1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 /* this flag is uneffective under linux too, should be deleted */ 82 #ifndef MAP_DENYWRITE 83 #define MAP_DENYWRITE 0 84 #endif 85 86 /* should probably go in elf.h */ 87 #ifndef ELIBBAD 88 #define ELIBBAD 80 89 #endif 90 91 #ifdef TARGET_WORDS_BIGENDIAN 92 #define ELF_DATA ELFDATA2MSB 93 #else 94 #define ELF_DATA ELFDATA2LSB 95 #endif 96 97 #ifdef TARGET_ABI_MIPSN32 98 typedef abi_ullong target_elf_greg_t; 99 #define tswapreg(ptr) tswap64(ptr) 100 #else 101 typedef abi_ulong target_elf_greg_t; 102 #define tswapreg(ptr) tswapal(ptr) 103 #endif 104 105 #ifdef USE_UID16 106 typedef abi_ushort target_uid_t; 107 typedef abi_ushort target_gid_t; 108 #else 109 typedef abi_uint target_uid_t; 110 typedef abi_uint target_gid_t; 111 #endif 112 typedef abi_int target_pid_t; 113 114 #ifdef TARGET_I386 115 116 #define ELF_PLATFORM get_elf_platform() 117 118 static const char *get_elf_platform(void) 119 { 120 static char elf_platform[] = "i386"; 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 122 if (family > 6) 123 family = 6; 124 if (family >= 3) 125 elf_platform[1] = '0' + family; 126 return elf_platform; 127 } 128 129 #define ELF_HWCAP get_elf_hwcap() 130 131 static uint32_t get_elf_hwcap(void) 132 { 133 X86CPU *cpu = X86_CPU(thread_cpu); 134 135 return cpu->env.features[FEAT_1_EDX]; 136 } 137 138 #ifdef TARGET_X86_64 139 #define ELF_START_MMAP 0x2aaaaab000ULL 140 141 #define ELF_CLASS ELFCLASS64 142 #define ELF_ARCH EM_X86_64 143 144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 145 { 146 regs->rax = 0; 147 regs->rsp = infop->start_stack; 148 regs->rip = infop->entry; 149 } 150 151 #define ELF_NREG 27 152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 153 154 /* 155 * Note that ELF_NREG should be 29 as there should be place for 156 * TRAPNO and ERR "registers" as well but linux doesn't dump 157 * those. 158 * 159 * See linux kernel: arch/x86/include/asm/elf.h 160 */ 161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 162 { 163 (*regs)[0] = env->regs[15]; 164 (*regs)[1] = env->regs[14]; 165 (*regs)[2] = env->regs[13]; 166 (*regs)[3] = env->regs[12]; 167 (*regs)[4] = env->regs[R_EBP]; 168 (*regs)[5] = env->regs[R_EBX]; 169 (*regs)[6] = env->regs[11]; 170 (*regs)[7] = env->regs[10]; 171 (*regs)[8] = env->regs[9]; 172 (*regs)[9] = env->regs[8]; 173 (*regs)[10] = env->regs[R_EAX]; 174 (*regs)[11] = env->regs[R_ECX]; 175 (*regs)[12] = env->regs[R_EDX]; 176 (*regs)[13] = env->regs[R_ESI]; 177 (*regs)[14] = env->regs[R_EDI]; 178 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 179 (*regs)[16] = env->eip; 180 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 181 (*regs)[18] = env->eflags; 182 (*regs)[19] = env->regs[R_ESP]; 183 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 184 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 185 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 186 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 187 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 188 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 189 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 190 } 191 192 #else 193 194 #define ELF_START_MMAP 0x80000000 195 196 /* 197 * This is used to ensure we don't load something for the wrong architecture. 198 */ 199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 200 201 /* 202 * These are used to set parameters in the core dumps. 203 */ 204 #define ELF_CLASS ELFCLASS32 205 #define ELF_ARCH EM_386 206 207 static inline void init_thread(struct target_pt_regs *regs, 208 struct image_info *infop) 209 { 210 regs->esp = infop->start_stack; 211 regs->eip = infop->entry; 212 213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 214 starts %edx contains a pointer to a function which might be 215 registered using `atexit'. This provides a mean for the 216 dynamic linker to call DT_FINI functions for shared libraries 217 that have been loaded before the code runs. 218 219 A value of 0 tells we have no such handler. */ 220 regs->edx = 0; 221 } 222 223 #define ELF_NREG 17 224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 225 226 /* 227 * Note that ELF_NREG should be 19 as there should be place for 228 * TRAPNO and ERR "registers" as well but linux doesn't dump 229 * those. 230 * 231 * See linux kernel: arch/x86/include/asm/elf.h 232 */ 233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 234 { 235 (*regs)[0] = env->regs[R_EBX]; 236 (*regs)[1] = env->regs[R_ECX]; 237 (*regs)[2] = env->regs[R_EDX]; 238 (*regs)[3] = env->regs[R_ESI]; 239 (*regs)[4] = env->regs[R_EDI]; 240 (*regs)[5] = env->regs[R_EBP]; 241 (*regs)[6] = env->regs[R_EAX]; 242 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 243 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 244 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 245 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 246 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 247 (*regs)[12] = env->eip; 248 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 249 (*regs)[14] = env->eflags; 250 (*regs)[15] = env->regs[R_ESP]; 251 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 252 } 253 #endif 254 255 #define USE_ELF_CORE_DUMP 256 #define ELF_EXEC_PAGESIZE 4096 257 258 #endif 259 260 #ifdef TARGET_ARM 261 262 #ifndef TARGET_AARCH64 263 /* 32 bit ARM definitions */ 264 265 #define ELF_START_MMAP 0x80000000 266 267 #define ELF_ARCH EM_ARM 268 #define ELF_CLASS ELFCLASS32 269 270 static inline void init_thread(struct target_pt_regs *regs, 271 struct image_info *infop) 272 { 273 abi_long stack = infop->start_stack; 274 memset(regs, 0, sizeof(*regs)); 275 276 regs->uregs[16] = ARM_CPU_MODE_USR; 277 if (infop->entry & 1) { 278 regs->uregs[16] |= CPSR_T; 279 } 280 regs->uregs[15] = infop->entry & 0xfffffffe; 281 regs->uregs[13] = infop->start_stack; 282 /* FIXME - what to for failure of get_user()? */ 283 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 284 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 285 /* XXX: it seems that r0 is zeroed after ! */ 286 regs->uregs[0] = 0; 287 /* For uClinux PIC binaries. */ 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 289 regs->uregs[10] = infop->start_data; 290 } 291 292 #define ELF_NREG 18 293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 294 295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 296 { 297 (*regs)[0] = tswapreg(env->regs[0]); 298 (*regs)[1] = tswapreg(env->regs[1]); 299 (*regs)[2] = tswapreg(env->regs[2]); 300 (*regs)[3] = tswapreg(env->regs[3]); 301 (*regs)[4] = tswapreg(env->regs[4]); 302 (*regs)[5] = tswapreg(env->regs[5]); 303 (*regs)[6] = tswapreg(env->regs[6]); 304 (*regs)[7] = tswapreg(env->regs[7]); 305 (*regs)[8] = tswapreg(env->regs[8]); 306 (*regs)[9] = tswapreg(env->regs[9]); 307 (*regs)[10] = tswapreg(env->regs[10]); 308 (*regs)[11] = tswapreg(env->regs[11]); 309 (*regs)[12] = tswapreg(env->regs[12]); 310 (*regs)[13] = tswapreg(env->regs[13]); 311 (*regs)[14] = tswapreg(env->regs[14]); 312 (*regs)[15] = tswapreg(env->regs[15]); 313 314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 316 } 317 318 #define USE_ELF_CORE_DUMP 319 #define ELF_EXEC_PAGESIZE 4096 320 321 enum 322 { 323 ARM_HWCAP_ARM_SWP = 1 << 0, 324 ARM_HWCAP_ARM_HALF = 1 << 1, 325 ARM_HWCAP_ARM_THUMB = 1 << 2, 326 ARM_HWCAP_ARM_26BIT = 1 << 3, 327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 328 ARM_HWCAP_ARM_FPA = 1 << 5, 329 ARM_HWCAP_ARM_VFP = 1 << 6, 330 ARM_HWCAP_ARM_EDSP = 1 << 7, 331 ARM_HWCAP_ARM_JAVA = 1 << 8, 332 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 333 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 334 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 335 ARM_HWCAP_ARM_NEON = 1 << 12, 336 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 338 ARM_HWCAP_ARM_TLS = 1 << 15, 339 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 340 ARM_HWCAP_ARM_IDIVA = 1 << 17, 341 ARM_HWCAP_ARM_IDIVT = 1 << 18, 342 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 343 ARM_HWCAP_ARM_LPAE = 1 << 20, 344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 345 }; 346 347 enum { 348 ARM_HWCAP2_ARM_AES = 1 << 0, 349 ARM_HWCAP2_ARM_PMULL = 1 << 1, 350 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 351 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 352 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 353 }; 354 355 /* The commpage only exists for 32 bit kernels */ 356 357 #define TARGET_HAS_VALIDATE_GUEST_SPACE 358 /* Return 1 if the proposed guest space is suitable for the guest. 359 * Return 0 if the proposed guest space isn't suitable, but another 360 * address space should be tried. 361 * Return -1 if there is no way the proposed guest space can be 362 * valid regardless of the base. 363 * The guest code may leave a page mapped and populate it if the 364 * address is suitable. 365 */ 366 static int validate_guest_space(unsigned long guest_base, 367 unsigned long guest_size) 368 { 369 unsigned long real_start, test_page_addr; 370 371 /* We need to check that we can force a fault on access to the 372 * commpage at 0xffff0fxx 373 */ 374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 375 376 /* If the commpage lies within the already allocated guest space, 377 * then there is no way we can allocate it. 378 */ 379 if (test_page_addr >= guest_base 380 && test_page_addr <= (guest_base + guest_size)) { 381 return -1; 382 } 383 384 /* Note it needs to be writeable to let us initialise it */ 385 real_start = (unsigned long) 386 mmap((void *)test_page_addr, qemu_host_page_size, 387 PROT_READ | PROT_WRITE, 388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 389 390 /* If we can't map it then try another address */ 391 if (real_start == -1ul) { 392 return 0; 393 } 394 395 if (real_start != test_page_addr) { 396 /* OS didn't put the page where we asked - unmap and reject */ 397 munmap((void *)real_start, qemu_host_page_size); 398 return 0; 399 } 400 401 /* Leave the page mapped 402 * Populate it (mmap should have left it all 0'd) 403 */ 404 405 /* Kernel helper versions */ 406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 407 408 /* Now it's populated make it RO */ 409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 410 perror("Protecting guest commpage"); 411 exit(-1); 412 } 413 414 return 1; /* All good */ 415 } 416 417 #define ELF_HWCAP get_elf_hwcap() 418 #define ELF_HWCAP2 get_elf_hwcap2() 419 420 static uint32_t get_elf_hwcap(void) 421 { 422 ARMCPU *cpu = ARM_CPU(thread_cpu); 423 uint32_t hwcaps = 0; 424 425 hwcaps |= ARM_HWCAP_ARM_SWP; 426 hwcaps |= ARM_HWCAP_ARM_HALF; 427 hwcaps |= ARM_HWCAP_ARM_THUMB; 428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 429 430 /* probe for the extra features */ 431 #define GET_FEATURE(feat, hwcap) \ 432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 447 * to our VFP_FP16 feature bit. 448 */ 449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 451 452 return hwcaps; 453 } 454 455 static uint32_t get_elf_hwcap2(void) 456 { 457 ARMCPU *cpu = ARM_CPU(thread_cpu); 458 uint32_t hwcaps = 0; 459 460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 465 return hwcaps; 466 } 467 468 #undef GET_FEATURE 469 470 #else 471 /* 64 bit ARM definitions */ 472 #define ELF_START_MMAP 0x80000000 473 474 #define ELF_ARCH EM_AARCH64 475 #define ELF_CLASS ELFCLASS64 476 #define ELF_PLATFORM "aarch64" 477 478 static inline void init_thread(struct target_pt_regs *regs, 479 struct image_info *infop) 480 { 481 abi_long stack = infop->start_stack; 482 memset(regs, 0, sizeof(*regs)); 483 484 regs->pc = infop->entry & ~0x3ULL; 485 regs->sp = stack; 486 } 487 488 #define ELF_NREG 34 489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 490 491 static void elf_core_copy_regs(target_elf_gregset_t *regs, 492 const CPUARMState *env) 493 { 494 int i; 495 496 for (i = 0; i < 32; i++) { 497 (*regs)[i] = tswapreg(env->xregs[i]); 498 } 499 (*regs)[32] = tswapreg(env->pc); 500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 501 } 502 503 #define USE_ELF_CORE_DUMP 504 #define ELF_EXEC_PAGESIZE 4096 505 506 enum { 507 ARM_HWCAP_A64_FP = 1 << 0, 508 ARM_HWCAP_A64_ASIMD = 1 << 1, 509 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 510 ARM_HWCAP_A64_AES = 1 << 3, 511 ARM_HWCAP_A64_PMULL = 1 << 4, 512 ARM_HWCAP_A64_SHA1 = 1 << 5, 513 ARM_HWCAP_A64_SHA2 = 1 << 6, 514 ARM_HWCAP_A64_CRC32 = 1 << 7, 515 }; 516 517 #define ELF_HWCAP get_elf_hwcap() 518 519 static uint32_t get_elf_hwcap(void) 520 { 521 ARMCPU *cpu = ARM_CPU(thread_cpu); 522 uint32_t hwcaps = 0; 523 524 hwcaps |= ARM_HWCAP_A64_FP; 525 hwcaps |= ARM_HWCAP_A64_ASIMD; 526 527 /* probe for the extra features */ 528 #define GET_FEATURE(feat, hwcap) \ 529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 535 #undef GET_FEATURE 536 537 return hwcaps; 538 } 539 540 #endif /* not TARGET_AARCH64 */ 541 #endif /* TARGET_ARM */ 542 543 #ifdef TARGET_UNICORE32 544 545 #define ELF_START_MMAP 0x80000000 546 547 #define ELF_CLASS ELFCLASS32 548 #define ELF_DATA ELFDATA2LSB 549 #define ELF_ARCH EM_UNICORE32 550 551 static inline void init_thread(struct target_pt_regs *regs, 552 struct image_info *infop) 553 { 554 abi_long stack = infop->start_stack; 555 memset(regs, 0, sizeof(*regs)); 556 regs->UC32_REG_asr = 0x10; 557 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 558 regs->UC32_REG_sp = infop->start_stack; 559 /* FIXME - what to for failure of get_user()? */ 560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 562 /* XXX: it seems that r0 is zeroed after ! */ 563 regs->UC32_REG_00 = 0; 564 } 565 566 #define ELF_NREG 34 567 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 568 569 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 570 { 571 (*regs)[0] = env->regs[0]; 572 (*regs)[1] = env->regs[1]; 573 (*regs)[2] = env->regs[2]; 574 (*regs)[3] = env->regs[3]; 575 (*regs)[4] = env->regs[4]; 576 (*regs)[5] = env->regs[5]; 577 (*regs)[6] = env->regs[6]; 578 (*regs)[7] = env->regs[7]; 579 (*regs)[8] = env->regs[8]; 580 (*regs)[9] = env->regs[9]; 581 (*regs)[10] = env->regs[10]; 582 (*regs)[11] = env->regs[11]; 583 (*regs)[12] = env->regs[12]; 584 (*regs)[13] = env->regs[13]; 585 (*regs)[14] = env->regs[14]; 586 (*regs)[15] = env->regs[15]; 587 (*regs)[16] = env->regs[16]; 588 (*regs)[17] = env->regs[17]; 589 (*regs)[18] = env->regs[18]; 590 (*regs)[19] = env->regs[19]; 591 (*regs)[20] = env->regs[20]; 592 (*regs)[21] = env->regs[21]; 593 (*regs)[22] = env->regs[22]; 594 (*regs)[23] = env->regs[23]; 595 (*regs)[24] = env->regs[24]; 596 (*regs)[25] = env->regs[25]; 597 (*regs)[26] = env->regs[26]; 598 (*regs)[27] = env->regs[27]; 599 (*regs)[28] = env->regs[28]; 600 (*regs)[29] = env->regs[29]; 601 (*regs)[30] = env->regs[30]; 602 (*regs)[31] = env->regs[31]; 603 604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 605 (*regs)[33] = env->regs[0]; /* XXX */ 606 } 607 608 #define USE_ELF_CORE_DUMP 609 #define ELF_EXEC_PAGESIZE 4096 610 611 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 612 613 #endif 614 615 #ifdef TARGET_SPARC 616 #ifdef TARGET_SPARC64 617 618 #define ELF_START_MMAP 0x80000000 619 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 621 #ifndef TARGET_ABI32 622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 623 #else 624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 625 #endif 626 627 #define ELF_CLASS ELFCLASS64 628 #define ELF_ARCH EM_SPARCV9 629 630 #define STACK_BIAS 2047 631 632 static inline void init_thread(struct target_pt_regs *regs, 633 struct image_info *infop) 634 { 635 #ifndef TARGET_ABI32 636 regs->tstate = 0; 637 #endif 638 regs->pc = infop->entry; 639 regs->npc = regs->pc + 4; 640 regs->y = 0; 641 #ifdef TARGET_ABI32 642 regs->u_regs[14] = infop->start_stack - 16 * 4; 643 #else 644 if (personality(infop->personality) == PER_LINUX32) 645 regs->u_regs[14] = infop->start_stack - 16 * 4; 646 else 647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 648 #endif 649 } 650 651 #else 652 #define ELF_START_MMAP 0x80000000 653 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 654 | HWCAP_SPARC_MULDIV) 655 656 #define ELF_CLASS ELFCLASS32 657 #define ELF_ARCH EM_SPARC 658 659 static inline void init_thread(struct target_pt_regs *regs, 660 struct image_info *infop) 661 { 662 regs->psr = 0; 663 regs->pc = infop->entry; 664 regs->npc = regs->pc + 4; 665 regs->y = 0; 666 regs->u_regs[14] = infop->start_stack - 16 * 4; 667 } 668 669 #endif 670 #endif 671 672 #ifdef TARGET_PPC 673 674 #define ELF_MACHINE PPC_ELF_MACHINE 675 #define ELF_START_MMAP 0x80000000 676 677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 678 679 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 680 681 #define ELF_CLASS ELFCLASS64 682 683 #else 684 685 #define ELF_CLASS ELFCLASS32 686 687 #endif 688 689 #define ELF_ARCH EM_PPC 690 691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 692 See arch/powerpc/include/asm/cputable.h. */ 693 enum { 694 QEMU_PPC_FEATURE_32 = 0x80000000, 695 QEMU_PPC_FEATURE_64 = 0x40000000, 696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 705 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 706 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 707 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 709 QEMU_PPC_FEATURE_CELL = 0x00010000, 710 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 711 QEMU_PPC_FEATURE_SMT = 0x00004000, 712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 714 QEMU_PPC_FEATURE_PA6T = 0x00000800, 715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 720 721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 723 724 /* Feature definitions in AT_HWCAP2. */ 725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 731 }; 732 733 #define ELF_HWCAP get_elf_hwcap() 734 735 static uint32_t get_elf_hwcap(void) 736 { 737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 738 uint32_t features = 0; 739 740 /* We don't have to be terribly complete here; the high points are 741 Altivec/FP/SPE support. Anything else is just a bonus. */ 742 #define GET_FEATURE(flag, feature) \ 743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 744 #define GET_FEATURE2(flags, feature) \ 745 do { \ 746 if ((cpu->env.insns_flags2 & flags) == flags) { \ 747 features |= feature; \ 748 } \ 749 } while (0) 750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 762 QEMU_PPC_FEATURE_ARCH_2_06); 763 #undef GET_FEATURE 764 #undef GET_FEATURE2 765 766 return features; 767 } 768 769 #define ELF_HWCAP2 get_elf_hwcap2() 770 771 static uint32_t get_elf_hwcap2(void) 772 { 773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 774 uint32_t features = 0; 775 776 #define GET_FEATURE(flag, feature) \ 777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 778 #define GET_FEATURE2(flag, feature) \ 779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 780 781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 785 786 #undef GET_FEATURE 787 #undef GET_FEATURE2 788 789 return features; 790 } 791 792 /* 793 * The requirements here are: 794 * - keep the final alignment of sp (sp & 0xf) 795 * - make sure the 32-bit value at the first 16 byte aligned position of 796 * AUXV is greater than 16 for glibc compatibility. 797 * AT_IGNOREPPC is used for that. 798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 800 */ 801 #define DLINFO_ARCH_ITEMS 5 802 #define ARCH_DLINFO \ 803 do { \ 804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 805 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 806 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 807 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 808 /* \ 809 * Now handle glibc compatibility. \ 810 */ \ 811 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 812 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 813 } while (0) 814 815 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 816 { 817 _regs->gpr[1] = infop->start_stack; 818 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 819 if (get_ppc64_abi(infop) < 2) { 820 uint64_t val; 821 get_user_u64(val, infop->entry + 8); 822 _regs->gpr[2] = val + infop->load_bias; 823 get_user_u64(val, infop->entry); 824 infop->entry = val + infop->load_bias; 825 } else { 826 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 827 } 828 #endif 829 _regs->nip = infop->entry; 830 } 831 832 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 833 #define ELF_NREG 48 834 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 835 836 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 837 { 838 int i; 839 target_ulong ccr = 0; 840 841 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 842 (*regs)[i] = tswapreg(env->gpr[i]); 843 } 844 845 (*regs)[32] = tswapreg(env->nip); 846 (*regs)[33] = tswapreg(env->msr); 847 (*regs)[35] = tswapreg(env->ctr); 848 (*regs)[36] = tswapreg(env->lr); 849 (*regs)[37] = tswapreg(env->xer); 850 851 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 852 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 853 } 854 (*regs)[38] = tswapreg(ccr); 855 } 856 857 #define USE_ELF_CORE_DUMP 858 #define ELF_EXEC_PAGESIZE 4096 859 860 #endif 861 862 #ifdef TARGET_MIPS 863 864 #define ELF_START_MMAP 0x80000000 865 866 #ifdef TARGET_MIPS64 867 #define ELF_CLASS ELFCLASS64 868 #else 869 #define ELF_CLASS ELFCLASS32 870 #endif 871 #define ELF_ARCH EM_MIPS 872 873 static inline void init_thread(struct target_pt_regs *regs, 874 struct image_info *infop) 875 { 876 regs->cp0_status = 2 << CP0St_KSU; 877 regs->cp0_epc = infop->entry; 878 regs->regs[29] = infop->start_stack; 879 } 880 881 /* See linux kernel: arch/mips/include/asm/elf.h. */ 882 #define ELF_NREG 45 883 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 884 885 /* See linux kernel: arch/mips/include/asm/reg.h. */ 886 enum { 887 #ifdef TARGET_MIPS64 888 TARGET_EF_R0 = 0, 889 #else 890 TARGET_EF_R0 = 6, 891 #endif 892 TARGET_EF_R26 = TARGET_EF_R0 + 26, 893 TARGET_EF_R27 = TARGET_EF_R0 + 27, 894 TARGET_EF_LO = TARGET_EF_R0 + 32, 895 TARGET_EF_HI = TARGET_EF_R0 + 33, 896 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 897 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 898 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 899 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 900 }; 901 902 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 903 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 904 { 905 int i; 906 907 for (i = 0; i < TARGET_EF_R0; i++) { 908 (*regs)[i] = 0; 909 } 910 (*regs)[TARGET_EF_R0] = 0; 911 912 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 913 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 914 } 915 916 (*regs)[TARGET_EF_R26] = 0; 917 (*regs)[TARGET_EF_R27] = 0; 918 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 919 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 920 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 921 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 922 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 923 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 924 } 925 926 #define USE_ELF_CORE_DUMP 927 #define ELF_EXEC_PAGESIZE 4096 928 929 #endif /* TARGET_MIPS */ 930 931 #ifdef TARGET_MICROBLAZE 932 933 #define ELF_START_MMAP 0x80000000 934 935 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 936 937 #define ELF_CLASS ELFCLASS32 938 #define ELF_ARCH EM_MICROBLAZE 939 940 static inline void init_thread(struct target_pt_regs *regs, 941 struct image_info *infop) 942 { 943 regs->pc = infop->entry; 944 regs->r1 = infop->start_stack; 945 946 } 947 948 #define ELF_EXEC_PAGESIZE 4096 949 950 #define USE_ELF_CORE_DUMP 951 #define ELF_NREG 38 952 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 953 954 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 955 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 956 { 957 int i, pos = 0; 958 959 for (i = 0; i < 32; i++) { 960 (*regs)[pos++] = tswapreg(env->regs[i]); 961 } 962 963 for (i = 0; i < 6; i++) { 964 (*regs)[pos++] = tswapreg(env->sregs[i]); 965 } 966 } 967 968 #endif /* TARGET_MICROBLAZE */ 969 970 #ifdef TARGET_NIOS2 971 972 #define ELF_START_MMAP 0x80000000 973 974 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 975 976 #define ELF_CLASS ELFCLASS32 977 #define ELF_ARCH EM_ALTERA_NIOS2 978 979 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 980 { 981 regs->ea = infop->entry; 982 regs->sp = infop->start_stack; 983 regs->estatus = 0x3; 984 } 985 986 #define ELF_EXEC_PAGESIZE 4096 987 988 #define USE_ELF_CORE_DUMP 989 #define ELF_NREG 49 990 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 991 992 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 993 static void elf_core_copy_regs(target_elf_gregset_t *regs, 994 const CPUNios2State *env) 995 { 996 int i; 997 998 (*regs)[0] = -1; 999 for (i = 1; i < 8; i++) /* r0-r7 */ 1000 (*regs)[i] = tswapreg(env->regs[i + 7]); 1001 1002 for (i = 8; i < 16; i++) /* r8-r15 */ 1003 (*regs)[i] = tswapreg(env->regs[i - 8]); 1004 1005 for (i = 16; i < 24; i++) /* r16-r23 */ 1006 (*regs)[i] = tswapreg(env->regs[i + 7]); 1007 (*regs)[24] = -1; /* R_ET */ 1008 (*regs)[25] = -1; /* R_BT */ 1009 (*regs)[26] = tswapreg(env->regs[R_GP]); 1010 (*regs)[27] = tswapreg(env->regs[R_SP]); 1011 (*regs)[28] = tswapreg(env->regs[R_FP]); 1012 (*regs)[29] = tswapreg(env->regs[R_EA]); 1013 (*regs)[30] = -1; /* R_SSTATUS */ 1014 (*regs)[31] = tswapreg(env->regs[R_RA]); 1015 1016 (*regs)[32] = tswapreg(env->regs[R_PC]); 1017 1018 (*regs)[33] = -1; /* R_STATUS */ 1019 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1020 1021 for (i = 35; i < 49; i++) /* ... */ 1022 (*regs)[i] = -1; 1023 } 1024 1025 #endif /* TARGET_NIOS2 */ 1026 1027 #ifdef TARGET_OPENRISC 1028 1029 #define ELF_START_MMAP 0x08000000 1030 1031 #define ELF_ARCH EM_OPENRISC 1032 #define ELF_CLASS ELFCLASS32 1033 #define ELF_DATA ELFDATA2MSB 1034 1035 static inline void init_thread(struct target_pt_regs *regs, 1036 struct image_info *infop) 1037 { 1038 regs->pc = infop->entry; 1039 regs->gpr[1] = infop->start_stack; 1040 } 1041 1042 #define USE_ELF_CORE_DUMP 1043 #define ELF_EXEC_PAGESIZE 8192 1044 1045 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1046 #define ELF_NREG 34 /* gprs and pc, sr */ 1047 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1048 1049 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1050 const CPUOpenRISCState *env) 1051 { 1052 int i; 1053 1054 for (i = 0; i < 32; i++) { 1055 (*regs)[i] = tswapreg(env->gpr[i]); 1056 } 1057 1058 (*regs)[32] = tswapreg(env->pc); 1059 (*regs)[33] = tswapreg(env->sr); 1060 } 1061 #define ELF_HWCAP 0 1062 #define ELF_PLATFORM NULL 1063 1064 #endif /* TARGET_OPENRISC */ 1065 1066 #ifdef TARGET_SH4 1067 1068 #define ELF_START_MMAP 0x80000000 1069 1070 #define ELF_CLASS ELFCLASS32 1071 #define ELF_ARCH EM_SH 1072 1073 static inline void init_thread(struct target_pt_regs *regs, 1074 struct image_info *infop) 1075 { 1076 /* Check other registers XXXXX */ 1077 regs->pc = infop->entry; 1078 regs->regs[15] = infop->start_stack; 1079 } 1080 1081 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1082 #define ELF_NREG 23 1083 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1084 1085 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1086 enum { 1087 TARGET_REG_PC = 16, 1088 TARGET_REG_PR = 17, 1089 TARGET_REG_SR = 18, 1090 TARGET_REG_GBR = 19, 1091 TARGET_REG_MACH = 20, 1092 TARGET_REG_MACL = 21, 1093 TARGET_REG_SYSCALL = 22 1094 }; 1095 1096 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1097 const CPUSH4State *env) 1098 { 1099 int i; 1100 1101 for (i = 0; i < 16; i++) { 1102 (*regs[i]) = tswapreg(env->gregs[i]); 1103 } 1104 1105 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1106 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1107 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1108 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1109 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1110 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1111 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1112 } 1113 1114 #define USE_ELF_CORE_DUMP 1115 #define ELF_EXEC_PAGESIZE 4096 1116 1117 enum { 1118 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1119 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1120 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1121 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1122 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1123 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1124 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1125 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1126 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1127 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1128 }; 1129 1130 #define ELF_HWCAP get_elf_hwcap() 1131 1132 static uint32_t get_elf_hwcap(void) 1133 { 1134 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1135 uint32_t hwcap = 0; 1136 1137 hwcap |= SH_CPU_HAS_FPU; 1138 1139 if (cpu->env.features & SH_FEATURE_SH4A) { 1140 hwcap |= SH_CPU_HAS_LLSC; 1141 } 1142 1143 return hwcap; 1144 } 1145 1146 #endif 1147 1148 #ifdef TARGET_CRIS 1149 1150 #define ELF_START_MMAP 0x80000000 1151 1152 #define ELF_CLASS ELFCLASS32 1153 #define ELF_ARCH EM_CRIS 1154 1155 static inline void init_thread(struct target_pt_regs *regs, 1156 struct image_info *infop) 1157 { 1158 regs->erp = infop->entry; 1159 } 1160 1161 #define ELF_EXEC_PAGESIZE 8192 1162 1163 #endif 1164 1165 #ifdef TARGET_M68K 1166 1167 #define ELF_START_MMAP 0x80000000 1168 1169 #define ELF_CLASS ELFCLASS32 1170 #define ELF_ARCH EM_68K 1171 1172 /* ??? Does this need to do anything? 1173 #define ELF_PLAT_INIT(_r) */ 1174 1175 static inline void init_thread(struct target_pt_regs *regs, 1176 struct image_info *infop) 1177 { 1178 regs->usp = infop->start_stack; 1179 regs->sr = 0; 1180 regs->pc = infop->entry; 1181 } 1182 1183 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1184 #define ELF_NREG 20 1185 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1186 1187 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1188 { 1189 (*regs)[0] = tswapreg(env->dregs[1]); 1190 (*regs)[1] = tswapreg(env->dregs[2]); 1191 (*regs)[2] = tswapreg(env->dregs[3]); 1192 (*regs)[3] = tswapreg(env->dregs[4]); 1193 (*regs)[4] = tswapreg(env->dregs[5]); 1194 (*regs)[5] = tswapreg(env->dregs[6]); 1195 (*regs)[6] = tswapreg(env->dregs[7]); 1196 (*regs)[7] = tswapreg(env->aregs[0]); 1197 (*regs)[8] = tswapreg(env->aregs[1]); 1198 (*regs)[9] = tswapreg(env->aregs[2]); 1199 (*regs)[10] = tswapreg(env->aregs[3]); 1200 (*regs)[11] = tswapreg(env->aregs[4]); 1201 (*regs)[12] = tswapreg(env->aregs[5]); 1202 (*regs)[13] = tswapreg(env->aregs[6]); 1203 (*regs)[14] = tswapreg(env->dregs[0]); 1204 (*regs)[15] = tswapreg(env->aregs[7]); 1205 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1206 (*regs)[17] = tswapreg(env->sr); 1207 (*regs)[18] = tswapreg(env->pc); 1208 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1209 } 1210 1211 #define USE_ELF_CORE_DUMP 1212 #define ELF_EXEC_PAGESIZE 8192 1213 1214 #endif 1215 1216 #ifdef TARGET_ALPHA 1217 1218 #define ELF_START_MMAP (0x30000000000ULL) 1219 1220 #define ELF_CLASS ELFCLASS64 1221 #define ELF_ARCH EM_ALPHA 1222 1223 static inline void init_thread(struct target_pt_regs *regs, 1224 struct image_info *infop) 1225 { 1226 regs->pc = infop->entry; 1227 regs->ps = 8; 1228 regs->usp = infop->start_stack; 1229 } 1230 1231 #define ELF_EXEC_PAGESIZE 8192 1232 1233 #endif /* TARGET_ALPHA */ 1234 1235 #ifdef TARGET_S390X 1236 1237 #define ELF_START_MMAP (0x20000000000ULL) 1238 1239 #define ELF_CLASS ELFCLASS64 1240 #define ELF_DATA ELFDATA2MSB 1241 #define ELF_ARCH EM_S390 1242 1243 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1244 { 1245 regs->psw.addr = infop->entry; 1246 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1247 regs->gprs[15] = infop->start_stack; 1248 } 1249 1250 #endif /* TARGET_S390X */ 1251 1252 #ifdef TARGET_TILEGX 1253 1254 /* 42 bits real used address, a half for user mode */ 1255 #define ELF_START_MMAP (0x00000020000000000ULL) 1256 1257 #define elf_check_arch(x) ((x) == EM_TILEGX) 1258 1259 #define ELF_CLASS ELFCLASS64 1260 #define ELF_DATA ELFDATA2LSB 1261 #define ELF_ARCH EM_TILEGX 1262 1263 static inline void init_thread(struct target_pt_regs *regs, 1264 struct image_info *infop) 1265 { 1266 regs->pc = infop->entry; 1267 regs->sp = infop->start_stack; 1268 1269 } 1270 1271 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1272 1273 #endif /* TARGET_TILEGX */ 1274 1275 #ifdef TARGET_HPPA 1276 1277 #define ELF_START_MMAP 0x80000000 1278 #define ELF_CLASS ELFCLASS32 1279 #define ELF_ARCH EM_PARISC 1280 #define ELF_PLATFORM "PARISC" 1281 #define STACK_GROWS_DOWN 0 1282 #define STACK_ALIGNMENT 64 1283 1284 static inline void init_thread(struct target_pt_regs *regs, 1285 struct image_info *infop) 1286 { 1287 regs->iaoq[0] = infop->entry; 1288 regs->iaoq[1] = infop->entry + 4; 1289 regs->gr[23] = 0; 1290 regs->gr[24] = infop->arg_start; 1291 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1292 /* The top-of-stack contains a linkage buffer. */ 1293 regs->gr[30] = infop->start_stack + 64; 1294 regs->gr[31] = infop->entry; 1295 } 1296 1297 #endif /* TARGET_HPPA */ 1298 1299 #ifndef ELF_PLATFORM 1300 #define ELF_PLATFORM (NULL) 1301 #endif 1302 1303 #ifndef ELF_MACHINE 1304 #define ELF_MACHINE ELF_ARCH 1305 #endif 1306 1307 #ifndef elf_check_arch 1308 #define elf_check_arch(x) ((x) == ELF_ARCH) 1309 #endif 1310 1311 #ifndef ELF_HWCAP 1312 #define ELF_HWCAP 0 1313 #endif 1314 1315 #ifndef STACK_GROWS_DOWN 1316 #define STACK_GROWS_DOWN 1 1317 #endif 1318 1319 #ifndef STACK_ALIGNMENT 1320 #define STACK_ALIGNMENT 16 1321 #endif 1322 1323 #ifdef TARGET_ABI32 1324 #undef ELF_CLASS 1325 #define ELF_CLASS ELFCLASS32 1326 #undef bswaptls 1327 #define bswaptls(ptr) bswap32s(ptr) 1328 #endif 1329 1330 #include "elf.h" 1331 1332 struct exec 1333 { 1334 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1335 unsigned int a_text; /* length of text, in bytes */ 1336 unsigned int a_data; /* length of data, in bytes */ 1337 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1338 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1339 unsigned int a_entry; /* start address */ 1340 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1341 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1342 }; 1343 1344 1345 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1346 #define OMAGIC 0407 1347 #define NMAGIC 0410 1348 #define ZMAGIC 0413 1349 #define QMAGIC 0314 1350 1351 /* Necessary parameters */ 1352 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1353 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1354 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1355 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1356 1357 #define DLINFO_ITEMS 14 1358 1359 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1360 { 1361 memcpy(to, from, n); 1362 } 1363 1364 #ifdef BSWAP_NEEDED 1365 static void bswap_ehdr(struct elfhdr *ehdr) 1366 { 1367 bswap16s(&ehdr->e_type); /* Object file type */ 1368 bswap16s(&ehdr->e_machine); /* Architecture */ 1369 bswap32s(&ehdr->e_version); /* Object file version */ 1370 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1371 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1372 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1373 