xref: /openbmc/qemu/linux-user/elfload.c (revision 3b894b69)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
25 
26 #ifdef _ARCH_PPC64
27 #undef ARCH_DLINFO
28 #undef ELF_PLATFORM
29 #undef ELF_HWCAP
30 #undef ELF_HWCAP2
31 #undef ELF_CLASS
32 #undef ELF_DATA
33 #undef ELF_ARCH
34 #endif
35 
36 #define ELF_OSABI   ELFOSABI_SYSV
37 
38 /* from personality.h */
39 
40 /*
41  * Flags for bug emulation.
42  *
43  * These occupy the top three bytes.
44  */
45 enum {
46     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
47     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
48                                            descriptors (signal handling) */
49     MMAP_PAGE_ZERO =    0x0100000,
50     ADDR_COMPAT_LAYOUT = 0x0200000,
51     READ_IMPLIES_EXEC = 0x0400000,
52     ADDR_LIMIT_32BIT =  0x0800000,
53     SHORT_INODE =       0x1000000,
54     WHOLE_SECONDS =     0x2000000,
55     STICKY_TIMEOUTS =   0x4000000,
56     ADDR_LIMIT_3GB =    0x8000000,
57 };
58 
59 /*
60  * Personality types.
61  *
62  * These go in the low byte.  Avoid using the top bit, it will
63  * conflict with error returns.
64  */
65 enum {
66     PER_LINUX =         0x0000,
67     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
68     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
69     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
75     PER_BSD =           0x0006,
76     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
77     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78     PER_LINUX32 =       0x0008,
79     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
80     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83     PER_RISCOS =        0x000c,
84     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
85     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
87     PER_HPUX =          0x0010,
88     PER_MASK =          0x00ff,
89 };
90 
91 /*
92  * Return the base personality without flags.
93  */
94 #define personality(pers)       (pers & PER_MASK)
95 
96 int info_is_fdpic(struct image_info *info)
97 {
98     return info->personality == PER_LINUX_FDPIC;
99 }
100 
101 /* this flag is uneffective under linux too, should be deleted */
102 #ifndef MAP_DENYWRITE
103 #define MAP_DENYWRITE 0
104 #endif
105 
106 /* should probably go in elf.h */
107 #ifndef ELIBBAD
108 #define ELIBBAD 80
109 #endif
110 
111 #if TARGET_BIG_ENDIAN
112 #define ELF_DATA        ELFDATA2MSB
113 #else
114 #define ELF_DATA        ELFDATA2LSB
115 #endif
116 
117 #ifdef TARGET_ABI_MIPSN32
118 typedef abi_ullong      target_elf_greg_t;
119 #define tswapreg(ptr)   tswap64(ptr)
120 #else
121 typedef abi_ulong       target_elf_greg_t;
122 #define tswapreg(ptr)   tswapal(ptr)
123 #endif
124 
125 #ifdef USE_UID16
126 typedef abi_ushort      target_uid_t;
127 typedef abi_ushort      target_gid_t;
128 #else
129 typedef abi_uint        target_uid_t;
130 typedef abi_uint        target_gid_t;
131 #endif
132 typedef abi_int         target_pid_t;
133 
134 #ifdef TARGET_I386
135 
136 #define ELF_HWCAP get_elf_hwcap()
137 
138 static uint32_t get_elf_hwcap(void)
139 {
140     X86CPU *cpu = X86_CPU(thread_cpu);
141 
142     return cpu->env.features[FEAT_1_EDX];
143 }
144 
145 #ifdef TARGET_X86_64
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 #define ELF_PLATFORM   "x86_64"
150 
151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
152 {
153     regs->rax = 0;
154     regs->rsp = infop->start_stack;
155     regs->rip = infop->entry;
156 }
157 
158 #define ELF_NREG    27
159 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
160 
161 /*
162  * Note that ELF_NREG should be 29 as there should be place for
163  * TRAPNO and ERR "registers" as well but linux doesn't dump
164  * those.
165  *
166  * See linux kernel: arch/x86/include/asm/elf.h
167  */
168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
169 {
170     (*regs)[0] = tswapreg(env->regs[15]);
171     (*regs)[1] = tswapreg(env->regs[14]);
172     (*regs)[2] = tswapreg(env->regs[13]);
173     (*regs)[3] = tswapreg(env->regs[12]);
174     (*regs)[4] = tswapreg(env->regs[R_EBP]);
175     (*regs)[5] = tswapreg(env->regs[R_EBX]);
176     (*regs)[6] = tswapreg(env->regs[11]);
177     (*regs)[7] = tswapreg(env->regs[10]);
178     (*regs)[8] = tswapreg(env->regs[9]);
179     (*regs)[9] = tswapreg(env->regs[8]);
180     (*regs)[10] = tswapreg(env->regs[R_EAX]);
181     (*regs)[11] = tswapreg(env->regs[R_ECX]);
182     (*regs)[12] = tswapreg(env->regs[R_EDX]);
183     (*regs)[13] = tswapreg(env->regs[R_ESI]);
184     (*regs)[14] = tswapreg(env->regs[R_EDI]);
185     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
186     (*regs)[16] = tswapreg(env->eip);
187     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
188     (*regs)[18] = tswapreg(env->eflags);
189     (*regs)[19] = tswapreg(env->regs[R_ESP]);
190     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
191     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
192     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
193     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
194     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
195     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
196     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
197 }
198 
199 #if ULONG_MAX > UINT32_MAX
200 #define INIT_GUEST_COMMPAGE
201 static bool init_guest_commpage(void)
202 {
203     /*
204      * The vsyscall page is at a high negative address aka kernel space,
205      * which means that we cannot actually allocate it with target_mmap.
206      * We still should be able to use page_set_flags, unless the user
207      * has specified -R reserved_va, which would trigger an assert().
208      */
209     if (reserved_va != 0 &&
210         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
211         error_report("Cannot allocate vsyscall page");
212         exit(EXIT_FAILURE);
213     }
214     page_set_flags(TARGET_VSYSCALL_PAGE,
215                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
216                    PAGE_EXEC | PAGE_VALID);
217     return true;
218 }
219 #endif
220 #else
221 
222 /*
223  * This is used to ensure we don't load something for the wrong architecture.
224  */
225 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
226 
227 /*
228  * These are used to set parameters in the core dumps.
