xref: /openbmc/qemu/linux-user/elfload.c (revision 3e8f1628)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
17 
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27 
28 #define ELF_OSABI   ELFOSABI_SYSV
29 
30 /* from personality.h */
31 
32 /*
33  * Flags for bug emulation.
34  *
35  * These occupy the top three bytes.
36  */
37 enum {
38     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
39     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
40                                            descriptors (signal handling) */
41     MMAP_PAGE_ZERO =    0x0100000,
42     ADDR_COMPAT_LAYOUT = 0x0200000,
43     READ_IMPLIES_EXEC = 0x0400000,
44     ADDR_LIMIT_32BIT =  0x0800000,
45     SHORT_INODE =       0x1000000,
46     WHOLE_SECONDS =     0x2000000,
47     STICKY_TIMEOUTS =   0x4000000,
48     ADDR_LIMIT_3GB =    0x8000000,
49 };
50 
51 /*
52  * Personality types.
53  *
54  * These go in the low byte.  Avoid using the top bit, it will
55  * conflict with error returns.
56  */
57 enum {
58     PER_LINUX =         0x0000,
59     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
60     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
61     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
67     PER_BSD =           0x0006,
68     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
69     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_LINUX32 =       0x0008,
71     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
72     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75     PER_RISCOS =        0x000c,
76     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
77     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
79     PER_HPUX =          0x0010,
80     PER_MASK =          0x00ff,
81 };
82 
83 /*
84  * Return the base personality without flags.
85  */
86 #define personality(pers)       (pers & PER_MASK)
87 
88 int info_is_fdpic(struct image_info *info)
89 {
90     return info->personality == PER_LINUX_FDPIC;
91 }
92 
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
97 
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
102 
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA        ELFDATA2MSB
105 #else
106 #define ELF_DATA        ELFDATA2LSB
107 #endif
108 
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong      target_elf_greg_t;
111 #define tswapreg(ptr)   tswap64(ptr)
112 #else
113 typedef abi_ulong       target_elf_greg_t;
114 #define tswapreg(ptr)   tswapal(ptr)
115 #endif
116 
117 #ifdef USE_UID16
118 typedef abi_ushort      target_uid_t;
119 typedef abi_ushort      target_gid_t;
120 #else
121 typedef abi_uint        target_uid_t;
122 typedef abi_uint        target_gid_t;
123 #endif
124 typedef abi_int         target_pid_t;
125 
126 #ifdef TARGET_I386
127 
128 #define ELF_PLATFORM get_elf_platform()
129 
130 static const char *get_elf_platform(void)
131 {
132     static char elf_platform[] = "i386";
133     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134     if (family > 6)
135         family = 6;
136     if (family >= 3)
137         elf_platform[1] = '0' + family;
138     return elf_platform;
139 }
140 
141 #define ELF_HWCAP get_elf_hwcap()
142 
143 static uint32_t get_elf_hwcap(void)
144 {
145     X86CPU *cpu = X86_CPU(thread_cpu);
146 
147     return cpu->env.features[FEAT_1_EDX];
148 }
149 
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
152 
153 #define ELF_CLASS      ELFCLASS64
154 #define ELF_ARCH       EM_X86_64
155 
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157 {
158     regs->rax = 0;
159     regs->rsp = infop->start_stack;
160     regs->rip = infop->entry;
161 }
162 
163 #define ELF_NREG    27
164 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
165 
166 /*
167  * Note that ELF_NREG should be 29 as there should be place for
168  * TRAPNO and ERR "registers" as well but linux doesn't dump
169  * those.
170  *
171  * See linux kernel: arch/x86/include/asm/elf.h
172  */
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
174 {
175     (*regs)[0] = env->regs[15];
176     (*regs)[1] = env->regs[14];
177     (*regs)[2] = env->regs[13];
178     (*regs)[3] = env->regs[12];
179     (*regs)[4] = env->regs[R_EBP];
180     (*regs)[5] = env->regs[R_EBX];
181     (*regs)[6] = env->regs[11];
182     (*regs)[7] = env->regs[10];
183     (*regs)[8] = env->regs[9];
184     (*regs)[9] = env->regs[8];
185     (*regs)[10] = env->regs[R_EAX];
186     (*regs)[11] = env->regs[R_ECX];
187     (*regs)[12] = env->regs[R_EDX];
188     (*regs)[13] = env->regs[R_ESI];
189     (*regs)[14] = env->regs[R_EDI];
190     (*regs)[15] = env->regs[R_EAX]; /* XXX */
191     (*regs)[16] = env->eip;
192     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193     (*regs)[18] = env->eflags;
194     (*regs)[19] = env->regs[R_ESP];
195     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202 }
203 
204 #else
205 
206 #define ELF_START_MMAP 0x80000000
207 
208 /*
209  * This is used to ensure we don't load something for the wrong architecture.
210  */
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212 
213 /*
214  * These are used to set parameters in the core dumps.
215  */
216 #define ELF_CLASS       ELFCLASS32
217 #define ELF_ARCH        EM_386
218 
219 static inline void init_thread(struct target_pt_regs *regs,
220                                struct image_info *infop)
221 {
222     regs->esp = infop->start_stack;
223     regs->eip = infop->entry;
224 
225     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226        starts %edx contains a pointer to a function which might be
227        registered using `atexit'.  This provides a mean for the
228        dynamic linker to call DT_FINI functions for shared libraries
229        that have been loaded before the code runs.
230 
231        A value of 0 tells we have no such handler.  */
232     regs->edx = 0;
233 }
234 
235 #define ELF_NREG    17
236 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
237 
238 /*
239  * Note that ELF_NREG should be 19 as there should be place for
240  * TRAPNO and ERR "registers" as well but linux doesn't dump
241  * those.
242  *
243  * See linux kernel: arch/x86/include/asm/elf.h
244  */
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
246 {
247     (*regs)[0] = env->regs[R_EBX];
248     (*regs)[1] = env->regs[R_ECX];
249     (*regs)[2] = env->regs[R_EDX];
250     (*regs)[3] = env->regs[R_ESI];
251     (*regs)[4] = env->regs[R_EDI];
252     (*regs)[5] = env->regs[R_EBP];
253     (*regs)[6] = env->regs[R_EAX];
254     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258     (*regs)[11] = env->regs[R_EAX]; /* XXX */
259     (*regs)[12] = env->eip;
260     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261     (*regs)[14] = env->eflags;
262     (*regs)[15] = env->regs[R_ESP];
263     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264 }
265 #endif
266 
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE       4096
269 
270 #endif
271 
272 #ifdef TARGET_ARM
273 
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
276 
277 #define ELF_START_MMAP 0x80000000
278 
279 #define ELF_ARCH        EM_ARM
280 #define ELF_CLASS       ELFCLASS32
281 
282 static inline void init_thread(struct target_pt_regs *regs,
283                                struct image_info *infop)
284 {
285     abi_long stack = infop->start_stack;
286     memset(regs, 0, sizeof(*regs));
287 
288     regs->uregs[16] = ARM_CPU_MODE_USR;
289     if (infop->entry & 1) {
290         regs->uregs[16] |= CPSR_T;
291     }
292     regs->uregs[15] = infop->entry & 0xfffffffe;
293     regs->uregs[13] = infop->start_stack;
294     /* FIXME - what to for failure of get_user()? */
295     get_user_ual(regs->uregs[2], stack + 8); /* envp */
296     get_user_ual(regs->uregs[1], stack + 4); /* envp */
297     /* XXX: it seems that r0 is zeroed after ! */
298     regs->uregs[0] = 0;
299     /* For uClinux PIC binaries.  */
300     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301     regs->uregs[10] = infop->start_data;
302 
303     /* Support ARM FDPIC.  */
304     if (info_is_fdpic(infop)) {
305         /* As described in the ABI document, r7 points to the loadmap info
306          * prepared by the kernel. If an interpreter is needed, r8 points
307          * to the interpreter loadmap and r9 points to the interpreter
308          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309          * r9 points to the main program PT_DYNAMIC info.
310          */
311         regs->uregs[7] = infop->loadmap_addr;
312         if (infop->interpreter_loadmap_addr) {
313             /* Executable is dynamically loaded.  */
314             regs->uregs[8] = infop->interpreter_loadmap_addr;
315             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316         } else {
317             regs->uregs[8] = 0;
318             regs->uregs[9] = infop->pt_dynamic_addr;
319         }
320     }
321 }
322 
323 #define ELF_NREG    18
324 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
325 
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
327 {
328     (*regs)[0] = tswapreg(env->regs[0]);
329     (*regs)[1] = tswapreg(env->regs[1]);
330     (*regs)[2] = tswapreg(env->regs[2]);
331     (*regs)[3] = tswapreg(env->regs[3]);
332     (*regs)[4] = tswapreg(env->regs[4]);
333     (*regs)[5] = tswapreg(env->regs[5]);
334     (*regs)[6] = tswapreg(env->regs[6]);
335     (*regs)[7] = tswapreg(env->regs[7]);
336     (*regs)[8] = tswapreg(env->regs[8]);
337     (*regs)[9] = tswapreg(env->regs[9]);
338     (*regs)[10] = tswapreg(env->regs[10]);
339     (*regs)[11] = tswapreg(env->regs[11]);
340     (*regs)[12] = tswapreg(env->regs[12]);
341     (*regs)[13] = tswapreg(env->regs[13]);
342     (*regs)[14] = tswapreg(env->regs[14]);
343     (*regs)[15] = tswapreg(env->regs[15]);
344 
345     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
347 }
348 
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE       4096
351 
352 enum
353 {
354     ARM_HWCAP_ARM_SWP       = 1 << 0,
355     ARM_HWCAP_ARM_HALF      = 1 << 1,
356     ARM_HWCAP_ARM_THUMB     = 1 << 2,
357     ARM_HWCAP_ARM_26BIT     = 1 << 3,
358     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359     ARM_HWCAP_ARM_FPA       = 1 << 5,
360     ARM_HWCAP_ARM_VFP       = 1 << 6,
361     ARM_HWCAP_ARM_EDSP      = 1 << 7,
362     ARM_HWCAP_ARM_JAVA      = 1 << 8,
363     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
364     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
365     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
366     ARM_HWCAP_ARM_NEON      = 1 << 12,
367     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
368     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
369     ARM_HWCAP_ARM_TLS       = 1 << 15,
370     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
371     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
372     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
373     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
374     ARM_HWCAP_ARM_LPAE      = 1 << 20,
375     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
376 };
377 
378 enum {
379     ARM_HWCAP2_ARM_AES      = 1 << 0,
380     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
381     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
382     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
383     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
384 };
385 
386 /* The commpage only exists for 32 bit kernels */
387 
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
389 
390 static bool init_guest_commpage(void)
391 {
392     void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
393     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
395 
396     if (addr == MAP_FAILED) {
397         perror("Allocating guest commpage");
398         exit(EXIT_FAILURE);
399     }
400     if (addr != want) {
401         return false;
402     }
403 
404     /* Set kernel helper versions; rest of page is 0.  */
405     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
406 
407     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408         perror("Protecting guest commpage");
409         exit(EXIT_FAILURE);
410     }
411     return true;
412 }
413 
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
416 
417 static uint32_t get_elf_hwcap(void)
418 {
419     ARMCPU *cpu = ARM_CPU(thread_cpu);
420     uint32_t hwcaps = 0;
421 
422     hwcaps |= ARM_HWCAP_ARM_SWP;
423     hwcaps |= ARM_HWCAP_ARM_HALF;
424     hwcaps |= ARM_HWCAP_ARM_THUMB;
425     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
426 
427     /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
430 
431 #define GET_FEATURE_ID(feat, hwcap) \
432     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433 
434     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444 
445     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447         hwcaps |= ARM_HWCAP_ARM_VFPv3;
448         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449             hwcaps |= ARM_HWCAP_ARM_VFPD32;
450         } else {
451             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452         }
453     }
454     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
455 
456     return hwcaps;
457 }
458 
459 static uint32_t get_elf_hwcap2(void)
460 {
461     ARMCPU *cpu = ARM_CPU(thread_cpu);
462     uint32_t hwcaps = 0;
463 
464     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469     return hwcaps;
470 }
471 
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
474 
475 #define ELF_PLATFORM get_elf_platform()
476 
477 static const char *get_elf_platform(void)
478 {
479     CPUARMState *env = thread_cpu->env_ptr;
480 
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END  "b"
483 #else
484 # define END  "l"
485 #endif
486 
487     if (arm_feature(env, ARM_FEATURE_V8)) {
488         return "v8" END;
489     } else if (arm_feature(env, ARM_FEATURE_V7)) {
490         if (arm_feature(env, ARM_FEATURE_M)) {
491             return "v7m" END;
492         } else {
493             return "v7" END;
494         }
495     } else if (arm_feature(env, ARM_FEATURE_V6)) {
496         return "v6" END;
497     } else if (arm_feature(env, ARM_FEATURE_V5)) {
498         return "v5" END;
499     } else {
500         return "v4" END;
501     }
502 
503 #undef END
504 }
505 
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
509 
510 #define ELF_ARCH        EM_AARCH64
511 #define ELF_CLASS       ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM    "aarch64_be"
514 #else
515 # define ELF_PLATFORM    "aarch64"
516 #endif
517 
518 static inline void init_thread(struct target_pt_regs *regs,
519                                struct image_info *infop)
520 {
521     abi_long stack = infop->start_stack;
522     memset(regs, 0, sizeof(*regs));
523 
524     regs->pc = infop->entry & ~0x3ULL;
525     regs->sp = stack;
526 }
527 
528 #define ELF_NREG    34
529 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
530 
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532                                const CPUARMState *env)
533 {
534     int i;
535 
536     for (i = 0; i < 32; i++) {
537         (*regs)[i] = tswapreg(env->xregs[i]);
538     }
539     (*regs)[32] = tswapreg(env->pc);
540     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541 }
542 
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE       4096
545 
546 enum {
547     ARM_HWCAP_A64_FP            = 1 << 0,
548     ARM_HWCAP_A64_ASIMD         = 1 << 1,
549     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
550     ARM_HWCAP_A64_AES           = 1 << 3,
551     ARM_HWCAP_A64_PMULL         = 1 << 4,
552     ARM_HWCAP_A64_SHA1          = 1 << 5,
553     ARM_HWCAP_A64_SHA2          = 1 << 6,
554     ARM_HWCAP_A64_CRC32         = 1 << 7,
555     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
556     ARM_HWCAP_A64_FPHP          = 1 << 9,
557     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
558     ARM_HWCAP_A64_CPUID         = 1 << 11,
559     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
560     ARM_HWCAP_A64_JSCVT         = 1 << 13,
561     ARM_HWCAP_A64_FCMA          = 1 << 14,
562     ARM_HWCAP_A64_LRCPC         = 1 << 15,
563     ARM_HWCAP_A64_DCPOP         = 1 << 16,
564     ARM_HWCAP_A64_SHA3          = 1 << 17,
565     ARM_HWCAP_A64_SM3           = 1 << 18,
566     ARM_HWCAP_A64_SM4           = 1 << 19,
567     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
568     ARM_HWCAP_A64_SHA512        = 1 << 21,
569     ARM_HWCAP_A64_SVE           = 1 << 22,
570     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
571     ARM_HWCAP_A64_DIT           = 1 << 24,
572     ARM_HWCAP_A64_USCAT         = 1 << 25,
573     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
574     ARM_HWCAP_A64_FLAGM         = 1 << 27,
575     ARM_HWCAP_A64_SSBS          = 1 << 28,
576     ARM_HWCAP_A64_SB            = 1 << 29,
577     ARM_HWCAP_A64_PACA          = 1 << 30,
578     ARM_HWCAP_A64_PACG          = 1UL << 31,
579 
580     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
581     ARM_HWCAP2_A64_SVE2         = 1 << 1,
582     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
583     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
584     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
585     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
586     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
587     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
588     ARM_HWCAP2_A64_FRINT        = 1 << 8,
589 };
590 
591 #define ELF_HWCAP   get_elf_hwcap()
592 #define ELF_HWCAP2  get_elf_hwcap2()
593 
594 #define GET_FEATURE_ID(feat, hwcap) \
595     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
596 
597 static uint32_t get_elf_hwcap(void)
598 {
599     ARMCPU *cpu = ARM_CPU(thread_cpu);
600     uint32_t hwcaps = 0;
601 
602     hwcaps |= ARM_HWCAP_A64_FP;
603     hwcaps |= ARM_HWCAP_A64_ASIMD;
604     hwcaps |= ARM_HWCAP_A64_CPUID;
605 
606     /* probe for the extra features */
607 
608     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
609     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
610     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
611     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
612     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
613     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
614     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
615     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
616     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
617     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
618     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
619     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
620     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
621     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
622     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
623     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
624     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
625     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
626     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
627     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
628     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
629     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
630     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
631 
632     return hwcaps;
633 }
634 
635 static uint32_t get_elf_hwcap2(void)
636 {
637     ARMCPU *cpu = ARM_CPU(thread_cpu);
638     uint32_t hwcaps = 0;
639 
640     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
641     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
642     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
643 
644     return hwcaps;
645 }
646 
647 #undef GET_FEATURE_ID
648 
649 #endif /* not TARGET_AARCH64 */
650 #endif /* TARGET_ARM */
651 
652 #ifdef TARGET_SPARC
653 #ifdef TARGET_SPARC64
654 
655 #define ELF_START_MMAP 0x80000000
656 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
657                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
658 #ifndef TARGET_ABI32
659 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
660 #else
661 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
662 #endif
663 
664 #define ELF_CLASS   ELFCLASS64
665 #define ELF_ARCH    EM_SPARCV9
666 
667 #define STACK_BIAS              2047
668 
669 static inline void init_thread(struct target_pt_regs *regs,
670                                struct image_info *infop)
671 {
672 #ifndef TARGET_ABI32
673     regs->tstate = 0;
674 #endif
675     regs->pc = infop->entry;
676     regs->npc = regs->pc + 4;
677     regs->y = 0;
678 #ifdef TARGET_ABI32