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1374 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1375 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1376 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1377 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1378 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1379 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1380 } 1381 1382 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1383 { 1384 int i; 1385 for (i = 0; i < phnum; ++i, ++phdr) { 1386 bswap32s(&phdr->p_type); /* Segment type */ 1387 bswap32s(&phdr->p_flags); /* Segment flags */ 1388 bswaptls(&phdr->p_offset); /* Segment file offset */ 1389 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1390 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1391 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1392 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1393 bswaptls(&phdr->p_align); /* Segment alignment */ 1394 } 1395 } 1396 1397 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1398 { 1399 int i; 1400 for (i = 0; i < shnum; ++i, ++shdr) { 1401 bswap32s(&shdr->sh_name); 1402 bswap32s(&shdr->sh_type); 1403 bswaptls(&shdr->sh_flags); 1404 bswaptls(&shdr->sh_addr); 1405 bswaptls(&shdr->sh_offset); 1406 bswaptls(&shdr->sh_size); 1407 bswap32s(&shdr->sh_link); 1408 bswap32s(&shdr->sh_info); 1409 bswaptls(&shdr->sh_addralign); 1410 bswaptls(&shdr->sh_entsize); 1411 } 1412 } 1413 1414 static void bswap_sym(struct elf_sym *sym) 1415 { 1416 bswap32s(&sym->st_name); 1417 bswaptls(&sym->st_value); 1418 bswaptls(&sym->st_size); 1419 bswap16s(&sym->st_shndx); 1420 } 1421 #else 1422 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1423 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1424 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1425 static inline void bswap_sym(struct elf_sym *sym) { } 1426 #endif 1427 1428 #ifdef USE_ELF_CORE_DUMP 1429 static int elf_core_dump(int, const CPUArchState *); 1430 #endif /* USE_ELF_CORE_DUMP */ 1431 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1432 1433 /* Verify the portions of EHDR within E_IDENT for the target. 1434 This can be performed before bswapping the entire header. */ 1435 static bool elf_check_ident(struct elfhdr *ehdr) 1436 { 1437 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1438 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1439 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1440 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1441 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1442 && ehdr->e_ident[EI_DATA] == ELF_DATA 1443 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1444 } 1445 1446 /* Verify the portions of EHDR outside of E_IDENT for the target. 1447 This has to wait until after bswapping the header. */ 1448 static bool elf_check_ehdr(struct elfhdr *ehdr) 1449 { 1450 return (elf_check_arch(ehdr->e_machine) 1451 && ehdr->e_ehsize == sizeof(struct elfhdr) 1452 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1453 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1454 } 1455 1456 /* 1457 * 'copy_elf_strings()' copies argument/envelope strings from user 1458 * memory to free pages in kernel mem. These are in a format ready 1459 * to be put directly into the top of new user memory. 1460 * 1461 */ 1462 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1463 abi_ulong p, abi_ulong stack_limit) 1464 { 1465 char *tmp; 1466 int len, i; 1467 abi_ulong top = p; 1468 1469 if (!p) { 1470 return 0; /* bullet-proofing */ 1471 } 1472 1473 if (STACK_GROWS_DOWN) { 1474 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1475 for (i = argc - 1; i >= 0; --i) { 1476 tmp = argv[i]; 1477 if (!tmp) { 1478 fprintf(stderr, "VFS: argc is wrong"); 1479 exit(-1); 1480 } 1481 len = strlen(tmp) + 1; 1482 tmp += len; 1483 1484 if (len > (p - stack_limit)) { 1485 return 0; 1486 } 1487 while (len) { 1488 int bytes_to_copy = (len > offset) ? offset : len; 1489 tmp -= bytes_to_copy; 1490 p -= bytes_to_copy; 1491 offset -= bytes_to_copy; 1492 len -= bytes_to_copy; 1493 1494 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1495 1496 if (offset == 0) { 1497 memcpy_to_target(p, scratch, top - p); 1498 top = p; 1499 offset = TARGET_PAGE_SIZE; 1500 } 1501 } 1502 } 1503 if (p != top) { 1504 memcpy_to_target(p, scratch + offset, top - p); 1505 } 1506 } else { 1507 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1508 for (i = 0; i < argc; ++i) { 1509 tmp = argv[i]; 1510 if (!tmp) { 1511 fprintf(stderr, "VFS: argc is wrong"); 1512 exit(-1); 1513 } 1514 len = strlen(tmp) + 1; 1515 if (len > (stack_limit - p)) { 1516 return 0; 1517 } 1518 while (len) { 1519 int bytes_to_copy = (len > remaining) ? remaining : len; 1520 1521 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1522 1523 tmp += bytes_to_copy; 1524 remaining -= bytes_to_copy; 1525 p += bytes_to_copy; 1526 len -= bytes_to_copy; 1527 1528 if (remaining == 0) { 1529 memcpy_to_target(top, scratch, p - top); 1530 top = p; 1531 remaining = TARGET_PAGE_SIZE; 1532 } 1533 } 1534 } 1535 if (p != top) { 1536 memcpy_to_target(top, scratch, p - top); 1537 } 1538 } 1539 1540 return p; 1541 } 1542 1543 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1544 * argument/environment space. Newer kernels (>2.6.33) allow more, 1545 * dependent on stack size, but guarantee at least 32 pages for 1546 * backwards compatibility. 1547 */ 1548 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1549 1550 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1551 struct image_info *info) 1552 { 1553 abi_ulong size, error, guard; 1554 1555 size = guest_stack_size; 1556 if (size < STACK_LOWER_LIMIT) { 1557 size = STACK_LOWER_LIMIT; 1558 } 1559 guard = TARGET_PAGE_SIZE; 1560 if (guard < qemu_real_host_page_size) { 1561 guard = qemu_real_host_page_size; 1562 } 1563 1564 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1565 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1566 if (error == -1) { 1567 perror("mmap stack"); 1568 exit(-1); 1569 } 1570 1571 /* We reserve one extra page at the top of the stack as guard. */ 1572 if (STACK_GROWS_DOWN) { 1573 target_mprotect(error, guard, PROT_NONE); 1574 info->stack_limit = error + guard; 1575 return info->stack_limit + size - sizeof(void *); 1576 } else { 1577 target_mprotect(error + size, guard, PROT_NONE); 1578 info->stack_limit = error + size; 1579 return error; 1580 } 1581 } 1582 1583 /* Map and zero the bss. We need to explicitly zero any fractional pages 1584 after the data section (i.e. bss). */ 1585 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1586 { 1587 uintptr_t host_start, host_map_start, host_end; 1588 1589 last_bss = TARGET_PAGE_ALIGN(last_bss); 1590 1591 /* ??? There is confusion between qemu_real_host_page_size and 1592 qemu_host_page_size here and elsewhere in target_mmap, which 1593 may lead to the end of the data section mapping from the file 1594 not being mapped. At least there was an explicit test and 1595 comment for that here, suggesting that "the file size must 1596 be known". The comment probably pre-dates the introduction 1597 of the fstat system call in target_mmap which does in fact 1598 find out the size. What isn't clear is if the workaround 1599 here is still actually needed. For now, continue with it, 1600 but merge it with the "normal" mmap that would allocate the bss. */ 1601 1602 host_start = (uintptr_t) g2h(elf_bss); 1603 host_end = (uintptr_t) g2h(last_bss); 1604 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1605 1606 if (host_map_start < host_end) { 1607 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1608 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1609 if (p == MAP_FAILED) { 1610 perror("cannot mmap brk"); 1611 exit(-1); 1612 } 1613 } 1614 1615 /* Ensure that the bss page(s) are valid */ 1616 if ((page_get_flags(last_bss-1) & prot) != prot) { 1617 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1618 } 1619 1620 if (host_start < host_map_start) { 1621 memset((void *)host_start, 0, host_map_start - host_start); 1622 } 1623 } 1624 1625 #ifdef CONFIG_USE_FDPIC 1626 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1627 { 1628 uint16_t n; 1629 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1630 1631 /* elf32_fdpic_loadseg */ 1632 n = info->nsegs; 1633 while (n--) { 1634 sp -= 12; 1635 put_user_u32(loadsegs[n].addr, sp+0); 1636 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1637 put_user_u32(loadsegs[n].p_memsz, sp+8); 1638 } 1639 1640 /* elf32_fdpic_loadmap */ 1641 sp -= 4; 1642 put_user_u16(0, sp+0); /* version */ 1643 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1644 1645 info->personality = PER_LINUX_FDPIC; 1646 info->loadmap_addr = sp; 1647 1648 return sp; 1649 } 1650 #endif 1651 1652 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1653 struct elfhdr *exec, 1654 struct image_info *info, 1655 struct image_info *interp_info) 1656 { 1657 abi_ulong sp; 1658 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1659 int size; 1660 int i; 1661 abi_ulong u_rand_bytes; 1662 uint8_t k_rand_bytes[16]; 1663 abi_ulong u_platform; 1664 const char *k_platform; 1665 const int n = sizeof(elf_addr_t); 1666 1667 sp = p; 1668 1669 #ifdef CONFIG_USE_FDPIC 1670 /* Needs to be before we load the env/argc/... */ 1671 if (elf_is_fdpic(exec)) { 1672 /* Need 4 byte alignment for these structs */ 1673 sp &= ~3; 1674 sp = loader_build_fdpic_loadmap(info, sp); 1675 info->other_info = interp_info; 1676 if (interp_info) { 1677 interp_info->other_info = info; 1678 sp = loader_build_fdpic_loadmap(interp_info, sp); 1679 } 1680 } 1681 #endif 1682 1683 u_platform = 0; 1684 k_platform = ELF_PLATFORM; 1685 if (k_platform) { 1686 size_t len = strlen(k_platform) + 1; 1687 if (STACK_GROWS_DOWN) { 1688 sp -= (len + n - 1) & ~(n - 1); 1689 u_platform = sp; 1690 /* FIXME - check return value of memcpy_to_target() for failure */ 1691 memcpy_to_target(sp, k_platform, len); 1692 } else { 1693 memcpy_to_target(sp, k_platform, len); 1694 u_platform = sp; 1695 sp += len + 1; 1696 } 1697 } 1698 1699 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1700 * the argv and envp pointers. 1701 */ 1702 if (STACK_GROWS_DOWN) { 1703 sp = QEMU_ALIGN_DOWN(sp, 16); 1704 } else { 1705 sp = QEMU_ALIGN_UP(sp, 16); 1706 } 1707 1708 /* 1709 * Generate 16 random bytes for userspace PRNG seeding (not 1710 * cryptically secure but it's not the aim of QEMU). 1711 */ 1712 for (i = 0; i < 16; i++) { 1713 k_rand_bytes[i] = rand(); 1714 } 1715 if (STACK_GROWS_DOWN) { 1716 sp -= 16; 1717 u_rand_bytes = sp; 1718 /* FIXME - check return value of memcpy_to_target() for failure */ 1719 memcpy_to_target(sp, k_rand_bytes, 16); 1720 } else { 1721 memcpy_to_target(sp, k_rand_bytes, 16); 1722 u_rand_bytes = sp; 1723 sp += 16; 1724 } 1725 1726 size = (DLINFO_ITEMS + 1) * 2; 1727 if (k_platform) 1728 size += 2; 1729 #ifdef DLINFO_ARCH_ITEMS 1730 size += DLINFO_ARCH_ITEMS * 2; 1731 #endif 1732 #ifdef ELF_HWCAP2 1733 size += 2; 1734 #endif 1735 size += envc + argc + 2; 1736 size += 1; /* argc itself */ 1737 size *= n; 1738 1739 /* Allocate space and finalize stack alignment for entry now. */ 1740 if (STACK_GROWS_DOWN) { 1741 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1742 sp = u_argc; 1743 } else { 1744 u_argc = sp; 1745 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1746 } 1747 1748 u_argv = u_argc + n; 1749 u_envp = u_argv + (argc + 1) * n; 1750 u_auxv = u_envp + (envc + 1) * n; 1751 info->saved_auxv = u_auxv; 1752 info->arg_start = u_argv; 1753 info->arg_end = u_argv + argc * n; 1754 1755 /* This is correct because Linux defines 1756 * elf_addr_t as Elf32_Off / Elf64_Off 1757 */ 1758 #define NEW_AUX_ENT(id, val) do { \ 1759 put_user_ual(id, u_auxv); u_auxv += n; \ 1760 put_user_ual(val, u_auxv); u_auxv += n; \ 1761 } while(0) 1762 1763 /* There must be exactly DLINFO_ITEMS entries here. */ 1764 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1765 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1766 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1767 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1768 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1769 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1770 NEW_AUX_ENT(AT_ENTRY, info->entry); 1771 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1772 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1773 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1774 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1775 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1776 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1777 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1778 1779 #ifdef ELF_HWCAP2 1780 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1781 #endif 1782 1783 if (u_platform) { 1784 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1785 } 1786 #ifdef ARCH_DLINFO 1787 /* 1788 * ARCH_DLINFO must come last so platform specific code can enforce 1789 * special alignment requirements on the AUXV if necessary (eg. PPC). 