xref: /openbmc/qemu/linux-user/elfload.c (revision 520e210c)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 int info_is_fdpic(struct image_info *info)
82 {
83     return info->personality == PER_LINUX_FDPIC;
84 }
85 
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90 
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95 
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA        ELFDATA2MSB
98 #else
99 #define ELF_DATA        ELFDATA2LSB
100 #endif
101 
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong      target_elf_greg_t;
104 #define tswapreg(ptr)   tswap64(ptr)
105 #else
106 typedef abi_ulong       target_elf_greg_t;
107 #define tswapreg(ptr)   tswapal(ptr)
108 #endif
109 
110 #ifdef USE_UID16
111 typedef abi_ushort      target_uid_t;
112 typedef abi_ushort      target_gid_t;
113 #else
114 typedef abi_uint        target_uid_t;
115 typedef abi_uint        target_gid_t;
116 #endif
117 typedef abi_int         target_pid_t;
118 
119 #ifdef TARGET_I386
120 
121 #define ELF_PLATFORM get_elf_platform()
122 
123 static const char *get_elf_platform(void)
124 {
125     static char elf_platform[] = "i386";
126     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127     if (family > 6)
128         family = 6;
129     if (family >= 3)
130         elf_platform[1] = '0' + family;
131     return elf_platform;
132 }
133 
134 #define ELF_HWCAP get_elf_hwcap()
135 
136 static uint32_t get_elf_hwcap(void)
137 {
138     X86CPU *cpu = X86_CPU(thread_cpu);
139 
140     return cpu->env.features[FEAT_1_EDX];
141 }
142 
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145 
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151     regs->rax = 0;
152     regs->rsp = infop->start_stack;
153     regs->rip = infop->entry;
154 }
155 
156 #define ELF_NREG    27
157 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
158 
159 /*
160  * Note that ELF_NREG should be 29 as there should be place for
161  * TRAPNO and ERR "registers" as well but linux doesn't dump
162  * those.
163  *
164  * See linux kernel: arch/x86/include/asm/elf.h
165  */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168     (*regs)[0] = env->regs[15];
169     (*regs)[1] = env->regs[14];
170     (*regs)[2] = env->regs[13];
171     (*regs)[3] = env->regs[12];
172     (*regs)[4] = env->regs[R_EBP];
173     (*regs)[5] = env->regs[R_EBX];
174     (*regs)[6] = env->regs[11];
175     (*regs)[7] = env->regs[10];
176     (*regs)[8] = env->regs[9];
177     (*regs)[9] = env->regs[8];
178     (*regs)[10] = env->regs[R_EAX];
179     (*regs)[11] = env->regs[R_ECX];
180     (*regs)[12] = env->regs[R_EDX];
181     (*regs)[13] = env->regs[R_ESI];
182     (*regs)[14] = env->regs[R_EDI];
183     (*regs)[15] = env->regs[R_EAX]; /* XXX */
184     (*regs)[16] = env->eip;
185     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186     (*regs)[18] = env->eflags;
187     (*regs)[19] = env->regs[R_ESP];
188     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196 
197 #else
198 
199 #define ELF_START_MMAP 0x80000000
200 
201 /*
202  * This is used to ensure we don't load something for the wrong architecture.
203  */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205 
206 /*
207  * These are used to set parameters in the core dumps.
208  */
209 #define ELF_CLASS       ELFCLASS32
210 #define ELF_ARCH        EM_386
211 
212 static inline void init_thread(struct target_pt_regs *regs,
213                                struct image_info *infop)
214 {
215     regs->esp = infop->start_stack;
216     regs->eip = infop->entry;
217 
218     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219        starts %edx contains a pointer to a function which might be
220        registered using `atexit'.  This provides a mean for the
221        dynamic linker to call DT_FINI functions for shared libraries
222        that have been loaded before the code runs.
223 
224        A value of 0 tells we have no such handler.  */
225     regs->edx = 0;
226 }
227 
228 #define ELF_NREG    17
229 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
230 
231 /*
232  * Note that ELF_NREG should be 19 as there should be place for
233  * TRAPNO and ERR "registers" as well but linux doesn't dump
234  * those.
235  *
236  * See linux kernel: arch/x86/include/asm/elf.h
237  */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240     (*regs)[0] = env->regs[R_EBX];
241     (*regs)[1] = env->regs[R_ECX];
242     (*regs)[2] = env->regs[R_EDX];
243     (*regs)[3] = env->regs[R_ESI];
244     (*regs)[4] = env->regs[R_EDI];
245     (*regs)[5] = env->regs[R_EBP];
246     (*regs)[6] = env->regs[R_EAX];
247     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251     (*regs)[11] = env->regs[R_EAX]; /* XXX */
252     (*regs)[12] = env->eip;
253     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254     (*regs)[14] = env->eflags;
255     (*regs)[15] = env->regs[R_ESP];
256     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259 
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE       4096
262 
263 #endif
264 
265 #ifdef TARGET_ARM
266 
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269 
270 #define ELF_START_MMAP 0x80000000
271 
272 #define ELF_ARCH        EM_ARM
273 #define ELF_CLASS       ELFCLASS32
274 
275 static inline void init_thread(struct target_pt_regs *regs,
276                                struct image_info *infop)
277 {
278     abi_long stack = infop->start_stack;
279     memset(regs, 0, sizeof(*regs));
280 
281     regs->uregs[16] = ARM_CPU_MODE_USR;
282     if (infop->entry & 1) {
283         regs->uregs[16] |= CPSR_T;
284     }
285     regs->uregs[15] = infop->entry & 0xfffffffe;
286     regs->uregs[13] = infop->start_stack;
287     /* FIXME - what to for failure of get_user()? */
288     get_user_ual(regs->uregs[2], stack + 8); /* envp */
289     get_user_ual(regs->uregs[1], stack + 4); /* envp */
290     /* XXX: it seems that r0 is zeroed after ! */
291     regs->uregs[0] = 0;
292     /* For uClinux PIC binaries.  */
293     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294     regs->uregs[10] = infop->start_data;
295 
296     /* Support ARM FDPIC.  */
297     if (info_is_fdpic(infop)) {
298         /* As described in the ABI document, r7 points to the loadmap info
299          * prepared by the kernel. If an interpreter is needed, r8 points
300          * to the interpreter loadmap and r9 points to the interpreter
301          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302          * r9 points to the main program PT_DYNAMIC info.
303          */
304         regs->uregs[7] = infop->loadmap_addr;
305         if (infop->interpreter_loadmap_addr) {
306             /* Executable is dynamically loaded.  */
307             regs->uregs[8] = infop->interpreter_loadmap_addr;
308             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309         } else {
310             regs->uregs[8] = 0;
311             regs->uregs[9] = infop->pt_dynamic_addr;
312         }
313     }
314 }
315 
316 #define ELF_NREG    18
317 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
318 
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321     (*regs)[0] = tswapreg(env->regs[0]);
322     (*regs)[1] = tswapreg(env->regs[1]);
323     (*regs)[2] = tswapreg(env->regs[2]);
324     (*regs)[3] = tswapreg(env->regs[3]);
325     (*regs)[4] = tswapreg(env->regs[4]);
326     (*regs)[5] = tswapreg(env->regs[5]);
327     (*regs)[6] = tswapreg(env->regs[6]);
328     (*regs)[7] = tswapreg(env->regs[7]);
329     (*regs)[8] = tswapreg(env->regs[8]);
330     (*regs)[9] = tswapreg(env->regs[9]);
331     (*regs)[10] = tswapreg(env->regs[10]);
332     (*regs)[11] = tswapreg(env->regs[11]);
333     (*regs)[12] = tswapreg(env->regs[12]);
334     (*regs)[13] = tswapreg(env->regs[13]);
335     (*regs)[14] = tswapreg(env->regs[14]);
336     (*regs)[15] = tswapreg(env->regs[15]);
337 
338     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341 
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE       4096
344 
345 enum
346 {
347     ARM_HWCAP_ARM_SWP       = 1 << 0,
348     ARM_HWCAP_ARM_HALF      = 1 << 1,
349     ARM_HWCAP_ARM_THUMB     = 1 << 2,
350     ARM_HWCAP_ARM_26BIT     = 1 << 3,
351     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352     ARM_HWCAP_ARM_FPA       = 1 << 5,
353     ARM_HWCAP_ARM_VFP       = 1 << 6,
354     ARM_HWCAP_ARM_EDSP      = 1 << 7,
355     ARM_HWCAP_ARM_JAVA      = 1 << 8,
356     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
357     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
358     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
359     ARM_HWCAP_ARM_NEON      = 1 << 12,
360     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
361     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
362     ARM_HWCAP_ARM_TLS       = 1 << 15,
363     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
364     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
365     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
366     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
367     ARM_HWCAP_ARM_LPAE      = 1 << 20,
368     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
369 };
370 
371 enum {
372     ARM_HWCAP2_ARM_AES      = 1 << 0,
373     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
374     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
375     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
376     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
377 };
378 
379 /* The commpage only exists for 32 bit kernels */
380 
381 /* Return 1 if the proposed guest space is suitable for the guest.
382  * Return 0 if the proposed guest space isn't suitable, but another
383  * address space should be tried.
384  * Return -1 if there is no way the proposed guest space can be
385  * valid regardless of the base.
386  * The guest code may leave a page mapped and populate it if the
387  * address is suitable.
388  */
389 static int init_guest_commpage(unsigned long guest_base,
390                                unsigned long guest_size)
391 {
392     unsigned long real_start, test_page_addr;
393 
394     /* We need to check that we can force a fault on access to the
395      * commpage at 0xffff0fxx
396      */
397     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398 
399     /* If the commpage lies within the already allocated guest space,
400      * then there is no way we can allocate it.
401      *
402      * You may be thinking that that this check is redundant because
403      * we already validated the guest size against MAX_RESERVED_VA;
404      * but if qemu_host_page_mask is unusually large, then
405      * test_page_addr may be lower.
406      */
407     if (test_page_addr >= guest_base
408         && test_page_addr < (guest_base + guest_size)) {
409         return -1;
410     }
411 
412     /* Note it needs to be writeable to let us initialise it */
413     real_start = (unsigned long)
414                  mmap((void *)test_page_addr, qemu_host_page_size,
415                      PROT_READ | PROT_WRITE,
416                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417 
418     /* If we can't map it then try another address */
419     if (real_start == -1ul) {
420         return 0;
421     }
422 
423     if (real_start != test_page_addr) {
424         /* OS didn't put the page where we asked - unmap and reject */
425         munmap((void *)real_start, qemu_host_page_size);
426         return 0;
427     }
428 
429     /* Leave the page mapped
430      * Populate it (mmap should have left it all 0'd)
431      */
432 
433     /* Kernel helper versions */
434     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435 
436     /* Now it's populated make it RO */
437     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438         perror("Protecting guest commpage");
439         exit(-1);
440     }
441 
442     return 1; /* All good */
443 }
444 
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447 
448 static uint32_t get_elf_hwcap(void)
449 {
450     ARMCPU *cpu = ARM_CPU(thread_cpu);
451     uint32_t hwcaps = 0;
452 
453     hwcaps |= ARM_HWCAP_ARM_SWP;
454     hwcaps |= ARM_HWCAP_ARM_HALF;
455     hwcaps |= ARM_HWCAP_ARM_THUMB;
456     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457 
458     /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461 
462 #define GET_FEATURE_ID(feat, hwcap) \
463     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464 
465     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
467     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
472     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
474     GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
475     GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
476     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479      * to our VFP_FP16 feature bit.
