xref: /openbmc/qemu/linux-user/elfload.c (revision 5540cb97f711d191bae6cde89a03a8a9c306b638)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 int info_is_fdpic(struct image_info *info)
82 {
83     return info->personality == PER_LINUX_FDPIC;
84 }
85 
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90 
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95 
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA        ELFDATA2MSB
98 #else
99 #define ELF_DATA        ELFDATA2LSB
100 #endif
101 
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong      target_elf_greg_t;
104 #define tswapreg(ptr)   tswap64(ptr)
105 #else
106 typedef abi_ulong       target_elf_greg_t;
107 #define tswapreg(ptr)   tswapal(ptr)
108 #endif
109 
110 #ifdef USE_UID16
111 typedef abi_ushort      target_uid_t;
112 typedef abi_ushort      target_gid_t;
113 #else
114 typedef abi_uint        target_uid_t;
115 typedef abi_uint        target_gid_t;
116 #endif
117 typedef abi_int         target_pid_t;
118 
119 #ifdef TARGET_I386
120 
121 #define ELF_PLATFORM get_elf_platform()
122 
123 static const char *get_elf_platform(void)
124 {
125     static char elf_platform[] = "i386";
126     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127     if (family > 6)
128         family = 6;
129     if (family >= 3)
130         elf_platform[1] = '0' + family;
131     return elf_platform;
132 }
133 
134 #define ELF_HWCAP get_elf_hwcap()
135 
136 static uint32_t get_elf_hwcap(void)
137 {
138     X86CPU *cpu = X86_CPU(thread_cpu);
139 
140     return cpu->env.features[FEAT_1_EDX];
141 }
142 
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145 
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151     regs->rax = 0;
152     regs->rsp = infop->start_stack;
153     regs->rip = infop->entry;
154 }
155 
156 #define ELF_NREG    27
157 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
158 
159 /*
160  * Note that ELF_NREG should be 29 as there should be place for
161  * TRAPNO and ERR "registers" as well but linux doesn't dump
162  * those.
163  *
164  * See linux kernel: arch/x86/include/asm/elf.h
165  */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168     (*regs)[0] = env->regs[15];
169     (*regs)[1] = env->regs[14];
170     (*regs)[2] = env->regs[13];
171     (*regs)[3] = env->regs[12];
172     (*regs)[4] = env->regs[R_EBP];
173     (*regs)[5] = env->regs[R_EBX];
174     (*regs)[6] = env->regs[11];
175     (*regs)[7] = env->regs[10];
176     (*regs)[8] = env->regs[9];
177     (*regs)[9] = env->regs[8];
178     (*regs)[10] = env->regs[R_EAX];
179     (*regs)[11] = env->regs[R_ECX];
180     (*regs)[12] = env->regs[R_EDX];
181     (*regs)[13] = env->regs[R_ESI];
182     (*regs)[14] = env->regs[R_EDI];
183     (*regs)[15] = env->regs[R_EAX]; /* XXX */
184     (*regs)[16] = env->eip;
185     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186     (*regs)[18] = env->eflags;
187     (*regs)[19] = env->regs[R_ESP];
188     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196 
197 #else
198 
199 #define ELF_START_MMAP 0x80000000
200 
201 /*
202  * This is used to ensure we don't load something for the wrong architecture.
203  */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205 
206 /*
207  * These are used to set parameters in the core dumps.
208  */
209 #define ELF_CLASS       ELFCLASS32
210 #define ELF_ARCH        EM_386
211 
212 static inline void init_thread(struct target_pt_regs *regs,
213                                struct image_info *infop)
214 {
215     regs->esp = infop->start_stack;
216     regs->eip = infop->entry;
217 
218     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219        starts %edx contains a pointer to a function which might be
220        registered using `atexit'.  This provides a mean for the
221        dynamic linker to call DT_FINI functions for shared libraries
222        that have been loaded before the code runs.
223 
224        A value of 0 tells we have no such handler.  */
225     regs->edx = 0;
226 }
227 
228 #define ELF_NREG    17
229 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
230 
231 /*
232  * Note that ELF_NREG should be 19 as there should be place for
233  * TRAPNO and ERR "registers" as well but linux doesn't dump
234  * those.
235  *
236  * See linux kernel: arch/x86/include/asm/elf.h
237  */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240     (*regs)[0] = env->regs[R_EBX];
241     (*regs)[1] = env->regs[R_ECX];
242     (*regs)[2] = env->regs[R_EDX];
243     (*regs)[3] = env->regs[R_ESI];
244     (*regs)[4] = env->regs[R_EDI];
245     (*regs)[5] = env->regs[R_EBP];
246     (*regs)[6] = env->regs[R_EAX];
247     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251     (*regs)[11] = env->regs[R_EAX]; /* XXX */
252     (*regs)[12] = env->eip;
253     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254     (*regs)[14] = env->eflags;
255     (*regs)[15] = env->regs[R_ESP];
256     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259 
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE       4096
262 
263 #endif
264 
265 #ifdef TARGET_ARM
266 
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269 
270 #define ELF_START_MMAP 0x80000000
271 
272 #define ELF_ARCH        EM_ARM
273 #define ELF_CLASS       ELFCLASS32
274 
275 static inline void init_thread(struct target_pt_regs *regs,
276                                struct image_info *infop)
277 {
278     abi_long stack = infop->start_stack;
279     memset(regs, 0, sizeof(*regs));
280 
281     regs->uregs[16] = ARM_CPU_MODE_USR;
282     if (infop->entry & 1) {
283         regs->uregs[16] |= CPSR_T;
284     }
285     regs->uregs[15] = infop->entry & 0xfffffffe;
286     regs->uregs[13] = infop->start_stack;
287     /* FIXME - what to for failure of get_user()? */
288     get_user_ual(regs->uregs[2], stack + 8); /* envp */
289     get_user_ual(regs->uregs[1], stack + 4); /* envp */
290     /* XXX: it seems that r0 is zeroed after ! */
291     regs->uregs[0] = 0;
292     /* For uClinux PIC binaries.  */
293     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294     regs->uregs[10] = infop->start_data;
295 
296     /* Support ARM FDPIC.  */
297     if (info_is_fdpic(infop)) {
298         /* As described in the ABI document, r7 points to the loadmap info
299          * prepared by the kernel. If an interpreter is needed, r8 points
300          * to the interpreter loadmap and r9 points to the interpreter
301          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302          * r9 points to the main program PT_DYNAMIC info.
303          */
304         regs->uregs[7] = infop->loadmap_addr;
305         if (infop->interpreter_loadmap_addr) {
306             /* Executable is dynamically loaded.  */
307             regs->uregs[8] = infop->interpreter_loadmap_addr;
308             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309         } else {
310             regs->uregs[8] = 0;
311             regs->uregs[9] = infop->pt_dynamic_addr;
312         }
313     }
314 }
315 
316 #define ELF_NREG    18
317 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
318 
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321     (*regs)[0] = tswapreg(env->regs[0]);
322     (*regs)[1] = tswapreg(env->regs[1]);
323     (*regs)[2] = tswapreg(env->regs[2]);
324     (*regs)[3] = tswapreg(env->regs[3]);
325     (*regs)[4] = tswapreg(env->regs[4]);
326     (*regs)[5] = tswapreg(env->regs[5]);
327     (*regs)[6] = tswapreg(env->regs[6]);
328     (*regs)[7] = tswapreg(env->regs[7]);
329     (*regs)[8] = tswapreg(env->regs[8]);
330     (*regs)[9] = tswapreg(env->regs[9]);
331     (*regs)[10] = tswapreg(env->regs[10]);
332     (*regs)[11] = tswapreg(env->regs[11]);
333     (*regs)[12] = tswapreg(env->regs[12]);
334     (*regs)[13] = tswapreg(env->regs[13]);
335     (*regs)[14] = tswapreg(env->regs[14]);
336     (*regs)[15] = tswapreg(env->regs[15]);
337 
338     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341 
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE       4096
344 
345 enum
346 {
347     ARM_HWCAP_ARM_SWP       = 1 << 0,
348     ARM_HWCAP_ARM_HALF      = 1 << 1,
349     ARM_HWCAP_ARM_THUMB     = 1 << 2,
350     ARM_HWCAP_ARM_26BIT     = 1 << 3,
351     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352     ARM_HWCAP_ARM_FPA       = 1 << 5,
353     ARM_HWCAP_ARM_VFP       = 1 << 6,
354     ARM_HWCAP_ARM_EDSP      = 1 << 7,
355     ARM_HWCAP_ARM_JAVA      = 1 << 8,
356     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
357     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
358     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
359     ARM_HWCAP_ARM_NEON      = 1 << 12,
360     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
361     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
362     ARM_HWCAP_ARM_TLS       = 1 << 15,
363     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
364     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
365     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
366     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
367     ARM_HWCAP_ARM_LPAE      = 1 << 20,
368     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
369 };
370 
371 enum {
372     ARM_HWCAP2_ARM_AES      = 1 << 0,
373     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
374     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
375     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
376     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
377 };
378 
379 /* The commpage only exists for 32 bit kernels */
380 
381 /* Return 1 if the proposed guest space is suitable for the guest.
382  * Return 0 if the proposed guest space isn't suitable, but another
383  * address space should be tried.
384  * Return -1 if there is no way the proposed guest space can be
385  * valid regardless of the base.
386  * The guest code may leave a page mapped and populate it if the
387  * address is suitable.
388  */
389 static int init_guest_commpage(unsigned long guest_base,
390                                unsigned long guest_size)
391 {
392     unsigned long real_start, test_page_addr;
393 
394     /* We need to check that we can force a fault on access to the
395      * commpage at 0xffff0fxx
396      */
397     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398 
399     /* If the commpage lies within the already allocated guest space,
400      * then there is no way we can allocate it.
401      *
402      * You may be thinking that that this check is redundant because
403      * we already validated the guest size against MAX_RESERVED_VA;
404      * but if qemu_host_page_mask is unusually large, then
405      * test_page_addr may be lower.
406      */
407     if (test_page_addr >= guest_base
408         && test_page_addr < (guest_base + guest_size)) {
409         return -1;
410     }
411 
412     /* Note it needs to be writeable to let us initialise it */
413     real_start = (unsigned long)
414                  mmap((void *)test_page_addr, qemu_host_page_size,
415                      PROT_READ | PROT_WRITE,
416                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417 
418     /* If we can't map it then try another address */
419     if (real_start == -1ul) {
420         return 0;
421     }
422 
423     if (real_start != test_page_addr) {
424         /* OS didn't put the page where we asked - unmap and reject */
425         munmap((void *)real_start, qemu_host_page_size);
426         return 0;
427     }
428 
429     /* Leave the page mapped
430      * Populate it (mmap should have left it all 0'd)
431      */
432 
433     /* Kernel helper versions */
434     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435 
436     /* Now it's populated make it RO */
437     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438         perror("Protecting guest commpage");
439         exit(-1);
440     }
441 
442     return 1; /* All good */
443 }
444 
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447 
448 static uint32_t get_elf_hwcap(void)
449 {
450     ARMCPU *cpu = ARM_CPU(thread_cpu);
451     uint32_t hwcaps = 0;
452 
453     hwcaps |= ARM_HWCAP_ARM_SWP;
454     hwcaps |= ARM_HWCAP_ARM_HALF;
455     hwcaps |= ARM_HWCAP_ARM_THUMB;
456     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457 
458     /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
463     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
468     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475      * to our VFP_FP16 feature bit.
