1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/bitops.h" 11 #include "qemu/path.h" 12 #include "qemu/queue.h" 13 #include "qemu/guest-random.h" 14 #include "qemu/units.h" 15 #include "qemu/selfmap.h" 16 #include "qapi/error.h" 17 18 #ifdef _ARCH_PPC64 19 #undef ARCH_DLINFO 20 #undef ELF_PLATFORM 21 #undef ELF_HWCAP 22 #undef ELF_HWCAP2 23 #undef ELF_CLASS 24 #undef ELF_DATA 25 #undef ELF_ARCH 26 #endif 27 28 #define ELF_OSABI ELFOSABI_SYSV 29 30 /* from personality.h */ 31 32 /* 33 * Flags for bug emulation. 34 * 35 * These occupy the top three bytes. 36 */ 37 enum { 38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 40 descriptors (signal handling) */ 41 MMAP_PAGE_ZERO = 0x0100000, 42 ADDR_COMPAT_LAYOUT = 0x0200000, 43 READ_IMPLIES_EXEC = 0x0400000, 44 ADDR_LIMIT_32BIT = 0x0800000, 45 SHORT_INODE = 0x1000000, 46 WHOLE_SECONDS = 0x2000000, 47 STICKY_TIMEOUTS = 0x4000000, 48 ADDR_LIMIT_3GB = 0x8000000, 49 }; 50 51 /* 52 * Personality types. 53 * 54 * These go in the low byte. Avoid using the top bit, it will 55 * conflict with error returns. 56 */ 57 enum { 58 PER_LINUX = 0x0000, 59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 67 PER_BSD = 0x0006, 68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 70 PER_LINUX32 = 0x0008, 71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 75 PER_RISCOS = 0x000c, 76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 78 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 79 PER_HPUX = 0x0010, 80 PER_MASK = 0x00ff, 81 }; 82 83 /* 84 * Return the base personality without flags. 85 */ 86 #define personality(pers) (pers & PER_MASK) 87 88 int info_is_fdpic(struct image_info *info) 89 { 90 return info->personality == PER_LINUX_FDPIC; 91 } 92 93 /* this flag is uneffective under linux too, should be deleted */ 94 #ifndef MAP_DENYWRITE 95 #define MAP_DENYWRITE 0 96 #endif 97 98 /* should probably go in elf.h */ 99 #ifndef ELIBBAD 100 #define ELIBBAD 80 101 #endif 102 103 #ifdef TARGET_WORDS_BIGENDIAN 104 #define ELF_DATA ELFDATA2MSB 105 #else 106 #define ELF_DATA ELFDATA2LSB 107 #endif 108 109 #ifdef TARGET_ABI_MIPSN32 110 typedef abi_ullong target_elf_greg_t; 111 #define tswapreg(ptr) tswap64(ptr) 112 #else 113 typedef abi_ulong target_elf_greg_t; 114 #define tswapreg(ptr) tswapal(ptr) 115 #endif 116 117 #ifdef USE_UID16 118 typedef abi_ushort target_uid_t; 119 typedef abi_ushort target_gid_t; 120 #else 121 typedef abi_uint target_uid_t; 122 typedef abi_uint target_gid_t; 123 #endif 124 typedef abi_int target_pid_t; 125 126 #ifdef TARGET_I386 127 128 #define ELF_PLATFORM get_elf_platform() 129 130 static const char *get_elf_platform(void) 131 { 132 static char elf_platform[] = "i386"; 133 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 134 if (family > 6) 135 family = 6; 136 if (family >= 3) 137 elf_platform[1] = '0' + family; 138 return elf_platform; 139 } 140 141 #define ELF_HWCAP get_elf_hwcap() 142 143 static uint32_t get_elf_hwcap(void) 144 { 145 X86CPU *cpu = X86_CPU(thread_cpu); 146 147 return cpu->env.features[FEAT_1_EDX]; 148 } 149 150 #ifdef TARGET_X86_64 151 #define ELF_START_MMAP 0x2aaaaab000ULL 152 153 #define ELF_CLASS ELFCLASS64 154 #define ELF_ARCH EM_X86_64 155 156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 157 { 158 regs->rax = 0; 159 regs->rsp = infop->start_stack; 160 regs->rip = infop->entry; 161 } 162 163 #define ELF_NREG 27 164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 165 166 /* 167 * Note that ELF_NREG should be 29 as there should be place for 168 * TRAPNO and ERR "registers" as well but linux doesn't dump 169 * those. 170 * 171 * See linux kernel: arch/x86/include/asm/elf.h 172 */ 173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 174 { 175 (*regs)[0] = tswapreg(env->regs[15]); 176 (*regs)[1] = tswapreg(env->regs[14]); 177 (*regs)[2] = tswapreg(env->regs[13]); 178 (*regs)[3] = tswapreg(env->regs[12]); 179 (*regs)[4] = tswapreg(env->regs[R_EBP]); 180 (*regs)[5] = tswapreg(env->regs[R_EBX]); 181 (*regs)[6] = tswapreg(env->regs[11]); 182 (*regs)[7] = tswapreg(env->regs[10]); 183 (*regs)[8] = tswapreg(env->regs[9]); 184 (*regs)[9] = tswapreg(env->regs[8]); 185 (*regs)[10] = tswapreg(env->regs[R_EAX]); 186 (*regs)[11] = tswapreg(env->regs[R_ECX]); 187 (*regs)[12] = tswapreg(env->regs[R_EDX]); 188 (*regs)[13] = tswapreg(env->regs[R_ESI]); 189 (*regs)[14] = tswapreg(env->regs[R_EDI]); 190 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 191 (*regs)[16] = tswapreg(env->eip); 192 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 193 (*regs)[18] = tswapreg(env->eflags); 194 (*regs)[19] = tswapreg(env->regs[R_ESP]); 195 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 196 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 197 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 198 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 199 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 200 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 201 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 202 } 203 204 #else 205 206 #define ELF_START_MMAP 0x80000000 207 208 /* 209 * This is used to ensure we don't load something for the wrong architecture. 210 */ 211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 212 213 /* 214 * These are used to set parameters in the core dumps. 215 */ 216 #define ELF_CLASS ELFCLASS32 217 #define ELF_ARCH EM_386 218 219 static inline void init_thread(struct target_pt_regs *regs, 220 struct image_info *infop) 221 { 222 regs->esp = infop->start_stack; 223 regs->eip = infop->entry; 224 225 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 226 starts %edx contains a pointer to a function which might be 227 registered using `atexit'. This provides a mean for the 228 dynamic linker to call DT_FINI functions for shared libraries 229 that have been loaded before the code runs. 230 231 A value of 0 tells we have no such handler. */ 232 regs->edx = 0; 233 } 234 235 #define ELF_NREG 17 236 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 237 238 /* 239 * Note that ELF_NREG should be 19 as there should be place for 240 * TRAPNO and ERR "registers" as well but linux doesn't dump 241 * those. 242 * 243 * See linux kernel: arch/x86/include/asm/elf.h 244 */ 245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 246 { 247 (*regs)[0] = tswapreg(env->regs[R_EBX]); 248 (*regs)[1] = tswapreg(env->regs[R_ECX]); 249 (*regs)[2] = tswapreg(env->regs[R_EDX]); 250 (*regs)[3] = tswapreg(env->regs[R_ESI]); 251 (*regs)[4] = tswapreg(env->regs[R_EDI]); 252 (*regs)[5] = tswapreg(env->regs[R_EBP]); 253 (*regs)[6] = tswapreg(env->regs[R_EAX]); 254 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 255 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 256 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 257 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 258 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 259 (*regs)[12] = tswapreg(env->eip); 260 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 261 (*regs)[14] = tswapreg(env->eflags); 262 (*regs)[15] = tswapreg(env->regs[R_ESP]); 263 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 264 } 265 #endif 266 267 #define USE_ELF_CORE_DUMP 268 #define ELF_EXEC_PAGESIZE 4096 269 270 #endif 271 272 #ifdef TARGET_ARM 273 274 #ifndef TARGET_AARCH64 275 /* 32 bit ARM definitions */ 276 277 #define ELF_START_MMAP 0x80000000 278 279 #define ELF_ARCH EM_ARM 280 #define ELF_CLASS ELFCLASS32 281 282 static inline void init_thread(struct target_pt_regs *regs, 283 struct image_info *infop) 284 { 285 abi_long stack = infop->start_stack; 286 memset(regs, 0, sizeof(*regs)); 287 288 regs->uregs[16] = ARM_CPU_MODE_USR; 289 if (infop->entry & 1) { 290 regs->uregs[16] |= CPSR_T; 291 } 292 regs->uregs[15] = infop->entry & 0xfffffffe; 293 regs->uregs[13] = infop->start_stack; 294 /* FIXME - what to for failure of get_user()? */ 295 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 296 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 297 /* XXX: it seems that r0 is zeroed after ! */ 298 regs->uregs[0] = 0; 299 /* For uClinux PIC binaries. */ 300 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 301 regs->uregs[10] = infop->start_data; 302 303 /* Support ARM FDPIC. */ 304 if (info_is_fdpic(infop)) { 305 /* As described in the ABI document, r7 points to the loadmap info 306 * prepared by the kernel. If an interpreter is needed, r8 points 307 * to the interpreter loadmap and r9 points to the interpreter 308 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 309 * r9 points to the main program PT_DYNAMIC info. 310 */ 311 regs->uregs[7] = infop->loadmap_addr; 312 if (infop->interpreter_loadmap_addr) { 313 /* Executable is dynamically loaded. */ 314 regs->uregs[8] = infop->interpreter_loadmap_addr; 315 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 316 } else { 317 regs->uregs[8] = 0; 318 regs->uregs[9] = infop->pt_dynamic_addr; 319 } 320 } 321 } 322 323 #define ELF_NREG 18 324 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 325 326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 327 { 328 (*regs)[0] = tswapreg(env->regs[0]); 329 (*regs)[1] = tswapreg(env->regs[1]); 330 (*regs)[2] = tswapreg(env->regs[2]); 331 (*regs)[3] = tswapreg(env->regs[3]); 332 (*regs)[4] = tswapreg(env->regs[4]); 333 (*regs)[5] = tswapreg(env->regs[5]); 334 (*regs)[6] = tswapreg(env->regs[6]); 335 (*regs)[7] = tswapreg(env->regs[7]); 336 (*regs)[8] = tswapreg(env->regs[8]); 337 (*regs)[9] = tswapreg(env->regs[9]); 338 (*regs)[10] = tswapreg(env->regs[10]); 339 (*regs)[11] = tswapreg(env->regs[11]); 340 (*regs)[12] = tswapreg(env->regs[12]); 341 (*regs)[13] = tswapreg(env->regs[13]); 342 (*regs)[14] = tswapreg(env->regs[14]); 343 (*regs)[15] = tswapreg(env->regs[15]); 344 345 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 346 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 347 } 348 349 #define USE_ELF_CORE_DUMP 350 #define ELF_EXEC_PAGESIZE 4096 351 352 enum 353 { 354 ARM_HWCAP_ARM_SWP = 1 << 0, 355 ARM_HWCAP_ARM_HALF = 1 << 1, 356 ARM_HWCAP_ARM_THUMB = 1 << 2, 357 ARM_HWCAP_ARM_26BIT = 1 << 3, 358 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 359 ARM_HWCAP_ARM_FPA = 1 << 5, 360 ARM_HWCAP_ARM_VFP = 1 << 6, 361 ARM_HWCAP_ARM_EDSP = 1 << 7, 362 ARM_HWCAP_ARM_JAVA = 1 << 8, 363 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 364 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 365 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 366 ARM_HWCAP_ARM_NEON = 1 << 12, 367 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 368 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 369 ARM_HWCAP_ARM_TLS = 1 << 15, 370 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 371 ARM_HWCAP_ARM_IDIVA = 1 << 17, 372 ARM_HWCAP_ARM_IDIVT = 1 << 18, 373 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 374 ARM_HWCAP_ARM_LPAE = 1 << 20, 375 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 376 }; 377 378 enum { 379 ARM_HWCAP2_ARM_AES = 1 << 0, 380 ARM_HWCAP2_ARM_PMULL = 1 << 1, 381 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 382 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 383 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 384 }; 385 386 /* The commpage only exists for 32 bit kernels */ 387 388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u 389 390 static bool init_guest_commpage(void) 391 { 392 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size); 393 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 394 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 395 396 if (addr == MAP_FAILED) { 397 perror("Allocating guest commpage"); 398 exit(EXIT_FAILURE); 399 } 400 if (addr != want) { 401 return false; 402 } 403 404 /* Set kernel helper versions; rest of page is 0. */ 405 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 406 407 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 408 perror("Protecting guest commpage"); 409 exit(EXIT_FAILURE); 410 } 411 return true; 412 } 413 414 #define ELF_HWCAP get_elf_hwcap() 415 #define ELF_HWCAP2 get_elf_hwcap2() 416 417 static uint32_t get_elf_hwcap(void) 418 { 419 ARMCPU *cpu = ARM_CPU(thread_cpu); 420 uint32_t hwcaps = 0; 421 422 hwcaps |= ARM_HWCAP_ARM_SWP; 423 hwcaps |= ARM_HWCAP_ARM_HALF; 424 hwcaps |= ARM_HWCAP_ARM_THUMB; 425 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 426 427 /* probe for the extra features */ 428 #define GET_FEATURE(feat, hwcap) \ 429 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 430 431 #define GET_FEATURE_ID(feat, hwcap) \ 432 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 433 434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 440 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 441 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 442 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 443 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 444 445 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 446 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 447 hwcaps |= ARM_HWCAP_ARM_VFPv3; 448 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 449 hwcaps |= ARM_HWCAP_ARM_VFPD32; 450 } else { 451 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 452 } 453 } 454 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 455 456 return hwcaps; 457 } 458 459 static uint32_t get_elf_hwcap2(void) 460 { 461 ARMCPU *cpu = ARM_CPU(thread_cpu); 462 uint32_t hwcaps = 0; 463 464 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 465 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 466 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 467 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 468 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 469 return hwcaps; 470 } 471 472 #undef GET_FEATURE 473 #undef GET_FEATURE_ID 474 475 #define ELF_PLATFORM get_elf_platform() 476 477 static const char *get_elf_platform(void) 478 { 479 CPUARMState *env = thread_cpu->env_ptr; 480 481 #ifdef TARGET_WORDS_BIGENDIAN 482 # define END "b" 483 #else 484 # define END "l" 485 #endif 486 487 if (arm_feature(env, ARM_FEATURE_V8)) { 488 return "v8" END; 489 } else if (arm_feature(env, ARM_FEATURE_V7)) { 490 if (arm_feature(env, ARM_FEATURE_M)) { 491 return "v7m" END; 492 } else { 493 return "v7" END; 494 } 495 } else if (arm_feature(env, ARM_FEATURE_V6)) { 496 return "v6" END; 497 } else if (arm_feature(env, ARM_FEATURE_V5)) { 498 return "v5" END; 499 } else { 500 return "v4" END; 501 } 502 503 #undef END 504 } 505 506 #else 507 /* 64 bit ARM definitions */ 508 #define ELF_START_MMAP 0x80000000 509 510 #define ELF_ARCH EM_AARCH64 511 #define ELF_CLASS ELFCLASS64 512 #ifdef TARGET_WORDS_BIGENDIAN 513 # define ELF_PLATFORM "aarch64_be" 514 #else 515 # define ELF_PLATFORM "aarch64" 516 #endif 517 518 static inline void init_thread(struct target_pt_regs *regs, 519 struct image_info *infop) 520 { 521 abi_long stack = infop->start_stack; 522 memset(regs, 0, sizeof(*regs)); 523 524 regs->pc = infop->entry & ~0x3ULL; 525 regs->sp = stack; 526 } 527 528 #define ELF_NREG 34 529 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 530 531 static void elf_core_copy_regs(target_elf_gregset_t *regs, 532 const CPUARMState *env) 533 { 534 int i; 535 536 for (i = 0; i < 32; i++) { 537 (*regs)[i] = tswapreg(env->xregs[i]); 538 } 539 (*regs)[32] = tswapreg(env->pc); 540 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 541 } 542 543 #define USE_ELF_CORE_DUMP 544 #define ELF_EXEC_PAGESIZE 4096 545 546 enum { 547 ARM_HWCAP_A64_FP = 1 << 0, 548 ARM_HWCAP_A64_ASIMD = 1 << 1, 549 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 550 ARM_HWCAP_A64_AES = 1 << 