480      */
481     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
483 
484     return hwcaps;
485 }
486 
487 static uint32_t get_elf_hwcap2(void)
488 {
489     ARMCPU *cpu = ARM_CPU(thread_cpu);
490     uint32_t hwcaps = 0;
491 
492     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
497     return hwcaps;
498 }
499 
500 #undef GET_FEATURE
501 #undef GET_FEATURE_ID
502 
503 #else
504 /* 64 bit ARM definitions */
505 #define ELF_START_MMAP 0x80000000
506 
507 #define ELF_ARCH        EM_AARCH64
508 #define ELF_CLASS       ELFCLASS64
509 #define ELF_PLATFORM    "aarch64"
510 
511 static inline void init_thread(struct target_pt_regs *regs,
512                                struct image_info *infop)
513 {
514     abi_long stack = infop->start_stack;
515     memset(regs, 0, sizeof(*regs));
516 
517     regs->pc = infop->entry & ~0x3ULL;
518     regs->sp = stack;
519 }
520 
521 #define ELF_NREG    34
522 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
523 
524 static void elf_core_copy_regs(target_elf_gregset_t *regs,
525                                const CPUARMState *env)
526 {
527     int i;
528 
529     for (i = 0; i < 32; i++) {
530         (*regs)[i] = tswapreg(env->xregs[i]);
531     }
532     (*regs)[32] = tswapreg(env->pc);
533     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
534 }
535 
536 #define USE_ELF_CORE_DUMP
537 #define ELF_EXEC_PAGESIZE       4096
538 
539 enum {
540     ARM_HWCAP_A64_FP            = 1 << 0,
541     ARM_HWCAP_A64_ASIMD         = 1 << 1,
542     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
543     ARM_HWCAP_A64_AES           = 1 << 3,
544     ARM_HWCAP_A64_PMULL         = 1 << 4,
545     ARM_HWCAP_A64_SHA1          = 1 << 5,
546     ARM_HWCAP_A64_SHA2          = 1 << 6,
547     ARM_HWCAP_A64_CRC32         = 1 << 7,
548     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
549     ARM_HWCAP_A64_FPHP          = 1 << 9,
550     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
551     ARM_HWCAP_A64_CPUID         = 1 << 11,
552     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
553     ARM_HWCAP_A64_JSCVT         = 1 << 13,
554     ARM_HWCAP_A64_FCMA          = 1 << 14,
555     ARM_HWCAP_A64_LRCPC         = 1 << 15,
556     ARM_HWCAP_A64_DCPOP         = 1 << 16,
557     ARM_HWCAP_A64_SHA3          = 1 << 17,
558     ARM_HWCAP_A64_SM3           = 1 << 18,
559     ARM_HWCAP_A64_SM4           = 1 << 19,
560     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
561     ARM_HWCAP_A64_SHA512        = 1 << 21,
562     ARM_HWCAP_A64_SVE           = 1 << 22,
563     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
564     ARM_HWCAP_A64_DIT           = 1 << 24,
565     ARM_HWCAP_A64_USCAT         = 1 << 25,
566     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
567     ARM_HWCAP_A64_FLAGM         = 1 << 27,
568     ARM_HWCAP_A64_SSBS          = 1 << 28,
569     ARM_HWCAP_A64_SB            = 1 << 29,
570     ARM_HWCAP_A64_PACA          = 1 << 30,
571     ARM_HWCAP_A64_PACG          = 1UL << 31,
572 };
573 
574 #define ELF_HWCAP get_elf_hwcap()
575 
576 static uint32_t get_elf_hwcap(void)
577 {
578     ARMCPU *cpu = ARM_CPU(thread_cpu);
579     uint32_t hwcaps = 0;
580 
581     hwcaps |= ARM_HWCAP_A64_FP;
582     hwcaps |= ARM_HWCAP_A64_ASIMD;
583     hwcaps |= ARM_HWCAP_A64_CPUID;
584 
585     /* probe for the extra features */
586 #define GET_FEATURE_ID(feat, hwcap) \
587     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
588 
589     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
590     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
591     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
592     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
593     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
594     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
595     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
596     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
597     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
598     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
599     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
600     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
601     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
602     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
603     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
604     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
605 
606 #undef GET_FEATURE_ID
607 
608     return hwcaps;
609 }
610 
611 #endif /* not TARGET_AARCH64 */
612 #endif /* TARGET_ARM */
613 
614 #ifdef TARGET_SPARC
615 #ifdef TARGET_SPARC64
616 
617 #define ELF_START_MMAP 0x80000000
618 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
619                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
620 #ifndef TARGET_ABI32
621 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
622 #else
623 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
624 #endif
625 
626 #define ELF_CLASS   ELFCLASS64
627 #define ELF_ARCH    EM_SPARCV9
628 
629 #define STACK_BIAS              2047
630 
631 static inline void init_thread(struct target_pt_regs *regs,
632                                struct image_info *infop)
633 {
634 #ifndef TARGET_ABI32
635     regs->tstate = 0;
636 #endif
637     regs->pc = infop->entry;
638     regs->npc = regs->pc + 4;
639     regs->y = 0;
640 #ifdef TARGET_ABI32
641     regs->u_regs[14] = infop->start_stack - 16 * 4;
642 #else
643     if (personality(infop->personality) == PER_LINUX32)
644         regs->u_regs[14] = infop->start_stack - 16 * 4;
645     else
646         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
647 #endif
648 }
649 
650 #else
651 #define ELF_START_MMAP 0x80000000
652 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
653                     | HWCAP_SPARC_MULDIV)
654 
655 #define ELF_CLASS   ELFCLASS32
656 #define ELF_ARCH    EM_SPARC
657 
658 static inline void init_thread(struct target_pt_regs *regs,
659                                struct image_info *infop)
660 {
661     regs->psr = 0;
662     regs->pc = infop->entry;
663     regs->npc = regs->pc + 4;
664     regs->y = 0;
665     regs->u_regs[14] = infop->start_stack - 16 * 4;
666 }
667 
668 #endif
669 #endif
670 
671 #ifdef TARGET_PPC
672 
673 #define ELF_MACHINE    PPC_ELF_MACHINE
674 #define ELF_START_MMAP 0x80000000
675 
676 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
677 
678 #define elf_check_arch(x) ( (x) == EM_PPC64 )
679 
680 #define ELF_CLASS       ELFCLASS64
681 
682 #else
683 
684 #define ELF_CLASS       ELFCLASS32
685 
686 #endif
687 
688 #define ELF_ARCH        EM_PPC
689 
690 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
691    See arch/powerpc/include/asm/cputable.h.  */
692 enum {
693     QEMU_PPC_FEATURE_32 = 0x80000000,
694     QEMU_PPC_FEATURE_64 = 0x40000000,
695     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
696     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
697     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
698     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
699     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
700     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
701     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
702     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
703     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
704     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
705     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
706     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
707     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
708     QEMU_PPC_FEATURE_CELL = 0x00010000,
709     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
710     QEMU_PPC_FEATURE_SMT = 0x00004000,
711     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
712     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
713     QEMU_PPC_FEATURE_PA6T = 0x00000800,
714     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
715     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
716     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
717     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
718     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
719 
720     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
721     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
722 
723     /* Feature definitions in AT_HWCAP2.  */
724     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
725     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
726     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
727     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
728     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
729     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
730     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
731 };
732 
733 #define ELF_HWCAP get_elf_hwcap()
734 
735 static uint32_t get_elf_hwcap(void)
736 {
737     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
738     uint32_t features = 0;
739 
740     /* We don't have to be terribly complete here; the high points are
741        Altivec/FP/SPE support.  Anything else is just a bonus.  */
742 #define GET_FEATURE(flag, feature)                                      \
743     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
744 #define GET_FEATURE2(flags, feature) \
745     do { \
746         if ((cpu->env.insns_flags2 & flags) == flags) { \
747             features |= feature; \
748         } \
749     } while (0)
750     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
751     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
752     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
753     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
754     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
755     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
756     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
757     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
758     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
759     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
760     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
761                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
762                   QEMU_PPC_FEATURE_ARCH_2_06);
763 #undef GET_FEATURE
764 #undef GET_FEATURE2
765 
766     return features;
767 }
768 
769 #define ELF_HWCAP2 get_elf_hwcap2()
770 
771 static uint32_t get_elf_hwcap2(void)
772 {
773     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
774     uint32_t features = 0;
775 
776 #define GET_FEATURE(flag, feature)                                      \
777     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778 #define GET_FEATURE2(flag, feature)                                      \
779     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
780 
781     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
782     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
783     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
784                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
785     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
786 
787 #undef GET_FEATURE
788 #undef GET_FEATURE2
789 
790     return features;
791 }
792 
793 /*
794  * The requirements here are:
795  * - keep the final alignment of sp (sp & 0xf)
796  * - make sure the 32-bit value at the first 16 byte aligned position of
797  *   AUXV is greater than 16 for glibc compatibility.
798  *   AT_IGNOREPPC is used for that.
799  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
800  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
801  */
802 #define DLINFO_ARCH_ITEMS       5
803 #define ARCH_DLINFO                                     \
804     do {                                                \
805         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
806         /*                                              \
807          * Handle glibc compatibility: these magic entries must \
808          * be at the lowest addresses in the final auxv.        \
809          */                                             \
810         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
811         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
812         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
813         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
814         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
815     } while (0)
816 
817 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
818 {
819     _regs->gpr[1] = infop->start_stack;
820 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
821     if (get_ppc64_abi(infop) < 2) {
822         uint64_t val;
823         get_user_u64(val, infop->entry + 8);
824         _regs->gpr[2] = val + infop->load_bias;
825         get_user_u64(val, infop->entry);
826         infop->entry = val + infop->load_bias;
827     } else {
828         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
829     }
830 #endif
831     _regs->nip = infop->entry;
832 }
833 
834 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
835 #define ELF_NREG 48
836 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
837 
838 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
839 {
840     int i;
841     target_ulong ccr = 0;
842 
843     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
844         (*regs)[i] = tswapreg(env->gpr[i]);
845     }
846 
847     (*regs)[32] = tswapreg(env->nip);
848     (*regs)[33] = tswapreg(env->msr);
849     (*regs)[35] = tswapreg(env->ctr);
850     (*regs)[36] = tswapreg(env->lr);
851     (*regs)[37] = tswapreg(env->xer);
852 
853     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
854         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
855     }
856     (*regs)[38] = tswapreg(ccr);
857 }
858 
859 #define USE_ELF_CORE_DUMP
860 #define ELF_EXEC_PAGESIZE       4096
861 
862 #endif
863 
864 #ifdef TARGET_MIPS
865 
866 #define ELF_START_MMAP 0x80000000
867 
868 #ifdef TARGET_MIPS64
869 #define ELF_CLASS   ELFCLASS64
870 #else
871 #define ELF_CLASS   ELFCLASS32
872 #endif
873 #define ELF_ARCH    EM_MIPS
874 
875 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
876 
877 static inline void init_thread(struct target_pt_regs *regs,
878                                struct image_info *infop)
879 {
880     regs->cp0_status = 2 << CP0St_KSU;
881     regs->cp0_epc = infop->entry;
882     regs->regs[29] = infop->start_stack;
883 }
884 
885 /* See linux kernel: arch/mips/include/asm/elf.h.  */
886 #define ELF_NREG 45
887 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
888 
889 /* See linux kernel: arch/mips/include/asm/reg.h.  */
890 enum {
891 #ifdef TARGET_MIPS64
892     TARGET_EF_R0 = 0,
893 #else
894     TARGET_EF_R0 = 6,
895 #endif
896     TARGET_EF_R26 = TARGET_EF_R0 + 26,
897     TARGET_EF_R27 = TARGET_EF_R0 + 27,
898     TARGET_EF_LO = TARGET_EF_R0 + 32,
899     TARGET_EF_HI = TARGET_EF_R0 + 33,
900     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
901     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
902     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
903     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
904 };
905 
906 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
907 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
908 {
909     int i;
910 
911     for (i = 0; i < TARGET_EF_R0; i++) {
912         (*regs)[i] = 0;
913     }
914     (*regs)[TARGET_EF_R0] = 0;
915 
916     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
917         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
918     }
919 
920     (*regs)[TARGET_EF_R26] = 0;
921     (*regs)[TARGET_EF_R27] = 0;
922     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
923     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
924     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
925     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
926     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
927     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
928 }
929 
930 #define USE_ELF_CORE_DUMP
931 #define ELF_EXEC_PAGESIZE        4096
932 
933 /* See arch/mips/include/uapi/asm/hwcap.h.  */
934 enum {
935     HWCAP_MIPS_R6           = (1 << 0),
936     HWCAP_MIPS_MSA          = (1 << 1),
937 };
938 
939 #define ELF_HWCAP get_elf_hwcap()
940 
941 static uint32_t get_elf_hwcap(void)
942 {
943     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
944     uint32_t hwcaps = 0;
945 
946 #define GET_FEATURE(flag, hwcap) \
947     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
948 
949     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
950     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
951 
952 #undef GET_FEATURE
953 
954     return hwcaps;
955 }
956 
957 #endif /* TARGET_MIPS */
958 
959 #ifdef TARGET_MICROBLAZE
960 
961 #define ELF_START_MMAP 0x80000000
962 
963 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
964 
965 #define ELF_CLASS   ELFCLASS32
966 #define ELF_ARCH    EM_MICROBLAZE
967 
968 static inline void init_thread(struct target_pt_regs *regs,
969                                struct image_info *infop)
970 {
971     regs->pc = infop->entry;
972     regs->r1 = infop->start_stack;
973 
974 }
975 
976 #define ELF_EXEC_PAGESIZE        4096
977 
978 #define USE_ELF_CORE_DUMP
979 #define ELF_NREG 38
980 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
981 
982 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
983 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
984 {
985     int i, pos = 0;
986 
987     for (i = 0; i < 32; i++) {
988         (*regs)[pos++] = tswapreg(env->regs[i]);
989     }
990 
991     for (i = 0; i < 6; i++) {
992         (*regs)[pos++] = tswapreg(env->sregs[i]);