679     regs->u_regs[14] = infop->start_stack - 16 * 4;
680 #else
681     if (personality(infop->personality) == PER_LINUX32)
682         regs->u_regs[14] = infop->start_stack - 16 * 4;
683     else
684         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
685 #endif
686 }
687 
688 #else
689 #define ELF_START_MMAP 0x80000000
690 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
691                     | HWCAP_SPARC_MULDIV)
692 
693 #define ELF_CLASS   ELFCLASS32
694 #define ELF_ARCH    EM_SPARC
695 
696 static inline void init_thread(struct target_pt_regs *regs,
697                                struct image_info *infop)
698 {
699     regs->psr = 0;
700     regs->pc = infop->entry;
701     regs->npc = regs->pc + 4;
702     regs->y = 0;
703     regs->u_regs[14] = infop->start_stack - 16 * 4;
704 }
705 
706 #endif
707 #endif
708 
709 #ifdef TARGET_PPC
710 
711 #define ELF_MACHINE    PPC_ELF_MACHINE
712 #define ELF_START_MMAP 0x80000000
713 
714 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
715 
716 #define elf_check_arch(x) ( (x) == EM_PPC64 )
717 
718 #define ELF_CLASS       ELFCLASS64
719 
720 #else
721 
722 #define ELF_CLASS       ELFCLASS32
723 
724 #endif
725 
726 #define ELF_ARCH        EM_PPC
727 
728 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
729    See arch/powerpc/include/asm/cputable.h.  */
730 enum {
731     QEMU_PPC_FEATURE_32 = 0x80000000,
732     QEMU_PPC_FEATURE_64 = 0x40000000,
733     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
734     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
735     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
736     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
737     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
738     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
739     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
740     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
741     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
742     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
743     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
744     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
745     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
746     QEMU_PPC_FEATURE_CELL = 0x00010000,
747     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
748     QEMU_PPC_FEATURE_SMT = 0x00004000,
749     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
750     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
751     QEMU_PPC_FEATURE_PA6T = 0x00000800,
752     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
753     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
754     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
755     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
756     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
757 
758     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
759     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
760 
761     /* Feature definitions in AT_HWCAP2.  */
762     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
763     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
764     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
765     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
766     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
767     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
768     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
769     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
770     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
771     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
772     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
773     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
774     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
775 };
776 
777 #define ELF_HWCAP get_elf_hwcap()
778 
779 static uint32_t get_elf_hwcap(void)
780 {
781     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
782     uint32_t features = 0;
783 
784     /* We don't have to be terribly complete here; the high points are
785        Altivec/FP/SPE support.  Anything else is just a bonus.  */
786 #define GET_FEATURE(flag, feature)                                      \
787     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
788 #define GET_FEATURE2(flags, feature) \
789     do { \
790         if ((cpu->env.insns_flags2 & flags) == flags) { \
791             features |= feature; \
792         } \
793     } while (0)
794     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
795     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
796     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
797     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
798     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
799     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
800     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
801     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
802     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
803     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
804     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
805                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
806                   QEMU_PPC_FEATURE_ARCH_2_06);
807 #undef GET_FEATURE
808 #undef GET_FEATURE2
809 
810     return features;
811 }
812 
813 #define ELF_HWCAP2 get_elf_hwcap2()
814 
815 static uint32_t get_elf_hwcap2(void)
816 {
817     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
818     uint32_t features = 0;
819 
820 #define GET_FEATURE(flag, feature)                                      \
821     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
822 #define GET_FEATURE2(flag, feature)                                      \
823     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
824 
825     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
826     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
827     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
828                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
829                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
830     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
831                  QEMU_PPC_FEATURE2_DARN);
832 
833 #undef GET_FEATURE
834 #undef GET_FEATURE2
835 
836     return features;
837 }
838 
839 /*
840  * The requirements here are:
841  * - keep the final alignment of sp (sp & 0xf)
842  * - make sure the 32-bit value at the first 16 byte aligned position of
843  *   AUXV is greater than 16 for glibc compatibility.
844  *   AT_IGNOREPPC is used for that.
845  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
846  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
847  */
848 #define DLINFO_ARCH_ITEMS       5
849 #define ARCH_DLINFO                                     \
850     do {                                                \
851         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
852         /*                                              \
853          * Handle glibc compatibility: these magic entries must \
854          * be at the lowest addresses in the final auxv.        \
855          */                                             \
856         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
857         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
858         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
859         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
860         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
861     } while (0)
862 
863 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
864 {
865     _regs->gpr[1] = infop->start_stack;
866 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
867     if (get_ppc64_abi(infop) < 2) {
868         uint64_t val;
869         get_user_u64(val, infop->entry + 8);
870         _regs->gpr[2] = val + infop->load_bias;
871         get_user_u64(val, infop->entry);
872         infop->entry = val + infop->load_bias;
873     } else {
874         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
875     }
876 #endif
877     _regs->nip = infop->entry;
878 }
879 
880 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
881 #define ELF_NREG 48
882 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
883 
884 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
885 {
886     int i;
887     target_ulong ccr = 0;
888 
889     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
890         (*regs)[i] = tswapreg(env->gpr[i]);
891     }
892 
893     (*regs)[32] = tswapreg(env->nip);
894     (*regs)[33] = tswapreg(env->msr);
895     (*regs)[35] = tswapreg(env->ctr);
896     (*regs)[36] = tswapreg(env->lr);
897     (*regs)[37] = tswapreg(env->xer);
898 
899     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
900         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
901     }
902     (*regs)[38] = tswapreg(ccr);
903 }
904 
905 #define USE_ELF_CORE_DUMP
906 #define ELF_EXEC_PAGESIZE       4096
907 
908 #endif
909 
910 #ifdef TARGET_MIPS
911 
912 #define ELF_START_MMAP 0x80000000
913 
914 #ifdef TARGET_MIPS64
915 #define ELF_CLASS   ELFCLASS64
916 #else
917 #define ELF_CLASS   ELFCLASS32
918 #endif
919 #define ELF_ARCH    EM_MIPS
920 
921 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
922 
923 #ifdef TARGET_ABI_MIPSN32
924 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
925 #else
926 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
927 #endif
928 
929 static inline void init_thread(struct target_pt_regs *regs,
930                                struct image_info *infop)
931 {
932     regs->cp0_status = 2 << CP0St_KSU;
933     regs->cp0_epc = infop->entry;
934     regs->regs[29] = infop->start_stack;
935 }
936 
937 /* See linux kernel: arch/mips/include/asm/elf.h.  */
938 #define ELF_NREG 45
939 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
940 
941 /* See linux kernel: arch/mips/include/asm/reg.h.  */
942 enum {
943 #ifdef TARGET_MIPS64
944     TARGET_EF_R0 = 0,
945 #else
946     TARGET_EF_R0 = 6,
947 #endif
948     TARGET_EF_R26 = TARGET_EF_R0 + 26,
949     TARGET_EF_R27 = TARGET_EF_R0 + 27,
950     TARGET_EF_LO = TARGET_EF_R0 + 32,
951     TARGET_EF_HI = TARGET_EF_R0 + 33,
952     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
953     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
954     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
955     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
956 };
957 
958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
959 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
960 {
961     int i;
962 
963     for (i = 0; i < TARGET_EF_R0; i++) {
964         (*regs)[i] = 0;
965     }
966     (*regs)[TARGET_EF_R0] = 0;
967 
968     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
969         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
970     }
971 
972     (*regs)[TARGET_EF_R26] = 0;
973     (*regs)[TARGET_EF_R27] = 0;
974     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
975     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
976     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
977     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
978     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
979     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
980 }
981 
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE        4096
984 
985 /* See arch/mips/include/uapi/asm/hwcap.h.  */
986 enum {
987     HWCAP_MIPS_R6           = (1 << 0),
988     HWCAP_MIPS_MSA          = (1 << 1),
989     HWCAP_MIPS_CRC32        = (1 << 2),
990     HWCAP_MIPS_MIPS16       = (1 << 3),
991     HWCAP_MIPS_MDMX         = (1 << 4),
992     HWCAP_MIPS_MIPS3D       = (1 << 5),
993     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
994     HWCAP_MIPS_DSP          = (1 << 7),
995     HWCAP_MIPS_DSP2         = (1 << 8),
996     HWCAP_MIPS_DSP3         = (1 << 9),
997     HWCAP_MIPS_MIPS16E2     = (1 << 10),
998     HWCAP_LOONGSON_MMI      = (1 << 11),
999     HWCAP_LOONGSON_EXT      = (1 << 12),
1000     HWCAP_LOONGSON_EXT2     = (1 << 13),
1001     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1002 };
1003 
1004 #define ELF_HWCAP get_elf_hwcap()
1005 
1006 #define GET_FEATURE_INSN(_flag, _hwcap) \
1007     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1008 
1009 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1010     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1011 
1012 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1013     do { \
1014         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1015             hwcaps |= _hwcap; \
1016         } \
1017     } while (0)
1018 
1019 static uint32_t get_elf_hwcap(void)
1020 {
1021     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1022     uint32_t hwcaps = 0;
1023 
1024     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1025                         2, HWCAP_MIPS_R6);
1026     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1027     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1028     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1029 
1030     return hwcaps;
1031 }
1032 
1033 #undef GET_FEATURE_REG_EQU
1034 #undef GET_FEATURE_REG_SET
1035 #undef GET_FEATURE_INSN
1036 
1037 #endif /* TARGET_MIPS */
1038 
1039 #ifdef TARGET_MICROBLAZE
1040 
1041 #define ELF_START_MMAP 0x80000000
1042 
1043 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1044 
1045 #define ELF_CLASS   ELFCLASS32
1046 #define ELF_ARCH    EM_MICROBLAZE
1047 
1048 static inline void init_thread(struct target_pt_regs *regs,
1049                                struct image_info *infop)
1050 {
1051     regs->pc = infop->entry;
1052     regs->r1 = infop->start_stack;
1053 
1054 }
1055 
1056 #define ELF_EXEC_PAGESIZE        4096
1057 
1058 #define USE_ELF_CORE_DUMP
1059 #define ELF_NREG 38
1060 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1061 
1062 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1063 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1064 {
1065     int i, pos = 0;
1066 
1067     for (i = 0; i < 32; i++) {
1068         (*regs)[pos++] = tswapreg(env->regs[i]);
1069     }
1070 
1071     (*regs)[pos++] = tswapreg(env->pc);
1072     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1073     (*regs)[pos++] = 0;
1074     (*regs)[pos++] = tswapreg(env->ear);
1075     (*regs)[pos++] = 0;
1076     (*regs)[pos++] = tswapreg(env->esr);
1077 }
1078 
1079 #endif /* TARGET_MICROBLAZE */
1080 
1081 #ifdef TARGET_NIOS2
1082 
1083 #define ELF_START_MMAP 0x80000000
1084 
1085 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1086 
1087 #define ELF_CLASS   ELFCLASS32
1088 #define ELF_ARCH    EM_ALTERA_NIOS2
1089 
1090 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1091 {
1092     regs->ea = infop->entry;
1093     regs->sp = infop->start_stack;
1094     regs->estatus = 0x3;
1095 }
1096 
1097 #define ELF_EXEC_PAGESIZE        4096
1098 
1099 #define USE_ELF_CORE_DUMP
1100 #define ELF_NREG 49
1101 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1102 
1103 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1104 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1105                                const CPUNios2State *env)
1106 {
1107     int i;
1108 
1109     (*regs)[0] = -1;
1110     for (i = 1; i < 8; i++)    /* r0-r7 */
1111         (*regs)[i] = tswapreg(env->regs[i + 7]);
1112 
1113     for (i = 8; i < 16; i++)   /* r8-r15 */
1114         (*regs)[i] = tswapreg(env->regs[i - 8]);
1115 
1116     for (i = 16; i < 24; i++)  /* r16-r23 */
1117         (*regs)[i] = tswapreg(env->regs[i + 7]);
1118     (*regs)[24] = -1;    /* R_ET */
1119     (*regs)[25] = -1;    /* R_BT */
1120     (*regs)[26] = tswapreg(env->regs[R_GP]);
1121     (*regs)[27] = tswapreg(env->regs[R_SP]);
1122     (*regs)[28] = tswapreg(env->regs[R_FP]);
1123     (*regs)[29] = tswapreg(env->regs[R_EA]);
1124     (*regs)[30] = -1;    /* R_SSTATUS */
1125     (*regs)[31] = tswapreg(env->regs[R_RA]);
1126 
1127     (*regs)[32] = tswapreg(env->regs[R_PC]);
1128 
1129     (*regs)[33] = -1; /* R_STATUS */
1130     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1131 
1132     for (i = 35; i < 49; i++)    /* ... */
1133         (*regs)[i] = -1;
1134 }
1135 
1136 #endif /* TARGET_NIOS2 */
1137 
1138 #ifdef TARGET_OPENRISC
1139 
1140 #define ELF_START_MMAP 0x08000000
1141 
1142 #define ELF_ARCH EM_OPENRISC
1143 #define ELF_CLASS ELFCLASS32
1144 #define ELF_DATA  ELFDATA2MSB
1145 
1146 static inline void init_thread(struct target_pt_regs *regs,
1147                                struct image_info *infop)
1148 {
1149     regs->pc = infop->entry;
1150     regs->gpr[1] = infop->start_stack;
1151 }
1152 
1153 #define USE_ELF_CORE_DUMP
1154 #define ELF_EXEC_PAGESIZE 8192
1155 
1156 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1157 #define ELF_NREG 34 /* gprs and pc, sr */
1158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1159 
1160 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1161                                const CPUOpenRISCState *env)
1162 {
1163     int i;
1164 
1165     for (i = 0; i < 32; i++) {
1166         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1167     }
1168     (*regs)[32] = tswapreg(env->pc);
1169     (*regs)[33] = tswapreg(cpu_get_sr(env));
1170 }
1171 #define ELF_HWCAP 0
1172 #define ELF_PLATFORM NULL
1173 
1174 #endif /* TARGET_OPENRISC */
1175 
1176 #ifdef TARGET_SH4
1177 
1178 #define ELF_START_MMAP 0x80000000
1179 
1180 #define ELF_CLASS ELFCLASS32
1181 #define ELF_ARCH  EM_SH
1182 
1183 static inline void init_thread(struct target_pt_regs *regs,
1184                                struct image_info *infop)
1185 {
1186     /* Check other registers XXXXX */
1187     regs->pc = infop->entry;
1188     regs->regs[15] = infop->start_stack;
1189 }
1190 
1191 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1192 #define ELF_NREG 23
1193 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1194 
1195 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1196 enum {
1197     TARGET_REG_PC = 16,
1198     TARGET_REG_PR = 17,
1199     TARGET_REG_SR = 18,
1200     TARGET_REG_GBR = 19,
1201     TARGET_REG_MACH = 20,
1202     TARGET_REG_MACL = 21,
1203     TARGET_REG_SYSCALL = 22
1204 };
1205 
1206 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1207                                       const CPUSH4State *env)
1208 {
1209     int i;
1210 
1211     for (i = 0; i < 16; i++) {
1212         (*regs)[i] = tswapreg(env->gregs[i]);
1213     }
1214 
1215     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1216     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1217     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1218     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1219     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1220     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1221     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1222 }
1223 
1224 #define USE_ELF_CORE_DUMP
1225 #define ELF_EXEC_PAGESIZE        4096
1226 
1227 enum {
1228     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1229     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1230     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1231     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1232     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1233     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1234     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1235     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1236     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1237     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1238 };
1239 
1240 #define ELF_HWCAP get_elf_hwcap()
1241 
1242 static uint32_t get_elf_hwcap(void)
1243 {
1244     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1245     uint32_t hwcap = 0;
1246 
1247     hwcap |= SH_CPU_HAS_FPU;
1248 
1249     if (cpu->env.features & SH_FEATURE_SH4A) {
1250         hwcap |= SH_CPU_HAS_LLSC;
1251     }
1252 
1253     return hwcap;
1254 }
1255 
1256 #endif
1257 
1258 #ifdef TARGET_CRIS
1259 
1260 #define ELF_START_MMAP 0x80000000
1261 
1262 #define ELF_CLASS ELFCLASS32
1263 #define ELF_ARCH  EM_CRIS
1264 
1265 static inline void init_thread(struct target_pt_regs *regs,
1266                                struct image_info *infop)
1267 {
1268     regs->erp = infop->entry;
1269 }
1270 
1271 #define ELF_EXEC_PAGESIZE        8192
1272 
1273 #endif
1274 
1275 #ifdef TARGET_M68K
1276 
1277 #define ELF_START_MMAP 0x80000000
1278 
1279 #define ELF_CLASS       ELFCLASS32
1280 #define ELF_ARCH        EM_68K
1281 
1282 /* ??? Does this need to do anything?