476      */
477     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
479 
480     return hwcaps;
481 }
482 
483 static uint32_t get_elf_hwcap2(void)
484 {
485     ARMCPU *cpu = ARM_CPU(thread_cpu);
486     uint32_t hwcaps = 0;
487 
488     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
489     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
490     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
492     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493     return hwcaps;
494 }
495 
496 #undef GET_FEATURE
497 
498 #else
499 /* 64 bit ARM definitions */
500 #define ELF_START_MMAP 0x80000000
501 
502 #define ELF_ARCH        EM_AARCH64
503 #define ELF_CLASS       ELFCLASS64
504 #define ELF_PLATFORM    "aarch64"
505 
506 static inline void init_thread(struct target_pt_regs *regs,
507                                struct image_info *infop)
508 {
509     abi_long stack = infop->start_stack;
510     memset(regs, 0, sizeof(*regs));
511 
512     regs->pc = infop->entry & ~0x3ULL;
513     regs->sp = stack;
514 }
515 
516 #define ELF_NREG    34
517 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
518 
519 static void elf_core_copy_regs(target_elf_gregset_t *regs,
520                                const CPUARMState *env)
521 {
522     int i;
523 
524     for (i = 0; i < 32; i++) {
525         (*regs)[i] = tswapreg(env->xregs[i]);
526     }
527     (*regs)[32] = tswapreg(env->pc);
528     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
529 }
530 
531 #define USE_ELF_CORE_DUMP
532 #define ELF_EXEC_PAGESIZE       4096
533 
534 enum {
535     ARM_HWCAP_A64_FP            = 1 << 0,
536     ARM_HWCAP_A64_ASIMD         = 1 << 1,
537     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
538     ARM_HWCAP_A64_AES           = 1 << 3,
539     ARM_HWCAP_A64_PMULL         = 1 << 4,
540     ARM_HWCAP_A64_SHA1          = 1 << 5,
541     ARM_HWCAP_A64_SHA2          = 1 << 6,
542     ARM_HWCAP_A64_CRC32         = 1 << 7,
543     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
544     ARM_HWCAP_A64_FPHP          = 1 << 9,
545     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
546     ARM_HWCAP_A64_CPUID         = 1 << 11,
547     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
548     ARM_HWCAP_A64_JSCVT         = 1 << 13,
549     ARM_HWCAP_A64_FCMA          = 1 << 14,
550     ARM_HWCAP_A64_LRCPC         = 1 << 15,
551     ARM_HWCAP_A64_DCPOP         = 1 << 16,
552     ARM_HWCAP_A64_SHA3          = 1 << 17,
553     ARM_HWCAP_A64_SM3           = 1 << 18,
554     ARM_HWCAP_A64_SM4           = 1 << 19,
555     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
556     ARM_HWCAP_A64_SHA512        = 1 << 21,
557     ARM_HWCAP_A64_SVE           = 1 << 22,
558 };
559 
560 #define ELF_HWCAP get_elf_hwcap()
561 
562 static uint32_t get_elf_hwcap(void)
563 {
564     ARMCPU *cpu = ARM_CPU(thread_cpu);
565     uint32_t hwcaps = 0;
566 
567     hwcaps |= ARM_HWCAP_A64_FP;
568     hwcaps |= ARM_HWCAP_A64_ASIMD;
569 
570     /* probe for the extra features */
571 #define GET_FEATURE(feat, hwcap) \
572     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
573     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
574     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
575     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
577     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
578     GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579     GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580     GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581     GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
582     GET_FEATURE(ARM_FEATURE_V8_FP16,
583                 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
584     GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS);
585     GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
586     GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP);
587     GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
588     GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE);
589 #undef GET_FEATURE
590 
591     return hwcaps;
592 }
593 
594 #endif /* not TARGET_AARCH64 */
595 #endif /* TARGET_ARM */
596 
597 #ifdef TARGET_SPARC
598 #ifdef TARGET_SPARC64
599 
600 #define ELF_START_MMAP 0x80000000
601 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
602                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
603 #ifndef TARGET_ABI32
604 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
605 #else
606 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
607 #endif
608 
609 #define ELF_CLASS   ELFCLASS64
610 #define ELF_ARCH    EM_SPARCV9
611 
612 #define STACK_BIAS              2047
613 
614 static inline void init_thread(struct target_pt_regs *regs,
615                                struct image_info *infop)
616 {
617 #ifndef TARGET_ABI32
618     regs->tstate = 0;
619 #endif
620     regs->pc = infop->entry;
621     regs->npc = regs->pc + 4;
622     regs->y = 0;
623 #ifdef TARGET_ABI32
624     regs->u_regs[14] = infop->start_stack - 16 * 4;
625 #else
626     if (personality(infop->personality) == PER_LINUX32)
627         regs->u_regs[14] = infop->start_stack - 16 * 4;
628     else
629         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
630 #endif
631 }
632 
633 #else
634 #define ELF_START_MMAP 0x80000000
635 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
636                     | HWCAP_SPARC_MULDIV)
637 
638 #define ELF_CLASS   ELFCLASS32
639 #define ELF_ARCH    EM_SPARC
640 
641 static inline void init_thread(struct target_pt_regs *regs,
642                                struct image_info *infop)
643 {
644     regs->psr = 0;
645     regs->pc = infop->entry;
646     regs->npc = regs->pc + 4;
647     regs->y = 0;
648     regs->u_regs[14] = infop->start_stack - 16 * 4;
649 }
650 
651 #endif
652 #endif
653 
654 #ifdef TARGET_PPC
655 
656 #define ELF_MACHINE    PPC_ELF_MACHINE
657 #define ELF_START_MMAP 0x80000000
658 
659 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
660 
661 #define elf_check_arch(x) ( (x) == EM_PPC64 )
662 
663 #define ELF_CLASS       ELFCLASS64
664 
665 #else
666 
667 #define ELF_CLASS       ELFCLASS32
668 
669 #endif
670 
671 #define ELF_ARCH        EM_PPC
672 
673 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
674    See arch/powerpc/include/asm/cputable.h.  */
675 enum {
676     QEMU_PPC_FEATURE_32 = 0x80000000,
677     QEMU_PPC_FEATURE_64 = 0x40000000,
678     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
679     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
680     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
681     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
682     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
683     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
684     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
685     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
686     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
687     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
688     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
689     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
690     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
691     QEMU_PPC_FEATURE_CELL = 0x00010000,
692     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
693     QEMU_PPC_FEATURE_SMT = 0x00004000,
694     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
695     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
696     QEMU_PPC_FEATURE_PA6T = 0x00000800,
697     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
698     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
699     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
700     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
701     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
702 
703     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
704     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
705 
706     /* Feature definitions in AT_HWCAP2.  */
707     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
708     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
709     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
710     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
711     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
712     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
713     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
714 };
715 
716 #define ELF_HWCAP get_elf_hwcap()
717 
718 static uint32_t get_elf_hwcap(void)
719 {
720     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
721     uint32_t features = 0;
722 
723     /* We don't have to be terribly complete here; the high points are
724        Altivec/FP/SPE support.  Anything else is just a bonus.  */
725 #define GET_FEATURE(flag, feature)                                      \
726     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
727 #define GET_FEATURE2(flags, feature) \
728     do { \
729         if ((cpu->env.insns_flags2 & flags) == flags) { \
730             features |= feature; \
731         } \
732     } while (0)
733     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
734     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
735     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
736     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
737     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
738     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
739     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
740     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
741     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
742     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
743     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
744                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
745                   QEMU_PPC_FEATURE_ARCH_2_06);
746 #undef GET_FEATURE
747 #undef GET_FEATURE2
748 
749     return features;
750 }
751 
752 #define ELF_HWCAP2 get_elf_hwcap2()
753 
754 static uint32_t get_elf_hwcap2(void)
755 {
756     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
757     uint32_t features = 0;
758 
759 #define GET_FEATURE(flag, feature)                                      \
760     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
761 #define GET_FEATURE2(flag, feature)                                      \
762     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
763 
764     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
765     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
766     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
767                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
768     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
769 
770 #undef GET_FEATURE
771 #undef GET_FEATURE2
772 
773     return features;
774 }
775 
776 /*
777  * The requirements here are:
778  * - keep the final alignment of sp (sp & 0xf)
779  * - make sure the 32-bit value at the first 16 byte aligned position of
780  *   AUXV is greater than 16 for glibc compatibility.
781  *   AT_IGNOREPPC is used for that.
782  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
783  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
784  */
785 #define DLINFO_ARCH_ITEMS       5
786 #define ARCH_DLINFO                                     \
787     do {                                                \
788         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
789         /*                                              \
790          * Handle glibc compatibility: these magic entries must \
791          * be at the lowest addresses in the final auxv.        \
792          */                                             \
793         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
794         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
795         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
796         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
797         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
798     } while (0)
799 
800 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
801 {
802     _regs->gpr[1] = infop->start_stack;
803 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
804     if (get_ppc64_abi(infop) < 2) {
805         uint64_t val;
806         get_user_u64(val, infop->entry + 8);
807         _regs->gpr[2] = val + infop->load_bias;
808         get_user_u64(val, infop->entry);
809         infop->entry = val + infop->load_bias;
810     } else {
811         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
812     }
813 #endif
814     _regs->nip = infop->entry;
815 }
816 
817 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
818 #define ELF_NREG 48
819 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
820 
821 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
822 {
823     int i;
824     target_ulong ccr = 0;
825 
826     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
827         (*regs)[i] = tswapreg(env->gpr[i]);
828     }
829 
830     (*regs)[32] = tswapreg(env->nip);
831     (*regs)[33] = tswapreg(env->msr);
832     (*regs)[35] = tswapreg(env->ctr);
833     (*regs)[36] = tswapreg(env->lr);
834     (*regs)[37] = tswapreg(env->xer);
835 
836     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
837         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
838     }
839     (*regs)[38] = tswapreg(ccr);
840 }
841 
842 #define USE_ELF_CORE_DUMP
843 #define ELF_EXEC_PAGESIZE       4096
844 
845 #endif
846 
847 #ifdef TARGET_MIPS
848 
849 #define ELF_START_MMAP 0x80000000
850 
851 #ifdef TARGET_MIPS64
852 #define ELF_CLASS   ELFCLASS64
853 #else
854 #define ELF_CLASS   ELFCLASS32
855 #endif
856 #define ELF_ARCH    EM_MIPS
857 
858 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
859 
860 static inline void init_thread(struct target_pt_regs *regs,
861                                struct image_info *infop)
862 {
863     regs->cp0_status = 2 << CP0St_KSU;
864     regs->cp0_epc = infop->entry;
865     regs->regs[29] = infop->start_stack;
866 }
867 
868 /* See linux kernel: arch/mips/include/asm/elf.h.  */
869 #define ELF_NREG 45
870 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
871 
872 /* See linux kernel: arch/mips/include/asm/reg.h.  */
873 enum {
874 #ifdef TARGET_MIPS64
875     TARGET_EF_R0 = 0,
876 #else
877     TARGET_EF_R0 = 6,
878 #endif
879     TARGET_EF_R26 = TARGET_EF_R0 + 26,
880     TARGET_EF_R27 = TARGET_EF_R0 + 27,
881     TARGET_EF_LO = TARGET_EF_R0 + 32,
882     TARGET_EF_HI = TARGET_EF_R0 + 33,
883     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
884     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
885     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
886     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
887 };
888 
889 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
890 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
891 {
892     int i;
893 
894     for (i = 0; i < TARGET_EF_R0; i++) {
895         (*regs)[i] = 0;
896     }
897     (*regs)[TARGET_EF_R0] = 0;
898 
899     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
900         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
901     }
902 
903     (*regs)[TARGET_EF_R26] = 0;
904     (*regs)[TARGET_EF_R27] = 0;
905     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
906     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
907     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
908     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
909     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
910     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
911 }
912 
913 #define USE_ELF_CORE_DUMP
914 #define ELF_EXEC_PAGESIZE        4096
915 
916 /* See arch/mips/include/uapi/asm/hwcap.h.  */
917 enum {
918     HWCAP_MIPS_R6           = (1 << 0),
919     HWCAP_MIPS_MSA          = (1 << 1),
920 };
921 
922 #define ELF_HWCAP get_elf_hwcap()
923 
924 static uint32_t get_elf_hwcap(void)
925 {
926     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
927     uint32_t hwcaps = 0;
928 
929 #define GET_FEATURE(flag, hwcap) \
930     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
931 
932     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
933     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
934 
935 #undef GET_FEATURE
936 
937     return hwcaps;
938 }
939 
940 #endif /* TARGET_MIPS */
941 
942 #ifdef TARGET_MICROBLAZE
943 
944 #define ELF_START_MMAP 0x80000000
945 
946 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
947 
948 #define ELF_CLASS   ELFCLASS32
949 #define ELF_ARCH    EM_MICROBLAZE
950 
951 static inline void init_thread(struct target_pt_regs *regs,
952                                struct image_info *infop)
953 {
954     regs->pc = infop->entry;
955     regs->r1 = infop->start_stack;
956 
957 }
958 
959 #define ELF_EXEC_PAGESIZE        4096
960 
961 #define USE_ELF_CORE_DUMP
962 #define ELF_NREG 38
963 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
964 
965 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
966 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
967 {
968     int i, pos = 0;
969 
970     for (i = 0; i < 32; i++) {
971         (*regs)[pos++] = tswapreg(env->regs[i]);
972     }
