1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/prctl.h> 6 #include <sys/resource.h> 7 #include <sys/shm.h> 8 9 #include "qemu.h" 10 #include "user/tswap-target.h" 11 #include "exec/page-protection.h" 12 #include "user/guest-base.h" 13 #include "user-internals.h" 14 #include "signal-common.h" 15 #include "loader.h" 16 #include "user-mmap.h" 17 #include "disas/disas.h" 18 #include "qemu/bitops.h" 19 #include "qemu/path.h" 20 #include "qemu/queue.h" 21 #include "qemu/guest-random.h" 22 #include "qemu/units.h" 23 #include "qemu/selfmap.h" 24 #include "qemu/lockable.h" 25 #include "qapi/error.h" 26 #include "qemu/error-report.h" 27 #include "target_signal.h" 28 #include "tcg/debuginfo.h" 29 30 #ifdef TARGET_ARM 31 #include "target/arm/cpu-features.h" 32 #endif 33 34 #ifdef _ARCH_PPC64 35 #undef ARCH_DLINFO 36 #undef ELF_PLATFORM 37 #undef ELF_HWCAP 38 #undef ELF_HWCAP2 39 #undef ELF_CLASS 40 #undef ELF_DATA 41 #undef ELF_ARCH 42 #endif 43 44 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE 45 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0 46 #endif 47 48 typedef struct { 49 const uint8_t *image; 50 const uint32_t *relocs; 51 unsigned image_size; 52 unsigned reloc_count; 53 unsigned sigreturn_ofs; 54 unsigned rt_sigreturn_ofs; 55 } VdsoImageInfo; 56 57 #define ELF_OSABI ELFOSABI_SYSV 58 59 /* from personality.h */ 60 61 /* 62 * Flags for bug emulation. 63 * 64 * These occupy the top three bytes. 65 */ 66 enum { 67 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 68 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 69 descriptors (signal handling) */ 70 MMAP_PAGE_ZERO = 0x0100000, 71 ADDR_COMPAT_LAYOUT = 0x0200000, 72 READ_IMPLIES_EXEC = 0x0400000, 73 ADDR_LIMIT_32BIT = 0x0800000, 74 SHORT_INODE = 0x1000000, 75 WHOLE_SECONDS = 0x2000000, 76 STICKY_TIMEOUTS = 0x4000000, 77 ADDR_LIMIT_3GB = 0x8000000, 78 }; 79 80 /* 81 * Personality types. 82 * 83 * These go in the low byte. Avoid using the top bit, it will 84 * conflict with error returns. 85 */ 86 enum { 87 PER_LINUX = 0x0000, 88 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 89 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 90 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 91 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 92 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 93 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 94 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 95 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 96 PER_BSD = 0x0006, 97 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 98 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 99 PER_LINUX32 = 0x0008, 100 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 101 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 102 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 103 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 104 PER_RISCOS = 0x000c, 105 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 106 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 107 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 108 PER_HPUX = 0x0010, 109 PER_MASK = 0x00ff, 110 }; 111 112 /* 113 * Return the base personality without flags. 114 */ 115 #define personality(pers) (pers & PER_MASK) 116 117 int info_is_fdpic(struct image_info *info) 118 { 119 return info->personality == PER_LINUX_FDPIC; 120 } 121 122 /* this flag is uneffective under linux too, should be deleted */ 123 #ifndef MAP_DENYWRITE 124 #define MAP_DENYWRITE 0 125 #endif 126 127 /* should probably go in elf.h */ 128 #ifndef ELIBBAD 129 #define ELIBBAD 80 130 #endif 131 132 #if TARGET_BIG_ENDIAN 133 #define ELF_DATA ELFDATA2MSB 134 #else 135 #define ELF_DATA ELFDATA2LSB 136 #endif 137 138 #ifdef TARGET_ABI_MIPSN32 139 typedef abi_ullong target_elf_greg_t; 140 #define tswapreg(ptr) tswap64(ptr) 141 #else 142 typedef abi_ulong target_elf_greg_t; 143 #define tswapreg(ptr) tswapal(ptr) 144 #endif 145 146 #ifdef USE_UID16 147 typedef abi_ushort target_uid_t; 148 typedef abi_ushort target_gid_t; 149 #else 150 typedef abi_uint target_uid_t; 151 typedef abi_uint target_gid_t; 152 #endif 153 typedef abi_int target_pid_t; 154 155 #ifdef TARGET_I386 156 157 #define ELF_HWCAP get_elf_hwcap() 158 159 static uint32_t get_elf_hwcap(void) 160 { 161 X86CPU *cpu = X86_CPU(thread_cpu); 162 163 return cpu->env.features[FEAT_1_EDX]; 164 } 165 166 #ifdef TARGET_X86_64 167 #define ELF_CLASS ELFCLASS64 168 #define ELF_ARCH EM_X86_64 169 170 #define ELF_PLATFORM "x86_64" 171 172 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 173 { 174 regs->rax = 0; 175 regs->rsp = infop->start_stack; 176 regs->rip = infop->entry; 177 } 178 179 #define ELF_NREG 27 180 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 181 182 /* 183 * Note that ELF_NREG should be 29 as there should be place for 184 * TRAPNO and ERR "registers" as well but linux doesn't dump 185 * those. 186 * 187 * See linux kernel: arch/x86/include/asm/elf.h 188 */ 189 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 190 { 191 (*regs)[0] = tswapreg(env->regs[15]); 192 (*regs)[1] = tswapreg(env->regs[14]); 193 (*regs)[2] = tswapreg(env->regs[13]); 194 (*regs)[3] = tswapreg(env->regs[12]); 195 (*regs)[4] = tswapreg(env->regs[R_EBP]); 196 (*regs)[5] = tswapreg(env->regs[R_EBX]); 197 (*regs)[6] = tswapreg(env->regs[11]); 198 (*regs)[7] = tswapreg(env->regs[10]); 199 (*regs)[8] = tswapreg(env->regs[9]); 200 (*regs)[9] = tswapreg(env->regs[8]); 201 (*regs)[10] = tswapreg(env->regs[R_EAX]); 202 (*regs)[11] = tswapreg(env->regs[R_ECX]); 203 (*regs)[12] = tswapreg(env->regs[R_EDX]); 204 (*regs)[13] = tswapreg(env->regs[R_ESI]); 205 (*regs)[14] = tswapreg(env->regs[R_EDI]); 206 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 207 (*regs)[16] = tswapreg(env->eip); 208 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 209 (*regs)[18] = tswapreg(env->eflags); 210 (*regs)[19] = tswapreg(env->regs[R_ESP]); 211 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 212 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 213 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 214 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 215 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 216 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 217 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 218 } 219 220 #if ULONG_MAX > UINT32_MAX 221 #define INIT_GUEST_COMMPAGE 222 static bool init_guest_commpage(void) 223 { 224 /* 225 * The vsyscall page is at a high negative address aka kernel space, 226 * which means that we cannot actually allocate it with target_mmap. 227 * We still should be able to use page_set_flags, unless the user 228 * has specified -R reserved_va, which would trigger an assert(). 229 */ 230 if (reserved_va != 0 && 231 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) { 232 error_report("Cannot allocate vsyscall page"); 233 exit(EXIT_FAILURE); 234 } 235 page_set_flags(TARGET_VSYSCALL_PAGE, 236 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK, 237 PAGE_EXEC | PAGE_VALID); 238 return true; 239 } 240 #endif 241 #else 242 243 /* 244 * This is used to ensure we don't load something for the wrong architecture. 245 */ 246 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 247 248 /* 249 * These are used to set parameters in the core dumps. 250 */ 251 #define ELF_CLASS ELFCLASS32 252 #define ELF_ARCH EM_386 253 254 #define ELF_PLATFORM get_elf_platform() 255 #define EXSTACK_DEFAULT true 256 257 static const char *get_elf_platform(void) 258 { 259 static char elf_platform[] = "i386"; 260 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 261 if (family > 6) { 262 family = 6; 263 } 264 if (family >= 3) { 265 elf_platform[1] = '0' + family; 266 } 267 return elf_platform; 268 } 269 270 static inline void init_thread(struct target_pt_regs *regs, 271 struct image_info *infop) 272 { 273 regs->esp = infop->start_stack; 274 regs->eip = infop->entry; 275 276 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 277 starts %edx contains a pointer to a function which might be 278 registered using `atexit'. This provides a mean for the 279 dynamic linker to call DT_FINI functions for shared libraries 280 that have been loaded before the code runs. 281 282 A value of 0 tells we have no such handler. */ 283 regs->edx = 0; 284 } 285 286 #define ELF_NREG 17 287 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 288 289 /* 290 * Note that ELF_NREG should be 19 as there should be place for 291 * TRAPNO and ERR "registers" as well but linux doesn't dump 292 * those. 293 * 294 * See linux kernel: arch/x86/include/asm/elf.h 295 */ 296 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 297 { 298 (*regs)[0] = tswapreg(env->regs[R_EBX]); 299 (*regs)[1] = tswapreg(env->regs[R_ECX]); 300 (*regs)[2] = tswapreg(env->regs[R_EDX]); 301 (*regs)[3] = tswapreg(env->regs[R_ESI]); 302 (*regs)[4] = tswapreg(env->regs[R_EDI]); 303 (*regs)[5] = tswapreg(env->regs[R_EBP]); 304 (*regs)[6] = tswapreg(env->regs[R_EAX]); 305 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 306 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 307 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 308 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 309 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 310 (*regs)[12] = tswapreg(env->eip); 311 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 312 (*regs)[14] = tswapreg(env->eflags); 313 (*regs)[15] = tswapreg(env->regs[R_ESP]); 314 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 315 } 316 317 /* 318 * i386 is the only target which supplies AT_SYSINFO for the vdso. 319 * All others only supply AT_SYSINFO_EHDR. 320 */ 321 #define DLINFO_ARCH_ITEMS (vdso_info != NULL) 322 #define ARCH_DLINFO \ 323 do { \ 324 if (vdso_info) { \ 325 NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \ 326 } \ 327 } while (0) 328 329 #endif /* TARGET_X86_64 */ 330 331 #define VDSO_HEADER "vdso.c.inc" 332 333 #define USE_ELF_CORE_DUMP 334 #define ELF_EXEC_PAGESIZE 4096 335 336 #endif /* TARGET_I386 */ 337 338 #ifdef TARGET_ARM 339 340 #ifndef TARGET_AARCH64 341 /* 32 bit ARM definitions */ 342 343 #define ELF_ARCH EM_ARM 344 #define ELF_CLASS ELFCLASS32 345 #define EXSTACK_DEFAULT true 346 347 static inline void init_thread(struct target_pt_regs *regs, 348 struct image_info *infop) 349 { 350 abi_long stack = infop->start_stack; 351 memset(regs, 0, sizeof(*regs)); 352 353 regs->uregs[16] = ARM_CPU_MODE_USR; 354 if (infop->entry & 1) { 355 regs->uregs[16] |= CPSR_T; 356 } 357 regs->uregs[15] = infop->entry & 0xfffffffe; 358 regs->uregs[13] = infop->start_stack; 359 /* FIXME - what to for failure of get_user()? */ 360 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 361 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 362 /* XXX: it seems that r0 is zeroed after ! */ 363 regs->uregs[0] = 0; 364 /* For uClinux PIC binaries. */ 365 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 366 regs->uregs[10] = infop->start_data; 367 368 /* Support ARM FDPIC. */ 369 if (info_is_fdpic(infop)) { 370 /* As described in the ABI document, r7 points to the loadmap info 371 * prepared by the kernel. If an interpreter is needed, r8 points 372 * to the interpreter loadmap and r9 points to the interpreter 373 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 374 * r9 points to the main program PT_DYNAMIC info. 375 */ 376 regs->uregs[7] = infop->loadmap_addr; 377 if (infop->interpreter_loadmap_addr) { 378 /* Executable is dynamically loaded. */ 379 regs->uregs[8] = infop->interpreter_loadmap_addr; 380 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 381 } else { 382 regs->uregs[8] = 0; 383 regs->uregs[9] = infop->pt_dynamic_addr; 384 } 385 } 386 } 387 388 #define ELF_NREG 18 389 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 390 391 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 392 { 393 (*regs)[0] = tswapreg(env->regs[0]); 394 (*regs)[1] = tswapreg(env->regs[1]); 395 (*regs)[2] = tswapreg(env->regs[2]); 396 (*regs)[3] = tswapreg(env->regs[3]); 397 (*regs)[4] = tswapreg(env->regs[4]); 398 (*regs)[5] = tswapreg(env->regs[5]); 399 (*regs)[6] = tswapreg(env->regs[6]); 400 (*regs)[7] = tswapreg(env->regs[7]); 401 (*regs)[8] = tswapreg(env->regs[8]); 402 (*regs)[9] = tswapreg(env->regs[9]); 403 (*regs)[10] = tswapreg(env->regs[10]); 404 (*regs)[11] = tswapreg(env->regs[11]); 405 (*regs)[12] = tswapreg(env->regs[12]); 406 (*regs)[13] = tswapreg(env->regs[13]); 407 (*regs)[14] = tswapreg(env->regs[14]); 408 (*regs)[15] = tswapreg(env->regs[15]); 409 410 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 411 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 412 } 413 414 #define USE_ELF_CORE_DUMP 415 #define ELF_EXEC_PAGESIZE 4096 416 417 enum 418 { 419 ARM_HWCAP_ARM_SWP = 1 << 0, 420 ARM_HWCAP_ARM_HALF = 1 << 1, 421 ARM_HWCAP_ARM_THUMB = 1 << 2, 422 ARM_HWCAP_ARM_26BIT = 1 << 3, 423 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 424 ARM_HWCAP_ARM_FPA = 1 << 5, 425 ARM_HWCAP_ARM_VFP = 1 << 6, 426 ARM_HWCAP_ARM_EDSP = 1 << 7, 427 ARM_HWCAP_ARM_JAVA = 1 << 8, 428 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 429 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 430 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 431 ARM_HWCAP_ARM_NEON = 1 << 12, 432 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 433 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 434 ARM_HWCAP_ARM_TLS = 1 << 15, 435 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 436 ARM_HWCAP_ARM_IDIVA = 1 << 17, 437 ARM_HWCAP_ARM_IDIVT = 1 << 18, 438 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 439 ARM_HWCAP_ARM_LPAE = 1 << 20, 440 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 441 ARM_HWCAP_ARM_FPHP = 1 << 22, 442 ARM_HWCAP_ARM_ASIMDHP = 1 << 23, 443 ARM_HWCAP_ARM_ASIMDDP = 1 << 24, 444 ARM_HWCAP_ARM_ASIMDFHM = 1 << 25, 445 ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26, 446 ARM_HWCAP_ARM_I8MM = 1 << 27, 447 }; 448 449 enum { 450 ARM_HWCAP2_ARM_AES = 1 << 0, 451 ARM_HWCAP2_ARM_PMULL = 1 << 1, 452 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 453 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 454 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 455 ARM_HWCAP2_ARM_SB = 1 << 5, 456 ARM_HWCAP2_ARM_SSBS = 1 << 6, 457 }; 458 459 /* The commpage only exists for 32 bit kernels */ 460 461 #define HI_COMMPAGE (intptr_t)0xffff0f00u 462 463 static bool init_guest_commpage(void) 464 { 465 ARMCPU *cpu = ARM_CPU(thread_cpu); 466 int host_page_size = qemu_real_host_page_size(); 467 abi_ptr commpage; 468 void *want; 469 void *addr; 470 471 /* 472 * M-profile allocates maximum of 2GB address space, so can never 473 * allocate the commpage. Skip it. 474 */ 475 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 476 return true; 477 } 478 479 commpage = HI_COMMPAGE & -host_page_size; 480 want = g2h_untagged(commpage); 481 addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE, 482 MAP_ANONYMOUS | MAP_PRIVATE | 483 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE), 484 -1, 0); 485 486 if (addr == MAP_FAILED) { 487 perror("Allocating guest commpage"); 488 exit(EXIT_FAILURE); 489 } 490 if (addr != want) { 491 return false; 492 } 493 494 /* Set kernel helper versions; rest of page is 0. */ 495 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 496 497 if (mprotect(addr, host_page_size, PROT_READ)) { 498 perror("Protecting guest commpage"); 499 exit(EXIT_FAILURE); 500 } 501 502 page_set_flags(commpage, commpage | (host_page_size - 1), 503 PAGE_READ | PAGE_EXEC | PAGE_VALID); 504 return true; 505 } 506 507 #define ELF_HWCAP get_elf_hwcap() 508 #define ELF_HWCAP2 get_elf_hwcap2() 509 510 uint32_t get_elf_hwcap(void) 511 { 512 ARMCPU *cpu = ARM_CPU(thread_cpu); 513 uint32_t hwcaps = 0; 514 515 hwcaps |= ARM_HWCAP_ARM_SWP; 516 hwcaps |= ARM_HWCAP_ARM_HALF; 517 hwcaps |= ARM_HWCAP_ARM_THUMB; 518 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 519 520 /* probe for the extra features */ 521 #define GET_FEATURE(feat, hwcap) \ 522 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 523 524 #define GET_FEATURE_ID(feat, hwcap) \ 525 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 526 527 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 528 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 529 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 530 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 531 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 532 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 533 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 534 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 535 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 536 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 537 538 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 539 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 540 hwcaps |= ARM_HWCAP_ARM_VFPv3; 541 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 542 hwcaps |= ARM_HWCAP_ARM_VFPD32; 543 } else { 544 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 545 } 546 } 547 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 548 /* 549 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same 550 * isar_feature function for both. The kernel reports them as two hwcaps. 