1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qapi/error.h" 21 #include "target_signal.h" 22 23 #ifdef _ARCH_PPC64 24 #undef ARCH_DLINFO 25 #undef ELF_PLATFORM 26 #undef ELF_HWCAP 27 #undef ELF_HWCAP2 28 #undef ELF_CLASS 29 #undef ELF_DATA 30 #undef ELF_ARCH 31 #endif 32 33 #define ELF_OSABI ELFOSABI_SYSV 34 35 /* from personality.h */ 36 37 /* 38 * Flags for bug emulation. 39 * 40 * These occupy the top three bytes. 41 */ 42 enum { 43 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 44 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 45 descriptors (signal handling) */ 46 MMAP_PAGE_ZERO = 0x0100000, 47 ADDR_COMPAT_LAYOUT = 0x0200000, 48 READ_IMPLIES_EXEC = 0x0400000, 49 ADDR_LIMIT_32BIT = 0x0800000, 50 SHORT_INODE = 0x1000000, 51 WHOLE_SECONDS = 0x2000000, 52 STICKY_TIMEOUTS = 0x4000000, 53 ADDR_LIMIT_3GB = 0x8000000, 54 }; 55 56 /* 57 * Personality types. 58 * 59 * These go in the low byte. Avoid using the top bit, it will 60 * conflict with error returns. 61 */ 62 enum { 63 PER_LINUX = 0x0000, 64 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 65 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 66 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 67 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 68 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 69 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 70 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 72 PER_BSD = 0x0006, 73 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 74 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 75 PER_LINUX32 = 0x0008, 76 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 77 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 78 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 79 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 80 PER_RISCOS = 0x000c, 81 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 82 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 83 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 84 PER_HPUX = 0x0010, 85 PER_MASK = 0x00ff, 86 }; 87 88 /* 89 * Return the base personality without flags. 90 */ 91 #define personality(pers) (pers & PER_MASK) 92 93 int info_is_fdpic(struct image_info *info) 94 { 95 return info->personality == PER_LINUX_FDPIC; 96 } 97 98 /* this flag is uneffective under linux too, should be deleted */ 99 #ifndef MAP_DENYWRITE 100 #define MAP_DENYWRITE 0 101 #endif 102 103 /* should probably go in elf.h */ 104 #ifndef ELIBBAD 105 #define ELIBBAD 80 106 #endif 107 108 #ifdef TARGET_WORDS_BIGENDIAN 109 #define ELF_DATA ELFDATA2MSB 110 #else 111 #define ELF_DATA ELFDATA2LSB 112 #endif 113 114 #ifdef TARGET_ABI_MIPSN32 115 typedef abi_ullong target_elf_greg_t; 116 #define tswapreg(ptr) tswap64(ptr) 117 #else 118 typedef abi_ulong target_elf_greg_t; 119 #define tswapreg(ptr) tswapal(ptr) 120 #endif 121 122 #ifdef USE_UID16 123 typedef abi_ushort target_uid_t; 124 typedef abi_ushort target_gid_t; 125 #else 126 typedef abi_uint target_uid_t; 127 typedef abi_uint target_gid_t; 128 #endif 129 typedef abi_int target_pid_t; 130 131 #ifdef TARGET_I386 132 133 #define ELF_PLATFORM get_elf_platform() 134 135 static const char *get_elf_platform(void) 136 { 137 static char elf_platform[] = "i386"; 138 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 139 if (family > 6) 140 family = 6; 141 if (family >= 3) 142 elf_platform[1] = '0' + family; 143 return elf_platform; 144 } 145 146 #define ELF_HWCAP get_elf_hwcap() 147 148 static uint32_t get_elf_hwcap(void) 149 { 150 X86CPU *cpu = X86_CPU(thread_cpu); 151 152 return cpu->env.features[FEAT_1_EDX]; 153 } 154 155 #ifdef TARGET_X86_64 156 #define ELF_START_MMAP 0x2aaaaab000ULL 157 158 #define ELF_CLASS ELFCLASS64 159 #define ELF_ARCH EM_X86_64 160 161 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 162 { 163 regs->rax = 0; 164 regs->rsp = infop->start_stack; 165 regs->rip = infop->entry; 166 } 167 168 #define ELF_NREG 27 169 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 170 171 /* 172 * Note that ELF_NREG should be 29 as there should be place for 173 * TRAPNO and ERR "registers" as well but linux doesn't dump 174 * those. 175 * 176 * See linux kernel: arch/x86/include/asm/elf.h 177 */ 178 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 179 { 180 (*regs)[0] = tswapreg(env->regs[15]); 181 (*regs)[1] = tswapreg(env->regs[14]); 182 (*regs)[2] = tswapreg(env->regs[13]); 183 (*regs)[3] = tswapreg(env->regs[12]); 184 (*regs)[4] = tswapreg(env->regs[R_EBP]); 185 (*regs)[5] = tswapreg(env->regs[R_EBX]); 186 (*regs)[6] = tswapreg(env->regs[11]); 187 (*regs)[7] = tswapreg(env->regs[10]); 188 (*regs)[8] = tswapreg(env->regs[9]); 189 (*regs)[9] = tswapreg(env->regs[8]); 190 (*regs)[10] = tswapreg(env->regs[R_EAX]); 191 (*regs)[11] = tswapreg(env->regs[R_ECX]); 192 (*regs)[12] = tswapreg(env->regs[R_EDX]); 193 (*regs)[13] = tswapreg(env->regs[R_ESI]); 194 (*regs)[14] = tswapreg(env->regs[R_EDI]); 195 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 196 (*regs)[16] = tswapreg(env->eip); 197 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 198 (*regs)[18] = tswapreg(env->eflags); 199 (*regs)[19] = tswapreg(env->regs[R_ESP]); 200 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 201 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 202 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 203 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 204 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 205 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 206 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 207 } 208 209 #else 210 211 #define ELF_START_MMAP 0x80000000 212 213 /* 214 * This is used to ensure we don't load something for the wrong architecture. 215 */ 216 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 217 218 /* 219 * These are used to set parameters in the core dumps. 220 */ 221 #define ELF_CLASS ELFCLASS32 222 #define ELF_ARCH EM_386 223 224 static inline void init_thread(struct target_pt_regs *regs, 225 struct image_info *infop) 226 { 227 regs->esp = infop->start_stack; 228 regs->eip = infop->entry; 229 230 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 231 starts %edx contains a pointer to a function which might be 232 registered using `atexit'. This provides a mean for the 233 dynamic linker to call DT_FINI functions for shared libraries 234 that have been loaded before the code runs. 235 236 A value of 0 tells we have no such handler. */ 237 regs->edx = 0; 238 } 239 240 #define ELF_NREG 17 241 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 242 243 /* 244 * Note that ELF_NREG should be 19 as there should be place for 245 * TRAPNO and ERR "registers" as well but linux doesn't dump 246 * those. 247 * 248 * See linux kernel: arch/x86/include/asm/elf.h 249 */ 250 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 251 { 252 (*regs)[0] = tswapreg(env->regs[R_EBX]); 253 (*regs)[1] = tswapreg(env->regs[R_ECX]); 254 (*regs)[2] = tswapreg(env->regs[R_EDX]); 255 (*regs)[3] = tswapreg(env->regs[R_ESI]); 256 (*regs)[4] = tswapreg(env->regs[R_EDI]); 257 (*regs)[5] = tswapreg(env->regs[R_EBP]); 258 (*regs)[6] = tswapreg(env->regs[R_EAX]); 259 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 260 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 261 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 262 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 263 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 264 (*regs)[12] = tswapreg(env->eip); 265 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 266 (*regs)[14] = tswapreg(env->eflags); 267 (*regs)[15] = tswapreg(env->regs[R_ESP]); 268 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 269 } 270 #endif 271 272 #define USE_ELF_CORE_DUMP 273 #define ELF_EXEC_PAGESIZE 4096 274 275 #endif 276 277 #ifdef TARGET_ARM 278 279 #ifndef TARGET_AARCH64 280 /* 32 bit ARM definitions */ 281 282 #define ELF_START_MMAP 0x80000000 283 284 #define ELF_ARCH EM_ARM 285 #define ELF_CLASS ELFCLASS32 286 287 static inline void init_thread(struct target_pt_regs *regs, 288 struct image_info *infop) 289 { 290 abi_long stack = infop->start_stack; 291 memset(regs, 0, sizeof(*regs)); 292 293 regs->uregs[16] = ARM_CPU_MODE_USR; 294 if (infop->entry & 1) { 295 regs->uregs[16] |= CPSR_T; 296 } 297 regs->uregs[15] = infop->entry & 0xfffffffe; 298 regs->uregs[13] = infop->start_stack; 299 /* FIXME - what to for failure of get_user()? */ 300 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 301 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 302 /* XXX: it seems that r0 is zeroed after ! */ 303 regs->uregs[0] = 0; 304 /* For uClinux PIC binaries. */ 305 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 306 regs->uregs[10] = infop->start_data; 307 308 /* Support ARM FDPIC. */ 309 if (info_is_fdpic(infop)) { 310 /* As described in the ABI document, r7 points to the loadmap info 311 * prepared by the kernel. If an interpreter is needed, r8 points 312 * to the interpreter loadmap and r9 points to the interpreter 313 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 314 * r9 points to the main program PT_DYNAMIC info. 315 */ 316 regs->uregs[7] = infop->loadmap_addr; 317 if (infop->interpreter_loadmap_addr) { 318 /* Executable is dynamically loaded. */ 319 regs->uregs[8] = infop->interpreter_loadmap_addr; 320 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 321 } else { 322 regs->uregs[8] = 0; 323 regs->uregs[9] = infop->pt_dynamic_addr; 324 } 325 } 326 } 327 328 #define ELF_NREG 18 329 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 330 331 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 332 { 333 (*regs)[0] = tswapreg(env->regs[0]); 334 (*regs)[1] = tswapreg(env->regs[1]); 335 (*regs)[2] = tswapreg(env->regs[2]); 336 (*regs)[3] = tswapreg(env->regs[3]); 337 (*regs)[4] = tswapreg(env->regs[4]); 338 (*regs)[5] = tswapreg(env->regs[5]); 339 (*regs)[6] = tswapreg(env->regs[6]); 340 (*regs)[7] = tswapreg(env->regs[7]); 341 (*regs)[8] = tswapreg(env->regs[8]); 342 (*regs)[9] = tswapreg(env->regs[9]); 343 (*regs)[10] = tswapreg(env->regs[10]); 344 (*regs)[11] = tswapreg(env->regs[11]); 345 (*regs)[12] = tswapreg(env->regs[12]); 346 (*regs)[13] = tswapreg(env->regs[13]); 347 (*regs)[14] = tswapreg(env->regs[14]); 348 (*regs)[15] = tswapreg(env->regs[15]); 349 350 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 351 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 352 } 353 354 #define USE_ELF_CORE_DUMP 355 #define ELF_EXEC_PAGESIZE 4096 356 357 enum 358 { 359 ARM_HWCAP_ARM_SWP = 1 << 0, 360 ARM_HWCAP_ARM_HALF = 1 << 1, 361 ARM_HWCAP_ARM_THUMB = 1 << 2, 362 ARM_HWCAP_ARM_26BIT = 1 << 3, 363 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 364 ARM_HWCAP_ARM_FPA = 1 << 5, 365 ARM_HWCAP_ARM_VFP = 1 << 6, 366 ARM_HWCAP_ARM_EDSP = 1 << 7, 367 ARM_HWCAP_ARM_JAVA = 1 << 8, 368 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 369 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 370 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 371 ARM_HWCAP_ARM_NEON = 1 << 12, 372 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 373 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 374 ARM_HWCAP_ARM_TLS = 1 << 15, 375 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 376 ARM_HWCAP_ARM_IDIVA = 1 << 17, 377 ARM_HWCAP_ARM_IDIVT = 1 << 18, 378 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 379 ARM_HWCAP_ARM_LPAE = 1 << 20, 380 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 381 }; 382 383 enum { 384 ARM_HWCAP2_ARM_AES = 1 << 0, 385 ARM_HWCAP2_ARM_PMULL = 1 << 1, 386 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 387 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 388 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 389 }; 390 391 /* The commpage only exists for 32 bit kernels */ 392 393 #define HI_COMMPAGE (intptr_t)0xffff0f00u 394 395 static bool init_guest_commpage(void) 396 { 397 void *want = g2h_untagged(HI_COMMPAGE & -qemu_host_page_size); 398 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 399 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 400 401 if (addr == MAP_FAILED) { 402 perror("Allocating guest commpage"); 403 exit(EXIT_FAILURE); 404 } 405 if (addr != want) { 406 return false; 407 } 408 409 /* Set kernel helper versions; rest of page is 0. */ 410 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 411 412 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 413 perror("Protecting guest commpage"); 414 exit(EXIT_FAILURE); 415 } 416 return true; 417 } 418 419 #define ELF_HWCAP get_elf_hwcap() 420 #define ELF_HWCAP2 get_elf_hwcap2() 421 422 static uint32_t get_elf_hwcap(void) 423 { 424 ARMCPU *cpu = ARM_CPU(thread_cpu); 425 uint32_t hwcaps = 0; 426 427 hwcaps |= ARM_HWCAP_ARM_SWP; 428 hwcaps |= ARM_HWCAP_ARM_HALF; 429 hwcaps |= ARM_HWCAP_ARM_THUMB; 430 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 431 432 /* probe for the extra features */ 433 #define GET_FEATURE(feat, hwcap) \ 434 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 435 436 #define GET_FEATURE_ID(feat, hwcap) \ 437 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 438 439 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 440 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 441 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 442 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 443 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 444 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 445 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 446 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 447 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 448 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 449 450 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 451 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 452 hwcaps |= ARM_HWCAP_ARM_VFPv3; 453 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 454 hwcaps |= ARM_HWCAP_ARM_VFPD32; 455 } else { 456 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 457 } 458 } 459 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 460 461 return hwcaps; 462 } 463 464 static uint32_t get_elf_hwcap2(void) 465 { 466 ARMCPU *cpu = ARM_CPU(thread_cpu); 467 uint32_t hwcaps = 0; 468 469 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 470 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 471 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 472 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 473 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 474 return hwcaps; 475 } 476 477 #undef GET_FEATURE 478 #undef GET_FEATURE_ID 479 480 #define ELF_PLATFORM get_elf_platform() 481 482 static const char *get_elf_platform(void) 483 { 484 CPUARMState *env = thread_cpu->env_ptr; 485 486 #ifdef TARGET_WORDS_BIGENDIAN 487 # define END "b" 488 #else 489 # define END "l" 490 #endif 491 492 if (arm_feature(env, ARM_FEATURE_V8)) { 493 return "v8" END; 494 } else if (arm_feature(env, ARM_FEATURE_V7)) { 495 if (arm_feature(env, ARM_FEATURE_M)) { 496 return "v7m" END; 497 } else { 498 return "v7" END; 499 } 500 } else if (arm_feature(env, ARM_FEATURE_V6)) { 501 return "v6" END; 502 } else if (arm_feature(env, ARM_FEATURE_V5)) { 503 return "v5" END; 504 } else { 505 return "v4" END; 506 } 507 508 #undef END 509 } 510 511 #else 512 /* 64 bit ARM definitions */ 513 #define ELF_START_MMAP 0x80000000 514 515 #define ELF_ARCH EM_AARCH64 516 #define ELF_CLASS ELFCLASS64 517 #ifdef TARGET_WORDS_BIGENDIAN 518 # define ELF_PLATFORM "aarch64_be" 519 #else 520 # define ELF_PLATFORM "aarch64" 521 #endif 522 523 static inline void init_thread(struct target_pt_regs *regs, 524 struct image_info *infop) 525 { 526 abi_long stack = infop->start_stack; 527 memset(regs, 0, sizeof(*regs)); 528 529 regs->pc = infop->entry & ~0x3ULL; 530 regs->sp = stack; 531 } 532 533 #define ELF_NREG 34 534 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 535 536 static void elf_core_copy_regs(target_elf_gregset_t *regs, 537 const CPUARMState *env) 538 { 539 int i; 540 541 for (i = 0; i < 32; i++) { 542 (*regs)[i] = tswapreg(env->xregs[i]); 543 } 544 (*regs)[32] = tswapreg(env->pc); 545 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 546 } 547 548 #define USE_ELF_CORE_DUMP 549 #define ELF_EXEC_PAGESIZE 4096 550 551 enum { 552 ARM_HWCAP_A64_FP = 1 << 0, 553 ARM_HWCAP_A64_ASIMD = 1 << 1, 554 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 555 ARM_HWCAP_A64_AES = 1 << 3, 556 ARM_HWCAP_A64_PMULL = 1 << 4, 557 ARM_HWCAP_A64_SHA1 = 1 << 5, 558 ARM_HWCAP_A64_SHA2 = 1 << 6, 559 ARM_HWCAP_A64_CRC32 = 1 << 7, 560 ARM_HWCAP_A64_ATOMICS = 1 << 8, 561 ARM_HWCAP_A64_FPHP = 1 << 9, 562 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 563 ARM_HWCAP_A64_CPUID = 1 << 11, 564 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 565 ARM_HWCAP_A64_JSCVT = 1 << 13, 566 ARM_HWCAP_A64_FCMA = 1 << 14, 567 ARM_HWCAP_A64_LRCPC = 1 << 15, 568 ARM_HWCAP_A64_DCPOP = 1 << 16, 569 ARM_HWCAP_A64_SHA3 = 1 << 17, 570 ARM_HWCAP_A64_SM3 = 1 << 18, 571 ARM_HWCAP_A64_SM4 = 1 << 19, 572 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 573 ARM_HWCAP_A64_SHA512 = 1 << 21, 574 ARM_HWCAP_A64_SVE = 1 << 22, 575 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 576 ARM_HWCAP_A64_DIT = 1 << 24, 577 ARM_HWCAP_A64_USCAT = 1 << 25, 578 ARM_HWCAP_A64_ILRCPC = 1 << 26, 579 ARM_HWCAP_A64_FLAGM = 1 << 27, 580 ARM_HWCAP_A64_SSBS = 1 << 28, 581 ARM_HWCAP_A64_SB = 1 << 29, 582 ARM_HWCAP_A64_PACA = 1 << 30, 583 ARM_HWCAP_A64_PACG = 1UL << 31, 584 585 ARM_HWCAP2_A64_DCPODP = 1 << 0, 586 ARM_HWCAP2_A64_SVE2 = 1 << 1, 587 ARM_HWCAP2_A64_SVEAES = 1 << 2, 588 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 589 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 590 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 591 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 592 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 593 ARM_HWCAP2_A64_FRINT = 1 << 8, 594 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 595 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 596 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 597 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 598 ARM_HWCAP2_A64_I8MM = 1 << 13, 599 ARM_HWCAP2_A64_BF16 = 1 << 14, 600 ARM_HWCAP2_A64_DGH = 1 << 15, 601 ARM_HWCAP2_A64_RNG = 1 << 16, 602 ARM_HWCAP2_A64_BTI = 1 << 17, 603 ARM_HWCAP2_A64_MTE = 1 << 18, 604 }; 605 606 #define ELF_HWCAP get_elf_hwcap() 607 #define ELF_HWCAP2 get_elf_hwcap2() 608 609 #define GET_FEATURE_ID(feat, hwcap) \ 610 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 611 612 static uint32_t get_elf_hwcap(void) 613 { 614 ARMCPU *cpu = ARM_CPU(thread_cpu); 615 uint32_t hwcaps = 0; 616 617 hwcaps |= ARM_HWCAP_A64_FP; 618 hwcaps |= ARM_HWCAP_A64_ASIMD; 619 hwcaps |= ARM_HWCAP_A64_CPUID; 620 621 /* probe for the extra features */ 622 623 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 624 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 625 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 626 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 627 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 628 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 629 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 630 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 631 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 632 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 633 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 634 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 635 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 636 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 637 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 638 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 639 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 640 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 641 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 642 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 643 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 644 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 645 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 646 647 return hwcaps; 648 } 649 650 static uint32_t get_elf_hwcap2(void) 651 { 652 ARMCPU *cpu = ARM_CPU(thread_cpu); 653 uint32_t hwcaps = 0; 654 655 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 656 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 657 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 658 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 659 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 660 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 661 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 662 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 663 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 664 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 665 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 666 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 667 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 668 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 669 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 670 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 671 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 672 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 673 674 return hwcaps; 675 } 676 677 #undef GET_FEATURE_ID 678 679 #endif /* not TARGET_AARCH64 */ 680 #endif /* TARGET_ARM */ 681 682 #ifdef TARGET_SPARC 683 #ifdef TARGET_SPARC64 684 685 #define ELF_START_MMAP 0x80000000 686 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 687 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 688 #ifndef TARGET_ABI32 689 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 690 #else 691 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 692 #endif 693 694 #define ELF_CLASS ELFCLASS64 695 #define ELF_ARCH EM_SPARCV9 696 #else 697 #define ELF_START_MMAP 0x80000000 698 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 699 | HWCAP_SPARC_MULDIV) 700 #define ELF_CLASS ELFCLASS32 701 #define ELF_ARCH EM_SPARC 702 #endif /* TARGET_SPARC64 */ 703 704 static inline void init_thread(struct target_pt_regs *regs, 705 struct image_info *infop) 706 { 707 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 708 regs->pc = infop->entry; 709 regs->npc = regs->pc + 4; 710 regs->y = 0; 711 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 712 - TARGET_STACK_BIAS); 713 } 714 #endif /* TARGET_SPARC */ 715 716 #ifdef TARGET_PPC 717 718 #define ELF_MACHINE PPC_ELF_MACHINE 719 #define ELF_START_MMAP 0x80000000 720 721 #if defined(TARGET_PPC64) 722 723 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 724 725 #define ELF_CLASS ELFCLASS64 726 727 #else 728 729 #define ELF_CLASS ELFCLASS32 730 731 #endif 732 733 #define ELF_ARCH EM_PPC 734 735 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 736 See arch/powerpc/include/asm/cputable.h. */ 737 enum { 738 QEMU_PPC_FEATURE_32 = 0x80000000, 739 QEMU_PPC_FEATURE_64 = 0x40000000, 740 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 741 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 742 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 743 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 744 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 745 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 746 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 747 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 748 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 749 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 750 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 751 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 752 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 753 QEMU_PPC_FEATURE_CELL = 0x00010000, 754 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 755 QEMU_PPC_FEATURE_SMT = 0x00004000, 756 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 757 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 758 QEMU_PPC_FEATURE_PA6T = 0x00000800, 759 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 760 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 761 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 762 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 763 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 764 765 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 766 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 767 768 /* Feature definitions in AT_HWCAP2. */ 769 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 770 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 771 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 772 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 773 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 774 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 775 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 776 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 777 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 778 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 779 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 780 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 781 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 782 }; 783 784 #define ELF_HWCAP get_elf_hwcap() 785 786 static uint32_t get_elf_hwcap(void) 787 { 788 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 789 uint32_t features = 0; 790 791 /* We don't have to be terribly complete here; the high points are 792 Altivec/FP/SPE support. Anything else is just a bonus. */ 793 #define GET_FEATURE(flag, feature) \ 794 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 795 #define GET_FEATURE2(flags, feature) \ 796 do { \ 797 if ((cpu->env.insns_flags2 & flags) == flags) { \ 798 features |= feature; \ 799 } \ 800 } while (0) 801 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 802 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 803 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 804 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 805 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 806 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 807 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 808 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 809 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 810 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 811 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 812 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 813 QEMU_PPC_FEATURE_ARCH_2_06); 814 #undef GET_FEATURE 815 #undef GET_FEATURE2 816 817 return features; 818 } 819 820 #define ELF_HWCAP2 get_elf_hwcap2() 821 822 static uint32_t get_elf_hwcap2(void) 823 { 824 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 825 uint32_t features = 0; 826 827 #define GET_FEATURE(flag, feature) \ 828 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 829 #define GET_FEATURE2(flag, feature) \ 830 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 831 832 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 833 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 834 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 835 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 836 QEMU_PPC_FEATURE2_VEC_CRYPTO); 837 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 838 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 839 840 #undef GET_FEATURE 841 #undef GET_FEATURE2 842 843 return features; 844 } 845 846 /* 847 * The requirements here are: 848 * - keep the final alignment of sp (sp & 0xf) 849 * - make sure the 32-bit value at the first 16 byte aligned position of 850 * AUXV is greater than 16 for glibc compatibility. 851 * AT_IGNOREPPC is used for that. 852 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 853 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 854 */ 855 #define DLINFO_ARCH_ITEMS 5 856 #define ARCH_DLINFO \ 857 do { \ 858 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 859 /* \ 860 * Handle glibc compatibility: these magic entries must \ 861 * be at the lowest addresses in the final auxv. \ 862 */ \ 863 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 864 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 865 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 866 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 867 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 868 } while (0) 869 870 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 871 { 872 _regs->gpr[1] = infop->start_stack; 873 #if defined(TARGET_PPC64) 874 if (get_ppc64_abi(infop) < 2) { 875 uint64_t val; 876 get_user_u64(val, infop->entry + 8); 877 _regs->gpr[2] = val + infop->load_bias; 878 get_user_u64(val, infop->entry); 879 infop->entry = val + infop->load_bias; 880 } else { 881 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 882 } 883 #endif 884 _regs->nip = infop->entry; 885 } 886 887 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 888 #define ELF_NREG 48 889 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 890 891 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 892 { 893 int i; 894 target_ulong ccr = 0; 895 896 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 897 (*regs)[i] = tswapreg(env->gpr[i]); 898 } 899 900 (*regs)[32] = tswapreg(env->nip); 901 (*regs)[33] = tswapreg(env->msr); 902 (*regs)[35] = tswapreg(env->ctr); 903 (*regs)[36] = tswapreg(env->lr); 904 (*regs)[37] = tswapreg(cpu_read_xer(env)); 905 906 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 907 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 908 } 909 (*regs)[38] = tswapreg(ccr); 910 } 911 912 #define USE_ELF_CORE_DUMP 913 #define ELF_EXEC_PAGESIZE 4096 914 915 #endif 916 917 #ifdef TARGET_MIPS 918 919 #define ELF_START_MMAP 0x80000000 920 921 #ifdef TARGET_MIPS64 922 #define ELF_CLASS ELFCLASS64 923 #else 924 #define ELF_CLASS ELFCLASS32 925 #endif 926 #define ELF_ARCH EM_MIPS 927 928 #ifdef TARGET_ABI_MIPSN32 929 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 930 #else 931 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 932 #endif 933 934 static inline void init_thread(struct target_pt_regs *regs, 935 struct image_info *infop) 936 { 937 regs->cp0_status = 2 << CP0St_KSU; 938 regs->cp0_epc = infop->entry; 939 regs->regs[29] = infop->start_stack; 940 } 941 942 /* See linux kernel: arch/mips/include/asm/elf.h. */ 943 #define ELF_NREG 45 944 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 945 946 /* See linux kernel: arch/mips/include/asm/reg.h. */ 947 enum { 948 #ifdef TARGET_MIPS64 949 TARGET_EF_R0 = 0, 950 #else 951 TARGET_EF_R0 = 6, 952 #endif 953 TARGET_EF_R26 = TARGET_EF_R0 + 26, 954 TARGET_EF_R27 = TARGET_EF_R0 + 27, 955 TARGET_EF_LO = TARGET_EF_R0 + 32, 956 TARGET_EF_HI = TARGET_EF_R0 + 33, 957 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 958 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 959 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 960 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 961 }; 962 963 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 964 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 965 { 966 int i; 967 968 for (i = 0; i < TARGET_EF_R0; i++) { 969 (*regs)[i] = 0; 970 } 971 (*regs)[TARGET_EF_R0] = 0; 972 973 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 974 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 975 } 976 977 (*regs)[TARGET_EF_R26] = 0; 978 (*regs)[TARGET_EF_R27] = 0; 979 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 980 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 981 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 982 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 983 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 984 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 985 } 986 987 #define USE_ELF_CORE_DUMP 988 #define ELF_EXEC_PAGESIZE 4096 989 990 /* See arch/mips/include/uapi/asm/hwcap.h. */ 991 enum { 992 HWCAP_MIPS_R6 = (1 << 0), 993 HWCAP_MIPS_MSA = (1 << 1), 994 