993     }
994 }
995 
996 #endif /* TARGET_MICROBLAZE */
997 
998 #ifdef TARGET_NIOS2
999 
1000 #define ELF_START_MMAP 0x80000000
1001 
1002 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1003 
1004 #define ELF_CLASS   ELFCLASS32
1005 #define ELF_ARCH    EM_ALTERA_NIOS2
1006 
1007 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1008 {
1009     regs->ea = infop->entry;
1010     regs->sp = infop->start_stack;
1011     regs->estatus = 0x3;
1012 }
1013 
1014 #define ELF_EXEC_PAGESIZE        4096
1015 
1016 #define USE_ELF_CORE_DUMP
1017 #define ELF_NREG 49
1018 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1019 
1020 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1021 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1022                                const CPUNios2State *env)
1023 {
1024     int i;
1025 
1026     (*regs)[0] = -1;
1027     for (i = 1; i < 8; i++)    /* r0-r7 */
1028         (*regs)[i] = tswapreg(env->regs[i + 7]);
1029 
1030     for (i = 8; i < 16; i++)   /* r8-r15 */
1031         (*regs)[i] = tswapreg(env->regs[i - 8]);
1032 
1033     for (i = 16; i < 24; i++)  /* r16-r23 */
1034         (*regs)[i] = tswapreg(env->regs[i + 7]);
1035     (*regs)[24] = -1;    /* R_ET */
1036     (*regs)[25] = -1;    /* R_BT */
1037     (*regs)[26] = tswapreg(env->regs[R_GP]);
1038     (*regs)[27] = tswapreg(env->regs[R_SP]);
1039     (*regs)[28] = tswapreg(env->regs[R_FP]);
1040     (*regs)[29] = tswapreg(env->regs[R_EA]);
1041     (*regs)[30] = -1;    /* R_SSTATUS */
1042     (*regs)[31] = tswapreg(env->regs[R_RA]);
1043 
1044     (*regs)[32] = tswapreg(env->regs[R_PC]);
1045 
1046     (*regs)[33] = -1; /* R_STATUS */
1047     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1048 
1049     for (i = 35; i < 49; i++)    /* ... */
1050         (*regs)[i] = -1;
1051 }
1052 
1053 #endif /* TARGET_NIOS2 */
1054 
1055 #ifdef TARGET_OPENRISC
1056 
1057 #define ELF_START_MMAP 0x08000000
1058 
1059 #define ELF_ARCH EM_OPENRISC
1060 #define ELF_CLASS ELFCLASS32
1061 #define ELF_DATA  ELFDATA2MSB
1062 
1063 static inline void init_thread(struct target_pt_regs *regs,
1064                                struct image_info *infop)
1065 {
1066     regs->pc = infop->entry;
1067     regs->gpr[1] = infop->start_stack;
1068 }
1069 
1070 #define USE_ELF_CORE_DUMP
1071 #define ELF_EXEC_PAGESIZE 8192
1072 
1073 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1074 #define ELF_NREG 34 /* gprs and pc, sr */
1075 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1076 
1077 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1078                                const CPUOpenRISCState *env)
1079 {
1080     int i;
1081 
1082     for (i = 0; i < 32; i++) {
1083         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1084     }
1085     (*regs)[32] = tswapreg(env->pc);
1086     (*regs)[33] = tswapreg(cpu_get_sr(env));
1087 }
1088 #define ELF_HWCAP 0
1089 #define ELF_PLATFORM NULL
1090 
1091 #endif /* TARGET_OPENRISC */
1092 
1093 #ifdef TARGET_SH4
1094 
1095 #define ELF_START_MMAP 0x80000000
1096 
1097 #define ELF_CLASS ELFCLASS32
1098 #define ELF_ARCH  EM_SH
1099 
1100 static inline void init_thread(struct target_pt_regs *regs,
1101                                struct image_info *infop)
1102 {
1103     /* Check other registers XXXXX */
1104     regs->pc = infop->entry;
1105     regs->regs[15] = infop->start_stack;
1106 }
1107 
1108 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1109 #define ELF_NREG 23
1110 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1111 
1112 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1113 enum {
1114     TARGET_REG_PC = 16,
1115     TARGET_REG_PR = 17,
1116     TARGET_REG_SR = 18,
1117     TARGET_REG_GBR = 19,
1118     TARGET_REG_MACH = 20,
1119     TARGET_REG_MACL = 21,
1120     TARGET_REG_SYSCALL = 22
1121 };
1122 
1123 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1124                                       const CPUSH4State *env)
1125 {
1126     int i;
1127 
1128     for (i = 0; i < 16; i++) {
1129         (*regs)[i] = tswapreg(env->gregs[i]);
1130     }
1131 
1132     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1133     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1134     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1135     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1136     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1137     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1138     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1139 }
1140 
1141 #define USE_ELF_CORE_DUMP
1142 #define ELF_EXEC_PAGESIZE        4096
1143 
1144 enum {
1145     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1146     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1147     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1148     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1149     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1150     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1151     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1152     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1153     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1154     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1155 };
1156 
1157 #define ELF_HWCAP get_elf_hwcap()
1158 
1159 static uint32_t get_elf_hwcap(void)
1160 {
1161     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1162     uint32_t hwcap = 0;
1163 
1164     hwcap |= SH_CPU_HAS_FPU;
1165 
1166     if (cpu->env.features & SH_FEATURE_SH4A) {
1167         hwcap |= SH_CPU_HAS_LLSC;
1168     }
1169 
1170     return hwcap;
1171 }
1172 
1173 #endif
1174 
1175 #ifdef TARGET_CRIS
1176 
1177 #define ELF_START_MMAP 0x80000000
1178 
1179 #define ELF_CLASS ELFCLASS32
1180 #define ELF_ARCH  EM_CRIS
1181 
1182 static inline void init_thread(struct target_pt_regs *regs,
1183                                struct image_info *infop)
1184 {
1185     regs->erp = infop->entry;
1186 }
1187 
1188 #define ELF_EXEC_PAGESIZE        8192
1189 
1190 #endif
1191 
1192 #ifdef TARGET_M68K
1193 
1194 #define ELF_START_MMAP 0x80000000
1195 
1196 #define ELF_CLASS       ELFCLASS32
1197 #define ELF_ARCH        EM_68K
1198 
1199 /* ??? Does this need to do anything?
1200    #define ELF_PLAT_INIT(_r) */
1201 
1202 static inline void init_thread(struct target_pt_regs *regs,
1203                                struct image_info *infop)
1204 {
1205     regs->usp = infop->start_stack;
1206     regs->sr = 0;
1207     regs->pc = infop->entry;
1208 }
1209 
1210 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1211 #define ELF_NREG 20
1212 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1213 
1214 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1215 {
1216     (*regs)[0] = tswapreg(env->dregs[1]);
1217     (*regs)[1] = tswapreg(env->dregs[2]);
1218     (*regs)[2] = tswapreg(env->dregs[3]);
1219     (*regs)[3] = tswapreg(env->dregs[4]);
1220     (*regs)[4] = tswapreg(env->dregs[5]);
1221     (*regs)[5] = tswapreg(env->dregs[6]);
1222     (*regs)[6] = tswapreg(env->dregs[7]);
1223     (*regs)[7] = tswapreg(env->aregs[0]);
1224     (*regs)[8] = tswapreg(env->aregs[1]);
1225     (*regs)[9] = tswapreg(env->aregs[2]);
1226     (*regs)[10] = tswapreg(env->aregs[3]);
1227     (*regs)[11] = tswapreg(env->aregs[4]);
1228     (*regs)[12] = tswapreg(env->aregs[5]);
1229     (*regs)[13] = tswapreg(env->aregs[6]);
1230     (*regs)[14] = tswapreg(env->dregs[0]);
1231     (*regs)[15] = tswapreg(env->aregs[7]);
1232     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1233     (*regs)[17] = tswapreg(env->sr);
1234     (*regs)[18] = tswapreg(env->pc);
1235     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1236 }
1237 
1238 #define USE_ELF_CORE_DUMP
1239 #define ELF_EXEC_PAGESIZE       8192
1240 
1241 #endif
1242 
1243 #ifdef TARGET_ALPHA
1244 
1245 #define ELF_START_MMAP (0x30000000000ULL)
1246 
1247 #define ELF_CLASS      ELFCLASS64
1248 #define ELF_ARCH       EM_ALPHA
1249 
1250 static inline void init_thread(struct target_pt_regs *regs,
1251                                struct image_info *infop)
1252 {
1253     regs->pc = infop->entry;
1254     regs->ps = 8;
1255     regs->usp = infop->start_stack;
1256 }
1257 
1258 #define ELF_EXEC_PAGESIZE        8192
1259 
1260 #endif /* TARGET_ALPHA */
1261 
1262 #ifdef TARGET_S390X
1263 
1264 #define ELF_START_MMAP (0x20000000000ULL)
1265 
1266 #define ELF_CLASS	ELFCLASS64
1267 #define ELF_DATA	ELFDATA2MSB
1268 #define ELF_ARCH	EM_S390
1269 
1270 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1271 {
1272     regs->psw.addr = infop->entry;
1273     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1274     regs->gprs[15] = infop->start_stack;
1275 }
1276 
1277 #endif /* TARGET_S390X */
1278 
1279 #ifdef TARGET_TILEGX
1280 
1281 /* 42 bits real used address, a half for user mode */
1282 #define ELF_START_MMAP (0x00000020000000000ULL)
1283 
1284 #define elf_check_arch(x) ((x) == EM_TILEGX)
1285 
1286 #define ELF_CLASS   ELFCLASS64
1287 #define ELF_DATA    ELFDATA2LSB
1288 #define ELF_ARCH    EM_TILEGX
1289 
1290 static inline void init_thread(struct target_pt_regs *regs,
1291                                struct image_info *infop)
1292 {
1293     regs->pc = infop->entry;
1294     regs->sp = infop->start_stack;
1295 
1296 }
1297 
1298 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1299 
1300 #endif /* TARGET_TILEGX */
1301 
1302 #ifdef TARGET_RISCV
1303 
1304 #define ELF_START_MMAP 0x80000000
1305 #define ELF_ARCH  EM_RISCV
1306 
1307 #ifdef TARGET_RISCV32
1308 #define ELF_CLASS ELFCLASS32
1309 #else
1310 #define ELF_CLASS ELFCLASS64
1311 #endif
1312 
1313 static inline void init_thread(struct target_pt_regs *regs,
1314                                struct image_info *infop)
1315 {
1316     regs->sepc = infop->entry;
1317     regs->sp = infop->start_stack;
1318 }
1319 
1320 #define ELF_EXEC_PAGESIZE 4096
1321 
1322 #endif /* TARGET_RISCV */
1323 
1324 #ifdef TARGET_HPPA
1325 
1326 #define ELF_START_MMAP  0x80000000
1327 #define ELF_CLASS       ELFCLASS32
1328 #define ELF_ARCH        EM_PARISC
1329 #define ELF_PLATFORM    "PARISC"
1330 #define STACK_GROWS_DOWN 0
1331 #define STACK_ALIGNMENT  64
1332 
1333 static inline void init_thread(struct target_pt_regs *regs,
1334                                struct image_info *infop)
1335 {
1336     regs->iaoq[0] = infop->entry;
1337     regs->iaoq[1] = infop->entry + 4;
1338     regs->gr[23] = 0;
1339     regs->gr[24] = infop->arg_start;
1340     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1341     /* The top-of-stack contains a linkage buffer.  */
1342     regs->gr[30] = infop->start_stack + 64;
1343     regs->gr[31] = infop->entry;
1344 }
1345 
1346 #endif /* TARGET_HPPA */
1347 
1348 #ifdef TARGET_XTENSA
1349 
1350 #define ELF_START_MMAP 0x20000000
1351 
1352 #define ELF_CLASS       ELFCLASS32
1353 #define ELF_ARCH        EM_XTENSA
1354 
1355 static inline void init_thread(struct target_pt_regs *regs,
1356                                struct image_info *infop)
1357 {
1358     regs->windowbase = 0;
1359     regs->windowstart = 1;
1360     regs->areg[1] = infop->start_stack;
1361     regs->pc = infop->entry;
1362 }
1363 
1364 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1365 #define ELF_NREG 128
1366 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1367 
1368 enum {
1369     TARGET_REG_PC,
1370     TARGET_REG_PS,
1371     TARGET_REG_LBEG,
1372     TARGET_REG_LEND,
1373     TARGET_REG_LCOUNT,
1374     TARGET_REG_SAR,
1375     TARGET_REG_WINDOWSTART,
1376     TARGET_REG_WINDOWBASE,
1377     TARGET_REG_THREADPTR,
1378     TARGET_REG_AR0 = 64,
1379 };
1380 
1381 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1382                                const CPUXtensaState *env)
1383 {
1384     unsigned i;
1385 
1386     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1387     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1388     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1389     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1390     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1391     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1392     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1393     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1394     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1395     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1396     for (i = 0; i < env->config->nareg; ++i) {
1397         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1398     }
1399 }
1400 
1401 #define USE_ELF_CORE_DUMP
1402 #define ELF_EXEC_PAGESIZE       4096
1403 
1404 #endif /* TARGET_XTENSA */
1405 
1406 #ifndef ELF_PLATFORM
1407 #define ELF_PLATFORM (NULL)
1408 #endif
1409 
1410 #ifndef ELF_MACHINE
1411 #define ELF_MACHINE ELF_ARCH
1412 #endif
1413 
1414 #ifndef elf_check_arch
1415 #define elf_check_arch(x) ((x) == ELF_ARCH)
1416 #endif
1417 
1418 #ifndef ELF_HWCAP
1419 #define ELF_HWCAP 0
1420 #endif
1421 
1422 #ifndef STACK_GROWS_DOWN
1423 #define STACK_GROWS_DOWN 1
1424 #endif
1425 
1426 #ifndef STACK_ALIGNMENT
1427 #define STACK_ALIGNMENT 16
1428 #endif
1429 
1430 #ifdef TARGET_ABI32
1431 #undef ELF_CLASS
1432 #define ELF_CLASS ELFCLASS32
1433 #undef bswaptls
1434 #define bswaptls(ptr) bswap32s(ptr)
1435 #endif
1436 
1437 #include "elf.h"
1438 
1439 struct exec
1440 {
1441     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1442     unsigned int a_text;   /* length of text, in bytes */
1443     unsigned int a_data;   /* length of data, in bytes */
1444     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1445     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1446     unsigned int a_entry;  /* start address */
1447     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1448     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1449 };
1450 
1451 
1452 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1453 #define OMAGIC 0407
1454 #define NMAGIC 0410
1455 #define ZMAGIC 0413
1456 #define QMAGIC 0314
1457 
1458 /* Necessary parameters */
1459 #define TARGET_ELF_EXEC_PAGESIZE \
1460         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1461          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1462 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1463 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1464                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1465 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1466 
1467 #define DLINFO_ITEMS 15
1468 
1469 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1470 {
1471     memcpy(to, from, n);
1472 }
1473 
1474 #ifdef BSWAP_NEEDED
1475 static void bswap_ehdr(struct elfhdr *ehdr)
1476 {
1477     bswap16s(&ehdr->e_type);            /* Object file type */
1478     bswap16s(&ehdr->e_machine);         /* Architecture */
1479     bswap32s(&ehdr->e_version);         /* Object file version */
1480     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1481     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1482     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1483     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1484     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1485     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1486     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1487     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1488     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1489     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1490 }
1491 
1492 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1493 {
1494     int i;
1495     for (i = 0; i < phnum; ++i, ++phdr) {
1496         bswap32s(&phdr->p_type);        /* Segment type */
1497         bswap32s(&phdr->p_flags);       /* Segment flags */
1498         bswaptls(&phdr->p_offset);      /* Segment file offset */
1499         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1500         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1501         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1502         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1503         bswaptls(&phdr->p_align);       /* Segment alignment */
1504     }
1505 }
1506 
1507 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1508 {
1509     int i;
1510     for (i = 0; i < shnum; ++i, ++shdr) {
1511         bswap32s(&shdr->sh_name);
1512         bswap32s(&shdr->sh_type);
1513         bswaptls(&shdr->sh_flags);
1514         bswaptls(&shdr->sh_addr);
1515         bswaptls(&shdr->sh_offset);
1516         bswaptls(&shdr->sh_size);
1517         bswap32s(&shdr->sh_link);
1518         bswap32s(&shdr->sh_info);
1519         bswaptls(&shdr->sh_addralign);
1520         bswaptls(&shdr->sh_entsize);
1521     }
1522 }
1523 
1524 static void bswap_sym(struct elf_sym *sym)
1525 {
1526     bswap32s(&sym->st_name);
1527     bswaptls(&sym->st_value);
1528     bswaptls(&sym->st_size);
1529     bswap16s(&sym->st_shndx);
1530 }
1531 
1532 #ifdef TARGET_MIPS
1533 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1534 {
1535     bswap16s(&abiflags->version);
1536     bswap32s(&abiflags->ases);
1537     bswap32s(&abiflags->isa_ext);
1538     bswap32s(&abiflags->flags1);
1539     bswap32s(&abiflags->flags2);
1540 }
1541 #endif
1542 #else
1543 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1544 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1545 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1546 static inline void bswap_sym(struct elf_sym *sym) { }
1547 #ifdef TARGET_MIPS
1548 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1549 #endif
1550 #endif
1551 
1552 #ifdef USE_ELF_CORE_DUMP
1553 static int elf_core_dump(int, const CPUArchState *);
1554 #endif /* USE_ELF_CORE_DUMP */
1555 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1556 
1557 /* Verify the portions of EHDR within E_IDENT for the target.