973 
974     for (i = 0; i < 6; i++) {
975         (*regs)[pos++] = tswapreg(env->sregs[i]);
976     }
977 }
978 
979 #endif /* TARGET_MICROBLAZE */
980 
981 #ifdef TARGET_NIOS2
982 
983 #define ELF_START_MMAP 0x80000000
984 
985 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
986 
987 #define ELF_CLASS   ELFCLASS32
988 #define ELF_ARCH    EM_ALTERA_NIOS2
989 
990 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
991 {
992     regs->ea = infop->entry;
993     regs->sp = infop->start_stack;
994     regs->estatus = 0x3;
995 }
996 
997 #define ELF_EXEC_PAGESIZE        4096
998 
999 #define USE_ELF_CORE_DUMP
1000 #define ELF_NREG 49
1001 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1002 
1003 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1004 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1005                                const CPUNios2State *env)
1006 {
1007     int i;
1008 
1009     (*regs)[0] = -1;
1010     for (i = 1; i < 8; i++)    /* r0-r7 */
1011         (*regs)[i] = tswapreg(env->regs[i + 7]);
1012 
1013     for (i = 8; i < 16; i++)   /* r8-r15 */
1014         (*regs)[i] = tswapreg(env->regs[i - 8]);
1015 
1016     for (i = 16; i < 24; i++)  /* r16-r23 */
1017         (*regs)[i] = tswapreg(env->regs[i + 7]);
1018     (*regs)[24] = -1;    /* R_ET */
1019     (*regs)[25] = -1;    /* R_BT */
1020     (*regs)[26] = tswapreg(env->regs[R_GP]);
1021     (*regs)[27] = tswapreg(env->regs[R_SP]);
1022     (*regs)[28] = tswapreg(env->regs[R_FP]);
1023     (*regs)[29] = tswapreg(env->regs[R_EA]);
1024     (*regs)[30] = -1;    /* R_SSTATUS */
1025     (*regs)[31] = tswapreg(env->regs[R_RA]);
1026 
1027     (*regs)[32] = tswapreg(env->regs[R_PC]);
1028 
1029     (*regs)[33] = -1; /* R_STATUS */
1030     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1031 
1032     for (i = 35; i < 49; i++)    /* ... */
1033         (*regs)[i] = -1;
1034 }
1035 
1036 #endif /* TARGET_NIOS2 */
1037 
1038 #ifdef TARGET_OPENRISC
1039 
1040 #define ELF_START_MMAP 0x08000000
1041 
1042 #define ELF_ARCH EM_OPENRISC
1043 #define ELF_CLASS ELFCLASS32
1044 #define ELF_DATA  ELFDATA2MSB
1045 
1046 static inline void init_thread(struct target_pt_regs *regs,
1047                                struct image_info *infop)
1048 {
1049     regs->pc = infop->entry;
1050     regs->gpr[1] = infop->start_stack;
1051 }
1052 
1053 #define USE_ELF_CORE_DUMP
1054 #define ELF_EXEC_PAGESIZE 8192
1055 
1056 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1057 #define ELF_NREG 34 /* gprs and pc, sr */
1058 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1059 
1060 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1061                                const CPUOpenRISCState *env)
1062 {
1063     int i;
1064 
1065     for (i = 0; i < 32; i++) {
1066         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1067     }
1068     (*regs)[32] = tswapreg(env->pc);
1069     (*regs)[33] = tswapreg(cpu_get_sr(env));
1070 }
1071 #define ELF_HWCAP 0
1072 #define ELF_PLATFORM NULL
1073 
1074 #endif /* TARGET_OPENRISC */
1075 
1076 #ifdef TARGET_SH4
1077 
1078 #define ELF_START_MMAP 0x80000000
1079 
1080 #define ELF_CLASS ELFCLASS32
1081 #define ELF_ARCH  EM_SH
1082 
1083 static inline void init_thread(struct target_pt_regs *regs,
1084                                struct image_info *infop)
1085 {
1086     /* Check other registers XXXXX */
1087     regs->pc = infop->entry;
1088     regs->regs[15] = infop->start_stack;
1089 }
1090 
1091 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1092 #define ELF_NREG 23
1093 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1094 
1095 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1096 enum {
1097     TARGET_REG_PC = 16,
1098     TARGET_REG_PR = 17,
1099     TARGET_REG_SR = 18,
1100     TARGET_REG_GBR = 19,
1101     TARGET_REG_MACH = 20,
1102     TARGET_REG_MACL = 21,
1103     TARGET_REG_SYSCALL = 22
1104 };
1105 
1106 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1107                                       const CPUSH4State *env)
1108 {
1109     int i;
1110 
1111     for (i = 0; i < 16; i++) {
1112         (*regs)[i] = tswapreg(env->gregs[i]);
1113     }
1114 
1115     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1116     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1117     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1118     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1119     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1120     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1121     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1122 }
1123 
1124 #define USE_ELF_CORE_DUMP
1125 #define ELF_EXEC_PAGESIZE        4096
1126 
1127 enum {
1128     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1129     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1130     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1131     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1132     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1133     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1134     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1135     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1136     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1137     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1138 };
1139 
1140 #define ELF_HWCAP get_elf_hwcap()
1141 
1142 static uint32_t get_elf_hwcap(void)
1143 {
1144     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1145     uint32_t hwcap = 0;
1146 
1147     hwcap |= SH_CPU_HAS_FPU;
1148 
1149     if (cpu->env.features & SH_FEATURE_SH4A) {
1150         hwcap |= SH_CPU_HAS_LLSC;
1151     }
1152 
1153     return hwcap;
1154 }
1155 
1156 #endif
1157 
1158 #ifdef TARGET_CRIS
1159 
1160 #define ELF_START_MMAP 0x80000000
1161 
1162 #define ELF_CLASS ELFCLASS32
1163 #define ELF_ARCH  EM_CRIS
1164 
1165 static inline void init_thread(struct target_pt_regs *regs,
1166                                struct image_info *infop)
1167 {
1168     regs->erp = infop->entry;
1169 }
1170 
1171 #define ELF_EXEC_PAGESIZE        8192
1172 
1173 #endif
1174 
1175 #ifdef TARGET_M68K
1176 
1177 #define ELF_START_MMAP 0x80000000
1178 
1179 #define ELF_CLASS       ELFCLASS32
1180 #define ELF_ARCH        EM_68K
1181 
1182 /* ??? Does this need to do anything?
1183    #define ELF_PLAT_INIT(_r) */
1184 
1185 static inline void init_thread(struct target_pt_regs *regs,
1186                                struct image_info *infop)
1187 {
1188     regs->usp = infop->start_stack;
1189     regs->sr = 0;
1190     regs->pc = infop->entry;
1191 }
1192 
1193 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1194 #define ELF_NREG 20
1195 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1196 
1197 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1198 {
1199     (*regs)[0] = tswapreg(env->dregs[1]);
1200     (*regs)[1] = tswapreg(env->dregs[2]);
1201     (*regs)[2] = tswapreg(env->dregs[3]);
1202     (*regs)[3] = tswapreg(env->dregs[4]);
1203     (*regs)[4] = tswapreg(env->dregs[5]);
1204     (*regs)[5] = tswapreg(env->dregs[6]);
1205     (*regs)[6] = tswapreg(env->dregs[7]);
1206     (*regs)[7] = tswapreg(env->aregs[0]);
1207     (*regs)[8] = tswapreg(env->aregs[1]);
1208     (*regs)[9] = tswapreg(env->aregs[2]);
1209     (*regs)[10] = tswapreg(env->aregs[3]);
1210     (*regs)[11] = tswapreg(env->aregs[4]);
1211     (*regs)[12] = tswapreg(env->aregs[5]);
1212     (*regs)[13] = tswapreg(env->aregs[6]);
1213     (*regs)[14] = tswapreg(env->dregs[0]);
1214     (*regs)[15] = tswapreg(env->aregs[7]);
1215     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1216     (*regs)[17] = tswapreg(env->sr);
1217     (*regs)[18] = tswapreg(env->pc);
1218     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1219 }
1220 
1221 #define USE_ELF_CORE_DUMP
1222 #define ELF_EXEC_PAGESIZE       8192
1223 
1224 #endif
1225 
1226 #ifdef TARGET_ALPHA
1227 
1228 #define ELF_START_MMAP (0x30000000000ULL)
1229 
1230 #define ELF_CLASS      ELFCLASS64
1231 #define ELF_ARCH       EM_ALPHA
1232 
1233 static inline void init_thread(struct target_pt_regs *regs,
1234                                struct image_info *infop)
1235 {
1236     regs->pc = infop->entry;
1237     regs->ps = 8;
1238     regs->usp = infop->start_stack;
1239 }
1240 
1241 #define ELF_EXEC_PAGESIZE        8192
1242 
1243 #endif /* TARGET_ALPHA */
1244 
1245 #ifdef TARGET_S390X
1246 
1247 #define ELF_START_MMAP (0x20000000000ULL)
1248 
1249 #define ELF_CLASS	ELFCLASS64
1250 #define ELF_DATA	ELFDATA2MSB
1251 #define ELF_ARCH	EM_S390
1252 
1253 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1254 {
1255     regs->psw.addr = infop->entry;
1256     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1257     regs->gprs[15] = infop->start_stack;
1258 }
1259 
1260 #endif /* TARGET_S390X */
1261 
1262 #ifdef TARGET_TILEGX
1263 
1264 /* 42 bits real used address, a half for user mode */
1265 #define ELF_START_MMAP (0x00000020000000000ULL)
1266 
1267 #define elf_check_arch(x) ((x) == EM_TILEGX)
1268 
1269 #define ELF_CLASS   ELFCLASS64
1270 #define ELF_DATA    ELFDATA2LSB
1271 #define ELF_ARCH    EM_TILEGX
1272 
1273 static inline void init_thread(struct target_pt_regs *regs,
1274                                struct image_info *infop)
1275 {
1276     regs->pc = infop->entry;
1277     regs->sp = infop->start_stack;
1278 
1279 }
1280 
1281 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1282 
1283 #endif /* TARGET_TILEGX */
1284 
1285 #ifdef TARGET_RISCV
1286 
1287 #define ELF_START_MMAP 0x80000000
1288 #define ELF_ARCH  EM_RISCV
1289 
1290 #ifdef TARGET_RISCV32
1291 #define ELF_CLASS ELFCLASS32
1292 #else
1293 #define ELF_CLASS ELFCLASS64
1294 #endif
1295 
1296 static inline void init_thread(struct target_pt_regs *regs,
1297                                struct image_info *infop)
1298 {
1299     regs->sepc = infop->entry;
1300     regs->sp = infop->start_stack;
1301 }
1302 
1303 #define ELF_EXEC_PAGESIZE 4096
1304 
1305 #endif /* TARGET_RISCV */
1306 
1307 #ifdef TARGET_HPPA
1308 
1309 #define ELF_START_MMAP  0x80000000
1310 #define ELF_CLASS       ELFCLASS32
1311 #define ELF_ARCH        EM_PARISC
1312 #define ELF_PLATFORM    "PARISC"
1313 #define STACK_GROWS_DOWN 0
1314 #define STACK_ALIGNMENT  64
1315 
1316 static inline void init_thread(struct target_pt_regs *regs,
1317                                struct image_info *infop)
1318 {
1319     regs->iaoq[0] = infop->entry;
1320     regs->iaoq[1] = infop->entry + 4;
1321     regs->gr[23] = 0;
1322     regs->gr[24] = infop->arg_start;
1323     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1324     /* The top-of-stack contains a linkage buffer.  */
1325     regs->gr[30] = infop->start_stack + 64;
1326     regs->gr[31] = infop->entry;
1327 }
1328 
1329 #endif /* TARGET_HPPA */
1330 
1331 #ifdef TARGET_XTENSA
1332 
1333 #define ELF_START_MMAP 0x20000000
1334 
1335 #define ELF_CLASS       ELFCLASS32
1336 #define ELF_ARCH        EM_XTENSA
1337 
1338 static inline void init_thread(struct target_pt_regs *regs,
1339                                struct image_info *infop)
1340 {
1341     regs->windowbase = 0;
1342     regs->windowstart = 1;
1343     regs->areg[1] = infop->start_stack;
1344     regs->pc = infop->entry;
1345 }
1346 
1347 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1348 #define ELF_NREG 128
1349 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1350 
1351 enum {
1352     TARGET_REG_PC,
1353     TARGET_REG_PS,
1354     TARGET_REG_LBEG,
1355     TARGET_REG_LEND,
1356     TARGET_REG_LCOUNT,
1357     TARGET_REG_SAR,
1358     TARGET_REG_WINDOWSTART,
1359     TARGET_REG_WINDOWBASE,
1360     TARGET_REG_THREADPTR,
1361     TARGET_REG_AR0 = 64,
1362 };
1363 
1364 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1365                                const CPUXtensaState *env)
1366 {
1367     unsigned i;
1368 
1369     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1370     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1371     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1372     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1373     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1374     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1375     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1376     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1377     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1378     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1379     for (i = 0; i < env->config->nareg; ++i) {
1380         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1381     }
1382 }
1383 
1384 #define USE_ELF_CORE_DUMP
1385 #define ELF_EXEC_PAGESIZE       4096
1386 
1387 #endif /* TARGET_XTENSA */
1388 
1389 #ifndef ELF_PLATFORM
1390 #define ELF_PLATFORM (NULL)
1391 #endif
1392 
1393 #ifndef ELF_MACHINE
1394 #define ELF_MACHINE ELF_ARCH
1395 #endif
1396 
1397 #ifndef elf_check_arch
1398 #define elf_check_arch(x) ((x) == ELF_ARCH)
1399 #endif
1400 
1401 #ifndef ELF_HWCAP
1402 #define ELF_HWCAP 0
1403 #endif
1404 
1405 #ifndef STACK_GROWS_DOWN
1406 #define STACK_GROWS_DOWN 1
1407 #endif
1408 
1409 #ifndef STACK_ALIGNMENT
1410 #define STACK_ALIGNMENT 16
1411 #endif
1412 
1413 #ifdef TARGET_ABI32
1414 #undef ELF_CLASS
1415 #define ELF_CLASS ELFCLASS32
1416 #undef bswaptls
1417 #define bswaptls(ptr) bswap32s(ptr)
1418 #endif
1419 
1420 #include "elf.h"
1421 
1422 struct exec
1423 {
1424     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1425     unsigned int a_text;   /* length of text, in bytes */
1426     unsigned int a_data;   /* length of data, in bytes */
1427     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1428     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1429     unsigned int a_entry;  /* start address */
1430     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1431     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1432 };
1433 
1434 
1435 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1436 #define OMAGIC 0407
1437 #define NMAGIC 0410
1438 #define ZMAGIC 0413
1439 #define QMAGIC 0314
1440 
1441 /* Necessary parameters */
1442 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1443 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1444                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1445 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1446 
1447 #define DLINFO_ITEMS 15
1448 
1449 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1450 {
1451     memcpy(to, from, n);
1452 }
1453 
1454 #ifdef BSWAP_NEEDED
1455 static void bswap_ehdr(struct elfhdr *ehdr)
1456 {
1457     bswap16s(&ehdr->e_type);            /* Object file type */
1458     bswap16s(&ehdr->e_machine);         /* Architecture */
1459     bswap32s(&ehdr->e_version);         /* Object file version */
1460     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1461     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1462     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1463     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1464     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1465     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1466     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1467     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1468     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1469     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1470 }
1471 
1472 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1473 {
1474     int i;
1475     for (i = 0; i < phnum; ++i, ++phdr) {
1476         bswap32s(&phdr->p_type);        /* Segment type */
1477         bswap32s(&phdr->p_flags);       /* Segment flags */
1478         bswaptls(&phdr->p_offset);      /* Segment file offset */
1479         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1480         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1481         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1482         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1483         bswaptls(&phdr->p_align);       /* Segment alignment */
1484     }
1485 }
1486 
1487 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1488 {
1489     int i;
1490     for (i = 0; i < shnum; ++i, ++shdr) {
1491         bswap32s(&shdr->sh_name);
1492         bswap32s(&shdr->sh_type);
1493         bswaptls(&shdr->sh_flags);
1494         bswaptls(&shdr->sh_addr);
1495         bswaptls(&shdr->sh_offset);
1496         bswaptls(&shdr->sh_size);
1497         bswap32s(&shdr->sh_link);
1498         bswap32s(&shdr->sh_info);
1499         bswaptls(&shdr->sh_addralign);
1500         bswaptls(&shdr->sh_entsize);
1501     }
1502 }
1503 
1504 static void bswap_sym(struct elf_sym *sym)
1505 {
1506     bswap32s(&sym->st_name);
1507     bswaptls(&sym->st_value);
1508     bswaptls(&sym->st_size);
1509     bswap16s(&sym->st_shndx);
1510 }
1511 #else
1512 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1513 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1514 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1515 static inline void bswap_sym(struct elf_sym *sym) { }
1516 #endif
1517 
1518 #ifdef USE_ELF_CORE_DUMP
1519 static int elf_core_dump(int, const CPUArchState *);
1520 #endif /* USE_ELF_CORE_DUMP */
1521 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1522 
1523 /* Verify the portions of EHDR within E_IDENT for the target.
