1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include <sys/time.h> 3 #include <sys/param.h> 4 5 #include <stdio.h> 6 #include <sys/types.h> 7 #include <fcntl.h> 8 #include <errno.h> 9 #include <unistd.h> 10 #include <sys/mman.h> 11 #include <sys/resource.h> 12 #include <stdlib.h> 13 #include <string.h> 14 #include <time.h> 15 16 #include "qemu.h" 17 #include "disas/disas.h" 18 19 #ifdef _ARCH_PPC64 20 #undef ARCH_DLINFO 21 #undef ELF_PLATFORM 22 #undef ELF_HWCAP 23 #undef ELF_HWCAP2 24 #undef ELF_CLASS 25 #undef ELF_DATA 26 #undef ELF_ARCH 27 #endif 28 29 #define ELF_OSABI ELFOSABI_SYSV 30 31 /* from personality.h */ 32 33 /* 34 * Flags for bug emulation. 35 * 36 * These occupy the top three bytes. 37 */ 38 enum { 39 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 40 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 41 descriptors (signal handling) */ 42 MMAP_PAGE_ZERO = 0x0100000, 43 ADDR_COMPAT_LAYOUT = 0x0200000, 44 READ_IMPLIES_EXEC = 0x0400000, 45 ADDR_LIMIT_32BIT = 0x0800000, 46 SHORT_INODE = 0x1000000, 47 WHOLE_SECONDS = 0x2000000, 48 STICKY_TIMEOUTS = 0x4000000, 49 ADDR_LIMIT_3GB = 0x8000000, 50 }; 51 52 /* 53 * Personality types. 54 * 55 * These go in the low byte. Avoid using the top bit, it will 56 * conflict with error returns. 57 */ 58 enum { 59 PER_LINUX = 0x0000, 60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 65 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 66 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 67 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 68 PER_BSD = 0x0006, 69 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 70 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_LINUX32 = 0x0008, 72 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 73 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 74 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 75 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 76 PER_RISCOS = 0x000c, 77 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 78 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 79 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 80 PER_HPUX = 0x0010, 81 PER_MASK = 0x00ff, 82 }; 83 84 /* 85 * Return the base personality without flags. 86 */ 87 #define personality(pers) (pers & PER_MASK) 88 89 /* this flag is uneffective under linux too, should be deleted */ 90 #ifndef MAP_DENYWRITE 91 #define MAP_DENYWRITE 0 92 #endif 93 94 /* should probably go in elf.h */ 95 #ifndef ELIBBAD 96 #define ELIBBAD 80 97 #endif 98 99 #ifdef TARGET_WORDS_BIGENDIAN 100 #define ELF_DATA ELFDATA2MSB 101 #else 102 #define ELF_DATA ELFDATA2LSB 103 #endif 104 105 #ifdef TARGET_ABI_MIPSN32 106 typedef abi_ullong target_elf_greg_t; 107 #define tswapreg(ptr) tswap64(ptr) 108 #else 109 typedef abi_ulong target_elf_greg_t; 110 #define tswapreg(ptr) tswapal(ptr) 111 #endif 112 113 #ifdef USE_UID16 114 typedef abi_ushort target_uid_t; 115 typedef abi_ushort target_gid_t; 116 #else 117 typedef abi_uint target_uid_t; 118 typedef abi_uint target_gid_t; 119 #endif 120 typedef abi_int target_pid_t; 121 122 #ifdef TARGET_I386 123 124 #define ELF_PLATFORM get_elf_platform() 125 126 static const char *get_elf_platform(void) 127 { 128 static char elf_platform[] = "i386"; 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 130 if (family > 6) 131 family = 6; 132 if (family >= 3) 133 elf_platform[1] = '0' + family; 134 return elf_platform; 135 } 136 137 #define ELF_HWCAP get_elf_hwcap() 138 139 static uint32_t get_elf_hwcap(void) 140 { 141 X86CPU *cpu = X86_CPU(thread_cpu); 142 143 return cpu->env.features[FEAT_1_EDX]; 144 } 145 146 #ifdef TARGET_X86_64 147 #define ELF_START_MMAP 0x2aaaaab000ULL 148 149 #define ELF_CLASS ELFCLASS64 150 #define ELF_ARCH EM_X86_64 151 152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 153 { 154 regs->rax = 0; 155 regs->rsp = infop->start_stack; 156 regs->rip = infop->entry; 157 } 158 159 #define ELF_NREG 27 160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 161 162 /* 163 * Note that ELF_NREG should be 29 as there should be place for 164 * TRAPNO and ERR "registers" as well but linux doesn't dump 165 * those. 166 * 167 * See linux kernel: arch/x86/include/asm/elf.h 168 */ 169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 170 { 171 (*regs)[0] = env->regs[15]; 172 (*regs)[1] = env->regs[14]; 173 (*regs)[2] = env->regs[13]; 174 (*regs)[3] = env->regs[12]; 175 (*regs)[4] = env->regs[R_EBP]; 176 (*regs)[5] = env->regs[R_EBX]; 177 (*regs)[6] = env->regs[11]; 178 (*regs)[7] = env->regs[10]; 179 (*regs)[8] = env->regs[9]; 180 (*regs)[9] = env->regs[8]; 181 (*regs)[10] = env->regs[R_EAX]; 182 (*regs)[11] = env->regs[R_ECX]; 183 (*regs)[12] = env->regs[R_EDX]; 184 (*regs)[13] = env->regs[R_ESI]; 185 (*regs)[14] = env->regs[R_EDI]; 186 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 187 (*regs)[16] = env->eip; 188 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 189 (*regs)[18] = env->eflags; 190 (*regs)[19] = env->regs[R_ESP]; 191 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 192 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 193 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 194 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 195 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 196 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 197 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 198 } 199 200 #else 201 202 #define ELF_START_MMAP 0x80000000 203 204 /* 205 * This is used to ensure we don't load something for the wrong architecture. 206 */ 207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 208 209 /* 210 * These are used to set parameters in the core dumps. 211 */ 212 #define ELF_CLASS ELFCLASS32 213 #define ELF_ARCH EM_386 214 215 static inline void init_thread(struct target_pt_regs *regs, 216 struct image_info *infop) 217 { 218 regs->esp = infop->start_stack; 219 regs->eip = infop->entry; 220 221 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 222 starts %edx contains a pointer to a function which might be 223 registered using `atexit'. This provides a mean for the 224 dynamic linker to call DT_FINI functions for shared libraries 225 that have been loaded before the code runs. 226 227 A value of 0 tells we have no such handler. */ 228 regs->edx = 0; 229 } 230 231 #define ELF_NREG 17 232 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 233 234 /* 235 * Note that ELF_NREG should be 19 as there should be place for 236 * TRAPNO and ERR "registers" as well but linux doesn't dump 237 * those. 238 * 239 * See linux kernel: arch/x86/include/asm/elf.h 240 */ 241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 242 { 243 (*regs)[0] = env->regs[R_EBX]; 244 (*regs)[1] = env->regs[R_ECX]; 245 (*regs)[2] = env->regs[R_EDX]; 246 (*regs)[3] = env->regs[R_ESI]; 247 (*regs)[4] = env->regs[R_EDI]; 248 (*regs)[5] = env->regs[R_EBP]; 249 (*regs)[6] = env->regs[R_EAX]; 250 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 251 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 252 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 253 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 254 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 255 (*regs)[12] = env->eip; 256 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 257 (*regs)[14] = env->eflags; 258 (*regs)[15] = env->regs[R_ESP]; 259 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 260 } 261 #endif 262 263 #define USE_ELF_CORE_DUMP 264 #define ELF_EXEC_PAGESIZE 4096 265 266 #endif 267 268 #ifdef TARGET_ARM 269 270 #ifndef TARGET_AARCH64 271 /* 32 bit ARM definitions */ 272 273 #define ELF_START_MMAP 0x80000000 274 275 #define ELF_ARCH EM_ARM 276 #define ELF_CLASS ELFCLASS32 277 278 static inline void init_thread(struct target_pt_regs *regs, 279 struct image_info *infop) 280 { 281 abi_long stack = infop->start_stack; 282 memset(regs, 0, sizeof(*regs)); 283 284 regs->ARM_cpsr = 0x10; 285 if (infop->entry & 1) 286 regs->ARM_cpsr |= CPSR_T; 287 regs->ARM_pc = infop->entry & 0xfffffffe; 288 regs->ARM_sp = infop->start_stack; 289 /* FIXME - what to for failure of get_user()? */ 290 get_user_ual(regs->ARM_r2, stack + 8); /* envp */ 291 get_user_ual(regs->ARM_r1, stack + 4); /* envp */ 292 /* XXX: it seems that r0 is zeroed after ! */ 293 regs->ARM_r0 = 0; 294 /* For uClinux PIC binaries. */ 295 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 296 regs->ARM_r10 = infop->start_data; 297 } 298 299 #define ELF_NREG 18 300 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 301 302 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 303 { 304 (*regs)[0] = tswapreg(env->regs[0]); 305 (*regs)[1] = tswapreg(env->regs[1]); 306 (*regs)[2] = tswapreg(env->regs[2]); 307 (*regs)[3] = tswapreg(env->regs[3]); 308 (*regs)[4] = tswapreg(env->regs[4]); 309 (*regs)[5] = tswapreg(env->regs[5]); 310 (*regs)[6] = tswapreg(env->regs[6]); 311 (*regs)[7] = tswapreg(env->regs[7]); 312 (*regs)[8] = tswapreg(env->regs[8]); 313 (*regs)[9] = tswapreg(env->regs[9]); 314 (*regs)[10] = tswapreg(env->regs[10]); 315 (*regs)[11] = tswapreg(env->regs[11]); 316 (*regs)[12] = tswapreg(env->regs[12]); 317 (*regs)[13] = tswapreg(env->regs[13]); 318 (*regs)[14] = tswapreg(env->regs[14]); 319 (*regs)[15] = tswapreg(env->regs[15]); 320 321 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 322 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 323 } 324 325 #define USE_ELF_CORE_DUMP 326 #define ELF_EXEC_PAGESIZE 4096 327 328 enum 329 { 330 ARM_HWCAP_ARM_SWP = 1 << 0, 331 ARM_HWCAP_ARM_HALF = 1 << 1, 332 ARM_HWCAP_ARM_THUMB = 1 << 2, 333 ARM_HWCAP_ARM_26BIT = 1 << 3, 334 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 335 ARM_HWCAP_ARM_FPA = 1 << 5, 336 ARM_HWCAP_ARM_VFP = 1 << 6, 337 ARM_HWCAP_ARM_EDSP = 1 << 7, 338 ARM_HWCAP_ARM_JAVA = 1 << 8, 339 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 340 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 341 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 342 ARM_HWCAP_ARM_NEON = 1 << 12, 343 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 344 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 345 ARM_HWCAP_ARM_TLS = 1 << 15, 346 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 347 ARM_HWCAP_ARM_IDIVA = 1 << 17, 348 ARM_HWCAP_ARM_IDIVT = 1 << 18, 349 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 350 ARM_HWCAP_ARM_LPAE = 1 << 20, 351 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 352 }; 353 354 enum { 355 ARM_HWCAP2_ARM_AES = 1 << 0, 356 ARM_HWCAP2_ARM_PMULL = 1 << 1, 357 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 358 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 359 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 360 }; 361 362 /* The commpage only exists for 32 bit kernels */ 363 364 #define TARGET_HAS_VALIDATE_GUEST_SPACE 365 /* Return 1 if the proposed guest space is suitable for the guest. 366 * Return 0 if the proposed guest space isn't suitable, but another 367 * address space should be tried. 368 * Return -1 if there is no way the proposed guest space can be 369 * valid regardless of the base. 370 * The guest code may leave a page mapped and populate it if the 371 * address is suitable. 