551 */ 552 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP); 553 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP); 554 GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP); 555 GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM); 556 GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16); 557 GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM); 558 559 return hwcaps; 560 } 561 562 uint64_t get_elf_hwcap2(void) 563 { 564 ARMCPU *cpu = ARM_CPU(thread_cpu); 565 uint64_t hwcaps = 0; 566 567 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 568 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 569 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 570 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 571 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 572 GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB); 573 GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS); 574 return hwcaps; 575 } 576 577 const char *elf_hwcap_str(uint32_t bit) 578 { 579 static const char *hwcap_str[] = { 580 [__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp", 581 [__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half", 582 [__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb", 583 [__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit", 584 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult", 585 [__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa", 586 [__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp", 587 [__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp", 588 [__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java", 589 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt", 590 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch", 591 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee", 592 [__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon", 593 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3", 594 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16", 595 [__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls", 596 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4", 597 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva", 598 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt", 599 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32", 600 [__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae", 601 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm", 602 [__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp", 603 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp", 604 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp", 605 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm", 606 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16", 607 [__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm", 608 }; 609 610 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 611 } 612 613 const char *elf_hwcap2_str(uint32_t bit) 614 { 615 static const char *hwcap_str[] = { 616 [__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes", 617 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull", 618 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1", 619 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2", 620 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32", 621 [__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb", 622 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs", 623 }; 624 625 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 626 } 627 628 #undef GET_FEATURE 629 #undef GET_FEATURE_ID 630 631 #define ELF_PLATFORM get_elf_platform() 632 633 static const char *get_elf_platform(void) 634 { 635 CPUARMState *env = cpu_env(thread_cpu); 636 637 #if TARGET_BIG_ENDIAN 638 # define END "b" 639 #else 640 # define END "l" 641 #endif 642 643 if (arm_feature(env, ARM_FEATURE_V8)) { 644 return "v8" END; 645 } else if (arm_feature(env, ARM_FEATURE_V7)) { 646 if (arm_feature(env, ARM_FEATURE_M)) { 647 return "v7m" END; 648 } else { 649 return "v7" END; 650 } 651 } else if (arm_feature(env, ARM_FEATURE_V6)) { 652 return "v6" END; 653 } else if (arm_feature(env, ARM_FEATURE_V5)) { 654 return "v5" END; 655 } else { 656 return "v4" END; 657 } 658 659 #undef END 660 } 661 662 #else 663 /* 64 bit ARM definitions */ 664 665 #define ELF_ARCH EM_AARCH64 666 #define ELF_CLASS ELFCLASS64 667 #if TARGET_BIG_ENDIAN 668 # define ELF_PLATFORM "aarch64_be" 669 #else 670 # define ELF_PLATFORM "aarch64" 671 #endif 672 673 static inline void init_thread(struct target_pt_regs *regs, 674 struct image_info *infop) 675 { 676 abi_long stack = infop->start_stack; 677 memset(regs, 0, sizeof(*regs)); 678 679 regs->pc = infop->entry & ~0x3ULL; 680 regs->sp = stack; 681 } 682 683 #define ELF_NREG 34 684 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 685 686 static void elf_core_copy_regs(target_elf_gregset_t *regs, 687 const CPUARMState *env) 688 { 689 int i; 690 691 for (i = 0; i < 32; i++) { 692 (*regs)[i] = tswapreg(env->xregs[i]); 693 } 694 (*regs)[32] = tswapreg(env->pc); 695 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 696 } 697 698 #define USE_ELF_CORE_DUMP 699 #define ELF_EXEC_PAGESIZE 4096 700 701 enum { 702 ARM_HWCAP_A64_FP = 1 << 0, 703 ARM_HWCAP_A64_ASIMD = 1 << 1, 704 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 705 ARM_HWCAP_A64_AES = 1 << 3, 706 ARM_HWCAP_A64_PMULL = 1 << 4, 707 ARM_HWCAP_A64_SHA1 = 1 << 5, 708 ARM_HWCAP_A64_SHA2 = 1 << 6, 709 ARM_HWCAP_A64_CRC32 = 1 << 7, 710 ARM_HWCAP_A64_ATOMICS = 1 << 8, 711 ARM_HWCAP_A64_FPHP = 1 << 9, 712 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 713 ARM_HWCAP_A64_CPUID = 1 << 11, 714 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 715 ARM_HWCAP_A64_JSCVT = 1 << 13, 716 ARM_HWCAP_A64_FCMA = 1 << 14, 717 ARM_HWCAP_A64_LRCPC = 1 << 15, 718 ARM_HWCAP_A64_DCPOP = 1 << 16, 719 ARM_HWCAP_A64_SHA3 = 1 << 17, 720 ARM_HWCAP_A64_SM3 = 1 << 18, 721 ARM_HWCAP_A64_SM4 = 1 << 19, 722 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 723 ARM_HWCAP_A64_SHA512 = 1 << 21, 724 ARM_HWCAP_A64_SVE = 1 << 22, 725 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 726 ARM_HWCAP_A64_DIT = 1 << 24, 727 ARM_HWCAP_A64_USCAT = 1 << 25, 728 ARM_HWCAP_A64_ILRCPC = 1 << 26, 729 ARM_HWCAP_A64_FLAGM = 1 << 27, 730 ARM_HWCAP_A64_SSBS = 1 << 28, 731 ARM_HWCAP_A64_SB = 1 << 29, 732 ARM_HWCAP_A64_PACA = 1 << 30, 733 ARM_HWCAP_A64_PACG = 1UL << 31, 734 735 ARM_HWCAP2_A64_DCPODP = 1 << 0, 736 ARM_HWCAP2_A64_SVE2 = 1 << 1, 737 ARM_HWCAP2_A64_SVEAES = 1 << 2, 738 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 739 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 740 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 741 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 742 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 743 ARM_HWCAP2_A64_FRINT = 1 << 8, 744 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 745 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 746 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 747 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 748 ARM_HWCAP2_A64_I8MM = 1 << 13, 749 ARM_HWCAP2_A64_BF16 = 1 << 14, 750 ARM_HWCAP2_A64_DGH = 1 << 15, 751 ARM_HWCAP2_A64_RNG = 1 << 16, 752 ARM_HWCAP2_A64_BTI = 1 << 17, 753 ARM_HWCAP2_A64_MTE = 1 << 18, 754 ARM_HWCAP2_A64_ECV = 1 << 19, 755 ARM_HWCAP2_A64_AFP = 1 << 20, 756 ARM_HWCAP2_A64_RPRES = 1 << 21, 757 ARM_HWCAP2_A64_MTE3 = 1 << 22, 758 ARM_HWCAP2_A64_SME = 1 << 23, 759 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 760 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 761 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 762 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 763 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 764 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 765 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 766 ARM_HWCAP2_A64_WFXT = 1ULL << 31, 767 ARM_HWCAP2_A64_EBF16 = 1ULL << 32, 768 ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33, 769 ARM_HWCAP2_A64_CSSC = 1ULL << 34, 770 ARM_HWCAP2_A64_RPRFM = 1ULL << 35, 771 ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36, 772 ARM_HWCAP2_A64_SME2 = 1ULL << 37, 773 ARM_HWCAP2_A64_SME2P1 = 1ULL << 38, 774 ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39, 775 ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40, 776 ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41, 777 ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42, 778 ARM_HWCAP2_A64_MOPS = 1ULL << 43, 779 ARM_HWCAP2_A64_HBC = 1ULL << 44, 780 }; 781 782 #define ELF_HWCAP get_elf_hwcap() 783 #define ELF_HWCAP2 get_elf_hwcap2() 784 785 #define GET_FEATURE_ID(feat, hwcap) \ 786 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 787 788 uint32_t get_elf_hwcap(void) 789 { 790 ARMCPU *cpu = ARM_CPU(thread_cpu); 791 uint32_t hwcaps = 0; 792 793 hwcaps |= ARM_HWCAP_A64_FP; 794 hwcaps |= ARM_HWCAP_A64_ASIMD; 795 hwcaps |= ARM_HWCAP_A64_CPUID; 796 797 /* probe for the extra features */ 798 799 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 800 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 801 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 802 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 803 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 804 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 805 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 806 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 807 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 808 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 809 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 810 GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT); 811 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 812 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 813 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 814 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 815 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 816 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 817 GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT); 818 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 819 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 820 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 821 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 822 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 823 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 824 825 return hwcaps; 826 } 827 828 uint64_t get_elf_hwcap2(void) 829 { 830 ARMCPU *cpu = ARM_CPU(thread_cpu); 831 uint64_t hwcaps = 0; 832 833 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 834 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 835 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 836 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 837 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 838 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 839 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 840 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 841 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 842 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 843 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 844 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 845 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 846 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 847 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 848 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 849 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 850 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 851 GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3); 852 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 853 ARM_HWCAP2_A64_SME_F32F32 | 854 ARM_HWCAP2_A64_SME_B16F32 | 855 ARM_HWCAP2_A64_SME_F16F32 | 856 ARM_HWCAP2_A64_SME_I8I32)); 857 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 858 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 859 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 860 GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC); 861 GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS); 862 863 return hwcaps; 864 } 865 866 const char *elf_hwcap_str(uint32_t bit) 867 { 868 static const char *hwcap_str[] = { 869 [__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp", 870 [__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd", 871 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm", 872 [__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes", 873 [__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull", 874 [__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1", 875 [__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2", 876 [__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32", 877 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics", 878 [__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp", 879 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp", 880 [__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid", 881 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm", 882 [__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt", 883 [__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma", 884 [__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc", 885 [__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop", 886 [__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3", 887 [__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3", 888 [__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4", 889 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp", 890 [__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512", 891 [__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve", 892 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm", 893 [__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit", 894 [__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat", 895 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc", 896 [__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm", 897 [__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs", 898 [__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb", 899 [__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca", 900 [__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg", 901 }; 902 903 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 904 } 905 906 const char *elf_hwcap2_str(uint32_t bit) 907 { 908 static const char *hwcap_str[] = { 909 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp", 910 [__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2", 911 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes", 912 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull", 913 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm", 914 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3", 915 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4", 916 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2", 917 [__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint", 918 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm", 919 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm", 920 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm", 921 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16", 922 [__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm", 923 [__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16", 924 [__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh", 925 [__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng", 926 [__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti", 927 [__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte", 928 [__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv", 929 [__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp", 930 [__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres", 931 [__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3", 932 [__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme", 933 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64", 934 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64", 935 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32", 936 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32", 937 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32", 938 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32", 939 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64", 940 [__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt", 941 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16", 942 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16", 943 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc", 944 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm", 945 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1", 946 [__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2", 947 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1", 948 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32", 949 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32", 950 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16", 951 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16", 952 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops", 953 [__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc", 954 }; 955 956 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 957 } 958 959 #undef GET_FEATURE_ID 960 961 #endif /* not TARGET_AARCH64 */ 962 963 #if TARGET_BIG_ENDIAN 964 # define VDSO_HEADER "vdso-be.c.inc" 965 #else 966 # define VDSO_HEADER "vdso-le.c.inc" 967 #endif 968 969 #endif /* TARGET_ARM */ 