3, 551 ARM_HWCAP_A64_PMULL = 1 << 4, 552 ARM_HWCAP_A64_SHA1 = 1 << 5, 553 ARM_HWCAP_A64_SHA2 = 1 << 6, 554 ARM_HWCAP_A64_CRC32 = 1 << 7, 555 ARM_HWCAP_A64_ATOMICS = 1 << 8, 556 ARM_HWCAP_A64_FPHP = 1 << 9, 557 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 558 ARM_HWCAP_A64_CPUID = 1 << 11, 559 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 560 ARM_HWCAP_A64_JSCVT = 1 << 13, 561 ARM_HWCAP_A64_FCMA = 1 << 14, 562 ARM_HWCAP_A64_LRCPC = 1 << 15, 563 ARM_HWCAP_A64_DCPOP = 1 << 16, 564 ARM_HWCAP_A64_SHA3 = 1 << 17, 565 ARM_HWCAP_A64_SM3 = 1 << 18, 566 ARM_HWCAP_A64_SM4 = 1 << 19, 567 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 568 ARM_HWCAP_A64_SHA512 = 1 << 21, 569 ARM_HWCAP_A64_SVE = 1 << 22, 570 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 571 ARM_HWCAP_A64_DIT = 1 << 24, 572 ARM_HWCAP_A64_USCAT = 1 << 25, 573 ARM_HWCAP_A64_ILRCPC = 1 << 26, 574 ARM_HWCAP_A64_FLAGM = 1 << 27, 575 ARM_HWCAP_A64_SSBS = 1 << 28, 576 ARM_HWCAP_A64_SB = 1 << 29, 577 ARM_HWCAP_A64_PACA = 1 << 30, 578 ARM_HWCAP_A64_PACG = 1UL << 31, 579 580 ARM_HWCAP2_A64_DCPODP = 1 << 0, 581 ARM_HWCAP2_A64_SVE2 = 1 << 1, 582 ARM_HWCAP2_A64_SVEAES = 1 << 2, 583 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 584 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 585 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 586 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 587 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 588 ARM_HWCAP2_A64_FRINT = 1 << 8, 589 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 590 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 591 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 592 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 593 ARM_HWCAP2_A64_I8MM = 1 << 13, 594 ARM_HWCAP2_A64_BF16 = 1 << 14, 595 ARM_HWCAP2_A64_DGH = 1 << 15, 596 ARM_HWCAP2_A64_RNG = 1 << 16, 597 ARM_HWCAP2_A64_BTI = 1 << 17, 598 ARM_HWCAP2_A64_MTE = 1 << 18, 599 }; 600 601 #define ELF_HWCAP get_elf_hwcap() 602 #define ELF_HWCAP2 get_elf_hwcap2() 603 604 #define GET_FEATURE_ID(feat, hwcap) \ 605 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 606 607 static uint32_t get_elf_hwcap(void) 608 { 609 ARMCPU *cpu = ARM_CPU(thread_cpu); 610 uint32_t hwcaps = 0; 611 612 hwcaps |= ARM_HWCAP_A64_FP; 613 hwcaps |= ARM_HWCAP_A64_ASIMD; 614 hwcaps |= ARM_HWCAP_A64_CPUID; 615 616 /* probe for the extra features */ 617 618 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 619 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 620 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 621 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 622 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 623 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 624 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 625 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 626 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 627 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 628 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 629 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 630 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 631 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 632 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 633 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 634 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 635 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 636 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 637 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 638 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 639 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 640 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 641 642 return hwcaps; 643 } 644 645 static uint32_t get_elf_hwcap2(void) 646 { 647 ARMCPU *cpu = ARM_CPU(thread_cpu); 648 uint32_t hwcaps = 0; 649 650 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 651 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 652 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 653 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 654 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 655 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 656 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 657 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 658 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 659 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 660 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 661 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 662 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 663 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 664 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 665 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 666 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 667 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 668 669 return hwcaps; 670 } 671 672 #undef GET_FEATURE_ID 673 674 #endif /* not TARGET_AARCH64 */ 675 #endif /* TARGET_ARM */ 676 677 #ifdef TARGET_SPARC 678 #ifdef TARGET_SPARC64 679 680 #define ELF_START_MMAP 0x80000000 681 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 682 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 683 #ifndef TARGET_ABI32 684 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 685 #else 686 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 687 #endif 688 689 #define ELF_CLASS ELFCLASS64 690 #define ELF_ARCH EM_SPARCV9 691 #else 692 #define ELF_START_MMAP 0x80000000 693 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 694 | HWCAP_SPARC_MULDIV) 695 #define ELF_CLASS ELFCLASS32 696 #define ELF_ARCH EM_SPARC 697 #endif /* TARGET_SPARC64 */ 698 699 static inline void init_thread(struct target_pt_regs *regs, 700 struct image_info *infop) 701 { 702 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 703 regs->pc = infop->entry; 704 regs->npc = regs->pc + 4; 705 regs->y = 0; 706 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 707 - TARGET_STACK_BIAS); 708 } 709 #endif /* TARGET_SPARC */ 710 711 #ifdef TARGET_PPC 712 713 #define ELF_MACHINE PPC_ELF_MACHINE 714 #define ELF_START_MMAP 0x80000000 715 716 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 717 718 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 719 720 #define ELF_CLASS ELFCLASS64 721 722 #else 723 724 #define ELF_CLASS ELFCLASS32 725 726 #endif 727 728 #define ELF_ARCH EM_PPC 729 730 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 731 See arch/powerpc/include/asm/cputable.h. */ 732 enum { 733 QEMU_PPC_FEATURE_32 = 0x80000000, 734 QEMU_PPC_FEATURE_64 = 0x40000000, 735 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 736 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 737 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 738 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 739 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 740 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 741 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 742 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 743 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 744 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 745 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 746 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 747 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 748 QEMU_PPC_FEATURE_CELL = 0x00010000, 749 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 750 QEMU_PPC_FEATURE_SMT = 0x00004000, 751 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 752 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 753 QEMU_PPC_FEATURE_PA6T = 0x00000800, 754 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 755 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 756 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 757 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 758 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 759 760 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 761 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 762 763 /* Feature definitions in AT_HWCAP2. */ 764 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 765 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 766 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 767 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 768 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 769 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 770 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 771 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 772 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 773 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 774 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 775 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 776 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 777 }; 778 779 #define ELF_HWCAP get_elf_hwcap() 780 781 static uint32_t get_elf_hwcap(void) 782 { 783 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 784 uint32_t features = 0; 785 786 /* We don't have to be terribly complete here; the high points are 787 Altivec/FP/SPE support. Anything else is just a bonus. */ 788 #define GET_FEATURE(flag, feature) \ 789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 790 #define GET_FEATURE2(flags, feature) \ 791 do { \ 792 if ((cpu->env.insns_flags2 & flags) == flags) { \ 793 features |= feature; \ 794 } \ 795 } while (0) 796 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 797 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 798 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 799 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 800 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 801 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 802 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 803 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 804 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 805 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 806 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 807 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 808 QEMU_PPC_FEATURE_ARCH_2_06); 809 #undef GET_FEATURE 810 #undef GET_FEATURE2 811 812 return features; 813 } 814 815 #define ELF_HWCAP2 get_elf_hwcap2() 816 817 static uint32_t get_elf_hwcap2(void) 818 { 819 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 820 uint32_t features = 0; 821 822 #define GET_FEATURE(flag, feature) \ 823 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 824 #define GET_FEATURE2(flag, feature) \ 825 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 826 827 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 828 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 829 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 830 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 831 QEMU_PPC_FEATURE2_VEC_CRYPTO); 832 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 833 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 834 835 #undef GET_FEATURE 836 #undef GET_FEATURE2 837 838 return features; 839 } 840 841 /* 842 * The requirements here are: 843 * - keep the final alignment of sp (sp & 0xf) 844 * - make sure the 32-bit value at the first 16 byte aligned position of 845 * AUXV is greater than 16 for glibc compatibility. 846 * AT_IGNOREPPC is used for that. 847 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 848 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 849 */ 850 #define DLINFO_ARCH_ITEMS 5 851 #define ARCH_DLINFO \ 852 do { \ 853 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 854 /* \ 855 * Handle glibc compatibility: these magic entries must \ 856 * be at the lowest addresses in the final auxv. \ 857 */ \ 858 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 859 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 860 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 861 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 862 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 863 } while (0) 864 865 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 866 { 867 _regs->gpr[1] = infop->start_stack; 868 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 869 if (get_ppc64_abi(infop) < 2) { 870 uint64_t val; 871 get_user_u64(val, infop->entry + 8); 872 _regs->gpr[2] = val + infop->load_bias; 873 get_user_u64(val, infop->entry); 874 infop->entry = val + infop->load_bias; 875 } else { 876 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 877 } 878 #endif 879 _regs->nip = infop->entry; 880 } 881 882 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 883 #define ELF_NREG 48 884 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 885 886 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 887 { 888 int i; 889 target_ulong ccr = 0; 890 891 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 892 (*regs)[i] = tswapreg(env->gpr[i]); 893 } 894 895 (*regs)[32] = tswapreg(env->nip); 896 (*regs)[33] = tswapreg(env->msr); 897 (*regs)[35] = tswapreg(env->ctr); 898 (*regs)[36] = tswapreg(env->lr); 899 (*regs)[37] = tswapreg(env->xer); 900 901 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 902 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 903 } 904 (*regs)[38] = tswapreg(ccr); 905 } 906 907 #define USE_ELF_CORE_DUMP 908 #define ELF_EXEC_PAGESIZE 4096 909 910 #endif 911 912 #ifdef TARGET_MIPS 913 914 #define ELF_START_MMAP 0x80000000 915 916 #ifdef TARGET_MIPS64 917 #define ELF_CLASS ELFCLASS64 918 #else 919 #define ELF_CLASS ELFCLASS32 920 #endif 921 #define ELF_ARCH EM_MIPS 922 923 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 924 925 #ifdef TARGET_ABI_MIPSN32 926 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 927 #else 928 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 929 #endif 930 931 static inline void init_thread(struct target_pt_regs *regs, 932 struct image_info *infop) 933 { 934 regs->cp0_status = 2 << CP0St_KSU; 935 regs->cp0_epc = infop->entry; 936 regs->regs[29] = infop->start_stack; 937 } 938 939 /* See linux kernel: arch/mips/include/asm/elf.h. */ 940 #define ELF_NREG 45 941 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 942 943 /* See linux kernel: arch/mips/include/asm/reg.h. */ 944 enum { 945 #ifdef TARGET_MIPS64 946 TARGET_EF_R0 = 0, 947 #else 948 TARGET_EF_R0 = 6, 949 #endif 950 TARGET_EF_R26 = TARGET_EF_R0 + 26, 951 TARGET_EF_R27 = TARGET_EF_R0 + 27, 952 TARGET_EF_LO = TARGET_EF_R0 + 32, 953 TARGET_EF_HI = TARGET_EF_R0 + 33, 954 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 955 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 956 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 957 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 958 }; 959 960 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 961 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 962 { 963 int i; 964 965 for (i = 0; i < TARGET_EF_R0; i++) { 966 (*regs)[i] = 0; 967 } 968 (*regs)[TARGET_EF_R0] = 0; 969 970 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 971 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 972 } 973 974 (*regs)[TARGET_EF_R26] = 0; 975 (*regs)[TARGET_EF_R27] = 0; 976 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 977 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 978 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 979 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 980 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 981 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 982 } 983 984 #define USE_ELF_CORE_DUMP 985 #define ELF_EXEC_PAGESIZE 