372 */ 373 static int validate_guest_space(unsigned long guest_base, 374 unsigned long guest_size) 375 { 376 unsigned long real_start, test_page_addr; 377 378 /* We need to check that we can force a fault on access to the 379 * commpage at 0xffff0fxx 380 */ 381 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 382 383 /* If the commpage lies within the already allocated guest space, 384 * then there is no way we can allocate it. 385 */ 386 if (test_page_addr >= guest_base 387 && test_page_addr <= (guest_base + guest_size)) { 388 return -1; 389 } 390 391 /* Note it needs to be writeable to let us initialise it */ 392 real_start = (unsigned long) 393 mmap((void *)test_page_addr, qemu_host_page_size, 394 PROT_READ | PROT_WRITE, 395 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 396 397 /* If we can't map it then try another address */ 398 if (real_start == -1ul) { 399 return 0; 400 } 401 402 if (real_start != test_page_addr) { 403 /* OS didn't put the page where we asked - unmap and reject */ 404 munmap((void *)real_start, qemu_host_page_size); 405 return 0; 406 } 407 408 /* Leave the page mapped 409 * Populate it (mmap should have left it all 0'd) 410 */ 411 412 /* Kernel helper versions */ 413 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 414 415 /* Now it's populated make it RO */ 416 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 417 perror("Protecting guest commpage"); 418 exit(-1); 419 } 420 421 return 1; /* All good */ 422 } 423 424 #define ELF_HWCAP get_elf_hwcap() 425 #define ELF_HWCAP2 get_elf_hwcap2() 426 427 static uint32_t get_elf_hwcap(void) 428 { 429 ARMCPU *cpu = ARM_CPU(thread_cpu); 430 uint32_t hwcaps = 0; 431 432 hwcaps |= ARM_HWCAP_ARM_SWP; 433 hwcaps |= ARM_HWCAP_ARM_HALF; 434 hwcaps |= ARM_HWCAP_ARM_THUMB; 435 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 436 437 /* probe for the extra features */ 438 #define GET_FEATURE(feat, hwcap) \ 439 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 440 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 441 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 442 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 443 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 444 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 445 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 446 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 447 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 448 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 449 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 450 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 451 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 452 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 453 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 454 * to our VFP_FP16 feature bit. 455 */ 456 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 457 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 458 459 return hwcaps; 460 } 461 462 static uint32_t get_elf_hwcap2(void) 463 { 464 ARMCPU *cpu = ARM_CPU(thread_cpu); 465 uint32_t hwcaps = 0; 466 467 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 468 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 469 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 470 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 471 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 472 return hwcaps; 473 } 474 475 #undef GET_FEATURE 476 477 #else 478 /* 64 bit ARM definitions */ 479 #define ELF_START_MMAP 0x80000000 480 481 #define ELF_ARCH EM_AARCH64 482 #define ELF_CLASS ELFCLASS64 483 #define ELF_PLATFORM "aarch64" 484 485 static inline void init_thread(struct target_pt_regs *regs, 486 struct image_info *infop) 487 { 488 abi_long stack = infop->start_stack; 489 memset(regs, 0, sizeof(*regs)); 490 491 regs->pc = infop->entry & ~0x3ULL; 492 regs->sp = stack; 493 } 494 495 #define ELF_NREG 34 496 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 497 498 static void elf_core_copy_regs(target_elf_gregset_t *regs, 499 const CPUARMState *env) 500 { 501 int i; 502 503 for (i = 0; i < 32; i++) { 504 (*regs)[i] = tswapreg(env->xregs[i]); 505 } 506 (*regs)[32] = tswapreg(env->pc); 507 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 508 } 509 510 #define USE_ELF_CORE_DUMP 511 #define ELF_EXEC_PAGESIZE 4096 512 513 enum { 514 ARM_HWCAP_A64_FP = 1 << 0, 515 ARM_HWCAP_A64_ASIMD = 1 << 1, 516 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 517 ARM_HWCAP_A64_AES = 1 << 3, 518 ARM_HWCAP_A64_PMULL = 1 << 4, 519 ARM_HWCAP_A64_SHA1 = 1 << 5, 520 ARM_HWCAP_A64_SHA2 = 1 << 6, 521 ARM_HWCAP_A64_CRC32 = 1 << 7, 522 }; 523 524 #define ELF_HWCAP get_elf_hwcap() 525 526 static uint32_t get_elf_hwcap(void) 527 { 528 ARMCPU *cpu = ARM_CPU(thread_cpu); 529 uint32_t hwcaps = 0; 530 531 hwcaps |= ARM_HWCAP_A64_FP; 532 hwcaps |= ARM_HWCAP_A64_ASIMD; 533 534 /* probe for the extra features */ 535 #define GET_FEATURE(feat, hwcap) \ 536 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 537 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 538 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 539 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 540 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 541 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 542 #undef GET_FEATURE 543 544 return hwcaps; 545 } 546 547 #endif /* not TARGET_AARCH64 */ 548 #endif /* TARGET_ARM */ 549 550 #ifdef TARGET_UNICORE32 551 552 #define ELF_START_MMAP 0x80000000 553 554 #define ELF_CLASS ELFCLASS32 555 #define ELF_DATA ELFDATA2LSB 556 #define ELF_ARCH EM_UNICORE32 557 558 static inline void init_thread(struct target_pt_regs *regs, 559 struct image_info *infop) 560 { 561 abi_long stack = infop->start_stack; 562 memset(regs, 0, sizeof(*regs)); 563 regs->UC32_REG_asr = 0x10; 564 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 565 regs->UC32_REG_sp = infop->start_stack; 566 /* FIXME - what to for failure of get_user()? */ 567 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 568 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 569 /* XXX: it seems that r0 is zeroed after ! */ 570 regs->UC32_REG_00 = 0; 571 } 572 573 #define ELF_NREG 34 574 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 575 576 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 577 { 578 (*regs)[0] = env->regs[0]; 579 (*regs)[1] = env->regs[1]; 580 (*regs)[2] = env->regs[2]; 581 (*regs)[3] = env->regs[3]; 582 (*regs)[4] = env->regs[4]; 583 (*regs)[5] = env->regs[5]; 584 (*regs)[6] = env->regs[6]; 585 (*regs)[7] = env->regs[7]; 586 (*regs)[8] = env->regs[8]; 587 (*regs)[9] = env->regs[9]; 588 (*regs)[10] = env->regs[10]; 589 (*regs)[11] = env->regs[11]; 590 (*regs)[12] = env->regs[12]; 591 (*regs)[13] = env->regs[13]; 592 (*regs)[14] = env->regs[14]; 593 (*regs)[15] = env->regs[15]; 594 (*regs)[16] = env->regs[16]; 595 (*regs)[17] = env->regs[17]; 596 (*regs)[18] = env->regs[18]; 597 (*regs)[19] = env->regs[19]; 598 (*regs)[20] = env->regs[20]; 599 (*regs)[21] = env->regs[21]; 600 (*regs)[22] = env->regs[22]; 601 (*regs)[23] = env->regs[23]; 602 (*regs)[24] = env->regs[24]; 603 (*regs)[25] = env->regs[25]; 604 (*regs)[26] = env->regs[26]; 605 (*regs)[27] = env->regs[27]; 606 (*regs)[28] = env->regs[28]; 607 (*regs)[29] = env->regs[29]; 608 (*regs)[30] = env->regs[30]; 609 (*regs)[31] = env->regs[31]; 610 611 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 612 (*regs)[33] = env->regs[0]; /* XXX */ 613 } 614 615 #define USE_ELF_CORE_DUMP 616 #define ELF_EXEC_PAGESIZE 4096 617 618 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 619 620 #endif 621 622 #ifdef TARGET_SPARC 623 #ifdef TARGET_SPARC64 624 625 #define ELF_START_MMAP 0x80000000 626 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 627 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 628 #ifndef TARGET_ABI32 629 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 630 #else 631 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 632 #endif 633 634 #define ELF_CLASS ELFCLASS64 635 #define ELF_ARCH EM_SPARCV9 636 637 #define STACK_BIAS 2047 638 639 static inline void init_thread(struct target_pt_regs *regs, 640 struct image_info *infop) 641 { 642 #ifndef TARGET_ABI32 643 regs->tstate = 0; 644 #endif 645 regs->pc = infop->entry; 646 regs->npc = regs->pc + 4; 647 regs->y = 0; 648 #ifdef TARGET_ABI32 649 regs->u_regs[14] = infop->start_stack - 16 * 4; 650 #else 651 if (personality(infop->personality) == PER_LINUX32) 652 regs->u_regs[14] = infop->start_stack - 16 * 4; 653 else 654 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 655 #endif 656 } 657 658 #else 659 #define ELF_START_MMAP 0x80000000 660 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 661 | HWCAP_SPARC_MULDIV) 662 663 #define ELF_CLASS ELFCLASS32 664 #define ELF_ARCH EM_SPARC 665 666 static inline void init_thread(struct target_pt_regs *regs, 667 struct image_info *infop) 668 { 669 regs->psr = 0; 670 regs->pc = infop->entry; 671 regs->npc = regs->pc + 4; 672 regs->y = 0; 673 regs->u_regs[14] = infop->start_stack - 16 * 4; 674 } 675 676 #endif 677 #endif 678 679 #ifdef TARGET_PPC 680 681 #define ELF_MACHINE PPC_ELF_MACHINE 682 #define ELF_START_MMAP 0x80000000 683 684 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 685 686 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 687 688 #define ELF_CLASS ELFCLASS64 689 690 #else 691 692 #define ELF_CLASS ELFCLASS32 693 694 #endif 695 696 #define ELF_ARCH EM_PPC 697 698 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 699 See arch/powerpc/include/asm/cputable.h. */ 700 enum { 701 QEMU_PPC_FEATURE_32 = 0x80000000, 702 QEMU_PPC_FEATURE_64 = 0x40000000, 703 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 704 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 705 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 706 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 707 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 708 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 709 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 710 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 711 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 712 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 713 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 714 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 715 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 716 QEMU_PPC_FEATURE_CELL = 0x00010000, 717 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 718 QEMU_PPC_FEATURE_SMT = 0x00004000, 719 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 720 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 721 QEMU_PPC_FEATURE_PA6T = 0x00000800, 722 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 723 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 724 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 725 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 726 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 727 728 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 729 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 730 731 /* Feature definitions in AT_HWCAP2. */ 732 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 733 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 734 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 735 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 736 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 737 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 738 }; 739 740 #define ELF_HWCAP get_elf_hwcap() 741 742 static uint32_t get_elf_hwcap(void) 743 { 744 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 745 uint32_t features = 0; 746 747 /* We don't have to be terribly complete here; the high points are 748 Altivec/FP/SPE support. Anything else is just a bonus. */ 749 #define GET_FEATURE(flag, feature) \ 750 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 751 #define GET_FEATURE2(flag, feature) \ 752 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 753 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 754 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 755 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 756 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 757 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 758 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 759 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 760 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 761 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 762 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 763 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 764 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 765 QEMU_PPC_FEATURE_ARCH_2_06); 766 #undef GET_FEATURE 767 #undef GET_FEATURE2 768 769 return features; 770 } 771 772 #define ELF_HWCAP2 get_elf_hwcap2() 773 774 static uint32_t get_elf_hwcap2(void) 775 { 776 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 777 uint32_t features = 0; 778 779 #define GET_FEATURE(flag, feature) \ 780 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 781 #define GET_FEATURE2(flag, feature) \ 782 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 783 784 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 785 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 786 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 787 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 788 789 #undef GET_FEATURE 790 #undef GET_FEATURE2 791 792 return features; 793 } 794 795 /* 796 * The requirements here are: 797 * - keep the final alignment of sp (sp & 0xf) 798 * - make sure the 32-bit value at the first 16 byte aligned position of 799 * AUXV is greater than 16 for glibc compatibility. 