229  */
230 #define ELF_CLASS       ELFCLASS32
231 #define ELF_ARCH        EM_386
232 
233 #define ELF_PLATFORM get_elf_platform()
234 #define EXSTACK_DEFAULT true
235 
236 static const char *get_elf_platform(void)
237 {
238     static char elf_platform[] = "i386";
239     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
240     if (family > 6) {
241         family = 6;
242     }
243     if (family >= 3) {
244         elf_platform[1] = '0' + family;
245     }
246     return elf_platform;
247 }
248 
249 static inline void init_thread(struct target_pt_regs *regs,
250                                struct image_info *infop)
251 {
252     regs->esp = infop->start_stack;
253     regs->eip = infop->entry;
254 
255     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
256        starts %edx contains a pointer to a function which might be
257        registered using `atexit'.  This provides a mean for the
258        dynamic linker to call DT_FINI functions for shared libraries
259        that have been loaded before the code runs.
260 
261        A value of 0 tells we have no such handler.  */
262     regs->edx = 0;
263 }
264 
265 #define ELF_NREG    17
266 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
267 
268 /*
269  * Note that ELF_NREG should be 19 as there should be place for
270  * TRAPNO and ERR "registers" as well but linux doesn't dump
271  * those.
272  *
273  * See linux kernel: arch/x86/include/asm/elf.h
274  */
275 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
276 {
277     (*regs)[0] = tswapreg(env->regs[R_EBX]);
278     (*regs)[1] = tswapreg(env->regs[R_ECX]);
279     (*regs)[2] = tswapreg(env->regs[R_EDX]);
280     (*regs)[3] = tswapreg(env->regs[R_ESI]);
281     (*regs)[4] = tswapreg(env->regs[R_EDI]);
282     (*regs)[5] = tswapreg(env->regs[R_EBP]);
283     (*regs)[6] = tswapreg(env->regs[R_EAX]);
284     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
285     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
286     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
287     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
288     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
289     (*regs)[12] = tswapreg(env->eip);
290     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
291     (*regs)[14] = tswapreg(env->eflags);
292     (*regs)[15] = tswapreg(env->regs[R_ESP]);
293     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
294 }
295 #endif
296 
297 #define USE_ELF_CORE_DUMP
298 #define ELF_EXEC_PAGESIZE       4096
299 
300 #endif
301 
302 #ifdef TARGET_ARM
303 
304 #ifndef TARGET_AARCH64
305 /* 32 bit ARM definitions */
306 
307 #define ELF_ARCH        EM_ARM
308 #define ELF_CLASS       ELFCLASS32
309 #define EXSTACK_DEFAULT true
310 
311 static inline void init_thread(struct target_pt_regs *regs,
312                                struct image_info *infop)
313 {
314     abi_long stack = infop->start_stack;
315     memset(regs, 0, sizeof(*regs));
316 
317     regs->uregs[16] = ARM_CPU_MODE_USR;
318     if (infop->entry & 1) {
319         regs->uregs[16] |= CPSR_T;
320     }
321     regs->uregs[15] = infop->entry & 0xfffffffe;
322     regs->uregs[13] = infop->start_stack;
323     /* FIXME - what to for failure of get_user()? */
324     get_user_ual(regs->uregs[2], stack + 8); /* envp */
325     get_user_ual(regs->uregs[1], stack + 4); /* envp */
326     /* XXX: it seems that r0 is zeroed after ! */
327     regs->uregs[0] = 0;
328     /* For uClinux PIC binaries.  */
329     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
330     regs->uregs[10] = infop->start_data;
331 
332     /* Support ARM FDPIC.  */
333     if (info_is_fdpic(infop)) {
334         /* As described in the ABI document, r7 points to the loadmap info
335          * prepared by the kernel. If an interpreter is needed, r8 points
336          * to the interpreter loadmap and r9 points to the interpreter
337          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
338          * r9 points to the main program PT_DYNAMIC info.
339          */
340         regs->uregs[7] = infop->loadmap_addr;
341         if (infop->interpreter_loadmap_addr) {
342             /* Executable is dynamically loaded.  */
343             regs->uregs[8] = infop->interpreter_loadmap_addr;
344             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
345         } else {
346             regs->uregs[8] = 0;
347             regs->uregs[9] = infop->pt_dynamic_addr;
348         }
349     }
350 }
351 
352 #define ELF_NREG    18
353 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
354 
355 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
356 {
357     (*regs)[0] = tswapreg(env->regs[0]);
358     (*regs)[1] = tswapreg(env->regs[1]);
359     (*regs)[2] = tswapreg(env->regs[2]);
360     (*regs)[3] = tswapreg(env->regs[3]);
361     (*regs)[4] = tswapreg(env->regs[4]);
362     (*regs)[5] = tswapreg(env->regs[5]);
363     (*regs)[6] = tswapreg(env->regs[6]);
364     (*regs)[7] = tswapreg(env->regs[7]);
365     (*regs)[8] = tswapreg(env->regs[8]);
366     (*regs)[9] = tswapreg(env->regs[9]);
367     (*regs)[10] = tswapreg(env->regs[10]);
368     (*regs)[11] = tswapreg(env->regs[11]);
369     (*regs)[12] = tswapreg(env->regs[12]);
370     (*regs)[13] = tswapreg(env->regs[13]);
371     (*regs)[14] = tswapreg(env->regs[14]);
372     (*regs)[15] = tswapreg(env->regs[15]);
373 
374     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
375     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
376 }
377 
378 #define USE_ELF_CORE_DUMP
379 #define ELF_EXEC_PAGESIZE       4096
380 
381 enum
382 {
383     ARM_HWCAP_ARM_SWP       = 1 << 0,
384     ARM_HWCAP_ARM_HALF      = 1 << 1,
385     ARM_HWCAP_ARM_THUMB     = 1 << 2,
386     ARM_HWCAP_ARM_26BIT     = 1 << 3,
387     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
388     ARM_HWCAP_ARM_FPA       = 1 << 5,
389     ARM_HWCAP_ARM_VFP       = 1 << 6,
390     ARM_HWCAP_ARM_EDSP      = 1 << 7,
391     ARM_HWCAP_ARM_JAVA      = 1 << 8,
392     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
393     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
394     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
395     ARM_HWCAP_ARM_NEON      = 1 << 12,
396     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
397     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
398     ARM_HWCAP_ARM_TLS       = 1 << 15,
399     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
400     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
401     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
402     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
403     ARM_HWCAP_ARM_LPAE      = 1 << 20,
404     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
405     ARM_HWCAP_ARM_FPHP      = 1 << 22,
406     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
407     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
408     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
409     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
410     ARM_HWCAP_ARM_I8MM      = 1 << 27,
411 };
412 
413 enum {
414     ARM_HWCAP2_ARM_AES      = 1 << 0,
415     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
416     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
417     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
418     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
419     ARM_HWCAP2_ARM_SB       = 1 << 5,
420     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
421 };
422 
423 /* The commpage only exists for 32 bit kernels */
424 
425 #define HI_COMMPAGE (intptr_t)0xffff0f00u
426 
427 static bool init_guest_commpage(void)
428 {
429     ARMCPU *cpu = ARM_CPU(thread_cpu);
430     abi_ptr commpage;
431     void *want;
432     void *addr;
433 
434     /*
435      * M-profile allocates maximum of 2GB address space, so can never
436      * allocate the commpage.  Skip it.