1524    This can be performed before bswapping the entire header.  */
1525 static bool elf_check_ident(struct elfhdr *ehdr)
1526 {
1527     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1528             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1529             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1530             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1531             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1532             && ehdr->e_ident[EI_DATA] == ELF_DATA
1533             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1534 }
1535 
1536 /* Verify the portions of EHDR outside of E_IDENT for the target.
1537    This has to wait until after bswapping the header.  */
1538 static bool elf_check_ehdr(struct elfhdr *ehdr)
1539 {
1540     return (elf_check_arch(ehdr->e_machine)
1541             && ehdr->e_ehsize == sizeof(struct elfhdr)
1542             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1543             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1544 }
1545 
1546 /*
1547  * 'copy_elf_strings()' copies argument/envelope strings from user
1548  * memory to free pages in kernel mem. These are in a format ready
1549  * to be put directly into the top of new user memory.
1550  *
1551  */
1552 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1553                                   abi_ulong p, abi_ulong stack_limit)
1554 {
1555     char *tmp;
1556     int len, i;
1557     abi_ulong top = p;
1558 
1559     if (!p) {
1560         return 0;       /* bullet-proofing */
1561     }
1562 
1563     if (STACK_GROWS_DOWN) {
1564         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1565         for (i = argc - 1; i >= 0; --i) {
1566             tmp = argv[i];
1567             if (!tmp) {
1568                 fprintf(stderr, "VFS: argc is wrong");
1569                 exit(-1);
1570             }
1571             len = strlen(tmp) + 1;
1572             tmp += len;
1573 
1574             if (len > (p - stack_limit)) {
1575                 return 0;
1576             }
1577             while (len) {
1578                 int bytes_to_copy = (len > offset) ? offset : len;
1579                 tmp -= bytes_to_copy;
1580                 p -= bytes_to_copy;
1581                 offset -= bytes_to_copy;
1582                 len -= bytes_to_copy;
1583 
1584                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1585 
1586                 if (offset == 0) {
1587                     memcpy_to_target(p, scratch, top - p);
1588                     top = p;
1589                     offset = TARGET_PAGE_SIZE;
1590                 }
1591             }
1592         }
1593         if (p != top) {
1594             memcpy_to_target(p, scratch + offset, top - p);
1595         }
1596     } else {
1597         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1598         for (i = 0; i < argc; ++i) {
1599             tmp = argv[i];
1600             if (!tmp) {
1601                 fprintf(stderr, "VFS: argc is wrong");
1602                 exit(-1);
1603             }
1604             len = strlen(tmp) + 1;
1605             if (len > (stack_limit - p)) {
1606                 return 0;
1607             }
1608             while (len) {
1609                 int bytes_to_copy = (len > remaining) ? remaining : len;
1610 
1611                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1612 
1613                 tmp += bytes_to_copy;
1614                 remaining -= bytes_to_copy;
1615                 p += bytes_to_copy;
1616                 len -= bytes_to_copy;
1617 
1618                 if (remaining == 0) {
1619                     memcpy_to_target(top, scratch, p - top);
1620                     top = p;
1621                     remaining = TARGET_PAGE_SIZE;
1622                 }
1623             }
1624         }
1625         if (p != top) {
1626             memcpy_to_target(top, scratch, p - top);
1627         }
1628     }
1629 
1630     return p;
1631 }
1632 
1633 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1634  * argument/environment space. Newer kernels (>2.6.33) allow more,
1635  * dependent on stack size, but guarantee at least 32 pages for
1636  * backwards compatibility.
1637  */
1638 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1639 
1640 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1641                                  struct image_info *info)
1642 {
1643     abi_ulong size, error, guard;
1644 
1645     size = guest_stack_size;
1646     if (size < STACK_LOWER_LIMIT) {
1647         size = STACK_LOWER_LIMIT;
1648     }
1649     guard = TARGET_PAGE_SIZE;
1650     if (guard < qemu_real_host_page_size) {
1651         guard = qemu_real_host_page_size;
1652     }
1653 
1654     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1655                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1656     if (error == -1) {
1657         perror("mmap stack");
1658         exit(-1);
1659     }
1660 
1661     /* We reserve one extra page at the top of the stack as guard.  */
1662     if (STACK_GROWS_DOWN) {
1663         target_mprotect(error, guard, PROT_NONE);
1664         info->stack_limit = error + guard;
1665         return info->stack_limit + size - sizeof(void *);
1666     } else {
1667         target_mprotect(error + size, guard, PROT_NONE);
1668         info->stack_limit = error + size;
1669         return error;
1670     }
1671 }
1672 
1673 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1674    after the data section (i.e. bss).  */
1675 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1676 {
1677     uintptr_t host_start, host_map_start, host_end;
1678 
1679     last_bss = TARGET_PAGE_ALIGN(last_bss);
1680 
1681     /* ??? There is confusion between qemu_real_host_page_size and
1682        qemu_host_page_size here and elsewhere in target_mmap, which
1683        may lead to the end of the data section mapping from the file
1684        not being mapped.  At least there was an explicit test and
1685        comment for that here, suggesting that "the file size must
1686        be known".  The comment probably pre-dates the introduction
1687        of the fstat system call in target_mmap which does in fact
1688        find out the size.  What isn't clear is if the workaround
1689        here is still actually needed.  For now, continue with it,
1690        but merge it with the "normal" mmap that would allocate the bss.  */
1691 
1692     host_start = (uintptr_t) g2h(elf_bss);
1693     host_end = (uintptr_t) g2h(last_bss);
1694     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1695 
1696     if (host_map_start < host_end) {
1697         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1698                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1699         if (p == MAP_FAILED) {
1700             perror("cannot mmap brk");
1701             exit(-1);
1702         }
1703     }
1704 
1705     /* Ensure that the bss page(s) are valid */
1706     if ((page_get_flags(last_bss-1) & prot) != prot) {
1707         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1708     }
1709 
1710     if (host_start < host_map_start) {
1711         memset((void *)host_start, 0, host_map_start - host_start);
1712     }
1713 }
1714 
1715 #ifdef TARGET_ARM
1716 static int elf_is_fdpic(struct elfhdr *exec)
1717 {
1718     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1719 }
1720 #else
1721 /* Default implementation, always false.  */
1722 static int elf_is_fdpic(struct elfhdr *exec)
1723 {
1724     return 0;
1725 }
1726 #endif
1727 
1728 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1729 {
1730     uint16_t n;
1731     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1732 
1733     /* elf32_fdpic_loadseg */
1734     n = info->nsegs;
1735     while (n--) {
1736         sp -= 12;
1737         put_user_u32(loadsegs[n].addr, sp+0);
1738         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1739         put_user_u32(loadsegs[n].p_memsz, sp+8);
1740     }
1741 
1742     /* elf32_fdpic_loadmap */
1743     sp -= 4;
1744     put_user_u16(0, sp+0); /* version */
1745     put_user_u16(info->nsegs, sp+2); /* nsegs */
1746 
1747     info->personality = PER_LINUX_FDPIC;
1748     info->loadmap_addr = sp;
1749 
1750     return sp;
1751 }
1752 
1753 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1754                                    struct elfhdr *exec,
1755                                    struct image_info *info,
1756                                    struct image_info *interp_info)
1757 {
1758     abi_ulong sp;
1759     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1760     int size;
1761     int i;
1762     abi_ulong u_rand_bytes;
1763     uint8_t k_rand_bytes[16];
1764     abi_ulong u_platform;
1765     const char *k_platform;
1766     const int n = sizeof(elf_addr_t);
1767 
1768     sp = p;
1769 
1770     /* Needs to be before we load the env/argc/... */
1771     if (elf_is_fdpic(exec)) {
1772         /* Need 4 byte alignment for these structs */
1773         sp &= ~3;
1774         sp = loader_build_fdpic_loadmap(info, sp);
1775         info->other_info = interp_info;
1776         if (interp_info) {
1777             interp_info->other_info = info;
1778             sp = loader_build_fdpic_loadmap(interp_info, sp);
1779             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1780             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1781         } else {
1782             info->interpreter_loadmap_addr = 0;
1783             info->interpreter_pt_dynamic_addr = 0;
1784         }
1785     }
1786 
1787     u_platform = 0;
1788     k_platform = ELF_PLATFORM;
1789     if (k_platform) {
1790         size_t len = strlen(k_platform) + 1;
1791         if (STACK_GROWS_DOWN) {
1792             sp -= (len + n - 1) & ~(n - 1);
1793             u_platform = sp;
1794             /* FIXME - check return value of memcpy_to_target() for failure */
1795             memcpy_to_target(sp, k_platform, len);
1796         } else {
1797             memcpy_to_target(sp, k_platform, len);
1798             u_platform = sp;
1799             sp += len + 1;
1800         }
1801     }
1802 
1803     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1804      * the argv and envp pointers.
1805      */
1806     if (STACK_GROWS_DOWN) {
1807         sp = QEMU_ALIGN_DOWN(sp, 16);
1808     } else {
1809         sp = QEMU_ALIGN_UP(sp, 16);
1810     }
1811 
1812     /*
1813      * Generate 16 random bytes for userspace PRNG seeding (not
1814      * cryptically secure but it's not the aim of QEMU).