4096 986 987 /* See arch/mips/include/uapi/asm/hwcap.h. */ 988 enum { 989 HWCAP_MIPS_R6 = (1 << 0), 990 HWCAP_MIPS_MSA = (1 << 1), 991 HWCAP_MIPS_CRC32 = (1 << 2), 992 HWCAP_MIPS_MIPS16 = (1 << 3), 993 HWCAP_MIPS_MDMX = (1 << 4), 994 HWCAP_MIPS_MIPS3D = (1 << 5), 995 HWCAP_MIPS_SMARTMIPS = (1 << 6), 996 HWCAP_MIPS_DSP = (1 << 7), 997 HWCAP_MIPS_DSP2 = (1 << 8), 998 HWCAP_MIPS_DSP3 = (1 << 9), 999 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1000 HWCAP_LOONGSON_MMI = (1 << 11), 1001 HWCAP_LOONGSON_EXT = (1 << 12), 1002 HWCAP_LOONGSON_EXT2 = (1 << 13), 1003 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1004 }; 1005 1006 #define ELF_HWCAP get_elf_hwcap() 1007 1008 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1009 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1010 1011 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1012 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1013 1014 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1015 do { \ 1016 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1017 hwcaps |= _hwcap; \ 1018 } \ 1019 } while (0) 1020 1021 static uint32_t get_elf_hwcap(void) 1022 { 1023 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1024 uint32_t hwcaps = 0; 1025 1026 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1027 2, HWCAP_MIPS_R6); 1028 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1029 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1030 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1031 1032 return hwcaps; 1033 } 1034 1035 #undef GET_FEATURE_REG_EQU 1036 #undef GET_FEATURE_REG_SET 1037 #undef GET_FEATURE_INSN 1038 1039 #endif /* TARGET_MIPS */ 1040 1041 #ifdef TARGET_MICROBLAZE 1042 1043 #define ELF_START_MMAP 0x80000000 1044 1045 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1046 1047 #define ELF_CLASS ELFCLASS32 1048 #define ELF_ARCH EM_MICROBLAZE 1049 1050 static inline void init_thread(struct target_pt_regs *regs, 1051 struct image_info *infop) 1052 { 1053 regs->pc = infop->entry; 1054 regs->r1 = infop->start_stack; 1055 1056 } 1057 1058 #define ELF_EXEC_PAGESIZE 4096 1059 1060 #define USE_ELF_CORE_DUMP 1061 #define ELF_NREG 38 1062 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1063 1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1065 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1066 { 1067 int i, pos = 0; 1068 1069 for (i = 0; i < 32; i++) { 1070 (*regs)[pos++] = tswapreg(env->regs[i]); 1071 } 1072 1073 (*regs)[pos++] = tswapreg(env->pc); 1074 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1075 (*regs)[pos++] = 0; 1076 (*regs)[pos++] = tswapreg(env->ear); 1077 (*regs)[pos++] = 0; 1078 (*regs)[pos++] = tswapreg(env->esr); 1079 } 1080 1081 #endif /* TARGET_MICROBLAZE */ 1082 1083 #ifdef TARGET_NIOS2 1084 1085 #define ELF_START_MMAP 0x80000000 1086 1087 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1088 1089 #define ELF_CLASS ELFCLASS32 1090 #define ELF_ARCH EM_ALTERA_NIOS2 1091 1092 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1093 { 1094 regs->ea = infop->entry; 1095 regs->sp = infop->start_stack; 1096 regs->estatus = 0x3; 1097 } 1098 1099 #define ELF_EXEC_PAGESIZE 4096 1100 1101 #define USE_ELF_CORE_DUMP 1102 #define ELF_NREG 49 1103 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1104 1105 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1106 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1107 const CPUNios2State *env) 1108 { 1109 int i; 1110 1111 (*regs)[0] = -1; 1112 for (i = 1; i < 8; i++) /* r0-r7 */ 1113 (*regs)[i] = tswapreg(env->regs[i + 7]); 1114 1115 for (i = 8; i < 16; i++) /* r8-r15 */ 1116 (*regs)[i] = tswapreg(env->regs[i - 8]); 1117 1118 for (i = 16; i < 24; i++) /* r16-r23 */ 1119 (*regs)[i] = tswapreg(env->regs[i + 7]); 1120 (*regs)[24] = -1; /* R_ET */ 1121 (*regs)[25] = -1; /* R_BT */ 1122 (*regs)[26] = tswapreg(env->regs[R_GP]); 1123 (*regs)[27] = tswapreg(env->regs[R_SP]); 1124 (*regs)[28] = tswapreg(env->regs[R_FP]); 1125 (*regs)[29] = tswapreg(env->regs[R_EA]); 1126 (*regs)[30] = -1; /* R_SSTATUS */ 1127 (*regs)[31] = tswapreg(env->regs[R_RA]); 1128 1129 (*regs)[32] = tswapreg(env->regs[R_PC]); 1130 1131 (*regs)[33] = -1; /* R_STATUS */ 1132 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1133 1134 for (i = 35; i < 49; i++) /* ... */ 1135 (*regs)[i] = -1; 1136 } 1137 1138 #endif /* TARGET_NIOS2 */ 1139 1140 #ifdef TARGET_OPENRISC 1141 1142 #define ELF_START_MMAP 0x08000000 1143 1144 #define ELF_ARCH EM_OPENRISC 1145 #define ELF_CLASS ELFCLASS32 1146 #define ELF_DATA ELFDATA2MSB 1147 1148 static inline void init_thread(struct target_pt_regs *regs, 1149 struct image_info *infop) 1150 { 1151 regs->pc = infop->entry; 1152 regs->gpr[1] = infop->start_stack; 1153 } 1154 1155 #define USE_ELF_CORE_DUMP 1156 #define ELF_EXEC_PAGESIZE 8192 1157 1158 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1159 #define ELF_NREG 34 /* gprs and pc, sr */ 1160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1161 1162 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1163 const CPUOpenRISCState *env) 1164 { 1165 int i; 1166 1167 for (i = 0; i < 32; i++) { 1168 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1169 } 1170 (*regs)[32] = tswapreg(env->pc); 1171 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1172 } 1173 #define ELF_HWCAP 0 1174 #define ELF_PLATFORM NULL 1175 1176 #endif /* TARGET_OPENRISC */ 1177 1178 #ifdef TARGET_SH4 1179 1180 #define ELF_START_MMAP 0x80000000 1181 1182 #define ELF_CLASS ELFCLASS32 1183 #define ELF_ARCH EM_SH 1184 1185 static inline void init_thread(struct target_pt_regs *regs, 1186 struct image_info *infop) 1187 { 1188 /* Check other registers XXXXX */ 1189 regs->pc = infop->entry; 1190 regs->regs[15] = infop->start_stack; 1191 } 1192 1193 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1194 #define ELF_NREG 23 1195 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1196 1197 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1198 enum { 1199 TARGET_REG_PC = 16, 1200 TARGET_REG_PR = 17, 1201 TARGET_REG_SR = 18, 1202 TARGET_REG_GBR = 19, 1203 TARGET_REG_MACH = 20, 1204 TARGET_REG_MACL = 21, 1205 TARGET_REG_SYSCALL = 22 1206 }; 1207 1208 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1209 const CPUSH4State *env) 1210 { 1211 int i; 1212 1213 for (i = 0; i < 16; i++) { 1214 (*regs)[i] = tswapreg(env->gregs[i]); 1215 } 1216 1217 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1218 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1219 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1220 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1221 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1222 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1223 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1224 } 1225 1226 #define USE_ELF_CORE_DUMP 1227 #define ELF_EXEC_PAGESIZE 4096 1228 1229 enum { 1230 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1231 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1232 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1233 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1234 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1235 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1236 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1237 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1238 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1239 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1240 }; 1241 1242 #define ELF_HWCAP get_elf_hwcap() 1243 1244 static uint32_t get_elf_hwcap(void) 1245 { 1246 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1247 uint32_t hwcap = 0; 1248 1249 hwcap |= SH_CPU_HAS_FPU; 1250 1251 if (cpu->env.features & SH_FEATURE_SH4A) { 1252 hwcap |= SH_CPU_HAS_LLSC; 1253 } 1254 1255 return hwcap; 1256 } 1257 1258 #endif 1259 1260 #ifdef TARGET_CRIS 1261 1262 #define ELF_START_MMAP 0x80000000 1263 1264 #define ELF_CLASS ELFCLASS32 1265 #define ELF_ARCH EM_CRIS 1266 1267 static inline void init_thread(struct target_pt_regs *regs, 1268 struct image_info *infop) 1269 { 1270 regs->erp = infop->entry; 1271 } 1272 1273 #define ELF_EXEC_PAGESIZE 8192 1274 1275 #endif 1276 1277 #ifdef TARGET_M68K 1278 1279 #define ELF_START_MMAP 0x80000000 1280 1281 #define ELF_CLASS ELFCLASS32 1282 #define ELF_ARCH EM_68K 1283 1284 /* ??? Does this need to do anything? 1285 #define ELF_PLAT_INIT(_r) */ 1286 1287 static inline void init_thread(struct target_pt_regs *regs, 1288 struct image_info *infop) 1289 { 1290 regs->usp = infop->start_stack; 1291 regs->sr = 0; 1292 regs->pc = infop->entry; 1293 } 1294 1295 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1296 #define ELF_NREG 20 1297 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1298 1299 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1300 { 1301 (*regs)[0] = tswapreg(env->dregs[1]); 1302 (*regs)[1] = tswapreg(env->dregs[2]); 1303 (*regs)[2] = tswapreg(env->dregs[3]); 1304 (*regs)[3] = tswapreg(env->dregs[4]); 1305 (*regs)[4] = tswapreg(env->dregs[5]); 1306 (*regs)[5] = tswapreg(env->dregs[6]); 1307 (*regs)[6] = tswapreg(env->dregs[7]); 1308 (*regs)[7] = tswapreg(env->aregs[0]); 1309 (*regs)[8] = tswapreg(env->aregs[1]); 1310 (*regs)[9] = tswapreg(env->aregs[2]); 1311 (*regs)[10] = tswapreg(env->aregs[3]); 1312 (*regs)[11] = tswapreg(env->aregs[4]); 1313 (*regs)[12] = tswapreg(env->aregs[5]); 1314 (*regs)[13] = tswapreg(env->aregs[6]); 1315 (*regs)[14] = tswapreg(env->dregs[0]); 1316 (*regs)[15] = tswapreg(env->aregs[7]); 1317 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1318 (*regs)[17] = tswapreg(env->sr); 1319 (*regs)[18] = tswapreg(env->pc); 1320 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1321 } 1322 1323 #define USE_ELF_CORE_DUMP 1324 #define ELF_EXEC_PAGESIZE 8192 1325 1326 #endif 1327 1328 #ifdef TARGET_ALPHA 1329 1330 #define ELF_START_MMAP (0x30000000000ULL) 1331 1332 #define ELF_CLASS ELFCLASS64 1333 #define ELF_ARCH EM_ALPHA 1334 1335 static inline void init_thread(struct target_pt_regs *regs, 1336 struct image_info *infop) 1337 { 1338 regs->pc = infop->entry; 1339 regs->ps = 8; 1340 regs->usp = infop->start_stack; 1341 } 1342 1343 #define ELF_EXEC_PAGESIZE 8192 1344 1345 #endif /* TARGET_ALPHA */ 1346 1347 #ifdef TARGET_S390X 1348 1349 #define ELF_START_MMAP (0x20000000000ULL) 1350 1351 #define ELF_CLASS ELFCLASS64 1352 #define ELF_DATA ELFDATA2MSB 1353 #define ELF_ARCH EM_S390 1354 1355 #include "elf.h" 1356 1357 #define ELF_HWCAP get_elf_hwcap() 1358 1359 #define GET_FEATURE(_feat, _hwcap) \ 1360 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1361 1362 static uint32_t get_elf_hwcap(void) 1363 { 1364 /* 1365 * Let's assume we always have esan3 and zarch. 1366 * 31-bit processes can use 64-bit registers (high gprs). 1367 */ 1368 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1369 1370 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1371 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1372 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1373 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1374 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1375 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1376 hwcap |= HWCAP_S390_ETF3EH; 1377 } 1378 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1379 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1380 1381 return hwcap; 1382 } 1383 1384 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1385 { 1386 regs->psw.addr = infop->entry; 1387 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1388 regs->gprs[15] = infop->start_stack; 1389 } 1390 1391 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1392 #define ELF_NREG 27 1393 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1394 1395 enum { 1396 TARGET_REG_PSWM = 0, 1397 TARGET_REG_PSWA = 1, 1398 TARGET_REG_GPRS = 2, 1399 TARGET_REG_ARS = 18, 1400 TARGET_REG_ORIG_R2 = 26, 1401 }; 1402 1403 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1404 const CPUS390XState *env) 1405 { 1406 int i; 1407 uint32_t *aregs; 1408 1409 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1410 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1411 for (i = 0; i < 16; i++) { 1412 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1413 } 1414 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1415 for (i = 0; i < 16; i++) { 1416 aregs[i] = tswap32(env->aregs[i]); 1417 } 1418 (*regs)[TARGET_REG_ORIG_R2] = 0; 1419 } 1420 1421 #define USE_ELF_CORE_DUMP 1422 #define ELF_EXEC_PAGESIZE 4096 1423 1424 #endif /* TARGET_S390X */ 1425 1426 #ifdef TARGET_RISCV 1427 1428 #define ELF_START_MMAP 0x80000000 1429 #define ELF_ARCH EM_RISCV 1430 1431 #ifdef TARGET_RISCV32 1432 #define ELF_CLASS ELFCLASS32 1433 #else 1434 #define ELF_CLASS ELFCLASS64 1435 #endif 1436 1437 #define ELF_HWCAP get_elf_hwcap() 1438 1439 static uint32_t get_elf_hwcap(void) 1440 { 1441 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1442 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1443 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1444 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C'); 1445 1446 return cpu->env.misa & mask; 1447 #undef MISA_BIT 1448 } 1449 1450 static inline void init_thread(struct target_pt_regs *regs, 1451 struct image_info *infop) 1452 { 1453 regs->sepc = infop->entry; 1454 regs->sp = infop->start_stack; 1455 } 1456 1457 #define ELF_EXEC_PAGESIZE 4096 1458 1459 #endif /* TARGET_RISCV */ 1460 1461 #ifdef TARGET_HPPA 1462 1463 #define ELF_START_MMAP 0x80000000 1464 #define ELF_CLASS ELFCLASS32 1465 #define ELF_ARCH EM_PARISC 1466 #define ELF_PLATFORM "PARISC" 1467 #define STACK_GROWS_DOWN 0 1468 #define STACK_ALIGNMENT 64 1469 1470 static inline void init_thread(struct target_pt_regs *regs, 1471 struct image_info *infop) 1472 { 1473 regs->iaoq[0] = infop->entry; 1474 regs->iaoq[1] = infop->entry + 4; 1475 regs->gr[23] = 0; 1476 regs->gr[24] = infop->arg_start; 1477 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1478 /* The top-of-stack contains a linkage buffer. */ 1479 regs->gr[30] = infop->start_stack + 64; 1480 regs->gr[31] = infop->entry; 1481 } 1482 1483 #endif /* TARGET_HPPA */ 1484 1485 #ifdef TARGET_XTENSA 1486 1487 #define ELF_START_MMAP 0x20000000 1488 1489 #define ELF_CLASS ELFCLASS32 1490 #define ELF_ARCH EM_XTENSA 1491 1492 static inline void init_thread(struct target_pt_regs *regs, 1493 struct image_info *infop) 1494 { 1495 regs->windowbase = 0; 1496 regs->windowstart = 1; 1497 regs->areg[1] = infop->start_stack; 1498 regs->pc = infop->entry; 1499 } 1500 1501 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1502 #define ELF_NREG 128 1503 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1504 1505 enum { 1506 TARGET_REG_PC, 1507 TARGET_REG_PS, 1508 TARGET_REG_LBEG, 1509 TARGET_REG_LEND, 1510 TARGET_REG_LCOUNT, 1511 TARGET_REG_SAR, 1512 TARGET_REG_WINDOWSTART, 1513 TARGET_REG_WINDOWBASE, 1514 TARGET_REG_THREADPTR, 1515 TARGET_REG_AR0 = 64, 1516 }; 1517 1518 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1519 const CPUXtensaState *env) 1520 { 1521 unsigned i; 1522 1523 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1524 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1525 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1526 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1527 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1528 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1529 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1530 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1531 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1532 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1533 