1790 */ 1791 ARCH_DLINFO; 1792 #endif 1793 NEW_AUX_ENT (AT_NULL, 0); 1794 #undef NEW_AUX_ENT 1795 1796 info->auxv_len = u_argv - info->saved_auxv; 1797 1798 put_user_ual(argc, u_argc); 1799 1800 p = info->arg_strings; 1801 for (i = 0; i < argc; ++i) { 1802 put_user_ual(p, u_argv); 1803 u_argv += n; 1804 p += target_strlen(p) + 1; 1805 } 1806 put_user_ual(0, u_argv); 1807 1808 p = info->env_strings; 1809 for (i = 0; i < envc; ++i) { 1810 put_user_ual(p, u_envp); 1811 u_envp += n; 1812 p += target_strlen(p) + 1; 1813 } 1814 put_user_ual(0, u_envp); 1815 1816 return sp; 1817 } 1818 1819 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1820 /* If the guest doesn't have a validation function just agree */ 1821 static int validate_guest_space(unsigned long guest_base, 1822 unsigned long guest_size) 1823 { 1824 return 1; 1825 } 1826 #endif 1827 1828 unsigned long init_guest_space(unsigned long host_start, 1829 unsigned long host_size, 1830 unsigned long guest_start, 1831 bool fixed) 1832 { 1833 unsigned long current_start, real_start; 1834 int flags; 1835 1836 assert(host_start || host_size); 1837 1838 /* If just a starting address is given, then just verify that 1839 * address. */ 1840 if (host_start && !host_size) { 1841 if (validate_guest_space(host_start, host_size) == 1) { 1842 return host_start; 1843 } else { 1844 return (unsigned long)-1; 1845 } 1846 } 1847 1848 /* Setup the initial flags and start address. */ 1849 current_start = host_start & qemu_host_page_mask; 1850 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1851 if (fixed) { 1852 flags |= MAP_FIXED; 1853 } 1854 1855 /* Otherwise, a non-zero size region of memory needs to be mapped 1856 * and validated. */ 1857 while (1) { 1858 unsigned long real_size = host_size; 1859 1860 /* Do not use mmap_find_vma here because that is limited to the 1861 * guest address space. We are going to make the 1862 * guest address space fit whatever we're given. 1863 */ 1864 real_start = (unsigned long) 1865 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1866 if (real_start == (unsigned long)-1) { 1867 return (unsigned long)-1; 1868 } 1869 1870 /* Ensure the address is properly aligned. */ 1871 if (real_start & ~qemu_host_page_mask) { 1872 munmap((void *)real_start, host_size); 1873 real_size = host_size + qemu_host_page_size; 1874 real_start = (unsigned long) 1875 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1876 if (real_start == (unsigned long)-1) { 1877 return (unsigned long)-1; 1878 } 1879 real_start = HOST_PAGE_ALIGN(real_start); 1880 } 1881 1882 /* Check to see if the address is valid. */ 1883 if (!host_start || real_start == current_start) { 1884 int valid = validate_guest_space(real_start - guest_start, 1885 real_size); 1886 if (valid == 1) { 1887 break; 1888 } else if (valid == -1) { 1889 return (unsigned long)-1; 1890 } 1891 /* valid == 0, so try again. */ 1892 } 1893 1894 /* That address didn't work. Unmap and try a different one. 1895 * The address the host picked because is typically right at 1896 * the top of the host address space and leaves the guest with 1897 * no usable address space. Resort to a linear search. We 1898 * already compensated for mmap_min_addr, so this should not 1899 * happen often. Probably means we got unlucky and host 1900 * address space randomization put a shared library somewhere 1901 * inconvenient. 1902 */ 1903 munmap((void *)real_start, host_size); 1904 current_start += qemu_host_page_size; 1905 if (host_start == current_start) { 1906 /* Theoretically possible if host doesn't have any suitably 1907 * aligned areas. Normally the first mmap will fail. 1908 */ 1909 return (unsigned long)-1; 1910 } 1911 } 1912 1913 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 1914 1915 return real_start; 1916 } 1917 1918 static void probe_guest_base(const char *image_name, 1919 abi_ulong loaddr, abi_ulong hiaddr) 1920 { 1921 /* Probe for a suitable guest base address, if the user has not set 1922 * it explicitly, and set guest_base appropriately. 1923 * In case of error we will print a suitable message and exit. 1924 */ 1925 const char *errmsg; 1926 if (!have_guest_base && !reserved_va) { 1927 unsigned long host_start, real_start, host_size; 1928 1929 /* Round addresses to page boundaries. */ 1930 loaddr &= qemu_host_page_mask; 1931 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1932 1933 if (loaddr < mmap_min_addr) { 1934 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1935 } else { 1936 host_start = loaddr; 1937 if (host_start != loaddr) { 1938 errmsg = "Address overflow loading ELF binary"; 1939 goto exit_errmsg; 1940 } 1941 } 1942 host_size = hiaddr - loaddr; 1943 1944 /* Setup the initial guest memory space with ranges gleaned from 1945 * the ELF image that is being loaded. 1946 */ 1947 real_start = init_guest_space(host_start, host_size, loaddr, false); 1948 if (real_start == (unsigned long)-1) { 1949 errmsg = "Unable to find space for application"; 1950 goto exit_errmsg; 1951 } 1952 guest_base = real_start - loaddr; 1953 1954 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 1955 TARGET_ABI_FMT_lx " to 0x%lx\n", 1956 loaddr, real_start); 1957 } 1958 return; 1959 1960 exit_errmsg: 1961 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1962 exit(-1); 1963 } 1964 1965 1966 /* Load an ELF image into the address space. 1967 1968 IMAGE_NAME is the filename of the image, to use in error messages. 1969 IMAGE_FD is the open file descriptor for the image. 1970 1971 BPRM_BUF is a copy of the beginning of the file; this of course 1972 contains the elf file header at offset 0. It is assumed that this 1973 buffer is sufficiently aligned to present no problems to the host 1974 in accessing data at aligned offsets within the buffer. 1975 1976 On return: INFO values will be filled in, as necessary or available. */ 1977 1978 static void load_elf_image(const char *image_name, int image_fd, 1979 struct image_info *info, char **pinterp_name, 1980 char bprm_buf[BPRM_BUF_SIZE]) 1981 { 1982 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1983 struct elf_phdr *phdr; 1984 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1985 int i, retval; 1986 const char *errmsg; 1987 1988 /* First of all, some simple consistency checks */ 1989 errmsg = "Invalid ELF image for this architecture"; 1990 if (!elf_check_ident(ehdr)) { 1991 goto exit_errmsg; 1992 } 1993 bswap_ehdr(ehdr); 1994 if (!elf_check_ehdr(ehdr)) { 1995 goto exit_errmsg; 1996 } 1997 1998 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1999 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2000 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2001 } else { 2002 phdr = (struct elf_phdr *) alloca(i); 2003 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2004 if (retval != i) { 2005 goto exit_read; 2006 } 2007 } 2008 bswap_phdr(phdr, ehdr->e_phnum); 2009 2010 #ifdef CONFIG_USE_FDPIC 2011 info->nsegs = 0; 2012 info->pt_dynamic_addr = 0; 2013 #endif 2014 2015 mmap_lock(); 2016 2017 /* Find the maximum size of the image and allocate an appropriate 2018 amount of memory to handle that. */ 2019 loaddr = -1, hiaddr = 0; 2020 for (i = 0; i < ehdr->e_phnum; ++i) { 2021 if (phdr[i].p_type == PT_LOAD) { 2022 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2023 if (a < loaddr) { 2024 loaddr = a; 2025 } 2026 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2027 if (a > hiaddr) { 2028 hiaddr = a; 2029 } 2030 #ifdef CONFIG_USE_FDPIC 2031 ++info->nsegs; 2032 #endif 2033 } 2034 } 2035 2036 load_addr = loaddr; 2037 if (ehdr->e_type == ET_DYN) { 2038 /* The image indicates that it can be loaded anywhere. Find a 2039 location that can hold the memory space required. If the 2040 image is pre-linked, LOADDR will be non-zero. Since we do 2041 not supply MAP_FIXED here we'll use that address if and 2042 only if it remains available. */ 2043 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2044 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2045 -1, 0); 2046 if (load_addr == -1) { 2047 goto exit_perror; 2048 } 2049 } else if (pinterp_name != NULL) { 2050 /* This is the main executable. Make sure that the low 2051 address does not conflict with MMAP_MIN_ADDR or the 2052 QEMU application itself. */ 2053 probe_guest_base(image_name, loaddr, hiaddr); 2054 } 2055 load_bias = load_addr - loaddr; 2056 2057 #ifdef CONFIG_USE_FDPIC 2058 { 2059 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2060 g_malloc(sizeof(*loadsegs) * info->nsegs); 2061 2062 for (i = 0; i < ehdr->e_phnum; ++i) { 2063 switch (phdr[i].p_type) { 2064 case PT_DYNAMIC: 2065 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2066 break; 2067 case PT_LOAD: 2068 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2069 loadsegs->p_vaddr = phdr[i].p_vaddr; 2070 loadsegs->p_memsz = phdr[i].p_memsz; 2071 ++loadsegs; 2072 break; 2073 } 2074 } 2075 } 2076 #endif 2077 2078 info->load_bias = load_bias; 2079 info->load_addr = load_addr; 2080 info->entry = ehdr->e_entry + load_bias; 2081 info->start_code = -1; 2082 info->end_code = 0; 2083 info->start_data = -1; 2084 info->end_data = 0; 2085 info->brk = 0; 2086 info->elf_flags = ehdr->e_flags; 2087 2088 for (i = 0; i < ehdr->e_phnum; i++) { 2089 struct elf_phdr *eppnt = phdr + i; 2090 if (eppnt->p_type == PT_LOAD) { 2091 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 2092 int elf_prot = 0; 2093 2094 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2095 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2096 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2097 2098 vaddr = load_bias + eppnt->p_vaddr; 2099 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2100 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2101 2102 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 2103 elf_prot, MAP_PRIVATE | MAP_FIXED, 2104 image_fd, eppnt->p_offset - vaddr_po); 2105 if (error == -1) { 2106 goto exit_perror; 2107 } 2108 2109 vaddr_ef = vaddr + eppnt->p_filesz; 2110 vaddr_em = vaddr + eppnt->p_memsz; 2111 2112 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2113 if (vaddr_ef < vaddr_em) { 2114 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2115 } 2116 2117 /* Find the full program boundaries. */ 2118 if (elf_prot & PROT_EXEC) { 2119 if (vaddr < info->start_code) { 2120 info->start_code = vaddr; 2121 } 2122 if (vaddr_ef > info->end_code) { 2123 info->end_code = vaddr_ef; 2124 } 2125 } 2126 if (elf_prot & PROT_WRITE) { 2127 if (vaddr < info->start_data) { 2128 info->start_data = vaddr; 2129 } 2130 if (vaddr_ef > info->end_data) { 2131 info->end_data = vaddr_ef; 2132 } 2133 if (vaddr_em > info->brk) { 2134 info->brk = vaddr_em; 2135 } 2136 } 2137 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2138 char *interp_name; 2139 2140 if (*pinterp_name) { 2141 errmsg = "Multiple PT_INTERP entries"; 2142 goto exit_errmsg; 2143 } 2144 interp_name = malloc(eppnt->p_filesz); 2145 if (!interp_name) { 2146 goto exit_perror; 2147 } 2148 2149 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2150 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2151 eppnt->p_filesz); 2152 } else { 2153 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2154 eppnt->p_offset); 2155 if (retval != eppnt->p_filesz) { 2156 goto exit_perror; 2157 } 2158 } 2159 if (interp_name[eppnt->p_filesz - 1] != 0) { 2160 errmsg = "Invalid PT_INTERP entry"; 2161 goto exit_errmsg; 2162 } 2163 *pinterp_name = interp_name; 2164 } 2165 } 2166 2167 if (info->end_data == 0) { 2168 info->start_data = info->end_code; 2169 info->end_data = info->end_code; 2170 info->brk = info->end_code; 2171 } 2172 2173 if (qemu_log_enabled()) { 2174 load_symbols(ehdr, image_fd, load_bias); 2175 } 2176 2177 mmap_unlock(); 2178 2179 close(image_fd); 2180 return; 2181 2182 exit_read: 2183 if (retval >= 0) { 2184 errmsg = "Incomplete read of file header"; 2185 goto exit_errmsg; 2186 } 2187 exit_perror: 2188 errmsg = strerror(errno); 2189 exit_errmsg: 2190 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2191 exit(-1); 2192 } 2193 2194 static void load_elf_interp(const char *filename, struct image_info *info, 2195 char bprm_buf[BPRM_BUF_SIZE]) 2196 { 2197 int fd, retval; 2198 2199 fd = open(path(filename), O_RDONLY); 2200 if (fd < 0) { 2201 goto exit_perror; 2202 } 2203 2204 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2205 if (retval < 0) { 2206 goto exit_perror; 2207 } 2208 if (retval < BPRM_BUF_SIZE) { 2209 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2210 } 2211 2212 load_elf_image(filename, fd, info, NULL, bprm_buf); 2213 return; 2214 2215 exit_perror: 2216 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2217 exit(-1); 2218 } 2219 2220 static int symfind(const void *s0, const void *s1) 2221 { 2222 target_ulong addr = *(target_ulong *)s0; 2223 struct elf_sym *sym = (struct elf_sym *)s1; 2224 int result = 0; 2225 if (addr < sym->st_value) { 2226 result = -1; 2227 } else if (addr >= sym->st_value + sym->st_size) { 2228 result = 1; 2229 } 2230 return result; 2231 } 2232 2233 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2234 { 2235 #if ELF_CLASS == ELFCLASS32 2236 struct elf_sym *syms = s->disas_symtab.elf32; 2237 #else 2238 struct elf_sym *syms = s->disas_symtab.elf64; 2239 #endif 2240 2241 // binary search 2242 struct elf_sym *sym; 2243 2244 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2245 if (sym != NULL) { 2246 return s->disas_strtab + sym->st_name; 2247 } 2248 2249 return ""; 2250 } 2251 2252 /* FIXME: This should use elf_ops.h */ 2253 static int symcmp(const void *s0, const void *s1) 2254 { 2255 struct elf_sym *sym0 = (struct elf_sym *)s0; 2256 struct elf_sym *sym1 = (struct elf_sym *)s1; 2257 return (sym0->st_value < sym1->st_value) 2258 ? -1 2259 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2260 } 2261 2262 /* Best attempt to load symbols from this ELF object. */ 2263 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2264 { 2265 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2266 struct elf_shdr *shdr; 2267 char *strings = NULL; 2268 struct syminfo *s = NULL; 2269 struct elf_sym *new_syms, *syms = NULL; 2270 2271 shnum = hdr->e_shnum; 2272 i = shnum * sizeof(struct elf_shdr); 2273 shdr = (struct elf_shdr *)alloca(i); 2274 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2275 return; 2276 } 2277 2278 bswap_shdr(shdr, shnum); 2279 for (i = 0; i < shnum; ++i) { 2280 if (shdr[i].sh_type == SHT_SYMTAB) { 2281 sym_idx = i; 2282 str_idx = shdr[i].sh_link; 2283 goto found; 2284 } 2285 } 2286 2287 /* There will be no symbol table if the file was stripped. */ 2288 return; 2289 2290 found: 2291 /* Now know where the strtab and symtab are. Snarf them. */ 2292 s = g_try_new(struct syminfo, 1); 2293 if (!s) { 2294 goto give_up; 2295 } 2296 2297 i = shdr[str_idx].sh_size; 2298 s->disas_strtab = strings = g_try_malloc(i); 2299 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { 2300 goto give_up; 2301 } 2302 2303 i = shdr[sym_idx].sh_size; 2304 syms = g_try_malloc(i); 2305 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { 2306 goto give_up; 2307 } 2308 2309 nsyms = i / sizeof(struct elf_sym); 2310 for (i = 0; i < nsyms; ) { 2311 bswap_sym(syms + i); 2312 /* Throw away entries which we do not need. */ 2313 if (syms[i].st_shndx == SHN_UNDEF 2314 || syms[i].st_shndx >= SHN_LORESERVE 2315 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2316 if (i < --nsyms) { 2317 syms[i] = syms[nsyms]; 2318 } 2319 } else { 2320 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2321 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2322 syms[i].st_value &= ~(target_ulong)1; 2323 #endif 2324 syms[i].st_value += load_bias; 2325 i++; 2326 } 2327 } 2328 2329 /* No "useful" symbol. */ 2330 if (nsyms == 0) { 2331 goto give_up; 2332 } 2333 2334 /* Attempt to free the storage associated with the local symbols 2335 that we threw away. Whether or not this has any effect on the 2336 memory allocation depends on the malloc implementation and how 2337 many symbols we managed to discard. */ 2338 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2339 if (new_syms == NULL) { 2340 goto give_up; 2341 } 2342 syms = new_syms; 2343 2344 qsort(syms, nsyms, sizeof(*syms), symcmp); 2345 2346 s->disas_num_syms = nsyms; 2347 #if ELF_CLASS == ELFCLASS32 2348 s->disas_symtab.elf32 = syms; 2349 #else 2350 s->disas_symtab.elf64 = syms; 2351 #endif 2352 s->lookup_symbol = lookup_symbolxx; 2353 s->next = syminfos; 2354 syminfos = s; 2355 2356 return; 2357 2358 give_up: 2359 g_free(s); 2360 g_free(strings); 2361 g_free(syms); 2362 } 2363 2364 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2365 { 2366 struct image_info interp_info; 2367 struct elfhdr elf_ex; 2368 char *elf_interpreter = NULL; 2369 char *scratch; 2370 2371 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2372 2373 load_elf_image(bprm->filename, bprm->fd, info, 2374 &elf_interpreter, bprm->buf); 2375 2376 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2377 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2378 when we load the interpreter. */ 2379 elf_ex = *(struct elfhdr *)bprm->buf; 2380 2381 /* Do this so that we can load the interpreter, if need be. We will 2382 change some of these later */ 2383 bprm->p = setup_arg_pages(bprm, info); 2384 2385 scratch = g_new0(char, TARGET_PAGE_SIZE); 2386 if (STACK_GROWS_DOWN) { 2387 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2388 bprm->p, info->stack_limit); 2389 info->file_string = bprm->p; 2390 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2391 bprm->p, info->stack_limit); 2392 info->env_strings = bprm->p; 2393 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2394 bprm->p, info->stack_limit); 2395 info->arg_strings = bprm->p; 2396 } else { 2397 info->arg_strings = bprm->p; 2398 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2399 bprm->p, info->stack_limit); 2400 info->env_strings = bprm->p; 2401 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2402 bprm->p, info->stack_limit); 2403 info->file_string = bprm->p; 2404 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2405 bprm->p, info->stack_limit); 2406 } 2407 2408 g_free(scratch); 2409 2410 if (!bprm->p) { 2411 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2412 exit(-1); 2413 } 2414 2415 if (elf_interpreter) { 2416 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2417 2418 /* If the program interpreter is one of these two, then assume 2419 an iBCS2 image. Otherwise assume a native linux image. */ 2420 2421 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2422 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2423 info->personality = PER_SVR4; 2424 2425 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2426 and some applications "depend" upon this behavior. Since 2427 we do not have the power to recompile these, we emulate 2428 the SVr4 behavior. Sigh. */ 2429 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2430 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2431 } 2432 } 2433 2434 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2435 info, (elf_interpreter ? &interp_info : NULL)); 2436 info->start_stack = bprm->p; 2437 2438 /* If we have an interpreter, set that as the program's entry point. 2439 Copy the load_bias as well, to help PPC64 interpret the entry 2440 point as a function descriptor. Do this after creating elf tables 2441 so that we copy the original program entry point into the AUXV. */ 2442 if (elf_interpreter) { 2443 info->load_bias = interp_info.load_bias; 2444 info->entry = interp_info.entry; 2445 free(elf_interpreter); 2446 } 2447 2448 #ifdef USE_ELF_CORE_DUMP 2449 bprm->core_dump = &elf_core_dump; 2450 #endif 2451 2452 return 0; 2453 } 2454 2455 #ifdef USE_ELF_CORE_DUMP 2456 /* 2457 * Definitions to generate Intel SVR4-like core files. 2458 * These mostly have the same names as the SVR4 types with "target_elf_" 2459 * tacked on the front to prevent clashes with linux definitions, 2460 * and the typedef forms have been avoided. This is mostly like 2461 * the SVR4 structure, but more Linuxy, with things that Linux does 2462 * not support and which gdb doesn't really use excluded. 2463 * 2464 * Fields we don't dump (their contents is zero) in linux-user qemu 2465 * are marked with XXX. 2466 * 2467 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2468 * 2469 * Porting ELF coredump for target is (quite) simple process. First you 2470 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2471 * the target resides): 2472 * 2473 * #define USE_ELF_CORE_DUMP 2474 * 2475 * Next you define type of register set used for dumping. ELF specification 2476 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2477 * 2478 * typedef <target_regtype> target_elf_greg_t; 2479 * #define ELF_NREG <number of registers> 2480 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2481 * 2482 * Last step is to implement target specific function that copies registers 2483 * from given cpu into just specified register set. Prototype is: 2484 * 2485 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2486 * const CPUArchState *env); 2487 * 2488 * Parameters: 2489 * regs - copy register values into here (allocated and zeroed by caller) 2490 * env - copy registers from here 2491 * 2492 * Example for ARM target is provided in this file. 2493 */ 2494 2495 /* An ELF note in memory */ 2496 struct memelfnote { 2497 const char *name; 2498 size_t namesz; 2499 size_t namesz_rounded; 2500 int type; 2501 size_t datasz; 2502 size_t datasz_rounded; 2503 void *data; 2504 size_t notesz; 2505 }; 2506 2507 struct target_elf_siginfo { 2508 abi_int si_signo; /* signal number */ 2509 abi_int si_code; /* extra code */ 2510 abi_int si_errno; /* errno */ 2511 }; 2512 2513 struct target_elf_prstatus { 2514 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2515 abi_short pr_cursig; /* Current signal */ 2516 abi_ulong pr_sigpend; /* XXX */ 2517 abi_ulong pr_sighold; /* XXX */ 2518 target_pid_t pr_pid; 2519 target_pid_t pr_ppid; 2520 target_pid_t pr_pgrp; 2521 target_pid_t pr_sid; 2522 struct target_timeval pr_utime; /* XXX User time */ 2523 struct target_timeval pr_stime; /* XXX System time */ 2524 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2525 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2526 target_elf_gregset_t pr_reg; /* GP registers */ 2527 abi_int pr_fpvalid; /* XXX */ 2528 }; 2529 2530 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2531 2532 struct target_elf_prpsinfo { 2533 char pr_state; /* numeric process state */ 2534 char pr_sname; /* char for pr_state */ 2535 char pr_zomb; /* zombie */ 2536 char pr_nice; /* nice val */ 2537 abi_ulong pr_flag; /* flags */ 2538 target_uid_t pr_uid; 2539 target_gid_t pr_gid; 2540 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2541 /* Lots missing */ 2542 char pr_fname[16]; /* filename of executable */ 2543 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2544 }; 2545 2546 /* Here is the structure in which status of each thread is captured. */ 2547 struct elf_thread_status { 2548 QTAILQ_ENTRY(elf_thread_status) ets_link; 2549 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2550 #if 0 2551 elf_fpregset_t fpu; /* NT_PRFPREG */ 2552 struct task_struct *thread; 2553 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2554 #endif 2555 struct memelfnote notes[1]; 2556 int num_notes; 2557 }; 2558 2559 struct elf_note_info { 2560 struct memelfnote *notes; 2561 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2562 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2563 2564 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2565 #if 0 2566 /* 2567 * Current version of ELF coredump doesn't support 2568 * dumping fp regs etc. 2569 */ 2570 elf_fpregset_t *fpu; 2571 elf_fpxregset_t *xfpu; 2572 int thread_status_size; 2573 #endif 2574 int notes_size; 2575 int numnote; 2576 }; 2577 2578 struct vm_area_struct { 2579 target_ulong vma_start; /* start vaddr of memory region */ 2580 target_ulong vma_end; /* end vaddr of memory region */ 2581 abi_ulong vma_flags; /* protection etc. flags for the region */ 2582 QTAILQ_ENTRY(vm_area_struct) vma_link; 2583 }; 2584 2585 struct mm_struct { 2586 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2587 int mm_count; /* number of mappings */ 2588 }; 2589 2590 static struct mm_struct *vma_init(void); 2591 static void vma_delete(struct mm_struct *); 2592 static int vma_add_mapping(struct mm_struct *, target_ulong, 2593 target_ulong, abi_ulong); 2594 static int vma_get_mapping_count(const struct mm_struct *); 2595 static struct vm_area_struct *vma_first(const struct mm_struct *); 2596 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2597 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2598 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2599 unsigned long flags); 2600 2601 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2602 static void fill_note(struct memelfnote *, const char *, int, 2603 unsigned int, void *); 2604 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2605 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2606 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2607 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2608 static size_t note_size(const struct memelfnote *); 2609 static void free_note_info(struct elf_note_info *); 2610 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2611 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2612 static int core_dump_filename(const TaskState *, char *, size_t); 2613 2614 static int dump_write(int, const void *, size_t); 2615 static int write_note(struct memelfnote *, int); 2616 static int write_note_info(struct elf_note_info *, int); 2617 2618 #ifdef BSWAP_NEEDED 2619 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2620 { 2621 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2622 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2623 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2624 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2625 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2626 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2627 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2628 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2629 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2630 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2631 /* cpu times are not filled, so we skip them */ 2632 /* regs should be in correct format already */ 2633 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2634 } 2635 2636 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2637 { 2638 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2639 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2640 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2641 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2642 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2643 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2644 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2645 } 2646 2647 static void bswap_note(struct elf_note *en) 2648 { 2649 bswap32s(&en->n_namesz); 2650 bswap32s(&en->n_descsz); 2651 bswap32s(&en->n_type); 2652 } 2653 #else 2654 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2655 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2656 static inline void bswap_note(struct elf_note *en) { } 2657 #endif /* BSWAP_NEEDED */ 2658 2659 /* 2660 * Minimal support for linux memory regions. These are needed 2661 * when we are finding out what memory exactly belongs to 2662 * emulated process. No locks needed here, as long as 2663 * thread that received the signal is stopped. 2664 */ 2665 2666 static struct mm_struct *vma_init(void) 2667 { 2668 struct mm_struct *mm; 2669 2670 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2671 return (NULL); 2672 2673 mm->mm_count = 0; 2674 QTAILQ_INIT(&mm->mm_mmap); 2675 2676 return (mm); 2677 } 2678 2679 static void vma_delete(struct mm_struct *mm) 2680 { 2681 struct vm_area_struct *vma; 2682 2683 while ((vma = vma_first(mm)) != NULL) { 2684 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2685 g_free(vma); 2686 } 2687 g_free(mm); 2688 } 2689 2690 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2691 target_ulong end, abi_ulong flags) 2692 { 2693 struct vm_area_struct *vma; 2694 2695 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2696 return (-1); 2697 2698 vma->vma_start = start; 2699 vma->vma_end = end; 2700 vma->vma_flags = flags; 2701 2702 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2703 mm->mm_count++; 2704 2705 return (0); 2706 } 2707 2708 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2709 { 2710 return (QTAILQ_FIRST(&mm->mm_mmap)); 2711 } 2712 2713 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2714 { 2715 return (QTAILQ_NEXT(vma, vma_link)); 2716 } 2717 2718 static int vma_get_mapping_count(const struct mm_struct *mm) 2719 { 2720 return (mm->mm_count); 2721 } 2722 2723 /* 2724 * Calculate file (dump) size of given memory region. 2725 */ 2726 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2727 { 2728 /* if we cannot even read the first page, skip it */ 2729 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2730 return (0); 2731 2732 /* 2733 * Usually we don't dump executable pages as they contain 2734 * non-writable code that debugger can read directly from 2735 * target library etc. However, thread stacks are marked 2736 * also executable so we read in first page of given region 2737 * and check whether it contains elf header. If there is 2738 * no elf header, we dump it. 2739 */ 2740 if (vma->vma_flags & PROT_EXEC) { 2741 char page[TARGET_PAGE_SIZE]; 2742 2743 copy_from_user(page, vma->vma_start, sizeof (page)); 2744 if ((page[EI_MAG0] == ELFMAG0) && 2745 (page[EI_MAG1] == ELFMAG1) && 2746 (page[EI_MAG2] == ELFMAG2) && 2747 (page[EI_MAG3] == ELFMAG3)) { 2748 /* 2749 * Mappings are possibly from ELF binary. Don't dump 2750 * them. 2751 */ 2752 return (0); 2753 } 2754 } 2755 2756 return (vma->vma_end - vma->vma_start); 2757 } 2758 2759 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2760 unsigned long flags) 2761 { 2762 struct mm_struct *mm = (struct mm_struct *)priv; 2763 2764 vma_add_mapping(mm, start, end, flags); 2765 return (0); 2766 } 2767 2768 static void fill_note(struct memelfnote *note, const char *name, int type, 2769 unsigned int sz, void *data) 2770 { 2771 unsigned int namesz; 2772 2773 namesz = strlen(name) + 1; 2774 note->name = name; 2775 note->namesz = namesz; 2776 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2777 note->type = type; 2778 note->datasz = sz; 2779 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2780 2781 note->data = data; 2782 2783 /* 2784 * We calculate rounded up note size here as specified by 2785 * ELF document. 2786 */ 2787 note->notesz = sizeof (struct elf_note) + 2788 note->namesz_rounded + note->datasz_rounded; 2789 } 2790 2791 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2792 uint32_t flags) 2793 { 2794 (void) memset(elf, 0, sizeof(*elf)); 2795 2796 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2797 elf->e_ident[EI_CLASS] = ELF_CLASS; 2798 elf->e_ident[EI_DATA] = ELF_DATA; 2799 elf->e_ident[EI_VERSION] = EV_CURRENT; 2800 elf->e_ident[EI_OSABI] = ELF_OSABI; 2801 2802 elf->e_type = ET_CORE; 2803 elf->e_machine = machine; 2804 elf->e_version = EV_CURRENT; 2805 elf->e_phoff = sizeof(struct elfhdr); 2806 elf->e_flags = flags; 2807 elf->e_ehsize = sizeof(struct elfhdr); 2808 elf->e_phentsize = sizeof(struct elf_phdr); 2809 elf->e_phnum = segs; 2810 2811 bswap_ehdr(elf); 2812 } 2813 2814 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2815 { 2816 phdr->p_type = PT_NOTE; 2817 phdr->p_offset = offset; 2818 phdr->p_vaddr = 0; 2819 phdr->p_paddr = 0; 2820 phdr->p_filesz = sz; 2821 phdr->p_memsz = 0; 2822 phdr->p_flags = 0; 2823 phdr->p_align = 0; 2824 2825 bswap_phdr(phdr, 1); 2826 } 2827 2828 static size_t note_size(const struct memelfnote *note) 2829 { 2830 return (note->notesz); 2831 } 2832 2833 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2834 const TaskState *ts, int signr) 2835 { 2836 (void) memset(prstatus, 0, sizeof (*prstatus)); 2837 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2838 prstatus->pr_pid = ts->ts_tid; 2839 prstatus->pr_ppid = getppid(); 2840 prstatus->pr_pgrp = getpgrp(); 2841 prstatus->pr_sid = getsid(0); 2842 2843 bswap_prstatus(prstatus); 2844 } 2845 2846 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2847 { 2848 char *base_filename; 2849 unsigned int i, len; 2850 2851 (void) memset(psinfo, 0, sizeof (*psinfo)); 2852 2853 len = ts->info->arg_end - ts->info->arg_start; 2854 if (len >= ELF_PRARGSZ) 2855 len = ELF_PRARGSZ - 1; 2856 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2857 return -EFAULT; 2858 for (i = 0; i < len; i++) 2859 if (psinfo->pr_psargs[i] == 0) 2860 psinfo->pr_psargs[i] = ' '; 2861 psinfo->pr_psargs[len] = 0; 2862 2863 psinfo->pr_pid = getpid(); 2864 psinfo->pr_ppid = getppid(); 2865 psinfo->pr_pgrp = getpgrp(); 2866 psinfo->pr_sid = getsid(0); 2867 psinfo->pr_uid = getuid(); 2868 psinfo->pr_gid = getgid(); 2869 2870 base_filename = g_path_get_basename(ts->bprm->filename); 2871 /* 2872 * Using strncpy here is fine: at max-length, 2873 * this field is not NUL-terminated. 2874 */ 2875 (void) strncpy(psinfo->pr_fname, base_filename, 2876 sizeof(psinfo->pr_fname)); 2877 2878 g_free(base_filename); 2879 bswap_psinfo(psinfo); 2880 return (0); 2881 } 2882 2883 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2884 { 2885 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2886 elf_addr_t orig_auxv = auxv; 2887 void *ptr; 2888 int len = ts->info->auxv_len; 2889 2890 /* 2891 * Auxiliary vector is stored in target process stack. It contains 2892 * {type, value} pairs that we need to dump into note. This is not 2893 * strictly necessary but we do it here for sake of completeness. 