970 971 #ifdef TARGET_SPARC 972 973 #ifndef TARGET_SPARC64 974 # define ELF_CLASS ELFCLASS32 975 # define ELF_ARCH EM_SPARC 976 #elif defined(TARGET_ABI32) 977 # define ELF_CLASS ELFCLASS32 978 # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC) 979 #else 980 # define ELF_CLASS ELFCLASS64 981 # define ELF_ARCH EM_SPARCV9 982 #endif 983 984 #include "elf.h" 985 986 #define ELF_HWCAP get_elf_hwcap() 987 988 static uint32_t get_elf_hwcap(void) 989 { 990 /* There are not many sparc32 hwcap bits -- we have all of them. */ 991 uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | 992 HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV; 993 994 #ifdef TARGET_SPARC64 995 CPUSPARCState *env = cpu_env(thread_cpu); 996 uint32_t features = env->def.features; 997 998 r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS; 999 /* 32x32 multiply and divide are efficient. */ 1000 r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32; 1001 /* We don't have an internal feature bit for this. */ 1002 r |= HWCAP_SPARC_POPC; 1003 r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0; 1004 r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0; 1005 r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0; 1006 r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0; 1007 #endif 1008 1009 return r; 1010 } 1011 1012 static inline void init_thread(struct target_pt_regs *regs, 1013 struct image_info *infop) 1014 { 1015 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 1016 regs->pc = infop->entry; 1017 regs->npc = regs->pc + 4; 1018 regs->y = 0; 1019 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 1020 - TARGET_STACK_BIAS); 1021 } 1022 #endif /* TARGET_SPARC */ 1023 1024 #ifdef TARGET_PPC 1025 1026 #define ELF_MACHINE PPC_ELF_MACHINE 1027 1028 #if defined(TARGET_PPC64) 1029 1030 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 1031 1032 #define ELF_CLASS ELFCLASS64 1033 1034 #else 1035 1036 #define ELF_CLASS ELFCLASS32 1037 #define EXSTACK_DEFAULT true 1038 1039 #endif 1040 1041 #define ELF_ARCH EM_PPC 1042 1043 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 1044 See arch/powerpc/include/asm/cputable.h. */ 1045 enum { 1046 QEMU_PPC_FEATURE_32 = 0x80000000, 1047 QEMU_PPC_FEATURE_64 = 0x40000000, 1048 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 1049 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 1050 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 1051 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 1052 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 1053 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 1054 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 1055 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 1056 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 1057 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 1058 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 1059 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 1060 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 1061 QEMU_PPC_FEATURE_CELL = 0x00010000, 1062 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 1063 QEMU_PPC_FEATURE_SMT = 0x00004000, 1064 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 1065 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 1066 QEMU_PPC_FEATURE_PA6T = 0x00000800, 1067 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 1068 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 1069 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 1070 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 1071 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 1072 1073 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 1074 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 1075 1076 /* Feature definitions in AT_HWCAP2. */ 1077 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 1078 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 1079 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 1080 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 1081 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 1082 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 1083 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 1084 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 1085 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 1086 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 1087 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 1088 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 1089 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 1090 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 1091 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 1092 }; 1093 1094 #define ELF_HWCAP get_elf_hwcap() 1095 1096 static uint32_t get_elf_hwcap(void) 1097 { 1098 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 1099 uint32_t features = 0; 1100 1101 /* We don't have to be terribly complete here; the high points are 1102 Altivec/FP/SPE support. Anything else is just a bonus. */ 1103 #define GET_FEATURE(flag, feature) \ 1104 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 1105 #define GET_FEATURE2(flags, feature) \ 1106 do { \ 1107 if ((cpu->env.insns_flags2 & flags) == flags) { \ 1108 features |= feature; \ 1109 } \ 1110 } while (0) 1111 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 1112 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 1113 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 1114 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 1115 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 1116 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 1117 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 1118 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 1119 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 1120 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 1121 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 1122 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 1123 QEMU_PPC_FEATURE_ARCH_2_06); 1124 #undef GET_FEATURE 1125 #undef GET_FEATURE2 1126 1127 return features; 1128 } 1129 1130 #define ELF_HWCAP2 get_elf_hwcap2() 1131 1132 static uint32_t get_elf_hwcap2(void) 1133 { 1134 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 1135 uint32_t features = 0; 1136 1137 #define GET_FEATURE(flag, feature) \ 1138 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 1139 #define GET_FEATURE2(flag, feature) \ 1140 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 1141 1142 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 1143 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 1144 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 1145 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 1146 QEMU_PPC_FEATURE2_VEC_CRYPTO); 1147 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 1148 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 1149 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 1150 QEMU_PPC_FEATURE2_MMA); 1151 1152 #undef GET_FEATURE 1153 #undef GET_FEATURE2 1154 1155 return features; 1156 } 1157 1158 /* 1159 * The requirements here are: 1160 * - keep the final alignment of sp (sp & 0xf) 1161 * - make sure the 32-bit value at the first 16 byte aligned position of 1162 * AUXV is greater than 16 for glibc compatibility. 1163 * AT_IGNOREPPC is used for that. 1164 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 1165 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 1166 */ 1167 #define DLINFO_ARCH_ITEMS 5 1168 #define ARCH_DLINFO \ 1169 do { \ 1170 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 1171 /* \ 1172 * Handle glibc compatibility: these magic entries must \ 1173 * be at the lowest addresses in the final auxv. \ 1174 */ \ 1175 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 1176 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 1177 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 1178 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 1179 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 1180 } while (0) 1181 1182 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 1183 { 1184 _regs->gpr[1] = infop->start_stack; 1185 #if defined(TARGET_PPC64) 1186 if (get_ppc64_abi(infop) < 2) { 1187 uint64_t val; 1188 get_user_u64(val, infop->entry + 8); 1189 _regs->gpr[2] = val + infop->load_bias; 1190 get_user_u64(val, infop->entry); 1191 infop->entry = val + infop->load_bias; 1192 } else { 1193 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 1194 } 1195 #endif 1196 _regs->nip = infop->entry; 1197 } 1198 1199 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 1200 #define ELF_NREG 48 1201 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1202 1203 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 1204 { 1205 int i; 1206 target_ulong ccr = 0; 1207 1208 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 1209 (*regs)[i] = tswapreg(env->gpr[i]); 1210 } 1211 1212 (*regs)[32] = tswapreg(env->nip); 1213 (*regs)[33] = tswapreg(env->msr); 1214 (*regs)[35] = tswapreg(env->ctr); 1215 (*regs)[36] = tswapreg(env->lr); 1216 (*regs)[37] = tswapreg(cpu_read_xer(env)); 1217 1218 ccr = ppc_get_cr(env); 1219 (*regs)[38] = tswapreg(ccr); 1220 } 1221 1222 #define USE_ELF_CORE_DUMP 1223 #define ELF_EXEC_PAGESIZE 4096 1224 1225 #ifndef TARGET_PPC64 1226 # define VDSO_HEADER "vdso-32.c.inc" 1227 #elif TARGET_BIG_ENDIAN 1228 # define VDSO_HEADER "vdso-64.c.inc" 1229 #else 1230 # define VDSO_HEADER "vdso-64le.c.inc" 1231 #endif 1232 1233 #endif 1234 1235 #ifdef TARGET_LOONGARCH64 1236 1237 #define ELF_CLASS ELFCLASS64 1238 #define ELF_ARCH EM_LOONGARCH 1239 #define EXSTACK_DEFAULT true 1240 1241 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 1242 1243 #define VDSO_HEADER "vdso.c.inc" 1244 1245 static inline void init_thread(struct target_pt_regs *regs, 1246 struct image_info *infop) 1247 { 1248 /*Set crmd PG,DA = 1,0 */ 1249 regs->csr.crmd = 2 << 3; 1250 regs->csr.era = infop->entry; 1251 regs->regs[3] = infop->start_stack; 1252 } 1253 1254 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 1255 #define ELF_NREG 45 1256 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1257 1258 enum { 1259 TARGET_EF_R0 = 0, 1260 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 1261 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1262 }; 1263 1264 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1265 const CPULoongArchState *env) 1266 { 1267 int i; 1268 1269 (*regs)[TARGET_EF_R0] = 0; 1270 1271 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1272 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1273 } 1274 1275 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1276 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1277 } 1278 1279 #define USE_ELF_CORE_DUMP 1280 #define ELF_EXEC_PAGESIZE 4096 1281 1282 #define ELF_HWCAP get_elf_hwcap() 1283 1284 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1285 enum { 1286 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1287 HWCAP_LOONGARCH_LAM = (1 << 1), 1288 HWCAP_LOONGARCH_UAL = (1 << 2), 1289 HWCAP_LOONGARCH_FPU = (1 << 3), 1290 HWCAP_LOONGARCH_LSX = (1 << 4), 1291 HWCAP_LOONGARCH_LASX = (1 << 5), 1292 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1293 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1294 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1295 HWCAP_LOONGARCH_LVZ = (1 << 9), 1296 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1297 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1298 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1299 }; 1300 1301 static uint32_t get_elf_hwcap(void) 1302 { 1303 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1304 uint32_t hwcaps = 0; 1305 1306 hwcaps |= HWCAP_LOONGARCH_CRC32; 1307 1308 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1309 hwcaps |= HWCAP_LOONGARCH_UAL; 1310 } 1311 1312 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1313 hwcaps |= HWCAP_LOONGARCH_FPU; 1314 } 1315 1316 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1317 hwcaps |= HWCAP_LOONGARCH_LAM; 1318 } 1319 1320 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) { 1321 hwcaps |= HWCAP_LOONGARCH_LSX; 1322 } 1323 1324 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) { 1325 hwcaps |= HWCAP_LOONGARCH_LASX; 1326 } 1327 1328 return hwcaps; 1329 } 1330 1331 #define ELF_PLATFORM "loongarch" 1332 1333 #endif /* TARGET_LOONGARCH64 */ 1334 1335 #ifdef TARGET_MIPS 1336 1337 #ifdef TARGET_MIPS64 1338 #define ELF_CLASS ELFCLASS64 1339 #else 1340 #define ELF_CLASS ELFCLASS32 1341 #endif 1342 #define ELF_ARCH EM_MIPS 1343 #define EXSTACK_DEFAULT true 1344 1345 #ifdef TARGET_ABI_MIPSN32 1346 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1347 #else 1348 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1349 #endif 1350 1351 #define ELF_BASE_PLATFORM get_elf_base_platform() 1352 1353 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ 1354 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ 1355 { return _base_platform; } } while (0) 1356 1357 static const char *get_elf_base_platform(void) 1358 { 1359 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1360 1361 /* 64 bit ISAs goes first */ 1362 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); 1363 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); 1364 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); 1365 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); 1366 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); 1367 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); 1368 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); 1369 1370 /* 32 bit ISAs */ 1371 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); 1372 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); 1373 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); 1374 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); 1375 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); 1376 1377 /* Fallback */ 1378 return "mips"; 1379 } 1380 #undef MATCH_PLATFORM_INSN 1381 1382 static inline void init_thread(struct target_pt_regs *regs, 1383 struct image_info *infop) 1384 { 1385 regs->cp0_status = 2 << CP0St_KSU; 1386 regs->cp0_epc = infop->entry; 1387 regs->regs[29] = infop->start_stack; 1388 } 1389 1390 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1391 #define ELF_NREG 45 1392 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1393 1394 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1395 enum { 1396 #ifdef TARGET_MIPS64 1397 TARGET_EF_R0 = 0, 1398 #else 1399 TARGET_EF_R0 = 6, 1400 #endif 1401 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1402 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1403 TARGET_EF_LO = TARGET_EF_R0 + 32, 1404 TARGET_EF_HI = TARGET_EF_R0 + 33, 1405 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1406 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1407 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1408 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1409 }; 1410 1411 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1412 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1413 { 1414 int i; 1415 1416 for (i = 0; i < TARGET_EF_R0; i++) { 1417 (*regs)[i] = 0; 1418 } 1419 (*regs)[TARGET_EF_R0] = 0; 1420 1421 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1422 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1423 } 1424 1425 (*regs)[TARGET_EF_R26] = 0; 1426 (*regs)[TARGET_EF_R27] = 0; 1427 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1428 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1429 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1430 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1431 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1432 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1433 } 1434 1435 #define USE_ELF_CORE_DUMP 1436 #define ELF_EXEC_PAGESIZE 4096 1437 1438 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1439 enum { 1440 HWCAP_MIPS_R6 = (1 << 0), 1441 HWCAP_MIPS_MSA = (1 << 1), 1442 HWCAP_MIPS_CRC32 = (1 << 2), 1443 HWCAP_MIPS_MIPS16 = (1 << 3), 1444 HWCAP_MIPS_MDMX = (1 << 4), 1445 HWCAP_MIPS_MIPS3D = (1 << 5), 1446 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1447 HWCAP_MIPS_DSP = (1 << 7), 1448 HWCAP_MIPS_DSP2 = (1 << 8), 1449 HWCAP_MIPS_DSP3 = (1 << 9), 1450 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1451 HWCAP_LOONGSON_MMI = (1 << 11), 1452 HWCAP_LOONGSON_EXT = (1 << 12), 1453 HWCAP_LOONGSON_EXT2 = (1 << 13), 1454 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1455 }; 1456 1457 #define ELF_HWCAP get_elf_hwcap() 1458 1459 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1460 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1461 1462 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1463 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1464 1465 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1466 do { \ 1467 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1468 hwcaps |= _hwcap; \ 1469 } \ 1470 } while (0) 1471 1472 static uint32_t get_elf_hwcap(void) 1473 { 1474 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1475 uint32_t hwcaps = 0; 1476 1477 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1478 2, HWCAP_MIPS_R6); 1479 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1480 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1481 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1482 1483 return hwcaps; 1484 } 1485 1486 #undef GET_FEATURE_REG_EQU 1487 #undef