800 * AT_IGNOREPPC is used for that. 801 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 802 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 803 */ 804 #define DLINFO_ARCH_ITEMS 5 805 #define ARCH_DLINFO \ 806 do { \ 807 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 808 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 809 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 810 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 811 /* \ 812 * Now handle glibc compatibility. \ 813 */ \ 814 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 815 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 816 } while (0) 817 818 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 819 { 820 _regs->gpr[1] = infop->start_stack; 821 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 822 if (get_ppc64_abi(infop) < 2) { 823 uint64_t val; 824 get_user_u64(val, infop->entry + 8); 825 _regs->gpr[2] = val + infop->load_bias; 826 get_user_u64(val, infop->entry); 827 infop->entry = val + infop->load_bias; 828 } else { 829 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 830 } 831 #endif 832 _regs->nip = infop->entry; 833 } 834 835 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 836 #define ELF_NREG 48 837 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 838 839 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 840 { 841 int i; 842 target_ulong ccr = 0; 843 844 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 845 (*regs)[i] = tswapreg(env->gpr[i]); 846 } 847 848 (*regs)[32] = tswapreg(env->nip); 849 (*regs)[33] = tswapreg(env->msr); 850 (*regs)[35] = tswapreg(env->ctr); 851 (*regs)[36] = tswapreg(env->lr); 852 (*regs)[37] = tswapreg(env->xer); 853 854 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 855 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 856 } 857 (*regs)[38] = tswapreg(ccr); 858 } 859 860 #define USE_ELF_CORE_DUMP 861 #define ELF_EXEC_PAGESIZE 4096 862 863 #endif 864 865 #ifdef TARGET_MIPS 866 867 #define ELF_START_MMAP 0x80000000 868 869 #ifdef TARGET_MIPS64 870 #define ELF_CLASS ELFCLASS64 871 #else 872 #define ELF_CLASS ELFCLASS32 873 #endif 874 #define ELF_ARCH EM_MIPS 875 876 static inline void init_thread(struct target_pt_regs *regs, 877 struct image_info *infop) 878 { 879 regs->cp0_status = 2 << CP0St_KSU; 880 regs->cp0_epc = infop->entry; 881 regs->regs[29] = infop->start_stack; 882 } 883 884 /* See linux kernel: arch/mips/include/asm/elf.h. */ 885 #define ELF_NREG 45 886 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 887 888 /* See linux kernel: arch/mips/include/asm/reg.h. */ 889 enum { 890 #ifdef TARGET_MIPS64 891 TARGET_EF_R0 = 0, 892 #else 893 TARGET_EF_R0 = 6, 894 #endif 895 TARGET_EF_R26 = TARGET_EF_R0 + 26, 896 TARGET_EF_R27 = TARGET_EF_R0 + 27, 897 TARGET_EF_LO = TARGET_EF_R0 + 32, 898 TARGET_EF_HI = TARGET_EF_R0 + 33, 899 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 900 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 901 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 902 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 903 }; 904 905 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 906 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 907 { 908 int i; 909 910 for (i = 0; i < TARGET_EF_R0; i++) { 911 (*regs)[i] = 0; 912 } 913 (*regs)[TARGET_EF_R0] = 0; 914 915 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 916 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 917 } 918 919 (*regs)[TARGET_EF_R26] = 0; 920 (*regs)[TARGET_EF_R27] = 0; 921 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 922 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 923 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 924 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 925 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 926 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 927 } 928 929 #define USE_ELF_CORE_DUMP 930 #define ELF_EXEC_PAGESIZE 4096 931 932 #endif /* TARGET_MIPS */ 933 934 #ifdef TARGET_MICROBLAZE 935 936 #define ELF_START_MMAP 0x80000000 937 938 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 939 940 #define ELF_CLASS ELFCLASS32 941 #define ELF_ARCH EM_MICROBLAZE 942 943 static inline void init_thread(struct target_pt_regs *regs, 944 struct image_info *infop) 945 { 946 regs->pc = infop->entry; 947 regs->r1 = infop->start_stack; 948 949 } 950 951 #define ELF_EXEC_PAGESIZE 4096 952 953 #define USE_ELF_CORE_DUMP 954 #define ELF_NREG 38 955 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 956 957 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 958 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 959 { 960 int i, pos = 0; 961 962 for (i = 0; i < 32; i++) { 963 (*regs)[pos++] = tswapreg(env->regs[i]); 964 } 965 966 for (i = 0; i < 6; i++) { 967 (*regs)[pos++] = tswapreg(env->sregs[i]); 968 } 969 } 970 971 #endif /* TARGET_MICROBLAZE */ 972 973 #ifdef TARGET_OPENRISC 974 975 #define ELF_START_MMAP 0x08000000 976 977 #define ELF_ARCH EM_OPENRISC 978 #define ELF_CLASS ELFCLASS32 979 #define ELF_DATA ELFDATA2MSB 980 981 static inline void init_thread(struct target_pt_regs *regs, 982 struct image_info *infop) 983 { 984 regs->pc = infop->entry; 985 regs->gpr[1] = infop->start_stack; 986 } 987 988 #define USE_ELF_CORE_DUMP 989 #define ELF_EXEC_PAGESIZE 8192 990 991 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 992 #define ELF_NREG 34 /* gprs and pc, sr */ 993 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 994 995 static void elf_core_copy_regs(target_elf_gregset_t *regs, 996 const CPUOpenRISCState *env) 997 { 998 int i; 999 1000 for (i = 0; i < 32; i++) { 1001 (*regs)[i] = tswapreg(env->gpr[i]); 1002 } 1003 1004 (*regs)[32] = tswapreg(env->pc); 1005 (*regs)[33] = tswapreg(env->sr); 1006 } 1007 #define ELF_HWCAP 0 1008 #define ELF_PLATFORM NULL 1009 1010 #endif /* TARGET_OPENRISC */ 1011 1012 #ifdef TARGET_SH4 1013 1014 #define ELF_START_MMAP 0x80000000 1015 1016 #define ELF_CLASS ELFCLASS32 1017 #define ELF_ARCH EM_SH 1018 1019 static inline void init_thread(struct target_pt_regs *regs, 1020 struct image_info *infop) 1021 { 1022 /* Check other registers XXXXX */ 1023 regs->pc = infop->entry; 1024 regs->regs[15] = infop->start_stack; 1025 } 1026 1027 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1028 #define ELF_NREG 23 1029 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1030 1031 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1032 enum { 1033 TARGET_REG_PC = 16, 1034 TARGET_REG_PR = 17, 1035 TARGET_REG_SR = 18, 1036 TARGET_REG_GBR = 19, 1037 TARGET_REG_MACH = 20, 1038 TARGET_REG_MACL = 21, 1039 TARGET_REG_SYSCALL = 22 1040 }; 1041 1042 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1043 const CPUSH4State *env) 1044 { 1045 int i; 1046 1047 for (i = 0; i < 16; i++) { 1048 (*regs[i]) = tswapreg(env->gregs[i]); 1049 } 1050 1051 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1052 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1053 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1054 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1055 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1056 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1057 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1058 } 1059 1060 #define USE_ELF_CORE_DUMP 1061 #define ELF_EXEC_PAGESIZE 4096 1062 1063 enum { 1064 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1065 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1066 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1067 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1068 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1069 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1070 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1071 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1072 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1073 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1074 }; 1075 1076 #define ELF_HWCAP get_elf_hwcap() 1077 1078 static uint32_t get_elf_hwcap(void) 1079 { 1080 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1081 uint32_t hwcap = 0; 1082 1083 hwcap |= SH_CPU_HAS_FPU; 1084 1085 if (cpu->env.features & SH_FEATURE_SH4A) { 1086 hwcap |= SH_CPU_HAS_LLSC; 1087 } 1088 1089 return hwcap; 1090 } 1091 1092 #endif 1093 1094 #ifdef TARGET_CRIS 1095 1096 #define ELF_START_MMAP 0x80000000 1097 1098 #define ELF_CLASS ELFCLASS32 1099 #define ELF_ARCH EM_CRIS 1100 1101 static inline void init_thread(struct target_pt_regs *regs, 1102 struct image_info *infop) 1103 { 1104 regs->erp = infop->entry; 1105 } 1106 1107 #define ELF_EXEC_PAGESIZE 8192 1108 1109 #endif 1110 1111 #ifdef TARGET_M68K 1112 1113 #define ELF_START_MMAP 0x80000000 1114 1115 #define ELF_CLASS ELFCLASS32 1116 #define ELF_ARCH EM_68K 1117 1118 /* ??? Does this need to do anything? 1119 #define ELF_PLAT_INIT(_r) */ 1120 1121 static inline void init_thread(struct target_pt_regs *regs, 1122 struct image_info *infop) 1123 { 1124 regs->usp = infop->start_stack; 1125 regs->sr = 0; 1126 regs->pc = infop->entry; 1127 } 1128 1129 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1130 #define ELF_NREG 20 1131 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1132 1133 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1134 { 1135 (*regs)[0] = tswapreg(env->dregs[1]); 1136 (*regs)[1] = tswapreg(env->dregs[2]); 1137 (*regs)[2] = tswapreg(env->dregs[3]); 1138 (*regs)[3] = tswapreg(env->dregs[4]); 1139 (*regs)[4] = tswapreg(env->dregs[5]); 1140 (*regs)[5] = tswapreg(env->dregs[6]); 1141 (*regs)[6] = tswapreg(env->dregs[7]); 1142 (*regs)[7] = tswapreg(env->aregs[0]); 1143 (*regs)[8] = tswapreg(env->aregs[1]); 1144 (*regs)[9] = tswapreg(env->aregs[2]); 1145 (*regs)[10] = tswapreg(env->aregs[3]); 1146 (*regs)[11] = tswapreg(env->aregs[4]); 1147 (*regs)[12] = tswapreg(env->aregs[5]); 1148 (*regs)[13] = tswapreg(env->aregs[6]); 1149 (*regs)[14] = tswapreg(env->dregs[0]); 1150 (*regs)[15] = tswapreg(env->aregs[7]); 1151 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1152 (*regs)[17] = tswapreg(env->sr); 1153 (*regs)[18] = tswapreg(env->pc); 1154 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1155 } 1156 1157 #define USE_ELF_CORE_DUMP 1158 #define ELF_EXEC_PAGESIZE 8192 1159 1160 #endif 1161 1162 #ifdef TARGET_ALPHA 1163 1164 #define ELF_START_MMAP (0x30000000000ULL) 1165 1166 #define ELF_CLASS ELFCLASS64 1167 #define ELF_ARCH EM_ALPHA 1168 1169 static inline void init_thread(struct target_pt_regs *regs, 1170 struct image_info *infop) 1171 { 1172 regs->pc = infop->entry; 1173 regs->ps = 8; 1174 regs->usp = infop->start_stack; 1175 } 1176 1177 #define