1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include <sys/time.h> 3 #include <sys/param.h> 4 5 #include <stdio.h> 6 #include <sys/types.h> 7 #include <fcntl.h> 8 #include <errno.h> 9 #include <unistd.h> 10 #include <sys/mman.h> 11 #include <sys/resource.h> 12 #include <stdlib.h> 13 #include <string.h> 14 #include <time.h> 15 16 #include "qemu.h" 17 #include "disas/disas.h" 18 19 #ifdef _ARCH_PPC64 20 #undef ARCH_DLINFO 21 #undef ELF_PLATFORM 22 #undef ELF_HWCAP 23 #undef ELF_HWCAP2 24 #undef ELF_CLASS 25 #undef ELF_DATA 26 #undef ELF_ARCH 27 #endif 28 29 #define ELF_OSABI ELFOSABI_SYSV 30 31 /* from personality.h */ 32 33 /* 34 * Flags for bug emulation. 35 * 36 * These occupy the top three bytes. 37 */ 38 enum { 39 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 40 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 41 descriptors (signal handling) */ 42 MMAP_PAGE_ZERO = 0x0100000, 43 ADDR_COMPAT_LAYOUT = 0x0200000, 44 READ_IMPLIES_EXEC = 0x0400000, 45 ADDR_LIMIT_32BIT = 0x0800000, 46 SHORT_INODE = 0x1000000, 47 WHOLE_SECONDS = 0x2000000, 48 STICKY_TIMEOUTS = 0x4000000, 49 ADDR_LIMIT_3GB = 0x8000000, 50 }; 51 52 /* 53 * Personality types. 54 * 55 * These go in the low byte. Avoid using the top bit, it will 56 * conflict with error returns. 57 */ 58 enum { 59 PER_LINUX = 0x0000, 60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 65 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 66 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 67 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 68 PER_BSD = 0x0006, 69 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 70 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_LINUX32 = 0x0008, 72 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 73 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 74 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 75 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 76 PER_RISCOS = 0x000c, 77 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 78 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 79 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 80 PER_HPUX = 0x0010, 81 PER_MASK = 0x00ff, 82 }; 83 84 /* 85 * Return the base personality without flags. 86 */ 87 #define personality(pers) (pers & PER_MASK) 88 89 /* this flag is uneffective under linux too, should be deleted */ 90 #ifndef MAP_DENYWRITE 91 #define MAP_DENYWRITE 0 92 #endif 93 94 /* should probably go in elf.h */ 95 #ifndef ELIBBAD 96 #define ELIBBAD 80 97 #endif 98 99 #ifdef TARGET_WORDS_BIGENDIAN 100 #define ELF_DATA ELFDATA2MSB 101 #else 102 #define ELF_DATA ELFDATA2LSB 103 #endif 104 105 #ifdef TARGET_ABI_MIPSN32 106 typedef abi_ullong target_elf_greg_t; 107 #define tswapreg(ptr) tswap64(ptr) 108 #else 109 typedef abi_ulong target_elf_greg_t; 110 #define tswapreg(ptr) tswapal(ptr) 111 #endif 112 113 #ifdef USE_UID16 114 typedef abi_ushort target_uid_t; 115 typedef abi_ushort target_gid_t; 116 #else 117 typedef abi_uint target_uid_t; 118 typedef abi_uint target_gid_t; 119 #endif 120 typedef abi_int target_pid_t; 121 122 #ifdef TARGET_I386 123 124 #define ELF_PLATFORM get_elf_platform() 125 126 static const char *get_elf_platform(void) 127 { 128 static char elf_platform[] = "i386"; 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 130 if (family > 6) 131 family = 6; 132 if (family >= 3) 133 elf_platform[1] = '0' + family; 134 return elf_platform; 135 } 136 137 #define ELF_HWCAP get_elf_hwcap() 138 139 static uint32_t get_elf_hwcap(void) 140 { 141 X86CPU *cpu = X86_CPU(thread_cpu); 142 143 return cpu->env.features[FEAT_1_EDX]; 144 } 145 146 #ifdef TARGET_X86_64 147 #define ELF_START_MMAP 0x2aaaaab000ULL 148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) 149 150 #define ELF_CLASS ELFCLASS64 151 #define ELF_ARCH EM_X86_64 152 153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 154 { 155 regs->rax = 0; 156 regs->rsp = infop->start_stack; 157 regs->rip = infop->entry; 158 } 159 160 #define ELF_NREG 27 161 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 162 163 /* 164 * Note that ELF_NREG should be 29 as there should be place for 165 * TRAPNO and ERR "registers" as well but linux doesn't dump 166 * those. 167 * 168 * See linux kernel: arch/x86/include/asm/elf.h 169 */ 170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 171 { 172 (*regs)[0] = env->regs[15]; 173 (*regs)[1] = env->regs[14]; 174 (*regs)[2] = env->regs[13]; 175 (*regs)[3] = env->regs[12]; 176 (*regs)[4] = env->regs[R_EBP]; 177 (*regs)[5] = env->regs[R_EBX]; 178 (*regs)[6] = env->regs[11]; 179 (*regs)[7] = env->regs[10]; 180 (*regs)[8] = env->regs[9]; 181 (*regs)[9] = env->regs[8]; 182 (*regs)[10] = env->regs[R_EAX]; 183 (*regs)[11] = env->regs[R_ECX]; 184 (*regs)[12] = env->regs[R_EDX]; 185 (*regs)[13] = env->regs[R_ESI]; 186 (*regs)[14] = env->regs[R_EDI]; 187 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 188 (*regs)[16] = env->eip; 189 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 190 (*regs)[18] = env->eflags; 191 (*regs)[19] = env->regs[R_ESP]; 192 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 193 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 194 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 195 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 196 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 197 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 198 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 199 } 200 201 #else 202 203 #define ELF_START_MMAP 0x80000000 204 205 /* 206 * This is used to ensure we don't load something for the wrong architecture. 207 */ 208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 209 210 /* 211 * These are used to set parameters in the core dumps. 212 */ 213 #define ELF_CLASS ELFCLASS32 214 #define ELF_ARCH EM_386 215 216 static inline void init_thread(struct target_pt_regs *regs, 217 struct image_info *infop) 218 { 219 regs->esp = infop->start_stack; 220 regs->eip = infop->entry; 221 222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 223 starts %edx contains a pointer to a function which might be 224 registered using `atexit'. This provides a mean for the 225 dynamic linker to call DT_FINI functions for shared libraries 226 that have been loaded before the code runs. 227 228 A value of 0 tells we have no such handler. */ 229 regs->edx = 0; 230 } 231 232 #define ELF_NREG 17 233 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 234 235 /* 236 * Note that ELF_NREG should be 19 as there should be place for 237 * TRAPNO and ERR "registers" as well but linux doesn't dump 238 * those. 239 * 240 * See linux kernel: arch/x86/include/asm/elf.h 241 */ 242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 243 { 244 (*regs)[0] = env->regs[R_EBX]; 245 (*regs)[1] = env->regs[R_ECX]; 246 (*regs)[2] = env->regs[R_EDX]; 247 (*regs)[3] = env->regs[R_ESI]; 248 (*regs)[4] = env->regs[R_EDI]; 249 (*regs)[5] = env->regs[R_EBP]; 250 (*regs)[6] = env->regs[R_EAX]; 251 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 252 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 253 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 254 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 255 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 256 (*regs)[12] = env->eip; 257 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 258 (*regs)[14] = env->eflags; 259 (*regs)[15] = env->regs[R_ESP]; 260 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 261 } 262 #endif 263 264 #define USE_ELF_CORE_DUMP 265 #define ELF_EXEC_PAGESIZE 4096 266 267 #endif 268 269 #ifdef TARGET_ARM 270 271 #ifndef TARGET_AARCH64 272 /* 32 bit ARM definitions */ 273 274 #define ELF_START_MMAP 0x80000000 275 276 #define elf_check_arch(x) ((x) == ELF_MACHINE) 277 278 #define ELF_ARCH ELF_MACHINE 279 #define ELF_CLASS ELFCLASS32 280 281 static inline void init_thread(struct target_pt_regs *regs, 282 struct image_info *infop) 283 { 284 abi_long stack = infop->start_stack; 285 memset(regs, 0, sizeof(*regs)); 286 287 regs->ARM_cpsr = 0x10; 288 if (infop->entry & 1) 289 regs->ARM_cpsr |= CPSR_T; 290 regs->ARM_pc = infop->entry & 0xfffffffe; 291 regs->ARM_sp = infop->start_stack; 292 /* FIXME - what to for failure of get_user()? */ 293 get_user_ual(regs->ARM_r2, stack + 8); /* envp */ 294 get_user_ual(regs->ARM_r1, stack + 4); /* envp */ 295 /* XXX: it seems that r0 is zeroed after ! */ 296 regs->ARM_r0 = 0; 297 /* For uClinux PIC binaries. */ 298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 299 regs->ARM_r10 = infop->start_data; 300 } 301 302 #define ELF_NREG 18 303 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 304 305 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 306 { 307 (*regs)[0] = tswapreg(env->regs[0]); 308 (*regs)[1] = tswapreg(env->regs[1]); 309 (*regs)[2] = tswapreg(env->regs[2]); 310 (*regs)[3] = tswapreg(env->regs[3]); 311 (*regs)[4] = tswapreg(env->regs[4]); 312 (*regs)[5] = tswapreg(env->regs[5]); 313 (*regs)[6] = tswapreg(env->regs[6]); 314 (*regs)[7] = tswapreg(env->regs[7]); 315 (*regs)[8] = tswapreg(env->regs[8]); 316 (*regs)[9] = tswapreg(env->regs[9]); 317 (*regs)[10] = tswapreg(env->regs[10]); 318 (*regs)[11] = tswapreg(env->regs[11]); 319 (*regs)[12] = tswapreg(env->regs[12]); 320 (*regs)[13] = tswapreg(env->regs[13]); 321 (*regs)[14] = tswapreg(env->regs[14]); 322 (*regs)[15] = tswapreg(env->regs[15]); 323 324 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 325 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 326 } 327 328 #define USE_ELF_CORE_DUMP 329 #define ELF_EXEC_PAGESIZE 4096 330 331 enum 332 { 333 ARM_HWCAP_ARM_SWP = 1 << 0, 334 ARM_HWCAP_ARM_HALF = 1 << 1, 335 ARM_HWCAP_ARM_THUMB = 1 << 2, 336 ARM_HWCAP_ARM_26BIT = 1 << 3, 337 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 338 ARM_HWCAP_ARM_FPA = 1 << 5, 339 ARM_HWCAP_ARM_VFP = 1 << 6, 340 ARM_HWCAP_ARM_EDSP = 1 << 7, 341 ARM_HWCAP_ARM_JAVA = 1 << 8, 342 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 343 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 344 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 345 ARM_HWCAP_ARM_NEON = 1 << 12, 346 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 347 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 348 ARM_HWCAP_ARM_TLS = 1 << 15, 349 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 350 ARM_HWCAP_ARM_IDIVA = 1 << 17, 351 ARM_HWCAP_ARM_IDIVT = 1 << 18, 352 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 353 ARM_HWCAP_ARM_LPAE = 1 << 20, 354 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 355 }; 356 357 enum { 358 ARM_HWCAP2_ARM_AES = 1 << 0, 359 ARM_HWCAP2_ARM_PMULL = 1 << 1, 360 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 361 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 362 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 363 }; 364 365 /* The commpage only exists for 32 bit kernels */ 366 367 #define TARGET_HAS_VALIDATE_GUEST_SPACE 368 /* Return 1 if the proposed guest space is suitable for the guest. 369 * Return 0 if the proposed guest space isn't suitable, but another 370 * address space should be tried. 371 * Return -1 if there is no way the proposed guest space can be 372 * valid regardless of the base. 373 * The guest code may leave a page mapped and populate it if the 374 * address is suitable. 