for (i = 0; i < env->config->nareg; ++i) { 1534 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1535 } 1536 } 1537 1538 #define USE_ELF_CORE_DUMP 1539 #define ELF_EXEC_PAGESIZE 4096 1540 1541 #endif /* TARGET_XTENSA */ 1542 1543 #ifdef TARGET_HEXAGON 1544 1545 #define ELF_START_MMAP 0x20000000 1546 1547 #define ELF_CLASS ELFCLASS32 1548 #define ELF_ARCH EM_HEXAGON 1549 1550 static inline void init_thread(struct target_pt_regs *regs, 1551 struct image_info *infop) 1552 { 1553 regs->sepc = infop->entry; 1554 regs->sp = infop->start_stack; 1555 } 1556 1557 #endif /* TARGET_HEXAGON */ 1558 1559 #ifndef ELF_PLATFORM 1560 #define ELF_PLATFORM (NULL) 1561 #endif 1562 1563 #ifndef ELF_MACHINE 1564 #define ELF_MACHINE ELF_ARCH 1565 #endif 1566 1567 #ifndef elf_check_arch 1568 #define elf_check_arch(x) ((x) == ELF_ARCH) 1569 #endif 1570 1571 #ifndef elf_check_abi 1572 #define elf_check_abi(x) (1) 1573 #endif 1574 1575 #ifndef ELF_HWCAP 1576 #define ELF_HWCAP 0 1577 #endif 1578 1579 #ifndef STACK_GROWS_DOWN 1580 #define STACK_GROWS_DOWN 1 1581 #endif 1582 1583 #ifndef STACK_ALIGNMENT 1584 #define STACK_ALIGNMENT 16 1585 #endif 1586 1587 #ifdef TARGET_ABI32 1588 #undef ELF_CLASS 1589 #define ELF_CLASS ELFCLASS32 1590 #undef bswaptls 1591 #define bswaptls(ptr) bswap32s(ptr) 1592 #endif 1593 1594 #include "elf.h" 1595 1596 /* We must delay the following stanzas until after "elf.h". */ 1597 #if defined(TARGET_AARCH64) 1598 1599 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1600 const uint32_t *data, 1601 struct image_info *info, 1602 Error **errp) 1603 { 1604 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1605 if (pr_datasz != sizeof(uint32_t)) { 1606 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1607 return false; 1608 } 1609 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1610 info->note_flags = *data; 1611 } 1612 return true; 1613 } 1614 #define ARCH_USE_GNU_PROPERTY 1 1615 1616 #else 1617 1618 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1619 const uint32_t *data, 1620 struct image_info *info, 1621 Error **errp) 1622 { 1623 g_assert_not_reached(); 1624 } 1625 #define ARCH_USE_GNU_PROPERTY 0 1626 1627 #endif 1628 1629 struct exec 1630 { 1631 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1632 unsigned int a_text; /* length of text, in bytes */ 1633 unsigned int a_data; /* length of data, in bytes */ 1634 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1635 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1636 unsigned int a_entry; /* start address */ 1637 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1638 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1639 }; 1640 1641 1642 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1643 #define OMAGIC 0407 1644 #define NMAGIC 0410 1645 #define ZMAGIC 0413 1646 #define QMAGIC 0314 1647 1648 /* Necessary parameters */ 1649 #define TARGET_ELF_EXEC_PAGESIZE \ 1650 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1651 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1652 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1653 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1654 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1655 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1656 1657 #define DLINFO_ITEMS 16 1658 1659 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1660 { 1661 memcpy(to, from, n); 1662 } 1663 1664 #ifdef BSWAP_NEEDED 1665 static void bswap_ehdr(struct elfhdr *ehdr) 1666 { 1667 bswap16s(&ehdr->e_type); /* Object file type */ 1668 bswap16s(&ehdr->e_machine); /* Architecture */ 1669 bswap32s(&ehdr->e_version); /* Object file version */ 1670 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1671 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1672 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1673 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1674 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1675 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1676 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1677 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1678 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1679 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1680 } 1681 1682 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1683 { 1684 int i; 1685 for (i = 0; i < phnum; ++i, ++phdr) { 1686 bswap32s(&phdr->p_type); /* Segment type */ 1687 bswap32s(&phdr->p_flags); /* Segment flags */ 1688 bswaptls(&phdr->p_offset); /* Segment file offset */ 1689 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1690 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1691 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1692 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1693 bswaptls(&phdr->p_align); /* Segment alignment */ 1694 } 1695 } 1696 1697 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1698 { 1699 int i; 1700 for (i = 0; i < shnum; ++i, ++shdr) { 1701 bswap32s(&shdr->sh_name); 1702 bswap32s(&shdr->sh_type); 1703 bswaptls(&shdr->sh_flags); 1704 bswaptls(&shdr->sh_addr); 1705 bswaptls(&shdr->sh_offset); 1706 bswaptls(&shdr->sh_size); 1707 bswap32s(&shdr->sh_link); 1708 bswap32s(&shdr->sh_info); 1709 bswaptls(&shdr->sh_addralign); 1710 bswaptls(&shdr->sh_entsize); 1711 } 1712 } 1713 1714 static void bswap_sym(struct elf_sym *sym) 1715 { 1716 bswap32s(&sym->st_name); 1717 bswaptls(&sym->st_value); 1718 bswaptls(&sym->st_size); 1719 bswap16s(&sym->st_shndx); 1720 } 1721 1722 #ifdef TARGET_MIPS 1723 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1724 { 1725 bswap16s(&abiflags->version); 1726 bswap32s(&abiflags->ases); 1727 bswap32s(&abiflags->isa_ext); 1728 bswap32s(&abiflags->flags1); 1729 bswap32s(&abiflags->flags2); 1730 } 1731 #endif 1732 #else 1733 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1734 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1735 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1736 static inline void bswap_sym(struct elf_sym *sym) { } 1737 #ifdef TARGET_MIPS 1738 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1739 #endif 1740 #endif 1741 1742 #ifdef USE_ELF_CORE_DUMP 1743 static int elf_core_dump(int, const CPUArchState *); 1744 #endif /* USE_ELF_CORE_DUMP */ 1745 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1746 1747 /* Verify the portions of EHDR within E_IDENT for the target. 1748 This can be performed before bswapping the entire header. */ 1749 static bool elf_check_ident(struct elfhdr *ehdr) 1750 { 1751 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1752 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1753 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1754 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1755 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1756 && ehdr->e_ident[EI_DATA] == ELF_DATA 1757 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1758 } 1759 1760 /* Verify the portions of EHDR outside of E_IDENT for the target. 1761 This has to wait until after bswapping the header. */ 1762 static bool elf_check_ehdr(struct elfhdr *ehdr) 1763 { 1764 return (elf_check_arch(ehdr->e_machine) 1765 && elf_check_abi(ehdr->e_flags) 1766 && ehdr->e_ehsize == sizeof(struct elfhdr) 1767 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1768 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1769 } 1770 1771 /* 1772 * 'copy_elf_strings()' copies argument/envelope strings from user 1773 * memory to free pages in kernel mem. These are in a format ready 1774 * to be put directly into the top of new user memory. 1775 * 1776 */ 1777 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1778 abi_ulong p, abi_ulong stack_limit) 1779 { 1780 char *tmp; 1781 int len, i; 1782 abi_ulong top = p; 1783 1784 if (!p) { 1785 return 0; /* bullet-proofing */ 1786 } 1787 1788 if (STACK_GROWS_DOWN) { 1789 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1790 for (i = argc - 1; i >= 0; --i) { 1791 tmp = argv[i]; 1792 if (!tmp) { 1793 fprintf(stderr, "VFS: argc is wrong"); 1794 exit(-1); 1795 } 1796 len = strlen(tmp) + 1; 1797 tmp += len; 1798 1799 if (len > (p - stack_limit)) { 1800 return 0; 1801 } 1802 while (len) { 1803 int bytes_to_copy = (len > offset) ? offset : len; 1804 tmp -= bytes_to_copy; 1805 p -= bytes_to_copy; 1806 offset -= bytes_to_copy; 1807 len -= bytes_to_copy; 1808 1809 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1810 1811 if (offset == 0) { 1812 memcpy_to_target(p, scratch, top - p); 1813 top = p; 1814 offset = TARGET_PAGE_SIZE; 1815 } 1816 } 1817 } 1818 if (p != top) { 1819 memcpy_to_target(p, scratch + offset, top - p); 1820 } 1821 } else { 1822 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1823 for (i = 0; i < argc; ++i) { 1824 tmp = argv[i]; 1825 if (!tmp) { 1826 fprintf(stderr, "VFS: argc is wrong"); 1827 exit(-1); 1828 } 1829 len = strlen(tmp) + 1; 1830 if (len > (stack_limit - p)) { 1831 return 0; 1832 } 1833 while (len) { 1834 int bytes_to_copy = (len > remaining) ? remaining : len; 1835 1836 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1837 1838 tmp += bytes_to_copy; 1839 remaining -= bytes_to_copy; 1840 p += bytes_to_copy; 1841 len -= bytes_to_copy; 1842 1843 if (remaining == 0) { 1844 memcpy_to_target(top, scratch, p - top); 1845 top = p; 1846 remaining = TARGET_PAGE_SIZE; 1847 } 1848 } 1849 } 1850 if (p != top) { 1851 memcpy_to_target(top, scratch, p - top); 1852 } 1853 } 1854 1855 return p; 1856 } 1857 1858 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1859 * argument/environment space. Newer kernels (>2.6.33) allow more, 1860 * dependent on stack size, but guarantee at least 32 pages for 1861 * backwards compatibility. 1862 */ 1863 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1864 1865 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1866 struct image_info *info) 1867 { 1868 abi_ulong size, error, guard; 1869 1870 size = guest_stack_size; 1871 if (size < STACK_LOWER_LIMIT) { 1872 size = STACK_LOWER_LIMIT; 1873 } 1874 guard = TARGET_PAGE_SIZE; 1875 if (guard < qemu_real_host_page_size) { 1876 guard = qemu_real_host_page_size; 1877 } 1878 1879 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1880 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1881 if (error == -1) { 1882 perror("mmap stack"); 1883 exit(-1); 1884 } 1885 1886 /* We reserve one extra page at the top of the stack as guard. */ 1887 if (STACK_GROWS_DOWN) { 1888 target_mprotect(error, guard, PROT_NONE); 1889 info->stack_limit = error + guard; 1890 return info->stack_limit + size - sizeof(void *); 1891 } else { 1892 target_mprotect(error + size, guard, PROT_NONE); 1893 info->stack_limit = error + size; 1894 return error; 1895 } 1896 } 1897 1898 /* Map and zero the bss. We need to explicitly zero any fractional pages 1899 after the data section (i.e. bss). */ 1900 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1901 { 1902 uintptr_t host_start, host_map_start, host_end; 1903 1904 last_bss = TARGET_PAGE_ALIGN(last_bss); 1905 1906 /* ??? There is confusion between qemu_real_host_page_size and 1907 qemu_host_page_size here and elsewhere in target_mmap, which 1908 may lead to the end of the data section mapping from the file 1909 not being mapped. At least there was an explicit test and 1910 comment for that here, suggesting that "the file size must 1911 be known". The comment probably pre-dates the introduction 1912 of the fstat system call in target_mmap which does in fact 1913 find out the size. What isn't clear is if the workaround 1914 here is still actually needed. For now, continue with it, 1915 but merge it with the "normal" mmap that would allocate the bss. */ 1916 1917 host_start = (uintptr_t) g2h_untagged(elf_bss); 1918 host_end = (uintptr_t) g2h_untagged(last_bss); 1919 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1920 1921 if (host_map_start < host_end) { 1922 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1923 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1924 if (p == MAP_FAILED) { 1925 perror("cannot mmap brk"); 1926 exit(-1); 1927 } 1928 } 1929 1930 /* Ensure that the bss page(s) are valid */ 1931 if ((page_get_flags(last_bss-1) & prot) != prot) { 1932 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1933 } 1934 1935 if (host_start < host_map_start) { 1936 memset((void *)host_start, 0, host_map_start - host_start); 1937 } 1938 } 1939 1940 #ifdef TARGET_ARM 1941 static int elf_is_fdpic(struct elfhdr *exec) 1942 { 1943 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1944 } 1945 #else 1946 /* Default implementation, always false. */ 1947 static int elf_is_fdpic(struct elfhdr *exec) 1948 { 1949 return 0; 1950 } 1951 #endif 1952 1953 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1954 { 1955 uint16_t n; 1956 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1957 1958 /* elf32_fdpic_loadseg */ 1959 n = info->nsegs; 1960 while (n--) { 1961 sp -= 12; 1962 put_user_u32(loadsegs[n].addr, sp+0); 1963 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1964 put_user_u32(loadsegs[n].p_memsz, sp+8); 1965 } 1966 1967 /* elf32_fdpic_loadmap */ 1968 sp -= 4; 1969 put_user_u16(0, sp+0); /* version */ 1970 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1971 1972 info->personality = PER_LINUX_FDPIC; 1973 info->loadmap_addr = sp; 1974 1975 return sp; 1976 } 1977 1978 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1979 struct elfhdr *exec, 1980 struct image_info *info, 1981 struct image_info *interp_info) 1982 { 1983 abi_ulong sp; 1984 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1985 int size; 1986 int i; 1987 abi_ulong u_rand_bytes; 1988 uint8_t k_rand_bytes[16]; 1989 abi_ulong u_platform; 1990 const char *k_platform; 1991 const int n = sizeof(elf_addr_t); 1992 1993 sp = p; 1994 1995 /* Needs to be before we load the env/argc/... */ 1996 if (elf_is_fdpic(exec)) { 1997 /* Need 4 byte alignment for these structs */ 1998 sp &= ~3; 1999 sp = loader_build_fdpic_loadmap(info, sp); 2000 info->other_info = interp_info; 2001 if (interp_info) { 2002 interp_info->other_info = info; 2003 sp = loader_build_fdpic_loadmap(interp_info, sp); 2004 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2005 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2006 } else { 2007 info->interpreter_loadmap_addr = 0; 2008 info->interpreter_pt_dynamic_addr = 0; 2009 } 2010 } 2011 2012 u_platform = 0; 2013 k_platform = ELF_PLATFORM; 2014 if (k_platform) { 2015 size_t len = strlen(k_platform) + 1; 2016 if (STACK_GROWS_DOWN) { 2017 sp -= (len + n - 1) & ~(n - 1); 2018 u_platform = sp; 2019 /* FIXME - check return value of memcpy_to_target() for failure */ 2020 memcpy_to_target(sp, k_platform, len); 2021 } else { 2022 memcpy_to_target(sp, k_platform, len); 2023 u_platform = sp; 2024 sp += len + 1; 2025 } 2026 } 2027 2028 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2029 * the argv and envp pointers. 2030 */ 2031 if (STACK_GROWS_DOWN) { 2032 sp = QEMU_ALIGN_DOWN(sp, 16); 2033 } else { 2034 sp = QEMU_ALIGN_UP(sp, 16); 2035 } 2036 2037 /* 2038 * Generate 16 random bytes for userspace PRNG seeding. 