ELF_EXEC_PAGESIZE 8192 1178 1179 #endif /* TARGET_ALPHA */ 1180 1181 #ifdef TARGET_S390X 1182 1183 #define ELF_START_MMAP (0x20000000000ULL) 1184 1185 #define ELF_CLASS ELFCLASS64 1186 #define ELF_DATA ELFDATA2MSB 1187 #define ELF_ARCH EM_S390 1188 1189 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1190 { 1191 regs->psw.addr = infop->entry; 1192 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1193 regs->gprs[15] = infop->start_stack; 1194 } 1195 1196 #endif /* TARGET_S390X */ 1197 1198 #ifdef TARGET_TILEGX 1199 1200 /* 42 bits real used address, a half for user mode */ 1201 #define ELF_START_MMAP (0x00000020000000000ULL) 1202 1203 #define elf_check_arch(x) ((x) == EM_TILEGX) 1204 1205 #define ELF_CLASS ELFCLASS64 1206 #define ELF_DATA ELFDATA2LSB 1207 #define ELF_ARCH EM_TILEGX 1208 1209 static inline void init_thread(struct target_pt_regs *regs, 1210 struct image_info *infop) 1211 { 1212 regs->pc = infop->entry; 1213 regs->sp = infop->start_stack; 1214 1215 } 1216 1217 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1218 1219 #endif /* TARGET_TILEGX */ 1220 1221 #ifndef ELF_PLATFORM 1222 #define ELF_PLATFORM (NULL) 1223 #endif 1224 1225 #ifndef ELF_MACHINE 1226 #define ELF_MACHINE ELF_ARCH 1227 #endif 1228 1229 #ifndef elf_check_arch 1230 #define elf_check_arch(x) ((x) == ELF_ARCH) 1231 #endif 1232 1233 #ifndef ELF_HWCAP 1234 #define ELF_HWCAP 0 1235 #endif 1236 1237 #ifdef TARGET_ABI32 1238 #undef ELF_CLASS 1239 #define ELF_CLASS ELFCLASS32 1240 #undef bswaptls 1241 #define bswaptls(ptr) bswap32s(ptr) 1242 #endif 1243 1244 #include "elf.h" 1245 1246 struct exec 1247 { 1248 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1249 unsigned int a_text; /* length of text, in bytes */ 1250 unsigned int a_data; /* length of data, in bytes */ 1251 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1252 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1253 unsigned int a_entry; /* start address */ 1254 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1255 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1256 }; 1257 1258 1259 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1260 #define OMAGIC 0407 1261 #define NMAGIC 0410 1262 #define ZMAGIC 0413 1263 #define QMAGIC 0314 1264 1265 /* Necessary parameters */ 1266 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1267 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1268 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1269 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1270 1271 #define DLINFO_ITEMS 14 1272 1273 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1274 { 1275 memcpy(to, from, n); 1276 } 1277 1278 #ifdef BSWAP_NEEDED 1279 static void bswap_ehdr(struct elfhdr *ehdr) 1280 { 1281 bswap16s(&ehdr->e_type); /* Object file type */ 1282 bswap16s(&ehdr->e_machine); /* Architecture */ 1283 bswap32s(&ehdr->e_version); /* Object file version */ 1284 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1285 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1286 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1287 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1288 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1289 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1290 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1291 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1292 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1293 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1294 } 1295 1296 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1297 { 1298 int i; 1299 for (i = 0; i < phnum; ++i, ++phdr) { 1300 bswap32s(&phdr->p_type); /* Segment type */ 1301 bswap32s(&phdr->p_flags); /* Segment flags */ 1302 bswaptls(&phdr->p_offset); /* Segment file offset */ 1303 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1304 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1305 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1306 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1307 bswaptls(&phdr->p_align); /* Segment alignment */ 1308 } 1309 } 1310 1311 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1312 { 1313 int i; 1314 for (i = 0; i < shnum; ++i, ++shdr) { 1315 bswap32s(&shdr->sh_name); 1316 bswap32s(&shdr->sh_type); 1317 bswaptls(&shdr->sh_flags); 1318 bswaptls(&shdr->sh_addr); 1319 bswaptls(&shdr->sh_offset); 1320 bswaptls(&shdr->sh_size); 1321 bswap32s(&shdr->sh_link); 1322 bswap32s(&shdr->sh_info); 1323 bswaptls(&shdr->sh_addralign); 1324 bswaptls(&shdr->sh_entsize); 1325 } 1326 } 1327 1328 static void bswap_sym(struct elf_sym *sym) 1329 { 1330 bswap32s(&sym->st_name); 1331 bswaptls(&sym->st_value); 1332 bswaptls(&sym->st_size); 1333 bswap16s(&sym->st_shndx); 1334 } 1335 #else 1336 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1337 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1338 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1339 static inline void bswap_sym(struct elf_sym *sym) { } 1340 #endif 1341 1342 #ifdef USE_ELF_CORE_DUMP 1343 static int elf_core_dump(int, const CPUArchState *); 1344 #endif /* USE_ELF_CORE_DUMP */ 1345 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1346 1347 /* Verify the portions of EHDR within E_IDENT for the target. 1348 This can be performed before bswapping the entire header. */ 1349 static bool elf_check_ident(struct elfhdr *ehdr) 1350 { 1351 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1352 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1353 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1354 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1355 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1356 && ehdr->e_ident[EI_DATA] == ELF_DATA 1357 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1358 } 1359 1360 /* Verify the portions of EHDR outside of E_IDENT for the target. 1361 This has to wait until after bswapping the header. */ 1362 static bool elf_check_ehdr(struct elfhdr *ehdr) 1363 { 1364 return (elf_check_arch(ehdr->e_machine) 1365 && ehdr->e_ehsize == sizeof(struct elfhdr) 1366 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1367 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1368 } 1369 1370 /* 1371 * 'copy_elf_strings()' copies argument/envelope strings from user 1372 * memory to free pages in kernel mem. These are in a format ready 1373 * to be put directly into the top of new user memory. 1374 * 1375 */ 1376 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1377 abi_ulong p, abi_ulong stack_limit) 1378 { 1379 char *tmp; 1380 int len, offset; 1381 abi_ulong top = p; 1382 1383 if (!p) { 1384 return 0; /* bullet-proofing */ 1385 } 1386 1387 offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1388 1389 while (argc-- > 0) { 1390 tmp = argv[argc]; 1391 if (!tmp) { 1392 fprintf(stderr, "VFS: argc is wrong"); 1393 exit(-1); 1394 } 1395 len = strlen(tmp) + 1; 1396 tmp += len; 1397 1398 if (len > (p - stack_limit)) { 1399 return 0; 1400 } 1401 while (len) { 1402 int bytes_to_copy = (len > offset) ? offset : len; 1403 tmp -= bytes_to_copy; 1404 p -= bytes_to_copy; 1405 offset -= bytes_to_copy; 1406 len -= bytes_to_copy; 1407 1408 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1409 1410 if (offset == 0) { 1411 memcpy_to_target(p, scratch, top - p); 1412 top = p; 1413 offset = TARGET_PAGE_SIZE; 1414 } 1415 } 1416 } 1417 if (offset) { 1418 memcpy_to_target(p, scratch + offset, top - p); 1419 } 1420 1421 return p; 1422 } 1423 1424 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1425 * argument/environment space. Newer kernels (>2.6.33) allow more, 1426 * dependent on stack size, but guarantee at least 32 pages for 1427 * backwards compatibility. 1428 */ 1429 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1430 1431 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1432 struct image_info *info) 1433 { 1434 abi_ulong size, error, guard; 1435 1436 size = guest_stack_size; 1437 if (size < STACK_LOWER_LIMIT) { 1438 size = STACK_LOWER_LIMIT; 1439 } 1440 guard = TARGET_PAGE_SIZE; 1441 if (guard < qemu_real_host_page_size) { 1442 guard = qemu_real_host_page_size; 1443 } 1444 1445 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1446 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1447 if (error == -1) { 1448 perror("mmap stack"); 1449 exit(-1); 1450 } 1451 1452 /* We reserve one extra page at the top of the stack as guard. */ 1453 target_mprotect(error, guard, PROT_NONE); 1454 1455 info->stack_limit = error + guard; 1456 1457 return info->stack_limit + size - sizeof(void *); 1458 } 1459 1460 /* Map and zero the bss. We need to explicitly zero any fractional pages 1461 after the data section (i.e. bss). */ 1462 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1463 { 1464 uintptr_t host_start, host_map_start, host_end; 1465 1466 last_bss = TARGET_PAGE_ALIGN(last_bss); 1467 1468 /* ??? There is confusion between qemu_real_host_page_size and 1469 qemu_host_page_size here and elsewhere in target_mmap, which 1470 may lead to the end of the data section mapping from the file 1471 not being mapped. At least there was an explicit test and 1472 comment for that here, suggesting that "the file size must 1473 be known". The comment probably pre-dates the introduction 1474 of the fstat system call in target_mmap which does in fact 1475 find out the size. What isn't clear is if the workaround 1476 here is still actually needed. For now, continue with it, 1477 but merge it with the "normal" mmap that would allocate the bss. */ 1478 1479 host_start = (uintptr_t) g2h(elf_bss); 1480 host_end = (uintptr_t) g2h(last_bss); 1481 host_map_start = (host_start + qemu_real_host_page_size - 1); 1482 host_map_start &= -qemu_real_host_page_size; 1483 1484 if (host_map_start < host_end) { 1485 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1486 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1487 if (p == MAP_FAILED) { 1488 perror("cannot mmap brk"); 1489 exit(-1); 1490 } 1491 } 1492 1493 /* Ensure that the bss page(s) are valid */ 1494 if ((page_get_flags(last_bss-1) & prot) != prot) { 1495 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1496 } 1497 1498 if (host_start < host_map_start) { 1499 memset((void *)host_start, 0, host_map_start - host_start); 1500 } 1501 } 1502 1503 #ifdef CONFIG_USE_FDPIC 1504 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1505 { 1506 uint16_t n; 1507 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1508 1509 /* elf32_fdpic_loadseg */ 1510 n = info->nsegs; 1511 while (n--) { 1512 sp -= 12; 1513 put_user_u32(loadsegs[n].addr, sp+0); 1514 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1515 put_user_u32(loadsegs[n].p_memsz, sp+8); 1516 } 1517 1518 /* elf32_fdpic_loadmap */ 1519 sp -= 4; 1520 put_user_u16(0, sp+0); /* version */ 1521 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1522 1523 info->personality = PER_LINUX_FDPIC; 1524 info->loadmap_addr = sp; 1525 1526 return sp; 1527 } 1528 #endif 1529 1530 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1531 struct elfhdr *exec, 1532 struct image_info *info, 1533 struct image_info *interp_info) 1534 { 1535 abi_ulong sp; 1536 abi_ulong sp_auxv; 1537 int size; 1538 int i; 1539 abi_ulong u_rand_bytes; 1540 uint8_t k_rand_bytes[16]; 1541 abi_ulong u_platform; 1542 const char *k_platform; 1543 const int n = sizeof(elf_addr_t); 1544 1545 sp = p; 1546 1547 #ifdef CONFIG_USE_FDPIC 1548 /* Needs to be before we load the env/argc/... */ 1549 if (elf_is_fdpic(exec)) { 1550 /* Need 4 byte alignment for these structs */ 1551 sp &= ~3; 1552 sp = loader_build_fdpic_loadmap(info, sp); 1553 info->other_info = interp_info; 1554 if (interp_info) { 1555 interp_info->other_info = info; 1556 sp = loader_build_fdpic_loadmap(interp_info, sp); 1557 } 1558 } 1559 #endif 1560 1561 u_platform = 0; 1562 k_platform = ELF_PLATFORM; 1563 if (k_platform) { 1564 size_t len = strlen(k_platform) + 1; 1565 sp -= (len + n - 1) & ~(n - 1); 1566 u_platform = sp; 1567 /* FIXME - check return value of memcpy_to_target() for failure */ 1568 memcpy_to_target(sp, k_platform, len); 1569 } 1570 1571 /* 1572 * Generate 16 random bytes for userspace PRNG seeding (not 1573 * cryptically secure but it's not the aim of QEMU). 