437      */
438     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
439         return true;
440     }
441 
442     commpage = HI_COMMPAGE & -qemu_host_page_size;
443     want = g2h_untagged(commpage);
444     addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
445                 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
446 
447     if (addr == MAP_FAILED) {
448         perror("Allocating guest commpage");
449         exit(EXIT_FAILURE);
450     }
451     if (addr != want) {
452         return false;
453     }
454 
455     /* Set kernel helper versions; rest of page is 0.  */
456     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
457 
458     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
459         perror("Protecting guest commpage");
460         exit(EXIT_FAILURE);
461     }
462 
463     page_set_flags(commpage, commpage | ~qemu_host_page_mask,
464                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
465     return true;
466 }
467 
468 #define ELF_HWCAP get_elf_hwcap()
469 #define ELF_HWCAP2 get_elf_hwcap2()
470 
471 uint32_t get_elf_hwcap(void)
472 {
473     ARMCPU *cpu = ARM_CPU(thread_cpu);
474     uint32_t hwcaps = 0;
475 
476     hwcaps |= ARM_HWCAP_ARM_SWP;
477     hwcaps |= ARM_HWCAP_ARM_HALF;
478     hwcaps |= ARM_HWCAP_ARM_THUMB;
479     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
480 
481     /* probe for the extra features */
482 #define GET_FEATURE(feat, hwcap) \
483     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
484 
485 #define GET_FEATURE_ID(feat, hwcap) \
486     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
487 
488     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
489     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
490     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
491     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
492     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
493     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
494     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
495     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
496     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
497     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
498 
499     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
500         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
501         hwcaps |= ARM_HWCAP_ARM_VFPv3;
502         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
503             hwcaps |= ARM_HWCAP_ARM_VFPD32;
504         } else {
505             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
506         }
507     }
508     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
509     /*
510      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
511      * isar_feature function for both. The kernel reports them as two hwcaps.
512      */
513     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
514     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
515     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
516     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
517     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
518     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
519 
520     return hwcaps;
521 }
522 
523 uint32_t get_elf_hwcap2(void)
524 {
525     ARMCPU *cpu = ARM_CPU(thread_cpu);
526     uint32_t hwcaps = 0;
527 
528     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
529     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
530     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
531     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
532     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
533     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
534     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
535     return hwcaps;
536 }
537 
538 const char *elf_hwcap_str(uint32_t bit)
539 {
540     static const char *hwcap_str[] = {
541     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
542     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
543     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
544     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
545     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
546     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
547     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
548     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
549     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
550     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
551     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
552     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
553     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
554     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
555     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
556     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
557     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
558     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
559     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
560     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
561     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
562     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
563     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
564     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
565     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
566     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
567     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
568     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
569     };
570 
571     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
572 }
573 
574 const char *elf_hwcap2_str(uint32_t bit)
575 {
576     static const char *hwcap_str[] = {
577     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
578     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
579     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
580     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
581     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
582     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
583     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
584     };
585 
586     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
587 }
588 
589 #undef GET_FEATURE
590 #undef GET_FEATURE_ID
591 
592 #define ELF_PLATFORM get_elf_platform()
593 
594 static const char *get_elf_platform(void)
595 {
596     CPUARMState *env = cpu_env(thread_cpu);
597 
598 #if TARGET_BIG_ENDIAN
599 # define END  "b"
600 #else
601 # define END  "l"
602 #endif
603 
604     if (arm_feature(env, ARM_FEATURE_V8)) {
605         return "v8" END;
606     } else if (arm_feature(env, ARM_FEATURE_V7)) {
607         if (arm_feature(env, ARM_FEATURE_M)) {
608             return "v7m" END;
609         } else {
610             return "v7" END;
611         }
612     } else if (arm_feature(env, ARM_FEATURE_V6)) {
613         return "v6" END;
614     } else if (arm_feature(env, ARM_FEATURE_V5)) {
615         return "v5" END;
616     } else {
617         return "v4" END;
618     }
619 
620 #undef END
621 }
622 
623 #else
624 /* 64 bit ARM definitions */
625 
626 #define ELF_ARCH        EM_AARCH64
627 #define ELF_CLASS       ELFCLASS64
628 #if TARGET_BIG_ENDIAN
629 # define ELF_PLATFORM    "aarch64_be"
630 #else
631 # define ELF_PLATFORM    "aarch64"
632 #endif
633 
634 static inline void init_thread(struct target_pt_regs *regs,
635                                struct image_info *infop)
636 {
637     abi_long stack = infop->start_stack;
638     memset(regs, 0, sizeof(*regs));
639 
640     regs->pc = infop->entry & ~0x3ULL;
641     regs->sp = stack;
642 }
643 
644 #define ELF_NREG    34
645 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
646 
647 static void elf_core_copy_regs(target_elf_gregset_t *regs,
648                                const CPUARMState *env)
649 {
650     int i;
651 
652     for (i = 0; i < 32; i++) {
653         (*regs)[i] = tswapreg(env->xregs[i]);
654     }
655     (*regs)[32] = tswapreg(env->pc);
656     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
657 }
658 
659 #define USE_ELF_CORE_DUMP
660 #define ELF_EXEC_PAGESIZE       4096
661 
662 enum {
663     ARM_HWCAP_A64_FP            = 1 << 0,
664     ARM_HWCAP_A64_ASIMD         = 1 << 1,
665     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
666     ARM_HWCAP_A64_AES           = 1 << 3,
667     ARM_HWCAP_A64_PMULL         = 1 << 4,
668     ARM_HWCAP_A64_SHA1          = 1 << 5,
669     ARM_HWCAP_A64_SHA2          = 1 << 6,
670     ARM_HWCAP_A64_CRC32         = 1 << 7,
671     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
672     ARM_HWCAP_A64_FPHP          = 1 << 9,
673     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
674     ARM_HWCAP_A64_CPUID         = 1 << 11,
675     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
676     ARM_HWCAP_A64_JSCVT         = 1 << 13,
677     ARM_HWCAP_A64_FCMA          = 1 << 14,
678     ARM_HWCAP_A64_LRCPC         = 1 << 15,
679     ARM_HWCAP_A64_DCPOP         = 1 << 16,
680     ARM_HWCAP_A64_SHA3          = 1 << 17,
681     ARM_HWCAP_A64_SM3           = 1 << 18,
682     ARM_HWCAP_A64_SM4           = 1 << 19,
683     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
684     ARM_HWCAP_A64_SHA512        = 1 << 21,
685     ARM_HWCAP_A64_SVE           = 1 << 22,
686     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
687     ARM_HWCAP_A64_DIT           = 1 << 24,
688     ARM_HWCAP_A64_USCAT         = 1 << 25,