2039 */ 2040 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2041 if (STACK_GROWS_DOWN) { 2042 sp -= 16; 2043 u_rand_bytes = sp; 2044 /* FIXME - check return value of memcpy_to_target() for failure */ 2045 memcpy_to_target(sp, k_rand_bytes, 16); 2046 } else { 2047 memcpy_to_target(sp, k_rand_bytes, 16); 2048 u_rand_bytes = sp; 2049 sp += 16; 2050 } 2051 2052 size = (DLINFO_ITEMS + 1) * 2; 2053 if (k_platform) 2054 size += 2; 2055 #ifdef DLINFO_ARCH_ITEMS 2056 size += DLINFO_ARCH_ITEMS * 2; 2057 #endif 2058 #ifdef ELF_HWCAP2 2059 size += 2; 2060 #endif 2061 info->auxv_len = size * n; 2062 2063 size += envc + argc + 2; 2064 size += 1; /* argc itself */ 2065 size *= n; 2066 2067 /* Allocate space and finalize stack alignment for entry now. */ 2068 if (STACK_GROWS_DOWN) { 2069 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2070 sp = u_argc; 2071 } else { 2072 u_argc = sp; 2073 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2074 } 2075 2076 u_argv = u_argc + n; 2077 u_envp = u_argv + (argc + 1) * n; 2078 u_auxv = u_envp + (envc + 1) * n; 2079 info->saved_auxv = u_auxv; 2080 info->arg_start = u_argv; 2081 info->arg_end = u_argv + argc * n; 2082 2083 /* This is correct because Linux defines 2084 * elf_addr_t as Elf32_Off / Elf64_Off 2085 */ 2086 #define NEW_AUX_ENT(id, val) do { \ 2087 put_user_ual(id, u_auxv); u_auxv += n; \ 2088 put_user_ual(val, u_auxv); u_auxv += n; \ 2089 } while(0) 2090 2091 #ifdef ARCH_DLINFO 2092 /* 2093 * ARCH_DLINFO must come first so platform specific code can enforce 2094 * special alignment requirements on the AUXV if necessary (eg. PPC). 2095 */ 2096 ARCH_DLINFO; 2097 #endif 2098 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2099 * on info->auxv_len will trigger. 2100 */ 2101 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2102 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2103 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2104 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2105 /* Target doesn't support host page size alignment */ 2106 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2107 } else { 2108 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2109 qemu_host_page_size))); 2110 } 2111 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2112 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2113 NEW_AUX_ENT(AT_ENTRY, info->entry); 2114 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2115 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2116 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2117 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2118 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2119 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2120 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2121 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2122 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2123 2124 #ifdef ELF_HWCAP2 2125 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2126 #endif 2127 2128 if (u_platform) { 2129 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2130 } 2131 NEW_AUX_ENT (AT_NULL, 0); 2132 #undef NEW_AUX_ENT 2133 2134 /* Check that our initial calculation of the auxv length matches how much 2135 * we actually put into it. 2136 */ 2137 assert(info->auxv_len == u_auxv - info->saved_auxv); 2138 2139 put_user_ual(argc, u_argc); 2140 2141 p = info->arg_strings; 2142 for (i = 0; i < argc; ++i) { 2143 put_user_ual(p, u_argv); 2144 u_argv += n; 2145 p += target_strlen(p) + 1; 2146 } 2147 put_user_ual(0, u_argv); 2148 2149 p = info->env_strings; 2150 for (i = 0; i < envc; ++i) { 2151 put_user_ual(p, u_envp); 2152 u_envp += n; 2153 p += target_strlen(p) + 1; 2154 } 2155 put_user_ual(0, u_envp); 2156 2157 return sp; 2158 } 2159 2160 #ifndef ARM_COMMPAGE 2161 #define ARM_COMMPAGE 0 2162 #define init_guest_commpage() true 2163 #endif 2164 2165 static void pgb_fail_in_use(const char *image_name) 2166 { 2167 error_report("%s: requires virtual address space that is in use " 2168 "(omit the -B option or choose a different value)", 2169 image_name); 2170 exit(EXIT_FAILURE); 2171 } 2172 2173 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2174 abi_ulong guest_hiaddr, long align) 2175 { 2176 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2177 void *addr, *test; 2178 2179 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2180 fprintf(stderr, "Requested guest base %p does not satisfy " 2181 "host minimum alignment (0x%lx)\n", 2182 (void *)guest_base, align); 2183 exit(EXIT_FAILURE); 2184 } 2185 2186 /* Sanity check the guest binary. */ 2187 if (reserved_va) { 2188 if (guest_hiaddr > reserved_va) { 2189 error_report("%s: requires more than reserved virtual " 2190 "address space (0x%" PRIx64 " > 0x%lx)", 2191 image_name, (uint64_t)guest_hiaddr, reserved_va); 2192 exit(EXIT_FAILURE); 2193 } 2194 } else { 2195 #if HOST_LONG_BITS < TARGET_ABI_BITS 2196 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2197 error_report("%s: requires more virtual address space " 2198 "than the host can provide (0x%" PRIx64 ")", 2199 image_name, (uint64_t)guest_hiaddr - guest_base); 2200 exit(EXIT_FAILURE); 2201 } 2202 #endif 2203 } 2204 2205 /* 2206 * Expand the allocation to the entire reserved_va. 2207 * Exclude the mmap_min_addr hole. 2208 */ 2209 if (reserved_va) { 2210 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2211 : mmap_min_addr - guest_base); 2212 guest_hiaddr = reserved_va; 2213 } 2214 2215 /* Reserve the address space for the binary, or reserved_va. */ 2216 test = g2h_untagged(guest_loaddr); 2217 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2218 if (test != addr) { 2219 pgb_fail_in_use(image_name); 2220 } 2221 } 2222 2223 /** 2224 * pgd_find_hole_fallback: potential mmap address 2225 * @guest_size: size of available space 2226 * @brk: location of break 2227 * @align: memory alignment 2228 * 2229 * This is a fallback method for finding a hole in the host address 2230 * space if we don't have the benefit of being able to access 2231 * /proc/self/map. It can potentially take a very long time as we can 2232 * only dumbly iterate up the host address space seeing if the 2233 * allocation would work. 2234 */ 2235 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2236 long align, uintptr_t offset) 2237 { 2238 uintptr_t base; 2239 2240 /* Start (aligned) at the bottom and work our way up */ 2241 base = ROUND_UP(mmap_min_addr, align); 2242 2243 while (true) { 2244 uintptr_t align_start, end; 2245 align_start = ROUND_UP(base, align); 2246 end = align_start + guest_size + offset; 2247 2248 /* if brk is anywhere in the range give ourselves some room to grow. */ 2249 if (align_start <= brk && brk < end) { 2250 base = brk + (16 * MiB); 2251 continue; 2252 } else if (align_start + guest_size < align_start) { 2253 /* we have run out of space */ 2254 return -1; 2255 } else { 2256 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2257 MAP_FIXED_NOREPLACE; 2258 void * mmap_start = mmap((void *) align_start, guest_size, 2259 PROT_NONE, flags, -1, 0); 2260 if (mmap_start != MAP_FAILED) { 2261 munmap(mmap_start, guest_size); 2262 if (mmap_start == (void *) align_start) { 2263 return (uintptr_t) mmap_start + offset; 2264 } 2265 } 2266 base += qemu_host_page_size; 2267 } 2268 } 2269 } 2270 2271 /* Return value for guest_base, or -1 if no hole found. */ 2272 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2273 long align, uintptr_t offset) 2274 { 2275 GSList *maps, *iter; 2276 uintptr_t this_start, this_end, next_start, brk; 2277 intptr_t ret = -1; 2278 2279 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2280 2281 maps = read_self_maps(); 2282 2283 /* Read brk after we've read the maps, which will malloc. */ 2284 brk = (uintptr_t)sbrk(0); 2285 2286 if (!maps) { 2287 ret = pgd_find_hole_fallback(guest_size, brk, align, offset); 2288 return ret == -1 ? -1 : ret - guest_loaddr; 2289 } 2290 2291 /* The first hole is before the first map entry. */ 2292 this_start = mmap_min_addr; 2293 2294 for (iter = maps; iter; 2295 this_start = next_start, iter = g_slist_next(iter)) { 2296 uintptr_t align_start, hole_size; 2297 2298 this_end = ((MapInfo *)iter->data)->start; 2299 next_start = ((MapInfo *)iter->data)->end; 2300 align_start = ROUND_UP(this_start + offset, align); 2301 2302 /* Skip holes that are too small. */ 2303 if (align_start >= this_end) { 2304 continue; 2305 } 2306 hole_size = this_end - align_start; 2307 if (hole_size < guest_size) { 2308 continue; 2309 } 2310 2311 /* If this hole contains brk, give ourselves some room to grow. */ 2312 if (this_start <= brk && brk < this_end) { 2313 hole_size -= guest_size; 2314 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2315 align_start += 1 * GiB; 2316 } else if (hole_size >= 16 * MiB) { 2317 align_start += 16 * MiB; 2318 } else { 2319 align_start = (this_end - guest_size) & -align; 2320 if (align_start < this_start) { 2321 continue; 2322 } 2323 } 2324 } 2325 2326 /* Record the lowest successful match. */ 2327 if (ret < 0) { 2328 ret = align_start - guest_loaddr; 2329 } 2330 /* If this hole contains the identity map, select it. */ 2331 if (align_start <= guest_loaddr && 2332 guest_loaddr + guest_size <= this_end) { 2333 ret = 0; 2334 } 2335 /* If this hole ends above the identity map, stop looking. */ 2336 if (this_end >= guest_loaddr) { 2337 break; 2338 } 2339 } 2340 free_self_maps(maps); 2341 2342 return ret; 2343 } 2344 2345 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2346 abi_ulong orig_hiaddr, long align) 2347 { 2348 uintptr_t loaddr = orig_loaddr; 2349 uintptr_t hiaddr = orig_hiaddr; 2350 uintptr_t offset = 0; 2351 uintptr_t addr; 2352 2353 if (hiaddr != orig_hiaddr) { 2354 error_report("%s: requires virtual address space that the " 2355 "host cannot provide (0x%" PRIx64 ")", 2356 image_name, (uint64_t)orig_hiaddr); 2357 exit(EXIT_FAILURE); 2358 } 2359 2360 loaddr &= -align; 2361 if (ARM_COMMPAGE) { 2362 /* 2363 * Extend the allocation to include the commpage. 2364 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2365 * need to ensure there is space bellow the guest_base so we 2366 * can map the commpage in the place needed when the address 2367 * arithmetic wraps around. 2368 */ 2369 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2370 hiaddr = (uintptr_t) 4 << 30; 2371 } else { 2372 offset = -(ARM_COMMPAGE & -align); 2373 } 2374 } 2375 2376 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2377 if (addr == -1) { 2378 /* 2379 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation 2380 * that can satisfy both. But as the normal arm32 link base address 2381 * is ~32k, and we extend down to include the commpage, making the 2382 * overhead only ~96k, this is unlikely. 2383 */ 2384 error_report("%s: Unable to allocate %#zx bytes of " 2385 "virtual address space", image_name, 2386 (size_t)(hiaddr - loaddr)); 2387 exit(EXIT_FAILURE); 2388 } 2389 2390 guest_base = addr; 2391 } 2392 2393 static void pgb_dynamic(const char *image_name, long align) 2394 { 2395 /* 2396 * The executable is dynamic and does not require a fixed address. 2397 * All we need is a commpage that satisfies align. 2398 * If we do not need a commpage, leave guest_base == 0. 2399 */ 2400 if (ARM_COMMPAGE) { 2401 uintptr_t addr, commpage; 2402 2403 /* 64-bit hosts should have used reserved_va. */ 2404 assert(sizeof(uintptr_t) == 4); 2405 2406 /* 2407 * By putting the commpage at the first hole, that puts guest_base 2408 * just above that, and maximises the positive guest addresses. 2409 */ 2410 commpage = ARM_COMMPAGE & -align; 2411 addr = pgb_find_hole(commpage, -commpage, align, 0); 2412 assert(addr != -1); 2413 guest_base = addr; 2414 } 2415 } 2416 2417 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2418 abi_ulong guest_hiaddr, long align) 2419 { 2420 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2421 void *addr, *test; 2422 2423 if (guest_hiaddr > reserved_va) { 2424 error_report("%s: requires more than reserved virtual " 2425 "address space (0x%" PRIx64 " > 0x%lx)", 2426 image_name, (uint64_t)guest_hiaddr, reserved_va); 2427 exit(EXIT_FAILURE); 2428 } 2429 2430 /* Widen the "image" to the entire reserved address space. */ 2431 pgb_static(image_name, 0, reserved_va, align); 2432 2433 /* osdep.h defines this as 0 if it's missing */ 2434 flags |= MAP_FIXED_NOREPLACE; 2435 2436 /* Reserve the memory on the host. */ 2437 assert(guest_base != 0); 2438 test = g2h_untagged(0); 2439 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2440 if (addr == MAP_FAILED || addr != test) { 2441 error_report("Unable to reserve 0x%lx bytes of virtual address " 2442 "space at %p (%s) for use as guest address space (check your" 2443 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2444 "using -R option)", reserved_va, test, strerror(errno)); 2445 exit(EXIT_FAILURE); 2446 } 2447 } 2448 2449 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2450 abi_ulong guest_hiaddr) 2451 { 2452 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2453 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2454 2455 if (have_guest_base) { 2456 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2457 } else if (reserved_va) { 2458 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2459 } else if (guest_loaddr) { 2460 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2461 } else { 2462 pgb_dynamic(image_name, align); 2463 } 2464 2465 /* Reserve and initialize the commpage. */ 2466 if (!init_guest_commpage()) { 2467 /* 2468 * With have_guest_base, the user has selected the address and 2469 * we are trying to work with that. Otherwise, we have selected 2470 * free space and init_guest_commpage must succeeded. 2471 */ 2472 assert(have_guest_base); 2473 pgb_fail_in_use(image_name); 2474 } 2475 2476 assert(QEMU_IS_ALIGNED(guest_base, align)); 2477 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2478 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2479 } 2480 2481 enum { 2482 /* The string "GNU\0" as a magic number. */ 2483 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2484 NOTE_DATA_SZ = 1 * KiB, 2485 NOTE_NAME_SZ = 4, 2486 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2487 }; 2488 2489 /* 2490 * Process a single gnu_property entry. 2491 * Return false for error. 2492 */ 2493 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2494 struct image_info *info, bool have_prev_type, 2495 uint32_t *prev_type, Error **errp) 2496 { 2497 uint32_t pr_type, pr_datasz, step; 2498 2499 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2500 goto error_data; 2501 } 2502 datasz -= *off; 2503 data += *off / sizeof(uint32_t); 2504 2505 if (datasz < 2 * sizeof(uint32_t)) { 2506 goto error_data; 2507 } 2508 pr_type = data[0]; 2509 pr_datasz = data[1]; 2510 data += 2; 2511 datasz -= 2 * sizeof(uint32_t); 2512 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2513 if (step > datasz) { 2514 goto error_data; 2515 } 2516 2517 /* Properties are supposed to be unique and sorted on pr_type. */ 2518 if (have_prev_type && pr_type <= *prev_type) { 2519 if (pr_type == *prev_type) { 2520 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2521 } else { 2522 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2523 } 2524 return false; 2525 } 2526 *prev_type = pr_type; 2527 2528 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2529 return false; 2530 } 2531 2532 *off += 2 * sizeof(uint32_t) + step; 2533 return true; 2534 2535 error_data: 2536 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2537 return false; 2538 } 2539 2540 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2541 static bool parse_elf_properties(int image_fd, 2542 struct image_info *info, 2543 const struct elf_phdr *phdr, 2544 char bprm_buf[BPRM_BUF_SIZE], 2545 Error **errp) 2546 { 2547 union { 2548 struct elf_note nhdr; 2549 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2550 } note; 2551 2552 int n, off, datasz; 2553 bool have_prev_type; 2554 uint32_t prev_type; 2555 2556 /* Unless the arch requires properties, ignore them. */ 2557 if (!ARCH_USE_GNU_PROPERTY) { 2558 return true; 2559 } 2560 2561 /* If the properties are crazy large, that's too bad. */ 2562 n = phdr->p_filesz; 2563 if (n > sizeof(note)) { 2564 error_setg(errp, "PT_GNU_PROPERTY too large"); 2565 return false; 2566 } 2567 if (n < sizeof(note.nhdr)) { 2568 error_setg(errp, "PT_GNU_PROPERTY too small"); 2569 return false; 2570 } 2571 2572 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2573 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2574 } else { 2575 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2576 if (len != n) { 2577 error_setg_errno(errp, errno, "Error reading file header"); 2578 return false; 2579 } 2580 } 2581 2582 /* 2583 * The contents of a valid PT_GNU_PROPERTY is a sequence 2584 * of uint32_t -- swap them all now. 2585 */ 2586 #ifdef BSWAP_NEEDED 2587 for (int i = 0; i < n / 4; i++) { 2588 bswap32s(note.data + i); 2589 } 2590 #endif 2591 2592 /* 2593 * Note that nhdr is 3 words, and that the "name" described by namesz 2594 * immediately follows nhdr and is thus at the 4th word. Further, all 2595 * of the inputs to the kernel's round_up are multiples of 4. 