1574 */ 1575 for (i = 0; i < 16; i++) { 1576 k_rand_bytes[i] = rand(); 1577 } 1578 sp -= 16; 1579 u_rand_bytes = sp; 1580 /* FIXME - check return value of memcpy_to_target() for failure */ 1581 memcpy_to_target(sp, k_rand_bytes, 16); 1582 1583 /* 1584 * Force 16 byte _final_ alignment here for generality. 1585 */ 1586 sp = sp &~ (abi_ulong)15; 1587 size = (DLINFO_ITEMS + 1) * 2; 1588 if (k_platform) 1589 size += 2; 1590 #ifdef DLINFO_ARCH_ITEMS 1591 size += DLINFO_ARCH_ITEMS * 2; 1592 #endif 1593 #ifdef ELF_HWCAP2 1594 size += 2; 1595 #endif 1596 size += envc + argc + 2; 1597 size += 1; /* argc itself */ 1598 size *= n; 1599 if (size & 15) 1600 sp -= 16 - (size & 15); 1601 1602 /* This is correct because Linux defines 1603 * elf_addr_t as Elf32_Off / Elf64_Off 1604 */ 1605 #define NEW_AUX_ENT(id, val) do { \ 1606 sp -= n; put_user_ual(val, sp); \ 1607 sp -= n; put_user_ual(id, sp); \ 1608 } while(0) 1609 1610 sp_auxv = sp; 1611 NEW_AUX_ENT (AT_NULL, 0); 1612 1613 /* There must be exactly DLINFO_ITEMS entries here. */ 1614 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1615 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1616 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1617 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1618 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1619 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1620 NEW_AUX_ENT(AT_ENTRY, info->entry); 1621 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1622 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1623 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1624 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1625 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1626 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1627 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1628 1629 #ifdef ELF_HWCAP2 1630 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1631 #endif 1632 1633 if (k_platform) 1634 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1635 #ifdef ARCH_DLINFO 1636 /* 1637 * ARCH_DLINFO must come last so platform specific code can enforce 1638 * special alignment requirements on the AUXV if necessary (eg. PPC). 1639 */ 1640 ARCH_DLINFO; 1641 #endif 1642 #undef NEW_AUX_ENT 1643 1644 info->saved_auxv = sp; 1645 info->auxv_len = sp_auxv - sp; 1646 1647 sp = loader_build_argptr(envc, argc, sp, p, 0); 1648 /* Check the right amount of stack was allocated for auxvec, envp & argv. */ 1649 assert(sp_auxv - sp == size); 1650 return sp; 1651 } 1652 1653 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1654 /* If the guest doesn't have a validation function just agree */ 1655 static int validate_guest_space(unsigned long guest_base, 1656 unsigned long guest_size) 1657 { 1658 return 1; 1659 } 1660 #endif 1661 1662 unsigned long init_guest_space(unsigned long host_start, 1663 unsigned long host_size, 1664 unsigned long guest_start, 1665 bool fixed) 1666 { 1667 unsigned long current_start, real_start; 1668 int flags; 1669 1670 assert(host_start || host_size); 1671 1672 /* If just a starting address is given, then just verify that 1673 * address. */ 1674 if (host_start && !host_size) { 1675 if (validate_guest_space(host_start, host_size) == 1) { 1676 return host_start; 1677 } else { 1678 return (unsigned long)-1; 1679 } 1680 } 1681 1682 /* Setup the initial flags and start address. */ 1683 current_start = host_start & qemu_host_page_mask; 1684 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1685 if (fixed) { 1686 flags |= MAP_FIXED; 1687 } 1688 1689 /* Otherwise, a non-zero size region of memory needs to be mapped 1690 * and validated. */ 1691 while (1) { 1692 unsigned long real_size = host_size; 1693 1694 /* Do not use mmap_find_vma here because that is limited to the 1695 * guest address space. We are going to make the 1696 * guest address space fit whatever we're given. 1697 */ 1698 real_start = (unsigned long) 1699 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1700 if (real_start == (unsigned long)-1) { 1701 return (unsigned long)-1; 1702 } 1703 1704 /* Ensure the address is properly aligned. */ 1705 if (real_start & ~qemu_host_page_mask) { 1706 munmap((void *)real_start, host_size); 1707 real_size = host_size + qemu_host_page_size; 1708 real_start = (unsigned long) 1709 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1710 if (real_start == (unsigned long)-1) { 1711 return (unsigned long)-1; 1712 } 1713 real_start = HOST_PAGE_ALIGN(real_start); 1714 } 1715 1716 /* Check to see if the address is valid. */ 1717 if (!host_start || real_start == current_start) { 1718 int valid = validate_guest_space(real_start - guest_start, 1719 real_size); 1720 if (valid == 1) { 1721 break; 1722 } else if (valid == -1) { 1723 return (unsigned long)-1; 1724 } 1725 /* valid == 0, so try again. */ 1726 } 1727 1728 /* That address didn't work. Unmap and try a different one. 1729 * The address the host picked because is typically right at 1730 * the top of the host address space and leaves the guest with 1731 * no usable address space. Resort to a linear search. We 1732 * already compensated for mmap_min_addr, so this should not 1733 * happen often. Probably means we got unlucky and host 1734 * address space randomization put a shared library somewhere 1735 * inconvenient. 1736 */ 1737 munmap((void *)real_start, host_size); 1738 current_start += qemu_host_page_size; 1739 if (host_start == current_start) { 1740 /* Theoretically possible if host doesn't have any suitably 1741 * aligned areas. Normally the first mmap will fail. 1742 */ 1743 return (unsigned long)-1; 1744 } 1745 } 1746 1747 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size); 1748 1749 return real_start; 1750 } 1751 1752 static void probe_guest_base(const char *image_name, 1753 abi_ulong loaddr, abi_ulong hiaddr) 1754 { 1755 /* Probe for a suitable guest base address, if the user has not set 1756 * it explicitly, and set guest_base appropriately. 1757 * In case of error we will print a suitable message and exit. 1758 */ 1759 const char *errmsg; 1760 if (!have_guest_base && !reserved_va) { 1761 unsigned long host_start, real_start, host_size; 1762 1763 /* Round addresses to page boundaries. */ 1764 loaddr &= qemu_host_page_mask; 1765 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1766 1767 if (loaddr < mmap_min_addr) { 1768 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1769 } else { 1770 host_start = loaddr; 1771 if (host_start != loaddr) { 1772 errmsg = "Address overflow loading ELF binary"; 1773 goto exit_errmsg; 1774 } 1775 } 1776 host_size = hiaddr - loaddr; 1777 1778 /* Setup the initial guest memory space with ranges gleaned from 1779 * the ELF image that is being loaded. 1780 */ 1781 real_start = init_guest_space(host_start, host_size, loaddr, false); 1782 if (real_start == (unsigned long)-1) { 1783 errmsg = "Unable to find space for application"; 1784 goto exit_errmsg; 1785 } 1786 guest_base = real_start - loaddr; 1787 1788 qemu_log("Relocating guest address space from 0x" 1789 TARGET_ABI_FMT_lx " to 0x%lx\n", 1790 loaddr, real_start); 1791 } 1792 return; 1793 1794 exit_errmsg: 1795 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1796 exit(-1); 1797 } 1798 1799 1800 /* Load an ELF image into the address space. 1801 1802 IMAGE_NAME is the filename of the image, to use in error messages. 1803 IMAGE_FD is the open file descriptor for the image. 1804 1805 BPRM_BUF is a copy of the beginning of the file; this of course 1806 contains the elf file header at offset 0. It is assumed that this 1807 buffer is sufficiently aligned to present no problems to the host 1808 in accessing data at aligned offsets within the buffer. 1809 1810 On return: INFO values will be filled in, as necessary or available. */ 1811 1812 static void load_elf_image(const char *image_name, int image_fd, 1813 struct image_info *info, char **pinterp_name, 1814 char bprm_buf[BPRM_BUF_SIZE]) 1815 { 1816 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1817 struct elf_phdr *phdr; 1818 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1819 int i, retval; 1820 const char *errmsg; 1821 1822 /* First of all, some simple consistency checks */ 1823 errmsg = "Invalid ELF image for this architecture"; 1824 if (!elf_check_ident(ehdr)) { 1825 goto exit_errmsg; 1826 } 1827 bswap_ehdr(ehdr); 1828 if (!elf_check_ehdr(ehdr)) { 1829 goto exit_errmsg; 1830 } 1831 1832 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1833 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 1834 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 1835 } else { 1836 phdr = (struct elf_phdr *) alloca(i); 1837 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 1838 if (retval != i) { 1839 goto exit_read; 1840 } 1841 } 1842 bswap_phdr(phdr, ehdr->e_phnum); 1843 1844 #ifdef CONFIG_USE_FDPIC 1845 info->nsegs = 0; 1846 info->pt_dynamic_addr = 0; 1847 #endif 1848 1849 /* Find the maximum size of the image and allocate an appropriate 1850 amount of memory to handle that. */ 1851 loaddr = -1, hiaddr = 0; 1852 for (i = 0; i < ehdr->e_phnum; ++i) { 1853 if (phdr[i].p_type == PT_LOAD) { 1854 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 1855 if (a < loaddr) { 1856 loaddr = a; 1857 } 1858 a = phdr[i].p_vaddr + phdr[i].p_memsz; 1859 if (a > hiaddr) { 1860 hiaddr = a; 1861 } 1862 #ifdef CONFIG_USE_FDPIC 1863 ++info->nsegs; 1864 #endif 1865 } 1866 } 1867 1868 load_addr = loaddr; 1869 if (ehdr->e_type == ET_DYN) { 1870 /* The image indicates that it can be loaded anywhere. Find a 1871 location that can hold the memory space required. If the 1872 image is pre-linked, LOADDR will be non-zero. Since we do 1873 not supply MAP_FIXED here we'll use that address if and 1874 only if it remains available. */ 1875 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 1876 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 1877 -1, 0); 1878 if (load_addr == -1) { 1879 goto exit_perror; 1880 } 1881 } else if (pinterp_name != NULL) { 1882 /* This is the main executable. Make sure that the low 1883 address does not conflict with MMAP_MIN_ADDR or the 1884 QEMU application itself. */ 1885 probe_guest_base(image_name, loaddr, hiaddr); 1886 } 1887 load_bias = load_addr - loaddr; 1888 1889 #ifdef CONFIG_USE_FDPIC 1890 { 1891 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 1892 g_malloc(sizeof(*loadsegs) * info->nsegs); 1893 1894 for (i = 0; i < ehdr->e_phnum; ++i) { 1895 switch (phdr[i].p_type) { 1896 case PT_DYNAMIC: 1897 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 1898 break; 1899 case PT_LOAD: 1900 loadsegs->addr = phdr[i].p_vaddr + load_bias; 1901 loadsegs->p_vaddr = phdr[i].p_vaddr; 1902 loadsegs->p_memsz = phdr[i].p_memsz; 1903 ++loadsegs; 1904 break; 1905 } 1906 } 1907 } 1908 #endif 1909 1910 info->load_bias = load_bias; 1911 info->load_addr = load_addr; 1912 info->entry = ehdr->e_entry + load_bias; 1913 info->start_code = -1; 1914 info->end_code = 0; 1915 info->start_data = -1; 1916 info->end_data = 0; 1917 info->brk = 0; 1918 info->elf_flags = ehdr->e_flags; 1919 1920 for (i = 0; i < ehdr->e_phnum; i++) { 1921 struct elf_phdr *eppnt = phdr + i; 1922 if (eppnt->p_type == PT_LOAD) { 1923 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 1924 int elf_prot = 0; 1925 1926 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 1927 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 1928 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 1929 1930 vaddr = load_bias + eppnt->p_vaddr; 1931 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 1932 