1558    This can be performed before bswapping the entire header.  */
1559 static bool elf_check_ident(struct elfhdr *ehdr)
1560 {
1561     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1562             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1563             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1564             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1565             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1566             && ehdr->e_ident[EI_DATA] == ELF_DATA
1567             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1568 }
1569 
1570 /* Verify the portions of EHDR outside of E_IDENT for the target.
1571    This has to wait until after bswapping the header.  */
1572 static bool elf_check_ehdr(struct elfhdr *ehdr)
1573 {
1574     return (elf_check_arch(ehdr->e_machine)
1575             && ehdr->e_ehsize == sizeof(struct elfhdr)
1576             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1577             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1578 }
1579 
1580 /*
1581  * 'copy_elf_strings()' copies argument/envelope strings from user
1582  * memory to free pages in kernel mem. These are in a format ready
1583  * to be put directly into the top of new user memory.
1584  *
1585  */
1586 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1587                                   abi_ulong p, abi_ulong stack_limit)
1588 {
1589     char *tmp;
1590     int len, i;
1591     abi_ulong top = p;
1592 
1593     if (!p) {
1594         return 0;       /* bullet-proofing */
1595     }
1596 
1597     if (STACK_GROWS_DOWN) {
1598         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1599         for (i = argc - 1; i >= 0; --i) {
1600             tmp = argv[i];
1601             if (!tmp) {
1602                 fprintf(stderr, "VFS: argc is wrong");
1603                 exit(-1);
1604             }
1605             len = strlen(tmp) + 1;
1606             tmp += len;
1607 
1608             if (len > (p - stack_limit)) {
1609                 return 0;
1610             }
1611             while (len) {
1612                 int bytes_to_copy = (len > offset) ? offset : len;
1613                 tmp -= bytes_to_copy;
1614                 p -= bytes_to_copy;
1615                 offset -= bytes_to_copy;
1616                 len -= bytes_to_copy;
1617 
1618                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1619 
1620                 if (offset == 0) {
1621                     memcpy_to_target(p, scratch, top - p);
1622                     top = p;
1623                     offset = TARGET_PAGE_SIZE;
1624                 }
1625             }
1626         }
1627         if (p != top) {
1628             memcpy_to_target(p, scratch + offset, top - p);
1629         }
1630     } else {
1631         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1632         for (i = 0; i < argc; ++i) {
1633             tmp = argv[i];
1634             if (!tmp) {
1635                 fprintf(stderr, "VFS: argc is wrong");
1636                 exit(-1);
1637             }
1638             len = strlen(tmp) + 1;
1639             if (len > (stack_limit - p)) {
1640                 return 0;
1641             }
1642             while (len) {
1643                 int bytes_to_copy = (len > remaining) ? remaining : len;
1644 
1645                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1646 
1647                 tmp += bytes_to_copy;
1648                 remaining -= bytes_to_copy;
1649                 p += bytes_to_copy;
1650                 len -= bytes_to_copy;
1651 
1652                 if (remaining == 0) {
1653                     memcpy_to_target(top, scratch, p - top);
1654                     top = p;
1655                     remaining = TARGET_PAGE_SIZE;
1656                 }
1657             }
1658         }
1659         if (p != top) {
1660             memcpy_to_target(top, scratch, p - top);
1661         }
1662     }
1663 
1664     return p;
1665 }
1666 
1667 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1668  * argument/environment space. Newer kernels (>2.6.33) allow more,
1669  * dependent on stack size, but guarantee at least 32 pages for
1670  * backwards compatibility.
1671  */
1672 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1673 
1674 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1675                                  struct image_info *info)
1676 {
1677     abi_ulong size, error, guard;
1678 
1679     size = guest_stack_size;
1680     if (size < STACK_LOWER_LIMIT) {
1681         size = STACK_LOWER_LIMIT;
1682     }
1683     guard = TARGET_PAGE_SIZE;
1684     if (guard < qemu_real_host_page_size) {
1685         guard = qemu_real_host_page_size;
1686     }
1687 
1688     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1689                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1690     if (error == -1) {
1691         perror("mmap stack");
1692         exit(-1);
1693     }
1694 
1695     /* We reserve one extra page at the top of the stack as guard.  */
1696     if (STACK_GROWS_DOWN) {
1697         target_mprotect(error, guard, PROT_NONE);
1698         info->stack_limit = error + guard;
1699         return info->stack_limit + size - sizeof(void *);
1700     } else {
1701         target_mprotect(error + size, guard, PROT_NONE);
1702         info->stack_limit = error + size;
1703         return error;
1704     }
1705 }
1706 
1707 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1708    after the data section (i.e. bss).  */
1709 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1710 {
1711     uintptr_t host_start, host_map_start, host_end;
1712 
1713     last_bss = TARGET_PAGE_ALIGN(last_bss);
1714 
1715     /* ??? There is confusion between qemu_real_host_page_size and
1716        qemu_host_page_size here and elsewhere in target_mmap, which
1717        may lead to the end of the data section mapping from the file
1718        not being mapped.  At least there was an explicit test and
1719        comment for that here, suggesting that "the file size must
1720        be known".  The comment probably pre-dates the introduction
1721        of the fstat system call in target_mmap which does in fact
1722        find out the size.  What isn't clear is if the workaround
1723        here is still actually needed.  For now, continue with it,
1724        but merge it with the "normal" mmap that would allocate the bss.  */
1725 
1726     host_start = (uintptr_t) g2h(elf_bss);
1727     host_end = (uintptr_t) g2h(last_bss);
1728     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1729 
1730     if (host_map_start < host_end) {
1731         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1732                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1733         if (p == MAP_FAILED) {
1734             perror("cannot mmap brk");
1735             exit(-1);
1736         }
1737     }
1738 
1739     /* Ensure that the bss page(s) are valid */
1740     if ((page_get_flags(last_bss-1) & prot) != prot) {
1741         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1742     }
1743 
1744     if (host_start < host_map_start) {
1745         memset((void *)host_start, 0, host_map_start - host_start);
1746     }
1747 }
1748 
1749 #ifdef TARGET_ARM
1750 static int elf_is_fdpic(struct elfhdr *exec)
1751 {
1752     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1753 }
1754 #else
1755 /* Default implementation, always false.  */
1756 static int elf_is_fdpic(struct elfhdr *exec)
1757 {
1758     return 0;
1759 }
1760 #endif
1761 
1762 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1763 {
1764     uint16_t n;
1765     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1766 
1767     /* elf32_fdpic_loadseg */
1768     n = info->nsegs;
1769     while (n--) {
1770         sp -= 12;
1771         put_user_u32(loadsegs[n].addr, sp+0);
1772         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1773         put_user_u32(loadsegs[n].p_memsz, sp+8);
1774     }
1775 
1776     /* elf32_fdpic_loadmap */
1777     sp -= 4;
1778     put_user_u16(0, sp+0); /* version */
1779     put_user_u16(info->nsegs, sp+2); /* nsegs */
1780 
1781     info->personality = PER_LINUX_FDPIC;
1782     info->loadmap_addr = sp;
1783 
1784     return sp;
1785 }
1786 
1787 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1788                                    struct elfhdr *exec,
1789                                    struct image_info *info,
1790                                    struct image_info *interp_info)
1791 {
1792     abi_ulong sp;
1793     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1794     int size;
1795     int i;
1796     abi_ulong u_rand_bytes;
1797     uint8_t k_rand_bytes[16];
1798     abi_ulong u_platform;
1799     const char *k_platform;
1800     const int n = sizeof(elf_addr_t);
1801 
1802     sp = p;
1803 
1804     /* Needs to be before we load the env/argc/... */
1805     if (elf_is_fdpic(exec)) {
1806         /* Need 4 byte alignment for these structs */
1807         sp &= ~3;
1808         sp = loader_build_fdpic_loadmap(info, sp);
1809         info->other_info = interp_info;
1810         if (interp_info) {
1811             interp_info->other_info = info;
1812             sp = loader_build_fdpic_loadmap(interp_info, sp);
1813             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1814             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1815         } else {
1816             info->interpreter_loadmap_addr = 0;
1817             info->interpreter_pt_dynamic_addr = 0;
1818         }
1819     }
1820 
1821     u_platform = 0;
1822     k_platform = ELF_PLATFORM;
1823     if (k_platform) {
1824         size_t len = strlen(k_platform) + 1;
1825         if (STACK_GROWS_DOWN) {
1826             sp -= (len + n - 1) & ~(n - 1);
1827             u_platform = sp;
1828             /* FIXME - check return value of memcpy_to_target() for failure */
1829             memcpy_to_target(sp, k_platform, len);
1830         } else {
1831             memcpy_to_target(sp, k_platform, len);
1832             u_platform = sp;
1833             sp += len + 1;
1834         }
1835     }
1836 
1837     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1838      * the argv and envp pointers.
1839      */
1840     if (STACK_GROWS_DOWN) {
1841         sp = QEMU_ALIGN_DOWN(sp, 16);
1842     } else {
1843         sp = QEMU_ALIGN_UP(sp, 16);
1844     }
1845 
1846     /*
1847      * Generate 16 random bytes for userspace PRNG seeding (not
1848      * cryptically secure but it's not the aim of QEMU).