HWCAP_MIPS_CRC32 = (1 << 2), 995 HWCAP_MIPS_MIPS16 = (1 << 3), 996 HWCAP_MIPS_MDMX = (1 << 4), 997 HWCAP_MIPS_MIPS3D = (1 << 5), 998 HWCAP_MIPS_SMARTMIPS = (1 << 6), 999 HWCAP_MIPS_DSP = (1 << 7), 1000 HWCAP_MIPS_DSP2 = (1 << 8), 1001 HWCAP_MIPS_DSP3 = (1 << 9), 1002 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1003 HWCAP_LOONGSON_MMI = (1 << 11), 1004 HWCAP_LOONGSON_EXT = (1 << 12), 1005 HWCAP_LOONGSON_EXT2 = (1 << 13), 1006 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1007 }; 1008 1009 #define ELF_HWCAP get_elf_hwcap() 1010 1011 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1012 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1013 1014 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1015 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1016 1017 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1018 do { \ 1019 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1020 hwcaps |= _hwcap; \ 1021 } \ 1022 } while (0) 1023 1024 static uint32_t get_elf_hwcap(void) 1025 { 1026 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1027 uint32_t hwcaps = 0; 1028 1029 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1030 2, HWCAP_MIPS_R6); 1031 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1032 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1033 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1034 1035 return hwcaps; 1036 } 1037 1038 #undef GET_FEATURE_REG_EQU 1039 #undef GET_FEATURE_REG_SET 1040 #undef GET_FEATURE_INSN 1041 1042 #endif /* TARGET_MIPS */ 1043 1044 #ifdef TARGET_MICROBLAZE 1045 1046 #define ELF_START_MMAP 0x80000000 1047 1048 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1049 1050 #define ELF_CLASS ELFCLASS32 1051 #define ELF_ARCH EM_MICROBLAZE 1052 1053 static inline void init_thread(struct target_pt_regs *regs, 1054 struct image_info *infop) 1055 { 1056 regs->pc = infop->entry; 1057 regs->r1 = infop->start_stack; 1058 1059 } 1060 1061 #define ELF_EXEC_PAGESIZE 4096 1062 1063 #define USE_ELF_CORE_DUMP 1064 #define ELF_NREG 38 1065 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1066 1067 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1068 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1069 { 1070 int i, pos = 0; 1071 1072 for (i = 0; i < 32; i++) { 1073 (*regs)[pos++] = tswapreg(env->regs[i]); 1074 } 1075 1076 (*regs)[pos++] = tswapreg(env->pc); 1077 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1078 (*regs)[pos++] = 0; 1079 (*regs)[pos++] = tswapreg(env->ear); 1080 (*regs)[pos++] = 0; 1081 (*regs)[pos++] = tswapreg(env->esr); 1082 } 1083 1084 #endif /* TARGET_MICROBLAZE */ 1085 1086 #ifdef TARGET_NIOS2 1087 1088 #define ELF_START_MMAP 0x80000000 1089 1090 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1091 1092 #define ELF_CLASS ELFCLASS32 1093 #define ELF_ARCH EM_ALTERA_NIOS2 1094 1095 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1096 { 1097 regs->ea = infop->entry; 1098 regs->sp = infop->start_stack; 1099 regs->estatus = 0x3; 1100 } 1101 1102 #define LO_COMMPAGE TARGET_PAGE_SIZE 1103 1104 static bool init_guest_commpage(void) 1105 { 1106 static const uint8_t kuser_page[4 + 2 * 64] = { 1107 /* __kuser_helper_version */ 1108 [0x00] = 0x02, 0x00, 0x00, 0x00, 1109 1110 /* __kuser_cmpxchg */ 1111 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1112 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1113 1114 /* __kuser_sigtramp */ 1115 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1116 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1117 }; 1118 1119 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1120 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1121 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1122 1123 if (addr == MAP_FAILED) { 1124 perror("Allocating guest commpage"); 1125 exit(EXIT_FAILURE); 1126 } 1127 if (addr != want) { 1128 return false; 1129 } 1130 1131 memcpy(addr, kuser_page, sizeof(kuser_page)); 1132 1133 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1134 perror("Protecting guest commpage"); 1135 exit(EXIT_FAILURE); 1136 } 1137 1138 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1139 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1140 return true; 1141 } 1142 1143 #define ELF_EXEC_PAGESIZE 4096 1144 1145 #define USE_ELF_CORE_DUMP 1146 #define ELF_NREG 49 1147 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1148 1149 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1150 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1151 const CPUNios2State *env) 1152 { 1153 int i; 1154 1155 (*regs)[0] = -1; 1156 for (i = 1; i < 8; i++) /* r0-r7 */ 1157 (*regs)[i] = tswapreg(env->regs[i + 7]); 1158 1159 for (i = 8; i < 16; i++) /* r8-r15 */ 1160 (*regs)[i] = tswapreg(env->regs[i - 8]); 1161 1162 for (i = 16; i < 24; i++) /* r16-r23 */ 1163 (*regs)[i] = tswapreg(env->regs[i + 7]); 1164 (*regs)[24] = -1; /* R_ET */ 1165 (*regs)[25] = -1; /* R_BT */ 1166 (*regs)[26] = tswapreg(env->regs[R_GP]); 1167 (*regs)[27] = tswapreg(env->regs[R_SP]); 1168 (*regs)[28] = tswapreg(env->regs[R_FP]); 1169 (*regs)[29] = tswapreg(env->regs[R_EA]); 1170 (*regs)[30] = -1; /* R_SSTATUS */ 1171 (*regs)[31] = tswapreg(env->regs[R_RA]); 1172 1173 (*regs)[32] = tswapreg(env->regs[R_PC]); 1174 1175 (*regs)[33] = -1; /* R_STATUS */ 1176 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1177 1178 for (i = 35; i < 49; i++) /* ... */ 1179 (*regs)[i] = -1; 1180 } 1181 1182 #endif /* TARGET_NIOS2 */ 1183 1184 #ifdef TARGET_OPENRISC 1185 1186 #define ELF_START_MMAP 0x08000000 1187 1188 #define ELF_ARCH EM_OPENRISC 1189 #define ELF_CLASS ELFCLASS32 1190 #define ELF_DATA ELFDATA2MSB 1191 1192 static inline void init_thread(struct target_pt_regs *regs, 1193 struct image_info *infop) 1194 { 1195 regs->pc = infop->entry; 1196 regs->gpr[1] = infop->start_stack; 1197 } 1198 1199 #define USE_ELF_CORE_DUMP 1200 #define ELF_EXEC_PAGESIZE 8192 1201 1202 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1203 #define ELF_NREG 34 /* gprs and pc, sr */ 1204 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1205 1206 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1207 const CPUOpenRISCState *env) 1208 { 1209 int i; 1210 1211 for (i = 0; i < 32; i++) { 1212 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1213 } 1214 (*regs)[32] = tswapreg(env->pc); 1215 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1216 } 1217 #define ELF_HWCAP 0 1218 #define ELF_PLATFORM NULL 1219 1220 #endif /* TARGET_OPENRISC */ 1221 1222 #ifdef TARGET_SH4 1223 1224 #define ELF_START_MMAP 0x80000000 1225 1226 #define ELF_CLASS ELFCLASS32 1227 #define ELF_ARCH EM_SH 1228 1229 static inline void init_thread(struct target_pt_regs *regs, 1230 struct image_info *infop) 1231 { 1232 /* Check other registers XXXXX */ 1233 regs->pc = infop->entry; 1234 regs->regs[15] = infop->start_stack; 1235 } 1236 1237 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1238 #define ELF_NREG 23 1239 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1240 1241 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1242 enum { 1243 TARGET_REG_PC = 16, 1244 TARGET_REG_PR = 17, 1245 TARGET_REG_SR = 18, 1246 TARGET_REG_GBR = 19, 1247 TARGET_REG_MACH = 20, 1248 TARGET_REG_MACL = 21, 1249 TARGET_REG_SYSCALL = 22 1250 }; 1251 1252 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1253 const CPUSH4State *env) 1254 { 1255 int i; 1256 1257 for (i = 0; i < 16; i++) { 1258 (*regs)[i] = tswapreg(env->gregs[i]); 1259 } 1260 1261 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1262 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1263 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1264 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1265 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1266 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1267 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1268 } 1269 1270 #define USE_ELF_CORE_DUMP 1271 #define ELF_EXEC_PAGESIZE 4096 1272 1273 enum { 1274 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1275 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1276 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1277 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1278 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1279 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1280 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1281 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1282 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1283 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1284 }; 1285 1286 #define ELF_HWCAP get_elf_hwcap() 1287 1288 static uint32_t get_elf_hwcap(void) 1289 { 1290 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1291 uint32_t hwcap = 0; 1292 1293 hwcap |= SH_CPU_HAS_FPU; 1294 1295 if (cpu->env.features & SH_FEATURE_SH4A) { 1296 hwcap |= SH_CPU_HAS_LLSC; 1297 } 1298 1299 return hwcap; 1300 } 1301 1302 #endif 1303 1304 #ifdef TARGET_CRIS 1305 1306 #define ELF_START_MMAP 0x80000000 1307 1308 #define ELF_CLASS ELFCLASS32 1309 #define ELF_ARCH EM_CRIS 1310 1311 static inline void init_thread(struct target_pt_regs *regs, 1312 struct image_info *infop) 1313 { 1314 regs->erp = infop->entry; 1315 } 1316 1317 #define ELF_EXEC_PAGESIZE 8192 1318 1319 #endif 1320 1321 #ifdef TARGET_M68K 1322 1323 #define ELF_START_MMAP 0x80000000 1324 1325 #define ELF_CLASS ELFCLASS32 1326 #define ELF_ARCH EM_68K 1327 1328 /* ??? Does this need to do anything? 1329 #define ELF_PLAT_INIT(_r) */ 1330 1331 static inline void init_thread(struct target_pt_regs *regs, 1332 struct image_info *infop) 1333 { 1334 regs->usp = infop->start_stack; 1335 regs->sr = 0; 1336 regs->pc = infop->entry; 1337 } 1338 1339 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1340 #define ELF_NREG 20 1341 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1342 1343 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1344 { 1345 (*regs)[0] = tswapreg(env->dregs[1]); 1346 (*regs)[1] = tswapreg(env->dregs[2]); 1347 (*regs)[2] = tswapreg(env->dregs[3]); 1348 (*regs)[3] = tswapreg(env->dregs[4]); 1349 (*regs)[4] = tswapreg(env->dregs[5]); 1350 (*regs)[5] = tswapreg(env->dregs[6]); 1351 (*regs)[6] = tswapreg(env->dregs[7]); 1352 (*regs)[7] = tswapreg(env->aregs[0]); 1353 (*regs)[8] = tswapreg(env->aregs[1]); 1354 (*regs)[9] = tswapreg(env->aregs[2]); 1355 (*regs)[10] = tswapreg(env->aregs[3]); 1356 (*regs)[11] = tswapreg(env->aregs[4]); 1357 (*regs)[12] = tswapreg(env->aregs[5]); 1358 (*regs)[13] = tswapreg(env->aregs[6]); 1359 (*regs)[14] = tswapreg(env->dregs[0]); 1360 (*regs)[15] = tswapreg(env->aregs[7]); 1361 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1362 (*regs)[17] = tswapreg(env->sr); 1363 (*regs)[18] = tswapreg(env->pc); 1364 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1365 } 1366 1367 #define USE_ELF_CORE_DUMP 1368 #define ELF_EXEC_PAGESIZE 8192 1369 1370 #endif 1371 1372 #ifdef TARGET_ALPHA 1373 1374 #define ELF_START_MMAP (0x30000000000ULL) 1375 1376 #define ELF_CLASS ELFCLASS64 1377 #define ELF_ARCH EM_ALPHA 1378 1379 static inline void init_thread(struct target_pt_regs *regs, 1380 struct image_info *infop) 1381 { 1382 regs->pc = infop->entry; 1383 regs->ps = 8; 1384 regs->usp = infop->start_stack; 1385 } 1386 1387 #define ELF_EXEC_PAGESIZE 8192 1388 1389 #endif /* TARGET_ALPHA */ 1390 1391 #ifdef TARGET_S390X 1392 1393 #define ELF_START_MMAP (0x20000000000ULL) 1394 1395 #define ELF_CLASS ELFCLASS64 1396 #define ELF_DATA ELFDATA2MSB 1397 #define ELF_ARCH EM_S390 1398 1399 #include "elf.h" 1400 1401 #define ELF_HWCAP get_elf_hwcap() 1402 1403 #define GET_FEATURE(_feat, _hwcap) \ 1404 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1405 1406 static uint32_t get_elf_hwcap(void) 1407 { 1408 /* 1409 * Let's assume we always have esan3 and zarch. 1410 * 31-bit processes can use 64-bit registers (high gprs). 1411 */ 1412 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1413 1414 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1415 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1416 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1417 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1418 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1419 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1420 hwcap |= HWCAP_S390_ETF3EH; 1421 } 1422 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1423 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1424 1425 return hwcap; 1426 } 1427 1428 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1429 { 1430 regs->psw.addr = infop->entry; 1431 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1432 regs->gprs[15] = infop->start_stack; 1433 } 1434 1435 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1436 #define ELF_NREG 27 1437 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1438 1439 enum { 1440 TARGET_REG_PSWM = 0, 1441 TARGET_REG_PSWA = 1, 1442 TARGET_REG_GPRS = 2, 1443 TARGET_REG_ARS = 18, 1444 TARGET_REG_ORIG_R2 = 26, 1445 }; 1446 1447 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1448 const CPUS390XState *env) 1449 { 1450 int i; 1451 uint32_t *aregs; 1452 1453 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1454 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1455 for (i = 0; i < 16; i++) { 1456 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1457 } 1458 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1459 for (i = 0; i < 16; i++) { 1460 aregs[i] = tswap32(env->aregs[i]); 1461 } 1462 (*regs)[TARGET_REG_ORIG_R2] = 0; 1463 } 1464 1465 #define USE_ELF_CORE_DUMP 1466 #define ELF_EXEC_PAGESIZE 4096 1467 1468 #endif /* TARGET_S390X */ 1469 1470 #ifdef TARGET_RISCV 1471 1472 #define ELF_START_MMAP 0x80000000 1473 #define ELF_ARCH EM_RISCV 1474 1475 #ifdef TARGET_RISCV32 1476 #define ELF_CLASS ELFCLASS32 1477 #else 1478 #define ELF_CLASS ELFCLASS64 1479 #endif 1480 1481 #define ELF_HWCAP get_elf_hwcap() 1482 1483 static uint32_t get_elf_hwcap(void) 1484 { 1485 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1486 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1487 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1488 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C'); 1489 1490 return cpu->env.misa_ext & mask; 1491 #undef MISA_BIT 1492 } 1493 1494 static inline void init_thread(struct target_pt_regs *regs, 1495 struct image_info *infop) 1496 { 1497 regs->sepc = infop->entry; 1498 regs->sp = infop->start_stack; 1499 } 1500 1501 #define ELF_EXEC_PAGESIZE 4096 1502 1503 #endif /* TARGET_RISCV */ 1504 1505 #ifdef TARGET_HPPA 1506 1507 #define ELF_START_MMAP 0x80000000 1508 #define ELF_CLASS ELFCLASS32 1509 #define ELF_ARCH EM_PARISC 1510 #define ELF_PLATFORM "PARISC" 1511 #define STACK_GROWS_DOWN 0 1512 #define STACK_ALIGNMENT 64 1513 1514 static inline void init_thread(struct target_pt_regs *regs, 1515 struct image_info *infop) 1516 { 1517 regs->iaoq[0] = infop->entry; 1518 regs->iaoq[1] = infop->entry + 4; 1519 regs->gr[23] = 0; 1520 regs->gr[24] = infop->arg_start; 1521 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1522 /* The top-of-stack contains a linkage buffer. */ 1523 regs->gr[30] = infop->start_stack + 64; 1524 regs->gr[31] = infop->entry; 1525 } 1526 1527 #endif /* TARGET_HPPA */ 1528 1529 #ifdef TARGET_XTENSA 1530 1531 #define ELF_START_MMAP 0x20000000 1532 1533 #define ELF_CLASS ELFCLASS32 1534 #define ELF_ARCH EM_XTENSA 1535 1536 static inline void init_thread(struct target_pt_regs *regs, 1537 struct image_info *infop) 1538 { 1539 regs->windowbase = 0; 1540 regs->windowstart = 1; 1541 regs->areg[1] = infop->start_stack; 1542 regs->pc = infop->entry; 1543 } 1544 1545 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1546 #define ELF_NREG 128 1547 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1548 1549 enum { 1550 TARGET_REG_PC, 1551 TARGET_REG_PS, 1552 TARGET_REG_LBEG, 1553 TARGET_REG_LEND, 1554 TARGET_REG_LCOUNT, 1555 TARGET_REG_SAR, 1556 TARGET_REG_WINDOWSTART, 1557 TARGET_REG_WINDOWBASE, 1558 TARGET_REG_THREADPTR, 1559 TARGET_REG_AR0 = 64, 1560 }; 1561 1562 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1563 