1283    #define ELF_PLAT_INIT(_r) */
1284 
1285 static inline void init_thread(struct target_pt_regs *regs,
1286                                struct image_info *infop)
1287 {
1288     regs->usp = infop->start_stack;
1289     regs->sr = 0;
1290     regs->pc = infop->entry;
1291 }
1292 
1293 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1294 #define ELF_NREG 20
1295 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1296 
1297 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1298 {
1299     (*regs)[0] = tswapreg(env->dregs[1]);
1300     (*regs)[1] = tswapreg(env->dregs[2]);
1301     (*regs)[2] = tswapreg(env->dregs[3]);
1302     (*regs)[3] = tswapreg(env->dregs[4]);
1303     (*regs)[4] = tswapreg(env->dregs[5]);
1304     (*regs)[5] = tswapreg(env->dregs[6]);
1305     (*regs)[6] = tswapreg(env->dregs[7]);
1306     (*regs)[7] = tswapreg(env->aregs[0]);
1307     (*regs)[8] = tswapreg(env->aregs[1]);
1308     (*regs)[9] = tswapreg(env->aregs[2]);
1309     (*regs)[10] = tswapreg(env->aregs[3]);
1310     (*regs)[11] = tswapreg(env->aregs[4]);
1311     (*regs)[12] = tswapreg(env->aregs[5]);
1312     (*regs)[13] = tswapreg(env->aregs[6]);
1313     (*regs)[14] = tswapreg(env->dregs[0]);
1314     (*regs)[15] = tswapreg(env->aregs[7]);
1315     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1316     (*regs)[17] = tswapreg(env->sr);
1317     (*regs)[18] = tswapreg(env->pc);
1318     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1319 }
1320 
1321 #define USE_ELF_CORE_DUMP
1322 #define ELF_EXEC_PAGESIZE       8192
1323 
1324 #endif
1325 
1326 #ifdef TARGET_ALPHA
1327 
1328 #define ELF_START_MMAP (0x30000000000ULL)
1329 
1330 #define ELF_CLASS      ELFCLASS64
1331 #define ELF_ARCH       EM_ALPHA
1332 
1333 static inline void init_thread(struct target_pt_regs *regs,
1334                                struct image_info *infop)
1335 {
1336     regs->pc = infop->entry;
1337     regs->ps = 8;
1338     regs->usp = infop->start_stack;
1339 }
1340 
1341 #define ELF_EXEC_PAGESIZE        8192
1342 
1343 #endif /* TARGET_ALPHA */
1344 
1345 #ifdef TARGET_S390X
1346 
1347 #define ELF_START_MMAP (0x20000000000ULL)
1348 
1349 #define ELF_CLASS	ELFCLASS64
1350 #define ELF_DATA	ELFDATA2MSB
1351 #define ELF_ARCH	EM_S390
1352 
1353 #include "elf.h"
1354 
1355 #define ELF_HWCAP get_elf_hwcap()
1356 
1357 #define GET_FEATURE(_feat, _hwcap) \
1358     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1359 
1360 static uint32_t get_elf_hwcap(void)
1361 {
1362     /*
1363      * Let's assume we always have esan3 and zarch.
1364      * 31-bit processes can use 64-bit registers (high gprs).
1365      */
1366     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1367 
1368     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1369     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1370     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1371     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1372     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1373         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1374         hwcap |= HWCAP_S390_ETF3EH;
1375     }
1376     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1377 
1378     return hwcap;
1379 }
1380 
1381 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1382 {
1383     regs->psw.addr = infop->entry;
1384     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1385     regs->gprs[15] = infop->start_stack;
1386 }
1387 
1388 #endif /* TARGET_S390X */
1389 
1390 #ifdef TARGET_TILEGX
1391 
1392 /* 42 bits real used address, a half for user mode */
1393 #define ELF_START_MMAP (0x00000020000000000ULL)
1394 
1395 #define elf_check_arch(x) ((x) == EM_TILEGX)
1396 
1397 #define ELF_CLASS   ELFCLASS64
1398 #define ELF_DATA    ELFDATA2LSB
1399 #define ELF_ARCH    EM_TILEGX
1400 
1401 static inline void init_thread(struct target_pt_regs *regs,
1402                                struct image_info *infop)
1403 {
1404     regs->pc = infop->entry;
1405     regs->sp = infop->start_stack;
1406 
1407 }
1408 
1409 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1410 
1411 #endif /* TARGET_TILEGX */
1412 
1413 #ifdef TARGET_RISCV
1414 
1415 #define ELF_START_MMAP 0x80000000
1416 #define ELF_ARCH  EM_RISCV
1417 
1418 #ifdef TARGET_RISCV32
1419 #define ELF_CLASS ELFCLASS32
1420 #else
1421 #define ELF_CLASS ELFCLASS64
1422 #endif
1423 
1424 static inline void init_thread(struct target_pt_regs *regs,
1425                                struct image_info *infop)
1426 {
1427     regs->sepc = infop->entry;
1428     regs->sp = infop->start_stack;
1429 }
1430 
1431 #define ELF_EXEC_PAGESIZE 4096
1432 
1433 #endif /* TARGET_RISCV */
1434 
1435 #ifdef TARGET_HPPA
1436 
1437 #define ELF_START_MMAP  0x80000000
1438 #define ELF_CLASS       ELFCLASS32
1439 #define ELF_ARCH        EM_PARISC
1440 #define ELF_PLATFORM    "PARISC"
1441 #define STACK_GROWS_DOWN 0
1442 #define STACK_ALIGNMENT  64
1443 
1444 static inline void init_thread(struct target_pt_regs *regs,
1445                                struct image_info *infop)
1446 {
1447     regs->iaoq[0] = infop->entry;
1448     regs->iaoq[1] = infop->entry + 4;
1449     regs->gr[23] = 0;
1450     regs->gr[24] = infop->arg_start;
1451     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1452     /* The top-of-stack contains a linkage buffer.  */
1453     regs->gr[30] = infop->start_stack + 64;
1454     regs->gr[31] = infop->entry;
1455 }
1456 
1457 #endif /* TARGET_HPPA */
1458 
1459 #ifdef TARGET_XTENSA
1460 
1461 #define ELF_START_MMAP 0x20000000
1462 
1463 #define ELF_CLASS       ELFCLASS32
1464 #define ELF_ARCH        EM_XTENSA
1465 
1466 static inline void init_thread(struct target_pt_regs *regs,
1467                                struct image_info *infop)
1468 {
1469     regs->windowbase = 0;
1470     regs->windowstart = 1;
1471     regs->areg[1] = infop->start_stack;
1472     regs->pc = infop->entry;
1473 }
1474 
1475 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1476 #define ELF_NREG 128
1477 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1478 
1479 enum {
1480     TARGET_REG_PC,
1481     TARGET_REG_PS,
1482     TARGET_REG_LBEG,
1483     TARGET_REG_LEND,
1484     TARGET_REG_LCOUNT,
1485     TARGET_REG_SAR,
1486     TARGET_REG_WINDOWSTART,
1487     TARGET_REG_WINDOWBASE,
1488     TARGET_REG_THREADPTR,
1489     TARGET_REG_AR0 = 64,
1490 };
1491 
1492 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1493                                const CPUXtensaState *env)
1494 {
1495     unsigned i;
1496 
1497     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1498     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1499     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1500     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1501     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1502     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1503     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1504     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1505     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1506     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1507     for (i = 0; i < env->config->nareg; ++i) {
1508         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1509     }
1510 }
1511 
1512 #define USE_ELF_CORE_DUMP
1513 #define ELF_EXEC_PAGESIZE       4096
1514 
1515 #endif /* TARGET_XTENSA */
1516 
1517 #ifndef ELF_PLATFORM
1518 #define ELF_PLATFORM (NULL)
1519 #endif
1520 
1521 #ifndef ELF_MACHINE
1522 #define ELF_MACHINE ELF_ARCH
1523 #endif
1524 
1525 #ifndef elf_check_arch
1526 #define elf_check_arch(x) ((x) == ELF_ARCH)
1527 #endif
1528 
1529 #ifndef elf_check_abi
1530 #define elf_check_abi(x) (1)
1531 #endif
1532 
1533 #ifndef ELF_HWCAP
1534 #define ELF_HWCAP 0
1535 #endif
1536 
1537 #ifndef STACK_GROWS_DOWN
1538 #define STACK_GROWS_DOWN 1
1539 #endif
1540 
1541 #ifndef STACK_ALIGNMENT
1542 #define STACK_ALIGNMENT 16
1543 #endif
1544 
1545 #ifdef TARGET_ABI32
1546 #undef ELF_CLASS
1547 #define ELF_CLASS ELFCLASS32
1548 #undef bswaptls
1549 #define bswaptls(ptr) bswap32s(ptr)
1550 #endif
1551 
1552 #include "elf.h"
1553 
1554 /* We must delay the following stanzas until after "elf.h". */
1555 #if defined(TARGET_AARCH64)
1556 
1557 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1558                                     const uint32_t *data,
1559                                     struct image_info *info,
1560                                     Error **errp)
1561 {
1562     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1563         if (pr_datasz != sizeof(uint32_t)) {
1564             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1565             return false;
1566         }
1567         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1568         info->note_flags = *data;
1569     }
1570     return true;
1571 }
1572 #define ARCH_USE_GNU_PROPERTY 1
1573 
1574 #else
1575 
1576 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1577                                     const uint32_t *data,
1578                                     struct image_info *info,
1579                                     Error **errp)
1580 {
1581     g_assert_not_reached();
1582 }
1583 #define ARCH_USE_GNU_PROPERTY 0
1584 
1585 #endif
1586 
1587 struct exec
1588 {
1589     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1590     unsigned int a_text;   /* length of text, in bytes */
1591     unsigned int a_data;   /* length of data, in bytes */
1592     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1593     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1594     unsigned int a_entry;  /* start address */
1595     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1596     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1597 };
1598 
1599 
1600 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1601 #define OMAGIC 0407
1602 #define NMAGIC 0410
1603 #define ZMAGIC 0413
1604 #define QMAGIC 0314
1605 
1606 /* Necessary parameters */
1607 #define TARGET_ELF_EXEC_PAGESIZE \
1608         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1609          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1610 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1611 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1612                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1613 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1614 
1615 #define DLINFO_ITEMS 16
1616 
1617 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1618 {
1619     memcpy(to, from, n);
1620 }
1621 
1622 #ifdef BSWAP_NEEDED
1623 static void bswap_ehdr(struct elfhdr *ehdr)
1624 {
1625     bswap16s(&ehdr->e_type);            /* Object file type */
1626     bswap16s(&ehdr->e_machine);         /* Architecture */
1627     bswap32s(&ehdr->e_version);         /* Object file version */
1628     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1629     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1630     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1631     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1632     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1633     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1634     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1635     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1636     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1637     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1638 }
1639 
1640 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1641 {
1642     int i;
1643     for (i = 0; i < phnum; ++i, ++phdr) {
1644         bswap32s(&phdr->p_type);        /* Segment type */
1645         bswap32s(&phdr->p_flags);       /* Segment flags */
1646         bswaptls(&phdr->p_offset);      /* Segment file offset */
1647         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1648         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1649         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1650         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1651         bswaptls(&phdr->p_align);       /* Segment alignment */
1652     }
1653 }
1654 
1655 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1656 {
1657     int i;
1658     for (i = 0; i < shnum; ++i, ++shdr) {
1659         bswap32s(&shdr->sh_name);
1660         bswap32s(&shdr->sh_type);
1661         bswaptls(&shdr->sh_flags);
1662         bswaptls(&shdr->sh_addr);
1663         bswaptls(&shdr->sh_offset);
1664         bswaptls(&shdr->sh_size);
1665         bswap32s(&shdr->sh_link);
1666         bswap32s(&shdr->sh_info);
1667         bswaptls(&shdr->sh_addralign);
1668         bswaptls(&shdr->sh_entsize);
1669     }
1670 }
1671 
1672 static void bswap_sym(struct elf_sym *sym)
1673 {
1674     bswap32s(&sym->st_name);
1675     bswaptls(&sym->st_value);
1676     bswaptls(&sym->st_size);
1677     bswap16s(&sym->st_shndx);
1678 }
1679 
1680 #ifdef TARGET_MIPS
1681 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1682 {
1683     bswap16s(&abiflags->version);
1684     bswap32s(&abiflags->ases);
1685     bswap32s(&abiflags->isa_ext);
1686     bswap32s(&abiflags->flags1);
1687     bswap32s(&abiflags->flags2);
1688 }
1689 #endif
1690 #else
1691 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1692 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1693 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1694 static inline void bswap_sym(struct elf_sym *sym) { }
1695 #ifdef TARGET_MIPS
1696 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1697 #endif
1698 #endif
1699 
1700 #ifdef USE_ELF_CORE_DUMP
1701 static int elf_core_dump(int, const CPUArchState *);
1702 #endif /* USE_ELF_CORE_DUMP */
1703 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1704 
1705 /* Verify the portions of EHDR within E_IDENT for the target.
