copies argument/envelope strings from user 1584 * memory to free pages in kernel mem. These are in a format ready 1585 * to be put directly into the top of new user memory. 1586 * 1587 */ 1588 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1589 abi_ulong p, abi_ulong stack_limit) 1590 { 1591 char *tmp; 1592 int len, i; 1593 abi_ulong top = p; 1594 1595 if (!p) { 1596 return 0; /* bullet-proofing */ 1597 } 1598 1599 if (STACK_GROWS_DOWN) { 1600 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1601 for (i = argc - 1; i >= 0; --i) { 1602 tmp = argv[i]; 1603 if (!tmp) { 1604 fprintf(stderr, "VFS: argc is wrong"); 1605 exit(-1); 1606 } 1607 len = strlen(tmp) + 1; 1608 tmp += len; 1609 1610 if (len > (p - stack_limit)) { 1611 return 0; 1612 } 1613 while (len) { 1614 int bytes_to_copy = (len > offset) ? offset : len; 1615 tmp -= bytes_to_copy; 1616 p -= bytes_to_copy; 1617 offset -= bytes_to_copy; 1618 len -= bytes_to_copy; 1619 1620 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1621 1622 if (offset == 0) { 1623 memcpy_to_target(p, scratch, top - p); 1624 top = p; 1625 offset = TARGET_PAGE_SIZE; 1626 } 1627 } 1628 } 1629 if (p != top) { 1630 memcpy_to_target(p, scratch + offset, top - p); 1631 } 1632 } else { 1633 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1634 for (i = 0; i < argc; ++i) { 1635 tmp = argv[i]; 1636 if (!tmp) { 1637 fprintf(stderr, "VFS: argc is wrong"); 1638 exit(-1); 1639 } 1640 len = strlen(tmp) + 1; 1641 if (len > (stack_limit - p)) { 1642 return 0; 1643 } 1644 while (len) { 1645 int bytes_to_copy = (len > remaining) ? remaining : len; 1646 1647 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1648 1649 tmp += bytes_to_copy; 1650 remaining -= bytes_to_copy; 1651 p += bytes_to_copy; 1652 len -= bytes_to_copy; 1653 1654 if (remaining == 0) { 1655 memcpy_to_target(top, scratch, p - top); 1656 top = p; 1657 remaining = TARGET_PAGE_SIZE; 1658 } 1659 } 1660 } 1661 if (p != top) { 1662 memcpy_to_target(top, scratch, p - top); 1663 } 1664 } 1665 1666 return p; 1667 } 1668 1669 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1670 * argument/environment space. Newer kernels (>2.6.33) allow more, 1671 * dependent on stack size, but guarantee at least 32 pages for 1672 * backwards compatibility. 1673 */ 1674 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1675 1676 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1677 struct image_info *info) 1678 { 1679 abi_ulong size, error, guard; 1680 1681 size = guest_stack_size; 1682 if (size < STACK_LOWER_LIMIT) { 1683 size = STACK_LOWER_LIMIT; 1684 } 1685 guard = TARGET_PAGE_SIZE; 1686 if (guard < qemu_real_host_page_size) { 1687 guard = qemu_real_host_page_size; 1688 } 1689 1690 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1691 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1692 if (error == -1) { 1693 perror("mmap stack"); 1694 exit(-1); 1695 } 1696 1697 /* We reserve one extra page at the top of the stack as guard. */ 1698 if (STACK_GROWS_DOWN) { 1699 target_mprotect(error, guard, PROT_NONE); 1700 info->stack_limit = error + guard; 1701 return info->stack_limit + size - sizeof(void *); 1702 } else { 1703 target_mprotect(error + size, guard, PROT_NONE); 1704 info->stack_limit = error + size; 1705 return error; 1706 } 1707 } 1708 1709 /* Map and zero the bss. We need to explicitly zero any fractional pages 1710 after the data section (i.e. bss). */ 1711 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1712 { 1713 uintptr_t host_start, host_map_start, host_end; 1714 1715 last_bss = TARGET_PAGE_ALIGN(last_bss); 1716 1717 /* ??? There is confusion between qemu_real_host_page_size and 1718 qemu_host_page_size here and elsewhere in target_mmap, which 1719 may lead to the end of the data section mapping from the file 1720 not being mapped. At least there was an explicit test and 1721 comment for that here, suggesting that "the file size must 1722 be known". The comment probably pre-dates the introduction 1723 of the fstat system call in target_mmap which does in fact 1724 find out the size. What isn't clear is if the workaround 1725 here is still actually needed. For now, continue with it, 1726 but merge it with the "normal" mmap that would allocate the bss. */ 1727 1728 host_start = (uintptr_t) g2h(elf_bss); 1729 host_end = (uintptr_t) g2h(last_bss); 1730 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1731 1732 if (host_map_start < host_end) { 1733 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1734 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1735 if (p == MAP_FAILED) { 1736 perror("cannot mmap brk"); 1737 exit(-1); 1738 } 1739 } 1740 1741 /* Ensure that the bss page(s) are valid */ 1742 if ((page_get_flags(last_bss-1) & prot) != prot) { 1743 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1744 } 1745 1746 if (host_start < host_map_start) { 1747 memset((void *)host_start, 0, host_map_start - host_start); 1748 } 1749 } 1750 1751 #ifdef TARGET_ARM 1752 static int elf_is_fdpic(struct elfhdr *exec) 1753 { 1754 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1755 } 1756 #else 1757 /* Default implementation, always false. */ 1758 static int elf_is_fdpic(struct elfhdr *exec) 1759 { 1760 return 0; 1761 } 1762 #endif 1763 1764 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1765 { 1766 uint16_t n; 1767 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1768 1769 /* elf32_fdpic_loadseg */ 1770 n = info->nsegs; 1771 while (n--) { 1772 sp -= 12; 1773 put_user_u32(loadsegs[n].addr, sp+0); 1774 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1775 put_user_u32(loadsegs[n].p_memsz, sp+8); 1776 } 1777 1778 /* elf32_fdpic_loadmap */ 1779 sp -= 4; 1780 put_user_u16(0, sp+0); /* version */ 1781 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1782 1783 info->personality = PER_LINUX_FDPIC; 1784 info->loadmap_addr = sp; 1785 1786 return sp; 1787 } 1788 1789 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1790 struct elfhdr *exec, 1791 struct image_info *info, 1792 struct image_info *interp_info) 1793 { 1794 abi_ulong sp; 1795 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1796 int size; 1797 int i; 1798 abi_ulong u_rand_bytes; 1799 uint8_t k_rand_bytes[16]; 1800 abi_ulong u_platform; 1801 const char *k_platform; 1802 const int n = sizeof(elf_addr_t); 1803 1804 sp = p; 1805 1806 /* Needs to be before we load the env/argc/... */ 1807 if (elf_is_fdpic(exec)) { 1808 /* Need 4 byte alignment for these structs */ 1809 sp &= ~3; 1810 sp = loader_build_fdpic_loadmap(info, sp); 1811 info->other_info = interp_info; 1812 if (interp_info) { 1813 interp_info->other_info = info; 1814 sp = loader_build_fdpic_loadmap(interp_info, sp); 1815 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1816 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1817 } else { 1818 info->interpreter_loadmap_addr = 0; 1819 info->interpreter_pt_dynamic_addr = 0; 1820 } 1821 } 1822 1823 u_platform = 0; 1824 k_platform = ELF_PLATFORM; 1825 if (k_platform) { 1826 size_t len = strlen(k_platform) + 1; 1827 if (STACK_GROWS_DOWN) { 1828 sp -= (len + n - 1) & ~(n - 1); 1829 u_platform = sp; 1830 /* FIXME - check return value of memcpy_to_target() for failure */ 1831 memcpy_to_target(sp, k_platform, len); 1832 } else { 1833 memcpy_to_target(sp, k_platform, len); 1834 u_platform = sp; 1835 sp += len + 1; 1836 } 1837 } 1838 1839 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1840 * the argv and envp pointers. 1841 */ 1842 if (STACK_GROWS_DOWN) { 1843 sp = QEMU_ALIGN_DOWN(sp, 16); 1844 } else { 1845 sp = QEMU_ALIGN_UP(sp, 16); 1846 } 1847 1848 /* 1849 * Generate 16 random bytes for userspace PRNG seeding (not 1850 * cryptically secure but it's not the aim of QEMU). 