1815      */
1816     for (i = 0; i < 16; i++) {
1817         k_rand_bytes[i] = rand();
1818     }
1819     if (STACK_GROWS_DOWN) {
1820         sp -= 16;
1821         u_rand_bytes = sp;
1822         /* FIXME - check return value of memcpy_to_target() for failure */
1823         memcpy_to_target(sp, k_rand_bytes, 16);
1824     } else {
1825         memcpy_to_target(sp, k_rand_bytes, 16);
1826         u_rand_bytes = sp;
1827         sp += 16;
1828     }
1829 
1830     size = (DLINFO_ITEMS + 1) * 2;
1831     if (k_platform)
1832         size += 2;
1833 #ifdef DLINFO_ARCH_ITEMS
1834     size += DLINFO_ARCH_ITEMS * 2;
1835 #endif
1836 #ifdef ELF_HWCAP2
1837     size += 2;
1838 #endif
1839     info->auxv_len = size * n;
1840 
1841     size += envc + argc + 2;
1842     size += 1;  /* argc itself */
1843     size *= n;
1844 
1845     /* Allocate space and finalize stack alignment for entry now.  */
1846     if (STACK_GROWS_DOWN) {
1847         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1848         sp = u_argc;
1849     } else {
1850         u_argc = sp;
1851         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1852     }
1853 
1854     u_argv = u_argc + n;
1855     u_envp = u_argv + (argc + 1) * n;
1856     u_auxv = u_envp + (envc + 1) * n;
1857     info->saved_auxv = u_auxv;
1858     info->arg_start = u_argv;
1859     info->arg_end = u_argv + argc * n;
1860 
1861     /* This is correct because Linux defines
1862      * elf_addr_t as Elf32_Off / Elf64_Off
1863      */
1864 #define NEW_AUX_ENT(id, val) do {               \
1865         put_user_ual(id, u_auxv);  u_auxv += n; \
1866         put_user_ual(val, u_auxv); u_auxv += n; \
1867     } while(0)
1868 
1869 #ifdef ARCH_DLINFO
1870     /*
1871      * ARCH_DLINFO must come first so platform specific code can enforce
1872      * special alignment requirements on the AUXV if necessary (eg. PPC).
1873      */
1874     ARCH_DLINFO;
1875 #endif
1876     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1877      * on info->auxv_len will trigger.
1878      */
1879     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1880     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1881     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1882     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1883         /* Target doesn't support host page size alignment */
1884         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1885     } else {
1886         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1887                                                qemu_host_page_size)));
1888     }
1889     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1890     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1891     NEW_AUX_ENT(AT_ENTRY, info->entry);
1892     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1893     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1894     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1895     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1896     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1897     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1898     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1899     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1900 
1901 #ifdef ELF_HWCAP2
1902     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1903 #endif
1904 
1905     if (u_platform) {
1906         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1907     }
1908     NEW_AUX_ENT (AT_NULL, 0);
1909 #undef NEW_AUX_ENT
1910 
1911     /* Check that our initial calculation of the auxv length matches how much
1912      * we actually put into it.
1913      */
1914     assert(info->auxv_len == u_auxv - info->saved_auxv);
1915 
1916     put_user_ual(argc, u_argc);
1917 
1918     p = info->arg_strings;
1919     for (i = 0; i < argc; ++i) {
1920         put_user_ual(p, u_argv);
1921         u_argv += n;
1922         p += target_strlen(p) + 1;
1923     }
1924     put_user_ual(0, u_argv);
1925 
1926     p = info->env_strings;
1927     for (i = 0; i < envc; ++i) {
1928         put_user_ual(p, u_envp);
1929         u_envp += n;
1930         p += target_strlen(p) + 1;
1931     }
1932     put_user_ual(0, u_envp);
1933 
1934     return sp;
1935 }
1936 
1937 unsigned long init_guest_space(unsigned long host_start,
1938                                unsigned long host_size,
1939                                unsigned long guest_start,
1940                                bool fixed)
1941 {
1942     unsigned long current_start, aligned_start;
1943     int flags;
1944 
1945     assert(host_start || host_size);
1946 
1947     /* If just a starting address is given, then just verify that
1948      * address.  */
1949     if (host_start && !host_size) {
1950 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1951         if (init_guest_commpage(host_start, host_size) != 1) {
1952             return (unsigned long)-1;
1953         }
1954 #endif
1955         return host_start;
1956     }
1957 
1958     /* Setup the initial flags and start address.  */
1959     current_start = host_start & qemu_host_page_mask;
1960     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1961     if (fixed) {
1962         flags |= MAP_FIXED;
1963     }
1964 
1965     /* Otherwise, a non-zero size region of memory needs to be mapped
1966      * and validated.  */
1967 
1968 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1969     /* On 32-bit ARM, we need to map not just the usable memory, but
1970      * also the commpage.  Try to find a suitable place by allocating
1971      * a big chunk for all of it.  If host_start, then the naive
1972      * strategy probably does good enough.
1973      */
1974     if (!host_start) {
1975         unsigned long guest_full_size, host_full_size, real_start;
1976 
1977         guest_full_size =
1978             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1979         host_full_size = guest_full_size - guest_start;
1980         real_start = (unsigned long)
1981             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1982         if (real_start == (unsigned long)-1) {
1983             if (host_size < host_full_size - qemu_host_page_size) {
1984                 /* We failed to map a continous segment, but we're
1985                  * allowed to have a gap between the usable memory and
1986                  * the commpage where other things can be mapped.
1987                  * This sparseness gives us more flexibility to find
1988                  * an address range.
1989                  */
1990                 goto naive;
1991             }
1992             return (unsigned long)-1;
1993         }
1994         munmap((void *)real_start, host_full_size);
1995         if (real_start & ~qemu_host_page_mask) {
1996             /* The same thing again, but with an extra qemu_host_page_size
1997              * so that we can shift around alignment.
1998              */
1999             unsigned long real_size = host_full_size + qemu_host_page_size;
2000             real_start = (unsigned long)
2001                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2002             if (real_start == (unsigned long)-1) {
2003                 if (host_size < host_full_size - qemu_host_page_size) {
2004                     goto naive;
2005                 }
2006                 return (unsigned long)-1;
2007             }
2008             munmap((void *)real_start, real_size);
2009             real_start = HOST_PAGE_ALIGN(real_start);
2010         }
2011         current_start = real_start;
2012     }
2013  naive:
2014 #endif
2015 
2016     while (1) {
2017         unsigned long real_start, real_size, aligned_size;
2018         aligned_size = real_size = host_size;
2019 
2020         /* Do not use mmap_find_vma here because that is limited to the
2021          * guest address space.  We are going to make the
2022          * guest address space fit whatever we're given.
2023          */
2024         real_start = (unsigned long)
2025             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2026         if (real_start == (unsigned long)-1) {
2027             return (unsigned long)-1;
2028         }
2029 
2030         /* Check to see if the address is valid.  */
2031         if (host_start && real_start != current_start) {
2032             goto try_again;
2033         }
2034 
2035         /* Ensure the address is properly aligned.  */
2036         if (real_start & ~qemu_host_page_mask) {
2037             /* Ideally, we adjust like
2038              *
2039              *    pages: [  ][  ][  ][  ][  ]
2040              *      old:   [   real   ]
2041              *             [ aligned  ]
2042              *      new:   [     real     ]
2043              *               [ aligned  ]
2044              *
2045              * But if there is something else mapped right after it,
2046              * then obviously it won't have room to grow, and the
2047              * kernel will put the new larger real someplace else with
2048              * unknown alignment (if we made it to here, then
2049              * fixed=false).  Which is why we grow real by a full page
2050              * size, instead of by part of one; so that even if we get
2051              * moved, we can still guarantee alignment.  But this does
2052              * mean that there is a padding of < 1 page both before
2053              * and after the aligned range; the "after" could could
2054              * cause problems for ARM emulation where it could butt in
2055              * to where we need to put the commpage.
2056              */
2057             munmap((void *)real_start, host_size);
2058             real_size = aligned_size + qemu_host_page_size;
2059             real_start = (unsigned long)
2060                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2061             if (real_start == (unsigned long)-1) {
2062                 return (unsigned long)-1;
2063             }
2064             aligned_start = HOST_PAGE_ALIGN(real_start);
2065         } else {
2066             aligned_start = real_start;
2067         }
2068 
2069 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2070         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2071         int valid = init_guest_commpage(aligned_start - guest_start,
2072                                         aligned_size + guest_start);
2073         if (valid == -1) {
2074             munmap((void *)real_start, real_size);
2075             return (unsigned long)-1;
2076         } else if (valid == 0) {
2077             goto try_again;
2078         }
2079 #endif
2080 
2081         /* If nothing has said `return -1` or `goto try_again` yet,
2082          * then the address we have is good.
2083          */
2084         break;
2085 
2086     try_again:
2087         /* That address didn't work.  Unmap and try a different one.
2088          * The address the host picked because is typically right at
2089          * the top of the host address space and leaves the guest with
2090          * no usable address space.  Resort to a linear search.  We
2091          * already compensated for mmap_min_addr, so this should not
2092          * happen often.  Probably means we got unlucky and host
2093          * address space randomization put a shared library somewhere
2094          * inconvenient.
2095          *
2096          * This is probably a good strategy if host_start, but is
2097          * probably a bad strategy if not, which means we got here
2098          * because of trouble with ARM commpage setup.
2099          */
2100         munmap((void *)real_start, real_size);
2101         current_start += qemu_host_page_size;
2102         if (host_start == current_start) {
2103             /* Theoretically possible if host doesn't have any suitably
2104              * aligned areas.  Normally the first mmap will fail.
2105              */
2106             return (unsigned long)-1;
2107         }
2108     }
2109 
2110     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2111 
2112     return aligned_start;
2113 }
2114 
2115 static void probe_guest_base(const char *image_name,
2116                              abi_ulong loaddr, abi_ulong hiaddr)
2117 {
2118     /* Probe for a suitable guest base address, if the user has not set
2119      * it explicitly, and set guest_base appropriately.
2120      * In case of error we will print a suitable message and exit.
2121      */
2122     const char *errmsg;
2123     if (!have_guest_base && !reserved_va) {
2124         unsigned long host_start, real_start, host_size;
2125 
2126         /* Round addresses to page boundaries.  */
2127         loaddr &= qemu_host_page_mask;
2128         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2129 
2130         if (loaddr < mmap_min_addr) {
2131             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2132         } else {
2133             host_start = loaddr;
2134             if (host_start != loaddr) {
2135                 errmsg = "Address overflow loading ELF binary";
2136                 goto exit_errmsg;
2137             }
2138         }
2139         host_size = hiaddr - loaddr;
2140 
2141         /* Setup the initial guest memory space with ranges gleaned from
2142          * the ELF image that is being loaded.
2143          */
2144         real_start = init_guest_space(host_start, host_size, loaddr, false);
2145         if (real_start == (unsigned long)-1) {
2146             errmsg = "Unable to find space for application";
2147             goto exit_errmsg;
2148         }
2149         guest_base = real_start - loaddr;
2150 
2151         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2152                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2153                       loaddr, real_start);
2154     }
2155     return;
2156 
2157 exit_errmsg:
2158     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2159     exit(-1);
2160 }
2161 
2162 
2163 /* Load an ELF image into the address space.
2164 
2165    IMAGE_NAME is the filename of the image, to use in error messages.
2166    IMAGE_FD is the open file descriptor for the image.
2167 
2168    BPRM_BUF is a copy of the beginning of the file; this of course
2169    contains the elf file header at offset 0.  It is assumed that this
2170    buffer is sufficiently aligned to present no problems to the host
2171    in accessing data at aligned offsets within the buffer.