const CPUXtensaState *env) 1564 { 1565 unsigned i; 1566 1567 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1568 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1569 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1570 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1571 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1572 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1573 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1574 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1575 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1576 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1577 for (i = 0; i < env->config->nareg; ++i) { 1578 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1579 } 1580 } 1581 1582 #define USE_ELF_CORE_DUMP 1583 #define ELF_EXEC_PAGESIZE 4096 1584 1585 #endif /* TARGET_XTENSA */ 1586 1587 #ifdef TARGET_HEXAGON 1588 1589 #define ELF_START_MMAP 0x20000000 1590 1591 #define ELF_CLASS ELFCLASS32 1592 #define ELF_ARCH EM_HEXAGON 1593 1594 static inline void init_thread(struct target_pt_regs *regs, 1595 struct image_info *infop) 1596 { 1597 regs->sepc = infop->entry; 1598 regs->sp = infop->start_stack; 1599 } 1600 1601 #endif /* TARGET_HEXAGON */ 1602 1603 #ifndef ELF_PLATFORM 1604 #define ELF_PLATFORM (NULL) 1605 #endif 1606 1607 #ifndef ELF_MACHINE 1608 #define ELF_MACHINE ELF_ARCH 1609 #endif 1610 1611 #ifndef elf_check_arch 1612 #define elf_check_arch(x) ((x) == ELF_ARCH) 1613 #endif 1614 1615 #ifndef elf_check_abi 1616 #define elf_check_abi(x) (1) 1617 #endif 1618 1619 #ifndef ELF_HWCAP 1620 #define ELF_HWCAP 0 1621 #endif 1622 1623 #ifndef STACK_GROWS_DOWN 1624 #define STACK_GROWS_DOWN 1 1625 #endif 1626 1627 #ifndef STACK_ALIGNMENT 1628 #define STACK_ALIGNMENT 16 1629 #endif 1630 1631 #ifdef TARGET_ABI32 1632 #undef ELF_CLASS 1633 #define ELF_CLASS ELFCLASS32 1634 #undef bswaptls 1635 #define bswaptls(ptr) bswap32s(ptr) 1636 #endif 1637 1638 #include "elf.h" 1639 1640 /* We must delay the following stanzas until after "elf.h". */ 1641 #if defined(TARGET_AARCH64) 1642 1643 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1644 const uint32_t *data, 1645 struct image_info *info, 1646 Error **errp) 1647 { 1648 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1649 if (pr_datasz != sizeof(uint32_t)) { 1650 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1651 return false; 1652 } 1653 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1654 info->note_flags = *data; 1655 } 1656 return true; 1657 } 1658 #define ARCH_USE_GNU_PROPERTY 1 1659 1660 #else 1661 1662 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1663 const uint32_t *data, 1664 struct image_info *info, 1665 Error **errp) 1666 { 1667 g_assert_not_reached(); 1668 } 1669 #define ARCH_USE_GNU_PROPERTY 0 1670 1671 #endif 1672 1673 struct exec 1674 { 1675 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1676 unsigned int a_text; /* length of text, in bytes */ 1677 unsigned int a_data; /* length of data, in bytes */ 1678 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1679 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1680 unsigned int a_entry; /* start address */ 1681 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1682 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1683 }; 1684 1685 1686 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1687 #define OMAGIC 0407 1688 #define NMAGIC 0410 1689 #define ZMAGIC 0413 1690 #define QMAGIC 0314 1691 1692 /* Necessary parameters */ 1693 #define TARGET_ELF_EXEC_PAGESIZE \ 1694 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1695 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1696 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1697 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1698 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1699 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1700 1701 #define DLINFO_ITEMS 16 1702 1703 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1704 { 1705 memcpy(to, from, n); 1706 } 1707 1708 #ifdef BSWAP_NEEDED 1709 static void bswap_ehdr(struct elfhdr *ehdr) 1710 { 1711 bswap16s(&ehdr->e_type); /* Object file type */ 1712 bswap16s(&ehdr->e_machine); /* Architecture */ 1713 bswap32s(&ehdr->e_version); /* Object file version */ 1714 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1715 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1716 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1717 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1718 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1719 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1720 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1721 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1722 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1723 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1724 } 1725 1726 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1727 { 1728 int i; 1729 for (i = 0; i < phnum; ++i, ++phdr) { 1730 bswap32s(&phdr->p_type); /* Segment type */ 1731 bswap32s(&phdr->p_flags); /* Segment flags */ 1732 bswaptls(&phdr->p_offset); /* Segment file offset */ 1733 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1734 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1735 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1736 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1737 bswaptls(&phdr->p_align); /* Segment alignment */ 1738 } 1739 } 1740 1741 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1742 { 1743 int i; 1744 for (i = 0; i < shnum; ++i, ++shdr) { 1745 bswap32s(&shdr->sh_name); 1746 bswap32s(&shdr->sh_type); 1747 bswaptls(&shdr->sh_flags); 1748 bswaptls(&shdr->sh_addr); 1749 bswaptls(&shdr->sh_offset); 1750 bswaptls(&shdr->sh_size); 1751 bswap32s(&shdr->sh_link); 1752 bswap32s(&shdr->sh_info); 1753 bswaptls(&shdr->sh_addralign); 1754 bswaptls(&shdr->sh_entsize); 1755 } 1756 } 1757 1758 static void bswap_sym(struct elf_sym *sym) 1759 { 1760 bswap32s(&sym->st_name); 1761 bswaptls(&sym->st_value); 1762 bswaptls(&sym->st_size); 1763 bswap16s(&sym->st_shndx); 1764 } 1765 1766 #ifdef TARGET_MIPS 1767 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1768 { 1769 bswap16s(&abiflags->version); 1770 bswap32s(&abiflags->ases); 1771 bswap32s(&abiflags->isa_ext); 1772 bswap32s(&abiflags->flags1); 1773 bswap32s(&abiflags->flags2); 1774 } 1775 #endif 1776 #else 1777 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1778 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1779 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1780 static inline void bswap_sym(struct elf_sym *sym) { } 1781 #ifdef TARGET_MIPS 1782 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1783 #endif 1784 #endif 1785 1786 #ifdef USE_ELF_CORE_DUMP 1787 static int elf_core_dump(int, const CPUArchState *); 1788 #endif /* USE_ELF_CORE_DUMP */ 1789 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1790 1791 /* Verify the portions of EHDR within E_IDENT for the target. 1792 This can be performed before bswapping the entire header. */ 1793 static bool elf_check_ident(struct elfhdr *ehdr) 1794 { 1795 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1796 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1797 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1798 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1799 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1800 && ehdr->e_ident[EI_DATA] == ELF_DATA 1801 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1802 } 1803 1804 /* Verify the portions of EHDR outside of E_IDENT for the target. 1805 This has to wait until after bswapping the header. */ 1806 static bool elf_check_ehdr(struct elfhdr *ehdr) 1807 { 1808 return (elf_check_arch(ehdr->e_machine) 1809 && elf_check_abi(ehdr->e_flags) 1810 && ehdr->e_ehsize == sizeof(struct elfhdr) 1811 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1812 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1813 } 1814 1815 /* 1816 * 'copy_elf_strings()' copies argument/envelope strings from user 1817 * memory to free pages in kernel mem. These are in a format ready 1818 * to be put directly into the top of new user memory. 1819 * 1820 */ 1821 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1822 abi_ulong p, abi_ulong stack_limit) 1823 { 1824 char *tmp; 1825 int len, i; 1826 abi_ulong top = p; 1827 1828 if (!p) { 1829 return 0; /* bullet-proofing */ 1830 } 1831 1832 if (STACK_GROWS_DOWN) { 1833 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1834 for (i = argc - 1; i >= 0; --i) { 1835 tmp = argv[i]; 1836 if (!tmp) { 1837 fprintf(stderr, "VFS: argc is wrong"); 1838 exit(-1); 1839 } 1840 len = strlen(tmp) + 1; 1841 tmp += len; 1842 1843 if (len > (p - stack_limit)) { 1844 return 0; 1845 } 1846 while (len) { 1847 int bytes_to_copy = (len > offset) ? offset : len; 1848 tmp -= bytes_to_copy; 1849 p -= bytes_to_copy; 1850 offset -= bytes_to_copy; 1851 len -= bytes_to_copy; 1852 1853 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1854 1855 if (offset == 0) { 1856 memcpy_to_target(p, scratch, top - p); 1857 top = p; 1858 offset = TARGET_PAGE_SIZE; 1859 } 1860 } 1861 } 1862 if (p != top) { 1863 memcpy_to_target(p, scratch + offset, top - p); 1864 } 1865 } else { 1866 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1867 for (i = 0; i < argc; ++i) { 1868 tmp = argv[i]; 1869 if (!tmp) { 1870 fprintf(stderr, "VFS: argc is wrong"); 1871 exit(-1); 1872 } 1873 len = strlen(tmp) + 1; 1874 if (len > (stack_limit - p)) { 1875 return 0; 1876 } 1877 while (len) { 1878 int bytes_to_copy = (len > remaining) ? remaining : len; 1879 1880 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1881 1882 tmp += bytes_to_copy; 1883 remaining -= bytes_to_copy; 1884 p += bytes_to_copy; 1885 len -= bytes_to_copy; 1886 1887 if (remaining == 0) { 1888 memcpy_to_target(top, scratch, p - top); 1889 top = p; 1890 remaining = TARGET_PAGE_SIZE; 1891 } 1892 } 1893 } 1894 if (p != top) { 1895 memcpy_to_target(top, scratch, p - top); 1896 } 1897 } 1898 1899 return p; 1900 } 1901 1902 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1903 * argument/environment space. Newer kernels (>2.6.33) allow more, 1904 * dependent on stack size, but guarantee at least 32 pages for 1905 * backwards compatibility. 1906 */ 1907 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1908 1909 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1910 struct image_info *info) 1911 { 1912 abi_ulong size, error, guard; 1913 1914 size = guest_stack_size; 1915 if (size < STACK_LOWER_LIMIT) { 1916 size = STACK_LOWER_LIMIT; 1917 } 1918 guard = TARGET_PAGE_SIZE; 1919 if (guard < qemu_real_host_page_size) { 1920 guard = qemu_real_host_page_size; 1921 } 1922 1923 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1924 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1925 if (error == -1) { 1926 perror("mmap stack"); 1927 exit(-1); 1928 } 1929 1930 /* We reserve one extra page at the top of the stack as guard. */ 1931 if (STACK_GROWS_DOWN) { 1932 target_mprotect(error, guard, PROT_NONE); 1933 info->stack_limit = error + guard; 1934 return info->stack_limit + size - sizeof(void *); 1935 } else { 1936 target_mprotect(error + size, guard, PROT_NONE); 1937 info->stack_limit = error + size; 1938 return error; 1939 } 1940 } 1941 1942 /* Map and zero the bss. We need to explicitly zero any fractional pages 1943 after the data section (i.e. bss). */ 1944 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1945 { 1946 uintptr_t host_start, host_map_start, host_end; 1947 1948 last_bss = TARGET_PAGE_ALIGN(last_bss); 1949 1950 /* ??? There is confusion between qemu_real_host_page_size and 1951 qemu_host_page_size here and elsewhere in target_mmap, which 1952 may lead to the end of the data section mapping from the file 1953 not being mapped. At least there was an explicit test and 1954 comment for that here, suggesting that "the file size must 1955 be known". The comment probably pre-dates the introduction 1956 of the fstat system call in target_mmap which does in fact 1957 find out the size. What isn't clear is if the workaround 1958 here is still actually needed. For now, continue with it, 1959 but merge it with the "normal" mmap that would allocate the bss. */ 1960 1961 host_start = (uintptr_t) g2h_untagged(elf_bss); 1962 host_end = (uintptr_t) g2h_untagged(last_bss); 1963 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1964 1965 if (host_map_start < host_end) { 1966 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1967 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1968 if (p == MAP_FAILED) { 1969 perror("cannot mmap brk"); 1970 exit(-1); 1971 } 1972 } 1973 1974 /* Ensure that the bss page(s) are valid */ 1975 if ((page_get_flags(last_bss-1) & prot) != prot) { 1976 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1977 } 1978 1979 if (host_start < host_map_start) { 1980 memset((void *)host_start, 0, host_map_start - host_start); 1981 } 1982 } 1983 1984 #ifdef TARGET_ARM 1985 static int elf_is_fdpic(struct elfhdr *exec) 1986 { 1987 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1988 } 1989 #else 1990 /* Default implementation, always false. */ 1991 static int elf_is_fdpic(struct elfhdr *exec) 1992 { 1993 return 0; 1994 } 1995 #endif 1996 1997 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1998 { 1999 uint16_t n; 2000 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2001 2002 /* elf32_fdpic_loadseg */ 2003 n = info->nsegs; 2004 while (n--) { 2005 sp -= 12; 2006 put_user_u32(loadsegs[n].addr, sp+0); 2007 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2008 put_user_u32(loadsegs[n].p_memsz, sp+8); 2009 } 2010 2011 /* elf32_fdpic_loadmap */ 2012 sp -= 4; 2013 put_user_u16(0, sp+0); /* version */ 2014 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2015 2016 info->personality = PER_LINUX_FDPIC; 2017 info->loadmap_addr = sp; 2018 2019 return sp; 2020 } 2021 2022 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2023 struct elfhdr *exec, 2024 struct image_info *info, 2025 struct image_info *interp_info) 2026 { 2027 abi_ulong sp; 2028 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2029 int size; 2030 int i; 2031 abi_ulong u_rand_bytes; 2032 uint8_t k_rand_bytes[16]; 2033 abi_ulong u_platform; 2034 const char *k_platform; 2035 const int n = sizeof(elf_addr_t); 2036 2037 sp = p; 2038 2039 /* Needs to be before we load the env/argc/... */ 2040 if (elf_is_fdpic(exec)) { 2041 /* Need 4 byte alignment for these structs */ 2042 sp &= ~3; 2043 sp = loader_build_fdpic_loadmap(info, sp); 2044 info->other_info = interp_info; 2045 if (interp_info) { 2046 interp_info->other_info = info; 2047 sp = loader_build_fdpic_loadmap(interp_info, sp); 2048 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2049 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2050 } else { 2051 info->interpreter_loadmap_addr = 0; 2052 info->interpreter_pt_dynamic_addr = 0; 2053 } 2054 } 2055 2056 u_platform = 0; 2057 k_platform = ELF_PLATFORM; 2058 if (k_platform) { 2059 size_t len = strlen(k_platform) + 1; 2060 if (STACK_GROWS_DOWN) { 2061 sp -= (len + n - 1) & ~(n - 1); 2062 u_platform = sp; 2063 /* FIXME - check return value of memcpy_to_target() for failure */ 2064 memcpy_to_target(sp, k_platform, len); 2065 } else { 2066 memcpy_to_target(sp, k_platform, len); 2067 u_platform = sp; 2068 sp += len + 1; 2069 } 2070 } 2071 2072 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2073 * the argv and envp pointers. 2074 */ 2075 if (STACK_GROWS_DOWN) { 2076 sp = QEMU_ALIGN_DOWN(sp, 16); 2077 } else { 2078 sp = QEMU_ALIGN_UP(sp, 16); 2079 } 2080 2081 /* 2082 * Generate 16 random bytes for userspace PRNG seeding. 