375 */ 376 static int validate_guest_space(unsigned long guest_base, 377 unsigned long guest_size) 378 { 379 unsigned long real_start, test_page_addr; 380 381 /* We need to check that we can force a fault on access to the 382 * commpage at 0xffff0fxx 383 */ 384 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 385 386 /* If the commpage lies within the already allocated guest space, 387 * then there is no way we can allocate it. 388 */ 389 if (test_page_addr >= guest_base 390 && test_page_addr <= (guest_base + guest_size)) { 391 return -1; 392 } 393 394 /* Note it needs to be writeable to let us initialise it */ 395 real_start = (unsigned long) 396 mmap((void *)test_page_addr, qemu_host_page_size, 397 PROT_READ | PROT_WRITE, 398 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 399 400 /* If we can't map it then try another address */ 401 if (real_start == -1ul) { 402 return 0; 403 } 404 405 if (real_start != test_page_addr) { 406 /* OS didn't put the page where we asked - unmap and reject */ 407 munmap((void *)real_start, qemu_host_page_size); 408 return 0; 409 } 410 411 /* Leave the page mapped 412 * Populate it (mmap should have left it all 0'd) 413 */ 414 415 /* Kernel helper versions */ 416 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 417 418 /* Now it's populated make it RO */ 419 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 420 perror("Protecting guest commpage"); 421 exit(-1); 422 } 423 424 return 1; /* All good */ 425 } 426 427 #define ELF_HWCAP get_elf_hwcap() 428 #define ELF_HWCAP2 get_elf_hwcap2() 429 430 static uint32_t get_elf_hwcap(void) 431 { 432 ARMCPU *cpu = ARM_CPU(thread_cpu); 433 uint32_t hwcaps = 0; 434 435 hwcaps |= ARM_HWCAP_ARM_SWP; 436 hwcaps |= ARM_HWCAP_ARM_HALF; 437 hwcaps |= ARM_HWCAP_ARM_THUMB; 438 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 439 440 /* probe for the extra features */ 441 #define GET_FEATURE(feat, hwcap) \ 442 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 444 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 445 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 446 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 447 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 448 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 450 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 451 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 452 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 453 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 454 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 455 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 456 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 457 * to our VFP_FP16 feature bit. 458 */ 459 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 460 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 461 462 return hwcaps; 463 } 464 465 static uint32_t get_elf_hwcap2(void) 466 { 467 ARMCPU *cpu = ARM_CPU(thread_cpu); 468 uint32_t hwcaps = 0; 469 470 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 471 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 472 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 473 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 474 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 475 return hwcaps; 476 } 477 478 #undef GET_FEATURE 479 480 #else 481 /* 64 bit ARM definitions */ 482 #define ELF_START_MMAP 0x80000000 483 484 #define elf_check_arch(x) ((x) == ELF_MACHINE) 485 486 #define ELF_ARCH ELF_MACHINE 487 #define ELF_CLASS ELFCLASS64 488 #define ELF_PLATFORM "aarch64" 489 490 static inline void init_thread(struct target_pt_regs *regs, 491 struct image_info *infop) 492 { 493 abi_long stack = infop->start_stack; 494 memset(regs, 0, sizeof(*regs)); 495 496 regs->pc = infop->entry & ~0x3ULL; 497 regs->sp = stack; 498 } 499 500 #define ELF_NREG 34 501 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 502 503 static void elf_core_copy_regs(target_elf_gregset_t *regs, 504 const CPUARMState *env) 505 { 506 int i; 507 508 for (i = 0; i < 32; i++) { 509 (*regs)[i] = tswapreg(env->xregs[i]); 510 } 511 (*regs)[32] = tswapreg(env->pc); 512 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 513 } 514 515 #define USE_ELF_CORE_DUMP 516 #define ELF_EXEC_PAGESIZE 4096 517 518 enum { 519 ARM_HWCAP_A64_FP = 1 << 0, 520 ARM_HWCAP_A64_ASIMD = 1 << 1, 521 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 522 ARM_HWCAP_A64_AES = 1 << 3, 523 ARM_HWCAP_A64_PMULL = 1 << 4, 524 ARM_HWCAP_A64_SHA1 = 1 << 5, 525 ARM_HWCAP_A64_SHA2 = 1 << 6, 526 ARM_HWCAP_A64_CRC32 = 1 << 7, 527 }; 528 529 #define ELF_HWCAP get_elf_hwcap() 530 531 static uint32_t get_elf_hwcap(void) 532 { 533 ARMCPU *cpu = ARM_CPU(thread_cpu); 534 uint32_t hwcaps = 0; 535 536 hwcaps |= ARM_HWCAP_A64_FP; 537 hwcaps |= ARM_HWCAP_A64_ASIMD; 538 539 /* probe for the extra features */ 540 #define GET_FEATURE(feat, hwcap) \ 541 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 542 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 543 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 544 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 545 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 546 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 547 #undef GET_FEATURE 548 549 return hwcaps; 550 } 551 552 #endif /* not TARGET_AARCH64 */ 553 #endif /* TARGET_ARM */ 554 555 #ifdef TARGET_UNICORE32 556 557 #define ELF_START_MMAP 0x80000000 558 559 #define elf_check_arch(x) ((x) == EM_UNICORE32) 560 561 #define ELF_CLASS ELFCLASS32 562 #define ELF_DATA ELFDATA2LSB 563 #define ELF_ARCH EM_UNICORE32 564 565 static inline void init_thread(struct target_pt_regs *regs, 566 struct image_info *infop) 567 { 568 abi_long stack = infop->start_stack; 569 memset(regs, 0, sizeof(*regs)); 570 regs->UC32_REG_asr = 0x10; 571 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 572 regs->UC32_REG_sp = infop->start_stack; 573 /* FIXME - what to for failure of get_user()? */ 574 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 575 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 576 /* XXX: it seems that r0 is zeroed after ! */ 577 regs->UC32_REG_00 = 0; 578 } 579 580 #define ELF_NREG 34 581 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 582 583 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 584 { 585 (*regs)[0] = env->regs[0]; 586 (*regs)[1] = env->regs[1]; 587 (*regs)[2] = env->regs[2]; 588 (*regs)[3] = env->regs[3]; 589 (*regs)[4] = env->regs[4]; 590 (*regs)[5] = env->regs[5]; 591 (*regs)[6] = env->regs[6]; 592 (*regs)[7] = env->regs[7]; 593 (*regs)[8] = env->regs[8]; 594 (*regs)[9] = env->regs[9]; 595 (*regs)[10] = env->regs[10]; 596 (*regs)[11] = env->regs[11]; 597 (*regs)[12] = env->regs[12]; 598 (*regs)[13] = env->regs[13]; 599 (*regs)[14] = env->regs[14]; 600 (*regs)[15] = env->regs[15]; 601 (*regs)[16] = env->regs[16]; 602 (*regs)[17] = env->regs[17]; 603 (*regs)[18] = env->regs[18]; 604 (*regs)[19] = env->regs[19]; 605 (*regs)[20] = env->regs[20]; 606 (*regs)[21] = env->regs[21]; 607 (*regs)[22] = env->regs[22]; 608 (*regs)[23] = env->regs[23]; 609 (*regs)[24] = env->regs[24]; 610 (*regs)[25] = env->regs[25]; 611 (*regs)[26] = env->regs[26]; 612 (*regs)[27] = env->regs[27]; 613 (*regs)[28] = env->regs[28]; 614 (*regs)[29] = env->regs[29]; 615 (*regs)[30] = env->regs[30]; 616 (*regs)[31] = env->regs[31]; 617 618 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 619 (*regs)[33] = env->regs[0]; /* XXX */ 620 } 621 622 #define USE_ELF_CORE_DUMP 623 #define ELF_EXEC_PAGESIZE 4096 624 625 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 626 627 #endif 628 629 #ifdef TARGET_SPARC 630 #ifdef TARGET_SPARC64 631 632 #define ELF_START_MMAP 0x80000000 633 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 634 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 635 #ifndef TARGET_ABI32 636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 637 #else 638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 639 #endif 640 641 #define ELF_CLASS ELFCLASS64 642 #define ELF_ARCH EM_SPARCV9 643 644 #define STACK_BIAS 2047 645 646 static inline void init_thread(struct target_pt_regs *regs, 647 struct image_info *infop) 648 { 649 #ifndef TARGET_ABI32 650 regs->tstate = 0; 651 #endif 652 regs->pc = infop->entry; 653 regs->npc = regs->pc + 4; 654 regs->y = 0; 655 #ifdef TARGET_ABI32 656 regs->u_regs[14] = infop->start_stack - 16 * 4; 657 #else 658 if (personality(infop->personality) == PER_LINUX32) 659 regs->u_regs[14] = infop->start_stack - 16 * 4; 660 else 661 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 662 #endif 663 } 664 665 #else 666 #define ELF_START_MMAP 0x80000000 667 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 668 | HWCAP_SPARC_MULDIV) 669 #define elf_check_arch(x) ( (x) == EM_SPARC ) 670 671 #define ELF_CLASS ELFCLASS32 672 #define ELF_ARCH EM_SPARC 673 674 static inline void init_thread(struct target_pt_regs *regs, 675 struct image_info *infop) 676 { 677 regs->psr = 0; 678 regs->pc = infop->entry; 679 regs->npc = regs->pc + 4; 680 regs->y = 0; 681 regs->u_regs[14] = infop->start_stack - 16 * 4; 682 } 683 684 #endif 685 #endif 686 687 #ifdef TARGET_PPC 688 689 #define ELF_START_MMAP 0x80000000 690 691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 692 693 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 694 695 #define ELF_CLASS ELFCLASS64 696 697 #else 698 699 #define elf_check_arch(x) ( (x) == EM_PPC ) 700 701 #define ELF_CLASS ELFCLASS32 702 703 #endif 704 705 #define ELF_ARCH EM_PPC 706 707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 708 See arch/powerpc/include/asm/cputable.h. */ 709 enum { 710 QEMU_PPC_FEATURE_32 = 0x80000000, 711 QEMU_PPC_FEATURE_64 = 0x40000000, 712 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 713 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 714 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 715 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 716 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 717 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 718 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 719 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 720 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 721 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 722 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 723 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 724 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 725 QEMU_PPC_FEATURE_CELL = 0x00010000, 726 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 727 QEMU_PPC_FEATURE_SMT = 0x00004000, 728 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 729 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 730 QEMU_PPC_FEATURE_PA6T = 0x00000800, 731 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 732 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 733 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 734 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 735 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 736 737 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 738 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 739 740 /* Feature definitions in AT_HWCAP2. */ 741 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 742 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 743 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 744 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 745 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 746 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 747 }; 748 749 #define ELF_HWCAP get_elf_hwcap() 750 751 static uint32_t get_elf_hwcap(void) 752 { 753 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 754 uint32_t features = 0; 755 756 /* We don't have to be terribly complete here; the high points are 757 Altivec/FP/SPE support. Anything else is just a bonus. */ 758 #define GET_FEATURE(flag, feature) \ 759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 760 #define GET_FEATURE2(flag, feature) \ 761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 762 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 763 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 764 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 765 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 766 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 767 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 768 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 769 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 770 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 771 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 772 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 773 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 774 QEMU_PPC_FEATURE_ARCH_2_06); 775 #undef GET_FEATURE 776 #undef GET_FEATURE2 777 778 return features; 779 } 780 781 #define ELF_HWCAP2 get_elf_hwcap2() 782 783 static uint32_t get_elf_hwcap2(void) 784 { 785 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 786 uint32_t features = 0; 787 788 #define GET_FEATURE(flag, feature) \ 789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 790 #define GET_FEATURE2(flag, feature) \ 791 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 792 793 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 794 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 795 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 796 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 797 798 #undef GET_FEATURE 799 #undef GET_FEATURE2 800 801 return features; 802 } 803 804 /* 805 * The requirements here are: 806 * - keep the final alignment of sp (sp & 0xf) 807 * - make sure the 32-bit value at the first 16 byte aligned position of 808 * AUXV is greater than 16 for glibc compatibility. 