1851 */ 1852 for (i = 0; i < 16; i++) { 1853 k_rand_bytes[i] = rand(); 1854 } 1855 if (STACK_GROWS_DOWN) { 1856 sp -= 16; 1857 u_rand_bytes = sp; 1858 /* FIXME - check return value of memcpy_to_target() for failure */ 1859 memcpy_to_target(sp, k_rand_bytes, 16); 1860 } else { 1861 memcpy_to_target(sp, k_rand_bytes, 16); 1862 u_rand_bytes = sp; 1863 sp += 16; 1864 } 1865 1866 size = (DLINFO_ITEMS + 1) * 2; 1867 if (k_platform) 1868 size += 2; 1869 #ifdef DLINFO_ARCH_ITEMS 1870 size += DLINFO_ARCH_ITEMS * 2; 1871 #endif 1872 #ifdef ELF_HWCAP2 1873 size += 2; 1874 #endif 1875 info->auxv_len = size * n; 1876 1877 size += envc + argc + 2; 1878 size += 1; /* argc itself */ 1879 size *= n; 1880 1881 /* Allocate space and finalize stack alignment for entry now. */ 1882 if (STACK_GROWS_DOWN) { 1883 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1884 sp = u_argc; 1885 } else { 1886 u_argc = sp; 1887 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1888 } 1889 1890 u_argv = u_argc + n; 1891 u_envp = u_argv + (argc + 1) * n; 1892 u_auxv = u_envp + (envc + 1) * n; 1893 info->saved_auxv = u_auxv; 1894 info->arg_start = u_argv; 1895 info->arg_end = u_argv + argc * n; 1896 1897 /* This is correct because Linux defines 1898 * elf_addr_t as Elf32_Off / Elf64_Off 1899 */ 1900 #define NEW_AUX_ENT(id, val) do { \ 1901 put_user_ual(id, u_auxv); u_auxv += n; \ 1902 put_user_ual(val, u_auxv); u_auxv += n; \ 1903 } while(0) 1904 1905 #ifdef ARCH_DLINFO 1906 /* 1907 * ARCH_DLINFO must come first so platform specific code can enforce 1908 * special alignment requirements on the AUXV if necessary (eg. PPC). 1909 */ 1910 ARCH_DLINFO; 1911 #endif 1912 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1913 * on info->auxv_len will trigger. 1914 */ 1915 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1916 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1917 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1918 if ((info->alignment & ~qemu_host_page_mask) != 0) { 1919 /* Target doesn't support host page size alignment */ 1920 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1921 } else { 1922 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 1923 qemu_host_page_size))); 1924 } 1925 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1926 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1927 NEW_AUX_ENT(AT_ENTRY, info->entry); 1928 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1929 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1930 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1931 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1932 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1933 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1934 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1935 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 1936 1937 #ifdef ELF_HWCAP2 1938 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1939 #endif 1940 1941 if (u_platform) { 1942 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1943 } 1944 NEW_AUX_ENT (AT_NULL, 0); 1945 #undef NEW_AUX_ENT 1946 1947 /* Check that our initial calculation of the auxv length matches how much 1948 * we actually put into it. 1949 */ 1950 assert(info->auxv_len == u_auxv - info->saved_auxv); 1951 1952 put_user_ual(argc, u_argc); 1953 1954 p = info->arg_strings; 1955 for (i = 0; i < argc; ++i) { 1956 put_user_ual(p, u_argv); 1957 u_argv += n; 1958 p += target_strlen(p) + 1; 1959 } 1960 put_user_ual(0, u_argv); 1961 1962 p = info->env_strings; 1963 for (i = 0; i < envc; ++i) { 1964 put_user_ual(p, u_envp); 1965 u_envp += n; 1966 p += target_strlen(p) + 1; 1967 } 1968 put_user_ual(0, u_envp); 1969 1970 return sp; 1971 } 1972 1973 unsigned long init_guest_space(unsigned long host_start, 1974 unsigned long host_size, 1975 unsigned long guest_start, 1976 bool fixed) 1977 { 1978 unsigned long current_start, aligned_start; 1979 int flags; 1980 1981 assert(host_start || host_size); 1982 1983 /* If just a starting address is given, then just verify that 1984 * address. */ 1985 if (host_start && !host_size) { 1986 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1987 if (init_guest_commpage(host_start, host_size) != 1) { 1988 return (unsigned long)-1; 1989 } 1990 #endif 1991 return host_start; 1992 } 1993 1994 /* Setup the initial flags and start address. */ 1995 current_start = host_start & qemu_host_page_mask; 1996 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1997 if (fixed) { 1998 flags |= MAP_FIXED; 1999 } 2000 2001 /* Otherwise, a non-zero size region of memory needs to be mapped 2002 * and validated. */ 2003 2004 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2005 /* On 32-bit ARM, we need to map not just the usable memory, but 2006 * also the commpage. Try to find a suitable place by allocating 2007 * a big chunk for all of it. If host_start, then the naive 2008 * strategy probably does good enough. 2009 */ 2010 if (!host_start) { 2011 unsigned long guest_full_size, host_full_size, real_start; 2012 2013 guest_full_size = 2014 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 2015 host_full_size = guest_full_size - guest_start; 2016 real_start = (unsigned long) 2017 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 2018 if (real_start == (unsigned long)-1) { 2019 if (host_size < host_full_size - qemu_host_page_size) { 2020 /* We failed to map a continous segment, but we're 2021 * allowed to have a gap between the usable memory and 2022 * the commpage where other things can be mapped. 2023 * This sparseness gives us more flexibility to find 2024 * an address range. 2025 */ 2026 goto naive; 2027 } 2028 return (unsigned long)-1; 2029 } 2030 munmap((void *)real_start, host_full_size); 2031 if (real_start & ~qemu_host_page_mask) { 2032 /* The same thing again, but with an extra qemu_host_page_size 2033 * so that we can shift around alignment. 2034 */ 2035 unsigned long real_size = host_full_size + qemu_host_page_size; 2036 real_start = (unsigned long) 2037 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 2038 if (real_start == (unsigned long)-1) { 2039 if (host_size < host_full_size - qemu_host_page_size) { 2040 goto naive; 2041 } 2042 return (unsigned long)-1; 2043 } 2044 munmap((void *)real_start, real_size); 2045 real_start = HOST_PAGE_ALIGN(real_start); 2046 } 2047 current_start = real_start; 2048 } 2049 naive: 2050 #endif 2051 2052 while (1) { 2053 unsigned long real_start, real_size, aligned_size; 2054 aligned_size = real_size = host_size; 2055 2056 /* Do not use mmap_find_vma here because that is limited to the 2057 * guest address space. We are going to make the 2058 * guest address space fit whatever we're given. 2059 */ 2060 real_start = (unsigned long) 2061 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2062 if (real_start == (unsigned long)-1) { 2063 return (unsigned long)-1; 2064 } 2065 2066 /* Check to see if the address is valid. */ 2067 if (host_start && real_start != current_start) { 2068 goto try_again; 2069 } 2070 2071 /* Ensure the address is properly aligned. */ 2072 if (real_start & ~qemu_host_page_mask) { 2073 /* Ideally, we adjust like 2074 * 2075 * pages: [ ][ ][ ][ ][ ] 2076 * old: [ real ] 2077 * [ aligned ] 2078 * new: [ real ] 2079 * [ aligned ] 2080 * 2081 * But if there is something else mapped right after it, 2082 * then obviously it won't have room to grow, and the 2083 * kernel will put the new larger real someplace else with 2084 * unknown alignment (if we made it to here, then 2085 * fixed=false). Which is why we grow real by a full page 2086 * size, instead of by part of one; so that even if we get 2087 * moved, we can still guarantee alignment. But this does 2088 * mean that there is a padding of < 1 page both before 2089 * and after the aligned range; the "after" could could 2090 * cause problems for ARM emulation where it could butt in 2091 * to where we need to put the commpage. 