2596 */ 2597 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2598 note.nhdr.n_namesz != NOTE_NAME_SZ || 2599 note.data[3] != GNU0_MAGIC) { 2600 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2601 return false; 2602 } 2603 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2604 2605 datasz = note.nhdr.n_descsz + off; 2606 if (datasz > n) { 2607 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2608 return false; 2609 } 2610 2611 have_prev_type = false; 2612 prev_type = 0; 2613 while (1) { 2614 if (off == datasz) { 2615 return true; /* end, exit ok */ 2616 } 2617 if (!parse_elf_property(note.data, &off, datasz, info, 2618 have_prev_type, &prev_type, errp)) { 2619 return false; 2620 } 2621 have_prev_type = true; 2622 } 2623 } 2624 2625 /* Load an ELF image into the address space. 2626 2627 IMAGE_NAME is the filename of the image, to use in error messages. 2628 IMAGE_FD is the open file descriptor for the image. 2629 2630 BPRM_BUF is a copy of the beginning of the file; this of course 2631 contains the elf file header at offset 0. It is assumed that this 2632 buffer is sufficiently aligned to present no problems to the host 2633 in accessing data at aligned offsets within the buffer. 2634 2635 On return: INFO values will be filled in, as necessary or available. */ 2636 2637 static void load_elf_image(const char *image_name, int image_fd, 2638 struct image_info *info, char **pinterp_name, 2639 char bprm_buf[BPRM_BUF_SIZE]) 2640 { 2641 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2642 struct elf_phdr *phdr; 2643 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2644 int i, retval, prot_exec; 2645 Error *err = NULL; 2646 2647 /* First of all, some simple consistency checks */ 2648 if (!elf_check_ident(ehdr)) { 2649 error_setg(&err, "Invalid ELF image for this architecture"); 2650 goto exit_errmsg; 2651 } 2652 bswap_ehdr(ehdr); 2653 if (!elf_check_ehdr(ehdr)) { 2654 error_setg(&err, "Invalid ELF image for this architecture"); 2655 goto exit_errmsg; 2656 } 2657 2658 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2659 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2660 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2661 } else { 2662 phdr = (struct elf_phdr *) alloca(i); 2663 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2664 if (retval != i) { 2665 goto exit_read; 2666 } 2667 } 2668 bswap_phdr(phdr, ehdr->e_phnum); 2669 2670 info->nsegs = 0; 2671 info->pt_dynamic_addr = 0; 2672 2673 mmap_lock(); 2674 2675 /* 2676 * Find the maximum size of the image and allocate an appropriate 2677 * amount of memory to handle that. Locate the interpreter, if any. 2678 */ 2679 loaddr = -1, hiaddr = 0; 2680 info->alignment = 0; 2681 for (i = 0; i < ehdr->e_phnum; ++i) { 2682 struct elf_phdr *eppnt = phdr + i; 2683 if (eppnt->p_type == PT_LOAD) { 2684 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 2685 if (a < loaddr) { 2686 loaddr = a; 2687 } 2688 a = eppnt->p_vaddr + eppnt->p_memsz; 2689 if (a > hiaddr) { 2690 hiaddr = a; 2691 } 2692 ++info->nsegs; 2693 info->alignment |= eppnt->p_align; 2694 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2695 g_autofree char *interp_name = NULL; 2696 2697 if (*pinterp_name) { 2698 error_setg(&err, "Multiple PT_INTERP entries"); 2699 goto exit_errmsg; 2700 } 2701 2702 interp_name = g_malloc(eppnt->p_filesz); 2703 2704 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2705 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2706 eppnt->p_filesz); 2707 } else { 2708 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2709 eppnt->p_offset); 2710 if (retval != eppnt->p_filesz) { 2711 goto exit_read; 2712 } 2713 } 2714 if (interp_name[eppnt->p_filesz - 1] != 0) { 2715 error_setg(&err, "Invalid PT_INTERP entry"); 2716 goto exit_errmsg; 2717 } 2718 *pinterp_name = g_steal_pointer(&interp_name); 2719 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 2720 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 2721 goto exit_errmsg; 2722 } 2723 } 2724 } 2725 2726 if (pinterp_name != NULL) { 2727 /* 2728 * This is the main executable. 2729 * 2730 * Reserve extra space for brk. 2731 * We hold on to this space while placing the interpreter 2732 * and the stack, lest they be placed immediately after 2733 * the data segment and block allocation from the brk. 2734 * 2735 * 16MB is chosen as "large enough" without being so large 2736 * as to allow the result to not fit with a 32-bit guest on 2737 * a 32-bit host. 2738 */ 2739 info->reserve_brk = 16 * MiB; 2740 hiaddr += info->reserve_brk; 2741 2742 if (ehdr->e_type == ET_EXEC) { 2743 /* 2744 * Make sure that the low address does not conflict with 2745 * MMAP_MIN_ADDR or the QEMU application itself. 2746 */ 2747 probe_guest_base(image_name, loaddr, hiaddr); 2748 } else { 2749 /* 2750 * The binary is dynamic, but we still need to 2751 * select guest_base. In this case we pass a size. 2752 */ 2753 probe_guest_base(image_name, 0, hiaddr - loaddr); 2754 } 2755 } 2756 2757 /* 2758 * Reserve address space for all of this. 2759 * 2760 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2761 * exactly the address range that is required. 2762 * 2763 * Otherwise this is ET_DYN, and we are searching for a location 2764 * that can hold the memory space required. If the image is 2765 * pre-linked, LOADDR will be non-zero, and the kernel should 2766 * honor that address if it happens to be free. 2767 * 2768 * In both cases, we will overwrite pages in this range with mappings 2769 * from the executable. 2770 */ 2771 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2772 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2773 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2774 -1, 0); 2775 if (load_addr == -1) { 2776 goto exit_mmap; 2777 } 2778 load_bias = load_addr - loaddr; 2779 2780 if (elf_is_fdpic(ehdr)) { 2781 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2782 g_malloc(sizeof(*loadsegs) * info->nsegs); 2783 2784 for (i = 0; i < ehdr->e_phnum; ++i) { 2785 switch (phdr[i].p_type) { 2786 case PT_DYNAMIC: 2787 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2788 break; 2789 case PT_LOAD: 2790 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2791 loadsegs->p_vaddr = phdr[i].p_vaddr; 2792 loadsegs->p_memsz = phdr[i].p_memsz; 2793 ++loadsegs; 2794 break; 2795 } 2796 } 2797 } 2798 2799 info->load_bias = load_bias; 2800 info->code_offset = load_bias; 2801 info->data_offset = load_bias; 2802 info->load_addr = load_addr; 2803 info->entry = ehdr->e_entry + load_bias; 2804 info->start_code = -1; 2805 info->end_code = 0; 2806 info->start_data = -1; 2807 info->end_data = 0; 2808 info->brk = 0; 2809 info->elf_flags = ehdr->e_flags; 2810 2811 prot_exec = PROT_EXEC; 2812 #ifdef TARGET_AARCH64 2813 /* 2814 * If the BTI feature is present, this indicates that the executable 2815 * pages of the startup binary should be mapped with PROT_BTI, so that 2816 * branch targets are enforced. 2817 * 2818 * The startup binary is either the interpreter or the static executable. 2819 * The interpreter is responsible for all pages of a dynamic executable. 2820 * 2821 * Elf notes are backward compatible to older cpus. 2822 * Do not enable BTI unless it is supported. 2823 */ 2824 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 2825 && (pinterp_name == NULL || *pinterp_name == 0) 2826 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 2827 prot_exec |= TARGET_PROT_BTI; 2828 } 2829 #endif 2830 2831 for (i = 0; i < ehdr->e_phnum; i++) { 2832 struct elf_phdr *eppnt = phdr + i; 2833 if (eppnt->p_type == PT_LOAD) { 2834 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2835 int elf_prot = 0; 2836 2837 if (eppnt->p_flags & PF_R) { 2838 elf_prot |= PROT_READ; 2839 } 2840 if (eppnt->p_flags & PF_W) { 2841 elf_prot |= PROT_WRITE; 2842 } 2843 if (eppnt->p_flags & PF_X) { 2844 elf_prot |= prot_exec; 2845 } 2846 2847 vaddr = load_bias + eppnt->p_vaddr; 2848 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2849 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2850 2851 vaddr_ef = vaddr + eppnt->p_filesz; 2852 vaddr_em = vaddr + eppnt->p_memsz; 2853 2854 /* 2855 * Some segments may be completely empty, with a non-zero p_memsz 2856 * but no backing file segment. 2857 */ 2858 if (eppnt->p_filesz != 0) { 2859 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2860 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2861 MAP_PRIVATE | MAP_FIXED, 2862 image_fd, eppnt->p_offset - vaddr_po); 2863 2864 if (error == -1) { 2865 goto exit_mmap; 2866 } 2867 2868 /* 2869 * If the load segment requests extra zeros (e.g. bss), map it. 2870 */ 2871 if (eppnt->p_filesz < eppnt->p_memsz) { 2872 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2873 } 2874 } else if (eppnt->p_memsz != 0) { 2875 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 2876 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2877 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 2878 -1, 0); 2879 2880 if (error == -1) { 2881 goto exit_mmap; 2882 } 2883 } 2884 2885 /* Find the full program boundaries. */ 2886 if (elf_prot & PROT_EXEC) { 2887 if (vaddr < info->start_code) { 2888 info->start_code = vaddr; 2889 } 2890 if (vaddr_ef > info->end_code) { 2891 info->end_code = vaddr_ef; 2892 } 2893 } 2894 if (elf_prot & PROT_WRITE) { 2895 if (vaddr < info->start_data) { 2896 info->start_data = vaddr; 2897 } 2898 if (vaddr_ef > info->end_data) { 2899 info->end_data = vaddr_ef; 2900 } 2901 } 2902 if (vaddr_em > info->brk) { 2903 info->brk = vaddr_em; 2904 } 2905 #ifdef TARGET_MIPS 2906 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2907 Mips_elf_abiflags_v0 abiflags; 2908 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2909 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 2910 goto exit_errmsg; 2911 } 2912 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2913 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2914 sizeof(Mips_elf_abiflags_v0)); 2915 } else { 2916 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2917 eppnt->p_offset); 2918 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2919 goto exit_read; 2920 } 2921 } 2922 bswap_mips_abiflags(&abiflags); 2923 info->fp_abi = abiflags.fp_abi; 2924 #endif 2925 } 2926 } 2927 2928 if (info->end_data == 0) { 2929 info->start_data = info->end_code; 2930 info->end_data = info->end_code; 2931 } 2932 2933 if (qemu_log_enabled()) { 2934 load_symbols(ehdr, image_fd, load_bias); 2935 } 2936 2937 mmap_unlock(); 2938 2939 close(image_fd); 2940 return; 2941 2942 exit_read: 2943 if (retval >= 0) { 2944 error_setg(&err, "Incomplete read of file header"); 2945 } else { 2946 error_setg_errno(&err, errno, "Error reading file header"); 2947 } 2948 goto exit_errmsg; 2949 exit_mmap: 2950 error_setg_errno(&err, errno, "Error mapping file"); 2951 goto exit_errmsg; 2952 exit_errmsg: 2953 error_reportf_err(err, "%s: ", image_name); 2954 exit(-1); 2955 } 2956 2957 static void load_elf_interp(const char *filename, struct image_info *info, 2958 char bprm_buf[BPRM_BUF_SIZE]) 2959 { 2960 int fd, retval; 2961 Error *err = NULL; 2962 2963 fd = open(path(filename), O_RDONLY); 2964 if (fd < 0) { 2965 error_setg_file_open(&err, errno, filename); 2966 error_report_err(err); 2967 exit(-1); 2968 } 2969 2970 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2971 if (retval < 0) { 2972 error_setg_errno(&err, errno, "Error reading file header"); 2973 error_reportf_err(err, "%s: ", filename); 2974 exit(-1); 2975 } 2976 2977 if (retval < BPRM_BUF_SIZE) { 2978 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2979 } 2980 2981 load_elf_image(filename, fd, info, NULL, bprm_buf); 2982 } 2983 2984 static int symfind(const void *s0, const void *s1) 2985 { 2986 target_ulong addr = *(target_ulong *)s0; 2987 struct elf_sym *sym = (struct elf_sym *)s1; 2988 int result = 0; 2989 if (addr < sym->st_value) { 2990 result = -1; 2991 } else if (addr >= sym->st_value + sym->st_size) { 2992 result = 1; 2993 } 2994 return result; 2995 } 2996 2997 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2998 { 2999 #if ELF_CLASS == ELFCLASS32 3000 struct elf_sym *syms = s->disas_symtab.elf32; 3001 #else 3002 struct elf_sym *syms = s->disas_symtab.elf64; 3003 #endif 3004 3005 // binary search 3006 struct elf_sym *sym; 3007 3008 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3009 if (sym != NULL) { 3010 return s->disas_strtab + sym->st_name; 3011 } 3012 3013 return ""; 3014 } 3015 3016 /* FIXME: This should use elf_ops.h */ 3017 static int symcmp(const void *s0, const void *s1) 3018 { 3019 struct elf_sym *sym0 = (struct elf_sym *)s0; 3020 struct elf_sym *sym1 = (struct elf_sym *)s1; 3021 return (sym0->st_value < sym1->st_value) 3022 ? -1 3023 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3024 } 3025 3026 /* Best attempt to load symbols from this ELF object. */ 3027 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3028 { 3029 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3030 uint64_t segsz; 3031 struct elf_shdr *shdr; 3032 char *strings = NULL; 3033 struct syminfo *s = NULL; 3034 struct elf_sym *new_syms, *syms = NULL; 3035 3036 shnum = hdr->e_shnum; 3037 i = shnum * sizeof(struct elf_shdr); 3038 shdr = (struct elf_shdr *)alloca(i); 3039 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3040 return; 3041 } 3042 3043 bswap_shdr(shdr, shnum); 3044 for (i = 0; i < shnum; ++i) { 3045 if (shdr[i].sh_type == SHT_SYMTAB) { 3046 sym_idx = i; 3047 str_idx = shdr[i].sh_link; 3048 goto found; 3049 } 3050 } 3051 3052 /* There will be no symbol table if the file was stripped. */ 3053 return; 3054 3055 found: 3056 /* Now know where the strtab and symtab are. Snarf them. */ 3057 s = g_try_new(struct syminfo, 1); 3058 if (!s) { 3059 goto give_up; 3060 } 3061 3062 segsz = shdr[str_idx].sh_size; 3063 s->disas_strtab = strings = g_try_malloc(segsz); 3064 if (!strings || 3065 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3066 goto give_up; 3067 } 3068 3069 segsz = shdr[sym_idx].sh_size; 3070 syms = g_try_malloc(segsz); 3071 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3072 goto give_up; 3073 } 3074 3075 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3076 /* Implausibly large symbol table: give up rather than ploughing 3077 * on with the number of symbols calculation overflowing 3078 */ 3079 goto give_up; 3080 } 3081 nsyms = segsz / sizeof(struct elf_sym); 3082 for (i = 0; i < nsyms; ) { 3083 bswap_sym(syms + i); 3084 /* Throw away entries which we do not need. */ 3085 if (syms[i].st_shndx == SHN_UNDEF 3086 || syms[i].st_shndx >= SHN_LORESERVE 3087 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3088 if (i < --nsyms) { 3089 syms[i] = syms[nsyms]; 