809 * AT_IGNOREPPC is used for that. 810 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 811 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 812 */ 813 #define DLINFO_ARCH_ITEMS 5 814 #define ARCH_DLINFO \ 815 do { \ 816 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 817 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 818 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 819 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 820 /* \ 821 * Now handle glibc compatibility. \ 822 */ \ 823 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 824 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 825 } while (0) 826 827 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 828 { 829 _regs->gpr[1] = infop->start_stack; 830 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 831 if (get_ppc64_abi(infop) < 2) { 832 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias; 833 infop->entry = ldq_raw(infop->entry) + infop->load_bias; 834 } else { 835 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 836 } 837 #endif 838 _regs->nip = infop->entry; 839 } 840 841 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 842 #define ELF_NREG 48 843 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 844 845 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 846 { 847 int i; 848 target_ulong ccr = 0; 849 850 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 851 (*regs)[i] = tswapreg(env->gpr[i]); 852 } 853 854 (*regs)[32] = tswapreg(env->nip); 855 (*regs)[33] = tswapreg(env->msr); 856 (*regs)[35] = tswapreg(env->ctr); 857 (*regs)[36] = tswapreg(env->lr); 858 (*regs)[37] = tswapreg(env->xer); 859 860 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 861 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 862 } 863 (*regs)[38] = tswapreg(ccr); 864 } 865 866 #define USE_ELF_CORE_DUMP 867 #define ELF_EXEC_PAGESIZE 4096 868 869 #endif 870 871 #ifdef TARGET_MIPS 872 873 #define ELF_START_MMAP 0x80000000 874 875 #define elf_check_arch(x) ( (x) == EM_MIPS ) 876 877 #ifdef TARGET_MIPS64 878 #define ELF_CLASS ELFCLASS64 879 #else 880 #define ELF_CLASS ELFCLASS32 881 #endif 882 #define ELF_ARCH EM_MIPS 883 884 static inline void init_thread(struct target_pt_regs *regs, 885 struct image_info *infop) 886 { 887 regs->cp0_status = 2 << CP0St_KSU; 888 regs->cp0_epc = infop->entry; 889 regs->regs[29] = infop->start_stack; 890 } 891 892 /* See linux kernel: arch/mips/include/asm/elf.h. */ 893 #define ELF_NREG 45 894 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 895 896 /* See linux kernel: arch/mips/include/asm/reg.h. */ 897 enum { 898 #ifdef TARGET_MIPS64 899 TARGET_EF_R0 = 0, 900 #else 901 TARGET_EF_R0 = 6, 902 #endif 903 TARGET_EF_R26 = TARGET_EF_R0 + 26, 904 TARGET_EF_R27 = TARGET_EF_R0 + 27, 905 TARGET_EF_LO = TARGET_EF_R0 + 32, 906 TARGET_EF_HI = TARGET_EF_R0 + 33, 907 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 908 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 909 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 910 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 911 }; 912 913 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 914 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 915 { 916 int i; 917 918 for (i = 0; i < TARGET_EF_R0; i++) { 919 (*regs)[i] = 0; 920 } 921 (*regs)[TARGET_EF_R0] = 0; 922 923 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 924 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 925 } 926 927 (*regs)[TARGET_EF_R26] = 0; 928 (*regs)[TARGET_EF_R27] = 0; 929 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 930 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 931 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 932 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 933 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 934 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 935 } 936 937 #define USE_ELF_CORE_DUMP 938 #define ELF_EXEC_PAGESIZE 4096 939 940 #endif /* TARGET_MIPS */ 941 942 #ifdef TARGET_MICROBLAZE 943 944 #define ELF_START_MMAP 0x80000000 945 946 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 947 948 #define ELF_CLASS ELFCLASS32 949 #define ELF_ARCH EM_MICROBLAZE 950 951 static inline void init_thread(struct target_pt_regs *regs, 952 struct image_info *infop) 953 { 954 regs->pc = infop->entry; 955 regs->r1 = infop->start_stack; 956 957 } 958 959 #define ELF_EXEC_PAGESIZE 4096 960 961 #define USE_ELF_CORE_DUMP 962 #define ELF_NREG 38 963 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 964 965 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 966 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 967 { 968 int i, pos = 0; 969 970 for (i = 0; i < 32; i++) { 971 (*regs)[pos++] = tswapreg(env->regs[i]); 972 } 973 974 for (i = 0; i < 6; i++) { 975 (*regs)[pos++] = tswapreg(env->sregs[i]); 976 } 977 } 978 979 #endif /* TARGET_MICROBLAZE */ 980 981 #ifdef TARGET_OPENRISC 982 983 #define ELF_START_MMAP 0x08000000 984 985 #define elf_check_arch(x) ((x) == EM_OPENRISC) 986 987 #define ELF_ARCH EM_OPENRISC 988 #define ELF_CLASS ELFCLASS32 989 #define ELF_DATA ELFDATA2MSB 990 991 static inline void init_thread(struct target_pt_regs *regs, 992 struct image_info *infop) 993 { 994 regs->pc = infop->entry; 995 regs->gpr[1] = infop->start_stack; 996 } 997 998 #define USE_ELF_CORE_DUMP 999 #define ELF_EXEC_PAGESIZE 8192 1000 1001 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1002 #define ELF_NREG 34 /* gprs and pc, sr */ 1003 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1004 1005 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1006 const CPUOpenRISCState *env) 1007 { 1008 int i; 1009 1010 for (i = 0; i < 32; i++) { 1011 (*regs)[i] = tswapreg(env->gpr[i]); 1012 } 1013 1014 (*regs)[32] = tswapreg(env->pc); 1015 (*regs)[33] = tswapreg(env->sr); 1016 } 1017 #define ELF_HWCAP 0 1018 #define ELF_PLATFORM NULL 1019 1020 #endif /* TARGET_OPENRISC */ 1021 1022 #ifdef TARGET_SH4 1023 1024 #define ELF_START_MMAP 0x80000000 1025 1026 #define elf_check_arch(x) ( (x) == EM_SH ) 1027 1028 #define ELF_CLASS ELFCLASS32 1029 #define ELF_ARCH EM_SH 1030 1031 static inline void init_thread(struct target_pt_regs *regs, 1032 struct image_info *infop) 1033 { 1034 /* Check other registers XXXXX */ 1035 regs->pc = infop->entry; 1036 regs->regs[15] = infop->start_stack; 1037 } 1038 1039 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1040 #define ELF_NREG 23 1041 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1042 1043 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1044 enum { 1045 TARGET_REG_PC = 16, 1046 TARGET_REG_PR = 17, 1047 TARGET_REG_SR = 18, 1048 TARGET_REG_GBR = 19, 1049 TARGET_REG_MACH = 20, 1050 TARGET_REG_MACL = 21, 1051 TARGET_REG_SYSCALL = 22 1052 }; 1053 1054 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1055 const CPUSH4State *env) 1056 { 1057 int i; 1058 1059 for (i = 0; i < 16; i++) { 1060 (*regs[i]) = tswapreg(env->gregs[i]); 1061 } 1062 1063 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1064 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1065 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1066 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1067 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1068 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1069 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1070 } 1071 1072 #define USE_ELF_CORE_DUMP 1073 #define ELF_EXEC_PAGESIZE 4096 1074 1075 #endif 1076 1077 #ifdef TARGET_CRIS 1078 1079 #define ELF_START_MMAP 0x80000000 1080 1081 #define elf_check_arch(x) ( (x) == EM_CRIS ) 1082 1083 #define ELF_CLASS ELFCLASS32 1084 #define ELF_ARCH EM_CRIS 1085 1086 static inline void init_thread(struct target_pt_regs *regs, 1087 struct image_info *infop) 1088 { 1089 regs->erp = infop->entry; 1090 } 1091 1092 #define ELF_EXEC_PAGESIZE 8192 1093 1094 #endif 1095 1096 #ifdef TARGET_M68K 1097 1098 #define ELF_START_MMAP 0x80000000 1099 1100 #define elf_check_arch(x) ( (x) == EM_68K ) 1101 1102 #define ELF_CLASS ELFCLASS32 1103 #define ELF_ARCH EM_68K 1104 1105 /* ??? Does this need to do anything? 1106 #define ELF_PLAT_INIT(_r) */ 1107 1108 static inline void init_thread(struct target_pt_regs *regs, 1109 struct image_info *infop) 1110 { 1111 regs->usp = infop->start_stack; 1112 regs->sr = 0; 1113 regs->pc = infop->entry; 1114 } 1115 1116 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1117 #define ELF_NREG 20 1118 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1119 1120 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1121 { 1122 (*regs)[0] = tswapreg(env->dregs[1]); 1123 (*regs)[1] = tswapreg(env->dregs[2]); 1124 (*regs)[2] = tswapreg(env->dregs[3]); 1125 (*regs)[3] = tswapreg(env->dregs[4]); 1126 (*regs)[4] = tswapreg(env->dregs[5]); 1127 (*regs)[5] = tswapreg(env->dregs[6]); 1128 (*regs)[6] = tswapreg(env->dregs[7]); 1129 (*regs)[7] = tswapreg(env->aregs[0]); 1130 (*regs)[8] = tswapreg(env->aregs[1]); 1131 (*regs)[9] = tswapreg(env->aregs[2]); 1132 (*regs)[10] = tswapreg(env->aregs[3]); 1133 (*regs)[11] = tswapreg(env->aregs[4]); 1134 (*regs)[12] = tswapreg(env->aregs[5]); 1135 (*regs)[13] = tswapreg(env->aregs[6]); 1136 (*regs)[14] = tswapreg(env->dregs[0]); 1137 (*regs)[15] = tswapreg(env->aregs[7]); 1138 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1139 (*regs)[17] = tswapreg(env->sr); 1140 (*regs)[18] = tswapreg(env->pc); 1141 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1142 } 1143 1144 #define USE_ELF_CORE_DUMP 1145 #define ELF_EXEC_PAGESIZE 8192 1146 1147 #endif 1148 1149 #ifdef TARGET_ALPHA 1150 1151 #define ELF_START_MMAP (0x30000000000ULL) 1152 1153 #define elf_check_arch(x) ( (x) == ELF_ARCH ) 1154 1155 #define ELF_CLASS ELFCLASS64 1156 #define ELF_ARCH EM_ALPHA 1157 1158 static inline void init_thread(struct target_pt_regs *regs, 1159 struct image_info *infop) 1160 { 1161 regs->pc = infop->entry; 1162 regs->ps = 8; 1163 regs->usp = infop->start_stack; 1164 } 1165 1166 #define ELF_EXEC_PAGESIZE 8192 1167 1168 #endif /* TARGET_ALPHA */ 1169 1170 #ifdef TARGET_S390X 1171 1172 #define ELF_START_MMAP (0x20000000000ULL) 1173 