GET_FEATURE_REG_SET 1488 #undef GET_FEATURE_INSN 1489 1490 #endif /* TARGET_MIPS */ 1491 1492 #ifdef TARGET_MICROBLAZE 1493 1494 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1495 1496 #define ELF_CLASS ELFCLASS32 1497 #define ELF_ARCH EM_MICROBLAZE 1498 1499 static inline void init_thread(struct target_pt_regs *regs, 1500 struct image_info *infop) 1501 { 1502 regs->pc = infop->entry; 1503 regs->r1 = infop->start_stack; 1504 1505 } 1506 1507 #define ELF_EXEC_PAGESIZE 4096 1508 1509 #define USE_ELF_CORE_DUMP 1510 #define ELF_NREG 38 1511 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1512 1513 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1514 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1515 { 1516 int i, pos = 0; 1517 1518 for (i = 0; i < 32; i++) { 1519 (*regs)[pos++] = tswapreg(env->regs[i]); 1520 } 1521 1522 (*regs)[pos++] = tswapreg(env->pc); 1523 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1524 (*regs)[pos++] = 0; 1525 (*regs)[pos++] = tswapreg(env->ear); 1526 (*regs)[pos++] = 0; 1527 (*regs)[pos++] = tswapreg(env->esr); 1528 } 1529 1530 #endif /* TARGET_MICROBLAZE */ 1531 1532 #ifdef TARGET_OPENRISC 1533 1534 #define ELF_ARCH EM_OPENRISC 1535 #define ELF_CLASS ELFCLASS32 1536 #define ELF_DATA ELFDATA2MSB 1537 1538 static inline void init_thread(struct target_pt_regs *regs, 1539 struct image_info *infop) 1540 { 1541 regs->pc = infop->entry; 1542 regs->gpr[1] = infop->start_stack; 1543 } 1544 1545 #define USE_ELF_CORE_DUMP 1546 #define ELF_EXEC_PAGESIZE 8192 1547 1548 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1549 #define ELF_NREG 34 /* gprs and pc, sr */ 1550 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1551 1552 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1553 const CPUOpenRISCState *env) 1554 { 1555 int i; 1556 1557 for (i = 0; i < 32; i++) { 1558 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1559 } 1560 (*regs)[32] = tswapreg(env->pc); 1561 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1562 } 1563 #define ELF_HWCAP 0 1564 #define ELF_PLATFORM NULL 1565 1566 #endif /* TARGET_OPENRISC */ 1567 1568 #ifdef TARGET_SH4 1569 1570 #define ELF_CLASS ELFCLASS32 1571 #define ELF_ARCH EM_SH 1572 1573 static inline void init_thread(struct target_pt_regs *regs, 1574 struct image_info *infop) 1575 { 1576 /* Check other registers XXXXX */ 1577 regs->pc = infop->entry; 1578 regs->regs[15] = infop->start_stack; 1579 } 1580 1581 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1582 #define ELF_NREG 23 1583 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1584 1585 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1586 enum { 1587 TARGET_REG_PC = 16, 1588 TARGET_REG_PR = 17, 1589 TARGET_REG_SR = 18, 1590 TARGET_REG_GBR = 19, 1591 TARGET_REG_MACH = 20, 1592 TARGET_REG_MACL = 21, 1593 TARGET_REG_SYSCALL = 22 1594 }; 1595 1596 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1597 const CPUSH4State *env) 1598 { 1599 int i; 1600 1601 for (i = 0; i < 16; i++) { 1602 (*regs)[i] = tswapreg(env->gregs[i]); 1603 } 1604 1605 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1606 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1607 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1608 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1609 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1610 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1611 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1612 } 1613 1614 #define USE_ELF_CORE_DUMP 1615 #define ELF_EXEC_PAGESIZE 4096 1616 1617 enum { 1618 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1619 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1620 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1621 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1622 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1623 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1624 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1625 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1626 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1627 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1628 }; 1629 1630 #define ELF_HWCAP get_elf_hwcap() 1631 1632 static uint32_t get_elf_hwcap(void) 1633 { 1634 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1635 uint32_t hwcap = 0; 1636 1637 hwcap |= SH_CPU_HAS_FPU; 1638 1639 if (cpu->env.features & SH_FEATURE_SH4A) { 1640 hwcap |= SH_CPU_HAS_LLSC; 1641 } 1642 1643 return hwcap; 1644 } 1645 1646 #endif 1647 1648 #ifdef TARGET_CRIS 1649 1650 #define ELF_CLASS ELFCLASS32 1651 #define ELF_ARCH EM_CRIS 1652 1653 static inline void init_thread(struct target_pt_regs *regs, 1654 struct image_info *infop) 1655 { 1656 regs->erp = infop->entry; 1657 } 1658 1659 #define ELF_EXEC_PAGESIZE 8192 1660 1661 #endif 1662 1663 #ifdef TARGET_M68K 1664 1665 #define ELF_CLASS ELFCLASS32 1666 #define ELF_ARCH EM_68K 1667 1668 /* ??? Does this need to do anything? 1669 #define ELF_PLAT_INIT(_r) */ 1670 1671 static inline void init_thread(struct target_pt_regs *regs, 1672 struct image_info *infop) 1673 { 1674 regs->usp = infop->start_stack; 1675 regs->sr = 0; 1676 regs->pc = infop->entry; 1677 } 1678 1679 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1680 #define ELF_NREG 20 1681 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1682 1683 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1684 { 1685 (*regs)[0] = tswapreg(env->dregs[1]); 1686 (*regs)[1] = tswapreg(env->dregs[2]); 1687 (*regs)[2] = tswapreg(env->dregs[3]); 1688 (*regs)[3] = tswapreg(env->dregs[4]); 1689 (*regs)[4] = tswapreg(env->dregs[5]); 1690 (*regs)[5] = tswapreg(env->dregs[6]); 1691 (*regs)[6] = tswapreg(env->dregs[7]); 1692 (*regs)[7] = tswapreg(env->aregs[0]); 1693 (*regs)[8] = tswapreg(env->aregs[1]); 1694 (*regs)[9] = tswapreg(env->aregs[2]); 1695 (*regs)[10] = tswapreg(env->aregs[3]); 1696 (*regs)[11] = tswapreg(env->aregs[4]); 1697 (*regs)[12] = tswapreg(env->aregs[5]); 1698 (*regs)[13] = tswapreg(env->aregs[6]); 1699 (*regs)[14] = tswapreg(env->dregs[0]); 1700 (*regs)[15] = tswapreg(env->aregs[7]); 1701 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1702 (*regs)[17] = tswapreg(env->sr); 1703 (*regs)[18] = tswapreg(env->pc); 1704 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1705 } 1706 1707 #define USE_ELF_CORE_DUMP 1708 #define ELF_EXEC_PAGESIZE 8192 1709 1710 #endif 1711 1712 #ifdef TARGET_ALPHA 1713 1714 #define ELF_CLASS ELFCLASS64 1715 #define ELF_ARCH EM_ALPHA 1716 1717 static inline void init_thread(struct target_pt_regs *regs, 1718 struct image_info *infop) 1719 { 1720 regs->pc = infop->entry; 1721 regs->ps = 8; 1722 regs->usp = infop->start_stack; 1723 } 1724 1725 #define ELF_EXEC_PAGESIZE 8192 1726 1727 #endif /* TARGET_ALPHA */ 1728 1729 #ifdef TARGET_S390X 1730 1731 #define ELF_CLASS ELFCLASS64 1732 #define ELF_DATA ELFDATA2MSB 1733 #define ELF_ARCH EM_S390 1734 1735 #include "elf.h" 1736 1737 #define ELF_HWCAP get_elf_hwcap() 1738 1739 #define GET_FEATURE(_feat, _hwcap) \ 1740 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1741 1742 uint32_t get_elf_hwcap(void) 1743 { 1744 /* 1745 * Let's assume we always have esan3 and zarch. 1746 * 31-bit processes can use 64-bit registers (high gprs). 1747 */ 1748 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1749 1750 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1751 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1752 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1753 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1754 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1755 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1756 hwcap |= HWCAP_S390_ETF3EH; 1757 } 1758 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1759 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1760 GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2); 1761 1762 return hwcap; 1763 } 1764 1765 const char *elf_hwcap_str(uint32_t bit) 1766 { 1767 static const char *hwcap_str[] = { 1768 [HWCAP_S390_NR_ESAN3] = "esan3", 1769 [HWCAP_S390_NR_ZARCH] = "zarch", 1770 [HWCAP_S390_NR_STFLE] = "stfle", 1771 [HWCAP_S390_NR_MSA] = "msa", 1772 [HWCAP_S390_NR_LDISP] = "ldisp", 1773 [HWCAP_S390_NR_EIMM] = "eimm", 1774 [HWCAP_S390_NR_DFP] = "dfp", 1775 [HWCAP_S390_NR_HPAGE] = "edat", 1776 [HWCAP_S390_NR_ETF3EH] = "etf3eh", 1777 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs", 1778 [HWCAP_S390_NR_TE] = "te", 1779 [HWCAP_S390_NR_VXRS] = "vx", 1780 [HWCAP_S390_NR_VXRS_BCD] = "vxd", 1781 [HWCAP_S390_NR_VXRS_EXT] = "vxe", 1782 [HWCAP_S390_NR_GS] = "gs", 1783 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2", 1784 [HWCAP_S390_NR_VXRS_PDE] = "vxp", 1785 [HWCAP_S390_NR_SORT] = "sort", 1786 [HWCAP_S390_NR_DFLT] = "dflt", 1787 [HWCAP_S390_NR_NNPA] = "nnpa", 1788 [HWCAP_S390_NR_PCI_MIO] = "pcimio", 1789 [HWCAP_S390_NR_SIE] = "sie", 1790 }; 1791 1792 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 1793 } 1794 1795 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1796 { 1797 regs->psw.addr = infop->entry; 1798 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \ 1799 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \ 1800 PSW_MASK_32; 1801 regs->gprs[15] = infop->start_stack; 1802 } 1803 1804 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1805 #define ELF_NREG 27 1806 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1807 1808 enum { 1809 TARGET_REG_PSWM = 0, 1810 TARGET_REG_PSWA = 1, 1811 TARGET_REG_GPRS = 2, 1812 TARGET_REG_ARS = 18, 1813 TARGET_REG_ORIG_R2 = 26, 1814 }; 1815 1816 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1817 const CPUS390XState *env) 1818 { 1819 int i; 1820 uint32_t *aregs; 1821 1822 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1823 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1824 for (i = 0; i < 16; i++) { 1825 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1826 } 1827 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1828 for (i = 0; i < 16; i++) { 1829 aregs[i] = tswap32(env->aregs[i]); 1830 } 1831 (*regs)[TARGET_REG_ORIG_R2] = 0; 1832 } 1833 1834 #define USE_ELF_CORE_DUMP 1835 #define ELF_EXEC_PAGESIZE 4096 1836 1837 #define VDSO_HEADER "vdso.c.inc" 1838 1839 #endif /* TARGET_S390X */ 1840 1841 #ifdef TARGET_RISCV 1842 1843 #define ELF_ARCH EM_RISCV 1844 1845 #ifdef TARGET_RISCV32 1846 #define ELF_CLASS ELFCLASS32 1847 #define VDSO_HEADER "vdso-32.c.inc" 1848 #else 1849 #define ELF_CLASS ELFCLASS64 1850 #define VDSO_HEADER "vdso-64.c.inc" 1851 #endif 1852 1853 #define ELF_HWCAP get_elf_hwcap() 1854 1855 static uint32_t get_elf_hwcap(void) 1856 { 1857 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1858 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1859 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1860 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C') 1861 | MISA_BIT('V'); 1862 1863 return cpu->env.misa_ext & mask; 1864 #undef MISA_BIT 1865 } 1866 1867 static inline void init_thread(struct target_pt_regs *regs, 1868 struct image_info *infop) 1869 { 1870 regs->sepc = infop->entry; 1871 regs->sp = infop->start_stack; 1872 } 1873 1874 #define ELF_EXEC_PAGESIZE 4096 1875 1876 #endif /* TARGET_RISCV */ 1877 1878 #ifdef TARGET_HPPA 1879 1880 #define ELF_CLASS ELFCLASS32 1881 #define ELF_ARCH EM_PARISC 1882 #define ELF_PLATFORM "PARISC" 1883 #define STACK_GROWS_DOWN 0 1884 #define STACK_ALIGNMENT 64 1885 1886 #define VDSO_HEADER "vdso.c.inc" 1887 1888 static inline void init_thread(struct target_pt_regs *regs, 1889 struct image_info *infop) 1890 { 1891 regs->iaoq[0] = infop->entry | PRIV_USER; 1892 regs->iaoq[1] = regs->iaoq[0] + 4; 1893 regs->gr[23] = 0; 1894 regs->gr[24] = infop->argv; 1895 regs->gr[25] = infop->argc; 1896 /* The top-of-stack contains a linkage buffer. */ 1897 regs->gr[30] = infop->start_stack + 64; 1898 regs->gr[31] = infop->entry; 1899 } 1900 1901 #define LO_COMMPAGE 0 1902 1903 static bool init_guest_commpage(void) 1904 { 1905 /* If reserved_va, then we have already mapped 0 page on the host. */ 1906 if (!reserved_va) { 1907 void *want, *addr; 1908 1909 want = g2h_untagged(LO_COMMPAGE); 1910 addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE, 1911 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0); 1912 if (addr == MAP_FAILED) { 1913 perror("Allocating guest commpage"); 1914 exit(EXIT_FAILURE); 1915 } 1916 if (addr != want) { 1917 return false; 1918 } 1919 } 1920 1921 /* 1922 * On Linux, page zero is normally marked execute only + gateway. 1923 * Normal read or write is supposed to fail (thus PROT_NONE above), 1924 * but specific offsets have kernel code mapped to raise permissions 1925 * and implement syscalls. Here, simply mark the page executable. 1926 * Special case the entry points during translation (see do_page_zero). 1927 */ 1928 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1929 PAGE_EXEC | PAGE_VALID); 1930 return true; 1931 } 1932 1933 #endif /* TARGET_HPPA */ 1934 1935 #ifdef TARGET_XTENSA 1936 1937 #define ELF_CLASS ELFCLASS32 1938 #define ELF_ARCH EM_XTENSA 1939 1940 static inline void init_thread(struct target_pt_regs *regs, 1941 struct image_info *infop) 1942 { 1943 regs->windowbase = 0; 1944 regs->windowstart = 1; 1945 regs->areg[1] = infop->start_stack; 1946 regs->pc = infop->entry; 1947 if (info_is_fdpic(infop)) { 1948 regs->areg[4] = infop->loadmap_addr; 1949 regs->areg[5] = infop->interpreter_loadmap_addr; 1950 if (infop->interpreter_loadmap_addr) { 1951 regs->areg[6] = infop->interpreter_pt_dynamic_addr; 1952 } else { 1953 regs->areg[6] = infop->pt_dynamic_addr; 1954 } 1955 } 1956 } 1957 1958 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1959 #define ELF_NREG 128 1960 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1961 1962 enum { 1963 TARGET_REG_PC, 1964 TARGET_REG_PS, 1965 TARGET_REG_LBEG, 1966 TARGET_REG_LEND, 1967 TARGET_REG_LCOUNT, 1968 TARGET_REG_SAR, 1969 TARGET_REG_WINDOWSTART, 1970 TARGET_REG_WINDOWBASE, 1971 TARGET_REG_THREADPTR, 1972 TARGET_REG_AR0 = 64, 1973 }; 1974 1975 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1976 const CPUXtensaState *env) 1977 { 1978 unsigned i; 1979 1980 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1981 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1982 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1983 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1984 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1985 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1986 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1987 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1988 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1989 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1990 for (i = 0; i < env->config->nareg; ++i) { 1991 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1992 } 1993 } 1994 1995 #define USE_ELF_CORE_DUMP 1996 #define ELF_EXEC_PAGESIZE 4096 1997 1998 #endif /* TARGET_XTENSA */ 1999 2000 #ifdef TARGET_HEXAGON 2001 2002 #define ELF_CLASS ELFCLASS32 2003 #define ELF_ARCH EM_HEXAGON 2004 2005 static inline void init_thread(struct target_pt_regs *regs, 2006 struct image_info *infop) 2007 { 2008 regs->sepc = infop->entry; 2009 regs->sp = infop->start_stack; 2010 } 2011 2012 #endif /* TARGET_HEXAGON */ 2013 2014 #ifndef ELF_BASE_PLATFORM 2015 #define ELF_BASE_PLATFORM (NULL) 2016 #endif 2017 2018 #ifndef ELF_PLATFORM 2019 #define ELF_PLATFORM (NULL) 2020 #endif 2021 2022 #ifndef ELF_MACHINE 2023 #define ELF_MACHINE ELF_ARCH 2024 #endif 2025 2026 #ifndef elf_check_arch 2027 #define elf_check_arch(x) ((x) == ELF_ARCH) 2028 #endif 2029 2030 #ifndef elf_check_abi 2031 #define elf_check_abi(x) (1) 2032 #endif 2033 2034 #ifndef ELF_HWCAP 2035 #define ELF_HWCAP 0 2036 #endif 2037 2038 #ifndef STACK_GROWS_DOWN 2039 #define STACK_GROWS_DOWN 1 2040 #endif 2041 2042 #ifndef STACK_ALIGNMENT 2043 #define STACK_ALIGNMENT 16 2044 #endif 2045 2046 #ifdef TARGET_ABI32 2047 #undef ELF_CLASS 2048 #define ELF_CLASS ELFCLASS32 2049 #undef bswaptls 2050 #define bswaptls(ptr) bswap32s(ptr) 2051 #endif 2052 2053 #ifndef EXSTACK_DEFAULT 2054 #define EXSTACK_DEFAULT false 2055 #endif 2056 2057 #include "elf.h" 2058 2059 /* We must delay the following stanzas until after "elf.h". */ 2060 #if defined(TARGET_AARCH64) 2061 2062 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 2063 const uint32_t *data, 2064 struct image_info *info, 2065 Error **errp) 2066 { 2067 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 2068 if (pr_datasz != sizeof(uint32_t)) { 2069 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 2070 return false; 2071 } 2072 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 2073 info->note_flags = *data; 2074 } 2075 return true; 2076 } 2077 #define ARCH_USE_GNU_PROPERTY 1 2078 2079 #else 2080 2081 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 2082 const uint32_t *data, 2083 struct image_info *info, 2084 Error **errp) 2085 { 2086 g_assert_not_reached(); 2087 } 2088 #define ARCH_USE_GNU_PROPERTY 0 2089 2090 #endif 2091 2092 struct exec 2093 { 2094 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 2095 unsigned int a_text; /* length of text, in bytes */ 2096 unsigned int a_data; /* length of data, in bytes */ 2097 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 2098 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 2099 unsigned int a_entry; /* start address */ 2100 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 2101 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 