1849      */
1850     for (i = 0; i < 16; i++) {
1851         k_rand_bytes[i] = rand();
1852     }
1853     if (STACK_GROWS_DOWN) {
1854         sp -= 16;
1855         u_rand_bytes = sp;
1856         /* FIXME - check return value of memcpy_to_target() for failure */
1857         memcpy_to_target(sp, k_rand_bytes, 16);
1858     } else {
1859         memcpy_to_target(sp, k_rand_bytes, 16);
1860         u_rand_bytes = sp;
1861         sp += 16;
1862     }
1863 
1864     size = (DLINFO_ITEMS + 1) * 2;
1865     if (k_platform)
1866         size += 2;
1867 #ifdef DLINFO_ARCH_ITEMS
1868     size += DLINFO_ARCH_ITEMS * 2;
1869 #endif
1870 #ifdef ELF_HWCAP2
1871     size += 2;
1872 #endif
1873     info->auxv_len = size * n;
1874 
1875     size += envc + argc + 2;
1876     size += 1;  /* argc itself */
1877     size *= n;
1878 
1879     /* Allocate space and finalize stack alignment for entry now.  */
1880     if (STACK_GROWS_DOWN) {
1881         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1882         sp = u_argc;
1883     } else {
1884         u_argc = sp;
1885         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1886     }
1887 
1888     u_argv = u_argc + n;
1889     u_envp = u_argv + (argc + 1) * n;
1890     u_auxv = u_envp + (envc + 1) * n;
1891     info->saved_auxv = u_auxv;
1892     info->arg_start = u_argv;
1893     info->arg_end = u_argv + argc * n;
1894 
1895     /* This is correct because Linux defines
1896      * elf_addr_t as Elf32_Off / Elf64_Off
1897      */
1898 #define NEW_AUX_ENT(id, val) do {               \
1899         put_user_ual(id, u_auxv);  u_auxv += n; \
1900         put_user_ual(val, u_auxv); u_auxv += n; \
1901     } while(0)
1902 
1903 #ifdef ARCH_DLINFO
1904     /*
1905      * ARCH_DLINFO must come first so platform specific code can enforce
1906      * special alignment requirements on the AUXV if necessary (eg. PPC).
1907      */
1908     ARCH_DLINFO;
1909 #endif
1910     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1911      * on info->auxv_len will trigger.
1912      */
1913     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1914     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1915     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1916     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1917         /* Target doesn't support host page size alignment */
1918         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1919     } else {
1920         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1921                                                qemu_host_page_size)));
1922     }
1923     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1924     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1925     NEW_AUX_ENT(AT_ENTRY, info->entry);
1926     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1927     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1928     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1929     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1930     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1931     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1932     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1933     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1934 
1935 #ifdef ELF_HWCAP2
1936     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1937 #endif
1938 
1939     if (u_platform) {
1940         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1941     }
1942     NEW_AUX_ENT (AT_NULL, 0);
1943 #undef NEW_AUX_ENT
1944 
1945     /* Check that our initial calculation of the auxv length matches how much
1946      * we actually put into it.
1947      */
1948     assert(info->auxv_len == u_auxv - info->saved_auxv);
1949 
1950     put_user_ual(argc, u_argc);
1951 
1952     p = info->arg_strings;
1953     for (i = 0; i < argc; ++i) {
1954         put_user_ual(p, u_argv);
1955         u_argv += n;
1956         p += target_strlen(p) + 1;
1957     }
1958     put_user_ual(0, u_argv);
1959 
1960     p = info->env_strings;
1961     for (i = 0; i < envc; ++i) {
1962         put_user_ual(p, u_envp);
1963         u_envp += n;
1964         p += target_strlen(p) + 1;
1965     }
1966     put_user_ual(0, u_envp);
1967 
1968     return sp;
1969 }
1970 
1971 unsigned long init_guest_space(unsigned long host_start,
1972                                unsigned long host_size,
1973                                unsigned long guest_start,
1974                                bool fixed)
1975 {
1976     unsigned long current_start, aligned_start;
1977     int flags;
1978 
1979     assert(host_start || host_size);
1980 
1981     /* If just a starting address is given, then just verify that
1982      * address.  */
1983     if (host_start && !host_size) {
1984 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1985         if (init_guest_commpage(host_start, host_size) != 1) {
1986             return (unsigned long)-1;
1987         }
1988 #endif
1989         return host_start;
1990     }
1991 
1992     /* Setup the initial flags and start address.  */
1993     current_start = host_start & qemu_host_page_mask;
1994     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1995     if (fixed) {
1996         flags |= MAP_FIXED;
1997     }
1998 
1999     /* Otherwise, a non-zero size region of memory needs to be mapped
2000      * and validated.  */
2001 
2002 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2003     /* On 32-bit ARM, we need to map not just the usable memory, but
2004      * also the commpage.  Try to find a suitable place by allocating
2005      * a big chunk for all of it.  If host_start, then the naive
2006      * strategy probably does good enough.
2007      */
2008     if (!host_start) {
2009         unsigned long guest_full_size, host_full_size, real_start;
2010 
2011         guest_full_size =
2012             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2013         host_full_size = guest_full_size - guest_start;
2014         real_start = (unsigned long)
2015             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2016         if (real_start == (unsigned long)-1) {
2017             if (host_size < host_full_size - qemu_host_page_size) {
2018                 /* We failed to map a continous segment, but we're
2019                  * allowed to have a gap between the usable memory and
2020                  * the commpage where other things can be mapped.
2021                  * This sparseness gives us more flexibility to find
2022                  * an address range.
2023                  */
2024                 goto naive;
2025             }
2026             return (unsigned long)-1;
2027         }
2028         munmap((void *)real_start, host_full_size);
2029         if (real_start & ~qemu_host_page_mask) {
2030             /* The same thing again, but with an extra qemu_host_page_size
2031              * so that we can shift around alignment.
2032              */
2033             unsigned long real_size = host_full_size + qemu_host_page_size;
2034             real_start = (unsigned long)
2035                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2036             if (real_start == (unsigned long)-1) {
2037                 if (host_size < host_full_size - qemu_host_page_size) {
2038                     goto naive;
2039                 }
2040                 return (unsigned long)-1;
2041             }
2042             munmap((void *)real_start, real_size);
2043             real_start = HOST_PAGE_ALIGN(real_start);
2044         }
2045         current_start = real_start;
2046     }
2047  naive:
2048 #endif
2049 
2050     while (1) {
2051         unsigned long real_start, real_size, aligned_size;
2052         aligned_size = real_size = host_size;
2053 
2054         /* Do not use mmap_find_vma here because that is limited to the
2055          * guest address space.  We are going to make the
2056          * guest address space fit whatever we're given.
2057          */
2058         real_start = (unsigned long)
2059             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2060         if (real_start == (unsigned long)-1) {
2061             return (unsigned long)-1;
2062         }
2063 
2064         /* Check to see if the address is valid.  */
2065         if (host_start && real_start != current_start) {
2066             goto try_again;
2067         }
2068 
2069         /* Ensure the address is properly aligned.  */
2070         if (real_start & ~qemu_host_page_mask) {
2071             /* Ideally, we adjust like
2072              *
2073              *    pages: [  ][  ][  ][  ][  ]
2074              *      old:   [   real   ]
2075              *             [ aligned  ]
2076              *      new:   [     real     ]
2077              *               [ aligned  ]
2078              *
2079              * But if there is something else mapped right after it,
2080              * then obviously it won't have room to grow, and the
2081              * kernel will put the new larger real someplace else with
2082              * unknown alignment (if we made it to here, then
2083              * fixed=false).  Which is why we grow real by a full page
2084              * size, instead of by part of one; so that even if we get
2085              * moved, we can still guarantee alignment.  But this does
2086              * mean that there is a padding of < 1 page both before
2087              * and after the aligned range; the "after" could could
2088              * cause problems for ARM emulation where it could butt in
2089              * to where we need to put the commpage.
2090              */
2091             munmap((void *)real_start, host_size);
2092             real_size = aligned_size + qemu_host_page_size;
2093             real_start = (unsigned long)
2094                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2095             if (real_start == (unsigned long)-1) {
2096                 return (unsigned long)-1;
2097             }
2098             aligned_start = HOST_PAGE_ALIGN(real_start);
2099         } else {
2100             aligned_start = real_start;
2101         }
2102 
2103 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2104         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2105         int valid = init_guest_commpage(aligned_start - guest_start,
2106                                         aligned_size + guest_start);
2107         if (valid == -1) {
2108             munmap((void *)real_start, real_size);
2109             return (unsigned long)-1;
2110         } else if (valid == 0) {
2111             goto try_again;
2112         }
2113 #endif
2114 
2115         /* If nothing has said `return -1` or `goto try_again` yet,
2116          * then the address we have is good.
2117          */
2118         break;
2119 
2120     try_again:
2121         /* That address didn't work.  Unmap and try a different one.
2122          * The address the host picked because is typically right at
2123          * the top of the host address space and leaves the guest with
2124          * no usable address space.  Resort to a linear search.  We
2125          * already compensated for mmap_min_addr, so this should not
2126          * happen often.  Probably means we got unlucky and host
2127          * address space randomization put a shared library somewhere
2128          * inconvenient.
2129          *
2130          * This is probably a good strategy if host_start, but is
2131          * probably a bad strategy if not, which means we got here
2132          * because of trouble with ARM commpage setup.
2133          */
2134         munmap((void *)real_start, real_size);
2135         current_start += qemu_host_page_size;
2136         if (host_start == current_start) {
2137             /* Theoretically possible if host doesn't have any suitably
2138              * aligned areas.  Normally the first mmap will fail.
2139              */
2140             return (unsigned long)-1;
2141         }
2142     }
2143 
2144     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2145 
2146     return aligned_start;
2147 }
2148 
2149 static void probe_guest_base(const char *image_name,
2150                              abi_ulong loaddr, abi_ulong hiaddr)
2151 {
2152     /* Probe for a suitable guest base address, if the user has not set
2153      * it explicitly, and set guest_base appropriately.
2154      * In case of error we will print a suitable message and exit.
2155      */
2156     const char *errmsg;
2157     if (!have_guest_base && !reserved_va) {
2158         unsigned long host_start, real_start, host_size;
2159 
2160         /* Round addresses to page boundaries.  */
2161         loaddr &= qemu_host_page_mask;
2162         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2163 
2164         if (loaddr < mmap_min_addr) {
2165             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2166         } else {
2167             host_start = loaddr;
2168             if (host_start != loaddr) {
2169                 errmsg = "Address overflow loading ELF binary";
2170                 goto exit_errmsg;
2171             }
2172         }
2173         host_size = hiaddr - loaddr;
2174 
2175         /* Setup the initial guest memory space with ranges gleaned from
2176          * the ELF image that is being loaded.
2177          */
2178         real_start = init_guest_space(host_start, host_size, loaddr, false);
2179         if (real_start == (unsigned long)-1) {
2180             errmsg = "Unable to find space for application";
2181             goto exit_errmsg;
2182         }
2183         guest_base = real_start - loaddr;
2184 
2185         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2186                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2187                       loaddr, real_start);
2188     }
2189     return;
2190 
2191 exit_errmsg:
2192     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2193     exit(-1);
2194 }
2195 
2196 
2197 /* Load an ELF image into the address space.
2198 
2199    IMAGE_NAME is the filename of the image, to use in error messages.
2200    IMAGE_FD is the open file descriptor for the image.
2201 
2202    BPRM_BUF is a copy of the beginning of the file; this of course
2203    contains the elf file header at offset 0.  It is assumed that this
2204    buffer is sufficiently aligned to present no problems to the host
2205    in accessing data at aligned offsets within the buffer.