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 1933 1934 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 1935 elf_prot, MAP_PRIVATE | MAP_FIXED, 1936 image_fd, eppnt->p_offset - vaddr_po); 1937 if (error == -1) { 1938 goto exit_perror; 1939 } 1940 1941 vaddr_ef = vaddr + eppnt->p_filesz; 1942 vaddr_em = vaddr + eppnt->p_memsz; 1943 1944 /* If the load segment requests extra zeros (e.g. bss), map it. */ 1945 if (vaddr_ef < vaddr_em) { 1946 zero_bss(vaddr_ef, vaddr_em, elf_prot); 1947 } 1948 1949 /* Find the full program boundaries. */ 1950 if (elf_prot & PROT_EXEC) { 1951 if (vaddr < info->start_code) { 1952 info->start_code = vaddr; 1953 } 1954 if (vaddr_ef > info->end_code) { 1955 info->end_code = vaddr_ef; 1956 } 1957 } 1958 if (elf_prot & PROT_WRITE) { 1959 if (vaddr < info->start_data) { 1960 info->start_data = vaddr; 1961 } 1962 if (vaddr_ef > info->end_data) { 1963 info->end_data = vaddr_ef; 1964 } 1965 if (vaddr_em > info->brk) { 1966 info->brk = vaddr_em; 1967 } 1968 } 1969 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 1970 char *interp_name; 1971 1972 if (*pinterp_name) { 1973 errmsg = "Multiple PT_INTERP entries"; 1974 goto exit_errmsg; 1975 } 1976 interp_name = malloc(eppnt->p_filesz); 1977 if (!interp_name) { 1978 goto exit_perror; 1979 } 1980 1981 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 1982 memcpy(interp_name, bprm_buf + eppnt->p_offset, 1983 eppnt->p_filesz); 1984 } else { 1985 retval = pread(image_fd, interp_name, eppnt->p_filesz, 1986 eppnt->p_offset); 1987 if (retval != eppnt->p_filesz) { 1988 goto exit_perror; 1989 } 1990 } 1991 if (interp_name[eppnt->p_filesz - 1] != 0) { 1992 errmsg = "Invalid PT_INTERP entry"; 1993 goto exit_errmsg; 1994 } 1995 *pinterp_name = interp_name; 1996 } 1997 } 1998 1999 if (info->end_data == 0) { 2000 info->start_data = info->end_code; 2001 info->end_data = info->end_code; 2002 info->brk = info->end_code; 2003 } 2004 2005 if (qemu_log_enabled()) { 2006 load_symbols(ehdr, image_fd, load_bias); 2007 } 2008 2009 close(image_fd); 2010 return; 2011 2012 exit_read: 2013 if (retval >= 0) { 2014 errmsg = "Incomplete read of file header"; 2015 goto exit_errmsg; 2016 } 2017 exit_perror: 2018 errmsg = strerror(errno); 2019 exit_errmsg: 2020 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2021 exit(-1); 2022 } 2023 2024 static void load_elf_interp(const char *filename, struct image_info *info, 2025 char bprm_buf[BPRM_BUF_SIZE]) 2026 { 2027 int fd, retval; 2028 2029 fd = open(path(filename), O_RDONLY); 2030 if (fd < 0) { 2031 goto exit_perror; 2032 } 2033 2034 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2035 if (retval < 0) { 2036 goto exit_perror; 2037 } 2038 if (retval < BPRM_BUF_SIZE) { 2039 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2040 } 2041 2042 load_elf_image(filename, fd, info, NULL, bprm_buf); 2043 return; 2044 2045 exit_perror: 2046 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2047 exit(-1); 2048 } 2049 2050 static int symfind(const void *s0, const void *s1) 2051 { 2052 target_ulong addr = *(target_ulong *)s0; 2053 struct elf_sym *sym = (struct elf_sym *)s1; 2054 int result = 0; 2055 if (addr < sym->st_value) { 2056 result = -1; 2057 } else if (addr >= sym->st_value + sym->st_size) { 2058 result = 1; 2059 } 2060 return result; 2061 } 2062 2063 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2064 { 2065 #if ELF_CLASS == ELFCLASS32 2066 struct elf_sym *syms = s->disas_symtab.elf32; 2067 #else 2068 struct elf_sym *syms = s->disas_symtab.elf64; 2069 #endif 2070 2071 // binary search 2072 struct elf_sym *sym; 2073 2074 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2075 if (sym != NULL) { 2076 return s->disas_strtab + sym->st_name; 2077 } 2078 2079 return ""; 2080 } 2081 2082 /* FIXME: This should use elf_ops.h */ 2083 static int symcmp(const void *s0, const void *s1) 2084 { 2085 struct elf_sym *sym0 = (struct elf_sym *)s0; 2086 struct elf_sym *sym1 = (struct elf_sym *)s1; 2087 return (sym0->st_value < sym1->st_value) 2088 ? -1 2089 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2090 } 2091 2092 /* Best attempt to load symbols from this ELF object. */ 2093 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2094 { 2095 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2096 struct elf_shdr *shdr; 2097 char *strings = NULL; 2098 struct syminfo *s = NULL; 2099 struct elf_sym *new_syms, *syms = NULL; 2100 2101 shnum = hdr->e_shnum; 2102 i = shnum * sizeof(struct elf_shdr); 2103 shdr = (struct elf_shdr *)alloca(i); 2104 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2105 return; 2106 } 2107 2108 bswap_shdr(shdr, shnum); 2109 for (i = 0; i < shnum; ++i) { 2110 if (shdr[i].sh_type == SHT_SYMTAB) { 2111 sym_idx = i; 2112 str_idx = shdr[i].sh_link; 2113 goto found; 2114 } 2115 } 2116 2117 /* There will be no symbol table if the file was stripped. */ 2118 return; 2119 2120 found: 2121 /* Now know where the strtab and symtab are. Snarf them. */ 2122 s = malloc(sizeof(*s)); 2123 if (!s) { 2124 goto give_up; 2125 } 2126 2127 i = shdr[str_idx].sh_size; 2128 s->disas_strtab = strings = malloc(i); 2129 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { 2130 goto give_up; 2131 } 2132 2133 i = shdr[sym_idx].sh_size; 2134 syms = malloc(i); 2135 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { 2136 goto give_up; 2137 } 2138 2139 nsyms = i / sizeof(struct elf_sym); 2140 for (i = 0; i < nsyms; ) { 2141 bswap_sym(syms + i); 2142 /* Throw away entries which we do not need. */ 2143 if (syms[i].st_shndx == SHN_UNDEF 2144 || syms[i].st_shndx >= SHN_LORESERVE 2145 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2146 if (i < --nsyms) { 2147 syms[i] = syms[nsyms]; 2148 } 2149 } else { 2150 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2151 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2152 syms[i].st_value &= ~(target_ulong)1; 2153 #endif 2154 syms[i].st_value += load_bias; 2155 i++; 2156 } 2157 } 2158 2159 /* No "useful" symbol. */ 2160 if (nsyms == 0) { 2161 goto give_up; 2162 } 2163 2164 /* Attempt to free the storage associated with the local symbols 2165 that we threw away. Whether or not this has any effect on the 2166 memory allocation depends on the malloc implementation and how 2167 many symbols we managed to discard. */ 2168 new_syms = realloc(syms, nsyms * sizeof(*syms)); 2169 if (new_syms == NULL) { 2170 goto give_up; 2171 } 2172 syms = new_syms; 2173 2174 qsort(syms, nsyms, sizeof(*syms), symcmp); 2175 2176 s->disas_num_syms = nsyms; 2177 #if ELF_CLASS == ELFCLASS32 2178 s->disas_symtab.elf32 = syms; 2179 #else 2180 s->disas_symtab.elf64 = syms; 2181 #endif 2182 s->lookup_symbol = lookup_symbolxx; 2183 s->next = syminfos; 2184 syminfos = s; 2185 2186 return; 2187 2188 give_up: 2189 free(s); 2190 free(strings); 2191 free(syms); 2192 } 2193 2194 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2195 { 2196 struct image_info interp_info; 2197 struct elfhdr elf_ex; 2198 char *elf_interpreter = NULL; 2199 char *scratch; 2200 2201 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2202 2203 load_elf_image(bprm->filename, bprm->fd, info, 2204 &elf_interpreter, bprm->buf); 2205 2206 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2207 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2208 when we load the interpreter. */ 2209 elf_ex = *(struct elfhdr *)bprm->buf; 2210 2211 /* Do this so that we can load the interpreter, if need be. We will 2212 change some of these later */ 2213 bprm->p = setup_arg_pages(bprm, info); 2214 2215 scratch = g_new0(char, TARGET_PAGE_SIZE); 2216 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2217 bprm->p, info->stack_limit); 2218 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2219 bprm->p, info->stack_limit); 2220 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2221 bprm->p, info->stack_limit); 2222 g_free(scratch); 2223 2224 if (!bprm->p) { 2225 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2226 exit(-1); 2227 } 2228 2229 if (elf_interpreter) { 2230 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2231 2232 /* If the program interpreter is one of these two, then assume 2233 an iBCS2 image. Otherwise assume a native linux image. */ 2234 2235 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2236 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2237 info->personality = PER_SVR4; 2238 2239 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2240 and some applications "depend" upon this behavior. Since 2241 we do not have the power to recompile these, we emulate 2242 the SVr4 behavior. Sigh. */ 2243 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2244 MAP_FIXED | MAP_PRIVATE, -1, 0); 2245 } 2246 } 2247 2248 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2249 info, (elf_interpreter ? &interp_info : NULL)); 2250 info->start_stack = bprm->p; 2251 2252 /* If we have an interpreter, set that as the program's entry point. 2253 Copy the load_bias as well, to help PPC64 interpret the entry 2254 point as a function descriptor. Do this after creating elf tables 2255 so that we copy the original program entry point into the AUXV. */ 2256 if (elf_interpreter) { 2257 info->load_bias = interp_info.load_bias; 2258 info->entry = interp_info.entry; 2259 free(elf_interpreter); 2260 } 2261 2262 #ifdef USE_ELF_CORE_DUMP 2263 bprm->core_dump = &elf_core_dump; 2264 #endif 2265 2266 return 0; 2267 } 2268 2269 #ifdef USE_ELF_CORE_DUMP 2270 /* 2271 * Definitions to generate Intel SVR4-like core files. 2272 * These mostly have the same names as the SVR4 types with "target_elf_" 2273 * tacked on the front to prevent clashes with linux definitions, 2274 * and the typedef forms have been avoided. This is mostly like 2275 * the SVR4 structure, but more Linuxy, with things that Linux does 2276 * not support and which gdb doesn't really use excluded. 2277 * 2278 * Fields we don't dump (their contents is zero) in linux-user qemu 2279 * are marked with XXX. 2280 * 2281 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2282 * 2283 * Porting ELF coredump for target is (quite) simple process. First you 2284 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2285 * the target resides): 2286 * 2287 * #define USE_ELF_CORE_DUMP 2288 * 2289 * Next you define type of register set used for dumping. ELF specification 2290 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2291 * 2292 * typedef <target_regtype> target_elf_greg_t; 2293 * #define ELF_NREG <number of registers> 2294 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2295 * 2296 * Last step is to implement target specific function that copies registers 2297 * from given cpu into just specified register set. Prototype is: 2298 * 2299 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2300 * const CPUArchState *env); 2301 * 2302 * Parameters: 2303 * regs - copy register values into here (allocated and zeroed by caller) 2304 * env - copy registers from here 2305 * 2306 * Example for ARM target is provided in this file. 2307 */ 2308 2309 /* An ELF note in memory */ 2310 struct memelfnote { 2311 const char *name; 2312 size_t namesz; 2313 size_t namesz_rounded; 2314 int type; 2315 size_t datasz; 2316 size_t datasz_rounded; 2317 void *data; 2318 size_t notesz; 2319 }; 2320 2321 struct target_elf_siginfo { 2322 abi_int si_signo; /* signal number */ 2323 abi_int si_code; /* extra code */ 2324 abi_int si_errno; /* errno */ 2325 }; 2326 2327 struct target_elf_prstatus { 2328 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2329 abi_short pr_cursig; /* Current signal */ 2330 abi_ulong pr_sigpend; /* XXX */ 2331 abi_ulong pr_sighold; /* XXX */ 2332 target_pid_t pr_pid; 2333 target_pid_t pr_ppid; 2334 target_pid_t pr_pgrp; 2335 target_pid_t pr_sid; 2336 struct target_timeval pr_utime; /* XXX User time */ 2337 struct target_timeval pr_stime; /* XXX System time */ 2338 