2083 */ 2084 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2085 if (STACK_GROWS_DOWN) { 2086 sp -= 16; 2087 u_rand_bytes = sp; 2088 /* FIXME - check return value of memcpy_to_target() for failure */ 2089 memcpy_to_target(sp, k_rand_bytes, 16); 2090 } else { 2091 memcpy_to_target(sp, k_rand_bytes, 16); 2092 u_rand_bytes = sp; 2093 sp += 16; 2094 } 2095 2096 size = (DLINFO_ITEMS + 1) * 2; 2097 if (k_platform) 2098 size += 2; 2099 #ifdef DLINFO_ARCH_ITEMS 2100 size += DLINFO_ARCH_ITEMS * 2; 2101 #endif 2102 #ifdef ELF_HWCAP2 2103 size += 2; 2104 #endif 2105 info->auxv_len = size * n; 2106 2107 size += envc + argc + 2; 2108 size += 1; /* argc itself */ 2109 size *= n; 2110 2111 /* Allocate space and finalize stack alignment for entry now. */ 2112 if (STACK_GROWS_DOWN) { 2113 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2114 sp = u_argc; 2115 } else { 2116 u_argc = sp; 2117 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2118 } 2119 2120 u_argv = u_argc + n; 2121 u_envp = u_argv + (argc + 1) * n; 2122 u_auxv = u_envp + (envc + 1) * n; 2123 info->saved_auxv = u_auxv; 2124 info->arg_start = u_argv; 2125 info->arg_end = u_argv + argc * n; 2126 2127 /* This is correct because Linux defines 2128 * elf_addr_t as Elf32_Off / Elf64_Off 2129 */ 2130 #define NEW_AUX_ENT(id, val) do { \ 2131 put_user_ual(id, u_auxv); u_auxv += n; \ 2132 put_user_ual(val, u_auxv); u_auxv += n; \ 2133 } while(0) 2134 2135 #ifdef ARCH_DLINFO 2136 /* 2137 * ARCH_DLINFO must come first so platform specific code can enforce 2138 * special alignment requirements on the AUXV if necessary (eg. PPC). 2139 */ 2140 ARCH_DLINFO; 2141 #endif 2142 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2143 * on info->auxv_len will trigger. 2144 */ 2145 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2146 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2147 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2148 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2149 /* Target doesn't support host page size alignment */ 2150 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2151 } else { 2152 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2153 qemu_host_page_size))); 2154 } 2155 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2156 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2157 NEW_AUX_ENT(AT_ENTRY, info->entry); 2158 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2159 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2160 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2161 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2162 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2163 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2164 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2165 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2166 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2167 2168 #ifdef ELF_HWCAP2 2169 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2170 #endif 2171 2172 if (u_platform) { 2173 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2174 } 2175 NEW_AUX_ENT (AT_NULL, 0); 2176 #undef NEW_AUX_ENT 2177 2178 /* Check that our initial calculation of the auxv length matches how much 2179 * we actually put into it. 2180 */ 2181 assert(info->auxv_len == u_auxv - info->saved_auxv); 2182 2183 put_user_ual(argc, u_argc); 2184 2185 p = info->arg_strings; 2186 for (i = 0; i < argc; ++i) { 2187 put_user_ual(p, u_argv); 2188 u_argv += n; 2189 p += target_strlen(p) + 1; 2190 } 2191 put_user_ual(0, u_argv); 2192 2193 p = info->env_strings; 2194 for (i = 0; i < envc; ++i) { 2195 put_user_ual(p, u_envp); 2196 u_envp += n; 2197 p += target_strlen(p) + 1; 2198 } 2199 put_user_ual(0, u_envp); 2200 2201 return sp; 2202 } 2203 2204 #if defined(HI_COMMPAGE) 2205 #define LO_COMMPAGE 0 2206 #elif defined(LO_COMMPAGE) 2207 #define HI_COMMPAGE 0 2208 #else 2209 #define HI_COMMPAGE 0 2210 #define LO_COMMPAGE 0 2211 #define init_guest_commpage() true 2212 #endif 2213 2214 static void pgb_fail_in_use(const char *image_name) 2215 { 2216 error_report("%s: requires virtual address space that is in use " 2217 "(omit the -B option or choose a different value)", 2218 image_name); 2219 exit(EXIT_FAILURE); 2220 } 2221 2222 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2223 abi_ulong guest_hiaddr, long align) 2224 { 2225 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2226 void *addr, *test; 2227 2228 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2229 fprintf(stderr, "Requested guest base %p does not satisfy " 2230 "host minimum alignment (0x%lx)\n", 2231 (void *)guest_base, align); 2232 exit(EXIT_FAILURE); 2233 } 2234 2235 /* Sanity check the guest binary. */ 2236 if (reserved_va) { 2237 if (guest_hiaddr > reserved_va) { 2238 error_report("%s: requires more than reserved virtual " 2239 "address space (0x%" PRIx64 " > 0x%lx)", 2240 image_name, (uint64_t)guest_hiaddr, reserved_va); 2241 exit(EXIT_FAILURE); 2242 } 2243 } else { 2244 #if HOST_LONG_BITS < TARGET_ABI_BITS 2245 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2246 error_report("%s: requires more virtual address space " 2247 "than the host can provide (0x%" PRIx64 ")", 2248 image_name, (uint64_t)guest_hiaddr - guest_base); 2249 exit(EXIT_FAILURE); 2250 } 2251 #endif 2252 } 2253 2254 /* 2255 * Expand the allocation to the entire reserved_va. 2256 * Exclude the mmap_min_addr hole. 2257 */ 2258 if (reserved_va) { 2259 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2260 : mmap_min_addr - guest_base); 2261 guest_hiaddr = reserved_va; 2262 } 2263 2264 /* Reserve the address space for the binary, or reserved_va. */ 2265 test = g2h_untagged(guest_loaddr); 2266 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2267 if (test != addr) { 2268 pgb_fail_in_use(image_name); 2269 } 2270 qemu_log_mask(CPU_LOG_PAGE, 2271 "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n", 2272 __func__, addr, guest_hiaddr - guest_loaddr); 2273 } 2274 2275 /** 2276 * pgd_find_hole_fallback: potential mmap address 2277 * @guest_size: size of available space 2278 * @brk: location of break 2279 * @align: memory alignment 2280 * 2281 * This is a fallback method for finding a hole in the host address 2282 * space if we don't have the benefit of being able to access 2283 * /proc/self/map. It can potentially take a very long time as we can 2284 * only dumbly iterate up the host address space seeing if the 2285 * allocation would work. 2286 */ 2287 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2288 long align, uintptr_t offset) 2289 { 2290 uintptr_t base; 2291 2292 /* Start (aligned) at the bottom and work our way up */ 2293 base = ROUND_UP(mmap_min_addr, align); 2294 2295 while (true) { 2296 uintptr_t align_start, end; 2297 align_start = ROUND_UP(base, align); 2298 end = align_start + guest_size + offset; 2299 2300 /* if brk is anywhere in the range give ourselves some room to grow. */ 2301 if (align_start <= brk && brk < end) { 2302 base = brk + (16 * MiB); 2303 continue; 2304 } else if (align_start + guest_size < align_start) { 2305 /* we have run out of space */ 2306 return -1; 2307 } else { 2308 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2309 MAP_FIXED_NOREPLACE; 2310 void * mmap_start = mmap((void *) align_start, guest_size, 2311 PROT_NONE, flags, -1, 0); 2312 if (mmap_start != MAP_FAILED) { 2313 munmap(mmap_start, guest_size); 2314 if (mmap_start == (void *) align_start) { 2315 qemu_log_mask(CPU_LOG_PAGE, 2316 "%s: base @ %p for %" PRIdPTR" bytes\n", 2317 __func__, mmap_start + offset, guest_size); 2318 return (uintptr_t) mmap_start + offset; 2319 } 2320 } 2321 base += qemu_host_page_size; 2322 } 2323 } 2324 } 2325 2326 /* Return value for guest_base, or -1 if no hole found. */ 2327 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2328 long align, uintptr_t offset) 2329 { 2330 GSList *maps, *iter; 2331 uintptr_t this_start, this_end, next_start, brk; 2332 intptr_t ret = -1; 2333 2334 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2335 2336 maps = read_self_maps(); 2337 2338 /* Read brk after we've read the maps, which will malloc. */ 2339 brk = (uintptr_t)sbrk(0); 2340 2341 if (!maps) { 2342 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2343 } 2344 2345 /* The first hole is before the first map entry. */ 2346 this_start = mmap_min_addr; 2347 2348 for (iter = maps; iter; 2349 this_start = next_start, iter = g_slist_next(iter)) { 2350 uintptr_t align_start, hole_size; 2351 2352 this_end = ((MapInfo *)iter->data)->start; 2353 next_start = ((MapInfo *)iter->data)->end; 2354 align_start = ROUND_UP(this_start + offset, align); 2355 2356 /* Skip holes that are too small. */ 2357 if (align_start >= this_end) { 2358 continue; 2359 } 2360 hole_size = this_end - align_start; 2361 if (hole_size < guest_size) { 2362 continue; 2363 } 2364 2365 /* If this hole contains brk, give ourselves some room to grow. */ 2366 if (this_start <= brk && brk < this_end) { 2367 hole_size -= guest_size; 2368 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2369 align_start += 1 * GiB; 2370 } else if (hole_size >= 16 * MiB) { 2371 align_start += 16 * MiB; 2372 } else { 2373 align_start = (this_end - guest_size) & -align; 2374 if (align_start < this_start) { 2375 continue; 2376 } 2377 } 2378 } 2379 2380 /* Record the lowest successful match. */ 2381 if (ret < 0) { 2382 ret = align_start; 2383 } 2384 /* If this hole contains the identity map, select it. */ 2385 if (align_start <= guest_loaddr && 2386 guest_loaddr + guest_size <= this_end) { 2387 ret = 0; 2388 } 2389 /* If this hole ends above the identity map, stop looking. */ 2390 if (this_end >= guest_loaddr) { 2391 break; 2392 } 2393 } 2394 free_self_maps(maps); 2395 2396 if (ret != -1) { 2397 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR 2398 " for %" PRIuPTR " bytes\n", 2399 __func__, ret, guest_size); 2400 } 2401 2402 return ret; 2403 } 2404 2405 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2406 abi_ulong orig_hiaddr, long align) 2407 { 2408 uintptr_t loaddr = orig_loaddr; 2409 uintptr_t hiaddr = orig_hiaddr; 2410 uintptr_t offset = 0; 2411 uintptr_t addr; 2412 2413 if (hiaddr != orig_hiaddr) { 2414 error_report("%s: requires virtual address space that the " 2415 "host cannot provide (0x%" PRIx64 ")", 2416 image_name, (uint64_t)orig_hiaddr); 2417 exit(EXIT_FAILURE); 2418 } 2419 2420 loaddr &= -align; 2421 if (HI_COMMPAGE) { 2422 /* 2423 * Extend the allocation to include the commpage. 2424 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2425 * need to ensure there is space bellow the guest_base so we 2426 * can map the commpage in the place needed when the address 2427 * arithmetic wraps around. 2428 */ 2429 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2430 hiaddr = (uintptr_t) 4 << 30; 2431 } else { 2432 offset = -(HI_COMMPAGE & -align); 2433 } 2434 } else if (LO_COMMPAGE != 0) { 2435 loaddr = MIN(loaddr, LO_COMMPAGE & -align); 2436 } 2437 2438 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2439 if (addr == -1) { 2440 /* 2441 * If HI_COMMPAGE, there *might* be a non-consecutive allocation 2442 * that can satisfy both. But as the normal arm32 link base address 2443 * is ~32k, and we extend down to include the commpage, making the 2444 * overhead only ~96k, this is unlikely. 2445 */ 2446 error_report("%s: Unable to allocate %#zx bytes of " 2447 "virtual address space", image_name, 2448 (size_t)(hiaddr - loaddr)); 2449 exit(EXIT_FAILURE); 2450 } 2451 2452 guest_base = addr; 2453 2454 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n", 2455 __func__, addr, hiaddr - loaddr); 2456 } 2457 2458 static void pgb_dynamic(const char *image_name, long align) 2459 { 2460 /* 2461 * The executable is dynamic and does not require a fixed address. 2462 * All we need is a commpage that satisfies align. 2463 * If we do not need a commpage, leave guest_base == 0. 2464 */ 2465 if (HI_COMMPAGE) { 2466 uintptr_t addr, commpage; 2467 2468 /* 64-bit hosts should have used reserved_va. */ 2469 assert(sizeof(uintptr_t) == 4); 2470 2471 /* 2472 * By putting the commpage at the first hole, that puts guest_base 2473 * just above that, and maximises the positive guest addresses. 2474 */ 2475 commpage = HI_COMMPAGE & -align; 2476 addr = pgb_find_hole(commpage, -commpage, align, 0); 2477 assert(addr != -1); 2478 guest_base = addr; 2479 } 2480 } 2481 2482 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2483 abi_ulong guest_hiaddr, long align) 2484 { 2485 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2486 void *addr, *test; 2487 2488 if (guest_hiaddr > reserved_va) { 2489 error_report("%s: requires more than reserved virtual " 2490 "address space (0x%" PRIx64 " > 0x%lx)", 2491 image_name, (uint64_t)guest_hiaddr, reserved_va); 2492 exit(EXIT_FAILURE); 2493 } 2494 2495 /* Widen the "image" to the entire reserved address space. */ 2496 pgb_static(image_name, 0, reserved_va, align); 2497 2498 /* osdep.h defines this as 0 if it's missing */ 2499 flags |= MAP_FIXED_NOREPLACE; 2500 2501 /* Reserve the memory on the host. */ 2502 assert(guest_base != 0); 2503 test = g2h_untagged(0); 2504 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2505 if (addr == MAP_FAILED || addr != test) { 2506 error_report("Unable to reserve 0x%lx bytes of virtual address " 2507 "space at %p (%s) for use as guest address space (check your " 2508 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2509 "using -R option)", reserved_va, test, strerror(errno)); 2510 exit(EXIT_FAILURE); 2511 } 2512 2513 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n", 2514 __func__, addr, reserved_va); 2515 } 2516 2517 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2518 abi_ulong guest_hiaddr) 2519 { 2520 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2521 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2522 2523 if (have_guest_base) { 2524 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2525 } else if (reserved_va) { 2526 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2527 } else if (guest_loaddr) { 2528 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2529 } else { 2530 pgb_dynamic(image_name, align); 2531 } 2532 2533 /* Reserve and initialize the commpage. */ 2534 if (!init_guest_commpage()) { 2535 /* 2536 * With have_guest_base, the user has selected the address and 2537 * we are trying to work with that. Otherwise, we have selected 2538 * free space and init_guest_commpage must succeeded. 2539 */ 2540 assert(have_guest_base); 2541 pgb_fail_in_use(image_name); 2542 } 2543 2544 assert(QEMU_IS_ALIGNED(guest_base, align)); 2545 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2546 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2547 } 2548 2549 enum { 2550 /* The string "GNU\0" as a magic number. */ 2551 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2552 NOTE_DATA_SZ = 1 * KiB, 2553 NOTE_NAME_SZ = 4, 2554 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2555 }; 2556 2557 /* 2558 * Process a single gnu_property entry. 2559 * Return false for error. 