2206 
2207    On return: INFO values will be filled in, as necessary or available.  */
2208 
2209 static void load_elf_image(const char *image_name, int image_fd,
2210                            struct image_info *info, char **pinterp_name,
2211                            char bprm_buf[BPRM_BUF_SIZE])
2212 {
2213     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2214     struct elf_phdr *phdr;
2215     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2216     int i, retval;
2217     const char *errmsg;
2218 
2219     /* First of all, some simple consistency checks */
2220     errmsg = "Invalid ELF image for this architecture";
2221     if (!elf_check_ident(ehdr)) {
2222         goto exit_errmsg;
2223     }
2224     bswap_ehdr(ehdr);
2225     if (!elf_check_ehdr(ehdr)) {
2226         goto exit_errmsg;
2227     }
2228 
2229     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2230     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2231         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2232     } else {
2233         phdr = (struct elf_phdr *) alloca(i);
2234         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2235         if (retval != i) {
2236             goto exit_read;
2237         }
2238     }
2239     bswap_phdr(phdr, ehdr->e_phnum);
2240 
2241     info->nsegs = 0;
2242     info->pt_dynamic_addr = 0;
2243 
2244     mmap_lock();
2245 
2246     /* Find the maximum size of the image and allocate an appropriate
2247        amount of memory to handle that.  */
2248     loaddr = -1, hiaddr = 0;
2249     info->alignment = 0;
2250     for (i = 0; i < ehdr->e_phnum; ++i) {
2251         if (phdr[i].p_type == PT_LOAD) {
2252             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2253             if (a < loaddr) {
2254                 loaddr = a;
2255             }
2256             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2257             if (a > hiaddr) {
2258                 hiaddr = a;
2259             }
2260             ++info->nsegs;
2261             info->alignment |= phdr[i].p_align;
2262         }
2263     }
2264 
2265     load_addr = loaddr;
2266     if (ehdr->e_type == ET_DYN) {
2267         /* The image indicates that it can be loaded anywhere.  Find a
2268            location that can hold the memory space required.  If the
2269            image is pre-linked, LOADDR will be non-zero.  Since we do
2270            not supply MAP_FIXED here we'll use that address if and
2271            only if it remains available.  */
2272         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2273                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2274                                 -1, 0);
2275         if (load_addr == -1) {
2276             goto exit_perror;
2277         }
2278     } else if (pinterp_name != NULL) {
2279         /* This is the main executable.  Make sure that the low
2280            address does not conflict with MMAP_MIN_ADDR or the
2281            QEMU application itself.  */
2282         probe_guest_base(image_name, loaddr, hiaddr);
2283     }
2284     load_bias = load_addr - loaddr;
2285 
2286     if (elf_is_fdpic(ehdr)) {
2287         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2288             g_malloc(sizeof(*loadsegs) * info->nsegs);
2289 
2290         for (i = 0; i < ehdr->e_phnum; ++i) {
2291             switch (phdr[i].p_type) {
2292             case PT_DYNAMIC:
2293                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2294                 break;
2295             case PT_LOAD:
2296                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2297                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2298                 loadsegs->p_memsz = phdr[i].p_memsz;
2299                 ++loadsegs;
2300                 break;
2301             }
2302         }
2303     }
2304 
2305     info->load_bias = load_bias;
2306     info->load_addr = load_addr;
2307     info->entry = ehdr->e_entry + load_bias;
2308     info->start_code = -1;
2309     info->end_code = 0;
2310     info->start_data = -1;
2311     info->end_data = 0;
2312     info->brk = 0;
2313     info->elf_flags = ehdr->e_flags;
2314 
2315     for (i = 0; i < ehdr->e_phnum; i++) {
2316         struct elf_phdr *eppnt = phdr + i;
2317         if (eppnt->p_type == PT_LOAD) {
2318             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2319             int elf_prot = 0;
2320 
2321             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2322             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2323             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2324 
2325             vaddr = load_bias + eppnt->p_vaddr;
2326             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2327             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2328             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2329 
2330             error = target_mmap(vaddr_ps, vaddr_len,
2331                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2332                                 image_fd, eppnt->p_offset - vaddr_po);
2333             if (error == -1) {
2334                 goto exit_perror;
2335             }
2336 
2337             vaddr_ef = vaddr + eppnt->p_filesz;
2338             vaddr_em = vaddr + eppnt->p_memsz;
2339 
2340             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2341             if (vaddr_ef < vaddr_em) {
2342                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2343             }
2344 
2345             /* Find the full program boundaries.  */
2346             if (elf_prot & PROT_EXEC) {
2347                 if (vaddr < info->start_code) {
2348                     info->start_code = vaddr;
2349                 }
2350                 if (vaddr_ef > info->end_code) {
2351                     info->end_code = vaddr_ef;
2352                 }
2353             }
2354             if (elf_prot & PROT_WRITE) {
2355                 if (vaddr < info->start_data) {
2356                     info->start_data = vaddr;
2357                 }
2358                 if (vaddr_ef > info->end_data) {
2359                     info->end_data = vaddr_ef;
2360                 }
2361                 if (vaddr_em > info->brk) {
2362                     info->brk = vaddr_em;
2363                 }
2364             }
2365         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2366             char *interp_name;
2367 
2368             if (*pinterp_name) {
2369                 errmsg = "Multiple PT_INTERP entries";
2370                 goto exit_errmsg;
2371             }
2372             interp_name = malloc(eppnt->p_filesz);
2373             if (!interp_name) {
2374                 goto exit_perror;
2375             }
2376 
2377             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2378                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2379                        eppnt->p_filesz);
2380             } else {
2381                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2382                                eppnt->p_offset);
2383                 if (retval != eppnt->p_filesz) {
2384                     goto exit_perror;
2385                 }
2386             }
2387             if (interp_name[eppnt->p_filesz - 1] != 0) {
2388                 errmsg = "Invalid PT_INTERP entry";
2389                 goto exit_errmsg;
2390             }
2391             *pinterp_name = interp_name;
2392 #ifdef TARGET_MIPS
2393         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2394             Mips_elf_abiflags_v0 abiflags;
2395             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2396                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2397                 goto exit_errmsg;
2398             }
2399             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2400                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2401                        sizeof(Mips_elf_abiflags_v0));
2402             } else {
2403                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2404                                eppnt->p_offset);
2405                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2406                     goto exit_perror;
2407                 }
2408             }
2409             bswap_mips_abiflags(&abiflags);
2410             info->fp_abi = abiflags.fp_abi;
2411 #endif
2412         }
2413     }
2414 
2415     if (info->end_data == 0) {
2416         info->start_data = info->end_code;
2417         info->end_data = info->end_code;
2418         info->brk = info->end_code;
2419     }
2420 
2421     if (qemu_log_enabled()) {
2422         load_symbols(ehdr, image_fd, load_bias);
2423     }
2424 
2425     mmap_unlock();
2426 
2427     close(image_fd);
2428     return;
2429 
2430  exit_read:
2431     if (retval >= 0) {
2432         errmsg = "Incomplete read of file header";
2433         goto exit_errmsg;
2434     }
2435  exit_perror:
2436     errmsg = strerror(errno);
2437  exit_errmsg:
2438     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2439     exit(-1);
2440 }
2441 
2442 static void load_elf_interp(const char *filename, struct image_info *info,
2443                             char bprm_buf[BPRM_BUF_SIZE])
2444 {
2445     int fd, retval;
2446 
2447     fd = open(path(filename), O_RDONLY);
2448     if (fd < 0) {
2449         goto exit_perror;
2450     }
2451 
2452     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2453     if (retval < 0) {
2454         goto exit_perror;
2455     }
2456     if (retval < BPRM_BUF_SIZE) {
2457         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2458     }
2459 
2460     load_elf_image(filename, fd, info, NULL, bprm_buf);
2461     return;
2462 
2463  exit_perror:
2464     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2465     exit(-1);
2466 }
2467 
2468 static int symfind(const void *s0, const void *s1)
2469 {
2470     target_ulong addr = *(target_ulong *)s0;
2471     struct elf_sym *sym = (struct elf_sym *)s1;
2472     int result = 0;
2473     if (addr < sym->st_value) {
2474         result = -1;
2475     } else if (addr >= sym->st_value + sym->st_size) {
2476         result = 1;
2477     }
2478     return result;
2479 }
2480 
2481 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2482 {
2483 #if ELF_CLASS == ELFCLASS32
2484     struct elf_sym *syms = s->disas_symtab.elf32;
2485 #else
2486     struct elf_sym *syms = s->disas_symtab.elf64;
2487 #endif
2488 
2489     // binary search
2490     struct elf_sym *sym;
2491 
2492     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2493     if (sym != NULL) {
2494         return s->disas_strtab + sym->st_name;
2495     }
2496 
2497     return "";
2498 }
2499 
2500 /* FIXME: This should use elf_ops.h  */
2501 static int symcmp(const void *s0, const void *s1)
2502 {
2503     struct elf_sym *sym0 = (struct elf_sym *)s0;
2504     struct elf_sym *sym1 = (struct elf_sym *)s1;
2505     return (sym0->st_value < sym1->st_value)
2506         ? -1
2507         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2508 }
2509 
2510 /* Best attempt to load symbols from this ELF object. */
2511 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2512 {
2513     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2514     uint64_t segsz;
2515     struct elf_shdr *shdr;
2516     char *strings = NULL;
2517     struct syminfo *s = NULL;
2518     struct elf_sym *new_syms, *syms = NULL;
2519 
2520     shnum = hdr->e_shnum;
2521     i = shnum * sizeof(struct elf_shdr);
2522     shdr = (struct elf_shdr *)alloca(i);
2523     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2524         return;
2525     }
2526 
2527     bswap_shdr(shdr, shnum);
2528     for (i = 0; i < shnum; ++i) {
2529         if (shdr[i].sh_type == SHT_SYMTAB) {
2530             sym_idx = i;
2531             str_idx = shdr[i].sh_link;
2532             goto found;
2533         }
2534     }
2535 
2536     /* There will be no symbol table if the file was stripped.  */
2537     return;
2538 
2539  found:
2540     /* Now know where the strtab and symtab are.  Snarf them.  */
2541     s = g_try_new(struct syminfo, 1);
2542     if (!s) {
2543         goto give_up;
2544     }
2545 
2546     segsz = shdr[str_idx].sh_size;
2547     s->disas_strtab = strings = g_try_malloc(segsz);
2548     if (!strings ||
2549         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2550         goto give_up;
2551     }
2552 
2553     segsz = shdr[sym_idx].sh_size;
2554     syms = g_try_malloc(segsz);
2555     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2556         goto give_up;
2557     }
2558 
2559     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2560         /* Implausibly large symbol table: give up rather than ploughing
2561          * on with the number of symbols calculation overflowing
2562          */
2563         goto give_up;
2564     }
2565     nsyms = segsz / sizeof(struct elf_sym);
2566     for (i = 0; i < nsyms; ) {
2567         bswap_sym(syms + i);
2568         /* Throw away entries which we do not need.  */
2569         if (syms[i].st_shndx == SHN_UNDEF
2570             || syms[i].st_shndx >= SHN_LORESERVE
2571             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2572             if (i < --nsyms) {
2573                 syms[i] = syms[nsyms];
2574             }
2575         } else {
2576 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2577             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2578             syms[i].st_value &= ~(target_ulong)1;
2579 #endif
2580             syms[i].st_value += load_bias;
2581             i++;
2582         }
2583     }
2584 
2585     /* No "useful" symbol.  */
2586     if (nsyms == 0) {
2587         goto give_up;
2588     }
2589 
2590     /* Attempt to free the storage associated with the local symbols
2591        that we threw away.  Whether or not this has any effect on the
2592        memory allocation depends on the malloc implementation and how
2593        many symbols we managed to discard.  */
2594     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2595     if (new_syms == NULL) {
2596         goto give_up;
2597     }
2598     syms = new_syms;
2599 
2600     qsort(syms, nsyms, sizeof(*syms), symcmp);
2601 
2602     s->disas_num_syms = nsyms;
2603 #if ELF_CLASS == ELFCLASS32
2604     s->disas_symtab.elf32 = syms;
2605 #else
2606     s->disas_symtab.elf64 = syms;
2607 #endif
2608     s->lookup_symbol = lookup_symbolxx;
2609     s->next = syminfos;
2610     syminfos = s;
2611 
2612     return;
2613 
2614 give_up:
2615     g_free(s);
2616     g_free(strings);
2617     g_free(syms);
2618 }
2619 
2620 uint32_t get_elf_eflags(int fd)
2621 {
2622     struct elfhdr ehdr;
2623     off_t offset;
2624     int ret;
2625 
2626     /* Read ELF header */
2627     offset = lseek(fd, 0, SEEK_SET);
2628     if (offset == (off_t) -1) {
2629         return 0;
2630     }
2631     ret = read(fd, &ehdr, sizeof(ehdr));
2632     if (ret < sizeof(ehdr)) {
2633         return 0;
2634     }
2635     offset = lseek(fd, offset, SEEK_SET);
2636     if (offset == (off_t) -1) {
2637         return 0;
2638     }
2639 
2640     /* Check ELF signature */
2641     if (!elf_check_ident(&ehdr)) {
2642         return 0;
2643     }
2644 
2645     /* check header */
2646     bswap_ehdr(&ehdr);
2647     if (!elf_check_ehdr(&ehdr)) {
2648         return 0;
2649     }
2650 
2651     /* return architecture id */
2652     return ehdr.e_flags;
2653 }
2654 
2655 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2656 {
2657     struct image_info interp_info;
2658     struct elfhdr elf_ex;
2659     char *elf_interpreter = NULL;
2660     char *scratch;
2661 
2662     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2663 
2664     load_elf_image(bprm->filename, bprm->fd, info,
2665                    &elf_interpreter, bprm->buf);
2666 
2667     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2668        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2669        when we load the interpreter.  */
2670     elf_ex = *(struct elfhdr *)bprm->buf;
2671 
2672     /* Do this so that we can load the interpreter, if need be.  We will
2673        change some of these later */
2674     bprm->p = setup_arg_pages(bprm, info);
2675 
2676     scratch = g_new0(char, TARGET_PAGE_SIZE);
2677     if (STACK_GROWS_DOWN) {
2678         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2679                                    bprm->p, info->stack_limit);
2680         info->file_string = bprm->p;
2681         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2682                                    bprm->p, info->stack_limit);
2683         info->env_strings = bprm->p;
2684         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2685                                    bprm->p, info->stack_limit);
2686         info->arg_strings = bprm->p;
2687     } else {
2688         info->arg_strings = bprm->p;
2689         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2690                                    bprm->p, info->stack_limit);
2691         info->env_strings = bprm->p;
2692         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2693                                    bprm->p, info->stack_limit);
2694         info->file_string = bprm->p;
2695         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2696                                    bprm->p, info->stack_limit);
2697     }
2698 
2699     g_free(scratch);
2700 
2701     if (!bprm->p) {
2702         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2703         exit(-1);
2704     }
2705 
2706     if (elf_interpreter) {
2707         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2708 
2709         /* If the program interpreter is one of these two, then assume
2710            an iBCS2 image.  Otherwise assume a native linux image.  */
2711 
2712         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2713             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2714             info->personality = PER_SVR4;
2715 
2716             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2717                and some applications "depend" upon this behavior.  Since
2718                we do not have the power to recompile these, we emulate
2719                the SVr4 behavior.  Sigh.  */
2720             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2721                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2722         }
2723 #ifdef TARGET_MIPS
2724         info->interp_fp_abi = interp_info.fp_abi;
2725 #endif
2726     }
2727 
2728     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2729                                 info, (elf_interpreter ? &interp_info : NULL));
2730     info->start_stack = bprm->p;
2731 
2732     /* If we have an interpreter, set that as the program's entry point.