689     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
690     ARM_HWCAP_A64_FLAGM         = 1 << 27,
691     ARM_HWCAP_A64_SSBS          = 1 << 28,
692     ARM_HWCAP_A64_SB            = 1 << 29,
693     ARM_HWCAP_A64_PACA          = 1 << 30,
694     ARM_HWCAP_A64_PACG          = 1UL << 31,
695 
696     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
697     ARM_HWCAP2_A64_SVE2         = 1 << 1,
698     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
699     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
700     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
701     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
702     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
703     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
704     ARM_HWCAP2_A64_FRINT        = 1 << 8,
705     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
706     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
707     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
708     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
709     ARM_HWCAP2_A64_I8MM         = 1 << 13,
710     ARM_HWCAP2_A64_BF16         = 1 << 14,
711     ARM_HWCAP2_A64_DGH          = 1 << 15,
712     ARM_HWCAP2_A64_RNG          = 1 << 16,
713     ARM_HWCAP2_A64_BTI          = 1 << 17,
714     ARM_HWCAP2_A64_MTE          = 1 << 18,
715     ARM_HWCAP2_A64_ECV          = 1 << 19,
716     ARM_HWCAP2_A64_AFP          = 1 << 20,
717     ARM_HWCAP2_A64_RPRES        = 1 << 21,
718     ARM_HWCAP2_A64_MTE3         = 1 << 22,
719     ARM_HWCAP2_A64_SME          = 1 << 23,
720     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
721     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
722     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
723     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
724     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
725     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
726     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
727     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
728     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
729     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
730     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
731     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
732     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
733     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
734     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
735     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
736     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
737     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
738     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
739     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
740     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
741 };
742 
743 #define ELF_HWCAP   get_elf_hwcap()
744 #define ELF_HWCAP2  get_elf_hwcap2()
745 
746 #define GET_FEATURE_ID(feat, hwcap) \
747     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
748 
749 uint32_t get_elf_hwcap(void)
750 {
751     ARMCPU *cpu = ARM_CPU(thread_cpu);
752     uint32_t hwcaps = 0;
753 
754     hwcaps |= ARM_HWCAP_A64_FP;
755     hwcaps |= ARM_HWCAP_A64_ASIMD;
756     hwcaps |= ARM_HWCAP_A64_CPUID;
757 
758     /* probe for the extra features */
759 
760     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
761     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
762     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
763     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
764     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
765     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
766     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
767     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
768     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
769     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
770     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
771     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
772     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
773     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
774     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
775     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
776     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
777     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
778     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
779     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
780     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
781     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
782     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
783 
784     return hwcaps;
785 }
786 
787 uint32_t get_elf_hwcap2(void)
788 {
789     ARMCPU *cpu = ARM_CPU(thread_cpu);
790     uint32_t hwcaps = 0;
791 
792     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
793     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
794     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
795     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
796     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
797     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
798     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
799     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
800     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
801     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
802     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
803     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
804     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
805     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
806     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
807     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
808     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
809     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
810     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
811                               ARM_HWCAP2_A64_SME_F32F32 |
812                               ARM_HWCAP2_A64_SME_B16F32 |
813                               ARM_HWCAP2_A64_SME_F16F32 |
814                               ARM_HWCAP2_A64_SME_I8I32));
815     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
816     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
817     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
818     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
819     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
820 
821     return hwcaps;
822 }
823 
824 const char *elf_hwcap_str(uint32_t bit)
825 {
826     static const char *hwcap_str[] = {
827     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
828     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
829     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
830     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
831     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
832     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
833     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
834     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
835     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
836     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
837     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
838     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
839     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
840     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
841     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
842     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
843     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
844     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
845     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
846     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
847     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
848     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
849     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
850     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
851     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
852     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
853     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
854     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
855     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
856     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
857     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
858     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
859     };
860 
861     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
862 }
863 
864 const char *elf_hwcap2_str(uint32_t bit)
865 {
866     static const char *hwcap_str[] = {
867     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
868     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
869     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
870     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
871     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
872     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
873     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
874     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
875     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
876     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