1706    This can be performed before bswapping the entire header.  */
1707 static bool elf_check_ident(struct elfhdr *ehdr)
1708 {
1709     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1710             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1711             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1712             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1713             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1714             && ehdr->e_ident[EI_DATA] == ELF_DATA
1715             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1716 }
1717 
1718 /* Verify the portions of EHDR outside of E_IDENT for the target.
1719    This has to wait until after bswapping the header.  */
1720 static bool elf_check_ehdr(struct elfhdr *ehdr)
1721 {
1722     return (elf_check_arch(ehdr->e_machine)
1723             && elf_check_abi(ehdr->e_flags)
1724             && ehdr->e_ehsize == sizeof(struct elfhdr)
1725             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1726             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1727 }
1728 
1729 /*
1730  * 'copy_elf_strings()' copies argument/envelope strings from user
1731  * memory to free pages in kernel mem. These are in a format ready
1732  * to be put directly into the top of new user memory.
1733  *
1734  */
1735 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1736                                   abi_ulong p, abi_ulong stack_limit)
1737 {
1738     char *tmp;
1739     int len, i;
1740     abi_ulong top = p;
1741 
1742     if (!p) {
1743         return 0;       /* bullet-proofing */
1744     }
1745 
1746     if (STACK_GROWS_DOWN) {
1747         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1748         for (i = argc - 1; i >= 0; --i) {
1749             tmp = argv[i];
1750             if (!tmp) {
1751                 fprintf(stderr, "VFS: argc is wrong");
1752                 exit(-1);
1753             }
1754             len = strlen(tmp) + 1;
1755             tmp += len;
1756 
1757             if (len > (p - stack_limit)) {
1758                 return 0;
1759             }
1760             while (len) {
1761                 int bytes_to_copy = (len > offset) ? offset : len;
1762                 tmp -= bytes_to_copy;
1763                 p -= bytes_to_copy;
1764                 offset -= bytes_to_copy;
1765                 len -= bytes_to_copy;
1766 
1767                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1768 
1769                 if (offset == 0) {
1770                     memcpy_to_target(p, scratch, top - p);
1771                     top = p;
1772                     offset = TARGET_PAGE_SIZE;
1773                 }
1774             }
1775         }
1776         if (p != top) {
1777             memcpy_to_target(p, scratch + offset, top - p);
1778         }
1779     } else {
1780         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1781         for (i = 0; i < argc; ++i) {
1782             tmp = argv[i];
1783             if (!tmp) {
1784                 fprintf(stderr, "VFS: argc is wrong");
1785                 exit(-1);
1786             }
1787             len = strlen(tmp) + 1;
1788             if (len > (stack_limit - p)) {
1789                 return 0;
1790             }
1791             while (len) {
1792                 int bytes_to_copy = (len > remaining) ? remaining : len;
1793 
1794                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1795 
1796                 tmp += bytes_to_copy;
1797                 remaining -= bytes_to_copy;
1798                 p += bytes_to_copy;
1799                 len -= bytes_to_copy;
1800 
1801                 if (remaining == 0) {
1802                     memcpy_to_target(top, scratch, p - top);
1803                     top = p;
1804                     remaining = TARGET_PAGE_SIZE;
1805                 }
1806             }
1807         }
1808         if (p != top) {
1809             memcpy_to_target(top, scratch, p - top);
1810         }
1811     }
1812 
1813     return p;
1814 }
1815 
1816 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1817  * argument/environment space. Newer kernels (>2.6.33) allow more,
1818  * dependent on stack size, but guarantee at least 32 pages for
1819  * backwards compatibility.
1820  */
1821 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1822 
1823 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1824                                  struct image_info *info)
1825 {
1826     abi_ulong size, error, guard;
1827 
1828     size = guest_stack_size;
1829     if (size < STACK_LOWER_LIMIT) {
1830         size = STACK_LOWER_LIMIT;
1831     }
1832     guard = TARGET_PAGE_SIZE;
1833     if (guard < qemu_real_host_page_size) {
1834         guard = qemu_real_host_page_size;
1835     }
1836 
1837     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1838                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1839     if (error == -1) {
1840         perror("mmap stack");
1841         exit(-1);
1842     }
1843 
1844     /* We reserve one extra page at the top of the stack as guard.  */
1845     if (STACK_GROWS_DOWN) {
1846         target_mprotect(error, guard, PROT_NONE);
1847         info->stack_limit = error + guard;
1848         return info->stack_limit + size - sizeof(void *);
1849     } else {
1850         target_mprotect(error + size, guard, PROT_NONE);
1851         info->stack_limit = error + size;
1852         return error;
1853     }
1854 }
1855 
1856 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1857    after the data section (i.e. bss).  */
1858 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1859 {
1860     uintptr_t host_start, host_map_start, host_end;
1861 
1862     last_bss = TARGET_PAGE_ALIGN(last_bss);
1863 
1864     /* ??? There is confusion between qemu_real_host_page_size and
1865        qemu_host_page_size here and elsewhere in target_mmap, which
1866        may lead to the end of the data section mapping from the file
1867        not being mapped.  At least there was an explicit test and
1868        comment for that here, suggesting that "the file size must
1869        be known".  The comment probably pre-dates the introduction
1870        of the fstat system call in target_mmap which does in fact
1871        find out the size.  What isn't clear is if the workaround
1872        here is still actually needed.  For now, continue with it,
1873        but merge it with the "normal" mmap that would allocate the bss.  */
1874 
1875     host_start = (uintptr_t) g2h_untagged(elf_bss);
1876     host_end = (uintptr_t) g2h_untagged(last_bss);
1877     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1878 
1879     if (host_map_start < host_end) {
1880         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1881                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1882         if (p == MAP_FAILED) {
1883             perror("cannot mmap brk");
1884             exit(-1);
1885         }
1886     }
1887 
1888     /* Ensure that the bss page(s) are valid */
1889     if ((page_get_flags(last_bss-1) & prot) != prot) {
1890         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1891     }
1892 
1893     if (host_start < host_map_start) {
1894         memset((void *)host_start, 0, host_map_start - host_start);
1895     }
1896 }
1897 
1898 #ifdef TARGET_ARM
1899 static int elf_is_fdpic(struct elfhdr *exec)
1900 {
1901     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1902 }
1903 #else
1904 /* Default implementation, always false.  */
1905 static int elf_is_fdpic(struct elfhdr *exec)
1906 {
1907     return 0;
1908 }
1909 #endif
1910 
1911 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1912 {
1913     uint16_t n;
1914     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1915 
1916     /* elf32_fdpic_loadseg */
1917     n = info->nsegs;
1918     while (n--) {
1919         sp -= 12;
1920         put_user_u32(loadsegs[n].addr, sp+0);
1921         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1922         put_user_u32(loadsegs[n].p_memsz, sp+8);
1923     }
1924 
1925     /* elf32_fdpic_loadmap */
1926     sp -= 4;
1927     put_user_u16(0, sp+0); /* version */
1928     put_user_u16(info->nsegs, sp+2); /* nsegs */
1929 
1930     info->personality = PER_LINUX_FDPIC;
1931     info->loadmap_addr = sp;
1932 
1933     return sp;
1934 }
1935 
1936 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1937                                    struct elfhdr *exec,
1938                                    struct image_info *info,
1939                                    struct image_info *interp_info)
1940 {
1941     abi_ulong sp;
1942     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1943     int size;
1944     int i;
1945     abi_ulong u_rand_bytes;
1946     uint8_t k_rand_bytes[16];
1947     abi_ulong u_platform;
1948     const char *k_platform;
1949     const int n = sizeof(elf_addr_t);
1950 
1951     sp = p;
1952 
1953     /* Needs to be before we load the env/argc/... */
1954     if (elf_is_fdpic(exec)) {
1955         /* Need 4 byte alignment for these structs */
1956         sp &= ~3;
1957         sp = loader_build_fdpic_loadmap(info, sp);
1958         info->other_info = interp_info;
1959         if (interp_info) {
1960             interp_info->other_info = info;
1961             sp = loader_build_fdpic_loadmap(interp_info, sp);
1962             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1963             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1964         } else {
1965             info->interpreter_loadmap_addr = 0;
1966             info->interpreter_pt_dynamic_addr = 0;
1967         }
1968     }
1969 
1970     u_platform = 0;
1971     k_platform = ELF_PLATFORM;
1972     if (k_platform) {
1973         size_t len = strlen(k_platform) + 1;
1974         if (STACK_GROWS_DOWN) {
1975             sp -= (len + n - 1) & ~(n - 1);
1976             u_platform = sp;
1977             /* FIXME - check return value of memcpy_to_target() for failure */
1978             memcpy_to_target(sp, k_platform, len);
1979         } else {
1980             memcpy_to_target(sp, k_platform, len);
1981             u_platform = sp;
1982             sp += len + 1;
1983         }
1984     }
1985 
1986     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1987      * the argv and envp pointers.
1988      */
1989     if (STACK_GROWS_DOWN) {
1990         sp = QEMU_ALIGN_DOWN(sp, 16);
1991     } else {
1992         sp = QEMU_ALIGN_UP(sp, 16);
1993     }
1994 
1995     /*
1996      * Generate 16 random bytes for userspace PRNG seeding.
1997      */
1998     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1999     if (STACK_GROWS_DOWN) {
2000         sp -= 16;
2001         u_rand_bytes = sp;
2002         /* FIXME - check return value of memcpy_to_target() for failure */
2003         memcpy_to_target(sp, k_rand_bytes, 16);
2004     } else {
2005         memcpy_to_target(sp, k_rand_bytes, 16);
2006         u_rand_bytes = sp;
2007         sp += 16;
2008     }
2009 
2010     size = (DLINFO_ITEMS + 1) * 2;
2011     if (k_platform)
2012         size += 2;
2013 #ifdef DLINFO_ARCH_ITEMS
2014     size += DLINFO_ARCH_ITEMS * 2;
2015 #endif
2016 #ifdef ELF_HWCAP2
2017     size += 2;
2018 #endif
2019     info->auxv_len = size * n;
2020 
2021     size += envc + argc + 2;
2022     size += 1;  /* argc itself */
2023     size *= n;
2024 
2025     /* Allocate space and finalize stack alignment for entry now.  */
2026     if (STACK_GROWS_DOWN) {
2027         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2028         sp = u_argc;
2029     } else {
2030         u_argc = sp;
2031         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2032     }
2033 
2034     u_argv = u_argc + n;
2035     u_envp = u_argv + (argc + 1) * n;
2036     u_auxv = u_envp + (envc + 1) * n;
2037     info->saved_auxv = u_auxv;
2038     info->arg_start = u_argv;
2039     info->arg_end = u_argv + argc * n;
2040 
2041     /* This is correct because Linux defines
2042      * elf_addr_t as Elf32_Off / Elf64_Off
2043      */
2044 #define NEW_AUX_ENT(id, val) do {               \
2045         put_user_ual(id, u_auxv);  u_auxv += n; \
2046         put_user_ual(val, u_auxv); u_auxv += n; \
2047     } while(0)
2048 
2049 #ifdef ARCH_DLINFO
2050     /*
2051      * ARCH_DLINFO must come first so platform specific code can enforce
2052      * special alignment requirements on the AUXV if necessary (eg. PPC).
2053      */
2054     ARCH_DLINFO;
2055 #endif
2056     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2057      * on info->auxv_len will trigger.
2058      */
2059     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2060     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2061     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2062     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2063         /* Target doesn't support host page size alignment */
2064         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2065     } else {
2066         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2067                                                qemu_host_page_size)));
2068     }
2069     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2070     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2071     NEW_AUX_ENT(AT_ENTRY, info->entry);
2072     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2073     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2074     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2075     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2076     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2077     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2078     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2079     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2080     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2081 
2082 #ifdef ELF_HWCAP2
2083     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2084 #endif
2085 
2086     if (u_platform) {
2087         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2088     }
2089     NEW_AUX_ENT (AT_NULL, 0);
2090 #undef NEW_AUX_ENT
2091 
2092     /* Check that our initial calculation of the auxv length matches how much
2093      * we actually put into it.