2092 */ 2093 munmap((void *)real_start, host_size); 2094 real_size = aligned_size + qemu_host_page_size; 2095 real_start = (unsigned long) 2096 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2097 if (real_start == (unsigned long)-1) { 2098 return (unsigned long)-1; 2099 } 2100 aligned_start = HOST_PAGE_ALIGN(real_start); 2101 } else { 2102 aligned_start = real_start; 2103 } 2104 2105 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2106 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2107 int valid = init_guest_commpage(aligned_start - guest_start, 2108 aligned_size + guest_start); 2109 if (valid == -1) { 2110 munmap((void *)real_start, real_size); 2111 return (unsigned long)-1; 2112 } else if (valid == 0) { 2113 goto try_again; 2114 } 2115 #endif 2116 2117 /* If nothing has said `return -1` or `goto try_again` yet, 2118 * then the address we have is good. 2119 */ 2120 break; 2121 2122 try_again: 2123 /* That address didn't work. Unmap and try a different one. 2124 * The address the host picked because is typically right at 2125 * the top of the host address space and leaves the guest with 2126 * no usable address space. Resort to a linear search. We 2127 * already compensated for mmap_min_addr, so this should not 2128 * happen often. Probably means we got unlucky and host 2129 * address space randomization put a shared library somewhere 2130 * inconvenient. 2131 * 2132 * This is probably a good strategy if host_start, but is 2133 * probably a bad strategy if not, which means we got here 2134 * because of trouble with ARM commpage setup. 2135 */ 2136 munmap((void *)real_start, real_size); 2137 current_start += qemu_host_page_size; 2138 if (host_start == current_start) { 2139 /* Theoretically possible if host doesn't have any suitably 2140 * aligned areas. Normally the first mmap will fail. 2141 */ 2142 return (unsigned long)-1; 2143 } 2144 } 2145 2146 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2147 2148 return aligned_start; 2149 } 2150 2151 static void probe_guest_base(const char *image_name, 2152 abi_ulong loaddr, abi_ulong hiaddr) 2153 { 2154 /* Probe for a suitable guest base address, if the user has not set 2155 * it explicitly, and set guest_base appropriately. 2156 * In case of error we will print a suitable message and exit. 2157 */ 2158 const char *errmsg; 2159 if (!have_guest_base && !reserved_va) { 2160 unsigned long host_start, real_start, host_size; 2161 2162 /* Round addresses to page boundaries. */ 2163 loaddr &= qemu_host_page_mask; 2164 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2165 2166 if (loaddr < mmap_min_addr) { 2167 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2168 } else { 2169 host_start = loaddr; 2170 if (host_start != loaddr) { 2171 errmsg = "Address overflow loading ELF binary"; 2172 goto exit_errmsg; 2173 } 2174 } 2175 host_size = hiaddr - loaddr; 2176 2177 /* Setup the initial guest memory space with ranges gleaned from 2178 * the ELF image that is being loaded. 2179 */ 2180 real_start = init_guest_space(host_start, host_size, loaddr, false); 2181 if (real_start == (unsigned long)-1) { 2182 errmsg = "Unable to find space for application"; 2183 goto exit_errmsg; 2184 } 2185 guest_base = real_start - loaddr; 2186 2187 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2188 TARGET_ABI_FMT_lx " to 0x%lx\n", 2189 loaddr, real_start); 2190 } 2191 return; 2192 2193 exit_errmsg: 2194 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2195 exit(-1); 2196 } 2197 2198 2199 /* Load an ELF image into the address space. 2200 2201 IMAGE_NAME is the filename of the image, to use in error messages. 2202 IMAGE_FD is the open file descriptor for the image. 2203 2204 BPRM_BUF is a copy of the beginning of the file; this of course 2205 contains the elf file header at offset 0. It is assumed that this 2206 buffer is sufficiently aligned to present no problems to the host 2207 in accessing data at aligned offsets within the buffer. 2208 2209 On return: INFO values will be filled in, as necessary or available. */ 2210 2211 static void load_elf_image(const char *image_name, int image_fd, 2212 struct image_info *info, char **pinterp_name, 2213 char bprm_buf[BPRM_BUF_SIZE]) 2214 { 2215 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2216 struct elf_phdr *phdr; 2217 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2218 int i, retval; 2219 const char *errmsg; 2220 2221 /* First of all, some simple consistency checks */ 2222 errmsg = "Invalid ELF image for this architecture"; 2223 if (!elf_check_ident(ehdr)) { 2224 goto exit_errmsg; 2225 } 2226 bswap_ehdr(ehdr); 2227 if (!elf_check_ehdr(ehdr)) { 2228 goto exit_errmsg; 2229 } 2230 2231 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2232 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2233 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2234 } else { 2235 phdr = (struct elf_phdr *) alloca(i); 2236 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2237 if (retval != i) { 2238 goto exit_read; 2239 } 2240 } 2241 bswap_phdr(phdr, ehdr->e_phnum); 2242 2243 info->nsegs = 0; 2244 info->pt_dynamic_addr = 0; 2245 2246 mmap_lock(); 2247 2248 /* Find the maximum size of the image and allocate an appropriate 2249 amount of memory to handle that. */ 2250 loaddr = -1, hiaddr = 0; 2251 info->alignment = 0; 2252 for (i = 0; i < ehdr->e_phnum; ++i) { 2253 if (phdr[i].p_type == PT_LOAD) { 2254 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2255 if (a < loaddr) { 2256 loaddr = a; 2257 } 2258 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2259 if (a > hiaddr) { 2260 hiaddr = a; 2261 } 2262 ++info->nsegs; 2263 info->alignment |= phdr[i].p_align; 2264 } 2265 } 2266 2267 load_addr = loaddr; 2268 if (ehdr->e_type == ET_DYN) { 2269 /* The image indicates that it can be loaded anywhere. Find a 2270 location that can hold the memory space required. If the 2271 image is pre-linked, LOADDR will be non-zero. Since we do 2272 not supply MAP_FIXED here we'll use that address if and 2273 only if it remains available. */ 2274 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2275 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2276 -1, 0); 2277 if (load_addr == -1) { 2278 goto exit_perror; 2279 } 2280 } else if (pinterp_name != NULL) { 2281 /* This is the main executable. Make sure that the low 2282 address does not conflict with MMAP_MIN_ADDR or the 2283 QEMU application itself. */ 2284 probe_guest_base(image_name, loaddr, hiaddr); 2285 } 2286 load_bias = load_addr - loaddr; 2287 2288 if (elf_is_fdpic(ehdr)) { 2289 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2290 g_malloc(sizeof(*loadsegs) * info->nsegs); 2291 2292 for (i = 0; i < ehdr->e_phnum; ++i) { 2293 switch (phdr[i].p_type) { 2294 case PT_DYNAMIC: 2295 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2296 break; 2297 case PT_LOAD: 2298 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2299 loadsegs->p_vaddr = phdr[i].p_vaddr; 2300 loadsegs->p_memsz = phdr[i].p_memsz; 2301 ++loadsegs; 2302 break; 2303 } 2304 } 2305 } 2306 2307 info->load_bias = load_bias; 2308 info->load_addr = load_addr; 2309 info->entry = ehdr->e_entry + load_bias; 2310 info->start_code = -1; 2311 info->end_code = 0; 2312 info->start_data = -1; 2313 info->end_data = 0; 2314 info->brk = 0; 2315 info->elf_flags = ehdr->e_flags; 2316 2317 for (i = 0; i < ehdr->e_phnum; i++) { 2318 struct elf_phdr *eppnt = phdr + i; 2319 if (eppnt->p_type == PT_LOAD) { 2320 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2321 int elf_prot = 0; 2322 2323 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2324 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2325 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2326 2327 vaddr = load_bias + eppnt->p_vaddr; 2328 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2329 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2330 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2331 2332 error = target_mmap(vaddr_ps, vaddr_len, 2333 elf_prot, MAP_PRIVATE | MAP_FIXED, 2334 image_fd, eppnt->p_offset - vaddr_po); 2335 if (error == -1) { 2336 goto exit_perror; 2337 } 2338 2339 vaddr_ef = vaddr + eppnt->p_filesz; 2340 vaddr_em = vaddr + eppnt->p_memsz; 2341 2342 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2343 if (vaddr_ef < vaddr_em) { 2344 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2345 } 2346 2347 /* Find the full program boundaries. */ 2348 if (elf_prot & PROT_EXEC) { 2349 if (vaddr < info->start_code) { 2350 info->start_code = vaddr; 2351 } 2352 if (vaddr_ef > info->end_code) { 2353 info->end_code = vaddr_ef; 2354 } 2355 } 2356 if (elf_prot & PROT_WRITE) { 2357 if (vaddr < info->start_data) { 2358 info->start_data = vaddr; 2359 } 2360 if (vaddr_ef > info->end_data) { 2361 info->end_data = vaddr_ef; 2362 } 2363 if (vaddr_em > info->brk) { 2364 info->brk = vaddr_em; 2365 } 2366 } 2367 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2368 char *interp_name; 2369 2370 if (*pinterp_name) { 2371 errmsg = "Multiple PT_INTERP entries"; 2372 goto exit_errmsg; 2373 } 2374 interp_name = malloc(eppnt->p_filesz); 2375 if (!interp_name) { 2376 goto exit_perror; 2377 } 2378 2379 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2380 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2381 eppnt->p_filesz); 2382 } else { 2383 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2384 eppnt->p_offset); 2385 if (retval != eppnt->p_filesz) { 2386 goto exit_perror; 2387 } 2388 } 2389 if (interp_name[eppnt->p_filesz - 1] != 0) { 2390 errmsg = "Invalid PT_INTERP entry"; 2391 goto exit_errmsg; 2392 } 2393 *pinterp_name = interp_name; 2394 #ifdef TARGET_MIPS 2395 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2396 Mips_elf_abiflags_v0 abiflags; 2397 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2398 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2399 goto exit_errmsg; 2400 } 2401 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2402 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2403 sizeof(Mips_elf_abiflags_v0)); 2404 } else { 2405 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2406 eppnt->p_offset); 2407 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2408 goto exit_perror; 2409 } 2410 } 2411 bswap_mips_abiflags(&abiflags); 2412 info->fp_abi = abiflags.fp_abi; 2413 #endif 2414 } 2415 } 2416 2417 if (info->end_data == 0) { 2418 info->start_data = info->end_code; 2419 info->end_data = info->end_code; 2420 info->brk = info->end_code; 2421 } 2422 2423 if (qemu_log_enabled()) { 2424 load_symbols(ehdr, image_fd, load_bias); 2425 } 2426 2427 mmap_unlock(); 2428 2429 close(image_fd); 2430 return; 2431 2432 exit_read: 2433 if (retval >= 0) { 2434 errmsg = "Incomplete read of file header"; 2435 goto exit_errmsg; 2436 } 2437 exit_perror: 2438 errmsg = strerror(errno); 2439 exit_errmsg: 2440 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2441 exit(-1); 2442 } 2443 2444 static void load_elf_interp(const char *filename, struct image_info *info, 2445 char bprm_buf[BPRM_BUF_SIZE]) 2446 { 2447 int fd, retval; 2448 2449 fd = open(path(filename), O_RDONLY); 2450 if (fd < 0) { 2451 goto exit_perror; 2452 } 2453 2454 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2455 if (retval < 0) { 2456 goto exit_perror; 2457 } 2458 if (retval < BPRM_BUF_SIZE) { 2459 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2460 } 2461 2462 load_elf_image(filename, fd, info, NULL, bprm_buf); 2463 return; 2464 2465 exit_perror: 2466 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2467 exit(-1); 2468 } 2469 2470 static int symfind(const void *s0, const void *s1) 2471 { 2472 target_ulong addr = *(target_ulong *)s0; 2473 struct elf_sym *sym = (struct elf_sym *)s1; 2474 int result = 0; 2475 if (addr < sym->st_value) { 2476 result = -1; 2477 } else if (addr >= sym->st_value + sym->st_size) { 2478 result = 1; 2479 } 2480 return result; 2481 } 2482 2483 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2484 { 2485 #if ELF_CLASS == ELFCLASS32 2486 struct elf_sym *syms = s->disas_symtab.elf32; 2487 #else 2488 struct elf_sym *syms = s->disas_symtab.elf64; 2489 #endif 2490 2491 // binary search 2492 struct elf_sym *sym; 2493 2494 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2495 if (sym != NULL) { 2496 return s->disas_strtab + sym->st_name; 2497 } 2498 2499 return ""; 2500 } 2501 2502 /* FIXME: This should use elf_ops.h */ 2503 static int symcmp(const void *s0, const void *s1) 2504 { 2505 struct elf_sym *sym0 = (struct elf_sym *)s0; 2506 struct elf_sym *sym1 = (struct elf_sym *)s1; 2507 return (sym0->st_value < sym1->st_value) 2508 ? -1 2509 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2510 } 2511 2512 /* Best attempt to load symbols from this ELF object. */ 2513 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2514 { 2515 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2516 uint64_t segsz; 2517 struct elf_shdr *shdr; 2518 char *strings = NULL; 2519 struct syminfo *s = NULL; 2520 struct elf_sym *new_syms, *syms = NULL; 2521 2522 shnum = hdr->e_shnum; 2523 i = shnum * sizeof(struct elf_shdr); 2524 shdr = (struct elf_shdr *)alloca(i); 2525 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2526 return; 2527 } 2528 2529 bswap_shdr(shdr, shnum); 2530 for (i = 0; i < shnum; ++i) { 2531 if (shdr[i].sh_type == SHT_SYMTAB) { 2532 sym_idx = i; 2533 str_idx = shdr[i].sh_link; 2534 goto found; 2535 } 2536 } 2537 2538 /* There will be no symbol table if the file was stripped. */ 2539 return; 2540 2541 found: 2542 /* Now know where the strtab and symtab are. Snarf them. */ 2543 s = g_try_new(struct syminfo, 1); 2544 if (!s) { 2545 goto give_up; 2546 } 2547 2548 segsz = shdr[str_idx].sh_size; 2549 s->disas_strtab = strings = g_try_malloc(segsz); 2550 if (!strings || 2551 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2552 goto give_up; 2553 } 2554 2555 segsz = shdr[sym_idx].sh_size; 2556 syms = g_try_malloc(segsz); 2557 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2558 goto give_up; 2559 } 2560 2561 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2562 /* Implausibly large symbol table: give up rather than ploughing 2563 * on with the number of symbols calculation overflowing 2564 */ 2565 goto give_up; 2566 } 2567 nsyms = segsz / sizeof(struct elf_sym); 2568 for (i = 0; i < nsyms; ) { 2569 bswap_sym(syms + i); 2570 /* Throw away entries which we do not need. */ 2571 if (syms[i].st_shndx == SHN_UNDEF 2572 || syms[i].st_shndx >= SHN_LORESERVE 2573 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2574 if (i < --nsyms) { 2575 syms[i] = syms[nsyms]; 2576 } 2577 } else { 2578 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2579 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2580 syms[i].st_value &= ~(target_ulong)1; 2581 #endif 2582 syms[i].st_value += load_bias; 2583 i++; 2584 } 2585 } 2586 2587 /* No "useful" symbol. */ 2588 if (nsyms == 0) { 2589 goto give_up; 2590 } 2591 2592 /* Attempt to free the storage associated with the local symbols 2593 that we threw away. Whether or not this has any effect on the 2594 memory