1174 #define elf_check_arch(x) ( (x) == ELF_ARCH ) 1175 1176 #define ELF_CLASS ELFCLASS64 1177 #define ELF_DATA ELFDATA2MSB 1178 #define ELF_ARCH EM_S390 1179 1180 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1181 { 1182 regs->psw.addr = infop->entry; 1183 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1184 regs->gprs[15] = infop->start_stack; 1185 } 1186 1187 #endif /* TARGET_S390X */ 1188 1189 #ifndef ELF_PLATFORM 1190 #define ELF_PLATFORM (NULL) 1191 #endif 1192 1193 #ifndef ELF_HWCAP 1194 #define ELF_HWCAP 0 1195 #endif 1196 1197 #ifdef TARGET_ABI32 1198 #undef ELF_CLASS 1199 #define ELF_CLASS ELFCLASS32 1200 #undef bswaptls 1201 #define bswaptls(ptr) bswap32s(ptr) 1202 #endif 1203 1204 #include "elf.h" 1205 1206 struct exec 1207 { 1208 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1209 unsigned int a_text; /* length of text, in bytes */ 1210 unsigned int a_data; /* length of data, in bytes */ 1211 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1212 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1213 unsigned int a_entry; /* start address */ 1214 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1215 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1216 }; 1217 1218 1219 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1220 #define OMAGIC 0407 1221 #define NMAGIC 0410 1222 #define ZMAGIC 0413 1223 #define QMAGIC 0314 1224 1225 /* Necessary parameters */ 1226 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1227 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) 1228 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1229 1230 #define DLINFO_ITEMS 14 1231 1232 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1233 { 1234 memcpy(to, from, n); 1235 } 1236 1237 #ifdef BSWAP_NEEDED 1238 static void bswap_ehdr(struct elfhdr *ehdr) 1239 { 1240 bswap16s(&ehdr->e_type); /* Object file type */ 1241 bswap16s(&ehdr->e_machine); /* Architecture */ 1242 bswap32s(&ehdr->e_version); /* Object file version */ 1243 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1244 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1245 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1246 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1247 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1248 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1249 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1250 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1251 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1252 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1253 } 1254 1255 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1256 { 1257 int i; 1258 for (i = 0; i < phnum; ++i, ++phdr) { 1259 bswap32s(&phdr->p_type); /* Segment type */ 1260 bswap32s(&phdr->p_flags); /* Segment flags */ 1261 bswaptls(&phdr->p_offset); /* Segment file offset */ 1262 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1263 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1264 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1265 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1266 bswaptls(&phdr->p_align); /* Segment alignment */ 1267 } 1268 } 1269 1270 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1271 { 1272 int i; 1273 for (i = 0; i < shnum; ++i, ++shdr) { 1274 bswap32s(&shdr->sh_name); 1275 bswap32s(&shdr->sh_type); 1276 bswaptls(&shdr->sh_flags); 1277 bswaptls(&shdr->sh_addr); 1278 bswaptls(&shdr->sh_offset); 1279 bswaptls(&shdr->sh_size); 1280 bswap32s(&shdr->sh_link); 1281 bswap32s(&shdr->sh_info); 1282 bswaptls(&shdr->sh_addralign); 1283 bswaptls(&shdr->sh_entsize); 1284 } 1285 } 1286 1287 static void bswap_sym(struct elf_sym *sym) 1288 { 1289 bswap32s(&sym->st_name); 1290 bswaptls(&sym->st_value); 1291 bswaptls(&sym->st_size); 1292 bswap16s(&sym->st_shndx); 1293 } 1294 #else 1295 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1296 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1297 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1298 static inline void bswap_sym(struct elf_sym *sym) { } 1299 #endif 1300 1301 #ifdef USE_ELF_CORE_DUMP 1302 static int elf_core_dump(int, const CPUArchState *); 1303 #endif /* USE_ELF_CORE_DUMP */ 1304 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1305 1306 /* Verify the portions of EHDR within E_IDENT for the target. 1307 This can be performed before bswapping the entire header. */ 1308 static bool elf_check_ident(struct elfhdr *ehdr) 1309 { 1310 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1311 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1312 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1313 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1314 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1315 && ehdr->e_ident[EI_DATA] == ELF_DATA 1316 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1317 } 1318 1319 /* Verify the portions of EHDR outside of E_IDENT for the target. 1320 This has to wait until after bswapping the header. */ 1321 static bool elf_check_ehdr(struct elfhdr *ehdr) 1322 { 1323 return (elf_check_arch(ehdr->e_machine) 1324 && ehdr->e_ehsize == sizeof(struct elfhdr) 1325 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1326 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1327 } 1328 1329 /* 1330 * 'copy_elf_strings()' copies argument/envelope strings from user 1331 * memory to free pages in kernel mem. These are in a format ready 1332 * to be put directly into the top of new user memory. 1333 * 1334 */ 1335 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, 1336 abi_ulong p) 1337 { 1338 char *tmp, *tmp1, *pag = NULL; 1339 int len, offset = 0; 1340 1341 if (!p) { 1342 return 0; /* bullet-proofing */ 1343 } 1344 while (argc-- > 0) { 1345 tmp = argv[argc]; 1346 if (!tmp) { 1347 fprintf(stderr, "VFS: argc is wrong"); 1348 exit(-1); 1349 } 1350 tmp1 = tmp; 1351 while (*tmp++); 1352 len = tmp - tmp1; 1353 if (p < len) { /* this shouldn't happen - 128kB */ 1354 return 0; 1355 } 1356 while (len) { 1357 --p; --tmp; --len; 1358 if (--offset < 0) { 1359 offset = p % TARGET_PAGE_SIZE; 1360 pag = (char *)page[p/TARGET_PAGE_SIZE]; 1361 if (!pag) { 1362 pag = g_try_malloc0(TARGET_PAGE_SIZE); 1363 page[p/TARGET_PAGE_SIZE] = pag; 1364 if (!pag) 1365 return 0; 1366 } 1367 } 1368 if (len == 0 || offset == 0) { 1369 *(pag + offset) = *tmp; 1370 } 1371 else { 1372 int bytes_to_copy = (len > offset) ? offset : len; 1373 tmp -= bytes_to_copy; 1374 p -= bytes_to_copy; 1375 offset -= bytes_to_copy; 1376 len -= bytes_to_copy; 1377 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); 1378 } 1379 } 1380 } 1381 return p; 1382 } 1383 1384 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, 1385 struct image_info *info) 1386 { 1387 abi_ulong stack_base, size, error, guard; 1388 int i; 1389 1390 /* Create enough stack to hold everything. If we don't use 1391 it for args, we'll use it for something else. */ 1392 size = guest_stack_size; 1393 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) { 1394 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; 1395 } 1396 guard = TARGET_PAGE_SIZE; 1397 if (guard < qemu_real_host_page_size) { 1398 guard = qemu_real_host_page_size; 1399 } 1400 1401 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1402 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1403 if (error == -1) { 1404 perror("mmap stack"); 1405 exit(-1); 1406 } 1407 1408 /* We reserve one extra page at the top of the stack as guard. */ 1409 target_mprotect(error, guard, PROT_NONE); 1410 1411 info->stack_limit = error + guard; 1412 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; 1413 p += stack_base; 1414 1415 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 1416 if (bprm->page[i]) { 1417 info->rss++; 1418 /* FIXME - check return value of memcpy_to_target() for failure */ 1419 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); 1420 g_free(bprm->page[i]); 1421 } 1422 stack_base += TARGET_PAGE_SIZE; 1423 } 1424 return p; 1425 } 1426 1427 /* Map and zero the bss. We need to explicitly zero any fractional pages 1428 after the data section (i.e. bss). */ 1429 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1430 { 1431 uintptr_t host_start, host_map_start, host_end; 1432 1433 last_bss = TARGET_PAGE_ALIGN(last_bss); 1434 1435 /* ??? There is confusion between qemu_real_host_page_size and 1436 qemu_host_page_size here and elsewhere in target_mmap, which 1437 may lead to the end of the data section mapping from the file 1438 not being mapped. At least there was an explicit test and 1439 comment for that here, suggesting that "the file size must 1440 be known". The comment probably pre-dates the introduction 1441 of the fstat system call in target_mmap which does in fact 1442 find out the size. What isn't clear is if the workaround 1443 here is still actually needed. For now, continue with it, 1444 but merge it with the "normal" mmap that would allocate the bss. */ 1445 1446 host_start = (uintptr_t) g2h(elf_bss); 1447 host_end = (uintptr_t) g2h(last_bss); 1448 host_map_start = (host_start + qemu_real_host_page_size - 1); 1449 host_map_start &= -qemu_real_host_page_size; 1450 1451 if (host_map_start < host_end) { 1452 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1453 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1454 if (p == MAP_FAILED) { 1455 perror("cannot mmap brk"); 1456 exit(-1); 1457 } 1458 } 1459 1460 /* Ensure that the bss page(s) are valid */ 1461 if ((page_get_flags(last_bss-1) & prot) != prot) { 1462 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1463 } 1464 1465 if (host_start < host_map_start) { 1466 memset((void *)host_start, 0, host_map_start - host_start); 1467 } 1468 } 1469 1470 #ifdef CONFIG_USE_FDPIC 1471 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1472 { 1473 uint16_t n; 1474 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1475 1476 /* elf32_fdpic_loadseg */ 1477 n = info->nsegs; 1478 while (n--) { 1479 sp -= 12; 1480 put_user_u32(loadsegs[n].addr, sp+0); 1481 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1482 put_user_u32(loadsegs[n].p_memsz, sp+8); 1483 } 1484 1485 /* elf32_fdpic_loadmap */ 1486 sp -= 4; 1487 put_user_u16(0, sp+0); /* version */ 1488 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1489 1490 info->personality = PER_LINUX_FDPIC; 1491 info->loadmap_addr = sp; 1492 1493 return sp; 1494 } 1495 #endif 1496 1497 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1498 struct elfhdr *exec, 1499 struct image_info *info, 1500 struct image_info *interp_info) 1501 { 1502 abi_ulong sp; 1503 abi_ulong sp_auxv; 1504 int size; 1505 int i; 1506 abi_ulong u_rand_bytes; 1507 uint8_t k_rand_bytes[16]; 1508 abi_ulong u_platform; 1509 const char *k_platform; 1510 const int n = sizeof(elf_addr_t); 1511 1512 sp = p; 1513 1514 #ifdef CONFIG_USE_FDPIC 1515 /* Needs to be before we load the env/argc/... */ 1516 if (elf_is_fdpic(exec)) { 1517 /* Need 4 byte alignment for these structs */ 1518 sp &= ~3; 1519 sp = loader_build_fdpic_loadmap(info, sp); 1520 info->other_info = interp_info; 1521 if (interp_info) { 1522 interp_info->other_info = info; 1523 sp = loader_build_fdpic_loadmap(interp_info, sp); 1524 } 1525 } 1526 #endif 1527 1528 u_platform = 0; 1529 k_platform = ELF_PLATFORM; 1530 if (k_platform) { 1531 size_t len = strlen(k_platform) + 1; 1532 sp -= (len + n - 1) & ~(n - 1); 1533 u_platform = sp; 1534 /* FIXME - check return value of memcpy_to_target() for failure */ 1535 memcpy_to_target(sp, k_platform, len); 1536 } 1537 1538 /* 1539 * Generate 16 random bytes for userspace PRNG seeding (not 1540 * cryptically secure but it's not the aim of QEMU). 