2733        Copy the load_bias as well, to help PPC64 interpret the entry
2734        point as a function descriptor.  Do this after creating elf tables
2735        so that we copy the original program entry point into the AUXV.  */
2736     if (elf_interpreter) {
2737         info->load_bias = interp_info.load_bias;
2738         info->entry = interp_info.entry;
2739         free(elf_interpreter);
2740     }
2741 
2742 #ifdef USE_ELF_CORE_DUMP
2743     bprm->core_dump = &elf_core_dump;
2744 #endif
2745 
2746     return 0;
2747 }
2748 
2749 #ifdef USE_ELF_CORE_DUMP
2750 /*
2751  * Definitions to generate Intel SVR4-like core files.
2752  * These mostly have the same names as the SVR4 types with "target_elf_"
2753  * tacked on the front to prevent clashes with linux definitions,
2754  * and the typedef forms have been avoided.  This is mostly like
2755  * the SVR4 structure, but more Linuxy, with things that Linux does
2756  * not support and which gdb doesn't really use excluded.
2757  *
2758  * Fields we don't dump (their contents is zero) in linux-user qemu
2759  * are marked with XXX.
2760  *
2761  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2762  *
2763  * Porting ELF coredump for target is (quite) simple process.  First you
2764  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2765  * the target resides):
2766  *
2767  * #define USE_ELF_CORE_DUMP
2768  *
2769  * Next you define type of register set used for dumping.  ELF specification
2770  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2771  *
2772  * typedef <target_regtype> target_elf_greg_t;
2773  * #define ELF_NREG <number of registers>
2774  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2775  *
2776  * Last step is to implement target specific function that copies registers
2777  * from given cpu into just specified register set.  Prototype is:
2778  *
2779  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2780  *                                const CPUArchState *env);
2781  *
2782  * Parameters:
2783  *     regs - copy register values into here (allocated and zeroed by caller)
2784  *     env - copy registers from here
2785  *
2786  * Example for ARM target is provided in this file.
2787  */
2788 
2789 /* An ELF note in memory */
2790 struct memelfnote {
2791     const char *name;
2792     size_t     namesz;
2793     size_t     namesz_rounded;
2794     int        type;
2795     size_t     datasz;
2796     size_t     datasz_rounded;
2797     void       *data;
2798     size_t     notesz;
2799 };
2800 
2801 struct target_elf_siginfo {
2802     abi_int    si_signo; /* signal number */
2803     abi_int    si_code;  /* extra code */
2804     abi_int    si_errno; /* errno */
2805 };
2806 
2807 struct target_elf_prstatus {
2808     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2809     abi_short          pr_cursig;    /* Current signal */
2810     abi_ulong          pr_sigpend;   /* XXX */
2811     abi_ulong          pr_sighold;   /* XXX */
2812     target_pid_t       pr_pid;
2813     target_pid_t       pr_ppid;
2814     target_pid_t       pr_pgrp;
2815     target_pid_t       pr_sid;
2816     struct target_timeval pr_utime;  /* XXX User time */
2817     struct target_timeval pr_stime;  /* XXX System time */
2818     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2819     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2820     target_elf_gregset_t      pr_reg;       /* GP registers */
2821     abi_int            pr_fpvalid;   /* XXX */
2822 };
2823 
2824 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2825 
2826 struct target_elf_prpsinfo {
2827     char         pr_state;       /* numeric process state */
2828     char         pr_sname;       /* char for pr_state */
2829     char         pr_zomb;        /* zombie */
2830     char         pr_nice;        /* nice val */
2831     abi_ulong    pr_flag;        /* flags */
2832     target_uid_t pr_uid;
2833     target_gid_t pr_gid;
2834     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2835     /* Lots missing */
2836     char    pr_fname[16];           /* filename of executable */
2837     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2838 };
2839 
2840 /* Here is the structure in which status of each thread is captured. */
2841 struct elf_thread_status {
2842     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2843     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2844 #if 0
2845     elf_fpregset_t fpu;             /* NT_PRFPREG */
2846     struct task_struct *thread;
2847     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2848 #endif
2849     struct memelfnote notes[1];
2850     int num_notes;
2851 };
2852 
2853 struct elf_note_info {
2854     struct memelfnote   *notes;
2855     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2856     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2857 
2858     QTAILQ_HEAD(, elf_thread_status) thread_list;
2859 #if 0
2860     /*
2861      * Current version of ELF coredump doesn't support
2862      * dumping fp regs etc.
2863      */
2864     elf_fpregset_t *fpu;
2865     elf_fpxregset_t *xfpu;
2866     int thread_status_size;
2867 #endif
2868     int notes_size;
2869     int numnote;
2870 };
2871 
2872 struct vm_area_struct {
2873     target_ulong   vma_start;  /* start vaddr of memory region */
2874     target_ulong   vma_end;    /* end vaddr of memory region */
2875     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2876     QTAILQ_ENTRY(vm_area_struct) vma_link;
2877 };
2878 
2879 struct mm_struct {
2880     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2881     int mm_count;           /* number of mappings */
2882 };
2883 
2884 static struct mm_struct *vma_init(void);
2885 static void vma_delete(struct mm_struct *);
2886 static int vma_add_mapping(struct mm_struct *, target_ulong,
2887                            target_ulong, abi_ulong);
2888 static int vma_get_mapping_count(const struct mm_struct *);
2889 static struct vm_area_struct *vma_first(const struct mm_struct *);
2890 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2891 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2892 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2893                       unsigned long flags);
2894 
2895 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2896 static void fill_note(struct memelfnote *, const char *, int,
2897                       unsigned int, void *);
2898 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2899 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2900 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2901 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2902 static size_t note_size(const struct memelfnote *);
2903 static void free_note_info(struct elf_note_info *);
2904 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2905 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2906 static int core_dump_filename(const TaskState *, char *, size_t);
2907 
2908 static int dump_write(int, const void *, size_t);
2909 static int write_note(struct memelfnote *, int);
2910 static int write_note_info(struct elf_note_info *, int);
2911 
2912 #ifdef BSWAP_NEEDED
2913 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2914 {
2915     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2916     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2917     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2918     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2919     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2920     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2921     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2922     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2923     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2924     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2925     /* cpu times are not filled, so we skip them */
2926     /* regs should be in correct format already */
2927     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2928 }
2929 
2930 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2931 {
2932     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2933     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2934     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2935     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2936     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2937     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2938     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2939 }
2940 
2941 static void bswap_note(struct elf_note *en)
2942 {
2943     bswap32s(&en->n_namesz);
2944     bswap32s(&en->n_descsz);
2945     bswap32s(&en->n_type);
2946 }
2947 #else
2948 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2949 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2950 static inline void bswap_note(struct elf_note *en) { }
2951 #endif /* BSWAP_NEEDED */
2952 
2953 /*
2954  * Minimal support for linux memory regions.  These are needed
2955  * when we are finding out what memory exactly belongs to
2956  * emulated process.  No locks needed here, as long as
2957  * thread that received the signal is stopped.
2958  */
2959 
2960 static struct mm_struct *vma_init(void)
2961 {
2962     struct mm_struct *mm;
2963 
2964     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2965         return (NULL);
2966 
2967     mm->mm_count = 0;
2968     QTAILQ_INIT(&mm->mm_mmap);
2969 
2970     return (mm);
2971 }
2972 
2973 static void vma_delete(struct mm_struct *mm)
2974 {
2975     struct vm_area_struct *vma;
2976 
2977     while ((vma = vma_first(mm)) != NULL) {
2978         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2979         g_free(vma);
2980     }
2981     g_free(mm);
2982 }
2983 
2984 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2985                            target_ulong end, abi_ulong flags)
2986 {
2987     struct vm_area_struct *vma;
2988 
2989     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2990         return (-1);
2991 
2992     vma->vma_start = start;
2993     vma->vma_end = end;
2994     vma->vma_flags = flags;
2995 
2996     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2997     mm->mm_count++;
2998 
2999     return (0);
3000 }
3001 
3002 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3003 {
3004     return (QTAILQ_FIRST(&mm->mm_mmap));
3005 }
3006 
3007 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3008 {
3009     return (QTAILQ_NEXT(vma, vma_link));
3010 }
3011 
3012 static int vma_get_mapping_count(const struct mm_struct *mm)
3013 {
3014     return (mm->mm_count);
3015 }
3016 
3017 /*
3018  * Calculate file (dump) size of given memory region.
3019  */
3020 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3021 {
3022     /* if we cannot even read the first page, skip it */
3023     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3024         return (0);
3025 
3026     /*
3027      * Usually we don't dump executable pages as they contain
3028      * non-writable code that debugger can read directly from
3029      * target library etc.  However, thread stacks are marked
3030      * also executable so we read in first page of given region
3031      * and check whether it contains elf header.  If there is
3032      * no elf header, we dump it.
3033      */
3034     if (vma->vma_flags & PROT_EXEC) {
3035         char page[TARGET_PAGE_SIZE];
3036 
3037         copy_from_user(page, vma->vma_start, sizeof (page));
3038         if ((page[EI_MAG0] == ELFMAG0) &&
3039             (page[EI_MAG1] == ELFMAG1) &&
3040             (page[EI_MAG2] == ELFMAG2) &&
3041             (page[EI_MAG3] == ELFMAG3)) {
3042             /*
3043              * Mappings are possibly from ELF binary.  Don't dump
3044              * them.
3045              */
3046             return (0);
3047         }
3048     }
3049 
3050     return (vma->vma_end - vma->vma_start);
3051 }
3052 
3053 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3054                       unsigned long flags)
3055 {
3056     struct mm_struct *mm = (struct mm_struct *)priv;
3057 
3058     vma_add_mapping(mm, start, end, flags);
3059     return (0);
3060 }
3061 
3062 static void fill_note(struct memelfnote *note, const char *name, int type,
3063                       unsigned int sz, void *data)
3064 {
3065     unsigned int namesz;
3066 
3067     namesz = strlen(name) + 1;
3068     note->name = name;
3069     note->namesz = namesz;
3070     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3071     note->type = type;
3072     note->datasz = sz;
3073     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3074 
3075     note->data = data;
3076 
3077     /*
3078      * We calculate rounded up note size here as specified by
3079      * ELF document.
3080      */
3081     note->notesz = sizeof (struct elf_note) +
3082         note->namesz_rounded + note->datasz_rounded;
3083 }
3084 
3085 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3086                             uint32_t flags)
3087 {
3088     (void) memset(elf, 0, sizeof(*elf));
3089 
3090     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3091     elf->e_ident[EI_CLASS] = ELF_CLASS;
3092     elf->e_ident[EI_DATA] = ELF_DATA;
3093     elf->e_ident[EI_VERSION] = EV_CURRENT;
3094     elf->e_ident[EI_OSABI] = ELF_OSABI;
3095 
3096     elf->e_type = ET_CORE;
3097     elf->e_machine = machine;
3098     elf->e_version = EV_CURRENT;
3099     elf->e_phoff = sizeof(struct elfhdr);
3100     elf->e_flags = flags;
3101     elf->e_ehsize = sizeof(struct elfhdr);
3102     elf->e_phentsize = sizeof(struct elf_phdr);
3103     elf->e_phnum = segs;
3104 
3105     bswap_ehdr(elf);
3106 }
3107 
3108 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3109 {
3110     phdr->p_type = PT_NOTE;
3111     phdr->p_offset = offset;
3112     phdr->p_vaddr = 0;
3113     phdr->p_paddr = 0;
3114     phdr->p_filesz = sz;
3115     phdr->p_memsz = 0;
3116     phdr->p_flags = 0;
3117     phdr->p_align = 0;
3118 
3119     bswap_phdr(phdr, 1);
3120 }
3121 
3122 static size_t note_size(const struct memelfnote *note)
3123 {
3124     return (note->notesz);
3125 }
3126 
3127 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3128                           const TaskState *ts, int signr)
3129 {
3130     (void) memset(prstatus, 0, sizeof (*prstatus));
3131     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3132     prstatus->pr_pid = ts->ts_tid;
3133     prstatus->pr_ppid = getppid();
3134     prstatus->pr_pgrp = getpgrp();
3135     prstatus->pr_sid = getsid(0);
3136 
3137     bswap_prstatus(prstatus);
3138 }
3139 
3140 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3141 {
3142     char *base_filename;
3143     unsigned int i, len;
3144 
3145     (void) memset(psinfo, 0, sizeof (*psinfo));
3146 
3147     len = ts->info->arg_end - ts->info->arg_start;
3148     if (len >= ELF_PRARGSZ)
3149         len = ELF_PRARGSZ - 1;
3150     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3151         return -EFAULT;
3152     for (i = 0; i < len; i++)
3153         if (psinfo->pr_psargs[i] == 0)
3154             psinfo->pr_psargs[i] = ' ';
3155     psinfo->pr_psargs[len] = 0;
3156 
3157     psinfo->pr_pid = getpid();
3158     psinfo->pr_ppid = getppid();
3159     psinfo->pr_pgrp = getpgrp();
3160     psinfo->pr_sid = getsid(0);
3161     psinfo->pr_uid = getuid();
3162     psinfo->pr_gid = getgid();
3163 
3164     base_filename = g_path_get_basename(ts->bprm->filename);
3165     /*
3166      * Using strncpy here is fine: at max-length,
3167      * this field is not NUL-terminated.