allocation depends on the malloc implementation and how 2595 many symbols we managed to discard. */ 2596 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2597 if (new_syms == NULL) { 2598 goto give_up; 2599 } 2600 syms = new_syms; 2601 2602 qsort(syms, nsyms, sizeof(*syms), symcmp); 2603 2604 s->disas_num_syms = nsyms; 2605 #if ELF_CLASS == ELFCLASS32 2606 s->disas_symtab.elf32 = syms; 2607 #else 2608 s->disas_symtab.elf64 = syms; 2609 #endif 2610 s->lookup_symbol = lookup_symbolxx; 2611 s->next = syminfos; 2612 syminfos = s; 2613 2614 return; 2615 2616 give_up: 2617 g_free(s); 2618 g_free(strings); 2619 g_free(syms); 2620 } 2621 2622 uint32_t get_elf_eflags(int fd) 2623 { 2624 struct elfhdr ehdr; 2625 off_t offset; 2626 int ret; 2627 2628 /* Read ELF header */ 2629 offset = lseek(fd, 0, SEEK_SET); 2630 if (offset == (off_t) -1) { 2631 return 0; 2632 } 2633 ret = read(fd, &ehdr, sizeof(ehdr)); 2634 if (ret < sizeof(ehdr)) { 2635 return 0; 2636 } 2637 offset = lseek(fd, offset, SEEK_SET); 2638 if (offset == (off_t) -1) { 2639 return 0; 2640 } 2641 2642 /* Check ELF signature */ 2643 if (!elf_check_ident(&ehdr)) { 2644 return 0; 2645 } 2646 2647 /* check header */ 2648 bswap_ehdr(&ehdr); 2649 if (!elf_check_ehdr(&ehdr)) { 2650 return 0; 2651 } 2652 2653 /* return architecture id */ 2654 return ehdr.e_flags; 2655 } 2656 2657 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2658 { 2659 struct image_info interp_info; 2660 struct elfhdr elf_ex; 2661 char *elf_interpreter = NULL; 2662 char *scratch; 2663 2664 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2665 2666 load_elf_image(bprm->filename, bprm->fd, info, 2667 &elf_interpreter, bprm->buf); 2668 2669 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2670 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2671 when we load the interpreter. */ 2672 elf_ex = *(struct elfhdr *)bprm->buf; 2673 2674 /* Do this so that we can load the interpreter, if need be. We will 2675 change some of these later */ 2676 bprm->p = setup_arg_pages(bprm, info); 2677 2678 scratch = g_new0(char, TARGET_PAGE_SIZE); 2679 if (STACK_GROWS_DOWN) { 2680 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2681 bprm->p, info->stack_limit); 2682 info->file_string = bprm->p; 2683 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2684 bprm->p, info->stack_limit); 2685 info->env_strings = bprm->p; 2686 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2687 bprm->p, info->stack_limit); 2688 info->arg_strings = bprm->p; 2689 } else { 2690 info->arg_strings = bprm->p; 2691 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2692 bprm->p, info->stack_limit); 2693 info->env_strings = bprm->p; 2694 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2695 bprm->p, info->stack_limit); 2696 info->file_string = bprm->p; 2697 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2698 bprm->p, info->stack_limit); 2699 } 2700 2701 g_free(scratch); 2702 2703 if (!bprm->p) { 2704 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2705 exit(-1); 2706 } 2707 2708 if (elf_interpreter) { 2709 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2710 2711 /* If the program interpreter is one of these two, then assume 2712 an iBCS2 image. Otherwise assume a native linux image. */ 2713 2714 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2715 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2716 info->personality = PER_SVR4; 2717 2718 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2719 and some applications "depend" upon this behavior. Since 2720 we do not have the power to recompile these, we emulate 2721 the SVr4 behavior. Sigh. */ 2722 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2723 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2724 } 2725 #ifdef TARGET_MIPS 2726 info->interp_fp_abi = interp_info.fp_abi; 2727 #endif 2728 } 2729 2730 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2731 info, (elf_interpreter ? &interp_info : NULL)); 2732 info->start_stack = bprm->p; 2733 2734 /* If we have an interpreter, set that as the program's entry point. 2735 Copy the load_bias as well, to help PPC64 interpret the entry 2736 point as a function descriptor. Do this after creating elf tables 2737 so that we copy the original program entry point into the AUXV. */ 2738 if (elf_interpreter) { 2739 info->load_bias = interp_info.load_bias; 2740 info->entry = interp_info.entry; 2741 free(elf_interpreter); 2742 } 2743 2744 #ifdef USE_ELF_CORE_DUMP 2745 bprm->core_dump = &elf_core_dump; 2746 #endif 2747 2748 return 0; 2749 } 2750 2751 #ifdef USE_ELF_CORE_DUMP 2752 /* 2753 * Definitions to generate Intel SVR4-like core files. 2754 * These mostly have the same names as the SVR4 types with "target_elf_" 2755 * tacked on the front to prevent clashes with linux definitions, 2756 * and the typedef forms have been avoided. This is mostly like 2757 * the SVR4 structure, but more Linuxy, with things that Linux does 2758 * not support and which gdb doesn't really use excluded. 2759 * 2760 * Fields we don't dump (their contents is zero) in linux-user qemu 2761 * are marked with XXX. 2762 * 2763 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2764 * 2765 * Porting ELF coredump for target is (quite) simple process. First you 2766 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2767 * the target resides): 2768 * 2769 * #define USE_ELF_CORE_DUMP 2770 * 2771 * Next you define type of register set used for dumping. ELF specification 2772 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2773 * 2774 * typedef <target_regtype> target_elf_greg_t; 2775 * #define ELF_NREG <number of registers> 2776 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2777 * 2778 * Last step is to implement target specific function that copies registers 2779 * from given cpu into just specified register set. Prototype is: 2780 * 2781 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2782 * const CPUArchState *env); 2783 * 2784 * Parameters: 2785 * regs - copy register values into here (allocated and zeroed by caller) 2786 * env - copy registers from here 2787 * 2788 * Example for ARM target is provided in this file. 2789 */ 2790 2791 /* An ELF note in memory */ 2792 struct memelfnote { 2793 const char *name; 2794 size_t namesz; 2795 size_t namesz_rounded; 2796 int type; 2797 size_t datasz; 2798 size_t datasz_rounded; 2799 void *data; 2800 size_t notesz; 2801 }; 2802 2803 struct target_elf_siginfo { 2804 abi_int si_signo; /* signal number */ 2805 abi_int si_code; /* extra code */ 2806 abi_int si_errno; /* errno */ 2807 }; 2808 2809 struct target_elf_prstatus { 2810 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2811 abi_short pr_cursig; /* Current signal */ 2812 abi_ulong pr_sigpend; /* XXX */ 2813 abi_ulong pr_sighold; /* XXX */ 2814 target_pid_t pr_pid; 2815 target_pid_t pr_ppid; 2816 target_pid_t pr_pgrp; 2817 target_pid_t pr_sid; 2818 struct target_timeval pr_utime; /* XXX User time */ 2819 struct target_timeval pr_stime; /* XXX System time */ 2820 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2821 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2822 target_elf_gregset_t pr_reg; /* GP registers */ 2823 abi_int pr_fpvalid; /* XXX */ 2824 }; 2825 2826 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2827 2828 struct target_elf_prpsinfo { 2829 char pr_state; /* numeric process state */ 2830 char pr_sname; /* char for pr_state */ 2831 char pr_zomb; /* zombie */ 2832 char pr_nice; /* nice val */ 2833 abi_ulong pr_flag; /* flags */ 2834 target_uid_t pr_uid; 2835 target_gid_t pr_gid; 2836 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2837 /* Lots missing */ 2838 char pr_fname[16]; /* filename