2094      */
2095     assert(info->auxv_len == u_auxv - info->saved_auxv);
2096 
2097     put_user_ual(argc, u_argc);
2098 
2099     p = info->arg_strings;
2100     for (i = 0; i < argc; ++i) {
2101         put_user_ual(p, u_argv);
2102         u_argv += n;
2103         p += target_strlen(p) + 1;
2104     }
2105     put_user_ual(0, u_argv);
2106 
2107     p = info->env_strings;
2108     for (i = 0; i < envc; ++i) {
2109         put_user_ual(p, u_envp);
2110         u_envp += n;
2111         p += target_strlen(p) + 1;
2112     }
2113     put_user_ual(0, u_envp);
2114 
2115     return sp;
2116 }
2117 
2118 #ifndef ARM_COMMPAGE
2119 #define ARM_COMMPAGE 0
2120 #define init_guest_commpage() true
2121 #endif
2122 
2123 static void pgb_fail_in_use(const char *image_name)
2124 {
2125     error_report("%s: requires virtual address space that is in use "
2126                  "(omit the -B option or choose a different value)",
2127                  image_name);
2128     exit(EXIT_FAILURE);
2129 }
2130 
2131 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2132                                 abi_ulong guest_hiaddr, long align)
2133 {
2134     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2135     void *addr, *test;
2136 
2137     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2138         fprintf(stderr, "Requested guest base %p does not satisfy "
2139                 "host minimum alignment (0x%lx)\n",
2140                 (void *)guest_base, align);
2141         exit(EXIT_FAILURE);
2142     }
2143 
2144     /* Sanity check the guest binary. */
2145     if (reserved_va) {
2146         if (guest_hiaddr > reserved_va) {
2147             error_report("%s: requires more than reserved virtual "
2148                          "address space (0x%" PRIx64 " > 0x%lx)",
2149                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2150             exit(EXIT_FAILURE);
2151         }
2152     } else {
2153 #if HOST_LONG_BITS < TARGET_ABI_BITS
2154         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2155             error_report("%s: requires more virtual address space "
2156                          "than the host can provide (0x%" PRIx64 ")",
2157                          image_name, (uint64_t)guest_hiaddr - guest_base);
2158             exit(EXIT_FAILURE);
2159         }
2160 #endif
2161     }
2162 
2163     /*
2164      * Expand the allocation to the entire reserved_va.
2165      * Exclude the mmap_min_addr hole.
2166      */
2167     if (reserved_va) {
2168         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2169                         : mmap_min_addr - guest_base);
2170         guest_hiaddr = reserved_va;
2171     }
2172 
2173     /* Reserve the address space for the binary, or reserved_va. */
2174     test = g2h_untagged(guest_loaddr);
2175     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2176     if (test != addr) {
2177         pgb_fail_in_use(image_name);
2178     }
2179 }
2180 
2181 /**
2182  * pgd_find_hole_fallback: potential mmap address
2183  * @guest_size: size of available space
2184  * @brk: location of break
2185  * @align: memory alignment
2186  *
2187  * This is a fallback method for finding a hole in the host address
2188  * space if we don't have the benefit of being able to access
2189  * /proc/self/map. It can potentially take a very long time as we can
2190  * only dumbly iterate up the host address space seeing if the
2191  * allocation would work.
2192  */
2193 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2194                                         long align, uintptr_t offset)
2195 {
2196     uintptr_t base;
2197 
2198     /* Start (aligned) at the bottom and work our way up */
2199     base = ROUND_UP(mmap_min_addr, align);
2200 
2201     while (true) {
2202         uintptr_t align_start, end;
2203         align_start = ROUND_UP(base, align);
2204         end = align_start + guest_size + offset;
2205 
2206         /* if brk is anywhere in the range give ourselves some room to grow. */
2207         if (align_start <= brk && brk < end) {
2208             base = brk + (16 * MiB);
2209             continue;
2210         } else if (align_start + guest_size < align_start) {
2211             /* we have run out of space */
2212             return -1;
2213         } else {
2214             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2215                 MAP_FIXED_NOREPLACE;
2216             void * mmap_start = mmap((void *) align_start, guest_size,
2217                                      PROT_NONE, flags, -1, 0);
2218             if (mmap_start != MAP_FAILED) {
2219                 munmap((void *) align_start, guest_size);
2220                 if (MAP_FIXED_NOREPLACE != 0 ||
2221                     mmap_start == (void *) align_start) {
2222                     return (uintptr_t) mmap_start + offset;
2223                 }
2224             }
2225             base += qemu_host_page_size;
2226         }
2227     }
2228 }
2229 
2230 /* Return value for guest_base, or -1 if no hole found. */
2231 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2232                                long align, uintptr_t offset)
2233 {
2234     GSList *maps, *iter;
2235     uintptr_t this_start, this_end, next_start, brk;
2236     intptr_t ret = -1;
2237 
2238     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2239 
2240     maps = read_self_maps();
2241 
2242     /* Read brk after we've read the maps, which will malloc. */
2243     brk = (uintptr_t)sbrk(0);
2244 
2245     if (!maps) {
2246         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2247     }
2248 
2249     /* The first hole is before the first map entry. */
2250     this_start = mmap_min_addr;
2251 
2252     for (iter = maps; iter;
2253          this_start = next_start, iter = g_slist_next(iter)) {
2254         uintptr_t align_start, hole_size;
2255 
2256         this_end = ((MapInfo *)iter->data)->start;
2257         next_start = ((MapInfo *)iter->data)->end;
2258         align_start = ROUND_UP(this_start + offset, align);
2259 
2260         /* Skip holes that are too small. */
2261         if (align_start >= this_end) {
2262             continue;
2263         }
2264         hole_size = this_end - align_start;
2265         if (hole_size < guest_size) {
2266             continue;
2267         }
2268 
2269         /* If this hole contains brk, give ourselves some room to grow. */
2270         if (this_start <= brk && brk < this_end) {
2271             hole_size -= guest_size;
2272             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2273                 align_start += 1 * GiB;
2274             } else if (hole_size >= 16 * MiB) {
2275                 align_start += 16 * MiB;
2276             } else {
2277                 align_start = (this_end - guest_size) & -align;
2278                 if (align_start < this_start) {
2279                     continue;
2280                 }
2281             }
2282         }
2283 
2284         /* Record the lowest successful match. */
2285         if (ret < 0) {
2286             ret = align_start - guest_loaddr;
2287         }
2288         /* If this hole contains the identity map, select it. */
2289         if (align_start <= guest_loaddr &&
2290             guest_loaddr + guest_size <= this_end) {
2291             ret = 0;
2292         }
2293         /* If this hole ends above the identity map, stop looking. */
2294         if (this_end >= guest_loaddr) {
2295             break;
2296         }
2297     }
2298     free_self_maps(maps);
2299 
2300     return ret;
2301 }
2302 
2303 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2304                        abi_ulong orig_hiaddr, long align)
2305 {
2306     uintptr_t loaddr = orig_loaddr;
2307     uintptr_t hiaddr = orig_hiaddr;
2308     uintptr_t offset = 0;
2309     uintptr_t addr;
2310 
2311     if (hiaddr != orig_hiaddr) {
2312         error_report("%s: requires virtual address space that the "
2313                      "host cannot provide (0x%" PRIx64 ")",
2314                      image_name, (uint64_t)orig_hiaddr);
2315         exit(EXIT_FAILURE);
2316     }
2317 
2318     loaddr &= -align;
2319     if (ARM_COMMPAGE) {
2320         /*
2321          * Extend the allocation to include the commpage.
2322          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2323          * need to ensure there is space bellow the guest_base so we
2324          * can map the commpage in the place needed when the address
2325          * arithmetic wraps around.
2326          */
2327         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2328             hiaddr = (uintptr_t) 4 << 30;
2329         } else {
2330             offset = -(ARM_COMMPAGE & -align);
2331         }
2332     }
2333 
2334     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2335     if (addr == -1) {
2336         /*
2337          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2338          * that can satisfy both.  But as the normal arm32 link base address
2339          * is ~32k, and we extend down to include the commpage, making the
2340          * overhead only ~96k, this is unlikely.
2341          */
2342         error_report("%s: Unable to allocate %#zx bytes of "
2343                      "virtual address space", image_name,
2344                      (size_t)(hiaddr - loaddr));
2345         exit(EXIT_FAILURE);
2346     }
2347 
2348     guest_base = addr;
2349 }
2350 
2351 static void pgb_dynamic(const char *image_name, long align)
2352 {
2353     /*
2354      * The executable is dynamic and does not require a fixed address.
2355      * All we need is a commpage that satisfies align.
2356      * If we do not need a commpage, leave guest_base == 0.
2357      */
2358     if (ARM_COMMPAGE) {
2359         uintptr_t addr, commpage;
2360 
2361         /* 64-bit hosts should have used reserved_va. */
2362         assert(sizeof(uintptr_t) == 4);
2363 
2364         /*
2365          * By putting the commpage at the first hole, that puts guest_base
2366          * just above that, and maximises the positive guest addresses.
2367          */
2368         commpage = ARM_COMMPAGE & -align;
2369         addr = pgb_find_hole(commpage, -commpage, align, 0);
2370         assert(addr != -1);
2371         guest_base = addr;
2372     }
2373 }
2374 
2375 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2376                             abi_ulong guest_hiaddr, long align)
2377 {
2378     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2379     void *addr, *test;
2380 
2381     if (guest_hiaddr > reserved_va) {
2382         error_report("%s: requires more than reserved virtual "
2383                      "address space (0x%" PRIx64 " > 0x%lx)",
2384                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2385         exit(EXIT_FAILURE);
2386     }
2387 
2388     /* Widen the "image" to the entire reserved address space. */
2389     pgb_static(image_name, 0, reserved_va, align);
2390 
2391     /* osdep.h defines this as 0 if it's missing */
2392     flags |= MAP_FIXED_NOREPLACE;
2393 
2394     /* Reserve the memory on the host. */
2395     assert(guest_base != 0);
2396     test = g2h_untagged(0);
2397     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2398     if (addr == MAP_FAILED || addr != test) {
2399         error_report("Unable to reserve 0x%lx bytes of virtual address "
2400                      "space at %p (%s) for use as guest address space (check your"
2401                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2402                      "using -R option)", reserved_va, test, strerror(errno));
2403         exit(EXIT_FAILURE);
2404     }
2405 }
2406 
2407 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2408                       abi_ulong guest_hiaddr)
2409 {
2410     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2411     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2412 
2413     if (have_guest_base) {
2414         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2415     } else if (reserved_va) {
2416         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2417     } else if (guest_loaddr) {
2418         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2419     } else {
2420         pgb_dynamic(image_name, align);
2421     }
2422 
2423     /* Reserve and initialize the commpage. */
2424     if (!init_guest_commpage()) {
2425         /*
2426          * With have_guest_base, the user has selected the address and
2427          * we are trying to work with that.  Otherwise, we have selected
2428          * free space and init_guest_commpage must succeeded.
2429          */
2430         assert(have_guest_base);
2431         pgb_fail_in_use(image_name);
2432     }
2433 
2434     assert(QEMU_IS_ALIGNED(guest_base, align));
2435     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2436                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2437 }
2438 
2439 enum {
2440     /* The string "GNU\0" as a magic number. */
2441     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2442     NOTE_DATA_SZ = 1 * KiB,
2443     NOTE_NAME_SZ = 4,
2444     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2445 };
2446 
2447 /*
2448  * Process a single gnu_property entry.
2449  * Return false for error.
2450  */
2451 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2452                                struct image_info *info, bool have_prev_type,
2453                                uint32_t *prev_type, Error **errp)
2454 {
2455     uint32_t pr_type, pr_datasz, step;
2456 
2457     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2458         goto error_data;
2459     }
2460     datasz -= *off;
2461     data += *off / sizeof(uint32_t);
2462 
2463     if (datasz < 2 * sizeof(uint32_t)) {
2464         goto error_data;
2465     }
2466     pr_type = data[0];
2467     pr_datasz = data[1];
2468     data += 2;
2469     datasz -= 2 * sizeof(uint32_t);
2470     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2471     if (step > datasz) {
2472         goto error_data;
2473     }
2474 
2475     /* Properties are supposed to be unique and sorted on pr_type. */
2476     if (have_prev_type && pr_type <= *prev_type) {
2477         if (pr_type == *prev_type) {
2478             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2479         } else {
2480             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2481         }
2482         return false;
2483     }
2484     *prev_type = pr_type;
2485 
2486     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2487         return false;
2488     }
2489 
2490     *off += 2 * sizeof(uint32_t) + step;
2491     return true;
2492 
2493  error_data:
2494     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2495     return false;
2496 }
2497 
2498 /* Process NT_GNU_PROPERTY_TYPE_0. */
2499 static bool parse_elf_properties(int image_fd,
2500                                  struct image_info *info,
2501                                  const struct elf_phdr *phdr,
2502                                  char bprm_buf[BPRM_BUF_SIZE],
2503                                  Error **errp)
2504 {
2505     union {
2506         struct elf_note nhdr;
2507         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2508     } note;
2509 
2510     int n, off, datasz;
2511     bool have_prev_type;
2512     uint32_t prev_type;
2513 
2514     /* Unless the arch requires properties, ignore them. */
2515     if (!ARCH_USE_GNU_PROPERTY) {
2516         return true;
2517     }
2518 
2519     /* If the properties are crazy large, that's too bad. */
2520     n = phdr->p_filesz;
2521     if (n > sizeof(note)) {
2522         error_setg(errp, "PT_GNU_PROPERTY too large");
2523         return false;
2524     }
2525     if (n < sizeof(note.nhdr)) {
2526         error_setg(errp, "PT_GNU_PROPERTY too small");
2527         return false;
2528     }
2529 
2530     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2531         memcpy(&note, bprm_buf + phdr->p_offset, n);
2532     } else {
2533         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2534         if (len != n) {
2535             error_setg_errno(errp, errno, "Error reading file header");
2536             return false;
2537         }
2538     }
2539 
2540     /*
2541      * The contents of a valid PT_GNU_PROPERTY is a sequence
2542      * of uint32_t -- swap them all now.
2543      */
2544 #ifdef BSWAP_NEEDED
2545     for (int i = 0; i < n / 4; i++) {
2546         bswap32s(note.data + i);
2547     }
2548 #endif
2549 
2550     /*
2551      * Note that nhdr is 3 words, and that the "name" described by namesz
2552      * immediately follows nhdr and is thus at the 4th word.  Further, all
2553      * of the inputs to the kernel's round_up are multiples of 4.
2554      */
2555     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2556         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2557         note.data[3] != GNU0_MAGIC) {
2558         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2559         return false;
2560     }
2561     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2562 
2563     datasz = note.nhdr.n_descsz + off;
2564     if (datasz > n) {
2565         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2566         return false;
2567     }
2568 
2569     have_prev_type = false;
2570     prev_type = 0;
2571     while (1) {
2572         if (off == datasz) {
2573             return true;  /* end, exit ok */
2574         }
2575         if (!parse_elf_property(note.data, &off, datasz, info,
2576                                 have_prev_type, &prev_type, errp)) {
2577             return false;
2578         }
2579         have_prev_type = true;
2580     }
2581 }
2582 
2583 /* Load an ELF image into the address space.
2584 
2585    IMAGE_NAME is the filename of the image, to use in error messages.
2586    IMAGE_FD is the open file descriptor for the image.
2587 
2588    BPRM_BUF is a copy of the beginning of the file; this of course
2589    contains the elf file header at offset 0.  It is assumed that this
2590    buffer is sufficiently aligned to present no problems to the host
2591    in accessing data at aligned offsets within the buffer.