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2339 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2340 target_elf_gregset_t pr_reg; /* GP registers */ 2341 abi_int pr_fpvalid; /* XXX */ 2342 }; 2343 2344 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2345 2346 struct target_elf_prpsinfo { 2347 char pr_state; /* numeric process state */ 2348 char pr_sname; /* char for pr_state */ 2349 char pr_zomb; /* zombie */ 2350 char pr_nice; /* nice val */ 2351 abi_ulong pr_flag; /* flags */ 2352 target_uid_t pr_uid; 2353 target_gid_t pr_gid; 2354 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2355 /* Lots missing */ 2356 char pr_fname[16]; /* filename of executable */ 2357 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2358 }; 2359 2360 /* Here is the structure in which status of each thread is captured. */ 2361 struct elf_thread_status { 2362 QTAILQ_ENTRY(elf_thread_status) ets_link; 2363 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2364 #if 0 2365 elf_fpregset_t fpu; /* NT_PRFPREG */ 2366 struct task_struct *thread; 2367 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2368 #endif 2369 struct memelfnote notes[1]; 2370 int num_notes; 2371 }; 2372 2373 struct elf_note_info { 2374 struct memelfnote *notes; 2375 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2376 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2377 2378 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2379 #if 0 2380 /* 2381 * Current version of ELF coredump doesn't support 2382 * dumping fp regs etc. 2383 */ 2384 elf_fpregset_t *fpu; 2385 elf_fpxregset_t *xfpu; 2386 int thread_status_size; 2387 #endif 2388 int notes_size; 2389 int numnote; 2390 }; 2391 2392 struct vm_area_struct { 2393 target_ulong vma_start; /* start vaddr of memory region */ 2394 target_ulong vma_end; /* end vaddr of memory region */ 2395 abi_ulong vma_flags; /* protection etc. flags for the region */ 2396 QTAILQ_ENTRY(vm_area_struct) vma_link; 2397 }; 2398 2399 struct mm_struct { 2400 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2401 int mm_count; /* number of mappings */ 2402 }; 2403 2404 static struct mm_struct *vma_init(void); 2405 static void vma_delete(struct mm_struct *); 2406 static int vma_add_mapping(struct mm_struct *, target_ulong, 2407 target_ulong, abi_ulong); 2408 static int vma_get_mapping_count(const struct mm_struct *); 2409 static struct vm_area_struct *vma_first(const struct mm_struct *); 2410 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2411 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2412 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2413 unsigned long flags); 2414 2415 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2416 static void fill_note(struct memelfnote *, const char *, int, 2417 unsigned int, void *); 2418 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2419 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2420 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2421 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2422 static size_t note_size(const struct memelfnote *); 2423 static void free_note_info(struct elf_note_info *); 2424 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2425 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2426 static int core_dump_filename(const TaskState *, char *, size_t); 2427 2428 static int dump_write(int, const void *, size_t); 2429 static int write_note(struct memelfnote *, int); 2430 static int write_note_info(struct elf_note_info *, int); 2431 2432 #ifdef BSWAP_NEEDED 2433 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2434 { 2435 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2436 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2437 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2438 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2439 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2440 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2441 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2442 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2443 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2444 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2445 /* cpu times are not filled, so we skip them */ 2446 /* regs should be in correct format already */ 2447 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2448 } 2449 2450 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2451 { 2452 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2453 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2454 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2455 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2456 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2457 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2458 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2459 } 2460 2461 static void bswap_note(struct elf_note *en) 2462 { 2463 bswap32s(&en->n_namesz); 2464 bswap32s(&en->n_descsz); 2465 bswap32s(&en->n_type); 2466 } 2467 #else 2468 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2469 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2470 static inline void bswap_note(struct elf_note *en) { } 2471 #endif /* BSWAP_NEEDED */ 2472 2473 /* 2474 * Minimal support for linux memory regions. These are needed 2475 * when we are finding out what memory exactly belongs to 2476 * emulated process. No locks needed here, as long as 2477 * thread that received the signal is stopped. 2478 */ 2479 2480 static struct mm_struct *vma_init(void) 2481 { 2482 struct mm_struct *mm; 2483 2484 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2485 return (NULL); 2486 2487 mm->mm_count = 0; 2488 QTAILQ_INIT(&mm->mm_mmap); 2489 2490 return (mm); 2491 } 2492 2493 static void vma_delete(struct mm_struct *mm) 2494 { 2495 struct vm_area_struct *vma; 2496 2497 while ((vma = vma_first(mm)) != NULL) { 2498 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2499 g_free(vma); 2500 } 2501 g_free(mm); 2502 } 2503 2504 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2505 target_ulong end, abi_ulong flags) 2506 { 2507 struct vm_area_struct *vma; 2508 2509 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2510 return (-1); 2511 2512 vma->vma_start = start; 2513 vma->vma_end = end; 2514 vma->vma_flags = flags; 2515 2516 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2517 mm->mm_count++; 2518 2519 return (0); 2520 } 2521 2522 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2523 { 2524 return (QTAILQ_FIRST(&mm->mm_mmap)); 2525 } 2526 2527 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2528 { 2529 return (QTAILQ_NEXT(vma, vma_link)); 2530 } 2531 2532 static int vma_get_mapping_count(const struct mm_struct *mm) 2533 { 2534 return (mm->mm_count); 2535 } 2536 2537 /* 2538 * Calculate file (dump) size of given memory region. 2539 */ 2540 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2541 { 2542 /* if we cannot even read the first page, skip it */ 2543 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2544 return (0); 2545 2546 /* 2547 * Usually we don't dump executable pages as they contain 2548 * non-writable code that debugger can read directly from 2549 * target library etc. However, thread stacks are marked 2550 * also executable so we read in first page of given region 2551 * and check whether it contains elf header. If there is 2552 * no elf header, we dump it. 2553 */ 2554 if (vma->vma_flags & PROT_EXEC) { 2555 char page[TARGET_PAGE_SIZE]; 2556 2557 copy_from_user(page, vma->vma_start, sizeof (page)); 2558 if ((page[EI_MAG0] == ELFMAG0) && 2559 (page[EI_MAG1] == ELFMAG1) && 2560 (page[EI_MAG2] == ELFMAG2) && 2561 (page[EI_MAG3] == ELFMAG3)) { 2562 /* 2563 * Mappings are possibly from ELF binary. Don't dump 2564 * them. 2565 */ 2566 return (0); 2567 } 2568 } 2569 2570 return (vma->vma_end - vma->vma_start); 2571 } 2572 2573 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2574 unsigned long flags) 2575 { 2576 struct mm_struct *mm = (struct mm_struct *)priv; 2577 2578 vma_add_mapping(mm, start, end, flags); 2579 return (0); 2580 } 2581 2582 static void fill_note(struct memelfnote *note, const char *name, int type, 2583 unsigned int sz, void *data) 2584 { 2585 unsigned int namesz; 2586 2587 namesz = strlen(name) + 1; 2588 note->name = name; 2589 note->namesz = namesz; 2590 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2591 note->type = type; 2592 note->datasz = sz; 2593 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2594 2595 note->data = data; 2596 2597 /* 2598 * We calculate rounded up note size here as specified by 2599 * ELF document. 2600 */ 2601 note->notesz = sizeof (struct elf_note) + 2602 note->namesz_rounded + note->datasz_rounded; 2603 } 2604 2605 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2606 uint32_t flags) 2607 { 2608 (void) memset(elf, 0, sizeof(*elf)); 2609 2610 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2611 elf->e_ident[EI_CLASS] = ELF_CLASS; 2612 elf->e_ident[EI_DATA] = ELF_DATA; 2613 elf->e_ident[EI_VERSION] = EV_CURRENT; 2614 elf->e_ident[EI_OSABI] = ELF_OSABI; 2615 2616 elf->e_type = ET_CORE; 2617 elf->e_machine = machine; 2618 elf->e_version = EV_CURRENT; 2619 elf->e_phoff = sizeof(struct elfhdr); 2620 elf->e_flags = flags; 2621 elf->e_ehsize = sizeof(struct elfhdr); 2622 elf->e_phentsize = sizeof(struct elf_phdr); 2623 elf->e_phnum = segs; 2624 2625 bswap_ehdr(elf); 2626 } 2627 2628 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2629 { 2630 phdr->p_type = PT_NOTE; 2631 phdr->p_offset = offset; 2632 phdr->p_vaddr = 0; 2633 phdr->p_paddr = 0; 2634 phdr->p_filesz = sz; 2635 phdr->p_memsz = 0; 2636 phdr->p_flags = 0; 2637 phdr->p_align = 0; 2638 2639 bswap_phdr(phdr, 1); 2640 } 2641 2642 static size_t note_size(const struct memelfnote *note) 2643 { 2644 return (note->notesz); 2645 } 2646 2647 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2648 const TaskState *ts, int signr) 2649 { 2650 (void) memset(prstatus, 0, sizeof (*prstatus)); 2651 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2652 prstatus->pr_pid = ts->ts_tid; 2653 prstatus->pr_ppid = getppid(); 2654 prstatus->pr_pgrp = getpgrp(); 2655 prstatus->pr_sid = getsid(0); 2656 2657 bswap_prstatus(prstatus); 2658 } 2659 2660 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2661 { 2662 char *base_filename; 2663 unsigned int i, len; 2664 2665 (void) memset(psinfo, 0, sizeof (*psinfo)); 2666 2667 len = ts->info->arg_end - ts->info->arg_start; 2668 if (len >= ELF_PRARGSZ) 2669 len = ELF_PRARGSZ - 1; 2670 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2671 return -EFAULT; 2672 for (i = 0; i < len; i++) 2673 if (psinfo->pr_psargs[i] == 0) 2674 psinfo->pr_psargs[i] = ' '; 2675 psinfo->pr_psargs[len] = 0; 2676 2677 psinfo->pr_pid = getpid(); 2678 psinfo->pr_ppid = getppid(); 2679 psinfo->pr_pgrp = getpgrp(); 2680 psinfo->pr_sid = getsid(0); 2681 psinfo->pr_uid = getuid(); 2682 psinfo->pr_gid = getgid(); 2683 2684 base_filename = g_path_get_basename(ts->bprm->filename); 2685 /* 2686 * Using strncpy here is fine: at max-length, 2687 * this field is not NUL-terminated. 2688 */ 2689 (void) strncpy(psinfo->pr_fname, base_filename, 2690 sizeof(psinfo->pr_fname)); 2691 2692 g_free(base_filename); 2693 bswap_psinfo(psinfo); 2694 return (0); 2695 } 2696 2697 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2698 { 2699 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2700 elf_addr_t orig_auxv = auxv; 2701 void *ptr; 2702 int len = ts->info->auxv_len; 2703 2704 /* 2705 * Auxiliary vector is stored in target process stack. It contains 2706 * {type, value} pairs that we need to dump into note. This is not 2707 * strictly necessary but we do it here for sake of completeness. 