2102 }; 2103 2104 2105 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 2106 #define OMAGIC 0407 2107 #define NMAGIC 0410 2108 #define ZMAGIC 0413 2109 #define QMAGIC 0314 2110 2111 #define DLINFO_ITEMS 16 2112 2113 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 2114 { 2115 memcpy(to, from, n); 2116 } 2117 2118 #ifdef BSWAP_NEEDED 2119 static void bswap_ehdr(struct elfhdr *ehdr) 2120 { 2121 bswap16s(&ehdr->e_type); /* Object file type */ 2122 bswap16s(&ehdr->e_machine); /* Architecture */ 2123 bswap32s(&ehdr->e_version); /* Object file version */ 2124 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 2125 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 2126 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 2127 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 2128 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 2129 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 2130 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 2131 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 2132 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 2133 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 2134 } 2135 2136 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 2137 { 2138 int i; 2139 for (i = 0; i < phnum; ++i, ++phdr) { 2140 bswap32s(&phdr->p_type); /* Segment type */ 2141 bswap32s(&phdr->p_flags); /* Segment flags */ 2142 bswaptls(&phdr->p_offset); /* Segment file offset */ 2143 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 2144 bswaptls(&phdr->p_paddr); /* Segment physical address */ 2145 bswaptls(&phdr->p_filesz); /* Segment size in file */ 2146 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 2147 bswaptls(&phdr->p_align); /* Segment alignment */ 2148 } 2149 } 2150 2151 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 2152 { 2153 int i; 2154 for (i = 0; i < shnum; ++i, ++shdr) { 2155 bswap32s(&shdr->sh_name); 2156 bswap32s(&shdr->sh_type); 2157 bswaptls(&shdr->sh_flags); 2158 bswaptls(&shdr->sh_addr); 2159 bswaptls(&shdr->sh_offset); 2160 bswaptls(&shdr->sh_size); 2161 bswap32s(&shdr->sh_link); 2162 bswap32s(&shdr->sh_info); 2163 bswaptls(&shdr->sh_addralign); 2164 bswaptls(&shdr->sh_entsize); 2165 } 2166 } 2167 2168 static void bswap_sym(struct elf_sym *sym) 2169 { 2170 bswap32s(&sym->st_name); 2171 bswaptls(&sym->st_value); 2172 bswaptls(&sym->st_size); 2173 bswap16s(&sym->st_shndx); 2174 } 2175 2176 #ifdef TARGET_MIPS 2177 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 2178 { 2179 bswap16s(&abiflags->version); 2180 bswap32s(&abiflags->ases); 2181 bswap32s(&abiflags->isa_ext); 2182 bswap32s(&abiflags->flags1); 2183 bswap32s(&abiflags->flags2); 2184 } 2185 #endif 2186 #else 2187 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 2188 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 2189 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 2190 static inline void bswap_sym(struct elf_sym *sym) { } 2191 #ifdef TARGET_MIPS 2192 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 2193 #endif 2194 #endif 2195 2196 #ifdef USE_ELF_CORE_DUMP 2197 static int elf_core_dump(int, const CPUArchState *); 2198 #endif /* USE_ELF_CORE_DUMP */ 2199 static void load_symbols(struct elfhdr *hdr, const ImageSource *src, 2200 abi_ulong load_bias); 2201 2202 /* Verify the portions of EHDR within E_IDENT for the target. 2203 This can be performed before bswapping the entire header. */ 2204 static bool elf_check_ident(struct elfhdr *ehdr) 2205 { 2206 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 2207 && ehdr->e_ident[EI_MAG1] == ELFMAG1 2208 && ehdr->e_ident[EI_MAG2] == ELFMAG2 2209 && ehdr->e_ident[EI_MAG3] == ELFMAG3 2210 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 2211 && ehdr->e_ident[EI_DATA] == ELF_DATA 2212 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 2213 } 2214 2215 /* Verify the portions of EHDR outside of E_IDENT for the target. 2216 This has to wait until after bswapping the header. */ 2217 static bool elf_check_ehdr(struct elfhdr *ehdr) 2218 { 2219 return (elf_check_arch(ehdr->e_machine) 2220 && elf_check_abi(ehdr->e_flags) 2221 && ehdr->e_ehsize == sizeof(struct elfhdr) 2222 && ehdr->e_phentsize == sizeof(struct elf_phdr) 2223 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 2224 } 2225 2226 /* 2227 * 'copy_elf_strings()' copies argument/envelope strings from user 2228 * memory to free pages in kernel mem. These are in a format ready 2229 * to be put directly into the top of new user memory. 2230 * 2231 */ 2232 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2233 abi_ulong p, abi_ulong stack_limit) 2234 { 2235 char *tmp; 2236 int len, i; 2237 abi_ulong top = p; 2238 2239 if (!p) { 2240 return 0; /* bullet-proofing */ 2241 } 2242 2243 if (STACK_GROWS_DOWN) { 2244 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2245 for (i = argc - 1; i >= 0; --i) { 2246 tmp = argv[i]; 2247 if (!tmp) { 2248 fprintf(stderr, "VFS: argc is wrong"); 2249 exit(-1); 2250 } 2251 len = strlen(tmp) + 1; 2252 tmp += len; 2253 2254 if (len > (p - stack_limit)) { 2255 return 0; 2256 } 2257 while (len) { 2258 int bytes_to_copy = (len > offset) ? offset : len; 2259 tmp -= bytes_to_copy; 2260 p -= bytes_to_copy; 2261 offset -= bytes_to_copy; 2262 len -= bytes_to_copy; 2263 2264 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2265 2266 if (offset == 0) { 2267 memcpy_to_target(p, scratch, top - p); 2268 top = p; 2269 offset = TARGET_PAGE_SIZE; 2270 } 2271 } 2272 } 2273 if (p != top) { 2274 memcpy_to_target(p, scratch + offset, top - p); 2275 } 2276 } else { 2277 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2278 for (i = 0; i < argc; ++i) { 2279 tmp = argv[i]; 2280 if (!tmp) { 2281 fprintf(stderr, "VFS: argc is wrong"); 2282 exit(-1); 2283 } 2284 len = strlen(tmp) + 1; 2285 if (len > (stack_limit - p)) { 2286 return 0; 2287 } 2288 while (len) { 2289 int bytes_to_copy = (len > remaining) ? remaining : len; 2290 2291 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2292 2293 tmp += bytes_to_copy; 2294 remaining -= bytes_to_copy; 2295 p += bytes_to_copy; 2296 len -= bytes_to_copy; 2297 2298 if (remaining == 0) { 2299 memcpy_to_target(top, scratch, p - top); 2300 top = p; 2301 remaining = TARGET_PAGE_SIZE; 2302 } 2303 } 2304 } 2305 if (p != top) { 2306 memcpy_to_target(top, scratch, p - top); 2307 } 2308 } 2309 2310 return p; 2311 } 2312 2313 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2314 * argument/environment space. Newer kernels (>2.6.33) allow more, 2315 * dependent on stack size, but guarantee at least 32 pages for 2316 * backwards compatibility. 2317 */ 2318 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2319 2320 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2321 struct image_info *info) 2322 { 2323 abi_ulong size, error, guard; 2324 int prot; 2325 2326 size = guest_stack_size; 2327 if (size < STACK_LOWER_LIMIT) { 2328 size = STACK_LOWER_LIMIT; 2329 } 2330 2331 if (STACK_GROWS_DOWN) { 2332 guard = TARGET_PAGE_SIZE; 2333 if (guard < qemu_real_host_page_size()) { 2334 guard = qemu_real_host_page_size(); 2335 } 2336 } else { 2337 /* no guard page for hppa target where stack grows upwards. */ 2338 guard = 0; 2339 } 2340 2341 prot = PROT_READ | PROT_WRITE; 2342 if (info->exec_stack) { 2343 prot |= PROT_EXEC; 2344 } 2345 error = target_mmap(0, size + guard, prot, 2346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2347 if (error == -1) { 2348 perror("mmap stack"); 2349 exit(-1); 2350 } 2351 2352 /* We reserve one extra page at the top of the stack as guard. */ 2353 if (STACK_GROWS_DOWN) { 2354 target_mprotect(error, guard, PROT_NONE); 2355 info->stack_limit = error + guard; 2356 return info->stack_limit + size - sizeof(void *); 2357 } else { 2358 info->stack_limit = error + size; 2359 return error; 2360 } 2361 } 2362 2363 /** 2364 * zero_bss: 2365 * 2366 * Map and zero the bss. We need to explicitly zero any fractional pages 2367 * after the data section (i.e. bss). Return false on mapping failure. 2368 */ 2369 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, 2370 int prot, Error **errp) 2371 { 2372 abi_ulong align_bss; 2373 2374 /* We only expect writable bss; the code segment shouldn't need this. */ 2375 if (!(prot & PROT_WRITE)) { 2376 error_setg(errp, "PT_LOAD with non-writable bss"); 2377 return false; 2378 } 2379 2380 align_bss = TARGET_PAGE_ALIGN(start_bss); 2381 end_bss = TARGET_PAGE_ALIGN(end_bss); 2382 2383 if (start_bss < align_bss) { 2384 int flags = page_get_flags(start_bss); 2385 2386 if (!(flags & PAGE_RWX)) { 2387 /* 2388 * The whole address space of the executable was reserved 2389 * at the start, therefore all pages will be VALID. 2390 * But assuming there are no PROT_NONE PT_LOAD segments, 2391 * a PROT_NONE page means no data all bss, and we can 2392 * simply extend the new anon mapping back to the start 2393 * of the page of bss. 2394 */ 2395 align_bss -= TARGET_PAGE_SIZE; 2396 } else { 2397 /* 2398 * The start of the bss shares a page with something. 2399 * The only thing that we expect is the data section, 2400 * which would already be marked writable. 2401 * Overlapping the RX code segment seems malformed. 2402 */ 2403 if (!(flags & PAGE_WRITE)) { 2404 error_setg(errp, "PT_LOAD with bss overlapping " 2405 "non-writable page"); 2406 return false; 2407 } 2408 2409 /* The page is already mapped and writable. */ 2410 memset(g2h_untagged(start_bss), 0, align_bss - start_bss); 2411 } 2412 } 2413 2414 if (align_bss < end_bss && 2415 target_mmap(align_bss, end_bss - align_bss, prot, 2416 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { 2417 error_setg_errno(errp, errno, "Error mapping bss"); 2418 return false; 2419 } 2420 return true; 2421 } 2422 2423 #if defined(TARGET_ARM) 2424 static int elf_is_fdpic(struct elfhdr *exec) 2425 { 2426 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2427 } 2428 #elif defined(TARGET_XTENSA) 2429 static int elf_is_fdpic(struct elfhdr *exec) 2430 { 2431 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; 2432 } 2433 #else 2434 /* Default implementation, always false. */ 2435 static int elf_is_fdpic(struct elfhdr *exec) 2436 { 2437 return 0; 2438 } 2439 #endif 2440 2441 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2442 { 2443 uint16_t n; 2444 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2445 2446 /* elf32_fdpic_loadseg */ 2447 n = info->nsegs; 2448 while (n--) { 2449 sp -= 12; 2450 put_user_u32(loadsegs[n].addr, sp+0); 2451 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2452 put_user_u32(loadsegs[n].p_memsz, sp+8); 2453 } 2454 2455 /* elf32_fdpic_loadmap */ 2456 sp -= 4; 2457 put_user_u16(0, sp+0); /* version */ 2458 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2459 2460 info->personality = PER_LINUX_FDPIC; 2461 info->loadmap_addr = sp; 2462 2463 return sp; 2464 } 2465 2466 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2467 struct elfhdr *exec, 2468 struct image_info *info, 2469 struct image_info *interp_info, 2470 struct image_info *vdso_info) 2471 { 2472 abi_ulong sp; 2473 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2474 int size; 2475 int i; 2476 abi_ulong u_rand_bytes; 2477 uint8_t k_rand_bytes[16]; 2478 abi_ulong u_platform, u_base_platform; 2479 const char *k_platform, *k_base_platform; 2480 const int n = sizeof(elf_addr_t); 2481 2482 sp = p; 2483 2484 /* Needs to be before we load the env/argc/... */ 2485 if (elf_is_fdpic(exec)) { 2486 /* Need 4 byte alignment for these structs */ 2487 sp &= ~3; 2488 sp = loader_build_fdpic_loadmap(info, sp); 2489 info->other_info = interp_info; 2490 if (interp_info) { 2491 interp_info->other_info = info; 2492 sp = loader_build_fdpic_loadmap(interp_info, sp); 2493 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2494 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2495 } else { 2496 info->interpreter_loadmap_addr = 0; 2497 info->interpreter_pt_dynamic_addr = 0; 2498 } 2499 } 2500 2501 u_base_platform = 0; 2502 k_base_platform = ELF_BASE_PLATFORM; 2503 if (k_base_platform) { 2504 size_t len = strlen(k_base_platform) + 1; 2505 if (STACK_GROWS_DOWN) { 2506 sp -= (len + n - 1) & ~(n - 1); 2507 u_base_platform = sp; 2508 /* FIXME - check return value of memcpy_to_target() for failure */ 2509 memcpy_to_target(sp, k_base_platform, len); 2510 } else { 2511 memcpy_to_target(sp, k_base_platform, len); 2512 u_base_platform = sp; 2513 sp += len + 1; 2514 } 2515 } 2516 2517 u_platform = 0; 2518 k_platform = ELF_PLATFORM; 2519 if (k_platform) { 2520 size_t len = strlen(k_platform) + 1; 2521 if (STACK_GROWS_DOWN) { 2522 sp -= (len + n - 1) & ~(n - 1); 2523 u_platform = sp; 2524 /* FIXME - check return value of memcpy_to_target() for failure */ 2525 memcpy_to_target(sp, k_platform, len); 2526 } else { 2527 memcpy_to_target(sp, k_platform, len); 2528 u_platform = sp; 2529 sp += len + 1; 2530 } 2531 } 2532 2533 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2534 * the argv and envp pointers. 2535 */ 2536 if (STACK_GROWS_DOWN) { 2537 sp = QEMU_ALIGN_DOWN(sp, 16); 2538 } else { 2539 sp = QEMU_ALIGN_UP(sp, 16); 2540 } 2541 2542 /* 2543 * Generate 16 random bytes for userspace PRNG seeding. 2544 */ 2545 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2546 if (STACK_GROWS_DOWN) { 2547 sp -= 16; 2548 u_rand_bytes = sp; 2549 /* FIXME - check return value of memcpy_to_target() for failure */ 2550 memcpy_to_target(sp, k_rand_bytes, 16); 2551 } else { 2552 memcpy_to_target(sp, k_rand_bytes, 16); 2553 u_rand_bytes = sp; 2554 sp += 16; 2555 } 2556 2557 size = (DLINFO_ITEMS + 1) * 2; 2558 if (k_base_platform) { 2559 size += 2; 2560 } 2561 if (k_platform) { 2562 size += 2; 2563 } 2564 if (vdso_info) { 2565 size += 2; 2566 } 2567 #ifdef DLINFO_ARCH_ITEMS 2568 size += DLINFO_ARCH_ITEMS * 2; 2569 #endif 2570 #ifdef ELF_HWCAP2 2571 size += 2; 2572 #endif 2573 info->auxv_len = size * n; 2574 2575 size += envc + argc + 2; 2576 size += 1; /* argc itself */ 2577 size *= n; 2578 2579 /* Allocate space and finalize stack alignment for entry now. */ 2580 if (STACK_GROWS_DOWN) { 2581 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2582 sp = u_argc; 2583 } else { 2584 u_argc = sp; 2585 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2586 } 2587 2588 u_argv = u_argc + n; 2589 u_envp = u_argv + (argc + 1) * n; 2590 u_auxv = u_envp + (envc + 1) * n; 2591 info->saved_auxv = u_auxv; 2592 info->argc = argc; 2593 info->envc = envc; 2594 info->argv = u_argv; 2595 info->envp = u_envp; 2596 2597 /* This is correct because Linux defines 2598 * elf_addr_t as Elf32_Off / Elf64_Off 2599 */ 2600 #define NEW_AUX_ENT(id, val) do { \ 2601 put_user_ual(id, u_auxv); u_auxv += n; \ 2602 put_user_ual(val, u_auxv); u_auxv += n; \ 2603 } while(0) 2604 2605 #ifdef ARCH_DLINFO 2606 /* 2607 * ARCH_DLINFO must come first so platform specific code can enforce 2608 * special alignment requirements on the AUXV if necessary (eg. PPC). 2609 */ 2610 ARCH_DLINFO; 2611 #endif 2612 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2613 * on info->auxv_len will trigger. 2614 */ 2615 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2616 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2617 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2618 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2619 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2620 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2621 NEW_AUX_ENT(AT_ENTRY, info->entry); 2622 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2623 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2624 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2625 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2626 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2627 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2628 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2629 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2630 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2631 2632 #ifdef ELF_HWCAP2 2633 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2634 #endif 2635 2636 if (u_base_platform) { 2637 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); 2638 } 2639 if (u_platform) { 2640 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2641 } 2642 if (vdso_info) { 2643 NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr); 2644 } 2645 NEW_AUX_ENT (AT_NULL, 0); 2646 #undef NEW_AUX_ENT 2647 2648 /* Check that our initial calculation of the auxv length matches how much 2649 * we actually put into it. 2650 */ 2651 assert(info->auxv_len == u_auxv - info->saved_auxv); 2652 2653 put_user_ual(argc, u_argc); 2654 2655 p = info->arg_strings; 2656 for (i = 0; i < argc; ++i) { 2657 put_user_ual(p, u_argv); 2658 u_argv += n; 2659 p += target_strlen(p) + 1; 2660 } 2661 put_user_ual(0, u_argv); 2662 2663 p = info->env_strings; 2664 for (i = 0; i < envc; ++i) { 2665 put_user_ual(p, u_envp); 2666 u_envp += n; 2667 p += target_strlen(p) + 1; 2668 } 2669 put_user_ual(0, u_envp); 2670 2671 return sp; 2672 } 2673 2674 #if defined(HI_COMMPAGE) 2675 #define LO_COMMPAGE -1 2676 #elif defined(LO_COMMPAGE) 2677 #define HI_COMMPAGE 0 2678 #else 2679 #define HI_COMMPAGE 0 2680 #define LO_COMMPAGE -1 2681 #ifndef INIT_GUEST_COMMPAGE 2682 #define init_guest_commpage() true 2683 #endif 2684 #endif 2685 2686 /** 2687 * pgb_try_mmap: 2688 * @addr: host start address 2689 * @addr_last: host last address 2690 * @keep: do not unmap the probe region 2691 * 2692 * Return 1 if [@addr, @addr_last] is not mapped in the host, 2693 * return 0 if it is not available to map, and -1 on mmap error. 