3090 } 3091 } else { 3092 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3093 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3094 syms[i].st_value &= ~(target_ulong)1; 3095 #endif 3096 syms[i].st_value += load_bias; 3097 i++; 3098 } 3099 } 3100 3101 /* No "useful" symbol. */ 3102 if (nsyms == 0) { 3103 goto give_up; 3104 } 3105 3106 /* Attempt to free the storage associated with the local symbols 3107 that we threw away. Whether or not this has any effect on the 3108 memory allocation depends on the malloc implementation and how 3109 many symbols we managed to discard. */ 3110 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3111 if (new_syms == NULL) { 3112 goto give_up; 3113 } 3114 syms = new_syms; 3115 3116 qsort(syms, nsyms, sizeof(*syms), symcmp); 3117 3118 s->disas_num_syms = nsyms; 3119 #if ELF_CLASS == ELFCLASS32 3120 s->disas_symtab.elf32 = syms; 3121 #else 3122 s->disas_symtab.elf64 = syms; 3123 #endif 3124 s->lookup_symbol = lookup_symbolxx; 3125 s->next = syminfos; 3126 syminfos = s; 3127 3128 return; 3129 3130 give_up: 3131 g_free(s); 3132 g_free(strings); 3133 g_free(syms); 3134 } 3135 3136 uint32_t get_elf_eflags(int fd) 3137 { 3138 struct elfhdr ehdr; 3139 off_t offset; 3140 int ret; 3141 3142 /* Read ELF header */ 3143 offset = lseek(fd, 0, SEEK_SET); 3144 if (offset == (off_t) -1) { 3145 return 0; 3146 } 3147 ret = read(fd, &ehdr, sizeof(ehdr)); 3148 if (ret < sizeof(ehdr)) { 3149 return 0; 3150 } 3151 offset = lseek(fd, offset, SEEK_SET); 3152 if (offset == (off_t) -1) { 3153 return 0; 3154 } 3155 3156 /* Check ELF signature */ 3157 if (!elf_check_ident(&ehdr)) { 3158 return 0; 3159 } 3160 3161 /* check header */ 3162 bswap_ehdr(&ehdr); 3163 if (!elf_check_ehdr(&ehdr)) { 3164 return 0; 3165 } 3166 3167 /* return architecture id */ 3168 return ehdr.e_flags; 3169 } 3170 3171 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3172 { 3173 struct image_info interp_info; 3174 struct elfhdr elf_ex; 3175 char *elf_interpreter = NULL; 3176 char *scratch; 3177 3178 memset(&interp_info, 0, sizeof(interp_info)); 3179 #ifdef TARGET_MIPS 3180 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3181 #endif 3182 3183 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3184 3185 load_elf_image(bprm->filename, bprm->fd, info, 3186 &elf_interpreter, bprm->buf); 3187 3188 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3189 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3190 when we load the interpreter. */ 3191 elf_ex = *(struct elfhdr *)bprm->buf; 3192 3193 /* Do this so that we can load the interpreter, if need be. We will 3194 change some of these later */ 3195 bprm->p = setup_arg_pages(bprm, info); 3196 3197 scratch = g_new0(char, TARGET_PAGE_SIZE); 3198 if (STACK_GROWS_DOWN) { 3199 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3200 bprm->p, info->stack_limit); 3201 info->file_string = bprm->p; 3202 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3203 bprm->p, info->stack_limit); 3204 info->env_strings = bprm->p; 3205 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3206 bprm->p, info->stack_limit); 3207 info->arg_strings = bprm->p; 3208 } else { 3209 info->arg_strings = bprm->p; 3210 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3211 bprm->p, info->stack_limit); 3212 info->env_strings = bprm->p; 3213 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3214 bprm->p, info->stack_limit); 3215 info->file_string = bprm->p; 3216 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3217 bprm->p, info->stack_limit); 3218 } 3219 3220 g_free(scratch); 3221 3222 if (!bprm->p) { 3223 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3224 exit(-1); 3225 } 3226 3227 if (elf_interpreter) { 3228 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3229 3230 /* If the program interpreter is one of these two, then assume 3231 an iBCS2 image. Otherwise assume a native linux image. */ 3232 3233 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3234 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3235 info->personality = PER_SVR4; 3236 3237 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3238 and some applications "depend" upon this behavior. Since 3239 we do not have the power to recompile these, we emulate 3240 the SVr4 behavior. Sigh. */ 3241 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3242 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3243 } 3244 #ifdef TARGET_MIPS 3245 info->interp_fp_abi = interp_info.fp_abi; 3246 #endif 3247 } 3248 3249 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3250 info, (elf_interpreter ? &interp_info : NULL)); 3251 info->start_stack = bprm->p; 3252 3253 /* If we have an interpreter, set that as the program's entry point. 3254 Copy the load_bias as well, to help PPC64 interpret the entry 3255 point as a function descriptor. Do this after creating elf tables 3256 so that we copy the original program entry point into the AUXV. */ 3257 if (elf_interpreter) { 3258 info->load_bias = interp_info.load_bias; 3259 info->entry = interp_info.entry; 3260 g_free(elf_interpreter); 3261 } 3262 3263 #ifdef USE_ELF_CORE_DUMP 3264 bprm->core_dump = &elf_core_dump; 3265 #endif 3266 3267 /* 3268 * If we reserved extra space for brk, release it now. 3269 * The implementation of do_brk in syscalls.c expects to be able 3270 * to mmap pages in this space. 3271 */ 3272 if (info->reserve_brk) { 3273 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3274 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3275 target_munmap(start_brk, end_brk - start_brk); 3276 } 3277 3278 return 0; 3279 } 3280 3281 #ifdef USE_ELF_CORE_DUMP 3282 /* 3283 * Definitions to generate Intel SVR4-like core files. 3284 * These mostly have the same names as the SVR4 types with "target_elf_" 3285 * tacked on the front to prevent clashes with linux definitions, 3286 * and the typedef forms have been avoided. This is mostly like 3287 * the SVR4 structure, but more Linuxy, with things that Linux does 3288 * not support and which gdb doesn't really use excluded. 3289 * 3290 * Fields we don't dump (their contents is zero) in linux-user qemu 3291 * are marked with XXX. 3292 * 3293 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3294 * 3295 * Porting ELF coredump for target is (quite) simple process. First you 3296 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3297 * the target resides): 3298 * 3299 * #define USE_ELF_CORE_DUMP 3300 * 3301 * Next you define type of register set used for dumping. ELF specification 3302 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3303 * 3304 * typedef <target_regtype> target_elf_greg_t; 3305 * #define ELF_NREG <number of registers> 3306 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3307 * 3308 * Last step is to implement target specific function that copies registers 3309 * from given cpu into just specified register set. Prototype is: 3310 * 3311 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3312 * const CPUArchState *env); 3313 * 3314 * Parameters: 3315 * regs - copy register values into here (allocated and zeroed by caller) 3316 * env - copy registers from here 3317 * 3318 * Example for ARM target is provided in this file. 3319 */ 3320 3321 /* An ELF note in memory */ 3322 struct memelfnote { 3323 const char *name; 3324 size_t namesz; 3325 size_t namesz_rounded; 3326 int type; 3327 size_t datasz; 3328 size_t datasz_rounded; 3329 void *data; 3330 size_t notesz; 3331 }; 3332 3333 struct target_elf_siginfo { 3334 abi_int si_signo; /* signal number */ 3335 abi_int si_code; /* extra code */ 3336 abi_int si_errno; /* errno */ 3337 }; 3338 3339 struct target_elf_prstatus { 3340 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3341 abi_short pr_cursig; /* Current signal */ 3342 abi_ulong pr_sigpend; /* XXX */ 3343 abi_ulong pr_sighold; /* XXX */ 3344 target_pid_t pr_pid; 3345 target_pid_t pr_ppid; 3346 target_pid_t pr_pgrp; 3347 target_pid_t pr_sid; 3348 struct target_timeval pr_utime; /* XXX User time */ 3349 struct target_timeval pr_stime; /* XXX System time */ 3350 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3351 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3352 target_elf_gregset_t pr_reg; /* GP registers */ 3353 abi_int pr_fpvalid; /* XXX */ 3354 }; 3355 3356 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3357 3358 struct target_elf_prpsinfo { 3359 char pr_state; /* numeric process state */ 3360 char pr_sname; /* char for pr_state */ 3361 char pr_zomb; /* zombie */ 3362 char pr_nice; /* nice val */ 3363 abi_ulong pr_flag; /* flags */ 3364 target_uid_t pr_uid; 3365 target_gid_t pr_gid; 3366 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3367 /* Lots missing */ 3368 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3369 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3370 }; 3371 3372 /* Here is the structure in which status of each thread is captured. */ 3373 struct elf_thread_status { 3374 QTAILQ_ENTRY(elf_thread_status) ets_link; 3375 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3376 #if 0 3377 elf_fpregset_t fpu; /* NT_PRFPREG */ 3378 struct task_struct *thread; 3379 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3380 #endif 3381 struct memelfnote notes[1]; 3382 int num_notes; 3383 }; 3384 3385 struct elf_note_info { 3386 struct memelfnote *notes; 3387 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3388 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3389 3390 QTAILQ_HEAD(, elf_thread_status) thread_list; 3391 #if 0 3392 /* 3393 * Current version of ELF coredump doesn't support 3394 * dumping fp regs etc. 3395 */ 3396 elf_fpregset_t *fpu; 3397 elf_fpxregset_t *xfpu; 3398 int thread_status_size; 3399 #endif 3400 int notes_size; 3401 int numnote; 3402 }; 3403 3404 struct vm_area_struct { 3405 target_ulong vma_start; /* start vaddr of memory region */ 3406 target_ulong vma_end; /* end vaddr of memory region */ 3407 abi_ulong vma_flags; /* protection etc. flags for the region */ 3408 QTAILQ_ENTRY(vm_area_struct) vma_link; 3409 }; 3410 3411 struct mm_struct { 3412 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3413 int mm_count; /* number of mappings */ 3414 }; 3415 3416 static struct mm_struct *vma_init(void); 3417 static void vma_delete(struct mm_struct *); 3418 static int vma_add_mapping(struct mm_struct *, target_ulong, 3419 target_ulong, abi_ulong); 3420 static int vma_get_mapping_count(const struct mm_struct *); 3421 static struct vm_area_struct *vma_first(const struct mm_struct *); 3422 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3423 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3424 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3425 unsigned long flags); 3426 3427 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3428 static void fill_note(struct memelfnote *, const char *, int, 3429 unsigned int, void *); 3430 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3431 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3432 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3433 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3434 static size_t note_size(const struct memelfnote *); 3435 static void free_note_info(struct elf_note_info *); 3436 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3437 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3438 3439 static int dump_write(int, const void *, size_t); 3440 static int write_note(struct memelfnote *, int); 3441 static int write_note_info(struct elf_note_info *, int); 3442 3443 #ifdef BSWAP_NEEDED 3444 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3445 { 3446 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3447 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3448 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3449 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3450 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3451 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3452 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3453 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3454 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3455 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3456 /* cpu times are not filled, so we skip them */ 3457 /* regs should be in correct format already */ 3458 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3459 } 3460 3461 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3462 { 3463 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3464 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3465 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3466 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3467 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3468 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3469 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3470 } 3471 3472 static void bswap_note(struct elf_note *en) 3473 { 3474 bswap32s(&en->n_namesz); 3475 bswap32s(&en->n_descsz); 3476 bswap32s(&en->n_type); 3477 } 3478 #else 3479 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3480 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3481 static inline void bswap_note(struct elf_note *en) { } 3482 #endif /* BSWAP_NEEDED */ 3483 3484 /* 3485 * Minimal support for linux memory regions. These are needed 3486 * when we are finding out what memory exactly belongs to 3487 * emulated process. No locks needed here, as long as 3488 * thread that received the signal is stopped. 3489 */ 3490 3491 static struct mm_struct *vma_init(void) 3492 { 3493 struct mm_struct *mm; 3494 3495 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3496 return (NULL); 3497 3498 mm->mm_count = 0; 3499 QTAILQ_INIT(&mm->mm_mmap); 3500 3501 return (mm); 3502 } 3503 3504 static void vma_delete(struct mm_struct *mm) 3505 { 3506 struct vm_area_struct *vma; 3507 3508 while ((vma = vma_first(mm)) != NULL) { 3509 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3510 g_free(vma); 3511 } 3512 g_free(mm); 3513 } 3514 3515 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3516 target_ulong end, abi_ulong flags) 3517 { 3518 struct vm_area_struct *vma; 3519 3520 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3521 return (-1); 3522 3523 vma->vma_start = start; 3524 vma->vma_end = end; 3525 vma->vma_flags = flags; 3526 3527 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3528 mm->mm_count++; 3529 3530 return (0); 3531 } 3532 3533 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3534 { 3535 return (QTAILQ_FIRST(&mm->mm_mmap)); 3536 } 3537 3538 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3539 { 3540 return (QTAILQ_NEXT(vma, vma_link)); 3541 } 3542 3543 static int vma_get_mapping_count(const struct mm_struct *mm) 3544 { 3545 return (mm->mm_count); 3546 } 3547 3548 /* 3549 * Calculate file (dump) size of given memory region. 