2894 */ 2895 2896 /* read in whole auxv vector and copy it to memelfnote */ 2897 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2898 if (ptr != NULL) { 2899 fill_note(note, "CORE", NT_AUXV, len, ptr); 2900 unlock_user(ptr, auxv, len); 2901 } 2902 } 2903 2904 /* 2905 * Constructs name of coredump file. We have following convention 2906 * for the name: 2907 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2908 * 2909 * Returns 0 in case of success, -1 otherwise (errno is set). 2910 */ 2911 static int core_dump_filename(const TaskState *ts, char *buf, 2912 size_t bufsize) 2913 { 2914 char timestamp[64]; 2915 char *base_filename = NULL; 2916 struct timeval tv; 2917 struct tm tm; 2918 2919 assert(bufsize >= PATH_MAX); 2920 2921 if (gettimeofday(&tv, NULL) < 0) { 2922 (void) fprintf(stderr, "unable to get current timestamp: %s", 2923 strerror(errno)); 2924 return (-1); 2925 } 2926 2927 base_filename = g_path_get_basename(ts->bprm->filename); 2928 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2929 localtime_r(&tv.tv_sec, &tm)); 2930 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2931 base_filename, timestamp, (int)getpid()); 2932 g_free(base_filename); 2933 2934 return (0); 2935 } 2936 2937 static int dump_write(int fd, const void *ptr, size_t size) 2938 { 2939 const char *bufp = (const char *)ptr; 2940 ssize_t bytes_written, bytes_left; 2941 struct rlimit dumpsize; 2942 off_t pos; 2943 2944 bytes_written = 0; 2945 getrlimit(RLIMIT_CORE, &dumpsize); 2946 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2947 if (errno == ESPIPE) { /* not a seekable stream */ 2948 bytes_left = size; 2949 } else { 2950 return pos; 2951 } 2952 } else { 2953 if (dumpsize.rlim_cur <= pos) { 2954 return -1; 2955 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2956 bytes_left = size; 2957 } else { 2958 size_t limit_left=dumpsize.rlim_cur - pos; 2959 bytes_left = limit_left >= size ? size : limit_left ; 2960 } 2961 } 2962 2963 /* 2964 * In normal conditions, single write(2) should do but 2965 * in case of socket etc. this mechanism is more portable. 2966 */ 2967 do { 2968 bytes_written = write(fd, bufp, bytes_left); 2969 if (bytes_written < 0) { 2970 if (errno == EINTR) 2971 continue; 2972 return (-1); 2973 } else if (bytes_written == 0) { /* eof */ 2974 return (-1); 2975 } 2976 bufp += bytes_written; 2977 bytes_left -= bytes_written; 2978 } while (bytes_left > 0); 2979 2980 return (0); 2981 } 2982 2983 static int write_note(struct memelfnote *men, int fd) 2984 { 2985 struct elf_note en; 2986 2987 en.n_namesz = men->namesz; 2988 en.n_type = men->type; 2989 en.n_descsz = men->datasz; 2990 2991 bswap_note(&en); 2992 2993 if (dump_write(fd, &en, sizeof(en)) != 0) 2994 return (-1); 2995 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2996 return (-1); 2997 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 2998 return (-1); 2999 3000 return (0); 3001 } 3002 3003 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3004 { 3005 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3006 TaskState *ts = (TaskState *)cpu->opaque; 3007 struct elf_thread_status *ets; 3008 3009 ets = g_malloc0(sizeof (*ets)); 3010 ets->num_notes = 1; /* only prstatus is dumped */ 3011 fill_prstatus(&ets->prstatus, ts, 0); 3012 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3013 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3014 &ets->prstatus); 3015 3016 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3017 3018 info->notes_size += note_size(&ets->notes[0]); 3019 } 3020 3021 static void init_note_info(struct elf_note_info *info) 3022 { 3023 /* Initialize the elf_note_info structure so that it is at 3024 * least safe to call free_note_info() on it. Must be 3025 * called before calling fill_note_info(). 3026 */ 3027 memset(info, 0, sizeof (*info)); 3028 QTAILQ_INIT(&info->thread_list); 3029 } 3030 3031 static int fill_note_info(struct elf_note_info *info, 3032 long signr, const CPUArchState *env) 3033 { 3034 #define NUMNOTES 3 3035 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3036 TaskState *ts = (TaskState *)cpu->opaque; 3037 int i; 3038 3039 info->notes = g_new0(struct memelfnote, NUMNOTES); 3040 if (info->notes == NULL) 3041 return (-ENOMEM); 3042 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3043 if (info->prstatus == NULL) 3044 return (-ENOMEM); 3045 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3046 if (info->prstatus == NULL) 3047 return (-ENOMEM); 3048 3049 /* 3050 * First fill in status (and registers) of current thread 3051 * including process info & aux vector. 3052 */ 3053 fill_prstatus(info->prstatus, ts, signr); 3054 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3055 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3056 sizeof (*info->prstatus), info->prstatus); 3057 fill_psinfo(info->psinfo, ts); 3058 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3059 sizeof (*info->psinfo), info->psinfo); 3060 fill_auxv_note(&info->notes[2], ts); 3061 info->numnote = 3; 3062 3063 info->notes_size = 0; 3064 for (i = 0; i < info->numnote; i++) 3065 info->notes_size += note_size(&info->notes[i]); 3066 3067 /* read and fill status of all threads */ 3068 cpu_list_lock(); 3069 CPU_FOREACH(cpu) { 3070 if (cpu == thread_cpu) { 3071 continue; 3072 } 3073 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3074 } 3075 cpu_list_unlock(); 3076 3077 return (0); 3078 } 3079 3080 static void free_note_info(struct elf_note_info *info) 3081 { 3082 struct elf_thread_status *ets; 3083 3084 while (!QTAILQ_EMPTY(&info->thread_list)) { 3085 ets = QTAILQ_FIRST(&info->thread_list); 3086 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3087 g_free(ets); 3088 } 3089 3090 g_free(info->prstatus); 3091 g_free(info->psinfo); 3092 g_free(info->notes); 3093 } 3094 3095 static int write_note_info(struct elf_note_info *info, int fd) 3096 { 3097 struct elf_thread_status *ets; 3098 int i, error = 0; 3099 3100 /* write prstatus, psinfo and auxv for current thread */ 3101 for (i = 0; i < info->numnote; i++) 3102 if ((error = write_note(&info->notes[i], fd)) != 0) 3103 return (error); 3104 3105 /* write prstatus for each thread */ 3106 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3107 if ((error = write_note(&ets->notes[0], fd)) != 0) 3108 return (error); 3109 } 3110 3111 return (0); 3112 } 3113 3114 /* 3115 * Write out ELF coredump. 3116 * 3117 * See documentation of ELF object file format in: 3118 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3119 * 3120 * Coredump format in linux is following: 3121 * 3122 * 0 +----------------------+ \ 3123 * | ELF header | ET_CORE | 3124 * +----------------------+ | 3125 * | ELF program headers | |--- headers 3126 * | - NOTE section | | 3127 * | - PT_LOAD sections | | 3128 * +----------------------+ / 3129 * | NOTEs: | 3130 * | - NT_PRSTATUS | 3131 * | - NT_PRSINFO | 3132 * | - NT_AUXV | 3133 * +----------------------+ <-- aligned to target page 3134 * | Process memory dump | 3135 * : : 3136 * . . 3137 * : : 3138 * | | 3139 * +----------------------+ 3140 * 3141 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3142 * NT_PRSINFO -> struct elf_prpsinfo 3143 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3144 * 3145 * Format follows System V format as close as possible. Current 3146 * version limitations are as follows: 3147 * - no floating point registers are dumped 3148 * 3149 * Function returns 0 in case of success, negative errno otherwise. 3150 * 3151 * TODO: make this work also during runtime: it should be 3152 * possible to force coredump from running process and then 3153 * continue processing. For example qemu could set up SIGUSR2 3154 * handler (provided that target process haven't registered 3155 * handler for that) that does the dump when signal is received. 3156 */ 3157 static int elf_core_dump(int signr, const CPUArchState *env) 3158 { 3159 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3160 const TaskState *ts = (const TaskState *)cpu->opaque; 3161 struct vm_area_struct *vma = NULL; 3162 char corefile[PATH_MAX]; 3163 struct elf_note_info info; 3164 struct elfhdr elf; 3165 struct elf_phdr phdr; 3166 struct rlimit dumpsize; 3167 struct mm_struct *mm = NULL; 3168 off_t offset = 0, data_offset = 0; 3169 int segs = 0; 3170 int fd = -1; 3171 3172 init_note_info(&info); 3173 3174 errno = 0; 3175 getrlimit(RLIMIT_CORE, &dumpsize); 3176 if (dumpsize.rlim_cur == 0) 3177 return 0; 3178 3179 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3180 return (-errno); 3181 3182 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3183 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3184 return (-errno); 3185 3186 /* 3187 * Walk through target process memory mappings and 3188 * set up structure containing this information. After 3189 * this point vma_xxx functions can be used. 3190 */ 3191 if ((mm = vma_init()) == NULL) 3192 goto out; 3193 3194 walk_memory_regions(mm, vma_walker); 3195 segs = vma_get_mapping_count(mm); 3196 3197 /* 3198 * Construct valid coredump ELF header. We also 3199 * add one more segment for notes. 3200 */ 3201 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3202 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3203 goto out; 3204 3205 /* fill in the in-memory version of notes */ 3206 if (fill_note_info(&info, signr, env) < 0) 3207 goto out; 3208 3209 offset += sizeof (elf); /* elf header */ 3210 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3211 3212 /* write out notes program header */ 3213 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3214 3215 offset += info.notes_size; 3216 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3217 goto out; 3218 3219 /* 3220 * ELF specification wants data to start at page boundary so 3221 * we align it here. 3222 */ 3223 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3224 3225 /* 3226 * Write program headers for memory regions mapped in 3227 * the target process. 3228 */ 3229 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3230 (void) memset(&phdr, 0, sizeof (phdr)); 3231 3232 phdr.p_type = PT_LOAD; 3233 phdr.p_offset = offset; 3234 phdr.p_vaddr = vma->vma_start; 3235 phdr.p_paddr = 0; 3236 phdr.p_filesz = vma_dump_size(vma); 3237 offset += phdr.p_filesz; 3238 phdr.p_memsz = vma->vma_end - vma->vma_start; 3239 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3240 if (vma->vma_flags & PROT_WRITE) 3241 phdr.p_flags |= PF_W; 3242 if (vma->vma_flags & PROT_EXEC) 3243 phdr.p_flags |= PF_X; 3244 phdr.p_align = ELF_EXEC_PAGESIZE; 3245 3246 bswap_phdr(&phdr, 1); 3247 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3248 goto out; 3249 } 3250 } 3251 3252 /* 3253 * Next we write notes just after program headers. No 3254 * alignment needed here. 3255 */ 3256 if (write_note_info(&info, fd) < 0) 3257 goto out; 3258 3259 /* align data to page boundary */ 3260 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3261 goto out; 3262 3263 /* 3264 * Finally we can dump process memory into corefile as well. 3265 */ 3266 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3267 abi_ulong addr; 3268 abi_ulong end; 3269 3270 end = vma->vma_start + vma_dump_size(vma); 3271 3272 for (addr = vma->vma_start; addr < end; 3273 addr += TARGET_PAGE_SIZE) { 3274 char page[TARGET_PAGE_SIZE]; 3275 int error; 3276 3277 /* 3278 * Read in page from target process memory and 3279 * write it to coredump file. 3280 */ 3281 error = copy_from_user(page, addr, sizeof (page)); 3282 if (error != 0) { 3283 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3284 addr); 3285 errno = -error; 3286 goto out; 3287 } 3288 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3289 goto out; 3290 } 3291 } 3292 3293 out: 3294 free_note_info(&info); 3295 if (mm != NULL) 3296 vma_delete(mm); 3297 (void) close(fd); 3298 3299 if (errno != 0) 3300 return (-errno); 3301 return (0); 3302 } 3303 #endif /* USE_ELF_CORE_DUMP */ 3304 3305 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3306 { 3307 init_thread(regs, infop); 3308 } 3309