877     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
878     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
879     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
880     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
881     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
882     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
883     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
884     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
885     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
886     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
887     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
888     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
889     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
890     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
891     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
892     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
893     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
894     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
895     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
896     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
897     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
898     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
899     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
900     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
901     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
902     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
903     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
904     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
905     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
906     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
907     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
908     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
909     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
910     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
911     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
912     };
913 
914     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
915 }
916 
917 #undef GET_FEATURE_ID
918 
919 #endif /* not TARGET_AARCH64 */
920 #endif /* TARGET_ARM */
921 
922 #ifdef TARGET_SPARC
923 #ifdef TARGET_SPARC64
924 
925 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
926                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
927 #ifndef TARGET_ABI32
928 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
929 #else
930 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
931 #endif
932 
933 #define ELF_CLASS   ELFCLASS64
934 #define ELF_ARCH    EM_SPARCV9
935 #else
936 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
937                     | HWCAP_SPARC_MULDIV)
938 #define ELF_CLASS   ELFCLASS32
939 #define ELF_ARCH    EM_SPARC
940 #endif /* TARGET_SPARC64 */
941 
942 static inline void init_thread(struct target_pt_regs *regs,
943                                struct image_info *infop)
944 {
945     /* Note that target_cpu_copy_regs does not read psr/tstate. */
946     regs->pc = infop->entry;
947     regs->npc = regs->pc + 4;
948     regs->y = 0;
949     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
950                         - TARGET_STACK_BIAS);
951 }
952 #endif /* TARGET_SPARC */
953 
954 #ifdef TARGET_PPC
955 
956 #define ELF_MACHINE    PPC_ELF_MACHINE
957 
958 #if defined(TARGET_PPC64)
959 
960 #define elf_check_arch(x) ( (x) == EM_PPC64 )
961 
962 #define ELF_CLASS       ELFCLASS64
963 
964 #else
965 
966 #define ELF_CLASS       ELFCLASS32
967 #define EXSTACK_DEFAULT true
968 
969 #endif
970 
971 #define ELF_ARCH        EM_PPC
972 
973 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
974    See arch/powerpc/include/asm/cputable.h.  */
975 enum {
976     QEMU_PPC_FEATURE_32 = 0x80000000,
977     QEMU_PPC_FEATURE_64 = 0x40000000,
978     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
979     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
980     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
981     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
982     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
983     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
984     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
985     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
986     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
987     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
988     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
989     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
990     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
991     QEMU_PPC_FEATURE_CELL = 0x00010000,
992     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
993     QEMU_PPC_FEATURE_SMT = 0x00004000,
994     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
995     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
996     QEMU_PPC_FEATURE_PA6T = 0x00000800,
997     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
998     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
999     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1000     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1001     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1002 
1003     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1004     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1005 
1006     /* Feature definitions in AT_HWCAP2.  */
1007     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1008     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1009     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1010     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1011     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1012     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1013     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1014     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1015     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1016     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1017     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1018     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1019     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1020     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1021     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1022 };
1023 
1024 #define ELF_HWCAP get_elf_hwcap()
1025 
1026 static uint32_t get_elf_hwcap(void)
1027 {
1028     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1029     uint32_t features = 0;
1030 
1031     /* We don't have to be terribly complete here; the high points are
1032        Altivec/FP/SPE support.  Anything else is just a bonus.  */
1033 #define GET_FEATURE(flag, feature)                                      \
1034     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1035 #define GET_FEATURE2(flags, feature) \
1036     do { \
1037         if ((cpu->env.insns_flags2 & flags) == flags) { \
1038             features |= feature; \
1039         } \
1040     } while (0)
1041     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1042     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1043     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1044     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1045     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1046     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1047     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1048     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1049     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1050     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1051     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1052                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1053                   QEMU_PPC_FEATURE_ARCH_2_06);
1054 #undef GET_FEATURE
1055 #undef GET_FEATURE2
1056 
1057     return features;
1058 }
1059 
1060 #define ELF_HWCAP2 get_elf_hwcap2()
1061 
1062 static uint32_t get_elf_hwcap2(void)
1063 {
1064     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1065     uint32_t features = 0;
1066 
1067 #define GET_FEATURE(flag, feature)                                      \
1068     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1069 #define GET_FEATURE2(flag, feature)                                      \
1070     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1071 
1072     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1073     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1074     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1075                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1076                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1077     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1078                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1079     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1080                  QEMU_PPC_FEATURE2_MMA);
1081 
1082 #undef GET_FEATURE
1083 #undef GET_FEATURE2
1084 
1085     return features;
1086 }
1087 
1088 /*
1089  * The requirements here are:
1090  * - keep the final alignment of sp (sp & 0xf)
1091  * - make sure the 32-bit value at the first 16 byte aligned position of
1092  *   AUXV is greater than 16 for glibc compatibility.
1093  *   AT_IGNOREPPC is used for that.
1094  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1095  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1096  */