2694 * If @keep, the region is left mapped on success, otherwise unmapped. 2695 */ 2696 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep) 2697 { 2698 size_t size = addr_last - addr + 1; 2699 void *p = mmap((void *)addr, size, PROT_NONE, 2700 MAP_ANONYMOUS | MAP_PRIVATE | 2701 MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0); 2702 int ret; 2703 2704 if (p == MAP_FAILED) { 2705 return errno == EEXIST ? 0 : -1; 2706 } 2707 ret = p == (void *)addr; 2708 if (!keep || !ret) { 2709 munmap(p, size); 2710 } 2711 return ret; 2712 } 2713 2714 /** 2715 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk) 2716 * @addr: host address 2717 * @addr_last: host last address 2718 * @brk: host brk 2719 * 2720 * Like pgb_try_mmap, but additionally reserve some memory following brk. 2721 */ 2722 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last, 2723 uintptr_t brk, bool keep) 2724 { 2725 uintptr_t brk_last = brk + 16 * MiB - 1; 2726 2727 /* Do not map anything close to the host brk. */ 2728 if (addr <= brk_last && brk <= addr_last) { 2729 return 0; 2730 } 2731 return pgb_try_mmap(addr, addr_last, keep); 2732 } 2733 2734 /** 2735 * pgb_try_mmap_set: 2736 * @ga: set of guest addrs 2737 * @base: guest_base 2738 * @brk: host brk 2739 * 2740 * Return true if all @ga can be mapped by the host at @base. 2741 * On success, retain the mapping at index 0 for reserved_va. 2742 */ 2743 2744 typedef struct PGBAddrs { 2745 uintptr_t bounds[3][2]; /* start/last pairs */ 2746 int nbounds; 2747 } PGBAddrs; 2748 2749 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk) 2750 { 2751 for (int i = ga->nbounds - 1; i >= 0; --i) { 2752 if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base, 2753 ga->bounds[i][1] + base, 2754 brk, i == 0 && reserved_va) <= 0) { 2755 return false; 2756 } 2757 } 2758 return true; 2759 } 2760 2761 /** 2762 * pgb_addr_set: 2763 * @ga: output set of guest addrs 2764 * @guest_loaddr: guest image low address 2765 * @guest_loaddr: guest image high address 2766 * @identity: create for identity mapping 2767 * 2768 * Fill in @ga with the image, COMMPAGE and NULL page. 2769 */ 2770 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr, 2771 abi_ulong guest_hiaddr, bool try_identity) 2772 { 2773 int n; 2774 2775 /* 2776 * With a low commpage, or a guest mapped very low, 2777 * we may not be able to use the identity map. 2778 */ 2779 if (try_identity) { 2780 if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) { 2781 return false; 2782 } 2783 if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) { 2784 return false; 2785 } 2786 } 2787 2788 memset(ga, 0, sizeof(*ga)); 2789 n = 0; 2790 2791 if (reserved_va) { 2792 ga->bounds[n][0] = try_identity ? mmap_min_addr : 0; 2793 ga->bounds[n][1] = reserved_va; 2794 n++; 2795 /* LO_COMMPAGE and NULL handled by reserving from 0. */ 2796 } else { 2797 /* Add any LO_COMMPAGE or NULL page. */ 2798 if (LO_COMMPAGE != -1) { 2799 ga->bounds[n][0] = 0; 2800 ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1; 2801 n++; 2802 } else if (!try_identity) { 2803 ga->bounds[n][0] = 0; 2804 ga->bounds[n][1] = TARGET_PAGE_SIZE - 1; 2805 n++; 2806 } 2807 2808 /* Add the guest image for ET_EXEC. */ 2809 if (guest_loaddr) { 2810 ga->bounds[n][0] = guest_loaddr; 2811 ga->bounds[n][1] = guest_hiaddr; 2812 n++; 2813 } 2814 } 2815 2816 /* 2817 * Temporarily disable 2818 * "comparison is always false due to limited range of data type" 2819 * due to comparison between unsigned and (possible) 0. 2820 */ 2821 #pragma GCC diagnostic push 2822 #pragma GCC diagnostic ignored "-Wtype-limits" 2823 2824 /* Add any HI_COMMPAGE not covered by reserved_va. */ 2825 if (reserved_va < HI_COMMPAGE) { 2826 ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask(); 2827 ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1; 2828 n++; 2829 } 2830 2831 #pragma GCC diagnostic pop 2832 2833 ga->nbounds = n; 2834 return true; 2835 } 2836 2837 static void pgb_fail_in_use(const char *image_name) 2838 { 2839 error_report("%s: requires virtual address space that is in use " 2840 "(omit the -B option or choose a different value)", 2841 image_name); 2842 exit(EXIT_FAILURE); 2843 } 2844 2845 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr, 2846 uintptr_t guest_hiaddr, uintptr_t align) 2847 { 2848 PGBAddrs ga; 2849 uintptr_t brk = (uintptr_t)sbrk(0); 2850 2851 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2852 fprintf(stderr, "Requested guest base %p does not satisfy " 2853 "host minimum alignment (0x%" PRIxPTR ")\n", 2854 (void *)guest_base, align); 2855 exit(EXIT_FAILURE); 2856 } 2857 2858 if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base) 2859 || !pgb_try_mmap_set(&ga, guest_base, brk)) { 2860 pgb_fail_in_use(image_name); 2861 } 2862 } 2863 2864 /** 2865 * pgb_find_fallback: 2866 * 2867 * This is a fallback method for finding holes in the host address space 2868 * if we don't have the benefit of being able to access /proc/self/map. 2869 * It can potentially take a very long time as we can only dumbly iterate 2870 * up the host address space seeing if the allocation would work. 2871 */ 2872 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align, 2873 uintptr_t brk) 2874 { 2875 /* TODO: come up with a better estimate of how much to skip. */ 2876 uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB; 2877 2878 for (uintptr_t base = skip; ; base += skip) { 2879 base = ROUND_UP(base, align); 2880 if (pgb_try_mmap_set(ga, base, brk)) { 2881 return base; 2882 } 2883 if (base >= -skip) { 2884 return -1; 2885 } 2886 } 2887 } 2888 2889 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base, 2890 IntervalTreeRoot *root) 2891 { 2892 for (int i = ga->nbounds - 1; i >= 0; --i) { 2893 uintptr_t s = base + ga->bounds[i][0]; 2894 uintptr_t l = base + ga->bounds[i][1]; 2895 IntervalTreeNode *n; 2896 2897 if (l < s) { 2898 /* Wraparound. Skip to advance S to mmap_min_addr. */ 2899 return mmap_min_addr - s; 2900 } 2901 2902 n = interval_tree_iter_first(root, s, l); 2903 if (n != NULL) { 2904 /* Conflict. Skip to advance S to LAST + 1. */ 2905 return n->last - s + 1; 2906 } 2907 } 2908 return 0; /* success */ 2909 } 2910 2911 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root, 2912 uintptr_t align, uintptr_t brk) 2913 { 2914 uintptr_t last = mmap_min_addr; 2915 uintptr_t base, skip; 2916 2917 while (true) { 2918 base = ROUND_UP(last, align); 2919 if (base < last) { 2920 return -1; 2921 } 2922 2923 skip = pgb_try_itree(ga, base, root); 2924 if (skip == 0) { 2925 break; 2926 } 2927 2928 last = base + skip; 2929 if (last < base) { 2930 return -1; 2931 } 2932 } 2933 2934 /* 2935 * We've chosen 'base' based on holes in the interval tree, 2936 * but we don't yet know if it is a valid host address. 2937 * Because it is the first matching hole, if the host addresses 2938 * are invalid we know there are no further matches. 2939 */ 2940 return pgb_try_mmap_set(ga, base, brk) ? base : -1; 2941 } 2942 2943 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr, 2944 uintptr_t guest_hiaddr, uintptr_t align) 2945 { 2946 IntervalTreeRoot *root; 2947 uintptr_t brk, ret; 2948 PGBAddrs ga; 2949 2950 /* Try the identity map first. */ 2951 if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) { 2952 brk = (uintptr_t)sbrk(0); 2953 if (pgb_try_mmap_set(&ga, 0, brk)) { 2954 guest_base = 0; 2955 return; 2956 } 2957 } 2958 2959 /* 2960 * Rebuild the address set for non-identity map. 2961 * This differs in the mapping of the guest NULL page. 2962 */ 2963 pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false); 2964 2965 root = read_self_maps(); 2966 2967 /* Read brk after we've read the maps, which will malloc. */ 2968 brk = (uintptr_t)sbrk(0); 2969 2970 if (!root) { 2971 ret = pgb_find_fallback(&ga, align, brk); 2972 } else { 2973 /* 2974 * Reserve the area close to the host brk. 2975 * This will be freed with the rest of the tree. 2976 */ 2977 IntervalTreeNode *b = g_new0(IntervalTreeNode, 1); 2978 b->start = brk; 2979 b->last = brk + 16 * MiB - 1; 2980 interval_tree_insert(b, root); 2981 2982 ret = pgb_find_itree(&ga, root, align, brk); 2983 free_self_maps(root); 2984 } 2985 2986 if (ret == -1) { 2987 int w = TARGET_LONG_BITS / 4; 2988 2989 error_report("%s: Unable to find a guest_base to satisfy all " 2990 "guest address mapping requirements", image_name); 2991 2992 for (int i = 0; i < ga.nbounds; ++i) { 2993 error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n", 2994 w, (uint64_t)ga.bounds[i][0], 2995 w, (uint64_t)ga.bounds[i][1]); 2996 } 2997 exit(EXIT_FAILURE); 2998 } 2999 guest_base = ret; 3000 } 3001 3002 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 3003 abi_ulong guest_hiaddr) 3004 { 3005 /* In order to use host shmat, we must be able to honor SHMLBA. */ 3006 uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE); 3007 3008 /* Sanity check the guest binary. */ 3009 if (reserved_va) { 3010 if (guest_hiaddr > reserved_va) { 3011 error_report("%s: requires more than reserved virtual " 3012 "address space (0x%" PRIx64 " > 0x%lx)", 3013 image_name, (uint64_t)guest_hiaddr, reserved_va); 3014 exit(EXIT_FAILURE); 3015 } 3016 } else { 3017 if (guest_hiaddr != (uintptr_t)guest_hiaddr) { 3018 error_report("%s: requires more virtual address space " 3019 "than the host can provide (0x%" PRIx64 ")", 3020 image_name, (uint64_t)guest_hiaddr + 1); 3021 exit(EXIT_FAILURE); 3022 } 3023 } 3024 3025 if (have_guest_base) { 3026 pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align); 3027 } else { 3028 pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align); 3029 } 3030 3031 /* Reserve and initialize the commpage. */ 3032 if (!init_guest_commpage()) { 3033 /* We have already probed for the commpage being free. */ 3034 g_assert_not_reached(); 3035 } 3036 3037 assert(QEMU_IS_ALIGNED(guest_base, align)); 3038 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 3039 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 3040 } 3041 3042 enum { 3043 /* The string "GNU\0" as a magic number. */ 3044 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 3045 NOTE_DATA_SZ = 1 * KiB, 3046 NOTE_NAME_SZ = 4, 3047 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 3048 }; 3049 3050 /* 3051 * Process a single gnu_property entry. 3052 * Return false for error. 3053 */ 3054 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 3055 struct image_info *info, bool have_prev_type, 3056 uint32_t *prev_type, Error **errp) 3057 { 3058 uint32_t pr_type, pr_datasz, step; 3059 3060 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 3061 goto error_data; 3062 } 3063 datasz -= *off; 3064 data += *off / sizeof(uint32_t); 3065 3066 if (datasz < 2 * sizeof(uint32_t)) { 3067 goto error_data; 3068 } 3069 pr_type = data[0]; 3070 pr_datasz = data[1]; 3071 data += 2; 3072 datasz -= 2 * sizeof(uint32_t); 3073 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 3074 if (step > datasz) { 3075 goto error_data; 3076 } 3077 3078 /* Properties are supposed to be unique and sorted on pr_type. */ 3079 if (have_prev_type && pr_type <= *prev_type) { 3080 if (pr_type == *prev_type) { 3081 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 3082 } else { 3083 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 3084 } 3085 return false; 3086 } 3087 *prev_type = pr_type; 3088 3089 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 3090 return false; 3091 } 3092 3093 *off += 2 * sizeof(uint32_t) + step; 3094 return true; 3095 3096 error_data: 3097 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 3098 return false; 3099 } 3100 3101 /* Process NT_GNU_PROPERTY_TYPE_0. */ 3102 static bool parse_elf_properties(const ImageSource *src, 3103 struct image_info *info, 3104 const struct elf_phdr *phdr, 3105 Error **errp) 3106 { 3107 union { 3108 struct elf_note nhdr; 3109 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 3110 } note; 3111 3112 int n, off, datasz; 3113 bool have_prev_type; 3114 uint32_t prev_type; 3115 3116 /* Unless the arch requires properties, ignore them. */ 3117 if (!ARCH_USE_GNU_PROPERTY) { 3118 return true; 3119 } 3120 3121 /* If the properties are crazy large, that's too bad. */ 3122 n = phdr->p_filesz; 3123 if (n > sizeof(note)) { 3124 error_setg(errp, "PT_GNU_PROPERTY too large"); 3125 return false; 3126 } 3127 if (n < sizeof(note.nhdr)) { 3128 error_setg(errp, "PT_GNU_PROPERTY too small"); 3129 return false; 3130 } 3131 3132 if (!imgsrc_read(¬e, phdr->p_offset, n, src, errp)) { 3133 return false; 3134 } 3135 3136 /* 3137 * The contents of a valid PT_GNU_PROPERTY is a sequence 3138 * of uint32_t -- swap them all now. 3139 */ 3140 #ifdef BSWAP_NEEDED 3141 for (int i = 0; i < n / 4; i++) { 3142 bswap32s(note.data + i); 3143 } 3144 #endif 3145 3146 /* 3147 * Note that nhdr is 3 words, and that the "name" described by namesz 3148 * immediately follows nhdr and is thus at the 4th word. Further, all 3149 * of the inputs to the kernel's round_up are multiples of 4. 3150 */ 3151 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 3152 note.nhdr.n_namesz != NOTE_NAME_SZ || 3153 note.data[3] != GNU0_MAGIC) { 3154 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 3155 return false; 3156 } 3157 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 3158 3159 datasz = note.nhdr.n_descsz + off; 3160 if (datasz > n) { 3161 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 3162 return false; 3163 } 3164 3165 have_prev_type = false; 3166 prev_type = 0; 3167 while (1) { 3168 if (off == datasz) { 3169 return true; /* end, exit ok */ 3170 } 3171 if (!parse_elf_property(note.data, &off, datasz, info, 3172 have_prev_type, &prev_type, errp)) { 3173 return false; 3174 } 3175 have_prev_type = true; 3176 } 3177 } 3178 3179 /** 3180 * load_elf_image: Load an ELF image into the address space. 3181 * @image_name: the filename of the image, to use in error messages. 3182 * @src: the ImageSource from which to read. 3183 * @info: info collected from the loaded image. 3184 * @ehdr: the ELF header, not yet bswapped. 3185 * @pinterp_name: record any PT_INTERP string found. 3186 * 3187 * On return: @info values will be filled in, as necessary or available. 3188 */ 3189 3190 static void load_elf_image(const char *image_name, const ImageSource *src, 3191 struct image_info *info, struct elfhdr *ehdr, 3192 char **pinterp_name) 3193 { 3194 g_autofree struct elf_phdr *phdr = NULL; 3195 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 3196 int i, prot_exec; 3197 Error *err = NULL; 3198 3199 /* 3200 * First of all, some simple consistency checks. 3201 * Note that we rely on the bswapped ehdr staying in bprm_buf, 3202 * for later use by load_elf_binary and create_elf_tables. 3203 */ 3204 if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) { 3205 goto exit_errmsg; 3206 } 3207 if (!elf_check_ident(ehdr)) { 3208 error_setg(&err, "Invalid ELF image for this architecture"); 3209 goto exit_errmsg; 3210 } 3211 bswap_ehdr(ehdr); 3212 if (!elf_check_ehdr(ehdr)) { 3213 error_setg(&err, "Invalid ELF image for this architecture"); 3214 goto exit_errmsg; 3215 } 3216 3217 phdr = imgsrc_read_alloc(ehdr->e_phoff, 3218 ehdr->e_phnum * sizeof(struct elf_phdr), 3219 src, &err); 3220 if (phdr == NULL) { 3221 goto exit_errmsg; 3222 } 3223 bswap_phdr(phdr, ehdr->e_phnum); 3224 3225 info->nsegs = 0; 3226 info->pt_dynamic_addr = 0; 3227 3228 mmap_lock(); 3229 3230 /* 3231 * Find the maximum size of the image and allocate an appropriate 3232 * amount of memory to handle that. Locate the interpreter, if any. 3233 */ 3234 loaddr = -1, hiaddr = 0; 3235 info->alignment = 0; 3236 info->exec_stack = EXSTACK_DEFAULT; 3237 for (i = 0; i < ehdr->e_phnum; ++i) { 3238 struct elf_phdr *eppnt = phdr + i; 3239 if (eppnt->p_type == PT_LOAD) { 3240 abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK; 3241 if (a < loaddr) { 3242 loaddr = a; 3243 } 3244 a = eppnt->p_vaddr + eppnt->p_memsz - 1; 3245 if (a > hiaddr) { 3246 hiaddr = a; 3247 } 3248 ++info->nsegs; 3249 info->alignment |= eppnt->p_align; 3250 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 3251 g_autofree char *interp_name = NULL; 3252 3253 if (*pinterp_name) { 3254 error_setg(&err, "Multiple PT_INTERP entries"); 3255 goto exit_errmsg; 3256 } 3257 3258 interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz, 3259 src, &err); 3260 if (interp_name == NULL) { 3261 goto exit_errmsg; 3262 } 3263 if (interp_name[eppnt->p_filesz - 1] != 0) { 3264 error_setg(&err, "Invalid PT_INTERP entry"); 3265 goto exit_errmsg; 3266 } 3267 *pinterp_name = g_steal_pointer(&interp_name); 3268 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 3269 if (!parse_elf_properties(src, info, eppnt, &err)) { 3270 goto exit_errmsg; 3271 } 3272 } else if (eppnt->p_type == PT_GNU_STACK) { 3273 info->exec_stack = eppnt->p_flags & PF_X; 3274 } 3275 } 3276 3277 load_addr = loaddr; 3278 3279 if (pinterp_name != NULL) { 3280 if (ehdr->e_type == ET_EXEC) { 3281 /* 3282 * Make sure that the low address does not conflict with 3283 * MMAP_MIN_ADDR or the QEMU application itself. 3284 */ 3285 probe_guest_base(image_name, loaddr, hiaddr); 3286 } else { 3287 abi_ulong align; 3288 3289 /* 3290 * The binary is dynamic, but we still need to 3291 * select guest_base. In this case we pass a size. 3292 */ 3293 probe_guest_base(image_name, 0, hiaddr - loaddr); 3294 3295 /* 3296 * Avoid collision with the loader by providing a different 3297 * default load address. 