of executable */ 2839 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2840 }; 2841 2842 /* Here is the structure in which status of each thread is captured. */ 2843 struct elf_thread_status { 2844 QTAILQ_ENTRY(elf_thread_status) ets_link; 2845 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2846 #if 0 2847 elf_fpregset_t fpu; /* NT_PRFPREG */ 2848 struct task_struct *thread; 2849 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2850 #endif 2851 struct memelfnote notes[1]; 2852 int num_notes; 2853 }; 2854 2855 struct elf_note_info { 2856 struct memelfnote *notes; 2857 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2858 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2859 2860 QTAILQ_HEAD(, elf_thread_status) thread_list; 2861 #if 0 2862 /* 2863 * Current version of ELF coredump doesn't support 2864 * dumping fp regs etc. 2865 */ 2866 elf_fpregset_t *fpu; 2867 elf_fpxregset_t *xfpu; 2868 int thread_status_size; 2869 #endif 2870 int notes_size; 2871 int numnote; 2872 }; 2873 2874 struct vm_area_struct { 2875 target_ulong vma_start; /* start vaddr of memory region */ 2876 target_ulong vma_end; /* end vaddr of memory region */ 2877 abi_ulong vma_flags; /* protection etc. flags for the region */ 2878 QTAILQ_ENTRY(vm_area_struct) vma_link; 2879 }; 2880 2881 struct mm_struct { 2882 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2883 int mm_count; /* number of mappings */ 2884 }; 2885 2886 static struct mm_struct *vma_init(void); 2887 static void vma_delete(struct mm_struct *); 2888 static int vma_add_mapping(struct mm_struct *, target_ulong, 2889 target_ulong, abi_ulong); 2890 static int vma_get_mapping_count(const struct mm_struct *); 2891 static struct vm_area_struct *vma_first(const struct mm_struct *); 2892 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2893 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2894 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2895 unsigned long flags); 2896 2897 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2898 static void fill_note(struct memelfnote *, const char *, int, 2899 unsigned int, void *); 2900 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2901 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2902 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2903 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2904 static size_t note_size(const struct memelfnote *); 2905 static void free_note_info(struct elf_note_info *); 2906 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2907 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2908 static int core_dump_filename(const TaskState *, char *, size_t); 2909 2910 static int dump_write(int, const void *, size_t); 2911 static int write_note(struct memelfnote *, int); 2912 static int write_note_info(struct elf_note_info *, int); 2913 2914 #ifdef BSWAP_NEEDED 2915 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2916 { 2917 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2918 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2919 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2920 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2921 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2922 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2923 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2924 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2925 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2926 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2927 /* cpu times are not filled, so we skip them */ 2928 /* regs should be in correct format already */ 2929 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2930 } 2931 2932 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2933 { 2934 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2935 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2936 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2937 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2938 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2939 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2940 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2941 } 2942 2943 static void bswap_note(struct elf_note *en) 2944 { 2945 bswap32s(&en->n_namesz); 2946 bswap32s(&en->n_descsz); 2947 bswap32s(&en->n_type); 2948 } 2949 #else 2950 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2951 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2952 static inline void bswap_note(struct elf_note *en) { } 2953 #endif /* BSWAP_NEEDED */ 2954 2955 /* 2956 * Minimal support for linux memory regions. These are needed 2957 * when we are finding out what memory exactly belongs to 2958 * emulated process. No locks needed here, as long as 2959 * thread that received the signal is stopped. 2960 */ 2961 2962 static struct mm_struct *vma_init(void) 2963 { 2964 struct mm_struct *mm; 2965 2966 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2967 return (NULL); 2968 2969 mm->mm_count = 0; 2970 QTAILQ_INIT(&mm->mm_mmap); 2971 2972 return (mm); 2973 } 2974 2975 static void vma_delete(struct mm_struct *mm) 2976 { 2977 struct vm_area_struct *vma; 2978 2979 while ((vma = vma_first(mm)) != NULL) { 2980 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2981 g_free(vma); 2982 } 2983 g_free(mm); 2984 } 2985 2986 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2987 target_ulong end, abi_ulong flags) 2988 { 2989 struct vm_area_struct *vma; 2990 2991 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2992 return (-1); 2993 2994 vma->vma_start = start; 2995 vma->vma_end = end; 2996 vma->vma_flags = flags; 2997 2998 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2999 mm->mm_count++; 3000 3001 return (0); 3002 } 3003 3004 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3005 { 3006 return (QTAILQ_FIRST(&mm->mm_mmap)); 3007 } 3008 3009 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3010 { 3011 return (QTAILQ_NEXT(vma, vma_link)); 3012 } 3013 3014 static int vma_get_mapping_count(const struct mm_struct *mm) 3015 { 3016 return (mm->mm_count); 3017 } 3018 3019 /* 3020 * Calculate file (dump) size of given memory region. 3021 */ 3022 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3023 { 3024 /* if we cannot even read the first page, skip it */ 3025 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3026 return (0); 3027 3028 /* 3029 * Usually we don't dump executable pages as they contain 3030 * non-writable code that debugger can read directly from 3031 * target library etc. However, thread stacks are marked 3032 * also executable so we read in first page of given region 3033 * and check whether it contains elf header. If there is 3034 * no elf header, we dump it. 3035 */ 3036 if (vma->vma_flags & PROT_EXEC) { 3037 char page[TARGET_PAGE_SIZE]; 3038 3039 copy_from_user(page, vma->vma_start, sizeof (page)); 3040 if ((page[EI_MAG0] == ELFMAG0) && 3041 (page[EI_MAG1] == ELFMAG1) && 3042 (page[EI_MAG2] == ELFMAG2) && 3043 (page[EI_MAG3] == ELFMAG3)) { 3044 /* 3045 * Mappings are possibly from ELF binary. Don't dump 3046 * them. 3047 */ 3048 return (0); 3049 } 3050 } 3051 3052 return (vma->vma_end - vma->vma_start); 3053 } 3054 3055 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3056 unsigned long flags) 3057 { 3058 struct mm_struct *mm = (struct mm_struct *)priv; 3059 3060 vma_add_mapping(mm, start, end, flags); 3061 return (0); 3062 } 3063 3064 static void fill_note(struct memelfnote *note, const char *name, int type, 3065 unsigned int sz, void *data) 3066 { 3067 unsigned int namesz; 3068 3069 namesz = strlen(name) + 1; 3070 note->name = name; 3071 note->namesz = namesz; 3072 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3073 note->type = type; 3074 note->datasz = sz; 3075 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3076 3077 note->data = data; 3078 3079 /* 3080 * We calculate rounded up note size here as specified by 3081 * ELF document. 