2560 */ 2561 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2562 struct image_info *info, bool have_prev_type, 2563 uint32_t *prev_type, Error **errp) 2564 { 2565 uint32_t pr_type, pr_datasz, step; 2566 2567 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2568 goto error_data; 2569 } 2570 datasz -= *off; 2571 data += *off / sizeof(uint32_t); 2572 2573 if (datasz < 2 * sizeof(uint32_t)) { 2574 goto error_data; 2575 } 2576 pr_type = data[0]; 2577 pr_datasz = data[1]; 2578 data += 2; 2579 datasz -= 2 * sizeof(uint32_t); 2580 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2581 if (step > datasz) { 2582 goto error_data; 2583 } 2584 2585 /* Properties are supposed to be unique and sorted on pr_type. */ 2586 if (have_prev_type && pr_type <= *prev_type) { 2587 if (pr_type == *prev_type) { 2588 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2589 } else { 2590 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2591 } 2592 return false; 2593 } 2594 *prev_type = pr_type; 2595 2596 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2597 return false; 2598 } 2599 2600 *off += 2 * sizeof(uint32_t) + step; 2601 return true; 2602 2603 error_data: 2604 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2605 return false; 2606 } 2607 2608 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2609 static bool parse_elf_properties(int image_fd, 2610 struct image_info *info, 2611 const struct elf_phdr *phdr, 2612 char bprm_buf[BPRM_BUF_SIZE], 2613 Error **errp) 2614 { 2615 union { 2616 struct elf_note nhdr; 2617 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2618 } note; 2619 2620 int n, off, datasz; 2621 bool have_prev_type; 2622 uint32_t prev_type; 2623 2624 /* Unless the arch requires properties, ignore them. */ 2625 if (!ARCH_USE_GNU_PROPERTY) { 2626 return true; 2627 } 2628 2629 /* If the properties are crazy large, that's too bad. */ 2630 n = phdr->p_filesz; 2631 if (n > sizeof(note)) { 2632 error_setg(errp, "PT_GNU_PROPERTY too large"); 2633 return false; 2634 } 2635 if (n < sizeof(note.nhdr)) { 2636 error_setg(errp, "PT_GNU_PROPERTY too small"); 2637 return false; 2638 } 2639 2640 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2641 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2642 } else { 2643 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2644 if (len != n) { 2645 error_setg_errno(errp, errno, "Error reading file header"); 2646 return false; 2647 } 2648 } 2649 2650 /* 2651 * The contents of a valid PT_GNU_PROPERTY is a sequence 2652 * of uint32_t -- swap them all now. 2653 */ 2654 #ifdef BSWAP_NEEDED 2655 for (int i = 0; i < n / 4; i++) { 2656 bswap32s(note.data + i); 2657 } 2658 #endif 2659 2660 /* 2661 * Note that nhdr is 3 words, and that the "name" described by namesz 2662 * immediately follows nhdr and is thus at the 4th word. Further, all 2663 * of the inputs to the kernel's round_up are multiples of 4. 2664 */ 2665 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2666 note.nhdr.n_namesz != NOTE_NAME_SZ || 2667 note.data[3] != GNU0_MAGIC) { 2668 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2669 return false; 2670 } 2671 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2672 2673 datasz = note.nhdr.n_descsz + off; 2674 if (datasz > n) { 2675 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2676 return false; 2677 } 2678 2679 have_prev_type = false; 2680 prev_type = 0; 2681 while (1) { 2682 if (off == datasz) { 2683 return true; /* end, exit ok */ 2684 } 2685 if (!parse_elf_property(note.data, &off, datasz, info, 2686 have_prev_type, &prev_type, errp)) { 2687 return false; 2688 } 2689 have_prev_type = true; 2690 } 2691 } 2692 2693 /* Load an ELF image into the address space. 2694 2695 IMAGE_NAME is the filename of the image, to use in error messages. 2696 IMAGE_FD is the open file descriptor for the image. 2697 2698 BPRM_BUF is a copy of the beginning of the file; this of course 2699 contains the elf file header at offset 0. It is assumed that this 2700 buffer is sufficiently aligned to present no problems to the host 2701 in accessing data at aligned offsets within the buffer. 2702 2703 On return: INFO values will be filled in, as necessary or available. */ 2704 2705 static void load_elf_image(const char *image_name, int image_fd, 2706 struct image_info *info, char **pinterp_name, 2707 char bprm_buf[BPRM_BUF_SIZE]) 2708 { 2709 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2710 struct elf_phdr *phdr; 2711 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2712 int i, retval, prot_exec; 2713 Error *err = NULL; 2714 2715 /* First of all, some simple consistency checks */ 2716 if (!elf_check_ident(ehdr)) { 2717 error_setg(&err, "Invalid ELF image for this architecture"); 2718 goto exit_errmsg; 2719 } 2720 bswap_ehdr(ehdr); 2721 if (!elf_check_ehdr(ehdr)) { 2722 error_setg(&err, "Invalid ELF image for this architecture"); 2723 goto exit_errmsg; 2724 } 2725 2726 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2727 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2728 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2729 } else { 2730 phdr = (struct elf_phdr *) alloca(i); 2731 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2732 if (retval != i) { 2733 goto exit_read; 2734 } 2735 } 2736 bswap_phdr(phdr, ehdr->e_phnum); 2737 2738 info->nsegs = 0; 2739 info->pt_dynamic_addr = 0; 2740 2741 mmap_lock(); 2742 2743 /* 2744 * Find the maximum size of the image and allocate an appropriate 2745 * amount of memory to handle that. Locate the interpreter, if any. 2746 */ 2747 loaddr = -1, hiaddr = 0; 2748 info->alignment = 0; 2749 for (i = 0; i < ehdr->e_phnum; ++i) { 2750 struct elf_phdr *eppnt = phdr + i; 2751 if (eppnt->p_type == PT_LOAD) { 2752 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 2753 if (a < loaddr) { 2754 loaddr = a; 2755 } 2756 a = eppnt->p_vaddr + eppnt->p_memsz; 2757 if (a > hiaddr) { 2758 hiaddr = a; 2759 } 2760 ++info->nsegs; 2761 info->alignment |= eppnt->p_align; 2762 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2763 g_autofree char *interp_name = NULL; 2764 2765 if (*pinterp_name) { 2766 error_setg(&err, "Multiple PT_INTERP entries"); 2767 goto exit_errmsg; 2768 } 2769 2770 interp_name = g_malloc(eppnt->p_filesz); 2771 2772 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2773 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2774 eppnt->p_filesz); 2775 } else { 2776 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2777 eppnt->p_offset); 2778 if (retval != eppnt->p_filesz) { 2779 goto exit_read; 2780 } 2781 } 2782 if (interp_name[eppnt->p_filesz - 1] != 0) { 2783 error_setg(&err, "Invalid PT_INTERP entry"); 2784 goto exit_errmsg; 2785 } 2786 *pinterp_name = g_steal_pointer(&interp_name); 2787 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 2788 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 2789 goto exit_errmsg; 2790 } 2791 } 2792 } 2793 2794 if (pinterp_name != NULL) { 2795 /* 2796 * This is the main executable. 2797 * 2798 * Reserve extra space for brk. 2799 * We hold on to this space while placing the interpreter 2800 * and the stack, lest they be placed immediately after 2801 * the data segment and block allocation from the brk. 2802 * 2803 * 16MB is chosen as "large enough" without being so large as 2804 * to allow the result to not fit with a 32-bit guest on a 2805 * 32-bit host. However some 64 bit guests (e.g. s390x) 2806 * attempt to place their heap further ahead and currently 2807 * nothing stops them smashing into QEMUs address space. 2808 */ 2809 #if TARGET_LONG_BITS == 64 2810 info->reserve_brk = 32 * MiB; 2811 #else 2812 info->reserve_brk = 16 * MiB; 2813 #endif 2814 hiaddr += info->reserve_brk; 2815 2816 if (ehdr->e_type == ET_EXEC) { 2817 /* 2818 * Make sure that the low address does not conflict with 2819 * MMAP_MIN_ADDR or the QEMU application itself. 2820 */ 2821 probe_guest_base(image_name, loaddr, hiaddr); 2822 } else { 2823 /* 2824 * The binary is dynamic, but we still need to 2825 * select guest_base. In this case we pass a size. 2826 */ 2827 probe_guest_base(image_name, 0, hiaddr - loaddr); 2828 } 2829 } 2830 2831 /* 2832 * Reserve address space for all of this. 2833 * 2834 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2835 * exactly the address range that is required. 2836 * 2837 * Otherwise this is ET_DYN, and we are searching for a location 2838 * that can hold the memory space required. If the image is 2839 * pre-linked, LOADDR will be non-zero, and the kernel should 2840 * honor that address if it happens to be free. 2841 * 2842 * In both cases, we will overwrite pages in this range with mappings 2843 * from the executable. 2844 */ 2845 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2846 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2847 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2848 -1, 0); 2849 if (load_addr == -1) { 2850 goto exit_mmap; 2851 } 2852 load_bias = load_addr - loaddr; 2853 2854 if (elf_is_fdpic(ehdr)) { 2855 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2856 g_malloc(sizeof(*loadsegs) * info->nsegs); 2857 2858 for (i = 0; i < ehdr->e_phnum; ++i) { 2859 switch (phdr[i].p_type) { 2860 case PT_DYNAMIC: 2861 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2862 break; 2863 case PT_LOAD: 2864 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2865 loadsegs->p_vaddr = phdr[i].p_vaddr; 2866 loadsegs->p_memsz = phdr[i].p_memsz; 2867 ++loadsegs; 2868 break; 2869 } 2870 } 2871 } 2872 2873 info->load_bias = load_bias; 2874 info->code_offset = load_bias; 2875 info->data_offset = load_bias; 2876 info->load_addr = load_addr; 2877 info->entry = ehdr->e_entry + load_bias; 2878 info->start_code = -1; 2879 info->end_code = 0; 2880 info->start_data = -1; 2881 info->end_data = 0; 2882 info->brk = 0; 2883 info->elf_flags = ehdr->e_flags; 2884 2885 prot_exec = PROT_EXEC; 2886 #ifdef TARGET_AARCH64 2887 /* 2888 * If the BTI feature is present, this indicates that the executable 2889 * pages of the startup binary should be mapped with PROT_BTI, so that 2890 * branch targets are enforced. 2891 * 2892 * The startup binary is either the interpreter or the static executable. 2893 * The interpreter is responsible for all pages of a dynamic executable. 2894 * 2895 * Elf notes are backward compatible to older cpus. 2896 * Do not enable BTI unless it is supported. 2897 */ 2898 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 2899 && (pinterp_name == NULL || *pinterp_name == 0) 2900 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 2901 prot_exec |= TARGET_PROT_BTI; 2902 } 2903 #endif 2904 2905 for (i = 0; i < ehdr->e_phnum; i++) { 2906 struct elf_phdr *eppnt = phdr + i; 2907 if (eppnt->p_type == PT_LOAD) { 2908 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2909 int elf_prot = 0; 2910 2911 if (eppnt->p_flags & PF_R) { 2912 elf_prot |= PROT_READ; 2913 } 2914 if (eppnt->p_flags & PF_W) { 2915 elf_prot |= PROT_WRITE; 2916 } 2917 if (eppnt->p_flags & PF_X) { 2918 elf_prot |= prot_exec; 2919 } 2920 2921 vaddr = load_bias + eppnt->p_vaddr; 2922 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2923 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2924 2925 vaddr_ef = vaddr + eppnt->p_filesz; 2926 vaddr_em = vaddr + eppnt->p_memsz; 2927 2928 /* 2929 * Some segments may be completely empty, with a non-zero p_memsz 2930 * but no backing file segment. 2931 */ 2932 if (eppnt->p_filesz != 0) { 2933 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2934 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2935 MAP_PRIVATE | MAP_FIXED, 2936 image_fd, eppnt->p_offset - vaddr_po); 2937 2938 if (error == -1) { 2939 goto exit_mmap; 2940 } 2941 2942 /* 2943 * If the load segment requests extra zeros (e.g. bss), map it. 2944 */ 2945 if (eppnt->p_filesz < eppnt->p_memsz) { 2946 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2947 } 2948 } else if (eppnt->p_memsz != 0) { 2949 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 2950 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2951 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 2952 -1, 0); 2953 2954 if (error == -1) { 2955 goto exit_mmap; 2956 } 2957 } 2958 2959 /* Find the full program boundaries. */ 2960 if (elf_prot & PROT_EXEC) { 2961 if (vaddr < info->start_code) { 2962 info->start_code = vaddr; 2963 } 2964 if (vaddr_ef > info->end_code) { 2965 info->end_code = vaddr_ef; 2966 } 2967 } 2968 if (elf_prot & PROT_WRITE) { 2969 if (vaddr < info->start_data) { 2970 info->start_data = vaddr; 2971 } 2972 if (vaddr_ef > info->end_data) { 2973 info->end_data = vaddr_ef; 2974 } 2975 } 2976 if (vaddr_em > info->brk) { 2977 info->brk = vaddr_em; 2978 } 2979 #ifdef TARGET_MIPS 2980 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2981 Mips_elf_abiflags_v0 abiflags; 2982 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2983 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 2984 goto exit_errmsg; 2985 } 2986 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2987 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2988 sizeof(Mips_elf_abiflags_v0)); 2989 } else { 2990 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2991 eppnt->p_offset); 2992 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2993 goto exit_read; 2994 } 2995 } 2996 bswap_mips_abiflags(&abiflags); 2997 info->fp_abi = abiflags.fp_abi; 2998 #endif 2999 } 3000 } 3001 3002 if (info->end_data == 0) { 3003 info->start_data = info->end_code; 3004 info->end_data = info->end_code; 3005 } 3006 3007 if (qemu_log_enabled()) { 3008 load_symbols(ehdr, image_fd, load_bias); 3009 } 3010 3011 mmap_unlock(); 3012 3013 close(image_fd); 3014 return; 3015 3016 exit_read: 3017 if (retval >= 0) { 3018 error_setg(&err, "Incomplete read of file header"); 3019 } else { 3020 error_setg_errno(&err, errno, "Error reading file header"); 3021 } 3022 goto exit_errmsg; 3023 exit_mmap: 3024 error_setg_errno(&err, errno, "Error mapping file"); 3025 goto exit_errmsg; 3026 exit_errmsg: 3027 error_reportf_err(err, "%s: ", image_name); 3028 exit(-1); 3029 } 3030 3031 static void load_elf_interp(const char *filename, struct image_info *info, 3032 char bprm_buf[BPRM_BUF_SIZE]) 3033 { 3034 int fd, retval; 3035 Error *err = NULL; 3036 3037 fd = open(path(filename), O_RDONLY); 3038 if (fd < 0) { 3039 error_setg_file_open(&err, errno, filename); 3040 error_report_err(err); 3041 exit(-1); 3042 } 3043 3044 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3045 if (retval < 0) { 3046 error_setg_errno(&err, errno, "Error reading file header"); 3047 error_reportf_err(err, "%s: ", filename); 3048 exit(-1); 3049 } 3050 3051 if (retval < BPRM_BUF_SIZE) { 3052 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 3053 } 3054 3055 load_elf_image(filename, fd, info, NULL, bprm_buf); 3056 } 3057 3058 static int symfind(const void *s0, const void *s1) 3059 { 3060 target_ulong addr = *(target_ulong *)s0; 3061 struct elf_sym *sym = (struct elf_sym *)s1; 3062 int result = 0; 3063 if (addr < sym->st_value) { 3064 result = -1; 3065 } else if (addr >= sym->st_value + sym->st_size) { 3066 result = 1; 3067 } 3068 return result; 3069 } 3070 3071 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 3072 { 3073 #if ELF_CLASS == ELFCLASS32 3074 struct elf_sym *syms = s->disas_symtab.elf32; 3075 #else 3076 struct elf_sym *syms = s->disas_symtab.elf64; 3077 #endif 3078 3079 // binary search 3080 struct elf_sym *sym; 3081 3082 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3083 if (sym != NULL) { 3084 return s->disas_strtab + sym->st_name; 3085 } 3086 3087 return ""; 3088 } 3089 3090 /* FIXME: This should use elf_ops.h */ 3091 static int symcmp(const void *s0, const void *s1) 3092 { 3093 struct elf_sym *sym0 = (struct elf_sym *)s0; 3094 struct elf_sym *sym1 = (struct elf_sym *)s1; 3095 return (sym0->st_value < sym1->st_value) 3096 ? -1 3097 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3098 } 3099 3100 /* Best attempt to load symbols from this ELF object. */ 3101 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3102 { 3103 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3104 uint64_t segsz; 3105 struct elf_shdr *shdr; 3106 char *strings = NULL; 3107 struct syminfo *s = NULL; 3108 struct elf_sym *new_syms, *syms = NULL; 3109 3110 shnum = hdr->e_shnum; 3111 i = shnum * sizeof(struct elf_shdr); 3112 shdr = (struct elf_shdr *)alloca(i); 3113 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3114 return; 3115 } 3116 3117 bswap_shdr(shdr, shnum); 3118 for (i = 0; i < shnum; ++i) { 3119 if (shdr[i].sh_type == SHT_SYMTAB) { 3120 sym_idx = i; 3121 str_idx = shdr[i].sh_link; 3122 goto found; 3123 } 3124 } 3125 3126 /* There will be no symbol table if the file was stripped. */ 3127 return; 3128 3129 found: 3130 /* Now know where the strtab and symtab are. Snarf them. */ 3131 s = g_try_new(struct syminfo, 1); 3132 if (!s) { 3133 goto give_up; 3134 } 3135 3136 segsz = shdr[str_idx].sh_size; 3137 s->disas_strtab = strings = g_try_malloc(segsz); 3138 if (!strings || 3139 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3140 goto give_up; 3141 } 3142 3143 segsz = shdr[sym_idx].sh_size; 3144 syms = g_try_malloc(segsz); 3145 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3146 goto give_up; 3147 } 3148 3149 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3150 /* Implausibly large symbol table: give up rather than ploughing 3151 * on with the number of symbols calculation overflowing 