2592 
2593    On return: INFO values will be filled in, as necessary or available.  */
2594 
2595 static void load_elf_image(const char *image_name, int image_fd,
2596                            struct image_info *info, char **pinterp_name,
2597                            char bprm_buf[BPRM_BUF_SIZE])
2598 {
2599     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2600     struct elf_phdr *phdr;
2601     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2602     int i, retval, prot_exec;
2603     Error *err = NULL;
2604 
2605     /* First of all, some simple consistency checks */
2606     if (!elf_check_ident(ehdr)) {
2607         error_setg(&err, "Invalid ELF image for this architecture");
2608         goto exit_errmsg;
2609     }
2610     bswap_ehdr(ehdr);
2611     if (!elf_check_ehdr(ehdr)) {
2612         error_setg(&err, "Invalid ELF image for this architecture");
2613         goto exit_errmsg;
2614     }
2615 
2616     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2617     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2618         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2619     } else {
2620         phdr = (struct elf_phdr *) alloca(i);
2621         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2622         if (retval != i) {
2623             goto exit_read;
2624         }
2625     }
2626     bswap_phdr(phdr, ehdr->e_phnum);
2627 
2628     info->nsegs = 0;
2629     info->pt_dynamic_addr = 0;
2630 
2631     mmap_lock();
2632 
2633     /*
2634      * Find the maximum size of the image and allocate an appropriate
2635      * amount of memory to handle that.  Locate the interpreter, if any.
2636      */
2637     loaddr = -1, hiaddr = 0;
2638     info->alignment = 0;
2639     for (i = 0; i < ehdr->e_phnum; ++i) {
2640         struct elf_phdr *eppnt = phdr + i;
2641         if (eppnt->p_type == PT_LOAD) {
2642             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2643             if (a < loaddr) {
2644                 loaddr = a;
2645             }
2646             a = eppnt->p_vaddr + eppnt->p_memsz;
2647             if (a > hiaddr) {
2648                 hiaddr = a;
2649             }
2650             ++info->nsegs;
2651             info->alignment |= eppnt->p_align;
2652         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2653             g_autofree char *interp_name = NULL;
2654 
2655             if (*pinterp_name) {
2656                 error_setg(&err, "Multiple PT_INTERP entries");
2657                 goto exit_errmsg;
2658             }
2659 
2660             interp_name = g_malloc(eppnt->p_filesz);
2661 
2662             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2663                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2664                        eppnt->p_filesz);
2665             } else {
2666                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2667                                eppnt->p_offset);
2668                 if (retval != eppnt->p_filesz) {
2669                     goto exit_read;
2670                 }
2671             }
2672             if (interp_name[eppnt->p_filesz - 1] != 0) {
2673                 error_setg(&err, "Invalid PT_INTERP entry");
2674                 goto exit_errmsg;
2675             }
2676             *pinterp_name = g_steal_pointer(&interp_name);
2677         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2678             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2679                 goto exit_errmsg;
2680             }
2681         }
2682     }
2683 
2684     if (pinterp_name != NULL) {
2685         /*
2686          * This is the main executable.
2687          *
2688          * Reserve extra space for brk.
2689          * We hold on to this space while placing the interpreter
2690          * and the stack, lest they be placed immediately after
2691          * the data segment and block allocation from the brk.
2692          *
2693          * 16MB is chosen as "large enough" without being so large
2694          * as to allow the result to not fit with a 32-bit guest on
2695          * a 32-bit host.
2696          */
2697         info->reserve_brk = 16 * MiB;
2698         hiaddr += info->reserve_brk;
2699 
2700         if (ehdr->e_type == ET_EXEC) {
2701             /*
2702              * Make sure that the low address does not conflict with
2703              * MMAP_MIN_ADDR or the QEMU application itself.
2704              */
2705             probe_guest_base(image_name, loaddr, hiaddr);
2706         } else {
2707             /*
2708              * The binary is dynamic, but we still need to
2709              * select guest_base.  In this case we pass a size.
2710              */
2711             probe_guest_base(image_name, 0, hiaddr - loaddr);
2712         }
2713     }
2714 
2715     /*
2716      * Reserve address space for all of this.
2717      *
2718      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2719      * exactly the address range that is required.
2720      *
2721      * Otherwise this is ET_DYN, and we are searching for a location
2722      * that can hold the memory space required.  If the image is
2723      * pre-linked, LOADDR will be non-zero, and the kernel should
2724      * honor that address if it happens to be free.
2725      *
2726      * In both cases, we will overwrite pages in this range with mappings
2727      * from the executable.
2728      */
2729     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2730                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2731                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2732                             -1, 0);
2733     if (load_addr == -1) {
2734         goto exit_mmap;
2735     }
2736     load_bias = load_addr - loaddr;
2737 
2738     if (elf_is_fdpic(ehdr)) {
2739         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2740             g_malloc(sizeof(*loadsegs) * info->nsegs);
2741 
2742         for (i = 0; i < ehdr->e_phnum; ++i) {
2743             switch (phdr[i].p_type) {
2744             case PT_DYNAMIC:
2745                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2746                 break;
2747             case PT_LOAD:
2748                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2749                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2750                 loadsegs->p_memsz = phdr[i].p_memsz;
2751                 ++loadsegs;
2752                 break;
2753             }
2754         }
2755     }
2756 
2757     info->load_bias = load_bias;
2758     info->code_offset = load_bias;
2759     info->data_offset = load_bias;
2760     info->load_addr = load_addr;
2761     info->entry = ehdr->e_entry + load_bias;
2762     info->start_code = -1;
2763     info->end_code = 0;
2764     info->start_data = -1;
2765     info->end_data = 0;
2766     info->brk = 0;
2767     info->elf_flags = ehdr->e_flags;
2768 
2769     prot_exec = PROT_EXEC;
2770 #ifdef TARGET_AARCH64
2771     /*
2772      * If the BTI feature is present, this indicates that the executable
2773      * pages of the startup binary should be mapped with PROT_BTI, so that
2774      * branch targets are enforced.
2775      *
2776      * The startup binary is either the interpreter or the static executable.
2777      * The interpreter is responsible for all pages of a dynamic executable.
2778      *
2779      * Elf notes are backward compatible to older cpus.
2780      * Do not enable BTI unless it is supported.
2781      */
2782     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2783         && (pinterp_name == NULL || *pinterp_name == 0)
2784         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2785         prot_exec |= TARGET_PROT_BTI;
2786     }
2787 #endif
2788 
2789     for (i = 0; i < ehdr->e_phnum; i++) {
2790         struct elf_phdr *eppnt = phdr + i;
2791         if (eppnt->p_type == PT_LOAD) {
2792             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2793             int elf_prot = 0;
2794 
2795             if (eppnt->p_flags & PF_R) {
2796                 elf_prot |= PROT_READ;
2797             }
2798             if (eppnt->p_flags & PF_W) {
2799                 elf_prot |= PROT_WRITE;
2800             }
2801             if (eppnt->p_flags & PF_X) {
2802                 elf_prot |= prot_exec;
2803             }
2804 
2805             vaddr = load_bias + eppnt->p_vaddr;
2806             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2807             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2808 
2809             vaddr_ef = vaddr + eppnt->p_filesz;
2810             vaddr_em = vaddr + eppnt->p_memsz;
2811 
2812             /*
2813              * Some segments may be completely empty, with a non-zero p_memsz
2814              * but no backing file segment.
2815              */
2816             if (eppnt->p_filesz != 0) {
2817                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2818                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2819                                     MAP_PRIVATE | MAP_FIXED,
2820                                     image_fd, eppnt->p_offset - vaddr_po);
2821 
2822                 if (error == -1) {
2823                     goto exit_mmap;
2824                 }
2825 
2826                 /*
2827                  * If the load segment requests extra zeros (e.g. bss), map it.
2828                  */
2829                 if (eppnt->p_filesz < eppnt->p_memsz) {
2830                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2831                 }
2832             } else if (eppnt->p_memsz != 0) {
2833                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2834                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2835                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2836                                     -1, 0);
2837 
2838                 if (error == -1) {
2839                     goto exit_mmap;
2840                 }
2841             }
2842 
2843             /* Find the full program boundaries.  */
2844             if (elf_prot & PROT_EXEC) {
2845                 if (vaddr < info->start_code) {
2846                     info->start_code = vaddr;
2847                 }
2848                 if (vaddr_ef > info->end_code) {
2849                     info->end_code = vaddr_ef;
2850                 }
2851             }
2852             if (elf_prot & PROT_WRITE) {
2853                 if (vaddr < info->start_data) {
2854                     info->start_data = vaddr;
2855                 }
2856                 if (vaddr_ef > info->end_data) {
2857                     info->end_data = vaddr_ef;
2858                 }
2859             }
2860             if (vaddr_em > info->brk) {
2861                 info->brk = vaddr_em;
2862             }
2863 #ifdef TARGET_MIPS
2864         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2865             Mips_elf_abiflags_v0 abiflags;
2866             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2867                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2868                 goto exit_errmsg;
2869             }
2870             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2871                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2872                        sizeof(Mips_elf_abiflags_v0));
2873             } else {
2874                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2875                                eppnt->p_offset);
2876                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2877                     goto exit_read;
2878                 }
2879             }
2880             bswap_mips_abiflags(&abiflags);
2881             info->fp_abi = abiflags.fp_abi;
2882 #endif
2883         }
2884     }
2885 
2886     if (info->end_data == 0) {
2887         info->start_data = info->end_code;
2888         info->end_data = info->end_code;
2889     }
2890 
2891     if (qemu_log_enabled()) {
2892         load_symbols(ehdr, image_fd, load_bias);
2893     }
2894 
2895     mmap_unlock();
2896 
2897     close(image_fd);
2898     return;
2899 
2900  exit_read:
2901     if (retval >= 0) {
2902         error_setg(&err, "Incomplete read of file header");
2903     } else {
2904         error_setg_errno(&err, errno, "Error reading file header");
2905     }
2906     goto exit_errmsg;
2907  exit_mmap:
2908     error_setg_errno(&err, errno, "Error mapping file");
2909     goto exit_errmsg;
2910  exit_errmsg:
2911     error_reportf_err(err, "%s: ", image_name);
2912     exit(-1);
2913 }
2914 
2915 static void load_elf_interp(const char *filename, struct image_info *info,
2916                             char bprm_buf[BPRM_BUF_SIZE])
2917 {
2918     int fd, retval;
2919     Error *err = NULL;
2920 
2921     fd = open(path(filename), O_RDONLY);
2922     if (fd < 0) {
2923         error_setg_file_open(&err, errno, filename);
2924         error_report_err(err);
2925         exit(-1);
2926     }
2927 
2928     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2929     if (retval < 0) {
2930         error_setg_errno(&err, errno, "Error reading file header");
2931         error_reportf_err(err, "%s: ", filename);
2932         exit(-1);
2933     }
2934 
2935     if (retval < BPRM_BUF_SIZE) {
2936         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2937     }
2938 
2939     load_elf_image(filename, fd, info, NULL, bprm_buf);
2940 }
2941 
2942 static int symfind(const void *s0, const void *s1)
2943 {
2944     target_ulong addr = *(target_ulong *)s0;
2945     struct elf_sym *sym = (struct elf_sym *)s1;
2946     int result = 0;
2947     if (addr < sym->st_value) {
2948         result = -1;
2949     } else if (addr >= sym->st_value + sym->st_size) {
2950         result = 1;
2951     }
2952     return result;
2953 }
2954 
2955 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2956 {
2957 #if ELF_CLASS == ELFCLASS32
2958     struct elf_sym *syms = s->disas_symtab.elf32;
2959 #else
2960     struct elf_sym *syms = s->disas_symtab.elf64;
2961 #endif
2962 
2963     // binary search
2964     struct elf_sym *sym;
2965 
2966     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2967     if (sym != NULL) {
2968         return s->disas_strtab + sym->st_name;
2969     }
2970 
2971     return "";
2972 }
2973 
2974 /* FIXME: This should use elf_ops.h  */
2975 static int symcmp(const void *s0, const void *s1)
2976 {
2977     struct elf_sym *sym0 = (struct elf_sym *)s0;
2978     struct elf_sym *sym1 = (struct elf_sym *)s1;
2979     return (sym0->st_value < sym1->st_value)
2980         ? -1
2981         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2982 }
2983 
2984 /* Best attempt to load symbols from this ELF object. */
2985 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2986 {
2987     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2988     uint64_t segsz;
2989     struct elf_shdr *shdr;
2990     char *strings = NULL;
2991     struct syminfo *s = NULL;
2992     struct elf_sym *new_syms, *syms = NULL;
2993 
2994     shnum = hdr->e_shnum;
2995     i = shnum * sizeof(struct elf_shdr);
2996     shdr = (struct elf_shdr *)alloca(i);
2997     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2998         return;
2999     }
3000 
3001     bswap_shdr(shdr, shnum);
3002     for (i = 0; i < shnum; ++i) {
3003         if (shdr[i].sh_type == SHT_SYMTAB) {
3004             sym_idx = i;
3005             str_idx = shdr[i].sh_link;
3006             goto found;
3007         }
3008     }
3009 
3010     /* There will be no symbol table if the file was stripped.  */
3011     return;
3012 
3013  found:
3014     /* Now know where the strtab and symtab are.  Snarf them.  */
3015     s = g_try_new(struct syminfo, 1);
3016     if (!s) {
3017         goto give_up;
3018     }
3019 
3020     segsz = shdr[str_idx].sh_size;
3021     s->disas_strtab = strings = g_try_malloc(segsz);
3022     if (!strings ||
3023         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3024         goto give_up;
3025     }
3026 
3027     segsz = shdr[sym_idx].sh_size;
3028     syms = g_try_malloc(segsz);
3029     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3030         goto give_up;
3031     }
3032 
3033     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3034         /* Implausibly large symbol table: give up rather than ploughing
3035          * on with the number of symbols calculation overflowing
3036          */
3037         goto give_up;
3038     }
3039     nsyms = segsz / sizeof(struct elf_sym);
3040     for (i = 0; i < nsyms; ) {
3041         bswap_sym(syms + i);
3042         /* Throw away entries which we do not need.  */
3043         if (syms[i].st_shndx == SHN_UNDEF
3044             || syms[i].st_shndx >= SHN_LORESERVE
3045             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3046             if (i < --nsyms) {
3047                 syms[i] = syms[nsyms];
3048             }
3049         } else {
3050 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3051             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3052             syms[i].st_value &= ~(target_ulong)1;
3053 #endif
3054             syms[i].st_value += load_bias;
3055             i++;
3056         }
3057     }
3058 
3059     /* No "useful" symbol.  */
3060     if (nsyms == 0) {
3061         goto give_up;
3062     }
3063 
3064     /* Attempt to free the storage associated with the local symbols
3065        that we threw away.  Whether or not this has any effect on the
3066        memory allocation depends on the malloc implementation and how
3067        many symbols we managed to discard.  */
3068     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3069     if (new_syms == NULL) {
3070         goto give_up;
3071     }
3072     syms = new_syms;
3073 
3074     qsort(syms, nsyms, sizeof(*syms), symcmp);
3075 
3076     s->disas_num_syms = nsyms;
3077 #if ELF_CLASS == ELFCLASS32
3078     s->disas_symtab.elf32 = syms;
3079 #else
3080     s->disas_symtab.elf64 = syms;
3081 #endif
3082     s->lookup_symbol = lookup_symbolxx;
3083     s->next = syminfos;
3084     syminfos = s;
3085 
3086     return;
3087 
3088 give_up:
3089     g_free(s);
3090     g_free(strings);
3091     g_free(syms);
3092 }
3093 
3094 uint32_t get_elf_eflags(int fd)
3095 {
3096     struct elfhdr ehdr;
3097     off_t offset;
3098     int ret;
3099 
3100     /* Read ELF header */
3101     offset = lseek(fd, 0, SEEK_SET);
3102     if (offset == (off_t) -1) {
3103         return 0;
3104     }
3105     ret = read(fd, &ehdr, sizeof(ehdr));
3106     if (ret < sizeof(ehdr)) {
3107         return 0;
3108     }
3109     offset = lseek(fd, offset, SEEK_SET);
3110     if (offset == (off_t) -1) {
3111         return 0;
3112     }
3113 
3114     /* Check ELF signature */
3115     if (!elf_check_ident(&ehdr)) {
3116         return 0;
3117     }
3118 
3119     /* check header */
3120     bswap_ehdr(&ehdr);
3121     if (!elf_check_ehdr(&ehdr)) {
3122         return 0;
3123     }
3124 
3125     /* return architecture id */
3126     return ehdr.e_flags;
3127 }
3128 
3129 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3130 {
3131     struct image_info interp_info;
3132     struct elfhdr elf_ex;
3133     char *elf_interpreter = NULL;
3134     char *scratch;
3135 
3136     memset(&interp_info, 0, sizeof(interp_info));
3137 #ifdef TARGET_MIPS
3138     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3139 #endif
3140 
3141     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3142 
3143     load_elf_image(bprm->filename, bprm->fd, info,
3144                    &elf_interpreter, bprm->buf);
3145 
3146     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3147        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3148        when we load the interpreter.  */
3149     elf_ex = *(struct elfhdr *)bprm->buf;
3150 
3151     /* Do this so that we can load the interpreter, if need be.  We will
3152        change some of these later */
3153     bprm->p = setup_arg_pages(bprm, info);
3154 
3155     scratch = g_new0(char, TARGET_PAGE_SIZE);
3156     if (STACK_GROWS_DOWN) {
3157         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3158                                    bprm->p, info->stack_limit);
3159         info->file_string = bprm->p;
3160         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3161                                    bprm->p, info->stack_limit);
3162         info->env_strings = bprm->p;
3163         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3164                                    bprm->p, info->stack_limit);
3165         info->arg_strings = bprm->p;
3166     } else {
3167         info->arg_strings = bprm->p;
3168         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3169                                    bprm->p, info->stack_limit);
3170         info->env_strings = bprm->p;
3171         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3172                                    bprm->p, info->stack_limit);
3173         info->file_string = bprm->p;
3174         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3175                                    bprm->p, info->stack_limit);
3176     }
3177 
3178     g_free(scratch);
3179 
3180     if (!bprm->p) {
3181         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3182         exit(-1);
3183     }
3184 
3185     if (elf_interpreter) {
3186         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3187 
3188         /* If the program interpreter is one of these two, then assume
3189            an iBCS2 image.  Otherwise assume a native linux image.  */
3190 
3191         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3192             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3193             info->personality = PER_SVR4;
3194 
3195             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3196                and some applications "depend" upon this behavior.  Since
3197                we do not have the power to recompile these, we emulate
3198                the SVr4 behavior.  Sigh.  */
3199             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3200                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3201         }
3202 #ifdef TARGET_MIPS
3203         info->interp_fp_abi = interp_info.fp_abi;
3204 #endif
3205     }
3206 
3207     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3208                                 info, (elf_interpreter ? &interp_info : NULL));
3209     info->start_stack = bprm->p;
3210 
3211     /* If we have an interpreter, set that as the program's entry point.