3082 */ 3083 note->notesz = sizeof (struct elf_note) + 3084 note->namesz_rounded + note->datasz_rounded; 3085 } 3086 3087 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3088 uint32_t flags) 3089 { 3090 (void) memset(elf, 0, sizeof(*elf)); 3091 3092 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3093 elf->e_ident[EI_CLASS] = ELF_CLASS; 3094 elf->e_ident[EI_DATA] = ELF_DATA; 3095 elf->e_ident[EI_VERSION] = EV_CURRENT; 3096 elf->e_ident[EI_OSABI] = ELF_OSABI; 3097 3098 elf->e_type = ET_CORE; 3099 elf->e_machine = machine; 3100 elf->e_version = EV_CURRENT; 3101 elf->e_phoff = sizeof(struct elfhdr); 3102 elf->e_flags = flags; 3103 elf->e_ehsize = sizeof(struct elfhdr); 3104 elf->e_phentsize = sizeof(struct elf_phdr); 3105 elf->e_phnum = segs; 3106 3107 bswap_ehdr(elf); 3108 } 3109 3110 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3111 { 3112 phdr->p_type = PT_NOTE; 3113 phdr->p_offset = offset; 3114 phdr->p_vaddr = 0; 3115 phdr->p_paddr = 0; 3116 phdr->p_filesz = sz; 3117 phdr->p_memsz = 0; 3118 phdr->p_flags = 0; 3119 phdr->p_align = 0; 3120 3121 bswap_phdr(phdr, 1); 3122 } 3123 3124 static size_t note_size(const struct memelfnote *note) 3125 { 3126 return (note->notesz); 3127 } 3128 3129 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3130 const TaskState *ts, int signr) 3131 { 3132 (void) memset(prstatus, 0, sizeof (*prstatus)); 3133 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3134 prstatus->pr_pid = ts->ts_tid; 3135 prstatus->pr_ppid = getppid(); 3136 prstatus->pr_pgrp = getpgrp(); 3137 prstatus->pr_sid = getsid(0); 3138 3139 bswap_prstatus(prstatus); 3140 } 3141 3142 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3143 { 3144 char *base_filename; 3145 unsigned int i, len; 3146 3147 (void) memset(psinfo, 0, sizeof (*psinfo)); 3148 3149 len = ts->info->arg_end - ts->info->arg_start; 3150 if (len >= ELF_PRARGSZ) 3151 len = ELF_PRARGSZ - 1; 3152 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3153 return -EFAULT; 3154 for (i = 0; i < len; i++) 3155 if (psinfo->pr_psargs[i] == 0) 3156 psinfo->pr_psargs[i] = ' '; 3157 psinfo->pr_psargs[len] = 0; 3158 3159 psinfo->pr_pid = getpid(); 3160 psinfo->pr_ppid = getppid(); 3161 psinfo->pr_pgrp = getpgrp(); 3162 psinfo->pr_sid = getsid(0); 3163 psinfo->pr_uid = getuid(); 3164 psinfo->pr_gid = getgid(); 3165 3166 base_filename = g_path_get_basename(ts->bprm->filename); 3167 /* 3168 * Using strncpy here is fine: at max-length, 3169 * this field is not NUL-terminated. 3170 */ 3171 (void) strncpy(psinfo->pr_fname, base_filename, 3172 sizeof(psinfo->pr_fname)); 3173 3174 g_free(base_filename); 3175 bswap_psinfo(psinfo); 3176 return (0); 3177 } 3178 3179 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3180 { 3181 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3182 elf_addr_t orig_auxv = auxv; 3183 void *ptr; 3184 int len = ts->info->auxv_len; 3185 3186 /* 3187 * Auxiliary vector is stored in target process stack. It contains 3188 * {type, value} pairs that we need to dump into note. This is not 3189 * strictly necessary but we do it here for sake of completeness. 3190 */ 3191 3192 /* read in whole auxv vector and copy it to memelfnote */ 3193 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3194 if (ptr != NULL) { 3195 fill_note(note, "CORE", NT_AUXV, len, ptr); 3196 unlock_user(ptr, auxv, len); 3197 } 3198 } 3199 3200 /* 3201 * Constructs name of coredump file. We have following convention 3202 * for the name: 3203 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3204 * 3205 * Returns 0 in case of success, -1 otherwise (errno is set). 3206 */ 3207 static int core_dump_filename(const TaskState *ts, char *buf, 3208 size_t bufsize) 3209 { 3210 char timestamp[64]; 3211 char *base_filename = NULL; 3212 struct timeval tv; 3213 struct tm tm; 3214 3215 assert(bufsize >= PATH_MAX); 3216 3217 if (gettimeofday(&tv, NULL) < 0) { 3218 (void) fprintf(stderr, "unable to get current timestamp: %s", 3219 strerror(errno)); 3220 return (-1); 3221 } 3222 3223 base_filename = g_path_get_basename(ts->bprm->filename); 3224 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3225 localtime_r(&tv.tv_sec, &tm)); 3226 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3227 base_filename, timestamp, (int)getpid()); 3228 g_free(base_filename); 3229 3230 return (0); 3231 } 3232 3233 static int dump_write(int fd, const void *ptr, size_t size) 3234 { 3235 const char *bufp = (const char *)ptr; 3236 ssize_t bytes_written, bytes_left; 3237 struct rlimit dumpsize; 3238 off_t pos; 3239 3240 bytes_written = 0; 3241 getrlimit(RLIMIT_CORE, &dumpsize); 3242 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3243 if (errno == ESPIPE) { /* not a seekable stream */ 3244 bytes_left = size; 3245 } else { 3246 return pos; 3247 } 3248 } else { 3249 if (dumpsize.rlim_cur <= pos) { 3250 return -1; 3251 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3252 bytes_left = size; 3253 } else { 3254 size_t limit_left=dumpsize.rlim_cur - pos; 3255 bytes_left = limit_left >= size ? size : limit_left ; 3256 } 3257 } 3258 3259 /* 3260 * In normal conditions, single write(2) should do but 3261 * in case of socket etc. this mechanism is more portable. 3262 */ 3263 do { 3264 bytes_written = write(fd, bufp, bytes_left); 3265 if (bytes_written < 0) { 3266 if (errno == EINTR) 3267 continue; 3268 return (-1); 3269 } else if (bytes_written == 0) { /* eof */ 3270 return (-1); 3271 } 3272 bufp += bytes_written; 3273 bytes_left -= bytes_written; 3274 } while (bytes_left > 0); 3275 3276 return (0); 3277 } 3278 3279 static int write_note(struct memelfnote *men, int fd) 3280 { 3281 struct elf_note en; 3282 3283 en.n_namesz = men->namesz; 3284 en.n_type = men->type; 3285 en.n_descsz = men->datasz; 3286 3287 bswap_note(&en); 3288 3289 if (dump_write(fd, &en, sizeof(en)) != 0) 3290 return (-1); 3291 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3292 return (-1); 3293 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3294 return (-1); 3295 3296 return (0); 3297 } 3298 3299 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3300 { 3301 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3302 TaskState *ts = (TaskState *)cpu->opaque; 3303 struct elf_thread_status *ets; 3304 3305 ets = g_malloc0(sizeof (*ets)); 3306 ets->num_notes = 1; /* only prstatus is dumped */ 3307 fill_prstatus(&ets->prstatus, ts, 0); 3308 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3309 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3310 &ets->prstatus); 3311 3312 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3313 3314 info->notes_size += note_size(&ets->notes[0]); 3315 } 3316 3317 static void init_note_info(struct elf_note_info *info) 3318 { 3319 /* Initialize the elf_note_info structure so that it is at 3320 * least safe to call free_note_info() on it. Must be 3321 * called before calling fill_note_info(). 3322 */ 3323 memset(info, 0, sizeof (*info)); 3324 QTAILQ_INIT(&info->thread_list); 3325 } 3326 3327 static int fill_note_info(struct elf_note_info *info, 3328 long signr, const CPUArchState *env) 3329 { 3330 #define NUMNOTES 3 3331 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3332 TaskState *ts = (TaskState *)cpu->opaque; 3333 int i; 3334 3335 info->notes = g_new0(struct memelfnote, NUMNOTES); 3336 if (info->notes == NULL) 3337 return (-ENOMEM); 3338 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3339 if (info->prstatus == NULL) 3340 return (-ENOMEM); 3341 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3342 if (info->prstatus == NULL) 3343 return (-ENOMEM); 3344 3345 /* 3346 * First fill in status (and registers) of current thread 3347 * including process info & aux vector. 