3152 */ 3153 goto give_up; 3154 } 3155 nsyms = segsz / sizeof(struct elf_sym); 3156 for (i = 0; i < nsyms; ) { 3157 bswap_sym(syms + i); 3158 /* Throw away entries which we do not need. */ 3159 if (syms[i].st_shndx == SHN_UNDEF 3160 || syms[i].st_shndx >= SHN_LORESERVE 3161 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3162 if (i < --nsyms) { 3163 syms[i] = syms[nsyms]; 3164 } 3165 } else { 3166 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3167 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3168 syms[i].st_value &= ~(target_ulong)1; 3169 #endif 3170 syms[i].st_value += load_bias; 3171 i++; 3172 } 3173 } 3174 3175 /* No "useful" symbol. */ 3176 if (nsyms == 0) { 3177 goto give_up; 3178 } 3179 3180 /* Attempt to free the storage associated with the local symbols 3181 that we threw away. Whether or not this has any effect on the 3182 memory allocation depends on the malloc implementation and how 3183 many symbols we managed to discard. */ 3184 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3185 if (new_syms == NULL) { 3186 goto give_up; 3187 } 3188 syms = new_syms; 3189 3190 qsort(syms, nsyms, sizeof(*syms), symcmp); 3191 3192 s->disas_num_syms = nsyms; 3193 #if ELF_CLASS == ELFCLASS32 3194 s->disas_symtab.elf32 = syms; 3195 #else 3196 s->disas_symtab.elf64 = syms; 3197 #endif 3198 s->lookup_symbol = lookup_symbolxx; 3199 s->next = syminfos; 3200 syminfos = s; 3201 3202 return; 3203 3204 give_up: 3205 g_free(s); 3206 g_free(strings); 3207 g_free(syms); 3208 } 3209 3210 uint32_t get_elf_eflags(int fd) 3211 { 3212 struct elfhdr ehdr; 3213 off_t offset; 3214 int ret; 3215 3216 /* Read ELF header */ 3217 offset = lseek(fd, 0, SEEK_SET); 3218 if (offset == (off_t) -1) { 3219 return 0; 3220 } 3221 ret = read(fd, &ehdr, sizeof(ehdr)); 3222 if (ret < sizeof(ehdr)) { 3223 return 0; 3224 } 3225 offset = lseek(fd, offset, SEEK_SET); 3226 if (offset == (off_t) -1) { 3227 return 0; 3228 } 3229 3230 /* Check ELF signature */ 3231 if (!elf_check_ident(&ehdr)) { 3232 return 0; 3233 } 3234 3235 /* check header */ 3236 bswap_ehdr(&ehdr); 3237 if (!elf_check_ehdr(&ehdr)) { 3238 return 0; 3239 } 3240 3241 /* return architecture id */ 3242 return ehdr.e_flags; 3243 } 3244 3245 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3246 { 3247 struct image_info interp_info; 3248 struct elfhdr elf_ex; 3249 char *elf_interpreter = NULL; 3250 char *scratch; 3251 3252 memset(&interp_info, 0, sizeof(interp_info)); 3253 #ifdef TARGET_MIPS 3254 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3255 #endif 3256 3257 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3258 3259 load_elf_image(bprm->filename, bprm->fd, info, 3260 &elf_interpreter, bprm->buf); 3261 3262 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3263 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3264 when we load the interpreter. */ 3265 elf_ex = *(struct elfhdr *)bprm->buf; 3266 3267 /* Do this so that we can load the interpreter, if need be. We will 3268 change some of these later */ 3269 bprm->p = setup_arg_pages(bprm, info); 3270 3271 scratch = g_new0(char, TARGET_PAGE_SIZE); 3272 if (STACK_GROWS_DOWN) { 3273 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3274 bprm->p, info->stack_limit); 3275 info->file_string = bprm->p; 3276 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3277 bprm->p, info->stack_limit); 3278 info->env_strings = bprm->p; 3279 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3280 bprm->p, info->stack_limit); 3281 info->arg_strings = bprm->p; 3282 } else { 3283 info->arg_strings = bprm->p; 3284 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3285 bprm->p, info->stack_limit); 3286 info->env_strings = bprm->p; 3287 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3288 bprm->p, info->stack_limit); 3289 info->file_string = bprm->p; 3290 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3291 bprm->p, info->stack_limit); 3292 } 3293 3294 g_free(scratch); 3295 3296 if (!bprm->p) { 3297 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3298 exit(-1); 3299 } 3300 3301 if (elf_interpreter) { 3302 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3303 3304 /* If the program interpreter is one of these two, then assume 3305 an iBCS2 image. Otherwise assume a native linux image. */ 3306 3307 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3308 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3309 info->personality = PER_SVR4; 3310 3311 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3312 and some applications "depend" upon this behavior. Since 3313 we do not have the power to recompile these, we emulate 3314 the SVr4 behavior. Sigh. */ 3315 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3316 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3317 } 3318 #ifdef TARGET_MIPS 3319 info->interp_fp_abi = interp_info.fp_abi; 3320 #endif 3321 } 3322 3323 /* 3324 * TODO: load a vdso, which would also contain the signal trampolines. 3325 * Otherwise, allocate a private page to hold them. 3326 */ 3327 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3328 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3329 PROT_READ | PROT_WRITE, 3330 MAP_PRIVATE | MAP_ANON, -1, 0); 3331 if (tramp_page == -1) { 3332 return -errno; 3333 } 3334 3335 setup_sigtramp(tramp_page); 3336 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3337 } 3338 3339 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3340 info, (elf_interpreter ? &interp_info : NULL)); 3341 info->start_stack = bprm->p; 3342 3343 /* If we have an interpreter, set that as the program's entry point. 3344 Copy the load_bias as well, to help PPC64 interpret the entry 3345 point as a function descriptor. Do this after creating elf tables 3346 so that we copy the original program entry point into the AUXV. */ 3347 if (elf_interpreter) { 3348 info->load_bias = interp_info.load_bias; 3349 info->entry = interp_info.entry; 3350 g_free(elf_interpreter); 3351 } 3352 3353 #ifdef USE_ELF_CORE_DUMP 3354 bprm->core_dump = &elf_core_dump; 3355 #endif 3356 3357 /* 3358 * If we reserved extra space for brk, release it now. 3359 * The implementation of do_brk in syscalls.c expects to be able 3360 * to mmap pages in this space. 3361 */ 3362 if (info->reserve_brk) { 3363 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3364 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3365 target_munmap(start_brk, end_brk - start_brk); 3366 } 3367 3368 return 0; 3369 } 3370 3371 #ifdef USE_ELF_CORE_DUMP 3372 /* 3373 * Definitions to generate Intel SVR4-like core files. 3374 * These mostly have the same names as the SVR4 types with "target_elf_" 3375 * tacked on the front to prevent clashes with linux definitions, 3376 * and the typedef forms have been avoided. This is mostly like 3377 * the SVR4 structure, but more Linuxy, with things that Linux does 3378 * not support and which gdb doesn't really use excluded. 3379 * 3380 * Fields we don't dump (their contents is zero) in linux-user qemu 3381 * are marked with XXX. 3382 * 3383 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3384 * 3385 * Porting ELF coredump for target is (quite) simple process. First you 3386 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3387 * the target resides): 3388 * 3389 * #define USE_ELF_CORE_DUMP 3390 * 3391 * Next you define type of register set used for dumping. ELF specification 3392 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3393 * 3394 * typedef <target_regtype> target_elf_greg_t; 3395 * #define ELF_NREG <number of registers> 3396 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3397 * 3398 * Last step is to implement target specific function that copies registers 3399 * from given cpu into just specified register set. Prototype is: 3400 * 3401 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3402 * const CPUArchState *env); 3403 * 3404 * Parameters: 3405 * regs - copy register values into here (allocated and zeroed by caller) 3406 * env - copy registers from here 3407 * 3408 * Example for ARM target is provided in this file. 3409 */ 3410 3411 /* An ELF note in memory */ 3412 struct memelfnote { 3413 const char *name; 3414 size_t namesz; 3415 size_t namesz_rounded; 3416 int type; 3417 size_t datasz; 3418 size_t datasz_rounded; 3419 void *data; 3420 size_t notesz; 3421 }; 3422 3423 struct target_elf_siginfo { 3424 abi_int si_signo; /* signal number */ 3425 abi_int si_code; /* extra code */ 3426 abi_int si_errno; /* errno */ 3427 }; 3428 3429 struct target_elf_prstatus { 3430 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3431 abi_short pr_cursig; /* Current signal */ 3432 abi_ulong pr_sigpend; /* XXX */ 3433 abi_ulong pr_sighold; /* XXX */ 3434 target_pid_t pr_pid; 3435 target_pid_t pr_ppid; 3436 target_pid_t pr_pgrp; 3437 target_pid_t pr_sid; 3438 struct target_timeval pr_utime; /* XXX User time */ 3439 struct target_timeval pr_stime; /* XXX System time */ 3440 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3441 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3442 target_elf_gregset_t pr_reg; /* GP registers */ 3443 abi_int pr_fpvalid; /* XXX */ 3444 }; 3445 3446 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3447 3448 struct target_elf_prpsinfo { 3449 char pr_state; /* numeric process state */ 3450 char pr_sname; /* char for pr_state */ 3451 char pr_zomb; /* zombie */ 3452 char pr_nice; /* nice val */ 3453 abi_ulong pr_flag; /* flags */ 3454 target_uid_t pr_uid; 3455 target_gid_t pr_gid; 3456 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3457 /* Lots missing */ 3458 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3459 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3460 }; 3461 3462 /* Here is the structure in which status of each thread is captured. */ 3463 struct elf_thread_status { 3464 QTAILQ_ENTRY(elf_thread_status) ets_link; 3465 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3466 #if 0 3467 elf_fpregset_t fpu; /* NT_PRFPREG */ 3468 struct task_struct *thread; 3469 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3470 #endif 3471 struct memelfnote notes[1]; 3472 int num_notes; 3473 }; 3474 3475 struct elf_note_info { 3476 struct memelfnote *notes; 3477 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3478 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3479 3480 QTAILQ_HEAD(, elf_thread_status) thread_list; 3481 #if 0 3482 /* 3483 * Current version of ELF coredump doesn't support 3484 * dumping fp regs etc. 3485 */ 3486 elf_fpregset_t *fpu; 3487 elf_fpxregset_t *xfpu; 3488 int thread_status_size; 3489 #endif 3490 int notes_size; 3491 int numnote; 3492 }; 3493 3494 struct vm_area_struct { 3495 target_ulong vma_start; /* start vaddr of memory region */ 3496 target_ulong vma_end; /* end vaddr of memory region */ 3497 abi_ulong vma_flags; /* protection etc. flags for the region */ 3498 QTAILQ_ENTRY(vm_area_struct) vma_link; 3499 }; 3500 3501 struct mm_struct { 3502 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3503 int mm_count; /* number of mappings */ 3504 }; 3505 3506 static struct mm_struct *vma_init(void); 3507 static void vma_delete(struct mm_struct *); 3508 static int vma_add_mapping(struct mm_struct *, target_ulong, 3509 target_ulong, abi_ulong); 3510 static int vma_get_mapping_count(const struct mm_struct *); 3511 static struct vm_area_struct *vma_first(const struct mm_struct *); 3512 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3513 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3514 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3515 unsigned long flags); 3516 3517 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3518 static void fill_note(struct memelfnote *, const char *, int, 3519 unsigned int, void *); 3520 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3521 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3522 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3523 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3524 static size_t note_size(const struct memelfnote *); 3525 static void free_note_info(struct elf_note_info *); 3526 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3527 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3528 3529 static int dump_write(int, const void *, size_t); 3530 static int write_note(struct memelfnote *, int); 3531 static int write_note_info(struct elf_note_info *, int); 3532 3533 #ifdef BSWAP_NEEDED 3534 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3535 { 3536 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3537 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3538 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3539 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3540 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3541 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3542 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3543 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3544 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3545 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3546 /* cpu times are not filled, so we skip them */ 3547 /* regs should be in correct format already */ 3548 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3549 } 3550 3551 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3552 { 3553 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3554 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3555 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3556 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3557 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3558 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3559 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3560 } 3561 3562 static void bswap_note(struct elf_note *en) 3563 { 3564 bswap32s(&en->n_namesz); 3565 bswap32s(&en->n_descsz); 3566 bswap32s(&en->n_type); 3567 } 3568 #else 3569 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3570 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3571 static inline void bswap_note(struct elf_note *en) { } 3572 #endif /* BSWAP_NEEDED */ 3573 3574 /* 3575 * Minimal support for linux memory regions. These are needed 3576 * when we are finding out what memory exactly belongs to 3577 * emulated process. No locks needed here, as long as 3578 * thread that received the signal is stopped. 3579 */ 3580 3581 static struct mm_struct *vma_init(void) 3582 { 3583 struct mm_struct *mm; 3584 3585 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3586 return (NULL); 3587 3588 mm->mm_count = 0; 3589 QTAILQ_INIT(&mm->mm_mmap); 3590 3591 return (mm); 3592 } 3593 3594 static void vma_delete(struct mm_struct *mm) 3595 { 3596 struct vm_area_struct *vma; 3597 3598 while ((vma = vma_first(mm)) != NULL) { 3599 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3600 g_free(vma); 3601 } 3602 g_free(mm); 3603 } 3604 3605 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3606 target_ulong end, abi_ulong flags) 3607 { 3608 struct vm_area_struct *vma; 3609 3610 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3611 return (-1); 3612 3613 vma->vma_start = start; 3614 vma->vma_end = end; 3615 vma->vma_flags = flags; 3616 3617 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3618 mm->mm_count++; 3619 3620 return (0); 3621 } 3622 3623 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3624 { 3625 return (QTAILQ_FIRST(&mm->mm_mmap)); 3626 } 3627 3628 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3629 { 3630 return (QTAILQ_NEXT(vma, vma_link)); 3631 } 3632 3633 static int vma_get_mapping_count(const struct mm_struct *mm) 3634 { 3635 return (mm->mm_count); 3636 } 3637 3638 /* 3639 * Calculate file (dump) size of given memory region. 