3298 */ 3299 load_addr += elf_et_dyn_base; 3300 3301 /* 3302 * TODO: Better support for mmap alignment is desirable. 3303 * Since we do not have complete control over the guest 3304 * address space, we prefer the kernel to choose some address 3305 * rather than force the use of LOAD_ADDR via MAP_FIXED. 3306 * But without MAP_FIXED we cannot guarantee alignment, 3307 * only suggest it. 3308 */ 3309 align = pow2ceil(info->alignment); 3310 if (align) { 3311 load_addr &= -align; 3312 } 3313 } 3314 } 3315 3316 /* 3317 * Reserve address space for all of this. 3318 * 3319 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get 3320 * exactly the address range that is required. Without reserved_va, 3321 * the guest address space is not isolated. We have attempted to avoid 3322 * conflict with the host program itself via probe_guest_base, but using 3323 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check. 3324 * 3325 * Otherwise this is ET_DYN, and we are searching for a location 3326 * that can hold the memory space required. If the image is 3327 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should 3328 * honor that address if it happens to be free. 3329 * 3330 * In both cases, we will overwrite pages in this range with mappings 3331 * from the executable. 3332 */ 3333 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE, 3334 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3335 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0), 3336 -1, 0); 3337 if (load_addr == -1) { 3338 goto exit_mmap; 3339 } 3340 load_bias = load_addr - loaddr; 3341 3342 if (elf_is_fdpic(ehdr)) { 3343 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3344 g_malloc(sizeof(*loadsegs) * info->nsegs); 3345 3346 for (i = 0; i < ehdr->e_phnum; ++i) { 3347 switch (phdr[i].p_type) { 3348 case PT_DYNAMIC: 3349 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3350 break; 3351 case PT_LOAD: 3352 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3353 loadsegs->p_vaddr = phdr[i].p_vaddr; 3354 loadsegs->p_memsz = phdr[i].p_memsz; 3355 ++loadsegs; 3356 break; 3357 } 3358 } 3359 } 3360 3361 info->load_bias = load_bias; 3362 info->code_offset = load_bias; 3363 info->data_offset = load_bias; 3364 info->load_addr = load_addr; 3365 info->entry = ehdr->e_entry + load_bias; 3366 info->start_code = -1; 3367 info->end_code = 0; 3368 info->start_data = -1; 3369 info->end_data = 0; 3370 /* Usual start for brk is after all sections of the main executable. */ 3371 info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias); 3372 info->elf_flags = ehdr->e_flags; 3373 3374 prot_exec = PROT_EXEC; 3375 #ifdef TARGET_AARCH64 3376 /* 3377 * If the BTI feature is present, this indicates that the executable 3378 * pages of the startup binary should be mapped with PROT_BTI, so that 3379 * branch targets are enforced. 3380 * 3381 * The startup binary is either the interpreter or the static executable. 3382 * The interpreter is responsible for all pages of a dynamic executable. 3383 * 3384 * Elf notes are backward compatible to older cpus. 3385 * Do not enable BTI unless it is supported. 3386 */ 3387 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3388 && (pinterp_name == NULL || *pinterp_name == 0) 3389 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3390 prot_exec |= TARGET_PROT_BTI; 3391 } 3392 #endif 3393 3394 for (i = 0; i < ehdr->e_phnum; i++) { 3395 struct elf_phdr *eppnt = phdr + i; 3396 if (eppnt->p_type == PT_LOAD) { 3397 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 3398 int elf_prot = 0; 3399 3400 if (eppnt->p_flags & PF_R) { 3401 elf_prot |= PROT_READ; 3402 } 3403 if (eppnt->p_flags & PF_W) { 3404 elf_prot |= PROT_WRITE; 3405 } 3406 if (eppnt->p_flags & PF_X) { 3407 elf_prot |= prot_exec; 3408 } 3409 3410 vaddr = load_bias + eppnt->p_vaddr; 3411 vaddr_po = vaddr & ~TARGET_PAGE_MASK; 3412 vaddr_ps = vaddr & TARGET_PAGE_MASK; 3413 3414 vaddr_ef = vaddr + eppnt->p_filesz; 3415 vaddr_em = vaddr + eppnt->p_memsz; 3416 3417 /* 3418 * Some segments may be completely empty, with a non-zero p_memsz 3419 * but no backing file segment. 3420 */ 3421 if (eppnt->p_filesz != 0) { 3422 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 3423 elf_prot, MAP_PRIVATE | MAP_FIXED, 3424 src, eppnt->p_offset - vaddr_po); 3425 if (error == -1) { 3426 goto exit_mmap; 3427 } 3428 } 3429 3430 /* If the load segment requests extra zeros (e.g. bss), map it. */ 3431 if (vaddr_ef < vaddr_em && 3432 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) { 3433 goto exit_errmsg; 3434 } 3435 3436 /* Find the full program boundaries. */ 3437 if (elf_prot & PROT_EXEC) { 3438 if (vaddr < info->start_code) { 3439 info->start_code = vaddr; 3440 } 3441 if (vaddr_ef > info->end_code) { 3442 info->end_code = vaddr_ef; 3443 } 3444 } 3445 if (elf_prot & PROT_WRITE) { 3446 if (vaddr < info->start_data) { 3447 info->start_data = vaddr; 3448 } 3449 if (vaddr_ef > info->end_data) { 3450 info->end_data = vaddr_ef; 3451 } 3452 } 3453 #ifdef TARGET_MIPS 3454 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3455 Mips_elf_abiflags_v0 abiflags; 3456 3457 if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags), 3458 src, &err)) { 3459 goto exit_errmsg; 3460 } 3461 bswap_mips_abiflags(&abiflags); 3462 info->fp_abi = abiflags.fp_abi; 3463 #endif 3464 } 3465 } 3466 3467 if (info->end_data == 0) { 3468 info->start_data = info->end_code; 3469 info->end_data = info->end_code; 3470 } 3471 3472 if (qemu_log_enabled()) { 3473 load_symbols(ehdr, src, load_bias); 3474 } 3475 3476 debuginfo_report_elf(image_name, src->fd, load_bias); 3477 3478 mmap_unlock(); 3479 3480 close(src->fd); 3481 return; 3482 3483 exit_mmap: 3484 error_setg_errno(&err, errno, "Error mapping file"); 3485 goto exit_errmsg; 3486 exit_errmsg: 3487 error_reportf_err(err, "%s: ", image_name); 3488 exit(-1); 3489 } 3490 3491 static void load_elf_interp(const char *filename, struct image_info *info, 3492 char bprm_buf[BPRM_BUF_SIZE]) 3493 { 3494 struct elfhdr ehdr; 3495 ImageSource src; 3496 int fd, retval; 3497 Error *err = NULL; 3498 3499 fd = open(path(filename), O_RDONLY); 3500 if (fd < 0) { 3501 error_setg_file_open(&err, errno, filename); 3502 error_report_err(err); 3503 exit(-1); 3504 } 3505 3506 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3507 if (retval < 0) { 3508 error_setg_errno(&err, errno, "Error reading file header"); 3509 error_reportf_err(err, "%s: ", filename); 3510 exit(-1); 3511 } 3512 3513 src.fd = fd; 3514 src.cache = bprm_buf; 3515 src.cache_size = retval; 3516 3517 load_elf_image(filename, &src, info, &ehdr, NULL); 3518 } 3519 3520 #ifdef VDSO_HEADER 3521 #include VDSO_HEADER 3522 #define vdso_image_info() &vdso_image_info 3523 #else 3524 #define vdso_image_info() NULL 3525 #endif 3526 3527 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso) 3528 { 3529 ImageSource src; 3530 struct elfhdr ehdr; 3531 abi_ulong load_bias, load_addr; 3532 3533 src.fd = -1; 3534 src.cache = vdso->image; 3535 src.cache_size = vdso->image_size; 3536 3537 load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL); 3538 load_addr = info->load_addr; 3539 load_bias = info->load_bias; 3540 3541 /* 3542 * We need to relocate the VDSO image. The one built into the kernel 3543 * is built for a fixed address. The one built for QEMU is not, since 3544 * that requires close control of the guest address space. 3545 * We pre-processed the image to locate all of the addresses that need 3546 * to be updated. 3547 */ 3548 for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) { 3549 abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]); 3550 *addr = tswapal(tswapal(*addr) + load_bias); 3551 } 3552 3553 /* Install signal trampolines, if present. */ 3554 if (vdso->sigreturn_ofs) { 3555 default_sigreturn = load_addr + vdso->sigreturn_ofs; 3556 } 3557 if (vdso->rt_sigreturn_ofs) { 3558 default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs; 3559 } 3560 3561 /* Remove write from VDSO segment. */ 3562 target_mprotect(info->start_data, info->end_data - info->start_data, 3563 PROT_READ | PROT_EXEC); 3564 } 3565 3566 static int symfind(const void *s0, const void *s1) 3567 { 3568 struct elf_sym *sym = (struct elf_sym *)s1; 3569 __typeof(sym->st_value) addr = *(uint64_t *)s0; 3570 int result = 0; 3571 3572 if (addr < sym->st_value) { 3573 result = -1; 3574 } else if (addr >= sym->st_value + sym->st_size) { 3575 result = 1; 3576 } 3577 return result; 3578 } 3579 3580 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) 3581 { 3582 #if ELF_CLASS == ELFCLASS32 3583 struct elf_sym *syms = s->disas_symtab.elf32; 3584 #else 3585 struct elf_sym *syms = s->disas_symtab.elf64; 3586 #endif 3587 3588 // binary search 3589 struct elf_sym *sym; 3590 3591 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3592 if (sym != NULL) { 3593 return s->disas_strtab + sym->st_name; 3594 } 3595 3596 return ""; 3597 } 3598 3599 /* FIXME: This should use elf_ops.h.inc */ 3600 static int symcmp(const void *s0, const void *s1) 3601 { 3602 struct elf_sym *sym0 = (struct elf_sym *)s0; 3603 struct elf_sym *sym1 = (struct elf_sym *)s1; 3604 return (sym0->st_value < sym1->st_value) 3605 ? -1 3606 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3607 } 3608 3609 /* Best attempt to load symbols from this ELF object. */ 3610 static void load_symbols(struct elfhdr *hdr, const ImageSource *src, 3611 abi_ulong load_bias) 3612 { 3613 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3614 g_autofree struct elf_shdr *shdr = NULL; 3615 char *strings = NULL; 3616 struct elf_sym *syms = NULL; 3617 struct elf_sym *new_syms; 3618 uint64_t segsz; 3619 3620 shnum = hdr->e_shnum; 3621 shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr), 3622 src, NULL); 3623 if (shdr == NULL) { 3624 return; 3625 } 3626 3627 bswap_shdr(shdr, shnum); 3628 for (i = 0; i < shnum; ++i) { 3629 if (shdr[i].sh_type == SHT_SYMTAB) { 3630 sym_idx = i; 3631 str_idx = shdr[i].sh_link; 3632 goto found; 3633 } 3634 } 3635 3636 /* There will be no symbol table if the file was stripped. */ 3637 return; 3638 3639 found: 3640 /* Now know where the strtab and symtab are. Snarf them. */ 3641 3642 segsz = shdr[str_idx].sh_size; 3643 strings = g_try_malloc(segsz); 3644 if (!strings) { 3645 goto give_up; 3646 } 3647 if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) { 3648 goto give_up; 3649 } 3650 3651 segsz = shdr[sym_idx].sh_size; 3652 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3653 /* 3654 * Implausibly large symbol table: give up rather than ploughing 3655 * on with the number of symbols calculation overflowing. 3656 */ 3657 goto give_up; 3658 } 3659 nsyms = segsz / sizeof(struct elf_sym); 3660 syms = g_try_malloc(segsz); 3661 if (!syms) { 3662 goto give_up; 3663 } 3664 if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) { 3665 goto give_up; 3666 } 3667 3668 for (i = 0; i < nsyms; ) { 3669 bswap_sym(syms + i); 3670 /* Throw away entries which we do not need. */ 3671 if (syms[i].st_shndx == SHN_UNDEF 3672 || syms[i].st_shndx >= SHN_LORESERVE 3673 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3674 if (i < --nsyms) { 3675 syms[i] = syms[nsyms]; 3676 } 3677 } else { 3678 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3679 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3680 syms[i].st_value &= ~(target_ulong)1; 3681 #endif 3682 syms[i].st_value += load_bias; 3683 i++; 3684 } 3685 } 3686 3687 /* No "useful" symbol. */ 3688 if (nsyms == 0) { 3689 goto give_up; 3690 } 3691 3692 /* 3693 * Attempt to free the storage associated with the local symbols 3694 * that we threw away. Whether or not this has any effect on the 3695 * memory allocation depends on the malloc implementation and how 3696 * many symbols we managed to discard. 3697 */ 3698 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3699 if (new_syms == NULL) { 3700 goto give_up; 3701 } 3702 syms = new_syms; 3703 3704 qsort(syms, nsyms, sizeof(*syms), symcmp); 3705 3706 { 3707 struct syminfo *s = g_new(struct syminfo, 1); 3708 3709 s->disas_strtab = strings; 3710 s->disas_num_syms = nsyms; 3711 #if ELF_CLASS == ELFCLASS32 3712 s->disas_symtab.elf32 = syms; 3713 #else 3714 s->disas_symtab.elf64 = syms; 3715 #endif 3716 s->lookup_symbol = lookup_symbolxx; 3717 s->next = syminfos; 3718 syminfos = s; 3719 } 3720 return; 3721 3722 give_up: 3723 g_free(strings); 3724 g_free(syms); 3725 } 3726 3727 uint32_t get_elf_eflags(int fd) 3728 { 3729 struct elfhdr ehdr; 3730 off_t offset; 3731 int ret; 3732 3733 /* Read ELF header */ 3734 offset = lseek(fd, 0, SEEK_SET); 3735 if (offset == (off_t) -1) { 3736 return 0; 3737 } 3738 ret = read(fd, &ehdr, sizeof(ehdr)); 3739 if (ret < sizeof(ehdr)) { 3740 return 0; 3741 } 3742 offset = lseek(fd, offset, SEEK_SET); 3743 if (offset == (off_t) -1) { 3744 return 0; 3745 } 3746 3747 /* Check ELF signature */ 3748 if (!elf_check_ident(&ehdr)) { 3749 return 0; 3750 } 3751 3752 /* check header */ 3753 bswap_ehdr(&ehdr); 3754 if (!elf_check_ehdr(&ehdr)) { 3755 return 0; 3756 } 3757 3758 /* return architecture id */ 3759 return ehdr.e_flags; 3760 } 3761 3762 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3763 { 3764 /* 3765 * We need a copy of the elf header for passing to create_elf_tables. 3766 * We will have overwritten the original when we re-use bprm->buf 3767 * while loading the interpreter. Allocate the storage for this now 3768 * and let elf_load_image do any swapping that may be required. 3769 */ 3770 struct elfhdr ehdr; 3771 struct image_info interp_info, vdso_info; 3772 char *elf_interpreter = NULL; 3773 char *scratch; 3774 3775 memset(&interp_info, 0, sizeof(interp_info)); 3776 #ifdef TARGET_MIPS 3777 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3778 #endif 3779 3780 load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter); 3781 3782 /* Do this so that we can load the interpreter, if need be. We will 3783 change some of these later */ 3784 bprm->p = setup_arg_pages(bprm, info); 3785 3786 scratch = g_new0(char, TARGET_PAGE_SIZE); 3787 if (STACK_GROWS_DOWN) { 3788 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3789 bprm->p, info->stack_limit); 3790 info->file_string = bprm->p; 3791 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3792 bprm->p, info->stack_limit); 3793 info->env_strings = bprm->p; 3794 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3795 bprm->p, info->stack_limit); 3796 info->arg_strings = bprm->p; 3797 } else { 3798 info->arg_strings = bprm->p; 3799 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3800 bprm->p, info->stack_limit); 3801 info->env_strings = bprm->p; 3802 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3803 bprm->p, info->stack_limit); 3804 info->file_string = bprm->p; 3805 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3806 bprm->p, info->stack_limit); 3807 } 3808 3809 g_free(scratch); 3810 3811 if (!bprm->p) { 3812 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3813 exit(-1); 3814 } 3815 3816 if (elf_interpreter) { 3817 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3818 3819 /* 3820 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky 3821 * with the mappings the interpreter can be loaded above but 3822 * near the main executable, which can leave very little room 3823 * for the heap. 3824 * If the current brk has less than 16MB, use the end of the 3825 * interpreter. 3826 */ 3827 if (interp_info.brk > info->brk && 3828 interp_info.load_bias - info->brk < 16 * MiB) { 3829 info->brk = interp_info.brk; 3830 } 3831 3832 /* If the program interpreter is one of these two, then assume 3833 an iBCS2 image. Otherwise assume a native linux image. */ 3834 3835 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3836 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3837 info->personality = PER_SVR4; 3838 3839 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3840 and some applications "depend" upon this behavior. Since 3841 we do not have the power to recompile these, we emulate 3842 the SVr4 behavior. Sigh. */ 3843 target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC, 3844 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS, 3845 -1, 0); 3846 } 3847 #ifdef TARGET_MIPS 3848 info->interp_fp_abi = interp_info.fp_abi; 3849 #endif 3850 } 3851 3852 /* 3853 * Load a vdso if available, which will amongst other things contain the 3854 * signal trampolines. Otherwise, allocate a separate page for them. 3855 */ 3856 const VdsoImageInfo *vdso = vdso_image_info(); 3857 if (vdso) { 3858 load_elf_vdso(&vdso_info, vdso); 3859 info->vdso = vdso_info.load_bias; 3860 } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3861 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3862 PROT_READ | PROT_WRITE, 3863 MAP_PRIVATE | MAP_ANON, -1, 0); 3864 if (tramp_page == -1) { 3865 return -errno; 3866 } 3867 3868 setup_sigtramp(tramp_page); 3869 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3870 } 3871 3872 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info, 3873 elf_interpreter ? &interp_info : NULL, 3874 vdso ? &vdso_info : NULL); 3875 info->start_stack = bprm->p; 3876 3877 /* If we have an interpreter, set that as the program's entry point. 3878 Copy the load_bias as well, to help PPC64 interpret the entry 3879 point as a function descriptor. Do this after creating elf tables 3880 so that we copy the original program entry point into the AUXV. */ 3881 if (elf_interpreter) { 3882 info->load_bias = interp_info.load_bias; 3883 info->entry = interp_info.entry; 3884 g_free(elf_interpreter); 3885 } 3886 3887 #ifdef USE_ELF_CORE_DUMP 3888 bprm->core_dump = &elf_core_dump; 3889 #endif 3890 3891 return 0; 3892 } 3893 3894 #ifdef USE_ELF_CORE_DUMP 3895 #include "exec/translate-all.h" 3896 3897 /* 3898 * Definitions to generate Intel SVR4-like core files. 