3212        Copy the load_bias as well, to help PPC64 interpret the entry
3213        point as a function descriptor.  Do this after creating elf tables
3214        so that we copy the original program entry point into the AUXV.  */
3215     if (elf_interpreter) {
3216         info->load_bias = interp_info.load_bias;
3217         info->entry = interp_info.entry;
3218         g_free(elf_interpreter);
3219     }
3220 
3221 #ifdef USE_ELF_CORE_DUMP
3222     bprm->core_dump = &elf_core_dump;
3223 #endif
3224 
3225     /*
3226      * If we reserved extra space for brk, release it now.
3227      * The implementation of do_brk in syscalls.c expects to be able
3228      * to mmap pages in this space.
3229      */
3230     if (info->reserve_brk) {
3231         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3232         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3233         target_munmap(start_brk, end_brk - start_brk);
3234     }
3235 
3236     return 0;
3237 }
3238 
3239 #ifdef USE_ELF_CORE_DUMP
3240 /*
3241  * Definitions to generate Intel SVR4-like core files.
3242  * These mostly have the same names as the SVR4 types with "target_elf_"
3243  * tacked on the front to prevent clashes with linux definitions,
3244  * and the typedef forms have been avoided.  This is mostly like
3245  * the SVR4 structure, but more Linuxy, with things that Linux does
3246  * not support and which gdb doesn't really use excluded.
3247  *
3248  * Fields we don't dump (their contents is zero) in linux-user qemu
3249  * are marked with XXX.
3250  *
3251  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3252  *
3253  * Porting ELF coredump for target is (quite) simple process.  First you
3254  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3255  * the target resides):
3256  *
3257  * #define USE_ELF_CORE_DUMP
3258  *
3259  * Next you define type of register set used for dumping.  ELF specification
3260  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3261  *
3262  * typedef <target_regtype> target_elf_greg_t;
3263  * #define ELF_NREG <number of registers>
3264  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3265  *
3266  * Last step is to implement target specific function that copies registers
3267  * from given cpu into just specified register set.  Prototype is:
3268  *
3269  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3270  *                                const CPUArchState *env);
3271  *
3272  * Parameters:
3273  *     regs - copy register values into here (allocated and zeroed by caller)
3274  *     env - copy registers from here
3275  *
3276  * Example for ARM target is provided in this file.
3277  */
3278 
3279 /* An ELF note in memory */
3280 struct memelfnote {
3281     const char *name;
3282     size_t     namesz;
3283     size_t     namesz_rounded;
3284     int        type;
3285     size_t     datasz;
3286     size_t     datasz_rounded;
3287     void       *data;
3288     size_t     notesz;
3289 };
3290 
3291 struct target_elf_siginfo {
3292     abi_int    si_signo; /* signal number */
3293     abi_int    si_code;  /* extra code */
3294     abi_int    si_errno; /* errno */
3295 };
3296 
3297 struct target_elf_prstatus {
3298     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3299     abi_short          pr_cursig;    /* Current signal */
3300     abi_ulong          pr_sigpend;   /* XXX */
3301     abi_ulong          pr_sighold;   /* XXX */
3302     target_pid_t       pr_pid;
3303     target_pid_t       pr_ppid;
3304     target_pid_t       pr_pgrp;
3305     target_pid_t       pr_sid;
3306     struct target_timeval pr_utime;  /* XXX User time */
3307     struct target_timeval pr_stime;  /* XXX System time */
3308     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3309     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3310     target_elf_gregset_t      pr_reg;       /* GP registers */
3311     abi_int            pr_fpvalid;   /* XXX */
3312 };
3313 
3314 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3315 
3316 struct target_elf_prpsinfo {
3317     char         pr_state;       /* numeric process state */
3318     char         pr_sname;       /* char for pr_state */
3319     char         pr_zomb;        /* zombie */
3320     char         pr_nice;        /* nice val */
3321     abi_ulong    pr_flag;        /* flags */
3322     target_uid_t pr_uid;
3323     target_gid_t pr_gid;
3324     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3325     /* Lots missing */
3326     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3327     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3328 };
3329 
3330 /* Here is the structure in which status of each thread is captured. */
3331 struct elf_thread_status {
3332     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3333     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3334 #if 0
3335     elf_fpregset_t fpu;             /* NT_PRFPREG */
3336     struct task_struct *thread;
3337     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3338 #endif
3339     struct memelfnote notes[1];
3340     int num_notes;
3341 };
3342 
3343 struct elf_note_info {
3344     struct memelfnote   *notes;
3345     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3346     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3347 
3348     QTAILQ_HEAD(, elf_thread_status) thread_list;
3349 #if 0
3350     /*
3351      * Current version of ELF coredump doesn't support
3352      * dumping fp regs etc.
3353      */
3354     elf_fpregset_t *fpu;
3355     elf_fpxregset_t *xfpu;
3356     int thread_status_size;
3357 #endif
3358     int notes_size;
3359     int numnote;
3360 };
3361 
3362 struct vm_area_struct {
3363     target_ulong   vma_start;  /* start vaddr of memory region */
3364     target_ulong   vma_end;    /* end vaddr of memory region */
3365     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3366     QTAILQ_ENTRY(vm_area_struct) vma_link;
3367 };
3368 
3369 struct mm_struct {
3370     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3371     int mm_count;           /* number of mappings */
3372 };
3373 
3374 static struct mm_struct *vma_init(void);
3375 static void vma_delete(struct mm_struct *);
3376 static int vma_add_mapping(struct mm_struct *, target_ulong,
3377                            target_ulong, abi_ulong);
3378 static int vma_get_mapping_count(const struct mm_struct *);
3379 static struct vm_area_struct *vma_first(const struct mm_struct *);
3380 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3381 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3382 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3383                       unsigned long flags);
3384 
3385 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3386 static void fill_note(struct memelfnote *, const char *, int,
3387                       unsigned int, void *);
3388 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3389 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3390 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3391 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3392 static size_t note_size(const struct memelfnote *);
3393 static void free_note_info(struct elf_note_info *);
3394 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3395 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3396 static int core_dump_filename(const TaskState *, char *, size_t);
3397 
3398 static int dump_write(int, const void *, size_t);
3399 static int write_note(struct memelfnote *, int);
3400 static int write_note_info(struct elf_note_info *, int);
3401 
3402 #ifdef BSWAP_NEEDED
3403 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3404 {
3405     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3406     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3407     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3408     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3409     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3410     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3411     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3412     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3413     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3414     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3415     /* cpu times are not filled, so we skip them */
3416     /* regs should be in correct format already */
3417     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3418 }
3419 
3420 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3421 {
3422     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3423     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3424     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3425     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3426     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3427     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3428     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3429 }
3430 
3431 static void bswap_note(struct elf_note *en)
3432 {
3433     bswap32s(&en->n_namesz);
3434     bswap32s(&en->n_descsz);
3435     bswap32s(&en->n_type);
3436 }
3437 #else
3438 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3439 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3440 static inline void bswap_note(struct elf_note *en) { }
3441 #endif /* BSWAP_NEEDED */
3442 
3443 /*
3444  * Minimal support for linux memory regions.  These are needed
3445  * when we are finding out what memory exactly belongs to
3446  * emulated process.  No locks needed here, as long as
3447  * thread that received the signal is stopped.
3448  */
3449 
3450 static struct mm_struct *vma_init(void)
3451 {
3452     struct mm_struct *mm;
3453 
3454     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3455         return (NULL);
3456 
3457     mm->mm_count = 0;
3458     QTAILQ_INIT(&mm->mm_mmap);
3459 
3460     return (mm);
3461 }
3462 
3463 static void vma_delete(struct mm_struct *mm)
3464 {
3465     struct vm_area_struct *vma;
3466 
3467     while ((vma = vma_first(mm)) != NULL) {
3468         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3469         g_free(vma);
3470     }
3471     g_free(mm);
3472 }
3473 
3474 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3475                            target_ulong end, abi_ulong flags)
3476 {
3477     struct vm_area_struct *vma;
3478 
3479     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3480         return (-1);
3481 
3482     vma->vma_start = start;
3483     vma->vma_end = end;
3484     vma->vma_flags = flags;
3485 
3486     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3487     mm->mm_count++;
3488 
3489     return (0);
3490 }
3491 
3492 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3493 {
3494     return (QTAILQ_FIRST(&mm->mm_mmap));
3495 }
3496 
3497 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3498 {
3499     return (QTAILQ_NEXT(vma, vma_link));
3500 }
3501 
3502 static int vma_get_mapping_count(const struct mm_struct *mm)
3503 {
3504     return (mm->mm_count);
3505 }
3506 
3507 /*
3508  * Calculate file (dump) size of given memory region.
3509  */
3510 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3511 {
3512     /* if we cannot even read the first page, skip it */
3513     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3514         return (0);
3515 
3516     /*
3517      * Usually we don't dump executable pages as they contain
3518      * non-writable code that debugger can read directly from
3519      * target library etc.  However, thread stacks are marked
3520      * also executable so we read in first page of given region
3521      * and check whether it contains elf header.  If there is
3522      * no elf header, we dump it.
3523      */
3524     if (vma->vma_flags & PROT_EXEC) {
3525         char page[TARGET_PAGE_SIZE];
3526 
3527         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3528             return 0;
3529         }
3530         if ((page[EI_MAG0] == ELFMAG0) &&
3531             (page[EI_MAG1] == ELFMAG1) &&
3532             (page[EI_MAG2] == ELFMAG2) &&
3533             (page[EI_MAG3] == ELFMAG3)) {
3534             /*
3535              * Mappings are possibly from ELF binary.  Don't dump
3536              * them.
3537              */
3538             return (0);
3539         }
3540     }
3541 
3542     return (vma->vma_end - vma->vma_start);
3543 }
3544 
3545 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3546                       unsigned long flags)
3547 {
3548     struct mm_struct *mm = (struct mm_struct *)priv;
3549 
3550     vma_add_mapping(mm, start, end, flags);
3551     return (0);
3552 }
3553 
3554 static void fill_note(struct memelfnote *note, const char *name, int type,
3555                       unsigned int sz, void *data)
3556 {
3557     unsigned int namesz;
3558 
3559     namesz = strlen(name) + 1;
3560     note->name = name;
3561     note->namesz = namesz;
3562     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3563     note->type = type;
3564     note->datasz = sz;
3565     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3566 
3567     note->data = data;
3568 
3569     /*
3570      * We calculate rounded up note size here as specified by
3571      * ELF document.