1541 */ 1542 srand((unsigned int) time(NULL)); 1543 for (i = 0; i < 16; i++) { 1544 k_rand_bytes[i] = rand(); 1545 } 1546 sp -= 16; 1547 u_rand_bytes = sp; 1548 /* FIXME - check return value of memcpy_to_target() for failure */ 1549 memcpy_to_target(sp, k_rand_bytes, 16); 1550 1551 /* 1552 * Force 16 byte _final_ alignment here for generality. 1553 */ 1554 sp = sp &~ (abi_ulong)15; 1555 size = (DLINFO_ITEMS + 1) * 2; 1556 if (k_platform) 1557 size += 2; 1558 #ifdef DLINFO_ARCH_ITEMS 1559 size += DLINFO_ARCH_ITEMS * 2; 1560 #endif 1561 #ifdef ELF_HWCAP2 1562 size += 2; 1563 #endif 1564 size += envc + argc + 2; 1565 size += 1; /* argc itself */ 1566 size *= n; 1567 if (size & 15) 1568 sp -= 16 - (size & 15); 1569 1570 /* This is correct because Linux defines 1571 * elf_addr_t as Elf32_Off / Elf64_Off 1572 */ 1573 #define NEW_AUX_ENT(id, val) do { \ 1574 sp -= n; put_user_ual(val, sp); \ 1575 sp -= n; put_user_ual(id, sp); \ 1576 } while(0) 1577 1578 sp_auxv = sp; 1579 NEW_AUX_ENT (AT_NULL, 0); 1580 1581 /* There must be exactly DLINFO_ITEMS entries here. */ 1582 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1583 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1584 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1585 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1586 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1587 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1588 NEW_AUX_ENT(AT_ENTRY, info->entry); 1589 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1590 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1591 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1592 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1593 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1594 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1595 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1596 1597 #ifdef ELF_HWCAP2 1598 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1599 #endif 1600 1601 if (k_platform) 1602 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1603 #ifdef ARCH_DLINFO 1604 /* 1605 * ARCH_DLINFO must come last so platform specific code can enforce 1606 * special alignment requirements on the AUXV if necessary (eg. PPC). 1607 */ 1608 ARCH_DLINFO; 1609 #endif 1610 #undef NEW_AUX_ENT 1611 1612 info->saved_auxv = sp; 1613 info->auxv_len = sp_auxv - sp; 1614 1615 sp = loader_build_argptr(envc, argc, sp, p, 0); 1616 /* Check the right amount of stack was allocated for auxvec, envp & argv. */ 1617 assert(sp_auxv - sp == size); 1618 return sp; 1619 } 1620 1621 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1622 /* If the guest doesn't have a validation function just agree */ 1623 static int validate_guest_space(unsigned long guest_base, 1624 unsigned long guest_size) 1625 { 1626 return 1; 1627 } 1628 #endif 1629 1630 unsigned long init_guest_space(unsigned long host_start, 1631 unsigned long host_size, 1632 unsigned long guest_start, 1633 bool fixed) 1634 { 1635 unsigned long current_start, real_start; 1636 int flags; 1637 1638 assert(host_start || host_size); 1639 1640 /* If just a starting address is given, then just verify that 1641 * address. */ 1642 if (host_start && !host_size) { 1643 if (validate_guest_space(host_start, host_size) == 1) { 1644 return host_start; 1645 } else { 1646 return (unsigned long)-1; 1647 } 1648 } 1649 1650 /* Setup the initial flags and start address. */ 1651 current_start = host_start & qemu_host_page_mask; 1652 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1653 if (fixed) { 1654 flags |= MAP_FIXED; 1655 } 1656 1657 /* Otherwise, a non-zero size region of memory needs to be mapped 1658 * and validated. */ 1659 while (1) { 1660 unsigned long real_size = host_size; 1661 1662 /* Do not use mmap_find_vma here because that is limited to the 1663 * guest address space. We are going to make the 1664 * guest address space fit whatever we're given. 1665 */ 1666 real_start = (unsigned long) 1667 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1668 if (real_start == (unsigned long)-1) { 1669 return (unsigned long)-1; 1670 } 1671 1672 /* Ensure the address is properly aligned. */ 1673 if (real_start & ~qemu_host_page_mask) { 1674 munmap((void *)real_start, host_size); 1675 real_size = host_size + qemu_host_page_size; 1676 real_start = (unsigned long) 1677 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1678 if (real_start == (unsigned long)-1) { 1679 return (unsigned long)-1; 1680 } 1681 real_start = HOST_PAGE_ALIGN(real_start); 1682 } 1683 1684 /* Check to see if the address is valid. */ 1685 if (!host_start || real_start == current_start) { 1686 int valid = validate_guest_space(real_start - guest_start, 1687 real_size); 1688 if (valid == 1) { 1689 break; 1690 } else if (valid == -1) { 1691 return (unsigned long)-1; 1692 } 1693 /* valid == 0, so try again. */ 1694 } 1695 1696 /* That address didn't work. Unmap and try a different one. 1697 * The address the host picked because is typically right at 1698 * the top of the host address space and leaves the guest with 1699 * no usable address space. Resort to a linear search. We 1700 * already compensated for mmap_min_addr, so this should not 1701 * happen often. Probably means we got unlucky and host 1702 * address space randomization put a shared library somewhere 1703 * inconvenient. 1704 */ 1705 munmap((void *)real_start, host_size); 1706 current_start += qemu_host_page_size; 1707 if (host_start == current_start) { 1708 /* Theoretically possible if host doesn't have any suitably 1709 * aligned areas. Normally the first mmap will fail. 1710 */ 1711 return (unsigned long)-1; 1712 } 1713 } 1714 1715 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size); 1716 1717 return real_start; 1718 } 1719 1720 static void probe_guest_base(const char *image_name, 1721 abi_ulong loaddr, abi_ulong hiaddr) 1722 { 1723 /* Probe for a suitable guest base address, if the user has not set 1724 * it explicitly, and set guest_base appropriately. 1725 * In case of error we will print a suitable message and exit. 1726 */ 1727 #if defined(CONFIG_USE_GUEST_BASE) 1728 const char *errmsg; 1729 if (!have_guest_base && !reserved_va) { 1730 unsigned long host_start, real_start, host_size; 1731 1732 /* Round addresses to page boundaries. */ 1733 loaddr &= qemu_host_page_mask; 1734 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1735 1736 if (loaddr < mmap_min_addr) { 1737 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1738 } else { 1739 host_start = loaddr; 1740 if (host_start != loaddr) { 1741 errmsg = "Address overflow loading ELF binary"; 1742 goto exit_errmsg; 1743 } 1744 } 1745 host_size = hiaddr - loaddr; 1746 1747 /* Setup the initial guest memory space with ranges gleaned from 1748 * the ELF image that is being loaded. 1749 */ 1750 real_start = init_guest_space(host_start, host_size, loaddr, false); 1751 if (real_start == (unsigned long)-1) { 1752 errmsg = "Unable to find space for application"; 1753 goto exit_errmsg; 1754 } 1755 guest_base = real_start - loaddr; 1756 1757 qemu_log("Relocating guest address space from 0x" 1758 TARGET_ABI_FMT_lx " to 0x%lx\n", 1759 loaddr, real_start); 1760 } 1761 return; 1762 1763 exit_errmsg: 1764 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1765 exit(-1); 1766 #endif 1767 } 1768 1769 1770 /* Load an ELF image into the address space. 1771 1772 IMAGE_NAME is the filename of the image, to use in error messages. 1773 IMAGE_FD is the open file descriptor for the image. 1774 1775 BPRM_BUF is a copy of the beginning of the file; this of course 1776 contains the elf file header at offset 0. It is assumed that this 1777 buffer is sufficiently aligned to present no problems to the host 1778 in accessing data at aligned offsets within the buffer. 1779 1780 On return: INFO values will be filled in, as necessary or available. */ 1781 1782 static void load_elf_image(const char *image_name, int image_fd, 1783 struct image_info *info, char **pinterp_name, 1784 char bprm_buf[BPRM_BUF_SIZE]) 1785 { 1786 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1787 struct elf_phdr *phdr; 1788 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1789 int i, retval; 1790 const char *errmsg; 1791 1792 /* First of all, some simple consistency checks */ 1793 errmsg = "Invalid ELF image for this architecture"; 1794 if (!elf_check_ident(ehdr)) { 1795 goto exit_errmsg; 1796 } 1797 bswap_ehdr(ehdr); 1798 if (!elf_check_ehdr(ehdr)) { 1799 goto exit_errmsg; 1800 } 1801 1802 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1803 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 1804 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 1805 } else { 1806 phdr = (struct elf_phdr *) alloca(i); 1807 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 1808 if (retval != i) { 1809 goto exit_read; 1810 } 1811 } 1812 bswap_phdr(phdr, ehdr->e_phnum); 1813 1814 #ifdef CONFIG_USE_FDPIC 1815 info->nsegs = 0; 1816 info->pt_dynamic_addr = 0; 1817 #endif 1818 1819 /* Find the maximum size of the image and allocate an appropriate 1820 amount of memory to handle that. */ 1821 loaddr = -1, hiaddr = 0; 1822 for (i = 0; i < ehdr->e_phnum; ++i) { 1823 if (phdr[i].p_type == PT_LOAD) { 1824 abi_ulong a = phdr[i].p_vaddr; 1825 if (a < loaddr) { 1826 loaddr = a; 1827 } 1828 a += phdr[i].p_memsz; 1829 if (a > hiaddr) { 1830 hiaddr = a; 1831 } 1832 #ifdef CONFIG_USE_FDPIC 1833 ++info->nsegs; 1834 #endif 1835 } 1836 } 1837 1838 load_addr = loaddr; 1839 if (ehdr->e_type == ET_DYN) { 1840 /* The image indicates that it can be loaded anywhere. Find a 1841 location that can hold the memory space required. If the 1842 image is pre-linked, LOADDR will be non-zero. Since we do 1843 not supply MAP_FIXED here we'll use that address if and 1844 only if it remains available. */ 1845 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 1846 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 1847 -1, 0); 1848 if (load_addr == -1) { 1849 goto exit_perror; 1850 } 1851 } else if (pinterp_name != NULL) { 1852 /* This is the main executable. Make sure that the low 1853 address does not conflict with MMAP_MIN_ADDR or the 1854 QEMU application itself. */ 1855 probe_guest_base(image_name, loaddr, hiaddr); 1856 } 1857 load_bias = load_addr - loaddr; 1858 1859 #ifdef CONFIG_USE_FDPIC 1860 { 1861 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 1862 g_malloc(sizeof(*loadsegs) * info->nsegs); 1863 1864 for (i = 0; i < ehdr->e_phnum; ++i) { 1865 switch (phdr[i].p_type) { 1866 case PT_DYNAMIC: 1867 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 1868 break; 1869 case PT_LOAD: 1870 loadsegs->addr = phdr[i].p_vaddr + load_bias; 1871 loadsegs->p_vaddr = phdr[i].p_vaddr; 1872 loadsegs->p_memsz = phdr[i].p_memsz; 1873 ++loadsegs; 1874 break; 1875 } 1876 } 1877 } 1878 #endif 1879 1880 info->load_bias = load_bias; 1881 info->load_addr = load_addr; 1882 info->entry = ehdr->e_entry + load_bias; 1883 info->start_code = -1; 1884 info->end_code = 0; 1885 info->start_data = -1; 1886 info->end_data = 0; 1887 info->brk = 0; 1888 info->elf_flags = ehdr->e_flags; 1889 1890 for (i = 0; i < ehdr->e_phnum; i++) { 1891 struct elf_phdr *eppnt = phdr + i; 1892 if (eppnt->p_type == PT_LOAD) { 1893 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 1894 int elf_prot = 0; 1895 1896 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 1897 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 1898 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 1899 1900 vaddr = load_bias + eppnt->p_vaddr; 1901 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 1902 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 1903 1904 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 1905 elf_prot, MAP_PRIVATE | MAP_FIXED, 1906 image_fd, eppnt->p_offset - vaddr_po); 1907 if (error == -1) { 1908 goto exit_perror; 1909 } 1910 1911 vaddr_ef = vaddr + eppnt->p_filesz; 1912 vaddr_em = vaddr + eppnt->p_memsz; 1913 1914 /* If the load segment requests extra zeros (e.g. bss), map it. */ 1915 if (vaddr_ef < vaddr_em) { 1916 zero_bss(vaddr_ef, vaddr_em, elf_prot); 1917 } 1918 1919 /* Find the full program boundaries. */ 1920 if (elf_prot & PROT_EXEC) { 1921 if (vaddr < info->start_code) { 1922 info->start_code = vaddr; 1923 } 1924 if (vaddr_ef > info->end_code) { 1925 info->end_code = vaddr_ef; 1926 } 1927 } 1928 if (elf_prot & PROT_WRITE) { 1929 if (vaddr < info->start_data) { 1930 info->start_data = vaddr; 1931 } 1932 if (vaddr_ef > info->end_data) { 1933 info->end_data = vaddr_ef; 1934 } 1935 if (vaddr_em > info->brk) { 1936 info->brk = vaddr_em; 1937 } 1938 } 1939 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 1940 char *interp_name; 1941 1942 if (*pinterp_name) { 1943 errmsg = "Multiple PT_INTERP entries"; 1944 goto exit_errmsg; 1945 } 1946 interp_name = malloc(eppnt->p_filesz); 1947 if (!interp_name) { 1948 goto exit_perror; 1949 } 1950 1951 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 1952 memcpy(interp_name, bprm_buf + eppnt->p_offset, 1953 eppnt->p_filesz); 1954 } else { 1955 retval = pread(image_fd, interp_name, eppnt->p_filesz, 1956 eppnt->p_offset); 1957 if (retval != eppnt->p_filesz) { 1958 goto exit_perror; 1959 } 1960 } 1961 if (interp_name[eppnt->p_filesz - 1] != 0) { 1962 errmsg = "Invalid PT_INTERP entry"; 1963 goto exit_errmsg; 1964 } 1965 *pinterp_name = interp_name; 1966 } 1967 } 1968 1969 if (info->end_data == 0) { 1970 info->start_data = info->end_code; 1971 info->end_data = info->end_code; 1972 info->brk = info->end_code; 1973 } 1974 1975 if (qemu_log_enabled()) { 1976 load_symbols(ehdr, image_fd, load_bias); 1977 } 1978 1979 close(image_fd); 1980 return; 1981 1982 exit_read: 1983 if (retval >= 0) { 1984 errmsg = "Incomplete read of file header"; 1985 goto exit_errmsg; 1986 } 1987 exit_perror: 1988 errmsg = strerror(errno); 1989 exit_errmsg: 1990 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1991 exit(-1); 1992 } 1993 1994 static void load_elf_interp(const char *filename, struct image_info *info, 1995 char bprm_buf[BPRM_BUF_SIZE]) 1996 { 1997 int fd, retval; 1998 1999 fd = open(path(filename), O_RDONLY); 2000 if (fd < 0) { 2001 goto exit_perror; 2002 } 2003 2004 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2005 if (retval < 0) { 2006 goto exit_perror; 2007 } 2008 if (retval < BPRM_BUF_SIZE) { 2009 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2010 } 2011 2012 load_elf_image(filename, fd, info, NULL, bprm_buf); 2013 return; 2014 2015 exit_perror: 2016 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2017 exit(-1); 2018 } 2019 2020 static int symfind(const void *s0, const void *s1) 2021 { 2022 target_ulong addr = *(target_ulong *)s0; 2023 struct elf_sym *sym = (struct elf_sym *)s1; 2024 int result = 0; 2025 if (addr < sym->st_value) { 2026 result = -1; 2027 } else if (addr >= sym->st_value + sym->st_size) { 2028 result = 1; 2029 } 2030 return result; 2031 } 2032 2033 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2034 { 2035 #if ELF_CLASS == ELFCLASS32 2036 struct elf_sym *syms = s->disas_symtab.elf32; 2037 #else 2038 struct elf_sym *syms = s->disas_symtab.elf64; 2039 #endif 2040 2041 // binary search 2042 struct elf_sym *sym; 2043 2044 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2045 if (sym != NULL) { 2046 return s->disas_strtab + sym->st_name; 2047 } 2048 2049 return ""; 2050 } 2051 2052 /* FIXME: This should use elf_ops.h */ 2053 static int symcmp(const void *s0, const void *s1) 2054 { 2055 struct elf_sym *sym0 = (struct elf_sym *)s0; 2056 struct elf_sym *sym1 = (struct elf_sym *)s1; 2057 return (sym0->st_value < sym1->st_value) 2058 ? -1 2059 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2060 } 2061 2062 /* Best attempt to load symbols from this ELF object. */ 2063 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2064 { 2065 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2066 struct elf_shdr *shdr; 2067 char *strings = NULL; 2068 struct syminfo *s = NULL; 2069 struct elf_sym *new_syms, *syms = NULL; 2070 2071 shnum = hdr->e_shnum; 2072 i = shnum * sizeof(struct elf_shdr); 2073 shdr = (struct elf_shdr *)alloca(i); 2074 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2075 return; 2076 } 2077 2078 bswap_shdr(shdr, shnum); 2079 for (i = 0; i < shnum; ++i) { 2080 if (shdr[i].sh_type == SHT_SYMTAB) { 2081 sym_idx = i; 2082 str_idx = shdr[i].sh_link; 2083 goto found; 2084 } 2085 } 2086 2087 /* There will be no symbol table if the file was stripped. */ 2088 return; 2089 2090 found: 2091 /* Now know where the strtab and symtab are. Snarf them. */ 2092 s = malloc(sizeof(*s)); 2093 if (!s) { 2094 goto give_up; 2095 } 2096 2097 i = shdr[str_idx].sh_size; 2098 s->disas_strtab = strings = malloc(i); 2099 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { 2100 goto give_up; 2101 } 2102 2103 i = shdr[sym_idx].sh_size; 2104 syms = malloc(i); 2105 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { 2106 goto give_up; 2107 } 2108 2109 nsyms = i / sizeof(struct elf_sym); 2110 for (i = 0; i < nsyms; ) { 2111 bswap_sym(syms + i); 2112 /* Throw away entries which we do not need. */ 2113 if (syms[i].st_shndx == SHN_UNDEF 2114 || syms[i].st_shndx >= SHN_LORESERVE 2115 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2116 if (i < --nsyms) { 2117 syms[i] = syms[nsyms]; 2118 } 2119 } else { 2120 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2121 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2122 syms[i].st_value &= ~(target_ulong)1; 2123 #endif 2124 syms[i].st_value += load_bias; 2125 i++; 2126 } 2127 } 2128 2129 /* No "useful" symbol. */ 2130 if (nsyms == 0) { 2131 goto give_up; 2132 } 2133 2134 /* Attempt to free the storage associated with the local symbols 2135 that we threw away. Whether or not this has any effect on the 2136 memory allocation depends on the malloc implementation and how 2137 many symbols we managed to discard. */ 2138 new_syms = realloc(syms, nsyms * sizeof(*syms)); 2139 if (new_syms == NULL) { 2140 goto give_up; 2141 } 2142 syms = new_syms; 2143 2144 qsort(syms, nsyms, sizeof(*syms), symcmp); 2145 2146 s->disas_num_syms = nsyms; 2147 #if ELF_CLASS == ELFCLASS32 2148 s->disas_symtab.elf32 = syms; 2149 #else 2150 s->disas_symtab.elf64 = syms; 2151 #endif 2152 s->lookup_symbol = lookup_symbolxx; 2153 s->next = syminfos; 2154 syminfos = s; 2155 2156 return; 2157 2158 give_up: 2159 free(s); 2160 free(strings); 2161 free(syms); 2162 } 2163 2164 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2165 { 2166 struct image_info interp_info; 2167 struct elfhdr elf_ex; 2168 char *elf_interpreter = NULL; 2169 2170 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2171 info->mmap = 0; 2172 info->rss = 0; 2173 2174 load_elf_image(bprm->filename, bprm->fd, info, 2175 &elf_interpreter, bprm->buf); 2176 2177 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2178 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2179 when we load the interpreter. */ 2180 elf_ex = *(struct elfhdr *)bprm->buf; 2181 2182 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); 2183 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); 2184 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); 2185 if (!bprm->p) { 2186 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2187 exit(-1); 2188 } 2189 2190 /* Do this so that we can load the interpreter, if need be. We will 2191 change some of these later */ 2192 bprm->p = setup_arg_pages(bprm->p, bprm, info); 2193 2194 if (elf_interpreter) { 2195 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2196 2197 /* If the program interpreter is one of these two, then assume 2198 an iBCS2 image. Otherwise assume a native linux image. */ 2199 2200 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2201 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2202 info->personality = PER_SVR4; 2203 2204 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2205 and some applications "depend" upon this behavior. Since 2206 we do not have the power to recompile these, we emulate 2207 the SVr4 behavior. Sigh. */ 2208 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2209 MAP_FIXED | MAP_PRIVATE, -1, 0); 2210 } 2211 } 2212 2213 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2214 info, (elf_interpreter ? &interp_info : NULL)); 2215 info->start_stack = bprm->p; 2216 2217 /* If we have an interpreter, set that as the program's entry point. 2218 Copy the load_bias as well, to help PPC64 interpret the entry 2219 point as a function descriptor. Do this after creating elf tables 2220 so that we copy the original program entry point into the AUXV. */ 2221 if (elf_interpreter) { 2222 info->load_bias = interp_info.load_bias; 2223 info->entry = interp_info.entry; 2224 free(elf_interpreter); 2225 } 2226 2227 #ifdef USE_ELF_CORE_DUMP 2228 bprm->core_dump = &elf_core_dump; 2229 #endif 2230 2231 return 0; 2232 } 2233 2234 #ifdef USE_ELF_CORE_DUMP 2235 /* 2236 * Definitions to generate Intel SVR4-like core files. 2237 * These mostly have the same names as the SVR4 types with "target_elf_" 2238 * tacked on the front to prevent clashes with linux definitions, 2239 * and the typedef forms have been avoided. This is mostly like 2240 * the SVR4 structure, but more Linuxy, with things that Linux does 2241 * not support and which gdb doesn't really use excluded. 2242 * 2243 * Fields we don't dump (their contents is zero) in linux-user qemu 2244 * are marked with XXX. 2245 * 2246 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2247 * 2248 * Porting ELF coredump for target is (quite) simple process. First you 2249 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2250 * the target resides): 2251 * 2252 * #define USE_ELF_CORE_DUMP 2253 * 2254 * Next you define type of register set used for dumping. ELF specification 2255 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2256 * 2257 * typedef <target_regtype> target_elf_greg_t; 2258 * #define ELF_NREG <number of registers> 2259 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2260 * 2261 * Last step is to implement target specific function that copies registers 2262 * from given cpu into just specified register set. Prototype is: 2263 * 2264 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2265 * const CPUArchState *env); 2266 * 2267 * Parameters: 2268 * regs - copy register values into here (allocated and zeroed by caller) 2269 * env - copy registers from here 2270 * 2271 * Example for ARM target is provided in this file. 2272 */ 2273 2274 /* An ELF note in memory */ 2275 struct memelfnote { 2276 const char *name; 2277 size_t namesz; 2278 size_t namesz_rounded; 2279 int type; 2280 size_t datasz; 2281 size_t datasz_rounded; 2282 void *data; 2283 size_t notesz; 2284 }; 2285 2286 struct target_elf_siginfo { 2287 abi_int si_signo; /* signal number */ 2288 abi_int si_code; /* extra code */ 2289 abi_int si_errno; /* errno */ 2290 }; 2291 2292 struct target_elf_prstatus { 2293 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2294 abi_short pr_cursig; /* Current signal */ 2295 abi_ulong pr_sigpend; /* XXX */ 2296 abi_ulong pr_sighold; /* XXX */ 2297 target_pid_t pr_pid; 2298 target_pid_t pr_ppid; 2299 target_pid_t pr_pgrp; 2300 target_pid_t pr_sid; 2301 struct target_timeval pr_utime; /* XXX User time */ 2302 struct target_timeval pr_stime; /* XXX System time */ 2303 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2304 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2305 target_elf_gregset_t pr_reg; /* GP registers */ 2306 abi_int pr_fpvalid; /* XXX */ 2307 }; 2308 2309 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2310 2311 struct target_elf_prpsinfo { 2312 char pr_state; /* numeric process state */ 2313 char pr_sname; /* char for pr_state */ 2314 char pr_zomb; /* zombie */ 2315 char pr_nice; /* nice val */ 2316 abi_ulong pr_flag; /* flags */ 2317 target_uid_t pr_uid; 2318 target_gid_t pr_gid; 2319 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2320 /* Lots missing */ 2321 char pr_fname[16]; /* filename of executable */ 2322 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2323 }; 2324 2325 /* Here is the structure in which status of each thread is captured. */ 2326 struct elf_thread_status { 2327 QTAILQ_ENTRY(elf_thread_status) ets_link; 2328 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2329 #if 0 2330 elf_fpregset_t fpu; /* NT_PRFPREG */ 2331 struct task_struct *thread; 2332 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2333 #endif 2334 struct memelfnote notes[1]; 2335 int num_notes; 2336 }; 2337 2338 struct elf_note_info { 2339 struct memelfnote *notes; 2340 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2341 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2342 2343 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2344 #if 0 2345 /* 2346 * Current version of ELF coredump doesn't support 2347 * dumping fp regs etc. 2348 */ 2349 elf_fpregset_t *fpu; 2350 elf_fpxregset_t *xfpu; 2351 int thread_status_size; 2352 #endif 2353 int notes_size; 2354 int numnote; 2355 }; 2356 2357 struct vm_area_struct { 2358 abi_ulong vma_start; /* start vaddr of memory region */ 2359 abi_ulong vma_end; /* end vaddr of memory region */ 2360 abi_ulong vma_flags; /* protection etc. flags for the region */ 2361 QTAILQ_ENTRY(vm_area_struct) vma_link; 2362 }; 2363 2364 struct mm_struct { 2365 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2366 int mm_count; /* number of mappings */ 2367 }; 2368 2369 static struct mm_struct *vma_init(void); 2370 static void vma_delete(struct mm_struct *); 2371 static int vma_add_mapping(struct mm_struct *, abi_ulong, 2372 abi_ulong, abi_ulong); 2373 static int vma_get_mapping_count(const struct mm_struct *); 2374 static struct vm_area_struct *vma_first(const struct mm_struct *); 2375 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2376 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2377 static int vma_walker(void *priv, abi_ulong start, abi_ulong end, 2378 unsigned long flags); 2379 2380 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2381 static void fill_note(struct memelfnote *, const char *, int, 2382 unsigned int, void *); 2383 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2384 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2385 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2386 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2387 static size_t note_size(const struct memelfnote *); 2388 static void free_note_info(struct elf_note_info *); 2389 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2390 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2391 static int core_dump_filename(const TaskState *, char *, size_t); 2392 2393 static int dump_write(int, const void *, size_t); 2394 static int write_note(struct memelfnote *, int); 2395 static int write_note_info(struct elf_note_info *, int); 2396 2397 #ifdef BSWAP_NEEDED 2398 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2399 { 2400 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2401 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2402 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2403 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2404 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2405 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2406 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2407 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2408 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2409 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2410 /* cpu times are not filled, so we skip them */ 2411 /* regs should be in correct format already */ 2412 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2413 } 2414 2415 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2416 { 2417 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2418 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2419 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2420 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2421 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2422 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2423 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2424 } 2425 2426 static void bswap_note(struct elf_note *en) 2427 { 2428 bswap32s(&en->n_namesz); 2429 bswap32s(&en->n_descsz); 2430 bswap32s(&en->n_type); 2431 } 2432 #else 2433 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2434 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2435 static inline void bswap_note(struct elf_note *en) { } 2436 #endif /* BSWAP_NEEDED */ 2437 2438 /* 2439 * Minimal support for linux memory regions. These are needed 2440 * when we are finding out what memory exactly belongs to 2441 * emulated process. No locks needed here, as long as 2442 * thread that received the signal is stopped. 2443 */ 2444 2445 static struct mm_struct *vma_init(void) 2446 { 2447 struct mm_struct *mm; 2448 2449 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2450 return (NULL); 2451 2452 mm->mm_count = 0; 2453 QTAILQ_INIT(&mm->mm_mmap); 2454 2455 return (mm); 2456 } 2457 2458 static void vma_delete(struct mm_struct *mm) 2459 { 2460 struct vm_area_struct *vma; 2461 2462 while ((vma = vma_first(mm)) != NULL) { 2463 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2464 g_free(vma); 2465 } 2466 g_free(mm); 2467 } 2468 2469 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start, 2470 abi_ulong end, abi_ulong flags) 2471 { 2472 struct vm_area_struct *vma; 2473 2474 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2475 return (-1); 2476 2477 vma->vma_start = start; 2478 vma->vma_end = end; 2479 vma->vma_flags = flags; 2480 2481 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2482 mm->mm_count++; 2483 2484 return (0); 2485 } 2486 2487 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2488 { 2489 return (QTAILQ_FIRST(&mm->mm_mmap)); 2490 } 2491 2492 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2493 { 2494 return (QTAILQ_NEXT(vma, vma_link)); 2495 } 2496 2497 static int vma_get_mapping_count(const struct mm_struct *mm) 2498 { 2499 return (mm->mm_count); 2500 } 2501 2502 /* 2503 * Calculate file (dump) size of given memory region. 2504 */ 2505 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2506 { 2507 /* if we cannot even read the first page, skip it */ 2508 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2509 return (0); 2510 2511 /* 2512 * Usually we don't dump executable pages as they contain 2513 * non-writable code that debugger can read directly from 2514 * target library etc. However, thread stacks are marked 2515 * also executable so we read in first page of given region 2516 * and check whether it contains elf header. If there is 2517 * no elf header, we dump it. 2518 */ 2519 if (vma->vma_flags & PROT_EXEC) { 2520 char page[TARGET_PAGE_SIZE]; 2521 2522 copy_from_user(page, vma->vma_start, sizeof (page)); 2523 if ((page[EI_MAG0] == ELFMAG0) && 2524 (page[EI_MAG1] == ELFMAG1) && 2525 (page[EI_MAG2] == ELFMAG2) && 2526 (page[EI_MAG3] == ELFMAG3)) { 2527 /* 2528 * Mappings are possibly from ELF binary. Don't dump 2529 * them. 2530 */ 2531 return (0); 2532 } 2533 } 2534 2535 return (vma->vma_end - vma->vma_start); 2536 } 2537 2538 static int vma_walker(void *priv, abi_ulong start, abi_ulong end, 2539 unsigned long flags) 2540 { 2541 struct mm_struct *mm = (struct mm_struct *)priv; 2542 2543 vma_add_mapping(mm, start, end, flags); 2544 return (0); 2545 } 2546 2547 static void fill_note(struct memelfnote *note, const char *name, int type, 2548 unsigned int sz, void *data) 2549 { 2550 unsigned int namesz; 2551 2552 namesz = strlen(name) + 1; 2553 note->name = name; 2554 note->namesz = namesz; 2555 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2556 note->type = type; 2557 note->datasz = sz; 2558 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2559 2560 note->data = data; 2561 2562 /* 2563 * We calculate rounded up note size here as specified by 2564 * ELF document. 2565 */ 2566 note->notesz = sizeof (struct elf_note) + 2567 note->namesz_rounded + note->datasz_rounded; 2568 } 2569 2570 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2571 uint32_t flags) 2572 { 2573 (void) memset(elf, 0, sizeof(*elf)); 2574 2575 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2576 elf->e_ident[EI_CLASS] = ELF_CLASS; 2577 elf->e_ident[EI_DATA] = ELF_DATA; 2578 elf->e_ident[EI_VERSION] = EV_CURRENT; 2579 elf->e_ident[EI_OSABI] = ELF_OSABI; 2580 2581 elf->e_type = ET_CORE; 2582 elf->e_machine = machine; 2583 elf->e_version = EV_CURRENT; 2584 elf->e_phoff = sizeof(struct elfhdr); 2585 elf->e_flags = flags; 2586 elf->e_ehsize = sizeof(struct elfhdr); 2587 elf->e_phentsize = sizeof(struct elf_phdr); 2588 elf->e_phnum = segs; 2589 2590 bswap_ehdr(elf); 2591 } 2592 2593 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2594 { 2595 phdr->p_type = PT_NOTE; 2596 phdr->p_offset = offset; 2597 phdr->p_vaddr = 0; 2598 phdr->p_paddr = 0; 2599 phdr->p_filesz = sz; 2600 phdr->p_memsz = 0; 2601 phdr->p_flags = 0; 2602 phdr->p_align = 0; 2603 2604 bswap_phdr(phdr, 1); 2605 } 2606 2607 static size_t note_size(const struct memelfnote *note) 2608 { 2609 return (note->notesz); 2610 } 2611 2612 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2613 const TaskState *ts, int signr) 2614 { 2615 (void) memset(prstatus, 0, sizeof (*prstatus)); 2616 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2617 prstatus->pr_pid = ts->ts_tid; 2618 prstatus->pr_ppid = getppid(); 2619 prstatus->pr_pgrp = getpgrp(); 2620 prstatus->pr_sid = getsid(0); 2621 2622 bswap_prstatus(prstatus); 2623 } 2624 2625 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2626 { 2627 char *base_filename; 2628 unsigned int i, len; 2629 2630 (void) memset(psinfo, 0, sizeof (*psinfo)); 2631 2632 len = ts->info->arg_end - ts->info->arg_start; 2633 if (len >= ELF_PRARGSZ) 2634 len = ELF_PRARGSZ - 1; 2635 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2636 return -EFAULT; 2637 for (i = 0; i < len; i++) 2638 if (psinfo->pr_psargs[i] == 0) 2639 psinfo->pr_psargs[i] = ' '; 2640 psinfo->pr_psargs[len] = 0; 2641 2642 psinfo->pr_pid = getpid(); 2643 psinfo->pr_ppid = getppid(); 2644 psinfo->pr_pgrp = getpgrp(); 2645 psinfo->pr_sid = getsid(0); 2646 psinfo->pr_uid = getuid(); 2647 psinfo->pr_gid = getgid(); 2648 2649 base_filename = g_path_get_basename(ts->bprm->filename); 2650 /* 2651 * Using strncpy here is fine: at max-length, 2652 * this field is not NUL-terminated. 2653 */ 2654 (void) strncpy(psinfo->pr_fname, base_filename, 2655 sizeof(psinfo->pr_fname)); 2656 2657 g_free(base_filename); 2658 bswap_psinfo(psinfo); 2659 return (0); 2660 } 2661 2662 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2663 { 2664 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2665 elf_addr_t orig_auxv = auxv; 2666 void *ptr; 2667 int len = ts->info->auxv_len; 2668 2669 /* 2670 * Auxiliary vector is stored in target process stack. It contains 2671 * {type, value} pairs that we need to dump into note. This is not 2672 * strictly necessary but we do it here for sake of completeness. 2673 */ 2674 2675 /* read in whole auxv vector and copy it to memelfnote */ 2676 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2677 if (ptr != NULL) { 2678 fill_note(note, "CORE", NT_AUXV, len, ptr); 2679 unlock_user(ptr, auxv, len); 2680 } 2681 } 2682 2683 /* 2684 * Constructs name of coredump file. We have following convention 2685 * for the name: 2686 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2687 * 2688 * Returns 0 in case of success, -1 otherwise (errno is set). 