2172 
2173    On return: INFO values will be filled in, as necessary or available.  */
2174 
2175 static void load_elf_image(const char *image_name, int image_fd,
2176                            struct image_info *info, char **pinterp_name,
2177                            char bprm_buf[BPRM_BUF_SIZE])
2178 {
2179     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2180     struct elf_phdr *phdr;
2181     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2182     int i, retval;
2183     const char *errmsg;
2184 
2185     /* First of all, some simple consistency checks */
2186     errmsg = "Invalid ELF image for this architecture";
2187     if (!elf_check_ident(ehdr)) {
2188         goto exit_errmsg;
2189     }
2190     bswap_ehdr(ehdr);
2191     if (!elf_check_ehdr(ehdr)) {
2192         goto exit_errmsg;
2193     }
2194 
2195     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2196     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2197         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2198     } else {
2199         phdr = (struct elf_phdr *) alloca(i);
2200         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2201         if (retval != i) {
2202             goto exit_read;
2203         }
2204     }
2205     bswap_phdr(phdr, ehdr->e_phnum);
2206 
2207     info->nsegs = 0;
2208     info->pt_dynamic_addr = 0;
2209 
2210     mmap_lock();
2211 
2212     /* Find the maximum size of the image and allocate an appropriate
2213        amount of memory to handle that.  */
2214     loaddr = -1, hiaddr = 0;
2215     info->alignment = 0;
2216     for (i = 0; i < ehdr->e_phnum; ++i) {
2217         if (phdr[i].p_type == PT_LOAD) {
2218             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2219             if (a < loaddr) {
2220                 loaddr = a;
2221             }
2222             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2223             if (a > hiaddr) {
2224                 hiaddr = a;
2225             }
2226             ++info->nsegs;
2227             info->alignment |= phdr[i].p_align;
2228         }
2229     }
2230 
2231     load_addr = loaddr;
2232     if (ehdr->e_type == ET_DYN) {
2233         /* The image indicates that it can be loaded anywhere.  Find a
2234            location that can hold the memory space required.  If the
2235            image is pre-linked, LOADDR will be non-zero.  Since we do
2236            not supply MAP_FIXED here we'll use that address if and
2237            only if it remains available.  */
2238         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2239                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2240                                 -1, 0);
2241         if (load_addr == -1) {
2242             goto exit_perror;
2243         }
2244     } else if (pinterp_name != NULL) {
2245         /* This is the main executable.  Make sure that the low
2246            address does not conflict with MMAP_MIN_ADDR or the
2247            QEMU application itself.  */
2248         probe_guest_base(image_name, loaddr, hiaddr);
2249     }
2250     load_bias = load_addr - loaddr;
2251 
2252     if (elf_is_fdpic(ehdr)) {
2253         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2254             g_malloc(sizeof(*loadsegs) * info->nsegs);
2255 
2256         for (i = 0; i < ehdr->e_phnum; ++i) {
2257             switch (phdr[i].p_type) {
2258             case PT_DYNAMIC:
2259                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2260                 break;
2261             case PT_LOAD:
2262                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2263                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2264                 loadsegs->p_memsz = phdr[i].p_memsz;
2265                 ++loadsegs;
2266                 break;
2267             }
2268         }
2269     }
2270 
2271     info->load_bias = load_bias;
2272     info->load_addr = load_addr;
2273     info->entry = ehdr->e_entry + load_bias;
2274     info->start_code = -1;
2275     info->end_code = 0;
2276     info->start_data = -1;
2277     info->end_data = 0;
2278     info->brk = 0;
2279     info->elf_flags = ehdr->e_flags;
2280 
2281     for (i = 0; i < ehdr->e_phnum; i++) {
2282         struct elf_phdr *eppnt = phdr + i;
2283         if (eppnt->p_type == PT_LOAD) {
2284             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2285             int elf_prot = 0;
2286 
2287             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2288             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2289             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2290 
2291             vaddr = load_bias + eppnt->p_vaddr;
2292             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2293             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2294 
2295             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2296                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2297                                 image_fd, eppnt->p_offset - vaddr_po);
2298             if (error == -1) {
2299                 goto exit_perror;
2300             }
2301 
2302             vaddr_ef = vaddr + eppnt->p_filesz;
2303             vaddr_em = vaddr + eppnt->p_memsz;
2304 
2305             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2306             if (vaddr_ef < vaddr_em) {
2307                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2308             }
2309 
2310             /* Find the full program boundaries.  */
2311             if (elf_prot & PROT_EXEC) {
2312                 if (vaddr < info->start_code) {
2313                     info->start_code = vaddr;
2314                 }
2315                 if (vaddr_ef > info->end_code) {
2316                     info->end_code = vaddr_ef;
2317                 }
2318             }
2319             if (elf_prot & PROT_WRITE) {
2320                 if (vaddr < info->start_data) {
2321                     info->start_data = vaddr;
2322                 }
2323                 if (vaddr_ef > info->end_data) {
2324                     info->end_data = vaddr_ef;
2325                 }
2326                 if (vaddr_em > info->brk) {
2327                     info->brk = vaddr_em;
2328                 }
2329             }
2330         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2331             char *interp_name;
2332 
2333             if (*pinterp_name) {
2334                 errmsg = "Multiple PT_INTERP entries";
2335                 goto exit_errmsg;
2336             }
2337             interp_name = malloc(eppnt->p_filesz);
2338             if (!interp_name) {
2339                 goto exit_perror;
2340             }
2341 
2342             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2343                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2344                        eppnt->p_filesz);
2345             } else {
2346                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2347                                eppnt->p_offset);
2348                 if (retval != eppnt->p_filesz) {
2349                     goto exit_perror;
2350                 }
2351             }
2352             if (interp_name[eppnt->p_filesz - 1] != 0) {
2353                 errmsg = "Invalid PT_INTERP entry";
2354                 goto exit_errmsg;
2355             }
2356             *pinterp_name = interp_name;
2357         }
2358     }
2359 
2360     if (info->end_data == 0) {
2361         info->start_data = info->end_code;
2362         info->end_data = info->end_code;
2363         info->brk = info->end_code;
2364     }
2365 
2366     if (qemu_log_enabled()) {
2367         load_symbols(ehdr, image_fd, load_bias);
2368     }
2369 
2370     mmap_unlock();
2371 
2372     close(image_fd);
2373     return;
2374 
2375  exit_read:
2376     if (retval >= 0) {
2377         errmsg = "Incomplete read of file header";
2378         goto exit_errmsg;
2379     }
2380  exit_perror:
2381     errmsg = strerror(errno);
2382  exit_errmsg:
2383     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2384     exit(-1);
2385 }
2386 
2387 static void load_elf_interp(const char *filename, struct image_info *info,
2388                             char bprm_buf[BPRM_BUF_SIZE])
2389 {
2390     int fd, retval;
2391 
2392     fd = open(path(filename), O_RDONLY);
2393     if (fd < 0) {
2394         goto exit_perror;
2395     }
2396 
2397     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2398     if (retval < 0) {
2399         goto exit_perror;
2400     }
2401     if (retval < BPRM_BUF_SIZE) {
2402         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2403     }
2404 
2405     load_elf_image(filename, fd, info, NULL, bprm_buf);
2406     return;
2407 
2408  exit_perror:
2409     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2410     exit(-1);
2411 }
2412 
2413 static int symfind(const void *s0, const void *s1)
2414 {
2415     target_ulong addr = *(target_ulong *)s0;
2416     struct elf_sym *sym = (struct elf_sym *)s1;
2417     int result = 0;
2418     if (addr < sym->st_value) {
2419         result = -1;
2420     } else if (addr >= sym->st_value + sym->st_size) {
2421         result = 1;
2422     }
2423     return result;
2424 }
2425 
2426 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2427 {
2428 #if ELF_CLASS == ELFCLASS32
2429     struct elf_sym *syms = s->disas_symtab.elf32;
2430 #else
2431     struct elf_sym *syms = s->disas_symtab.elf64;
2432 #endif
2433 
2434     // binary search
2435     struct elf_sym *sym;
2436 
2437     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2438     if (sym != NULL) {
2439         return s->disas_strtab + sym->st_name;
2440     }
2441 
2442     return "";
2443 }
2444 
2445 /* FIXME: This should use elf_ops.h  */
2446 static int symcmp(const void *s0, const void *s1)
2447 {
2448     struct elf_sym *sym0 = (struct elf_sym *)s0;
2449     struct elf_sym *sym1 = (struct elf_sym *)s1;
2450     return (sym0->st_value < sym1->st_value)
2451         ? -1
2452         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2453 }
2454 
2455 /* Best attempt to load symbols from this ELF object. */
2456 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2457 {
2458     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2459     uint64_t segsz;
2460     struct elf_shdr *shdr;
2461     char *strings = NULL;
2462     struct syminfo *s = NULL;
2463     struct elf_sym *new_syms, *syms = NULL;
2464 
2465     shnum = hdr->e_shnum;
2466     i = shnum * sizeof(struct elf_shdr);
2467     shdr = (struct elf_shdr *)alloca(i);
2468     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2469         return;
2470     }
2471 
2472     bswap_shdr(shdr, shnum);
2473     for (i = 0; i < shnum; ++i) {
2474         if (shdr[i].sh_type == SHT_SYMTAB) {
2475             sym_idx = i;
2476             str_idx = shdr[i].sh_link;
2477             goto found;
2478         }
2479     }
2480 
2481     /* There will be no symbol table if the file was stripped.  */
2482     return;
2483 
2484  found:
2485     /* Now know where the strtab and symtab are.  Snarf them.  */
2486     s = g_try_new(struct syminfo, 1);
2487     if (!s) {
2488         goto give_up;
2489     }
2490 
2491     segsz = shdr[str_idx].sh_size;
2492     s->disas_strtab = strings = g_try_malloc(segsz);
2493     if (!strings ||
2494         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2495         goto give_up;
2496     }
2497 
2498     segsz = shdr[sym_idx].sh_size;
2499     syms = g_try_malloc(segsz);
2500     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2501         goto give_up;
2502     }
2503 
2504     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2505         /* Implausibly large symbol table: give up rather than ploughing
2506          * on with the number of symbols calculation overflowing
2507          */
2508         goto give_up;
2509     }
2510     nsyms = segsz / sizeof(struct elf_sym);
2511     for (i = 0; i < nsyms; ) {
2512         bswap_sym(syms + i);
2513         /* Throw away entries which we do not need.  */
2514         if (syms[i].st_shndx == SHN_UNDEF
2515             || syms[i].st_shndx >= SHN_LORESERVE
2516             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2517             if (i < --nsyms) {
2518                 syms[i] = syms[nsyms];
2519             }
2520         } else {
2521 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2522             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2523             syms[i].st_value &= ~(target_ulong)1;
2524 #endif
2525             syms[i].st_value += load_bias;
2526             i++;
2527         }
2528     }
2529 
2530     /* No "useful" symbol.  */
2531     if (nsyms == 0) {
2532         goto give_up;
2533     }
2534 
2535     /* Attempt to free the storage associated with the local symbols
2536        that we threw away.  Whether or not this has any effect on the
2537        memory allocation depends on the malloc implementation and how
2538        many symbols we managed to discard.  */
2539     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2540     if (new_syms == NULL) {
2541         goto give_up;
2542     }
2543     syms = new_syms;
2544 
2545     qsort(syms, nsyms, sizeof(*syms), symcmp);
2546 
2547     s->disas_num_syms = nsyms;
2548 #if ELF_CLASS == ELFCLASS32
2549     s->disas_symtab.elf32 = syms;
2550 #else
2551     s->disas_symtab.elf64 = syms;
2552 #endif
2553     s->lookup_symbol = lookup_symbolxx;
2554     s->next = syminfos;
2555     syminfos = s;
2556 
2557     return;
2558 
2559 give_up:
2560     g_free(s);
2561     g_free(strings);
2562     g_free(syms);
2563 }
2564 
2565 uint32_t get_elf_eflags(int fd)
2566 {
2567     struct elfhdr ehdr;
2568     off_t offset;
2569     int ret;
2570 
2571     /* Read ELF header */
2572     offset = lseek(fd, 0, SEEK_SET);
2573     if (offset == (off_t) -1) {
2574         return 0;
2575     }
2576     ret = read(fd, &ehdr, sizeof(ehdr));
2577     if (ret < sizeof(ehdr)) {
2578         return 0;
2579     }
2580     offset = lseek(fd, offset, SEEK_SET);
2581     if (offset == (off_t) -1) {
2582         return 0;
2583     }
2584 
2585     /* Check ELF signature */
2586     if (!elf_check_ident(&ehdr)) {
2587         return 0;
2588     }
2589 
2590     /* check header */
2591     bswap_ehdr(&ehdr);
2592     if (!elf_check_ehdr(&ehdr)) {
2593         return 0;
2594     }
2595 
2596     /* return architecture id */
2597     return ehdr.e_flags;
2598 }
2599 
2600 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2601 {
2602     struct image_info interp_info;
2603     struct elfhdr elf_ex;
2604     char *elf_interpreter = NULL;
2605     char *scratch;
2606 
2607     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2608 
2609     load_elf_image(bprm->filename, bprm->fd, info,
2610                    &elf_interpreter, bprm->buf);
2611 
2612     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2613        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2614        when we load the interpreter.  */
2615     elf_ex = *(struct elfhdr *)bprm->buf;
2616 
2617     /* Do this so that we can load the interpreter, if need be.  We will
2618        change some of these later */
2619     bprm->p = setup_arg_pages(bprm, info);
2620 
2621     scratch = g_new0(char, TARGET_PAGE_SIZE);
2622     if (STACK_GROWS_DOWN) {
2623         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2624                                    bprm->p, info->stack_limit);
2625         info->file_string = bprm->p;
2626         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2627                                    bprm->p, info->stack_limit);
2628         info->env_strings = bprm->p;
2629         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2630                                    bprm->p, info->stack_limit);
2631         info->arg_strings = bprm->p;
2632     } else {
2633         info->arg_strings = bprm->p;
2634         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2635                                    bprm->p, info->stack_limit);
2636         info->env_strings = bprm->p;
2637         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2638                                    bprm->p, info->stack_limit);
2639         info->file_string = bprm->p;
2640         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2641                                    bprm->p, info->stack_limit);
2642     }
2643 
2644     g_free(scratch);
2645 
2646     if (!bprm->p) {
2647         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2648         exit(-1);
2649     }
2650 
2651     if (elf_interpreter) {
2652         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2653 
2654         /* If the program interpreter is one of these two, then assume
2655            an iBCS2 image.  Otherwise assume a native linux image.  */
2656 
2657         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2658             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2659             info->personality = PER_SVR4;
2660 
2661             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2662                and some applications "depend" upon this behavior.  Since
2663                we do not have the power to recompile these, we emulate
2664                the SVr4 behavior.  Sigh.  */
2665             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2666                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2667         }
2668     }
2669 
2670     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2671                                 info, (elf_interpreter ? &interp_info : NULL));
2672     info->start_stack = bprm->p;
2673 
2674     /* If we have an interpreter, set that as the program's entry point.