3640 */ 3641 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3642 { 3643 /* if we cannot even read the first page, skip it */ 3644 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3645 return (0); 3646 3647 /* 3648 * Usually we don't dump executable pages as they contain 3649 * non-writable code that debugger can read directly from 3650 * target library etc. However, thread stacks are marked 3651 * also executable so we read in first page of given region 3652 * and check whether it contains elf header. If there is 3653 * no elf header, we dump it. 3654 */ 3655 if (vma->vma_flags & PROT_EXEC) { 3656 char page[TARGET_PAGE_SIZE]; 3657 3658 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3659 return 0; 3660 } 3661 if ((page[EI_MAG0] == ELFMAG0) && 3662 (page[EI_MAG1] == ELFMAG1) && 3663 (page[EI_MAG2] == ELFMAG2) && 3664 (page[EI_MAG3] == ELFMAG3)) { 3665 /* 3666 * Mappings are possibly from ELF binary. Don't dump 3667 * them. 3668 */ 3669 return (0); 3670 } 3671 } 3672 3673 return (vma->vma_end - vma->vma_start); 3674 } 3675 3676 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3677 unsigned long flags) 3678 { 3679 struct mm_struct *mm = (struct mm_struct *)priv; 3680 3681 vma_add_mapping(mm, start, end, flags); 3682 return (0); 3683 } 3684 3685 static void fill_note(struct memelfnote *note, const char *name, int type, 3686 unsigned int sz, void *data) 3687 { 3688 unsigned int namesz; 3689 3690 namesz = strlen(name) + 1; 3691 note->name = name; 3692 note->namesz = namesz; 3693 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3694 note->type = type; 3695 note->datasz = sz; 3696 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3697 3698 note->data = data; 3699 3700 /* 3701 * We calculate rounded up note size here as specified by 3702 * ELF document. 3703 */ 3704 note->notesz = sizeof (struct elf_note) + 3705 note->namesz_rounded + note->datasz_rounded; 3706 } 3707 3708 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3709 uint32_t flags) 3710 { 3711 (void) memset(elf, 0, sizeof(*elf)); 3712 3713 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3714 elf->e_ident[EI_CLASS] = ELF_CLASS; 3715 elf->e_ident[EI_DATA] = ELF_DATA; 3716 elf->e_ident[EI_VERSION] = EV_CURRENT; 3717 elf->e_ident[EI_OSABI] = ELF_OSABI; 3718 3719 elf->e_type = ET_CORE; 3720 elf->e_machine = machine; 3721 elf->e_version = EV_CURRENT; 3722 elf->e_phoff = sizeof(struct elfhdr); 3723 elf->e_flags = flags; 3724 elf->e_ehsize = sizeof(struct elfhdr); 3725 elf->e_phentsize = sizeof(struct elf_phdr); 3726 elf->e_phnum = segs; 3727 3728 bswap_ehdr(elf); 3729 } 3730 3731 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3732 { 3733 phdr->p_type = PT_NOTE; 3734 phdr->p_offset = offset; 3735 phdr->p_vaddr = 0; 3736 phdr->p_paddr = 0; 3737 phdr->p_filesz = sz; 3738 phdr->p_memsz = 0; 3739 phdr->p_flags = 0; 3740 phdr->p_align = 0; 3741 3742 bswap_phdr(phdr, 1); 3743 } 3744 3745 static size_t note_size(const struct memelfnote *note) 3746 { 3747 return (note->notesz); 3748 } 3749 3750 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3751 const TaskState *ts, int signr) 3752 { 3753 (void) memset(prstatus, 0, sizeof (*prstatus)); 3754 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3755 prstatus->pr_pid = ts->ts_tid; 3756 prstatus->pr_ppid = getppid(); 3757 prstatus->pr_pgrp = getpgrp(); 3758 prstatus->pr_sid = getsid(0); 3759 3760 bswap_prstatus(prstatus); 3761 } 3762 3763 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3764 { 3765 char *base_filename; 3766 unsigned int i, len; 3767 3768 (void) memset(psinfo, 0, sizeof (*psinfo)); 3769 3770 len = ts->info->env_strings - ts->info->arg_strings; 3771 if (len >= ELF_PRARGSZ) 3772 len = ELF_PRARGSZ - 1; 3773 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 3774 return -EFAULT; 3775 } 3776 for (i = 0; i < len; i++) 3777 if (psinfo->pr_psargs[i] == 0) 3778 psinfo->pr_psargs[i] = ' '; 3779 psinfo->pr_psargs[len] = 0; 3780 3781 psinfo->pr_pid = getpid(); 3782 psinfo->pr_ppid = getppid(); 3783 psinfo->pr_pgrp = getpgrp(); 3784 psinfo->pr_sid = getsid(0); 3785 psinfo->pr_uid = getuid(); 3786 psinfo->pr_gid = getgid(); 3787 3788 base_filename = g_path_get_basename(ts->bprm->filename); 3789 /* 3790 * Using strncpy here is fine: at max-length, 3791 * this field is not NUL-terminated. 3792 */ 3793 (void) strncpy(psinfo->pr_fname, base_filename, 3794 sizeof(psinfo->pr_fname)); 3795 3796 g_free(base_filename); 3797 bswap_psinfo(psinfo); 3798 return (0); 3799 } 3800 3801 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3802 { 3803 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3804 elf_addr_t orig_auxv = auxv; 3805 void *ptr; 3806 int len = ts->info->auxv_len; 3807 3808 /* 3809 * Auxiliary vector is stored in target process stack. It contains 3810 * {type, value} pairs that we need to dump into note. This is not 3811 * strictly necessary but we do it here for sake of completeness. 3812 */ 3813 3814 /* read in whole auxv vector and copy it to memelfnote */ 3815 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3816 if (ptr != NULL) { 3817 fill_note(note, "CORE", NT_AUXV, len, ptr); 3818 unlock_user(ptr, auxv, len); 3819 } 3820 } 3821 3822 /* 3823 * Constructs name of coredump file. We have following convention 3824 * for the name: 3825 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3826 * 3827 * Returns the filename 3828 */ 3829 static char *core_dump_filename(const TaskState *ts) 3830 { 3831 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 3832 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 3833 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 3834 3835 return g_strdup_printf("qemu_%s_%s_%d.core", 3836 base_filename, nowstr, (int)getpid()); 3837 } 3838 3839 static int dump_write(int fd, const void *ptr, size_t size) 3840 { 3841 const char *bufp = (const char *)ptr; 3842 ssize_t bytes_written, bytes_left; 3843 struct rlimit dumpsize; 3844 off_t pos; 3845 3846 bytes_written = 0; 3847 getrlimit(RLIMIT_CORE, &dumpsize); 3848 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3849 if (errno == ESPIPE) { /* not a seekable stream */ 3850 bytes_left = size; 3851 } else { 3852 return pos; 3853 } 3854 } else { 3855 if (dumpsize.rlim_cur <= pos) { 3856 return -1; 3857 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3858 bytes_left = size; 3859 } else { 3860 size_t limit_left=dumpsize.rlim_cur - pos; 3861 bytes_left = limit_left >= size ? size : limit_left ; 3862 } 3863 } 3864 3865 /* 3866 * In normal conditions, single write(2) should do but 3867 * in case of socket etc. this mechanism is more portable. 3868 */ 3869 do { 3870 bytes_written = write(fd, bufp, bytes_left); 3871 if (bytes_written < 0) { 3872 if (errno == EINTR) 3873 continue; 3874 return (-1); 3875 } else if (bytes_written == 0) { /* eof */ 3876 return (-1); 3877 } 3878 bufp += bytes_written; 3879 bytes_left -= bytes_written; 3880 } while (bytes_left > 0); 3881 3882 return (0); 3883 } 3884 3885 static int write_note(struct memelfnote *men, int fd) 3886 { 3887 struct elf_note en; 3888 3889 en.n_namesz = men->namesz; 3890 en.n_type = men->type; 3891 en.n_descsz = men->datasz; 3892 3893 bswap_note(&en); 3894 3895 if (dump_write(fd, &en, sizeof(en)) != 0) 3896 return (-1); 3897 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3898 return (-1); 3899 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3900 return (-1); 3901 3902 return (0); 3903 } 3904 3905 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3906 { 3907 CPUState *cpu = env_cpu((CPUArchState *)env); 3908 TaskState *ts = (TaskState *)cpu->opaque; 3909 struct elf_thread_status *ets; 3910 3911 ets = g_malloc0(sizeof (*ets)); 3912 ets->num_notes = 1; /* only prstatus is dumped */ 3913 fill_prstatus(&ets->prstatus, ts, 0); 3914 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3915 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3916 &ets->prstatus); 3917 3918 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3919 3920 info->notes_size += note_size(&ets->notes[0]); 3921 } 3922 3923 static void init_note_info(struct elf_note_info *info) 3924 { 3925 /* Initialize the elf_note_info structure so that it is at 3926 * least safe to call free_note_info() on it. Must be 3927 * called before calling fill_note_info(). 3928 */ 3929 memset(info, 0, sizeof (*info)); 3930 QTAILQ_INIT(&info->thread_list); 3931 } 3932 3933 static int fill_note_info(struct elf_note_info *info, 3934 long signr, const CPUArchState *env) 3935 { 3936 #define NUMNOTES 3 3937 CPUState *cpu = env_cpu((CPUArchState *)env); 3938 TaskState *ts = (TaskState *)cpu->opaque; 3939 int i; 3940 3941 info->notes = g_new0(struct memelfnote, NUMNOTES); 3942 if (info->notes == NULL) 3943 return (-ENOMEM); 3944 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3945 if (info->prstatus == NULL) 3946 return (-ENOMEM); 3947 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3948 if (info->prstatus == NULL) 3949 return (-ENOMEM); 3950 3951 /* 3952 * First fill in status (and registers) of current thread 3953 * including process info & aux vector. 3954 */ 3955 fill_prstatus(info->prstatus, ts, signr); 3956 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3957 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3958 sizeof (*info->prstatus), info->prstatus); 3959 fill_psinfo(info->psinfo, ts); 3960 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3961 sizeof (*info->psinfo), info->psinfo); 3962 fill_auxv_note(&info->notes[2], ts); 3963 info->numnote = 3; 3964 3965 info->notes_size = 0; 3966 for (i = 0; i < info->numnote; i++) 3967 info->notes_size += note_size(&info->notes[i]); 3968 3969 /* read and fill status of all threads */ 3970 cpu_list_lock(); 3971 CPU_FOREACH(cpu) { 3972 if (cpu == thread_cpu) { 3973 continue; 3974 } 3975 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3976 } 3977 cpu_list_unlock(); 3978 3979 return (0); 3980 } 3981 3982 static void free_note_info(struct elf_note_info *info) 3983 { 3984 struct elf_thread_status *ets; 3985 3986 while (!QTAILQ_EMPTY(&info->thread_list)) { 3987 ets = QTAILQ_FIRST(&info->thread_list); 3988 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3989 g_free(ets); 3990 } 3991 3992 g_free(info->prstatus); 3993 g_free(info->psinfo); 3994 g_free(info->notes); 3995 } 3996 3997 static int write_note_info(struct elf_note_info *info, int fd) 3998 { 3999 struct elf_thread_status *ets; 4000 int i, error = 0; 4001 4002 /* write prstatus, psinfo and auxv for current thread */ 4003 for (i = 0; i < info->numnote; i++) 4004 if ((error = write_note(&info->notes[i], fd)) != 0) 4005 return (error); 4006 4007 /* write prstatus for each thread */ 4008 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 4009 if ((error = write_note(&ets->notes[0], fd)) != 0) 4010 return (error); 4011 } 4012 4013 return (0); 4014 } 4015 4016 /* 4017 * Write out ELF coredump. 4018 * 4019 * See documentation of ELF object file format in: 4020 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4021 * 4022 * Coredump format in linux is following: 4023 * 4024 * 0 +----------------------+ \ 4025 * | ELF header | ET_CORE | 4026 * +----------------------+ | 4027 * | ELF program headers | |--- headers 4028 * | - NOTE section | | 4029 * | - PT_LOAD sections | | 4030 * +----------------------+ / 4031 * | NOTEs: | 4032 * | - NT_PRSTATUS | 4033 * | - NT_PRSINFO | 4034 * | - NT_AUXV | 4035 * +----------------------+ <-- aligned to target page 4036 * | Process memory dump | 4037 * : : 4038 * . . 4039 * : : 4040 * | | 4041 * +----------------------+ 4042 * 4043 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4044 * NT_PRSINFO -> struct elf_prpsinfo 4045 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4046 * 4047 * Format follows System V format as close as possible. Current 4048 * version limitations are as follows: 4049 * - no floating point registers are dumped 4050 * 4051 * Function returns 0 in case of success, negative errno otherwise. 4052 * 4053 * TODO: make this work also during runtime: it should be 4054 * possible to force coredump from running process and then 4055 * continue processing. For example qemu could set up SIGUSR2 4056 * handler (provided that target process haven't registered 4057 * handler for that) that does the dump when signal is received. 4058 */ 4059 static int elf_core_dump(int signr, const CPUArchState *env) 4060 { 4061 const CPUState *cpu = env_cpu((CPUArchState *)env); 4062 const TaskState *ts = (const TaskState *)cpu->opaque; 4063 struct vm_area_struct *vma = NULL; 4064 g_autofree char *corefile = NULL; 4065 struct elf_note_info info; 4066 struct elfhdr elf; 4067 struct elf_phdr phdr; 4068 struct rlimit dumpsize; 4069 struct mm_struct *mm = NULL; 4070 off_t offset = 0, data_offset = 0; 4071 int segs = 0; 4072 int fd = -1; 4073 4074 init_note_info(&info); 4075 4076 errno = 0; 4077 getrlimit(RLIMIT_CORE, &dumpsize); 4078 if (dumpsize.rlim_cur == 0) 4079 return 0; 4080 4081 corefile = core_dump_filename(ts); 4082 4083 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4084 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4085 return (-errno); 4086 4087 /* 4088 * Walk through target process memory mappings and 4089 * set up structure containing this information. After 4090 * this point vma_xxx functions can be used. 4091 */ 4092 if ((mm = vma_init()) == NULL) 4093 goto out; 4094 4095 walk_memory_regions(mm, vma_walker); 4096 segs = vma_get_mapping_count(mm); 4097 4098 /* 4099 * Construct valid coredump ELF header. We also 4100 * add one more segment for notes. 4101 */ 4102 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4103 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4104 goto out; 4105 4106 /* fill in the in-memory version of notes */ 4107 if (fill_note_info(&info, signr, env) < 0) 4108 goto out; 4109 4110 offset += sizeof (elf); /* elf header */ 4111 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4112 4113 /* write out notes program header */ 4114 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4115 4116 offset += info.notes_size; 4117 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4118 goto out; 4119 4120 /* 4121 * ELF specification wants data to start at page boundary so 4122 * we align it here. 4123 */ 4124 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4125 4126 /* 4127 * Write program headers for memory regions mapped in 4128 * the target process. 4129 */ 4130 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4131 (void) memset(&phdr, 0, sizeof (phdr)); 4132 4133 phdr.p_type = PT_LOAD; 4134 phdr.p_offset = offset; 4135 phdr.p_vaddr = vma->vma_start; 4136 phdr.p_paddr = 0; 4137 phdr.p_filesz = vma_dump_size(vma); 4138 offset += phdr.p_filesz; 4139 phdr.p_memsz = vma->vma_end - vma->vma_start; 4140 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4141 if (vma->vma_flags & PROT_WRITE) 4142 phdr.p_flags |= PF_W; 4143 if (vma->vma_flags & PROT_EXEC) 4144 phdr.p_flags |= PF_X; 4145 phdr.p_align = ELF_EXEC_PAGESIZE; 4146 4147 bswap_phdr(&phdr, 1); 4148 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4149 goto out; 4150 } 4151 } 4152 4153 /* 4154 * Next we write notes just after program headers. No 4155 * alignment needed here. 4156 */ 4157 if (write_note_info(&info, fd) < 0) 4158 goto out; 4159 4160 /* align data to page boundary */ 4161 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4162 goto out; 4163 4164 /* 4165 * Finally we can dump process memory into corefile as well. 4166 */ 4167 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4168 abi_ulong addr; 4169 abi_ulong end; 4170 4171 end = vma->vma_start + vma_dump_size(vma); 4172 4173 for (addr = vma->vma_start; addr < end; 4174 addr += TARGET_PAGE_SIZE) { 4175 char page[TARGET_PAGE_SIZE]; 4176 int error; 4177 4178 /* 4179 * Read in page from target process memory and 4180 * write it to coredump file. 4181 */ 4182 error = copy_from_user(page, addr, sizeof (page)); 4183 if (error != 0) { 4184 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4185 addr); 4186 errno = -error; 4187 goto out; 4188 } 4189 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4190 goto out; 4191 } 4192 } 4193 4194 out: 4195 free_note_info(&info); 4196 if (mm != NULL) 4197 vma_delete(mm); 4198 (void) close(fd); 4199 4200 if (errno != 0) 4201 return (-errno); 4202 return (0); 4203 } 4204 #endif /* USE_ELF_CORE_DUMP */ 4205 4206 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4207 { 4208 init_thread(regs, infop); 4209 } 4210