1097 #define DLINFO_ARCH_ITEMS       5
1098 #define ARCH_DLINFO                                     \
1099     do {                                                \
1100         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1101         /*                                              \
1102          * Handle glibc compatibility: these magic entries must \
1103          * be at the lowest addresses in the final auxv.        \
1104          */                                             \
1105         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1106         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1107         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1108         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1109         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1110     } while (0)
1111 
1112 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1113 {
1114     _regs->gpr[1] = infop->start_stack;
1115 #if defined(TARGET_PPC64)
1116     if (get_ppc64_abi(infop) < 2) {
1117         uint64_t val;
1118         get_user_u64(val, infop->entry + 8);
1119         _regs->gpr[2] = val + infop->load_bias;
1120         get_user_u64(val, infop->entry);
1121         infop->entry = val + infop->load_bias;
1122     } else {
1123         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1124     }
1125 #endif
1126     _regs->nip = infop->entry;
1127 }
1128 
1129 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1130 #define ELF_NREG 48
1131 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1132 
1133 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1134 {
1135     int i;
1136     target_ulong ccr = 0;
1137 
1138     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1139         (*regs)[i] = tswapreg(env->gpr[i]);
1140     }
1141 
1142     (*regs)[32] = tswapreg(env->nip);
1143     (*regs)[33] = tswapreg(env->msr);
1144     (*regs)[35] = tswapreg(env->ctr);
1145     (*regs)[36] = tswapreg(env->lr);
1146     (*regs)[37] = tswapreg(cpu_read_xer(env));
1147 
1148     ccr = ppc_get_cr(env);
1149     (*regs)[38] = tswapreg(ccr);
1150 }
1151 
1152 #define USE_ELF_CORE_DUMP
1153 #define ELF_EXEC_PAGESIZE       4096
1154 
1155 #endif
1156 
1157 #ifdef TARGET_LOONGARCH64
1158 
1159 #define ELF_CLASS   ELFCLASS64
1160 #define ELF_ARCH    EM_LOONGARCH
1161 #define EXSTACK_DEFAULT true
1162 
1163 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1164 
1165 static inline void init_thread(struct target_pt_regs *regs,
1166                                struct image_info *infop)
1167 {
1168     /*Set crmd PG,DA = 1,0 */
1169     regs->csr.crmd = 2 << 3;
1170     regs->csr.era = infop->entry;
1171     regs->regs[3] = infop->start_stack;
1172 }
1173 
1174 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1175 #define ELF_NREG 45
1176 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1177 
1178 enum {
1179     TARGET_EF_R0 = 0,
1180     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1181     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1182 };
1183 
1184 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1185                                const CPULoongArchState *env)
1186 {
1187     int i;
1188 
1189     (*regs)[TARGET_EF_R0] = 0;
1190 
1191     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1192         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1193     }
1194 
1195     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1196     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1197 }
1198 
1199 #define USE_ELF_CORE_DUMP
1200 #define ELF_EXEC_PAGESIZE        4096
1201 
1202 #define ELF_HWCAP get_elf_hwcap()
1203 
1204 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1205 enum {
1206     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1207     HWCAP_LOONGARCH_LAM      = (1 << 1),
1208     HWCAP_LOONGARCH_UAL      = (1 << 2),
1209     HWCAP_LOONGARCH_FPU      = (1 << 3),
1210     HWCAP_LOONGARCH_LSX      = (1 << 4),
1211     HWCAP_LOONGARCH_LASX     = (1 << 5),
1212     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1213     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1214     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1215     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1216     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1217     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1218     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1219 };
1220 
1221 static uint32_t get_elf_hwcap(void)
1222 {
1223     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1224     uint32_t hwcaps = 0;
1225 
1226     hwcaps |= HWCAP_LOONGARCH_CRC32;
1227 
1228     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1229         hwcaps |= HWCAP_LOONGARCH_UAL;
1230     }
1231 
1232     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1233         hwcaps |= HWCAP_LOONGARCH_FPU;
1234     }
1235 
1236     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1237         hwcaps |= HWCAP_LOONGARCH_LAM;
1238     }
1239 
1240     return hwcaps;
1241 }
1242 
1243 #define ELF_PLATFORM "loongarch"
1244 
1245 #endif /* TARGET_LOONGARCH64 */
1246 
1247 #ifdef TARGET_MIPS
1248 
1249 #ifdef TARGET_MIPS64
1250 #define ELF_CLASS   ELFCLASS64
1251 #else
1252 #define ELF_CLASS   ELFCLASS32
1253 #endif
1254 #define ELF_ARCH    EM_MIPS
1255 #define EXSTACK_DEFAULT true
1256 
1257 #ifdef TARGET_ABI_MIPSN32
1258 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1259 #else
1260 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1261 #endif
1262 
1263 #define ELF_BASE_PLATFORM get_elf_base_platform()
1264 
1265 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1266     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1267     { return _base_platform; } } while (0)
1268 
1269 static const char *get_elf_base_platform(void)
1270 {
1271     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1272 
1273     /* 64 bit ISAs goes first */
1274     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1275     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1276     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1277     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1278     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1279     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1280     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1281 
1282     /* 32 bit ISAs */
1283     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1284     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1285     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1286     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1287     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1288 
1289     /* Fallback */
1290     return "mips";
1291 }
1292 #undef MATCH_PLATFORM_INSN
1293 
1294 static inline void init_thread(struct target_pt_regs *regs,
1295                                struct image_info *infop)
1296 {
1297     regs->cp0_status = 2 << CP0St_KSU;
1298     regs->cp0_epc = infop->entry;
1299     regs->regs[29] = infop->start_stack;
1300 }
1301 
1302 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1303 #define ELF_NREG 45
1304 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1305 
1306 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1307 enum {
1308 #ifdef TARGET_MIPS64
1309     TARGET_EF_R0 = 0,
1310 #else
1311     TARGET_EF_R0 = 6,
1312 #endif
1313     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1314     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1315     TARGET_EF_LO = TARGET_EF_R0 + 32,
1316     TARGET_EF_HI = TARGET_EF_R0 + 33,
1317     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1318     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1319     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1320     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1321 };
1322 
1323 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1325 {
1326     int i;
1327 
1328     for (i = 0; i < TARGET_EF_R0; i++) {
1329         (*regs)[i] = 0;
1330     }
1331     (*regs)[TARGET_EF_R0] = 0;
1332 
1333     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1334         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1335     }
1336 
1337     (*regs)[TARGET_EF_R26] = 0;
1338     (*regs)[TARGET_EF_R27] = 0;
1339     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1340     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1341     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1342     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1343     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1344     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1345 }
1346 
1347 #define USE_ELF_CORE_DUMP
1348 #define ELF_EXEC_PAGESIZE        4096
1349 
1350 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1351 enum {
1352     HWCAP_MIPS_R6           = (1 << 0),
1353     HWCAP_MIPS_MSA          = (1 << 1),
1354     HWCAP_MIPS_CRC32        = (1 << 2),
1355     HWCAP_MIPS_MIPS16       = (1 << 3),
1356     HWCAP_MIPS_MDMX         = (1 << 4),
1357     HWCAP_MIPS_MIPS3D       = (1 << 5),
1358     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1359     HWCAP_MIPS_DSP          = (1 << 7),
1360     HWCAP_MIPS_DSP2         = (1 << 8),
1361     HWCAP_MIPS_DSP3         = (1 << 9),
1362     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1363     HWCAP_LOONGSON_MMI      = (1 << 11),
1364     HWCAP_LOONGSON_EXT      = (1 << 12),
1365     HWCAP_LOONGSON_EXT2     = (1 << 13),
1366     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1367 };