3899 * These mostly have the same names as the SVR4 types with "target_elf_" 3900 * tacked on the front to prevent clashes with linux definitions, 3901 * and the typedef forms have been avoided. This is mostly like 3902 * the SVR4 structure, but more Linuxy, with things that Linux does 3903 * not support and which gdb doesn't really use excluded. 3904 * 3905 * Fields we don't dump (their contents is zero) in linux-user qemu 3906 * are marked with XXX. 3907 * 3908 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3909 * 3910 * Porting ELF coredump for target is (quite) simple process. First you 3911 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3912 * the target resides): 3913 * 3914 * #define USE_ELF_CORE_DUMP 3915 * 3916 * Next you define type of register set used for dumping. ELF specification 3917 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3918 * 3919 * typedef <target_regtype> target_elf_greg_t; 3920 * #define ELF_NREG <number of registers> 3921 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3922 * 3923 * Last step is to implement target specific function that copies registers 3924 * from given cpu into just specified register set. Prototype is: 3925 * 3926 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3927 * const CPUArchState *env); 3928 * 3929 * Parameters: 3930 * regs - copy register values into here (allocated and zeroed by caller) 3931 * env - copy registers from here 3932 * 3933 * Example for ARM target is provided in this file. 3934 */ 3935 3936 struct target_elf_siginfo { 3937 abi_int si_signo; /* signal number */ 3938 abi_int si_code; /* extra code */ 3939 abi_int si_errno; /* errno */ 3940 }; 3941 3942 struct target_elf_prstatus { 3943 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3944 abi_short pr_cursig; /* Current signal */ 3945 abi_ulong pr_sigpend; /* XXX */ 3946 abi_ulong pr_sighold; /* XXX */ 3947 target_pid_t pr_pid; 3948 target_pid_t pr_ppid; 3949 target_pid_t pr_pgrp; 3950 target_pid_t pr_sid; 3951 struct target_timeval pr_utime; /* XXX User time */ 3952 struct target_timeval pr_stime; /* XXX System time */ 3953 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3954 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3955 target_elf_gregset_t pr_reg; /* GP registers */ 3956 abi_int pr_fpvalid; /* XXX */ 3957 }; 3958 3959 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3960 3961 struct target_elf_prpsinfo { 3962 char pr_state; /* numeric process state */ 3963 char pr_sname; /* char for pr_state */ 3964 char pr_zomb; /* zombie */ 3965 char pr_nice; /* nice val */ 3966 abi_ulong pr_flag; /* flags */ 3967 target_uid_t pr_uid; 3968 target_gid_t pr_gid; 3969 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3970 /* Lots missing */ 3971 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3972 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3973 }; 3974 3975 #ifdef BSWAP_NEEDED 3976 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3977 { 3978 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3979 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3980 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3981 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3982 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3983 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3984 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3985 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3986 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3987 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3988 /* cpu times are not filled, so we skip them */ 3989 /* regs should be in correct format already */ 3990 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3991 } 3992 3993 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3994 { 3995 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3996 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3997 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3998 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3999 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 4000 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 4001 psinfo->pr_sid = tswap32(psinfo->pr_sid); 4002 } 4003 4004 static void bswap_note(struct elf_note *en) 4005 { 4006 bswap32s(&en->n_namesz); 4007 bswap32s(&en->n_descsz); 4008 bswap32s(&en->n_type); 4009 } 4010 #else 4011 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 4012 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 4013 static inline void bswap_note(struct elf_note *en) { } 4014 #endif /* BSWAP_NEEDED */ 4015 4016 /* 4017 * Calculate file (dump) size of given memory region. 4018 */ 4019 static size_t vma_dump_size(target_ulong start, target_ulong end, 4020 unsigned long flags) 4021 { 4022 /* The area must be readable. */ 4023 if (!(flags & PAGE_READ)) { 4024 return 0; 4025 } 4026 4027 /* 4028 * Usually we don't dump executable pages as they contain 4029 * non-writable code that debugger can read directly from 4030 * target library etc. If there is no elf header, we dump it. 4031 */ 4032 if (!(flags & PAGE_WRITE_ORG) && 4033 (flags & PAGE_EXEC) && 4034 memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) { 4035 return 0; 4036 } 4037 4038 return end - start; 4039 } 4040 4041 static size_t size_note(const char *name, size_t datasz) 4042 { 4043 size_t namesz = strlen(name) + 1; 4044 4045 namesz = ROUND_UP(namesz, 4); 4046 datasz = ROUND_UP(datasz, 4); 4047 4048 return sizeof(struct elf_note) + namesz + datasz; 4049 } 4050 4051 static void *fill_note(void **pptr, int type, const char *name, size_t datasz) 4052 { 4053 void *ptr = *pptr; 4054 struct elf_note *n = ptr; 4055 size_t namesz = strlen(name) + 1; 4056 4057 n->n_namesz = namesz; 4058 n->n_descsz = datasz; 4059 n->n_type = type; 4060 bswap_note(n); 4061 4062 ptr += sizeof(*n); 4063 memcpy(ptr, name, namesz); 4064 4065 namesz = ROUND_UP(namesz, 4); 4066 datasz = ROUND_UP(datasz, 4); 4067 4068 *pptr = ptr + namesz + datasz; 4069 return ptr + namesz; 4070 } 4071 4072 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 4073 uint32_t flags) 4074 { 4075 memcpy(elf->e_ident, ELFMAG, SELFMAG); 4076 4077 elf->e_ident[EI_CLASS] = ELF_CLASS; 4078 elf->e_ident[EI_DATA] = ELF_DATA; 4079 elf->e_ident[EI_VERSION] = EV_CURRENT; 4080 elf->e_ident[EI_OSABI] = ELF_OSABI; 4081 4082 elf->e_type = ET_CORE; 4083 elf->e_machine = machine; 4084 elf->e_version = EV_CURRENT; 4085 elf->e_phoff = sizeof(struct elfhdr); 4086 elf->e_flags = flags; 4087 elf->e_ehsize = sizeof(struct elfhdr); 4088 elf->e_phentsize = sizeof(struct elf_phdr); 4089 elf->e_phnum = segs; 4090 4091 bswap_ehdr(elf); 4092 } 4093 4094 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset) 4095 { 4096 phdr->p_type = PT_NOTE; 4097 phdr->p_offset = offset; 4098 phdr->p_filesz = sz; 4099 4100 bswap_phdr(phdr, 1); 4101 } 4102 4103 static void fill_prstatus_note(void *data, const TaskState *ts, 4104 CPUState *cpu, int signr) 4105 { 4106 /* 4107 * Because note memory is only aligned to 4, and target_elf_prstatus 4108 * may well have higher alignment requirements, fill locally and 4109 * memcpy to the destination afterward. 4110 */ 4111 struct target_elf_prstatus prstatus = { 4112 .pr_info.si_signo = signr, 4113 .pr_cursig = signr, 4114 .pr_pid = ts->ts_tid, 4115 .pr_ppid = getppid(), 4116 .pr_pgrp = getpgrp(), 4117 .pr_sid = getsid(0), 4118 }; 4119 4120 elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu)); 4121 bswap_prstatus(&prstatus); 4122 memcpy(data, &prstatus, sizeof(prstatus)); 4123 } 4124 4125 static void fill_prpsinfo_note(void *data, const TaskState *ts) 4126 { 4127 /* 4128 * Because note memory is only aligned to 4, and target_elf_prpsinfo 4129 * may well have higher alignment requirements, fill locally and 4130 * memcpy to the destination afterward. 4131 */ 4132 struct target_elf_prpsinfo psinfo = { 4133 .pr_pid = getpid(), 4134 .pr_ppid = getppid(), 4135 .pr_pgrp = getpgrp(), 4136 .pr_sid = getsid(0), 4137 .pr_uid = getuid(), 4138 .pr_gid = getgid(), 4139 }; 4140 char *base_filename; 4141 size_t len; 4142 4143 len = ts->info->env_strings - ts->info->arg_strings; 4144 len = MIN(len, ELF_PRARGSZ); 4145 memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len); 4146 for (size_t i = 0; i < len; i++) { 4147 if (psinfo.pr_psargs[i] == 0) { 4148 psinfo.pr_psargs[i] = ' '; 4149 } 4150 } 4151 4152 base_filename = g_path_get_basename(ts->bprm->filename); 4153 /* 4154 * Using strncpy here is fine: at max-length, 4155 * this field is not NUL-terminated. 4156 */ 4157 strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname)); 4158 g_free(base_filename); 4159 4160 bswap_psinfo(&psinfo); 4161 memcpy(data, &psinfo, sizeof(psinfo)); 4162 } 4163 4164 static void fill_auxv_note(void *data, const TaskState *ts) 4165 { 4166 memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len); 4167 } 4168 4169 /* 4170 * Constructs name of coredump file. We have following convention 4171 * for the name: 4172 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4173 * 4174 * Returns the filename 4175 */ 4176 static char *core_dump_filename(const TaskState *ts) 4177 { 4178 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4179 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4180 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4181 4182 return g_strdup_printf("qemu_%s_%s_%d.core", 4183 base_filename, nowstr, (int)getpid()); 4184 } 4185 4186 static int dump_write(int fd, const void *ptr, size_t size) 4187 { 4188 const char *bufp = (const char *)ptr; 4189 ssize_t bytes_written, bytes_left; 4190 4191 bytes_written = 0; 4192 bytes_left = size; 4193 4194 /* 4195 * In normal conditions, single write(2) should do but 4196 * in case of socket etc. this mechanism is more portable. 4197 */ 4198 do { 4199 bytes_written = write(fd, bufp, bytes_left); 4200 if (bytes_written < 0) { 4201 if (errno == EINTR) 4202 continue; 4203 return (-1); 4204 } else if (bytes_written == 0) { /* eof */ 4205 return (-1); 4206 } 4207 bufp += bytes_written; 4208 bytes_left -= bytes_written; 4209 } while (bytes_left > 0); 4210 4211 return (0); 4212 } 4213 4214 static int wmr_page_unprotect_regions(void *opaque, target_ulong start, 4215 target_ulong end, unsigned long flags) 4216 { 4217 if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) { 4218 size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size()); 4219 4220 while (1) { 4221 page_unprotect(start, 0); 4222 if (end - start <= step) { 4223 break; 4224 } 4225 start += step; 4226 } 4227 } 4228 return 0; 4229 } 4230 4231 typedef struct { 4232 unsigned count; 4233 size_t size; 4234 } CountAndSizeRegions; 4235 4236 static int wmr_count_and_size_regions(void *opaque, target_ulong start, 4237 target_ulong end, unsigned long flags) 4238 { 4239 CountAndSizeRegions *css = opaque; 4240 4241 css->count++; 4242 css->size += vma_dump_size(start, end, flags); 4243 return 0; 4244 } 4245 4246 typedef struct { 4247 struct elf_phdr *phdr; 4248 off_t offset; 4249 } FillRegionPhdr; 4250 4251 static int wmr_fill_region_phdr(void *opaque, target_ulong start, 4252 target_ulong end, unsigned long flags) 4253 { 4254 FillRegionPhdr *d = opaque; 4255 struct elf_phdr *phdr = d->phdr; 4256 4257 phdr->p_type = PT_LOAD; 4258 phdr->p_vaddr = start; 4259 phdr->p_paddr = 0; 4260 phdr->p_filesz = vma_dump_size(start, end, flags); 4261 phdr->p_offset = d->offset; 4262 d->offset += phdr->p_filesz; 4263 phdr->p_memsz = end - start; 4264 phdr->p_flags = (flags & PAGE_READ ? PF_R : 0) 4265 | (flags & PAGE_WRITE_ORG ? PF_W : 0) 4266 | (flags & PAGE_EXEC ? PF_X : 0); 4267 phdr->p_align = ELF_EXEC_PAGESIZE; 4268 4269 bswap_phdr(phdr, 1); 4270 d->phdr = phdr + 1; 4271 return 0; 4272 } 4273 4274 static int wmr_write_region(void *opaque, target_ulong start, 4275 target_ulong end, unsigned long flags) 4276 { 4277 int fd = *(int *)opaque; 4278 size_t size = vma_dump_size(start, end, flags); 4279 4280 if (!size) { 4281 return 0; 4282 } 4283 return dump_write(fd, g2h_untagged(start), size); 4284 } 4285 4286 /* 4287 * Write out ELF coredump. 4288 * 4289 * See documentation of ELF object file format in: 4290 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4291 * 4292 * Coredump format in linux is following: 4293 * 4294 * 0 +----------------------+ \ 4295 * | ELF header | ET_CORE | 4296 * +----------------------+ | 4297 * | ELF program headers | |--- headers 4298 * | - NOTE section | | 4299 * | - PT_LOAD sections | | 4300 * +----------------------+ / 4301 * | NOTEs: | 4302 * | - NT_PRSTATUS | 4303 * | - NT_PRSINFO | 4304 * | - NT_AUXV | 4305 * +----------------------+ <-- aligned to target page 4306 * | Process memory dump | 4307 * : : 4308 * . . 4309 * : : 4310 * | | 4311 * +----------------------+ 4312 * 4313 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4314 * NT_PRSINFO -> struct elf_prpsinfo 4315 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4316 * 4317 * Format follows System V format as close as possible. Current 4318 * version limitations are as follows: 4319 * - no floating point registers are dumped 4320 * 4321 * Function returns 0 in case of success, negative errno otherwise. 4322 * 4323 * TODO: make this work also during runtime: it should be 4324 * possible to force coredump from running process and then 4325 * continue processing. For example qemu could set up SIGUSR2 4326 * handler (provided that target process haven't registered 4327 * handler for that) that does the dump when signal is received. 4328 */ 4329 static int elf_core_dump(int signr, const CPUArchState *env) 4330 { 4331 const CPUState *cpu = env_cpu((CPUArchState *)env); 4332 const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu); 4333 struct rlimit dumpsize; 4334 CountAndSizeRegions css; 4335 off_t offset, note_offset, data_offset; 4336 size_t note_size; 4337 int cpus, ret; 4338 int fd = -1; 4339 CPUState *cpu_iter; 4340 4341 if (prctl(PR_GET_DUMPABLE) == 0) { 4342 return 0; 4343 } 4344 4345 if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) { 4346 return 0; 4347 } 4348 4349 cpu_list_lock(); 4350 mmap_lock(); 4351 4352 /* By unprotecting, we merge vmas that might be split. */ 4353 walk_memory_regions(NULL, wmr_page_unprotect_regions); 4354 4355 /* 4356 * Walk through target process memory mappings and 4357 * set up structure containing this information. 4358 */ 4359 memset(&css, 0, sizeof(css)); 4360 walk_memory_regions(&css, wmr_count_and_size_regions); 4361 4362 cpus = 0; 4363 CPU_FOREACH(cpu_iter) { 4364 cpus++; 4365 } 4366 4367 offset = sizeof(struct elfhdr); 4368 offset += (css.count + 1) * sizeof(struct elf_phdr); 4369 note_offset = offset; 4370 4371 offset += size_note("CORE", ts->info->auxv_len); 4372 offset += size_note("CORE", sizeof(struct target_elf_prpsinfo)); 4373 offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus; 4374 note_size = offset - note_offset; 4375 data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE); 4376 4377 /* Do not dump if the corefile size exceeds the limit. */ 4378 if (dumpsize.rlim_cur != RLIM_INFINITY 4379 && dumpsize.rlim_cur < data_offset + css.size) { 4380 errno = 0; 4381 goto out; 4382 } 4383 4384 { 4385 g_autofree char *corefile = core_dump_filename(ts); 4386 fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC, 4387 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); 4388 } 4389 if (fd < 0) { 4390 goto out; 4391 } 4392 4393 /* 4394 * There is a fair amount of alignment padding within the notes 4395 * as well as preceeding the process memory. Allocate a zeroed 4396 * block to hold it all. Write all of the headers directly into 4397 * this buffer and then write it out as a block. 4398 */ 4399 { 4400 g_autofree void *header = g_malloc0(data_offset); 4401 FillRegionPhdr frp; 4402 void *hptr, *dptr; 4403 4404 /* Create elf file header. */ 4405 hptr = header; 4406 fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0); 4407 hptr += sizeof(struct elfhdr); 4408 4409 /* Create elf program headers. */ 4410 fill_elf_note_phdr(hptr, note_size, note_offset); 4411 hptr += sizeof(struct elf_phdr); 4412 4413 frp.phdr = hptr; 4414 frp.offset = data_offset; 4415 walk_memory_regions(&frp, wmr_fill_region_phdr); 4416 hptr = frp.phdr; 4417 4418 /* Create the notes. */ 4419 dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len); 4420 fill_auxv_note(dptr, ts); 4421 4422 dptr = fill_note(&hptr, NT_PRPSINFO, "CORE", 4423 sizeof(struct target_elf_prpsinfo)); 4424 fill_prpsinfo_note(dptr, ts); 4425 4426 CPU_FOREACH(cpu_iter) { 4427 dptr = fill_note(&hptr, NT_PRSTATUS, "CORE", 4428 sizeof(struct target_elf_prstatus)); 4429 fill_prstatus_note(dptr, ts, cpu_iter, 4430 cpu_iter == cpu ? signr : 0); 4431 } 4432 4433 if (dump_write(fd, header, data_offset) < 0) { 4434 goto out; 4435 } 4436 } 4437 4438 /* 4439 * Finally write process memory into the corefile as well. 4440 */ 4441 if (walk_memory_regions(&fd, wmr_write_region) < 0) { 4442 goto out; 4443 } 4444 errno = 0; 4445 4446 out: 4447 ret = -errno; 4448 mmap_unlock(); 4449 cpu_list_unlock(); 4450 if (fd >= 0) { 4451 close(fd); 4452 } 4453 return ret; 4454 } 4455 #endif /* USE_ELF_CORE_DUMP */ 4456 4457 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4458 { 4459 init_thread(regs, infop); 4460 } 4461