2708 */ 2709 2710 /* read in whole auxv vector and copy it to memelfnote */ 2711 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2712 if (ptr != NULL) { 2713 fill_note(note, "CORE", NT_AUXV, len, ptr); 2714 unlock_user(ptr, auxv, len); 2715 } 2716 } 2717 2718 /* 2719 * Constructs name of coredump file. We have following convention 2720 * for the name: 2721 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2722 * 2723 * Returns 0 in case of success, -1 otherwise (errno is set). 2724 */ 2725 static int core_dump_filename(const TaskState *ts, char *buf, 2726 size_t bufsize) 2727 { 2728 char timestamp[64]; 2729 char *filename = NULL; 2730 char *base_filename = NULL; 2731 struct timeval tv; 2732 struct tm tm; 2733 2734 assert(bufsize >= PATH_MAX); 2735 2736 if (gettimeofday(&tv, NULL) < 0) { 2737 (void) fprintf(stderr, "unable to get current timestamp: %s", 2738 strerror(errno)); 2739 return (-1); 2740 } 2741 2742 filename = strdup(ts->bprm->filename); 2743 base_filename = strdup(basename(filename)); 2744 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2745 localtime_r(&tv.tv_sec, &tm)); 2746 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2747 base_filename, timestamp, (int)getpid()); 2748 free(base_filename); 2749 free(filename); 2750 2751 return (0); 2752 } 2753 2754 static int dump_write(int fd, const void *ptr, size_t size) 2755 { 2756 const char *bufp = (const char *)ptr; 2757 ssize_t bytes_written, bytes_left; 2758 struct rlimit dumpsize; 2759 off_t pos; 2760 2761 bytes_written = 0; 2762 getrlimit(RLIMIT_CORE, &dumpsize); 2763 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2764 if (errno == ESPIPE) { /* not a seekable stream */ 2765 bytes_left = size; 2766 } else { 2767 return pos; 2768 } 2769 } else { 2770 if (dumpsize.rlim_cur <= pos) { 2771 return -1; 2772 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2773 bytes_left = size; 2774 } else { 2775 size_t limit_left=dumpsize.rlim_cur - pos; 2776 bytes_left = limit_left >= size ? size : limit_left ; 2777 } 2778 } 2779 2780 /* 2781 * In normal conditions, single write(2) should do but 2782 * in case of socket etc. this mechanism is more portable. 2783 */ 2784 do { 2785 bytes_written = write(fd, bufp, bytes_left); 2786 if (bytes_written < 0) { 2787 if (errno == EINTR) 2788 continue; 2789 return (-1); 2790 } else if (bytes_written == 0) { /* eof */ 2791 return (-1); 2792 } 2793 bufp += bytes_written; 2794 bytes_left -= bytes_written; 2795 } while (bytes_left > 0); 2796 2797 return (0); 2798 } 2799 2800 static int write_note(struct memelfnote *men, int fd) 2801 { 2802 struct elf_note en; 2803 2804 en.n_namesz = men->namesz; 2805 en.n_type = men->type; 2806 en.n_descsz = men->datasz; 2807 2808 bswap_note(&en); 2809 2810 if (dump_write(fd, &en, sizeof(en)) != 0) 2811 return (-1); 2812 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2813 return (-1); 2814 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 2815 return (-1); 2816 2817 return (0); 2818 } 2819 2820 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 2821 { 2822 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2823 TaskState *ts = (TaskState *)cpu->opaque; 2824 struct elf_thread_status *ets; 2825 2826 ets = g_malloc0(sizeof (*ets)); 2827 ets->num_notes = 1; /* only prstatus is dumped */ 2828 fill_prstatus(&ets->prstatus, ts, 0); 2829 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 2830 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 2831 &ets->prstatus); 2832 2833 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 2834 2835 info->notes_size += note_size(&ets->notes[0]); 2836 } 2837 2838 static void init_note_info(struct elf_note_info *info) 2839 { 2840 /* Initialize the elf_note_info structure so that it is at 2841 * least safe to call free_note_info() on it. Must be 2842 * called before calling fill_note_info(). 2843 */ 2844 memset(info, 0, sizeof (*info)); 2845 QTAILQ_INIT(&info->thread_list); 2846 } 2847 2848 static int fill_note_info(struct elf_note_info *info, 2849 long signr, const CPUArchState *env) 2850 { 2851 #define NUMNOTES 3 2852 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2853 TaskState *ts = (TaskState *)cpu->opaque; 2854 int i; 2855 2856 info->notes = g_new0(struct memelfnote, NUMNOTES); 2857 if (info->notes == NULL) 2858 return (-ENOMEM); 2859 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 2860 if (info->prstatus == NULL) 2861 return (-ENOMEM); 2862 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 2863 if (info->prstatus == NULL) 2864 return (-ENOMEM); 2865 2866 /* 2867 * First fill in status (and registers) of current thread 2868 * including process info & aux vector. 2869 */ 2870 fill_prstatus(info->prstatus, ts, signr); 2871 elf_core_copy_regs(&info->prstatus->pr_reg, env); 2872 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 2873 sizeof (*info->prstatus), info->prstatus); 2874 fill_psinfo(info->psinfo, ts); 2875 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 2876 sizeof (*info->psinfo), info->psinfo); 2877 fill_auxv_note(&info->notes[2], ts); 2878 info->numnote = 3; 2879 2880 info->notes_size = 0; 2881 for (i = 0; i < info->numnote; i++) 2882 info->notes_size += note_size(&info->notes[i]); 2883 2884 /* read and fill status of all threads */ 2885 cpu_list_lock(); 2886 CPU_FOREACH(cpu) { 2887 if (cpu == thread_cpu) { 2888 continue; 2889 } 2890 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 2891 } 2892 cpu_list_unlock(); 2893 2894 return (0); 2895 } 2896 2897 static void free_note_info(struct elf_note_info *info) 2898 { 2899 struct elf_thread_status *ets; 2900 2901 while (!QTAILQ_EMPTY(&info->thread_list)) { 2902 ets = QTAILQ_FIRST(&info->thread_list); 2903 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 2904 g_free(ets); 2905 } 2906 2907 g_free(info->prstatus); 2908 g_free(info->psinfo); 2909 g_free(info->notes); 2910 } 2911 2912 static int write_note_info(struct elf_note_info *info, int fd) 2913 { 2914 struct elf_thread_status *ets; 2915 int i, error = 0; 2916 2917 /* write prstatus, psinfo and auxv for current thread */ 2918 for (i = 0; i < info->numnote; i++) 2919 if ((error = write_note(&info->notes[i], fd)) != 0) 2920 return (error); 2921 2922 /* write prstatus for each thread */ 2923 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 2924 if ((error = write_note(&ets->notes[0], fd)) != 0) 2925 return (error); 2926 } 2927 2928 return (0); 2929 } 2930 2931 /* 2932 * Write out ELF coredump. 2933 * 2934 * See documentation of ELF object file format in: 2935 * http://www.caldera.com/developers/devspecs/gabi41.pdf 2936 * 2937 * Coredump format in linux is following: 2938 * 2939 * 0 +----------------------+ \ 2940 * | ELF header | ET_CORE | 2941 * +----------------------+ | 2942 * | ELF program headers | |--- headers 2943 * | - NOTE section | | 2944 * | - PT_LOAD sections | | 2945 * +----------------------+ / 2946 * | NOTEs: | 2947 * | - NT_PRSTATUS | 2948 * | - NT_PRSINFO | 2949 * | - NT_AUXV | 2950 * +----------------------+ <-- aligned to target page 2951 * | Process memory dump | 2952 * : : 2953 * . . 2954 * : : 2955 * | | 2956 * +----------------------+ 2957 * 2958 * NT_PRSTATUS -> struct elf_prstatus (per thread) 2959 * NT_PRSINFO -> struct elf_prpsinfo 2960 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 2961 * 2962 * Format follows System V format as close as possible. Current 2963 * version limitations are as follows: 2964 * - no floating point registers are dumped 2965 * 2966 * Function returns 0 in case of success, negative errno otherwise. 2967 * 2968 * TODO: make this work also during runtime: it should be 2969 * possible to force coredump from running process and then 2970 * continue processing. For example qemu could set up SIGUSR2 2971 * handler (provided that target process haven't registered 2972 * handler for that) that does the dump when signal is received. 2973 */ 2974 static int elf_core_dump(int signr, const CPUArchState *env) 2975 { 2976 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2977 const TaskState *ts = (const TaskState *)cpu->opaque; 2978 struct vm_area_struct *vma = NULL; 2979 char corefile[PATH_MAX]; 2980 struct elf_note_info info; 2981 struct elfhdr elf; 2982 struct elf_phdr phdr; 2983 struct rlimit dumpsize; 2984 struct mm_struct *mm = NULL; 2985 off_t offset = 0, data_offset = 0; 2986 int segs = 0; 2987 int fd = -1; 2988 2989 init_note_info(&info); 2990 2991 errno = 0; 2992 getrlimit(RLIMIT_CORE, &dumpsize); 2993 if (dumpsize.rlim_cur == 0) 2994 return 0; 2995 2996 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 2997 return (-errno); 2998 2999 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3000 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3001 return (-errno); 3002 3003 /* 3004 * Walk through target process memory mappings and 3005 * set up structure containing this information. After 3006 * this point vma_xxx functions can be used. 3007 */ 3008 if ((mm = vma_init()) == NULL) 3009 goto out; 3010 3011 walk_memory_regions(mm, vma_walker); 3012 segs = vma_get_mapping_count(mm); 3013 3014 /* 3015 * Construct valid coredump ELF header. We also 3016 * add one more segment for notes. 3017 */ 3018 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3019 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3020 goto out; 3021 3022 /* fill in the in-memory version of notes */ 3023 if (fill_note_info(&info, signr, env) < 0) 3024 goto out; 3025 3026 offset += sizeof (elf); /* elf header */ 3027 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3028 3029 /* write out notes program header */ 3030 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3031 3032 offset += info.notes_size; 3033 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3034 goto out; 3035 3036 /* 3037 * ELF specification wants data to start at page boundary so 3038 * we align it here. 3039 */ 3040 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3041 3042 /* 3043 * Write program headers for memory regions mapped in 3044 * the target process. 3045 */ 3046 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3047 (void) memset(&phdr, 0, sizeof (phdr)); 3048 3049 phdr.p_type = PT_LOAD; 3050 phdr.p_offset = offset; 3051 phdr.p_vaddr = vma->vma_start; 3052 phdr.p_paddr = 0; 3053 phdr.p_filesz = vma_dump_size(vma); 3054 offset += phdr.p_filesz; 3055 phdr.p_memsz = vma->vma_end - vma->vma_start; 3056 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3057 if (vma->vma_flags & PROT_WRITE) 3058 phdr.p_flags |= PF_W; 3059 if (vma->vma_flags & PROT_EXEC) 3060 phdr.p_flags |= PF_X; 3061 phdr.p_align = ELF_EXEC_PAGESIZE; 3062 3063 bswap_phdr(&phdr, 1); 3064 dump_write(fd, &phdr, sizeof (phdr)); 3065 } 3066 3067 /* 3068 * Next we write notes just after program headers. No 3069 * alignment needed here. 3070 */ 3071 if (write_note_info(&info, fd) < 0) 3072 goto out; 3073 3074 /* align data to page boundary */ 3075 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3076 goto out; 3077 3078 /* 3079 * Finally we can dump process memory into corefile as well. 3080 */ 3081 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3082 abi_ulong addr; 3083 abi_ulong end; 3084 3085 end = vma->vma_start + vma_dump_size(vma); 3086 3087 for (addr = vma->vma_start; addr < end; 3088 addr += TARGET_PAGE_SIZE) { 3089 char page[TARGET_PAGE_SIZE]; 3090 int error; 3091 3092 /* 3093 * Read in page from target process memory and 3094 * write it to coredump file. 3095 */ 3096 error = copy_from_user(page, addr, sizeof (page)); 3097 if (error != 0) { 3098 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3099 addr); 3100 errno = -error; 3101 goto out; 3102 } 3103 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3104 goto out; 3105 } 3106 } 3107 3108 out: 3109 free_note_info(&info); 3110 if (mm != NULL) 3111 vma_delete(mm); 3112 (void) close(fd); 3113 3114 if (errno != 0) 3115 return (-errno); 3116 return (0); 3117 } 3118 #endif /* USE_ELF_CORE_DUMP */ 3119 3120 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3121 { 3122 init_thread(regs, infop); 3123 } 3124