3168      */
3169     (void) strncpy(psinfo->pr_fname, base_filename,
3170                    sizeof(psinfo->pr_fname));
3171 
3172     g_free(base_filename);
3173     bswap_psinfo(psinfo);
3174     return (0);
3175 }
3176 
3177 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3178 {
3179     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3180     elf_addr_t orig_auxv = auxv;
3181     void *ptr;
3182     int len = ts->info->auxv_len;
3183 
3184     /*
3185      * Auxiliary vector is stored in target process stack.  It contains
3186      * {type, value} pairs that we need to dump into note.  This is not
3187      * strictly necessary but we do it here for sake of completeness.
3188      */
3189 
3190     /* read in whole auxv vector and copy it to memelfnote */
3191     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3192     if (ptr != NULL) {
3193         fill_note(note, "CORE", NT_AUXV, len, ptr);
3194         unlock_user(ptr, auxv, len);
3195     }
3196 }
3197 
3198 /*
3199  * Constructs name of coredump file.  We have following convention
3200  * for the name:
3201  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3202  *
3203  * Returns 0 in case of success, -1 otherwise (errno is set).
3204  */
3205 static int core_dump_filename(const TaskState *ts, char *buf,
3206                               size_t bufsize)
3207 {
3208     char timestamp[64];
3209     char *base_filename = NULL;
3210     struct timeval tv;
3211     struct tm tm;
3212 
3213     assert(bufsize >= PATH_MAX);
3214 
3215     if (gettimeofday(&tv, NULL) < 0) {
3216         (void) fprintf(stderr, "unable to get current timestamp: %s",
3217                        strerror(errno));
3218         return (-1);
3219     }
3220 
3221     base_filename = g_path_get_basename(ts->bprm->filename);
3222     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3223                     localtime_r(&tv.tv_sec, &tm));
3224     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3225                     base_filename, timestamp, (int)getpid());
3226     g_free(base_filename);
3227 
3228     return (0);
3229 }
3230 
3231 static int dump_write(int fd, const void *ptr, size_t size)
3232 {
3233     const char *bufp = (const char *)ptr;
3234     ssize_t bytes_written, bytes_left;
3235     struct rlimit dumpsize;
3236     off_t pos;
3237 
3238     bytes_written = 0;
3239     getrlimit(RLIMIT_CORE, &dumpsize);
3240     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3241         if (errno == ESPIPE) { /* not a seekable stream */
3242             bytes_left = size;
3243         } else {
3244             return pos;
3245         }
3246     } else {
3247         if (dumpsize.rlim_cur <= pos) {
3248             return -1;
3249         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3250             bytes_left = size;
3251         } else {
3252             size_t limit_left=dumpsize.rlim_cur - pos;
3253             bytes_left = limit_left >= size ? size : limit_left ;
3254         }
3255     }
3256 
3257     /*
3258      * In normal conditions, single write(2) should do but
3259      * in case of socket etc. this mechanism is more portable.
3260      */
3261     do {
3262         bytes_written = write(fd, bufp, bytes_left);
3263         if (bytes_written < 0) {
3264             if (errno == EINTR)
3265                 continue;
3266             return (-1);
3267         } else if (bytes_written == 0) { /* eof */
3268             return (-1);
3269         }
3270         bufp += bytes_written;
3271         bytes_left -= bytes_written;
3272     } while (bytes_left > 0);
3273 
3274     return (0);
3275 }
3276 
3277 static int write_note(struct memelfnote *men, int fd)
3278 {
3279     struct elf_note en;
3280 
3281     en.n_namesz = men->namesz;
3282     en.n_type = men->type;
3283     en.n_descsz = men->datasz;
3284 
3285     bswap_note(&en);
3286 
3287     if (dump_write(fd, &en, sizeof(en)) != 0)
3288         return (-1);
3289     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3290         return (-1);
3291     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3292         return (-1);
3293 
3294     return (0);
3295 }
3296 
3297 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3298 {
3299     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3300     TaskState *ts = (TaskState *)cpu->opaque;
3301     struct elf_thread_status *ets;
3302 
3303     ets = g_malloc0(sizeof (*ets));
3304     ets->num_notes = 1; /* only prstatus is dumped */
3305     fill_prstatus(&ets->prstatus, ts, 0);
3306     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3307     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3308               &ets->prstatus);
3309 
3310     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3311 
3312     info->notes_size += note_size(&ets->notes[0]);
3313 }
3314 
3315 static void init_note_info(struct elf_note_info *info)
3316 {
3317     /* Initialize the elf_note_info structure so that it is at
3318      * least safe to call free_note_info() on it. Must be
3319      * called before calling fill_note_info().
3320      */
3321     memset(info, 0, sizeof (*info));
3322     QTAILQ_INIT(&info->thread_list);
3323 }
3324 
3325 static int fill_note_info(struct elf_note_info *info,
3326                           long signr, const CPUArchState *env)
3327 {
3328 #define NUMNOTES 3
3329     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3330     TaskState *ts = (TaskState *)cpu->opaque;
3331     int i;
3332 
3333     info->notes = g_new0(struct memelfnote, NUMNOTES);
3334     if (info->notes == NULL)
3335         return (-ENOMEM);
3336     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3337     if (info->prstatus == NULL)
3338         return (-ENOMEM);
3339     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3340     if (info->prstatus == NULL)
3341         return (-ENOMEM);
3342 
3343     /*
3344      * First fill in status (and registers) of current thread
3345      * including process info & aux vector.
3346      */
3347     fill_prstatus(info->prstatus, ts, signr);
3348     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3349     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3350               sizeof (*info->prstatus), info->prstatus);
3351     fill_psinfo(info->psinfo, ts);
3352     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3353               sizeof (*info->psinfo), info->psinfo);
3354     fill_auxv_note(&info->notes[2], ts);
3355     info->numnote = 3;
3356 
3357     info->notes_size = 0;
3358     for (i = 0; i < info->numnote; i++)
3359         info->notes_size += note_size(&info->notes[i]);
3360 
3361     /* read and fill status of all threads */
3362     cpu_list_lock();
3363     CPU_FOREACH(cpu) {
3364         if (cpu == thread_cpu) {
3365             continue;
3366         }
3367         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3368     }
3369     cpu_list_unlock();
3370 
3371     return (0);
3372 }
3373 
3374 static void free_note_info(struct elf_note_info *info)
3375 {
3376     struct elf_thread_status *ets;
3377 
3378     while (!QTAILQ_EMPTY(&info->thread_list)) {
3379         ets = QTAILQ_FIRST(&info->thread_list);
3380         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3381         g_free(ets);
3382     }
3383 
3384     g_free(info->prstatus);
3385     g_free(info->psinfo);
3386     g_free(info->notes);
3387 }
3388 
3389 static int write_note_info(struct elf_note_info *info, int fd)
3390 {
3391     struct elf_thread_status *ets;
3392     int i, error = 0;
3393 
3394     /* write prstatus, psinfo and auxv for current thread */
3395     for (i = 0; i < info->numnote; i++)
3396         if ((error = write_note(&info->notes[i], fd)) != 0)
3397             return (error);
3398 
3399     /* write prstatus for each thread */
3400     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3401         if ((error = write_note(&ets->notes[0], fd)) != 0)
3402             return (error);
3403     }
3404 
3405     return (0);
3406 }
3407 
3408 /*
3409  * Write out ELF coredump.
3410  *
3411  * See documentation of ELF object file format in:
3412  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3413  *
3414  * Coredump format in linux is following:
3415  *
3416  * 0   +----------------------+         \
3417  *     | ELF header           | ET_CORE  |
3418  *     +----------------------+          |
3419  *     | ELF program headers  |          |--- headers
3420  *     | - NOTE section       |          |
3421  *     | - PT_LOAD sections   |          |
3422  *     +----------------------+         /
3423  *     | NOTEs:               |
3424  *     | - NT_PRSTATUS        |
3425  *     | - NT_PRSINFO         |
3426  *     | - NT_AUXV            |
3427  *     +----------------------+ <-- aligned to target page
3428  *     | Process memory dump  |
3429  *     :                      :
3430  *     .                      .
3431  *     :                      :
3432  *     |                      |
3433  *     +----------------------+
3434  *
3435  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3436  * NT_PRSINFO  -> struct elf_prpsinfo
3437  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3438  *
3439  * Format follows System V format as close as possible.  Current
3440  * version limitations are as follows:
3441  *     - no floating point registers are dumped
3442  *
3443  * Function returns 0 in case of success, negative errno otherwise.
3444  *
3445  * TODO: make this work also during runtime: it should be
3446  * possible to force coredump from running process and then
3447  * continue processing.  For example qemu could set up SIGUSR2
3448  * handler (provided that target process haven't registered
3449  * handler for that) that does the dump when signal is received.
3450  */
3451 static int elf_core_dump(int signr, const CPUArchState *env)
3452 {
3453     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3454     const TaskState *ts = (const TaskState *)cpu->opaque;
3455     struct vm_area_struct *vma = NULL;
3456     char corefile[PATH_MAX];
3457     struct elf_note_info info;
3458     struct elfhdr elf;
3459     struct elf_phdr phdr;
3460     struct rlimit dumpsize;
3461     struct mm_struct *mm = NULL;
3462     off_t offset = 0, data_offset = 0;
3463     int segs = 0;
3464     int fd = -1;
3465 
3466     init_note_info(&info);
3467 
3468     errno = 0;
3469     getrlimit(RLIMIT_CORE, &dumpsize);
3470     if (dumpsize.rlim_cur == 0)
3471         return 0;
3472 
3473     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3474         return (-errno);
3475 
3476     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3477                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3478         return (-errno);
3479 
3480     /*
3481      * Walk through target process memory mappings and
3482      * set up structure containing this information.  After
3483      * this point vma_xxx functions can be used.
3484      */
3485     if ((mm = vma_init()) == NULL)
3486         goto out;
3487 
3488     walk_memory_regions(mm, vma_walker);
3489     segs = vma_get_mapping_count(mm);
3490 
3491     /*
3492      * Construct valid coredump ELF header.  We also
3493      * add one more segment for notes.
3494      */
3495     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3496     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3497         goto out;
3498 
3499     /* fill in the in-memory version of notes */
3500     if (fill_note_info(&info, signr, env) < 0)
3501         goto out;
3502 
3503     offset += sizeof (elf);                             /* elf header */
3504     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3505 
3506     /* write out notes program header */
3507     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3508 
3509     offset += info.notes_size;
3510     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3511         goto out;
3512 
3513     /*
3514      * ELF specification wants data to start at page boundary so
3515      * we align it here.
3516      */
3517     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3518 
3519     /*
3520      * Write program headers for memory regions mapped in
3521      * the target process.
3522      */
3523     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3524         (void) memset(&phdr, 0, sizeof (phdr));
3525 
3526         phdr.p_type = PT_LOAD;
3527         phdr.p_offset = offset;
3528         phdr.p_vaddr = vma->vma_start;
3529         phdr.p_paddr = 0;
3530         phdr.p_filesz = vma_dump_size(vma);
3531         offset += phdr.p_filesz;
3532         phdr.p_memsz = vma->vma_end - vma->vma_start;
3533         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3534         if (vma->vma_flags & PROT_WRITE)
3535             phdr.p_flags |= PF_W;
3536         if (vma->vma_flags & PROT_EXEC)
3537             phdr.p_flags |= PF_X;
3538         phdr.p_align = ELF_EXEC_PAGESIZE;
3539 
3540         bswap_phdr(&phdr, 1);
3541         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3542             goto out;
3543         }
3544     }
3545 
3546     /*
3547      * Next we write notes just after program headers.  No
3548      * alignment needed here.
3549      */
3550     if (write_note_info(&info, fd) < 0)
3551         goto out;
3552 
3553     /* align data to page boundary */
3554     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3555         goto out;
3556 
3557     /*
3558      * Finally we can dump process memory into corefile as well.
3559      */
3560     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3561         abi_ulong addr;
3562         abi_ulong end;
3563 
3564         end = vma->vma_start + vma_dump_size(vma);
3565 
3566         for (addr = vma->vma_start; addr < end;
3567              addr += TARGET_PAGE_SIZE) {
3568             char page[TARGET_PAGE_SIZE];
3569             int error;
3570 
3571             /*
3572              *  Read in page from target process memory and
3573              *  write it to coredump file.
3574              */
3575             error = copy_from_user(page, addr, sizeof (page));
3576             if (error != 0) {
3577                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3578                                addr);
3579                 errno = -error;
3580                 goto out;
3581             }
3582             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3583                 goto out;
3584         }
3585     }
3586 
3587  out:
3588     free_note_info(&info);
3589     if (mm != NULL)
3590         vma_delete(mm);
3591     (void) close(fd);
3592 
3593     if (errno != 0)
3594         return (-errno);
3595     return (0);
3596 }
3597 #endif /* USE_ELF_CORE_DUMP */
3598 
3599 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3600 {
3601     init_thread(regs, infop);
3602 }
3603