1368 
1369 #define ELF_HWCAP get_elf_hwcap()
1370 
1371 #define GET_FEATURE_INSN(_flag, _hwcap) \
1372     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1373 
1374 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1375     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1376 
1377 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1378     do { \
1379         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1380             hwcaps |= _hwcap; \
1381         } \
1382     } while (0)
1383 
1384 static uint32_t get_elf_hwcap(void)
1385 {
1386     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1387     uint32_t hwcaps = 0;
1388 
1389     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1390                         2, HWCAP_MIPS_R6);
1391     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1392     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1393     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1394 
1395     return hwcaps;
1396 }
1397 
1398 #undef GET_FEATURE_REG_EQU
1399 #undef GET_FEATURE_REG_SET
1400 #undef GET_FEATURE_INSN
1401 
1402 #endif /* TARGET_MIPS */
1403 
1404 #ifdef TARGET_MICROBLAZE
1405 
1406 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1407 
1408 #define ELF_CLASS   ELFCLASS32
1409 #define ELF_ARCH    EM_MICROBLAZE
1410 
1411 static inline void init_thread(struct target_pt_regs *regs,
1412                                struct image_info *infop)
1413 {
1414     regs->pc = infop->entry;
1415     regs->r1 = infop->start_stack;
1416 
1417 }
1418 
1419 #define ELF_EXEC_PAGESIZE        4096
1420 
1421 #define USE_ELF_CORE_DUMP
1422 #define ELF_NREG 38
1423 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1424 
1425 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1426 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1427 {
1428     int i, pos = 0;
1429 
1430     for (i = 0; i < 32; i++) {
1431         (*regs)[pos++] = tswapreg(env->regs[i]);
1432     }
1433 
1434     (*regs)[pos++] = tswapreg(env->pc);
1435     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1436     (*regs)[pos++] = 0;
1437     (*regs)[pos++] = tswapreg(env->ear);
1438     (*regs)[pos++] = 0;
1439     (*regs)[pos++] = tswapreg(env->esr);
1440 }
1441 
1442 #endif /* TARGET_MICROBLAZE */
1443 
1444 #ifdef TARGET_NIOS2
1445 
1446 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1447 
1448 #define ELF_CLASS   ELFCLASS32
1449 #define ELF_ARCH    EM_ALTERA_NIOS2
1450 
1451 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1452 {
1453     regs->ea = infop->entry;
1454     regs->sp = infop->start_stack;
1455 }
1456 
1457 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1458 
1459 static bool init_guest_commpage(void)
1460 {
1461     static const uint8_t kuser_page[4 + 2 * 64] = {
1462         /* __kuser_helper_version */
1463         [0x00] = 0x02, 0x00, 0x00, 0x00,
1464 
1465         /* __kuser_cmpxchg */
1466         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1467                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1468 
1469         /* __kuser_sigtramp */
1470         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1471                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1472     };
1473 
1474     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1475     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1476                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1477 
1478     if (addr == MAP_FAILED) {
1479         perror("Allocating guest commpage");
1480         exit(EXIT_FAILURE);
1481     }
1482     if (addr != want) {
1483         return false;
1484     }
1485 
1486     memcpy(addr, kuser_page, sizeof(kuser_page));
1487 
1488     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1489         perror("Protecting guest commpage");
1490         exit(EXIT_FAILURE);
1491     }
1492 
1493     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1494                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1495     return true;
1496 }
1497 
1498 #define ELF_EXEC_PAGESIZE        4096
1499 
1500 #define USE_ELF_CORE_DUMP
1501 #define ELF_NREG 49
1502 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1503 
1504 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1505 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1506                                const CPUNios2State *env)
1507 {
1508     int i;
1509 
1510     (*regs)[0] = -1;
1511     for (i = 1; i < 8; i++)    /* r0-r7 */
1512         (*regs)[i] = tswapreg(env->regs[i + 7]);
1513 
1514     for (i = 8; i < 16; i++)   /* r8-r15 */
1515         (*regs)[i] = tswapreg(env->regs[i - 8]);
1516 
1517     for (i = 16; i < 24; i++)  /* r16-r23 */
1518         (*regs)[i] = tswapreg(env->regs[i + 7]);
1519     (*regs)[24] = -1;    /* R_ET */
1520     (*regs)[25] = -1;    /* R_BT */
1521     (*regs)[26] = tswapreg(env->regs[R_GP]);
1522     (*regs)[27] = tswapreg(env->regs[R_SP]);
1523     (*regs)[28] = tswapreg(env->regs[R_FP]);
1524     (*regs)[29] = tswapreg(env->regs[R_EA]);
1525     (*regs)[30] = -1;    /* R_SSTATUS */
1526     (*regs)[31] = tswapreg(env->regs[R_RA]);
1527 
1528     (*regs)[32] = tswapreg(env->pc);
1529 
1530     (*regs)[33] = -1; /* R_STATUS */
1531     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1532 
1533     for (i = 35; i < 49; i++)    /* ... */
1534         (*regs)[i] = -1;
1535 }
1536 
1537 #endif /* TARGET_NIOS2 */
1538 
1539 #ifdef TARGET_OPENRISC
1540 
1541 #define ELF_ARCH EM_OPENRISC
1542 #define ELF_CLASS ELFCLASS32
1543 #define ELF_DATA  ELFDATA2MSB
1544 
1545 static inline void init_thread(struct target_pt_regs *regs,
1546                                struct image_info *infop)
1547 {
1548     regs->pc = infop->entry;
1549     regs->gpr[1] = infop->start_stack;
1550 }
1551 
1552 #define USE_ELF_CORE_DUMP
1553 #define ELF_EXEC_PAGESIZE 8192
1554 
1555 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1556 #define ELF_NREG 34 /* gprs and pc, sr */
1557 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1558 
1559 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1560                                const CPUOpenRISCState *env)
1561 {
1562     int i;
1563 
1564     for (i = 0; i < 32; i++) {
1565         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1566     }
1567     (*regs)[32] = tswapreg(env->pc);
1568     (*regs)[33] = tswapreg(cpu_get_sr(env));
1569 }
1570 #define ELF_HWCAP 0
1571 #define ELF_PLATFORM NULL
1572 
1573 #endif /* TARGET_OPENRISC */
1574 
1575 #ifdef TARGET_SH4
1576 
1577 #define ELF_CLASS ELFCLASS32
1578 #define ELF_ARCH  EM_SH
1579 
1580 static inline void init_thread(struct target_pt_regs *regs,
1581                                struct image_info *infop)
1582 {
1583     /* Check other registers XXXXX */
1584     regs->pc = infop->entry;
1585     regs->regs[15] = infop->start_stack;
1586 }
1587 
1588 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1589 #define ELF_NREG 23
1590 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1591 
1592 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1593 enum {
1594     TARGET_REG_PC = 16,
1595     TARGET_REG_PR = 17,
1596     TARGET_REG_SR = 18,
1597     TARGET_REG_GBR = 19,
1598     TARGET_REG_MACH = 20,
1599     TARGET_REG_MACL = 21,
1600     TARGET_REG_SYSCALL = 22
1601 };
1602 
1603 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1604                                       const CPUSH4State *env)
1605 {
1606     int i;
1607 
1608     for (i = 0; i < 16; i++) {
1609         (*regs)[i] = tswapreg(env->gregs[i]);
1610     }
1611 
1612     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1613     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1614     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1615     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1616     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1617     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1618     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1619 }
1620 
1621 #define USE_ELF_CORE_DUMP
1622 #define ELF_EXEC_PAGESIZE        4096
1623 
1624 enum {
1625     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1626     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1627     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1628     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1629     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1630     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1631     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1632     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1633     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1634     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1635 };
1636 
1637 #define ELF_HWCAP get_elf_hwcap()
1638 
1639 static uint32_t get_elf_hwcap(void)
1640 {
1641     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1642     uint32_t hwcap = 0;
1643 
1644     hwcap |= SH_CPU_HAS_FPU;
1645 
1646     if (cpu->env.features & SH_FEATURE_SH4A) {
1647         hwcap |= SH_CPU_HAS_LLSC;
1648     }
1649 
1650     return hwcap;
1651 }
1652 
1653 #endif
1654 
1655 #ifdef TARGET_CRIS
1656 
1657 #define ELF_CLASS ELFCLASS32
1658 #define ELF_ARCH  EM_CRIS
1659 
1660 static inline void init_thread(struct target_pt_regs *regs,
1661                                struct image_info *infop)
1662 {
1663     regs->erp = infop->entry;
1664 }
1665 
1666 #define ELF_EXEC_PAGESIZE        8192
1667 
1668 #endif
1669 
1670 #ifdef TARGET_M68K
1671 
1672 #define ELF_CLASS       ELFCLASS32
1673 #define ELF_ARCH        EM_68K
1674 
1675 /* ??? Does this need to do anything?