2675        Copy the load_bias as well, to help PPC64 interpret the entry
2676        point as a function descriptor.  Do this after creating elf tables
2677        so that we copy the original program entry point into the AUXV.  */
2678     if (elf_interpreter) {
2679         info->load_bias = interp_info.load_bias;
2680         info->entry = interp_info.entry;
2681         free(elf_interpreter);
2682     }
2683 
2684 #ifdef USE_ELF_CORE_DUMP
2685     bprm->core_dump = &elf_core_dump;
2686 #endif
2687 
2688     return 0;
2689 }
2690 
2691 #ifdef USE_ELF_CORE_DUMP
2692 /*
2693  * Definitions to generate Intel SVR4-like core files.
2694  * These mostly have the same names as the SVR4 types with "target_elf_"
2695  * tacked on the front to prevent clashes with linux definitions,
2696  * and the typedef forms have been avoided.  This is mostly like
2697  * the SVR4 structure, but more Linuxy, with things that Linux does
2698  * not support and which gdb doesn't really use excluded.
2699  *
2700  * Fields we don't dump (their contents is zero) in linux-user qemu
2701  * are marked with XXX.
2702  *
2703  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2704  *
2705  * Porting ELF coredump for target is (quite) simple process.  First you
2706  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2707  * the target resides):
2708  *
2709  * #define USE_ELF_CORE_DUMP
2710  *
2711  * Next you define type of register set used for dumping.  ELF specification
2712  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2713  *
2714  * typedef <target_regtype> target_elf_greg_t;
2715  * #define ELF_NREG <number of registers>
2716  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2717  *
2718  * Last step is to implement target specific function that copies registers
2719  * from given cpu into just specified register set.  Prototype is:
2720  *
2721  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2722  *                                const CPUArchState *env);
2723  *
2724  * Parameters:
2725  *     regs - copy register values into here (allocated and zeroed by caller)
2726  *     env - copy registers from here
2727  *
2728  * Example for ARM target is provided in this file.
2729  */
2730 
2731 /* An ELF note in memory */
2732 struct memelfnote {
2733     const char *name;
2734     size_t     namesz;
2735     size_t     namesz_rounded;
2736     int        type;
2737     size_t     datasz;
2738     size_t     datasz_rounded;
2739     void       *data;
2740     size_t     notesz;
2741 };
2742 
2743 struct target_elf_siginfo {
2744     abi_int    si_signo; /* signal number */
2745     abi_int    si_code;  /* extra code */
2746     abi_int    si_errno; /* errno */
2747 };
2748 
2749 struct target_elf_prstatus {
2750     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2751     abi_short          pr_cursig;    /* Current signal */
2752     abi_ulong          pr_sigpend;   /* XXX */
2753     abi_ulong          pr_sighold;   /* XXX */
2754     target_pid_t       pr_pid;
2755     target_pid_t       pr_ppid;
2756     target_pid_t       pr_pgrp;
2757     target_pid_t       pr_sid;
2758     struct target_timeval pr_utime;  /* XXX User time */
2759     struct target_timeval pr_stime;  /* XXX System time */
2760     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2761     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2762     target_elf_gregset_t      pr_reg;       /* GP registers */
2763     abi_int            pr_fpvalid;   /* XXX */
2764 };
2765 
2766 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2767 
2768 struct target_elf_prpsinfo {
2769     char         pr_state;       /* numeric process state */
2770     char         pr_sname;       /* char for pr_state */
2771     char         pr_zomb;        /* zombie */
2772     char         pr_nice;        /* nice val */
2773     abi_ulong    pr_flag;        /* flags */
2774     target_uid_t pr_uid;
2775     target_gid_t pr_gid;
2776     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2777     /* Lots missing */
2778     char    pr_fname[16];           /* filename of executable */
2779     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2780 };
2781 
2782 /* Here is the structure in which status of each thread is captured. */
2783 struct elf_thread_status {
2784     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2785     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2786 #if 0
2787     elf_fpregset_t fpu;             /* NT_PRFPREG */
2788     struct task_struct *thread;
2789     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2790 #endif
2791     struct memelfnote notes[1];
2792     int num_notes;
2793 };
2794 
2795 struct elf_note_info {
2796     struct memelfnote   *notes;
2797     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2798     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2799 
2800     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2801 #if 0
2802     /*
2803      * Current version of ELF coredump doesn't support
2804      * dumping fp regs etc.
2805      */
2806     elf_fpregset_t *fpu;
2807     elf_fpxregset_t *xfpu;
2808     int thread_status_size;
2809 #endif
2810     int notes_size;
2811     int numnote;
2812 };
2813 
2814 struct vm_area_struct {
2815     target_ulong   vma_start;  /* start vaddr of memory region */
2816     target_ulong   vma_end;    /* end vaddr of memory region */
2817     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2818     QTAILQ_ENTRY(vm_area_struct) vma_link;
2819 };
2820 
2821 struct mm_struct {
2822     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2823     int mm_count;           /* number of mappings */
2824 };
2825 
2826 static struct mm_struct *vma_init(void);
2827 static void vma_delete(struct mm_struct *);
2828 static int vma_add_mapping(struct mm_struct *, target_ulong,
2829                            target_ulong, abi_ulong);
2830 static int vma_get_mapping_count(const struct mm_struct *);
2831 static struct vm_area_struct *vma_first(const struct mm_struct *);
2832 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2833 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2834 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2835                       unsigned long flags);
2836 
2837 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2838 static void fill_note(struct memelfnote *, const char *, int,
2839                       unsigned int, void *);
2840 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2841 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2842 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2843 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2844 static size_t note_size(const struct memelfnote *);
2845 static void free_note_info(struct elf_note_info *);
2846 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2847 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2848 static int core_dump_filename(const TaskState *, char *, size_t);
2849 
2850 static int dump_write(int, const void *, size_t);
2851 static int write_note(struct memelfnote *, int);
2852 static int write_note_info(struct elf_note_info *, int);
2853 
2854 #ifdef BSWAP_NEEDED
2855 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2856 {
2857     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2858     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2859     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2860     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2861     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2862     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2863     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2864     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2865     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2866     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2867     /* cpu times are not filled, so we skip them */
2868     /* regs should be in correct format already */
2869     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2870 }
2871 
2872 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2873 {
2874     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2875     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2876     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2877     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2878     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2879     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2880     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2881 }
2882 
2883 static void bswap_note(struct elf_note *en)
2884 {
2885     bswap32s(&en->n_namesz);
2886     bswap32s(&en->n_descsz);
2887     bswap32s(&en->n_type);
2888 }
2889 #else
2890 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2891 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2892 static inline void bswap_note(struct elf_note *en) { }
2893 #endif /* BSWAP_NEEDED */
2894 
2895 /*
2896  * Minimal support for linux memory regions.  These are needed
2897  * when we are finding out what memory exactly belongs to
2898  * emulated process.  No locks needed here, as long as
2899  * thread that received the signal is stopped.
2900  */
2901 
2902 static struct mm_struct *vma_init(void)
2903 {
2904     struct mm_struct *mm;
2905 
2906     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2907         return (NULL);
2908 
2909     mm->mm_count = 0;
2910     QTAILQ_INIT(&mm->mm_mmap);
2911 
2912     return (mm);
2913 }
2914 
2915 static void vma_delete(struct mm_struct *mm)
2916 {
2917     struct vm_area_struct *vma;
2918 
2919     while ((vma = vma_first(mm)) != NULL) {
2920         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2921         g_free(vma);
2922     }
2923     g_free(mm);
2924 }
2925 
2926 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2927                            target_ulong end, abi_ulong flags)
2928 {
2929     struct vm_area_struct *vma;
2930 
2931     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2932         return (-1);
2933 
2934     vma->vma_start = start;
2935     vma->vma_end = end;
2936     vma->vma_flags = flags;
2937 
2938     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2939     mm->mm_count++;
2940 
2941     return (0);
2942 }
2943 
2944 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2945 {
2946     return (QTAILQ_FIRST(&mm->mm_mmap));
2947 }
2948 
2949 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2950 {
2951     return (QTAILQ_NEXT(vma, vma_link));
2952 }
2953 
2954 static int vma_get_mapping_count(const struct mm_struct *mm)
2955 {
2956     return (mm->mm_count);
2957 }
2958 
2959 /*
2960  * Calculate file (dump) size of given memory region.
2961  */
2962 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2963 {
2964     /* if we cannot even read the first page, skip it */
2965     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2966         return (0);
2967 
2968     /*
2969      * Usually we don't dump executable pages as they contain
2970      * non-writable code that debugger can read directly from
2971      * target library etc.  However, thread stacks are marked
2972      * also executable so we read in first page of given region
2973      * and check whether it contains elf header.  If there is
2974      * no elf header, we dump it.
2975      */
2976     if (vma->vma_flags & PROT_EXEC) {
2977         char page[TARGET_PAGE_SIZE];
2978 
2979         copy_from_user(page, vma->vma_start, sizeof (page));
2980         if ((page[EI_MAG0] == ELFMAG0) &&
2981             (page[EI_MAG1] == ELFMAG1) &&
2982             (page[EI_MAG2] == ELFMAG2) &&
2983             (page[EI_MAG3] == ELFMAG3)) {
2984             /*
2985              * Mappings are possibly from ELF binary.  Don't dump
2986              * them.
2987              */
2988             return (0);
2989         }
2990     }
2991 
2992     return (vma->vma_end - vma->vma_start);
2993 }
2994 
2995 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2996                       unsigned long flags)
2997 {
2998     struct mm_struct *mm = (struct mm_struct *)priv;
2999 
3000     vma_add_mapping(mm, start, end, flags);
3001     return (0);
3002 }
3003 
3004 static void fill_note(struct memelfnote *note, const char *name, int type,
3005                       unsigned int sz, void *data)
3006 {
3007     unsigned int namesz;
3008 
3009     namesz = strlen(name) + 1;
3010     note->name = name;
3011     note->namesz = namesz;
3012     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3013     note->type = type;
3014     note->datasz = sz;
3015     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3016 
3017     note->data = data;
3018 
3019     /*
3020      * We calculate rounded up note size here as specified by
3021      * ELF document.
3022      */
3023     note->notesz = sizeof (struct elf_note) +
3024         note->namesz_rounded + note->datasz_rounded;
3025 }
3026 
3027 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3028                             uint32_t flags)
3029 {
3030     (void) memset(elf, 0, sizeof(*elf));
3031 
3032     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3033     elf->e_ident[EI_CLASS] = ELF_CLASS;
3034     elf->e_ident[EI_DATA] = ELF_DATA;
3035     elf->e_ident[EI_VERSION] = EV_CURRENT;
3036     elf->e_ident[EI_OSABI] = ELF_OSABI;
3037 
3038     elf->e_type = ET_CORE;
3039     elf->e_machine = machine;
3040     elf->e_version = EV_CURRENT;
3041     elf->e_phoff = sizeof(struct elfhdr);
3042     elf->e_flags = flags;
3043     elf->e_ehsize = sizeof(struct elfhdr);
3044     elf->e_phentsize = sizeof(struct elf_phdr);
3045     elf->e_phnum = segs;
3046 
3047     bswap_ehdr(elf);
3048 }
3049 
3050 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3051 {
3052     phdr->p_type = PT_NOTE;
3053     phdr->p_offset = offset;
3054     phdr->p_vaddr = 0;
3055     phdr->p_paddr = 0;
3056     phdr->p_filesz = sz;
3057     phdr->p_memsz = 0;
3058     phdr->p_flags = 0;
3059     phdr->p_align = 0;
3060 
3061     bswap_phdr(phdr, 1);
3062 }
3063 
3064 static size_t note_size(const struct memelfnote *note)
3065 {
3066     return (note->notesz);
3067 }
3068 
3069 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3070                           const TaskState *ts, int signr)
3071 {
3072     (void) memset(prstatus, 0, sizeof (*prstatus));
3073     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3074     prstatus->pr_pid = ts->ts_tid;
3075     prstatus->pr_ppid = getppid();
3076     prstatus->pr_pgrp = getpgrp();
3077     prstatus->pr_sid = getsid(0);
3078 
3079     bswap_prstatus(prstatus);
3080 }
3081 
3082 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3083 {
3084     char *base_filename;
3085     unsigned int i, len;
3086 
3087     (void) memset(psinfo, 0, sizeof (*psinfo));
3088 
3089     len = ts->info->arg_end - ts->info->arg_start;
3090     if (len >= ELF_PRARGSZ)
3091         len = ELF_PRARGSZ - 1;
3092     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3093         return -EFAULT;
3094     for (i = 0; i < len; i++)
3095         if (psinfo->pr_psargs[i] == 0)
3096             psinfo->pr_psargs[i] = ' ';
3097     psinfo->pr_psargs[len] = 0;
3098 
3099     psinfo->pr_pid = getpid();
3100     psinfo->pr_ppid = getppid();
3101     psinfo->pr_pgrp = getpgrp();
3102     psinfo->pr_sid = getsid(0);
3103     psinfo->pr_uid = getuid();
3104     psinfo->pr_gid = getgid();
3105 
3106     base_filename = g_path_get_basename(ts->bprm->filename);
3107     /*
3108      * Using strncpy here is fine: at max-length,
3109      * this field is not NUL-terminated.