3572      */
3573     note->notesz = sizeof (struct elf_note) +
3574         note->namesz_rounded + note->datasz_rounded;
3575 }
3576 
3577 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3578                             uint32_t flags)
3579 {
3580     (void) memset(elf, 0, sizeof(*elf));
3581 
3582     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3583     elf->e_ident[EI_CLASS] = ELF_CLASS;
3584     elf->e_ident[EI_DATA] = ELF_DATA;
3585     elf->e_ident[EI_VERSION] = EV_CURRENT;
3586     elf->e_ident[EI_OSABI] = ELF_OSABI;
3587 
3588     elf->e_type = ET_CORE;
3589     elf->e_machine = machine;
3590     elf->e_version = EV_CURRENT;
3591     elf->e_phoff = sizeof(struct elfhdr);
3592     elf->e_flags = flags;
3593     elf->e_ehsize = sizeof(struct elfhdr);
3594     elf->e_phentsize = sizeof(struct elf_phdr);
3595     elf->e_phnum = segs;
3596 
3597     bswap_ehdr(elf);
3598 }
3599 
3600 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3601 {
3602     phdr->p_type = PT_NOTE;
3603     phdr->p_offset = offset;
3604     phdr->p_vaddr = 0;
3605     phdr->p_paddr = 0;
3606     phdr->p_filesz = sz;
3607     phdr->p_memsz = 0;
3608     phdr->p_flags = 0;
3609     phdr->p_align = 0;
3610 
3611     bswap_phdr(phdr, 1);
3612 }
3613 
3614 static size_t note_size(const struct memelfnote *note)
3615 {
3616     return (note->notesz);
3617 }
3618 
3619 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3620                           const TaskState *ts, int signr)
3621 {
3622     (void) memset(prstatus, 0, sizeof (*prstatus));
3623     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3624     prstatus->pr_pid = ts->ts_tid;
3625     prstatus->pr_ppid = getppid();
3626     prstatus->pr_pgrp = getpgrp();
3627     prstatus->pr_sid = getsid(0);
3628 
3629     bswap_prstatus(prstatus);
3630 }
3631 
3632 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3633 {
3634     char *base_filename;
3635     unsigned int i, len;
3636 
3637     (void) memset(psinfo, 0, sizeof (*psinfo));
3638 
3639     len = ts->info->arg_end - ts->info->arg_start;
3640     if (len >= ELF_PRARGSZ)
3641         len = ELF_PRARGSZ - 1;
3642     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3643         return -EFAULT;
3644     for (i = 0; i < len; i++)
3645         if (psinfo->pr_psargs[i] == 0)
3646             psinfo->pr_psargs[i] = ' ';
3647     psinfo->pr_psargs[len] = 0;
3648 
3649     psinfo->pr_pid = getpid();
3650     psinfo->pr_ppid = getppid();
3651     psinfo->pr_pgrp = getpgrp();
3652     psinfo->pr_sid = getsid(0);
3653     psinfo->pr_uid = getuid();
3654     psinfo->pr_gid = getgid();
3655 
3656     base_filename = g_path_get_basename(ts->bprm->filename);
3657     /*
3658      * Using strncpy here is fine: at max-length,
3659      * this field is not NUL-terminated.
3660      */
3661     (void) strncpy(psinfo->pr_fname, base_filename,
3662                    sizeof(psinfo->pr_fname));
3663 
3664     g_free(base_filename);
3665     bswap_psinfo(psinfo);
3666     return (0);
3667 }
3668 
3669 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3670 {
3671     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3672     elf_addr_t orig_auxv = auxv;
3673     void *ptr;
3674     int len = ts->info->auxv_len;
3675 
3676     /*
3677      * Auxiliary vector is stored in target process stack.  It contains
3678      * {type, value} pairs that we need to dump into note.  This is not
3679      * strictly necessary but we do it here for sake of completeness.
3680      */
3681 
3682     /* read in whole auxv vector and copy it to memelfnote */
3683     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3684     if (ptr != NULL) {
3685         fill_note(note, "CORE", NT_AUXV, len, ptr);
3686         unlock_user(ptr, auxv, len);
3687     }
3688 }
3689 
3690 /*
3691  * Constructs name of coredump file.  We have following convention
3692  * for the name:
3693  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3694  *
3695  * Returns 0 in case of success, -1 otherwise (errno is set).
3696  */
3697 static int core_dump_filename(const TaskState *ts, char *buf,
3698                               size_t bufsize)
3699 {
3700     char timestamp[64];
3701     char *base_filename = NULL;
3702     struct timeval tv;
3703     struct tm tm;
3704 
3705     assert(bufsize >= PATH_MAX);
3706 
3707     if (gettimeofday(&tv, NULL) < 0) {
3708         (void) fprintf(stderr, "unable to get current timestamp: %s",
3709                        strerror(errno));
3710         return (-1);
3711     }
3712 
3713     base_filename = g_path_get_basename(ts->bprm->filename);
3714     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3715                     localtime_r(&tv.tv_sec, &tm));
3716     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3717                     base_filename, timestamp, (int)getpid());
3718     g_free(base_filename);
3719 
3720     return (0);
3721 }
3722 
3723 static int dump_write(int fd, const void *ptr, size_t size)
3724 {
3725     const char *bufp = (const char *)ptr;
3726     ssize_t bytes_written, bytes_left;
3727     struct rlimit dumpsize;
3728     off_t pos;
3729 
3730     bytes_written = 0;
3731     getrlimit(RLIMIT_CORE, &dumpsize);
3732     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3733         if (errno == ESPIPE) { /* not a seekable stream */
3734             bytes_left = size;
3735         } else {
3736             return pos;
3737         }
3738     } else {
3739         if (dumpsize.rlim_cur <= pos) {
3740             return -1;
3741         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3742             bytes_left = size;
3743         } else {
3744             size_t limit_left=dumpsize.rlim_cur - pos;
3745             bytes_left = limit_left >= size ? size : limit_left ;
3746         }
3747     }
3748 
3749     /*
3750      * In normal conditions, single write(2) should do but
3751      * in case of socket etc. this mechanism is more portable.
3752      */
3753     do {
3754         bytes_written = write(fd, bufp, bytes_left);
3755         if (bytes_written < 0) {
3756             if (errno == EINTR)
3757                 continue;
3758             return (-1);
3759         } else if (bytes_written == 0) { /* eof */
3760             return (-1);
3761         }
3762         bufp += bytes_written;
3763         bytes_left -= bytes_written;
3764     } while (bytes_left > 0);
3765 
3766     return (0);
3767 }
3768 
3769 static int write_note(struct memelfnote *men, int fd)
3770 {
3771     struct elf_note en;
3772 
3773     en.n_namesz = men->namesz;
3774     en.n_type = men->type;
3775     en.n_descsz = men->datasz;
3776 
3777     bswap_note(&en);
3778 
3779     if (dump_write(fd, &en, sizeof(en)) != 0)
3780         return (-1);
3781     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3782         return (-1);
3783     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3784         return (-1);
3785 
3786     return (0);
3787 }
3788 
3789 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3790 {
3791     CPUState *cpu = env_cpu((CPUArchState *)env);
3792     TaskState *ts = (TaskState *)cpu->opaque;
3793     struct elf_thread_status *ets;
3794 
3795     ets = g_malloc0(sizeof (*ets));
3796     ets->num_notes = 1; /* only prstatus is dumped */
3797     fill_prstatus(&ets->prstatus, ts, 0);
3798     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3799     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3800               &ets->prstatus);
3801 
3802     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3803 
3804     info->notes_size += note_size(&ets->notes[0]);
3805 }
3806 
3807 static void init_note_info(struct elf_note_info *info)
3808 {
3809     /* Initialize the elf_note_info structure so that it is at
3810      * least safe to call free_note_info() on it. Must be
3811      * called before calling fill_note_info().
3812      */
3813     memset(info, 0, sizeof (*info));
3814     QTAILQ_INIT(&info->thread_list);
3815 }
3816 
3817 static int fill_note_info(struct elf_note_info *info,
3818                           long signr, const CPUArchState *env)
3819 {
3820 #define NUMNOTES 3
3821     CPUState *cpu = env_cpu((CPUArchState *)env);
3822     TaskState *ts = (TaskState *)cpu->opaque;
3823     int i;
3824 
3825     info->notes = g_new0(struct memelfnote, NUMNOTES);
3826     if (info->notes == NULL)
3827         return (-ENOMEM);
3828     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3829     if (info->prstatus == NULL)
3830         return (-ENOMEM);
3831     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3832     if (info->prstatus == NULL)
3833         return (-ENOMEM);
3834 
3835     /*
3836      * First fill in status (and registers) of current thread
3837      * including process info & aux vector.
3838      */
3839     fill_prstatus(info->prstatus, ts, signr);
3840     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3841     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3842               sizeof (*info->prstatus), info->prstatus);
3843     fill_psinfo(info->psinfo, ts);
3844     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3845               sizeof (*info->psinfo), info->psinfo);
3846     fill_auxv_note(&info->notes[2], ts);
3847     info->numnote = 3;
3848 
3849     info->notes_size = 0;
3850     for (i = 0; i < info->numnote; i++)
3851         info->notes_size += note_size(&info->notes[i]);
3852 
3853     /* read and fill status of all threads */
3854     cpu_list_lock();
3855     CPU_FOREACH(cpu) {
3856         if (cpu == thread_cpu) {
3857             continue;
3858         }
3859         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3860     }
3861     cpu_list_unlock();
3862 
3863     return (0);
3864 }
3865 
3866 static void free_note_info(struct elf_note_info *info)
3867 {
3868     struct elf_thread_status *ets;
3869 
3870     while (!QTAILQ_EMPTY(&info->thread_list)) {
3871         ets = QTAILQ_FIRST(&info->thread_list);
3872         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3873         g_free(ets);
3874     }
3875 
3876     g_free(info->prstatus);
3877     g_free(info->psinfo);
3878     g_free(info->notes);
3879 }
3880 
3881 static int write_note_info(struct elf_note_info *info, int fd)
3882 {
3883     struct elf_thread_status *ets;
3884     int i, error = 0;
3885 
3886     /* write prstatus, psinfo and auxv for current thread */
3887     for (i = 0; i < info->numnote; i++)
3888         if ((error = write_note(&info->notes[i], fd)) != 0)
3889             return (error);
3890 
3891     /* write prstatus for each thread */
3892     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3893         if ((error = write_note(&ets->notes[0], fd)) != 0)
3894             return (error);
3895     }
3896 
3897     return (0);
3898 }
3899 
3900 /*
3901  * Write out ELF coredump.
3902  *
3903  * See documentation of ELF object file format in:
3904  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3905  *
3906  * Coredump format in linux is following:
3907  *
3908  * 0   +----------------------+         \
3909  *     | ELF header           | ET_CORE  |
3910  *     +----------------------+          |
3911  *     | ELF program headers  |          |--- headers
3912  *     | - NOTE section       |          |
3913  *     | - PT_LOAD sections   |          |
3914  *     +----------------------+         /
3915  *     | NOTEs:               |
3916  *     | - NT_PRSTATUS        |
3917  *     | - NT_PRSINFO         |
3918  *     | - NT_AUXV            |
3919  *     +----------------------+ <-- aligned to target page
3920  *     | Process memory dump  |
3921  *     :                      :
3922  *     .                      .
3923  *     :                      :
3924  *     |                      |
3925  *     +----------------------+
3926  *
3927  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3928  * NT_PRSINFO  -> struct elf_prpsinfo
3929  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3930  *
3931  * Format follows System V format as close as possible.  Current
3932  * version limitations are as follows:
3933  *     - no floating point registers are dumped
3934  *
3935  * Function returns 0 in case of success, negative errno otherwise.
3936  *
3937  * TODO: make this work also during runtime: it should be
3938  * possible to force coredump from running process and then
3939  * continue processing.  For example qemu could set up SIGUSR2
3940  * handler (provided that target process haven't registered
3941  * handler for that) that does the dump when signal is received.
3942  */
3943 static int elf_core_dump(int signr, const CPUArchState *env)
3944 {
3945     const CPUState *cpu = env_cpu((CPUArchState *)env);
3946     const TaskState *ts = (const TaskState *)cpu->opaque;
3947     struct vm_area_struct *vma = NULL;
3948     char corefile[PATH_MAX];
3949     struct elf_note_info info;
3950     struct elfhdr elf;
3951     struct elf_phdr phdr;
3952     struct rlimit dumpsize;
3953     struct mm_struct *mm = NULL;
3954     off_t offset = 0, data_offset = 0;
3955     int segs = 0;
3956     int fd = -1;
3957 
3958     init_note_info(&info);
3959 
3960     errno = 0;
3961     getrlimit(RLIMIT_CORE, &dumpsize);
3962     if (dumpsize.rlim_cur == 0)
3963         return 0;
3964 
3965     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3966         return (-errno);
3967 
3968     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3969                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3970         return (-errno);
3971 
3972     /*
3973      * Walk through target process memory mappings and
3974      * set up structure containing this information.  After
3975      * this point vma_xxx functions can be used.
3976      */
3977     if ((mm = vma_init()) == NULL)
3978         goto out;
3979 
3980     walk_memory_regions(mm, vma_walker);
3981     segs = vma_get_mapping_count(mm);
3982 
3983     /*
3984      * Construct valid coredump ELF header.  We also
3985      * add one more segment for notes.
3986      */
3987     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3988     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3989         goto out;
3990 
3991     /* fill in the in-memory version of notes */
3992     if (fill_note_info(&info, signr, env) < 0)
3993         goto out;
3994 
3995     offset += sizeof (elf);                             /* elf header */
3996     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3997 
3998     /* write out notes program header */
3999     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4000 
4001     offset += info.notes_size;
4002     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4003         goto out;
4004 
4005     /*
4006      * ELF specification wants data to start at page boundary so
4007      * we align it here.
4008      */
4009     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4010 
4011     /*
4012      * Write program headers for memory regions mapped in
4013      * the target process.
4014      */
4015     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4016         (void) memset(&phdr, 0, sizeof (phdr));
4017 
4018         phdr.p_type = PT_LOAD;
4019         phdr.p_offset = offset;
4020         phdr.p_vaddr = vma->vma_start;
4021         phdr.p_paddr = 0;
4022         phdr.p_filesz = vma_dump_size(vma);
4023         offset += phdr.p_filesz;
4024         phdr.p_memsz = vma->vma_end - vma->vma_start;
4025         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4026         if (vma->vma_flags & PROT_WRITE)
4027             phdr.p_flags |= PF_W;
4028         if (vma->vma_flags & PROT_EXEC)
4029             phdr.p_flags |= PF_X;
4030         phdr.p_align = ELF_EXEC_PAGESIZE;
4031 
4032         bswap_phdr(&phdr, 1);
4033         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4034             goto out;
4035         }
4036     }
4037 
4038     /*
4039      * Next we write notes just after program headers.  No
4040      * alignment needed here.
4041      */
4042     if (write_note_info(&info, fd) < 0)
4043         goto out;
4044 
4045     /* align data to page boundary */
4046     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4047         goto out;
4048 
4049     /*
4050      * Finally we can dump process memory into corefile as well.
4051      */
4052     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4053         abi_ulong addr;
4054         abi_ulong end;
4055 
4056         end = vma->vma_start + vma_dump_size(vma);
4057 
4058         for (addr = vma->vma_start; addr < end;
4059              addr += TARGET_PAGE_SIZE) {
4060             char page[TARGET_PAGE_SIZE];
4061             int error;
4062 
4063             /*
4064              *  Read in page from target process memory and
4065              *  write it to coredump file.
4066              */
4067             error = copy_from_user(page, addr, sizeof (page));
4068             if (error != 0) {
4069                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4070                                addr);
4071                 errno = -error;
4072                 goto out;
4073             }
4074             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4075                 goto out;
4076         }
4077     }
4078 
4079  out:
4080     free_note_info(&info);
4081     if (mm != NULL)
4082         vma_delete(mm);
4083     (void) close(fd);
4084 
4085     if (errno != 0)
4086         return (-errno);
4087     return (0);
4088 }
4089 #endif /* USE_ELF_CORE_DUMP */
4090 
4091 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4092 {
4093     init_thread(regs, infop);
4094 }
4095