3550 */ 3551 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3552 { 3553 /* if we cannot even read the first page, skip it */ 3554 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3555 return (0); 3556 3557 /* 3558 * Usually we don't dump executable pages as they contain 3559 * non-writable code that debugger can read directly from 3560 * target library etc. However, thread stacks are marked 3561 * also executable so we read in first page of given region 3562 * and check whether it contains elf header. If there is 3563 * no elf header, we dump it. 3564 */ 3565 if (vma->vma_flags & PROT_EXEC) { 3566 char page[TARGET_PAGE_SIZE]; 3567 3568 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3569 return 0; 3570 } 3571 if ((page[EI_MAG0] == ELFMAG0) && 3572 (page[EI_MAG1] == ELFMAG1) && 3573 (page[EI_MAG2] == ELFMAG2) && 3574 (page[EI_MAG3] == ELFMAG3)) { 3575 /* 3576 * Mappings are possibly from ELF binary. Don't dump 3577 * them. 3578 */ 3579 return (0); 3580 } 3581 } 3582 3583 return (vma->vma_end - vma->vma_start); 3584 } 3585 3586 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3587 unsigned long flags) 3588 { 3589 struct mm_struct *mm = (struct mm_struct *)priv; 3590 3591 vma_add_mapping(mm, start, end, flags); 3592 return (0); 3593 } 3594 3595 static void fill_note(struct memelfnote *note, const char *name, int type, 3596 unsigned int sz, void *data) 3597 { 3598 unsigned int namesz; 3599 3600 namesz = strlen(name) + 1; 3601 note->name = name; 3602 note->namesz = namesz; 3603 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3604 note->type = type; 3605 note->datasz = sz; 3606 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3607 3608 note->data = data; 3609 3610 /* 3611 * We calculate rounded up note size here as specified by 3612 * ELF document. 3613 */ 3614 note->notesz = sizeof (struct elf_note) + 3615 note->namesz_rounded + note->datasz_rounded; 3616 } 3617 3618 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3619 uint32_t flags) 3620 { 3621 (void) memset(elf, 0, sizeof(*elf)); 3622 3623 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3624 elf->e_ident[EI_CLASS] = ELF_CLASS; 3625 elf->e_ident[EI_DATA] = ELF_DATA; 3626 elf->e_ident[EI_VERSION] = EV_CURRENT; 3627 elf->e_ident[EI_OSABI] = ELF_OSABI; 3628 3629 elf->e_type = ET_CORE; 3630 elf->e_machine = machine; 3631 elf->e_version = EV_CURRENT; 3632 elf->e_phoff = sizeof(struct elfhdr); 3633 elf->e_flags = flags; 3634 elf->e_ehsize = sizeof(struct elfhdr); 3635 elf->e_phentsize = sizeof(struct elf_phdr); 3636 elf->e_phnum = segs; 3637 3638 bswap_ehdr(elf); 3639 } 3640 3641 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3642 { 3643 phdr->p_type = PT_NOTE; 3644 phdr->p_offset = offset; 3645 phdr->p_vaddr = 0; 3646 phdr->p_paddr = 0; 3647 phdr->p_filesz = sz; 3648 phdr->p_memsz = 0; 3649 phdr->p_flags = 0; 3650 phdr->p_align = 0; 3651 3652 bswap_phdr(phdr, 1); 3653 } 3654 3655 static size_t note_size(const struct memelfnote *note) 3656 { 3657 return (note->notesz); 3658 } 3659 3660 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3661 const TaskState *ts, int signr) 3662 { 3663 (void) memset(prstatus, 0, sizeof (*prstatus)); 3664 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3665 prstatus->pr_pid = ts->ts_tid; 3666 prstatus->pr_ppid = getppid(); 3667 prstatus->pr_pgrp = getpgrp(); 3668 prstatus->pr_sid = getsid(0); 3669 3670 bswap_prstatus(prstatus); 3671 } 3672 3673 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3674 { 3675 char *base_filename; 3676 unsigned int i, len; 3677 3678 (void) memset(psinfo, 0, sizeof (*psinfo)); 3679 3680 len = ts->info->env_strings - ts->info->arg_strings; 3681 if (len >= ELF_PRARGSZ) 3682 len = ELF_PRARGSZ - 1; 3683 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 3684 return -EFAULT; 3685 } 3686 for (i = 0; i < len; i++) 3687 if (psinfo->pr_psargs[i] == 0) 3688 psinfo->pr_psargs[i] = ' '; 3689 psinfo->pr_psargs[len] = 0; 3690 3691 psinfo->pr_pid = getpid(); 3692 psinfo->pr_ppid = getppid(); 3693 psinfo->pr_pgrp = getpgrp(); 3694 psinfo->pr_sid = getsid(0); 3695 psinfo->pr_uid = getuid(); 3696 psinfo->pr_gid = getgid(); 3697 3698 base_filename = g_path_get_basename(ts->bprm->filename); 3699 /* 3700 * Using strncpy here is fine: at max-length, 3701 * this field is not NUL-terminated. 3702 */ 3703 (void) strncpy(psinfo->pr_fname, base_filename, 3704 sizeof(psinfo->pr_fname)); 3705 3706 g_free(base_filename); 3707 bswap_psinfo(psinfo); 3708 return (0); 3709 } 3710 3711 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3712 { 3713 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3714 elf_addr_t orig_auxv = auxv; 3715 void *ptr; 3716 int len = ts->info->auxv_len; 3717 3718 /* 3719 * Auxiliary vector is stored in target process stack. It contains 3720 * {type, value} pairs that we need to dump into note. This is not 3721 * strictly necessary but we do it here for sake of completeness. 3722 */ 3723 3724 /* read in whole auxv vector and copy it to memelfnote */ 3725 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3726 if (ptr != NULL) { 3727 fill_note(note, "CORE", NT_AUXV, len, ptr); 3728 unlock_user(ptr, auxv, len); 3729 } 3730 } 3731 3732 /* 3733 * Constructs name of coredump file. We have following convention 3734 * for the name: 3735 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3736 * 3737 * Returns the filename 3738 */ 3739 static char *core_dump_filename(const TaskState *ts) 3740 { 3741 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 3742 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 3743 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 3744 3745 return g_strdup_printf("qemu_%s_%s_%d.core", 3746 base_filename, nowstr, (int)getpid()); 3747 } 3748 3749 static int dump_write(int fd, const void *ptr, size_t size) 3750 { 3751 const char *bufp = (const char *)ptr; 3752 ssize_t bytes_written, bytes_left; 3753 struct rlimit dumpsize; 3754 off_t pos; 3755 3756 bytes_written = 0; 3757 getrlimit(RLIMIT_CORE, &dumpsize); 3758 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3759 if (errno == ESPIPE) { /* not a seekable stream */ 3760 bytes_left = size; 3761 } else { 3762 return pos; 3763 } 3764 } else { 3765 if (dumpsize.rlim_cur <= pos) { 3766 return -1; 3767 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3768 bytes_left = size; 3769 } else { 3770 size_t limit_left=dumpsize.rlim_cur - pos; 3771 bytes_left = limit_left >= size ? size : limit_left ; 3772 } 3773 } 3774 3775 /* 3776 * In normal conditions, single write(2) should do but 3777 * in case of socket etc. this mechanism is more portable. 3778 */ 3779 do { 3780 bytes_written = write(fd, bufp, bytes_left); 3781 if (bytes_written < 0) { 3782 if (errno == EINTR) 3783 continue; 3784 return (-1); 3785 } else if (bytes_written == 0) { /* eof */ 3786 return (-1); 3787 } 3788 bufp += bytes_written; 3789 bytes_left -= bytes_written; 3790 } while (bytes_left > 0); 3791 3792 return (0); 3793 } 3794 3795 static int write_note(struct memelfnote *men, int fd) 3796 { 3797 struct elf_note en; 3798 3799 en.n_namesz = men->namesz; 3800 en.n_type = men->type; 3801 en.n_descsz = men->datasz; 3802 3803 bswap_note(&en); 3804 3805 if (dump_write(fd, &en, sizeof(en)) != 0) 3806 return (-1); 3807 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3808 return (-1); 3809 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3810 return (-1); 3811 3812 return (0); 3813 } 3814 3815 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3816 { 3817 CPUState *cpu = env_cpu((CPUArchState *)env); 3818 TaskState *ts = (TaskState *)cpu->opaque; 3819 struct elf_thread_status *ets; 3820 3821 ets = g_malloc0(sizeof (*ets)); 3822 ets->num_notes = 1; /* only prstatus is dumped */ 3823 fill_prstatus(&ets->prstatus, ts, 0); 3824 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3825 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3826 &ets->prstatus); 3827 3828 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3829 3830 info->notes_size += note_size(&ets->notes[0]); 3831 } 3832 3833 static void init_note_info(struct elf_note_info *info) 3834 { 3835 /* Initialize the elf_note_info structure so that it is at 3836 * least safe to call free_note_info() on it. Must be 3837 * called before calling fill_note_info(). 3838 */ 3839 memset(info, 0, sizeof (*info)); 3840 QTAILQ_INIT(&info->thread_list); 3841 } 3842 3843 static int fill_note_info(struct elf_note_info *info, 3844 long signr, const CPUArchState *env) 3845 { 3846 #define NUMNOTES 3 3847 CPUState *cpu = env_cpu((CPUArchState *)env); 3848 TaskState *ts = (TaskState *)cpu->opaque; 3849 int i; 3850 3851 info->notes = g_new0(struct memelfnote, NUMNOTES); 3852 if (info->notes == NULL) 3853 return (-ENOMEM); 3854 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3855 if (info->prstatus == NULL) 3856 return (-ENOMEM); 3857 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3858 if (info->prstatus == NULL) 3859 return (-ENOMEM); 3860 3861 /* 3862 * First fill in status (and registers) of current thread 3863 * including process info & aux vector. 3864 */ 3865 fill_prstatus(info->prstatus, ts, signr); 3866 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3867 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3868 sizeof (*info->prstatus), info->prstatus); 3869 fill_psinfo(info->psinfo, ts); 3870 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3871 sizeof (*info->psinfo), info->psinfo); 3872 fill_auxv_note(&info->notes[2], ts); 3873 info->numnote = 3; 3874 3875 info->notes_size = 0; 3876 for (i = 0; i < info->numnote; i++) 3877 info->notes_size += note_size(&info->notes[i]); 3878 3879 /* read and fill status of all threads */ 3880 cpu_list_lock(); 3881 CPU_FOREACH(cpu) { 3882 if (cpu == thread_cpu) { 3883 continue; 3884 } 3885 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3886 } 3887 cpu_list_unlock(); 3888 3889 return (0); 3890 } 3891 3892 static void free_note_info(struct elf_note_info *info) 3893 { 3894 struct elf_thread_status *ets; 3895 3896 while (!QTAILQ_EMPTY(&info->thread_list)) { 3897 ets = QTAILQ_FIRST(&info->thread_list); 3898 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3899 g_free(ets); 3900 } 3901 3902 g_free(info->prstatus); 3903 g_free(info->psinfo); 3904 g_free(info->notes); 3905 } 3906 3907 static int write_note_info(struct elf_note_info *info, int fd) 3908 { 3909 struct elf_thread_status *ets; 3910 int i, error = 0; 3911 3912 /* write prstatus, psinfo and auxv for current thread */ 3913 for (i = 0; i < info->numnote; i++) 3914 if ((error = write_note(&info->notes[i], fd)) != 0) 3915 return (error); 3916 3917 /* write prstatus for each thread */ 3918 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3919 if ((error = write_note(&ets->notes[0], fd)) != 0) 3920 return (error); 3921 } 3922 3923 return (0); 3924 } 3925 3926 /* 3927 * Write out ELF coredump. 3928 * 3929 * See documentation of ELF object file format in: 3930 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3931 * 3932 * Coredump format in linux is following: 3933 * 3934 * 0 +----------------------+ \ 3935 * | ELF header | ET_CORE | 3936 * +----------------------+ | 3937 * | ELF program headers | |--- headers 3938 * | - NOTE section | | 3939 * | - PT_LOAD sections | | 3940 * +----------------------+ / 3941 * | NOTEs: | 3942 * | - NT_PRSTATUS | 3943 * | - NT_PRSINFO | 3944 * | - NT_AUXV | 3945 * +----------------------+ <-- aligned to target page 3946 * | Process memory dump | 3947 * : : 3948 * . . 3949 * : : 3950 * | | 3951 * +----------------------+ 3952 * 3953 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3954 * NT_PRSINFO -> struct elf_prpsinfo 3955 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3956 * 3957 * Format follows System V format as close as possible. Current 3958 * version limitations are as follows: 3959 * - no floating point registers are dumped 3960 * 3961 * Function returns 0 in case of success, negative errno otherwise. 3962 * 3963 * TODO: make this work also during runtime: it should be 3964 * possible to force coredump from running process and then 3965 * continue processing. For example qemu could set up SIGUSR2 3966 * handler (provided that target process haven't registered 3967 * handler for that) that does the dump when signal is received. 3968 */ 3969 static int elf_core_dump(int signr, const CPUArchState *env) 3970 { 3971 const CPUState *cpu = env_cpu((CPUArchState *)env); 3972 const TaskState *ts = (const TaskState *)cpu->opaque; 3973 struct vm_area_struct *vma = NULL; 3974 g_autofree char *corefile = NULL; 3975 struct elf_note_info info; 3976 struct elfhdr elf; 3977 struct elf_phdr phdr; 3978 struct rlimit dumpsize; 3979 struct mm_struct *mm = NULL; 3980 off_t offset = 0, data_offset = 0; 3981 int segs = 0; 3982 int fd = -1; 3983 3984 init_note_info(&info); 3985 3986 errno = 0; 3987 getrlimit(RLIMIT_CORE, &dumpsize); 3988 if (dumpsize.rlim_cur == 0) 3989 return 0; 3990 3991 corefile = core_dump_filename(ts); 3992 3993 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3994 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3995 return (-errno); 3996 3997 /* 3998 * Walk through target process memory mappings and 3999 * set up structure containing this information. After 4000 * this point vma_xxx functions can be used. 4001 */ 4002 if ((mm = vma_init()) == NULL) 4003 goto out; 4004 4005 walk_memory_regions(mm, vma_walker); 4006 segs = vma_get_mapping_count(mm); 4007 4008 /* 4009 * Construct valid coredump ELF header. We also 4010 * add one more segment for notes. 4011 */ 4012 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4013 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4014 goto out; 4015 4016 /* fill in the in-memory version of notes */ 4017 if (fill_note_info(&info, signr, env) < 0) 4018 goto out; 4019 4020 offset += sizeof (elf); /* elf header */ 4021 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4022 4023 /* write out notes program header */ 4024 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4025 4026 offset += info.notes_size; 4027 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4028 goto out; 4029 4030 /* 4031 * ELF specification wants data to start at page boundary so 4032 * we align it here. 4033 */ 4034 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4035 4036 /* 4037 * Write program headers for memory regions mapped in 4038 * the target process. 4039 */ 4040 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4041 (void) memset(&phdr, 0, sizeof (phdr)); 4042 4043 phdr.p_type = PT_LOAD; 4044 phdr.p_offset = offset; 4045 phdr.p_vaddr = vma->vma_start; 4046 phdr.p_paddr = 0; 4047 phdr.p_filesz = vma_dump_size(vma); 4048 offset += phdr.p_filesz; 4049 phdr.p_memsz = vma->vma_end - vma->vma_start; 4050 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4051 if (vma->vma_flags & PROT_WRITE) 4052 phdr.p_flags |= PF_W; 4053 if (vma->vma_flags & PROT_EXEC) 4054 phdr.p_flags |= PF_X; 4055 phdr.p_align = ELF_EXEC_PAGESIZE; 4056 4057 bswap_phdr(&phdr, 1); 4058 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4059 goto out; 4060 } 4061 } 4062 4063 /* 4064 * Next we write notes just after program headers. No 4065 * alignment needed here. 4066 */ 4067 if (write_note_info(&info, fd) < 0) 4068 goto out; 4069 4070 /* align data to page boundary */ 4071 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4072 goto out; 4073 4074 /* 4075 * Finally we can dump process memory into corefile as well. 4076 */ 4077 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4078 abi_ulong addr; 4079 abi_ulong end; 4080 4081 end = vma->vma_start + vma_dump_size(vma); 4082 4083 for (addr = vma->vma_start; addr < end; 4084 addr += TARGET_PAGE_SIZE) { 4085 char page[TARGET_PAGE_SIZE]; 4086 int error; 4087 4088 /* 4089 * Read in page from target process memory and 4090 * write it to coredump file. 4091 */ 4092 error = copy_from_user(page, addr, sizeof (page)); 4093 if (error != 0) { 4094 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4095 addr); 4096 errno = -error; 4097 goto out; 4098 } 4099 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4100 goto out; 4101 } 4102 } 4103 4104 out: 4105 free_note_info(&info); 4106 if (mm != NULL) 4107 vma_delete(mm); 4108 (void) close(fd); 4109 4110 if (errno != 0) 4111 return (-errno); 4112 return (0); 4113 } 4114 #endif /* USE_ELF_CORE_DUMP */ 4115 4116 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4117 { 4118 init_thread(regs, infop); 4119 } 4120