3110      */
3111     (void) strncpy(psinfo->pr_fname, base_filename,
3112                    sizeof(psinfo->pr_fname));
3113 
3114     g_free(base_filename);
3115     bswap_psinfo(psinfo);
3116     return (0);
3117 }
3118 
3119 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3120 {
3121     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3122     elf_addr_t orig_auxv = auxv;
3123     void *ptr;
3124     int len = ts->info->auxv_len;
3125 
3126     /*
3127      * Auxiliary vector is stored in target process stack.  It contains
3128      * {type, value} pairs that we need to dump into note.  This is not
3129      * strictly necessary but we do it here for sake of completeness.
3130      */
3131 
3132     /* read in whole auxv vector and copy it to memelfnote */
3133     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3134     if (ptr != NULL) {
3135         fill_note(note, "CORE", NT_AUXV, len, ptr);
3136         unlock_user(ptr, auxv, len);
3137     }
3138 }
3139 
3140 /*
3141  * Constructs name of coredump file.  We have following convention
3142  * for the name:
3143  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3144  *
3145  * Returns 0 in case of success, -1 otherwise (errno is set).
3146  */
3147 static int core_dump_filename(const TaskState *ts, char *buf,
3148                               size_t bufsize)
3149 {
3150     char timestamp[64];
3151     char *base_filename = NULL;
3152     struct timeval tv;
3153     struct tm tm;
3154 
3155     assert(bufsize >= PATH_MAX);
3156 
3157     if (gettimeofday(&tv, NULL) < 0) {
3158         (void) fprintf(stderr, "unable to get current timestamp: %s",
3159                        strerror(errno));
3160         return (-1);
3161     }
3162 
3163     base_filename = g_path_get_basename(ts->bprm->filename);
3164     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3165                     localtime_r(&tv.tv_sec, &tm));
3166     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3167                     base_filename, timestamp, (int)getpid());
3168     g_free(base_filename);
3169 
3170     return (0);
3171 }
3172 
3173 static int dump_write(int fd, const void *ptr, size_t size)
3174 {
3175     const char *bufp = (const char *)ptr;
3176     ssize_t bytes_written, bytes_left;
3177     struct rlimit dumpsize;
3178     off_t pos;
3179 
3180     bytes_written = 0;
3181     getrlimit(RLIMIT_CORE, &dumpsize);
3182     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3183         if (errno == ESPIPE) { /* not a seekable stream */
3184             bytes_left = size;
3185         } else {
3186             return pos;
3187         }
3188     } else {
3189         if (dumpsize.rlim_cur <= pos) {
3190             return -1;
3191         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3192             bytes_left = size;
3193         } else {
3194             size_t limit_left=dumpsize.rlim_cur - pos;
3195             bytes_left = limit_left >= size ? size : limit_left ;
3196         }
3197     }
3198 
3199     /*
3200      * In normal conditions, single write(2) should do but
3201      * in case of socket etc. this mechanism is more portable.
3202      */
3203     do {
3204         bytes_written = write(fd, bufp, bytes_left);
3205         if (bytes_written < 0) {
3206             if (errno == EINTR)
3207                 continue;
3208             return (-1);
3209         } else if (bytes_written == 0) { /* eof */
3210             return (-1);
3211         }
3212         bufp += bytes_written;
3213         bytes_left -= bytes_written;
3214     } while (bytes_left > 0);
3215 
3216     return (0);
3217 }
3218 
3219 static int write_note(struct memelfnote *men, int fd)
3220 {
3221     struct elf_note en;
3222 
3223     en.n_namesz = men->namesz;
3224     en.n_type = men->type;
3225     en.n_descsz = men->datasz;
3226 
3227     bswap_note(&en);
3228 
3229     if (dump_write(fd, &en, sizeof(en)) != 0)
3230         return (-1);
3231     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3232         return (-1);
3233     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3234         return (-1);
3235 
3236     return (0);
3237 }
3238 
3239 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3240 {
3241     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3242     TaskState *ts = (TaskState *)cpu->opaque;
3243     struct elf_thread_status *ets;
3244 
3245     ets = g_malloc0(sizeof (*ets));
3246     ets->num_notes = 1; /* only prstatus is dumped */
3247     fill_prstatus(&ets->prstatus, ts, 0);
3248     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3249     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3250               &ets->prstatus);
3251 
3252     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3253 
3254     info->notes_size += note_size(&ets->notes[0]);
3255 }
3256 
3257 static void init_note_info(struct elf_note_info *info)
3258 {
3259     /* Initialize the elf_note_info structure so that it is at
3260      * least safe to call free_note_info() on it. Must be
3261      * called before calling fill_note_info().
3262      */
3263     memset(info, 0, sizeof (*info));
3264     QTAILQ_INIT(&info->thread_list);
3265 }
3266 
3267 static int fill_note_info(struct elf_note_info *info,
3268                           long signr, const CPUArchState *env)
3269 {
3270 #define NUMNOTES 3
3271     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3272     TaskState *ts = (TaskState *)cpu->opaque;
3273     int i;
3274 
3275     info->notes = g_new0(struct memelfnote, NUMNOTES);
3276     if (info->notes == NULL)
3277         return (-ENOMEM);
3278     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3279     if (info->prstatus == NULL)
3280         return (-ENOMEM);
3281     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3282     if (info->prstatus == NULL)
3283         return (-ENOMEM);
3284 
3285     /*
3286      * First fill in status (and registers) of current thread
3287      * including process info & aux vector.
3288      */
3289     fill_prstatus(info->prstatus, ts, signr);
3290     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3291     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3292               sizeof (*info->prstatus), info->prstatus);
3293     fill_psinfo(info->psinfo, ts);
3294     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3295               sizeof (*info->psinfo), info->psinfo);
3296     fill_auxv_note(&info->notes[2], ts);
3297     info->numnote = 3;
3298 
3299     info->notes_size = 0;
3300     for (i = 0; i < info->numnote; i++)
3301         info->notes_size += note_size(&info->notes[i]);
3302 
3303     /* read and fill status of all threads */
3304     cpu_list_lock();
3305     CPU_FOREACH(cpu) {
3306         if (cpu == thread_cpu) {
3307             continue;
3308         }
3309         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3310     }
3311     cpu_list_unlock();
3312 
3313     return (0);
3314 }
3315 
3316 static void free_note_info(struct elf_note_info *info)
3317 {
3318     struct elf_thread_status *ets;
3319 
3320     while (!QTAILQ_EMPTY(&info->thread_list)) {
3321         ets = QTAILQ_FIRST(&info->thread_list);
3322         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3323         g_free(ets);
3324     }
3325 
3326     g_free(info->prstatus);
3327     g_free(info->psinfo);
3328     g_free(info->notes);
3329 }
3330 
3331 static int write_note_info(struct elf_note_info *info, int fd)
3332 {
3333     struct elf_thread_status *ets;
3334     int i, error = 0;
3335 
3336     /* write prstatus, psinfo and auxv for current thread */
3337     for (i = 0; i < info->numnote; i++)
3338         if ((error = write_note(&info->notes[i], fd)) != 0)
3339             return (error);
3340 
3341     /* write prstatus for each thread */
3342     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3343         if ((error = write_note(&ets->notes[0], fd)) != 0)
3344             return (error);
3345     }
3346 
3347     return (0);
3348 }
3349 
3350 /*
3351  * Write out ELF coredump.
3352  *
3353  * See documentation of ELF object file format in:
3354  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3355  *
3356  * Coredump format in linux is following:
3357  *
3358  * 0   +----------------------+         \
3359  *     | ELF header           | ET_CORE  |
3360  *     +----------------------+          |
3361  *     | ELF program headers  |          |--- headers
3362  *     | - NOTE section       |          |
3363  *     | - PT_LOAD sections   |          |
3364  *     +----------------------+         /
3365  *     | NOTEs:               |
3366  *     | - NT_PRSTATUS        |
3367  *     | - NT_PRSINFO         |
3368  *     | - NT_AUXV            |
3369  *     +----------------------+ <-- aligned to target page
3370  *     | Process memory dump  |
3371  *     :                      :
3372  *     .                      .
3373  *     :                      :
3374  *     |                      |
3375  *     +----------------------+
3376  *
3377  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3378  * NT_PRSINFO  -> struct elf_prpsinfo
3379  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3380  *
3381  * Format follows System V format as close as possible.  Current
3382  * version limitations are as follows:
3383  *     - no floating point registers are dumped
3384  *
3385  * Function returns 0 in case of success, negative errno otherwise.
3386  *
3387  * TODO: make this work also during runtime: it should be
3388  * possible to force coredump from running process and then
3389  * continue processing.  For example qemu could set up SIGUSR2
3390  * handler (provided that target process haven't registered
3391  * handler for that) that does the dump when signal is received.
3392  */
3393 static int elf_core_dump(int signr, const CPUArchState *env)
3394 {
3395     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3396     const TaskState *ts = (const TaskState *)cpu->opaque;
3397     struct vm_area_struct *vma = NULL;
3398     char corefile[PATH_MAX];
3399     struct elf_note_info info;
3400     struct elfhdr elf;
3401     struct elf_phdr phdr;
3402     struct rlimit dumpsize;
3403     struct mm_struct *mm = NULL;
3404     off_t offset = 0, data_offset = 0;
3405     int segs = 0;
3406     int fd = -1;
3407 
3408     init_note_info(&info);
3409 
3410     errno = 0;
3411     getrlimit(RLIMIT_CORE, &dumpsize);
3412     if (dumpsize.rlim_cur == 0)
3413         return 0;
3414 
3415     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3416         return (-errno);
3417 
3418     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3419                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3420         return (-errno);
3421 
3422     /*
3423      * Walk through target process memory mappings and
3424      * set up structure containing this information.  After
3425      * this point vma_xxx functions can be used.
3426      */
3427     if ((mm = vma_init()) == NULL)
3428         goto out;
3429 
3430     walk_memory_regions(mm, vma_walker);
3431     segs = vma_get_mapping_count(mm);
3432 
3433     /*
3434      * Construct valid coredump ELF header.  We also
3435      * add one more segment for notes.
3436      */
3437     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3438     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3439         goto out;
3440 
3441     /* fill in the in-memory version of notes */
3442     if (fill_note_info(&info, signr, env) < 0)
3443         goto out;
3444 
3445     offset += sizeof (elf);                             /* elf header */
3446     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3447 
3448     /* write out notes program header */
3449     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3450 
3451     offset += info.notes_size;
3452     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3453         goto out;
3454 
3455     /*
3456      * ELF specification wants data to start at page boundary so
3457      * we align it here.
3458      */
3459     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3460 
3461     /*
3462      * Write program headers for memory regions mapped in
3463      * the target process.
3464      */
3465     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3466         (void) memset(&phdr, 0, sizeof (phdr));
3467 
3468         phdr.p_type = PT_LOAD;
3469         phdr.p_offset = offset;
3470         phdr.p_vaddr = vma->vma_start;
3471         phdr.p_paddr = 0;
3472         phdr.p_filesz = vma_dump_size(vma);
3473         offset += phdr.p_filesz;
3474         phdr.p_memsz = vma->vma_end - vma->vma_start;
3475         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3476         if (vma->vma_flags & PROT_WRITE)
3477             phdr.p_flags |= PF_W;
3478         if (vma->vma_flags & PROT_EXEC)
3479             phdr.p_flags |= PF_X;
3480         phdr.p_align = ELF_EXEC_PAGESIZE;
3481 
3482         bswap_phdr(&phdr, 1);
3483         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3484             goto out;
3485         }
3486     }
3487 
3488     /*
3489      * Next we write notes just after program headers.  No
3490      * alignment needed here.
3491      */
3492     if (write_note_info(&info, fd) < 0)
3493         goto out;
3494 
3495     /* align data to page boundary */
3496     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3497         goto out;
3498 
3499     /*
3500      * Finally we can dump process memory into corefile as well.
3501      */
3502     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3503         abi_ulong addr;
3504         abi_ulong end;
3505 
3506         end = vma->vma_start + vma_dump_size(vma);
3507 
3508         for (addr = vma->vma_start; addr < end;
3509              addr += TARGET_PAGE_SIZE) {
3510             char page[TARGET_PAGE_SIZE];
3511             int error;
3512 
3513             /*
3514              *  Read in page from target process memory and
3515              *  write it to coredump file.
3516              */
3517             error = copy_from_user(page, addr, sizeof (page));
3518             if (error != 0) {
3519                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3520                                addr);
3521                 errno = -error;
3522                 goto out;
3523             }
3524             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3525                 goto out;
3526         }
3527     }
3528 
3529  out:
3530     free_note_info(&info);
3531     if (mm != NULL)
3532         vma_delete(mm);
3533     (void) close(fd);
3534 
3535     if (errno != 0)
3536         return (-errno);
3537     return (0);
3538 }
3539 #endif /* USE_ELF_CORE_DUMP */
3540 
3541 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3542 {
3543     init_thread(regs, infop);
3544 }
3545