3348 */ 3349 fill_prstatus(info->prstatus, ts, signr); 3350 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3351 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3352 sizeof (*info->prstatus), info->prstatus); 3353 fill_psinfo(info->psinfo, ts); 3354 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3355 sizeof (*info->psinfo), info->psinfo); 3356 fill_auxv_note(&info->notes[2], ts); 3357 info->numnote = 3; 3358 3359 info->notes_size = 0; 3360 for (i = 0; i < info->numnote; i++) 3361 info->notes_size += note_size(&info->notes[i]); 3362 3363 /* read and fill status of all threads */ 3364 cpu_list_lock(); 3365 CPU_FOREACH(cpu) { 3366 if (cpu == thread_cpu) { 3367 continue; 3368 } 3369 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3370 } 3371 cpu_list_unlock(); 3372 3373 return (0); 3374 } 3375 3376 static void free_note_info(struct elf_note_info *info) 3377 { 3378 struct elf_thread_status *ets; 3379 3380 while (!QTAILQ_EMPTY(&info->thread_list)) { 3381 ets = QTAILQ_FIRST(&info->thread_list); 3382 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3383 g_free(ets); 3384 } 3385 3386 g_free(info->prstatus); 3387 g_free(info->psinfo); 3388 g_free(info->notes); 3389 } 3390 3391 static int write_note_info(struct elf_note_info *info, int fd) 3392 { 3393 struct elf_thread_status *ets; 3394 int i, error = 0; 3395 3396 /* write prstatus, psinfo and auxv for current thread */ 3397 for (i = 0; i < info->numnote; i++) 3398 if ((error = write_note(&info->notes[i], fd)) != 0) 3399 return (error); 3400 3401 /* write prstatus for each thread */ 3402 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3403 if ((error = write_note(&ets->notes[0], fd)) != 0) 3404 return (error); 3405 } 3406 3407 return (0); 3408 } 3409 3410 /* 3411 * Write out ELF coredump. 3412 * 3413 * See documentation of ELF object file format in: 3414 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3415 * 3416 * Coredump format in linux is following: 3417 * 3418 * 0 +----------------------+ \ 3419 * | ELF header | ET_CORE | 3420 * +----------------------+ | 3421 * | ELF program headers | |--- headers 3422 * | - NOTE section | | 3423 * | - PT_LOAD sections | | 3424 * +----------------------+ / 3425 * | NOTEs: | 3426 * | - NT_PRSTATUS | 3427 * | - NT_PRSINFO | 3428 * | - NT_AUXV | 3429 * +----------------------+ <-- aligned to target page 3430 * | Process memory dump | 3431 * : : 3432 * . . 3433 * : : 3434 * | | 3435 * +----------------------+ 3436 * 3437 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3438 * NT_PRSINFO -> struct elf_prpsinfo 3439 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3440 * 3441 * Format follows System V format as close as possible. Current 3442 * version limitations are as follows: 3443 * - no floating point registers are dumped 3444 * 3445 * Function returns 0 in case of success, negative errno otherwise. 3446 * 3447 * TODO: make this work also during runtime: it should be 3448 * possible to force coredump from running process and then 3449 * continue processing. For example qemu could set up SIGUSR2 3450 * handler (provided that target process haven't registered 3451 * handler for that) that does the dump when signal is received. 3452 */ 3453 static int elf_core_dump(int signr, const CPUArchState *env) 3454 { 3455 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3456 const TaskState *ts = (const TaskState *)cpu->opaque; 3457 struct vm_area_struct *vma = NULL; 3458 char corefile[PATH_MAX]; 3459 struct elf_note_info info; 3460 struct elfhdr elf; 3461 struct elf_phdr phdr; 3462 struct rlimit dumpsize; 3463 struct mm_struct *mm = NULL; 3464 off_t offset = 0, data_offset = 0; 3465 int segs = 0; 3466 int fd = -1; 3467 3468 init_note_info(&info); 3469 3470 errno = 0; 3471 getrlimit(RLIMIT_CORE, &dumpsize); 3472 if (dumpsize.rlim_cur == 0) 3473 return 0; 3474 3475 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3476 return (-errno); 3477 3478 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3479 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3480 return (-errno); 3481 3482 /* 3483 * Walk through target process memory mappings and 3484 * set up structure containing this information. After 3485 * this point vma_xxx functions can be used. 3486 */ 3487 if ((mm = vma_init()) == NULL) 3488 goto out; 3489 3490 walk_memory_regions(mm, vma_walker); 3491 segs = vma_get_mapping_count(mm); 3492 3493 /* 3494 * Construct valid coredump ELF header. We also 3495 * add one more segment for notes. 3496 */ 3497 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3498 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3499 goto out; 3500 3501 /* fill in the in-memory version of notes */ 3502 if (fill_note_info(&info, signr, env) < 0) 3503 goto out; 3504 3505 offset += sizeof (elf); /* elf header */ 3506 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3507 3508 /* write out notes program header */ 3509 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3510 3511 offset += info.notes_size; 3512 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3513 goto out; 3514 3515 /* 3516 * ELF specification wants data to start at page boundary so 3517 * we align it here. 3518 */ 3519 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3520 3521 /* 3522 * Write program headers for memory regions mapped in 3523 * the target process. 3524 */ 3525 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3526 (void) memset(&phdr, 0, sizeof (phdr)); 3527 3528 phdr.p_type = PT_LOAD; 3529 phdr.p_offset = offset; 3530 phdr.p_vaddr = vma->vma_start; 3531 phdr.p_paddr = 0; 3532 phdr.p_filesz = vma_dump_size(vma); 3533 offset += phdr.p_filesz; 3534 phdr.p_memsz = vma->vma_end - vma->vma_start; 3535 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3536 if (vma->vma_flags & PROT_WRITE) 3537 phdr.p_flags |= PF_W; 3538 if (vma->vma_flags & PROT_EXEC) 3539 phdr.p_flags |= PF_X; 3540 phdr.p_align = ELF_EXEC_PAGESIZE; 3541 3542 bswap_phdr(&phdr, 1); 3543 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3544 goto out; 3545 } 3546 } 3547 3548 /* 3549 * Next we write notes just after program headers. No 3550 * alignment needed here. 3551 */ 3552 if (write_note_info(&info, fd) < 0) 3553 goto out; 3554 3555 /* align data to page boundary */ 3556 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3557 goto out; 3558 3559 /* 3560 * Finally we can dump process memory into corefile as well. 3561 */ 3562 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3563 abi_ulong addr; 3564 abi_ulong end; 3565 3566 end = vma->vma_start + vma_dump_size(vma); 3567 3568 for (addr = vma->vma_start; addr < end; 3569 addr += TARGET_PAGE_SIZE) { 3570 char page[TARGET_PAGE_SIZE]; 3571 int error; 3572 3573 /* 3574 * Read in page from target process memory and 3575 * write it to coredump file. 3576 */ 3577 error = copy_from_user(page, addr, sizeof (page)); 3578 if (error != 0) { 3579 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3580 addr); 3581 errno = -error; 3582 goto out; 3583 } 3584 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3585 goto out; 3586 } 3587 } 3588 3589 out: 3590 free_note_info(&info); 3591 if (mm != NULL) 3592 vma_delete(mm); 3593 (void) close(fd); 3594 3595 if (errno != 0) 3596 return (-errno); 3597 return (0); 3598 } 3599 #endif /* USE_ELF_CORE_DUMP */ 3600 3601 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3602 { 3603 init_thread(regs, infop); 3604 } 3605