2689 */ 2690 static int core_dump_filename(const TaskState *ts, char *buf, 2691 size_t bufsize) 2692 { 2693 char timestamp[64]; 2694 char *filename = NULL; 2695 char *base_filename = NULL; 2696 struct timeval tv; 2697 struct tm tm; 2698 2699 assert(bufsize >= PATH_MAX); 2700 2701 if (gettimeofday(&tv, NULL) < 0) { 2702 (void) fprintf(stderr, "unable to get current timestamp: %s", 2703 strerror(errno)); 2704 return (-1); 2705 } 2706 2707 filename = strdup(ts->bprm->filename); 2708 base_filename = strdup(basename(filename)); 2709 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2710 localtime_r(&tv.tv_sec, &tm)); 2711 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2712 base_filename, timestamp, (int)getpid()); 2713 free(base_filename); 2714 free(filename); 2715 2716 return (0); 2717 } 2718 2719 static int dump_write(int fd, const void *ptr, size_t size) 2720 { 2721 const char *bufp = (const char *)ptr; 2722 ssize_t bytes_written, bytes_left; 2723 struct rlimit dumpsize; 2724 off_t pos; 2725 2726 bytes_written = 0; 2727 getrlimit(RLIMIT_CORE, &dumpsize); 2728 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2729 if (errno == ESPIPE) { /* not a seekable stream */ 2730 bytes_left = size; 2731 } else { 2732 return pos; 2733 } 2734 } else { 2735 if (dumpsize.rlim_cur <= pos) { 2736 return -1; 2737 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2738 bytes_left = size; 2739 } else { 2740 size_t limit_left=dumpsize.rlim_cur - pos; 2741 bytes_left = limit_left >= size ? size : limit_left ; 2742 } 2743 } 2744 2745 /* 2746 * In normal conditions, single write(2) should do but 2747 * in case of socket etc. this mechanism is more portable. 2748 */ 2749 do { 2750 bytes_written = write(fd, bufp, bytes_left); 2751 if (bytes_written < 0) { 2752 if (errno == EINTR) 2753 continue; 2754 return (-1); 2755 } else if (bytes_written == 0) { /* eof */ 2756 return (-1); 2757 } 2758 bufp += bytes_written; 2759 bytes_left -= bytes_written; 2760 } while (bytes_left > 0); 2761 2762 return (0); 2763 } 2764 2765 static int write_note(struct memelfnote *men, int fd) 2766 { 2767 struct elf_note en; 2768 2769 en.n_namesz = men->namesz; 2770 en.n_type = men->type; 2771 en.n_descsz = men->datasz; 2772 2773 bswap_note(&en); 2774 2775 if (dump_write(fd, &en, sizeof(en)) != 0) 2776 return (-1); 2777 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2778 return (-1); 2779 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 2780 return (-1); 2781 2782 return (0); 2783 } 2784 2785 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 2786 { 2787 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2788 TaskState *ts = (TaskState *)cpu->opaque; 2789 struct elf_thread_status *ets; 2790 2791 ets = g_malloc0(sizeof (*ets)); 2792 ets->num_notes = 1; /* only prstatus is dumped */ 2793 fill_prstatus(&ets->prstatus, ts, 0); 2794 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 2795 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 2796 &ets->prstatus); 2797 2798 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 2799 2800 info->notes_size += note_size(&ets->notes[0]); 2801 } 2802 2803 static void init_note_info(struct elf_note_info *info) 2804 { 2805 /* Initialize the elf_note_info structure so that it is at 2806 * least safe to call free_note_info() on it. Must be 2807 * called before calling fill_note_info(). 2808 */ 2809 memset(info, 0, sizeof (*info)); 2810 QTAILQ_INIT(&info->thread_list); 2811 } 2812 2813 static int fill_note_info(struct elf_note_info *info, 2814 long signr, const CPUArchState *env) 2815 { 2816 #define NUMNOTES 3 2817 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2818 TaskState *ts = (TaskState *)cpu->opaque; 2819 int i; 2820 2821 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote)); 2822 if (info->notes == NULL) 2823 return (-ENOMEM); 2824 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 2825 if (info->prstatus == NULL) 2826 return (-ENOMEM); 2827 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 2828 if (info->prstatus == NULL) 2829 return (-ENOMEM); 2830 2831 /* 2832 * First fill in status (and registers) of current thread 2833 * including process info & aux vector. 2834 */ 2835 fill_prstatus(info->prstatus, ts, signr); 2836 elf_core_copy_regs(&info->prstatus->pr_reg, env); 2837 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 2838 sizeof (*info->prstatus), info->prstatus); 2839 fill_psinfo(info->psinfo, ts); 2840 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 2841 sizeof (*info->psinfo), info->psinfo); 2842 fill_auxv_note(&info->notes[2], ts); 2843 info->numnote = 3; 2844 2845 info->notes_size = 0; 2846 for (i = 0; i < info->numnote; i++) 2847 info->notes_size += note_size(&info->notes[i]); 2848 2849 /* read and fill status of all threads */ 2850 cpu_list_lock(); 2851 CPU_FOREACH(cpu) { 2852 if (cpu == thread_cpu) { 2853 continue; 2854 } 2855 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 2856 } 2857 cpu_list_unlock(); 2858 2859 return (0); 2860 } 2861 2862 static void free_note_info(struct elf_note_info *info) 2863 { 2864 struct elf_thread_status *ets; 2865 2866 while (!QTAILQ_EMPTY(&info->thread_list)) { 2867 ets = QTAILQ_FIRST(&info->thread_list); 2868 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 2869 g_free(ets); 2870 } 2871 2872 g_free(info->prstatus); 2873 g_free(info->psinfo); 2874 g_free(info->notes); 2875 } 2876 2877 static int write_note_info(struct elf_note_info *info, int fd) 2878 { 2879 struct elf_thread_status *ets; 2880 int i, error = 0; 2881 2882 /* write prstatus, psinfo and auxv for current thread */ 2883 for (i = 0; i < info->numnote; i++) 2884 if ((error = write_note(&info->notes[i], fd)) != 0) 2885 return (error); 2886 2887 /* write prstatus for each thread */ 2888 for (ets = info->thread_list.tqh_first; ets != NULL; 2889 ets = ets->ets_link.tqe_next) { 2890 if ((error = write_note(&ets->notes[0], fd)) != 0) 2891 return (error); 2892 } 2893 2894 return (0); 2895 } 2896 2897 /* 2898 * Write out ELF coredump. 2899 * 2900 * See documentation of ELF object file format in: 2901 * http://www.caldera.com/developers/devspecs/gabi41.pdf 2902 * 2903 * Coredump format in linux is following: 2904 * 2905 * 0 +----------------------+ \ 2906 * | ELF header | ET_CORE | 2907 * +----------------------+ | 2908 * | ELF program headers | |--- headers 2909 * | - NOTE section | | 2910 * | - PT_LOAD sections | | 2911 * +----------------------+ / 2912 * | NOTEs: | 2913 * | - NT_PRSTATUS | 2914 * | - NT_PRSINFO | 2915 * | - NT_AUXV | 2916 * +----------------------+ <-- aligned to target page 2917 * | Process memory dump | 2918 * : : 2919 * . . 2920 * : : 2921 * | | 2922 * +----------------------+ 2923 * 2924 * NT_PRSTATUS -> struct elf_prstatus (per thread) 2925 * NT_PRSINFO -> struct elf_prpsinfo 2926 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 2927 * 2928 * Format follows System V format as close as possible. Current 2929 * version limitations are as follows: 2930 * - no floating point registers are dumped 2931 * 2932 * Function returns 0 in case of success, negative errno otherwise. 2933 * 2934 * TODO: make this work also during runtime: it should be 2935 * possible to force coredump from running process and then 2936 * continue processing. For example qemu could set up SIGUSR2 2937 * handler (provided that target process haven't registered 2938 * handler for that) that does the dump when signal is received. 2939 */ 2940 static int elf_core_dump(int signr, const CPUArchState *env) 2941 { 2942 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2943 const TaskState *ts = (const TaskState *)cpu->opaque; 2944 struct vm_area_struct *vma = NULL; 2945 char corefile[PATH_MAX]; 2946 struct elf_note_info info; 2947 struct elfhdr elf; 2948 struct elf_phdr phdr; 2949 struct rlimit dumpsize; 2950 struct mm_struct *mm = NULL; 2951 off_t offset = 0, data_offset = 0; 2952 int segs = 0; 2953 int fd = -1; 2954 2955 init_note_info(&info); 2956 2957 errno = 0; 2958 getrlimit(RLIMIT_CORE, &dumpsize); 2959 if (dumpsize.rlim_cur == 0) 2960 return 0; 2961 2962 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 2963 return (-errno); 2964 2965 if ((fd = open(corefile, O_WRONLY | O_CREAT, 2966 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 2967 return (-errno); 2968 2969 /* 2970 * Walk through target process memory mappings and 2971 * set up structure containing this information. After 2972 * this point vma_xxx functions can be used. 2973 */ 2974 if ((mm = vma_init()) == NULL) 2975 goto out; 2976 2977 walk_memory_regions(mm, vma_walker); 2978 segs = vma_get_mapping_count(mm); 2979 2980 /* 2981 * Construct valid coredump ELF header. We also 2982 * add one more segment for notes. 2983 */ 2984 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 2985 if (dump_write(fd, &elf, sizeof (elf)) != 0) 2986 goto out; 2987 2988 /* fill in in-memory version of notes */ 2989 if (fill_note_info(&info, signr, env) < 0) 2990 goto out; 2991 2992 offset += sizeof (elf); /* elf header */ 2993 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 2994 2995 /* write out notes program header */ 2996 fill_elf_note_phdr(&phdr, info.notes_size, offset); 2997 2998 offset += info.notes_size; 2999 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3000 goto out; 3001 3002 /* 3003 * ELF specification wants data to start at page boundary so 3004 * we align it here. 3005 */ 3006 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3007 3008 /* 3009 * Write program headers for memory regions mapped in 3010 * the target process. 3011 */ 3012 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3013 (void) memset(&phdr, 0, sizeof (phdr)); 3014 3015 phdr.p_type = PT_LOAD; 3016 phdr.p_offset = offset; 3017 phdr.p_vaddr = vma->vma_start; 3018 phdr.p_paddr = 0; 3019 phdr.p_filesz = vma_dump_size(vma); 3020 offset += phdr.p_filesz; 3021 phdr.p_memsz = vma->vma_end - vma->vma_start; 3022 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3023 if (vma->vma_flags & PROT_WRITE) 3024 phdr.p_flags |= PF_W; 3025 if (vma->vma_flags & PROT_EXEC) 3026 phdr.p_flags |= PF_X; 3027 phdr.p_align = ELF_EXEC_PAGESIZE; 3028 3029 bswap_phdr(&phdr, 1); 3030 dump_write(fd, &phdr, sizeof (phdr)); 3031 } 3032 3033 /* 3034 * Next we write notes just after program headers. No 3035 * alignment needed here. 3036 */ 3037 if (write_note_info(&info, fd) < 0) 3038 goto out; 3039 3040 /* align data to page boundary */ 3041 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3042 goto out; 3043 3044 /* 3045 * Finally we can dump process memory into corefile as well. 3046 */ 3047 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3048 abi_ulong addr; 3049 abi_ulong end; 3050 3051 end = vma->vma_start + vma_dump_size(vma); 3052 3053 for (addr = vma->vma_start; addr < end; 3054 addr += TARGET_PAGE_SIZE) { 3055 char page[TARGET_PAGE_SIZE]; 3056 int error; 3057 3058 /* 3059 * Read in page from target process memory and 3060 * write it to coredump file. 3061 */ 3062 error = copy_from_user(page, addr, sizeof (page)); 3063 if (error != 0) { 3064 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3065 addr); 3066 errno = -error; 3067 goto out; 3068 } 3069 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3070 goto out; 3071 } 3072 } 3073 3074 out: 3075 free_note_info(&info); 3076 if (mm != NULL) 3077 vma_delete(mm); 3078 (void) close(fd); 3079 3080 if (errno != 0) 3081 return (-errno); 3082 return (0); 3083 } 3084 #endif /* USE_ELF_CORE_DUMP */ 3085 3086 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3087 { 3088 init_thread(regs, infop); 3089 } 3090