1676    #define ELF_PLAT_INIT(_r) */
1677 
1678 static inline void init_thread(struct target_pt_regs *regs,
1679                                struct image_info *infop)
1680 {
1681     regs->usp = infop->start_stack;
1682     regs->sr = 0;
1683     regs->pc = infop->entry;
1684 }
1685 
1686 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1687 #define ELF_NREG 20
1688 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1689 
1690 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1691 {
1692     (*regs)[0] = tswapreg(env->dregs[1]);
1693     (*regs)[1] = tswapreg(env->dregs[2]);
1694     (*regs)[2] = tswapreg(env->dregs[3]);
1695     (*regs)[3] = tswapreg(env->dregs[4]);
1696     (*regs)[4] = tswapreg(env->dregs[5]);
1697     (*regs)[5] = tswapreg(env->dregs[6]);
1698     (*regs)[6] = tswapreg(env->dregs[7]);
1699     (*regs)[7] = tswapreg(env->aregs[0]);
1700     (*regs)[8] = tswapreg(env->aregs[1]);
1701     (*regs)[9] = tswapreg(env->aregs[2]);
1702     (*regs)[10] = tswapreg(env->aregs[3]);
1703     (*regs)[11] = tswapreg(env->aregs[4]);
1704     (*regs)[12] = tswapreg(env->aregs[5]);
1705     (*regs)[13] = tswapreg(env->aregs[6]);
1706     (*regs)[14] = tswapreg(env->dregs[0]);
1707     (*regs)[15] = tswapreg(env->aregs[7]);
1708     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1709     (*regs)[17] = tswapreg(env->sr);
1710     (*regs)[18] = tswapreg(env->pc);
1711     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1712 }
1713 
1714 #define USE_ELF_CORE_DUMP
1715 #define ELF_EXEC_PAGESIZE       8192
1716 
1717 #endif
1718 
1719 #ifdef TARGET_ALPHA
1720 
1721 #define ELF_CLASS      ELFCLASS64
1722 #define ELF_ARCH       EM_ALPHA
1723 
1724 static inline void init_thread(struct target_pt_regs *regs,
1725                                struct image_info *infop)
1726 {
1727     regs->pc = infop->entry;
1728     regs->ps = 8;
1729     regs->usp = infop->start_stack;
1730 }
1731 
1732 #define ELF_EXEC_PAGESIZE        8192
1733 
1734 #endif /* TARGET_ALPHA */
1735 
1736 #ifdef TARGET_S390X
1737 
1738 #define ELF_CLASS	ELFCLASS64
1739 #define ELF_DATA	ELFDATA2MSB
1740 #define ELF_ARCH	EM_S390
1741 
1742 #include "elf.h"
1743 
1744 #define ELF_HWCAP get_elf_hwcap()
1745 
1746 #define GET_FEATURE(_feat, _hwcap) \
1747     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1748 
1749 uint32_t get_elf_hwcap(void)
1750 {
1751     /*
1752      * Let's assume we always have esan3 and zarch.
1753      * 31-bit processes can use 64-bit registers (high gprs).
1754      */
1755     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1756 
1757     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1758     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1759     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1760     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1761     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1762         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1763         hwcap |= HWCAP_S390_ETF3EH;
1764     }
1765     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1766     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1767     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1768 
1769     return hwcap;
1770 }
1771 
1772 const char *elf_hwcap_str(uint32_t bit)
1773 {
1774     static const char *hwcap_str[] = {
1775         [HWCAP_S390_NR_ESAN3]     = "esan3",
1776         [HWCAP_S390_NR_ZARCH]     = "zarch",
1777         [HWCAP_S390_NR_STFLE]     = "stfle",
1778         [HWCAP_S390_NR_MSA]       = "msa",
1779         [HWCAP_S390_NR_LDISP]     = "ldisp",
1780         [HWCAP_S390_NR_EIMM]      = "eimm",
1781         [HWCAP_S390_NR_DFP]       = "dfp",
1782         [HWCAP_S390_NR_HPAGE]     = "edat",
1783         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1784         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1785         [HWCAP_S390_NR_TE]        = "te",
1786         [HWCAP_S390_NR_VXRS]      = "vx",
1787         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1788         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1789         [HWCAP_S390_NR_GS]        = "gs",
1790         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1791         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1792         [HWCAP_S390_NR_SORT]      = "sort",
1793         [HWCAP_S390_NR_DFLT]      = "dflt",
1794         [HWCAP_S390_NR_NNPA]      = "nnpa",
1795         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1796         [HWCAP_S390_NR_SIE]       = "sie",
1797     };
1798 
1799     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1800 }
1801 
1802 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1803 {
1804     regs->psw.addr = infop->entry;
1805     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1806                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1807                      PSW_MASK_32;
1808     regs->gprs[15] = infop->start_stack;
1809 }
1810 
1811 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1812 #define ELF_NREG 27
1813 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1814 
1815 enum {
1816     TARGET_REG_PSWM = 0,
1817     TARGET_REG_PSWA = 1,
1818     TARGET_REG_GPRS = 2,
1819     TARGET_REG_ARS = 18,
1820     TARGET_REG_ORIG_R2 = 26,
1821 };
1822 
1823 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1824                                const CPUS390XState *env)
1825 {
1826     int i;
1827     uint32_t *aregs;
1828 
1829     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1830     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1831     for (i = 0; i < 16; i++) {
1832         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1833     }
1834     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1835     for (i = 0; i < 16; i++) {
1836         aregs[i] = tswap32(env->aregs[i]);
1837     }
1838     (*regs)[TARGET_REG_ORIG_R2] = 0;
1839 }
1840 
1841 #define USE_ELF_CORE_DUMP
1842 #define ELF_EXEC_PAGESIZE 4096
1843 
1844 #endif /* TARGET_S390X */
1845 
1846 #ifdef TARGET_RISCV
1847 
1848 #define ELF_ARCH  EM_RISCV
1849 
1850 #ifdef TARGET_RISCV32
1851 #define ELF_CLASS ELFCLASS32
1852 #else
1853 #define ELF_CLASS ELFCLASS64
1854 #endif
1855 
1856 #define ELF_HWCAP get_elf_hwcap()
1857 
1858 static uint32_t get_elf_hwcap(void)
1859 {
1860 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1861     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1862     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1863                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1864                     | MISA_BIT('V');
1865 
1866     return cpu->env.misa_ext & mask;
1867 #undef MISA_BIT
1868 }
1869 
1870 static inline void init_thread(struct target_pt_regs *regs,
1871                                struct image_info *infop)
1872 {
1873     regs->sepc = infop->entry;
1874     regs->sp = infop->start_stack;
1875 }
1876 
1877 #define ELF_EXEC_PAGESIZE 4096
1878 
1879 #endif /* TARGET_RISCV */
1880 
1881 #ifdef TARGET_HPPA
1882 
1883 #define ELF_CLASS       ELFCLASS32
1884 #define ELF_ARCH        EM_PARISC
1885 #define ELF_PLATFORM    "PARISC"
1886 #define STACK_GROWS_DOWN 0
1887 #define STACK_ALIGNMENT  64
1888 
1889 static inline void init_thread(struct target_pt_regs *regs,
1890                                struct image_info *infop)
1891 {
1892     regs->iaoq[0] = infop->entry;
1893     regs->iaoq[1] = infop->entry + 4;
1894     regs->gr[23] = 0;
1895     regs->gr[24] = infop->argv;
1896     regs->gr[25] = infop->argc;
1897     /* The top-of-stack contains a linkage buffer.  */
1898     regs->gr[30] = infop->start_stack + 64;
1899     regs->gr[31] = infop->entry;
1900 }
1901 
1902 #define LO_COMMPAGE  0
1903 
1904 static bool init_guest_commpage(void)
1905 {
1906     void *want = g2h_untagged(LO_COMMPAGE);
1907     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1908                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1909 
1910     if (addr == MAP_FAILED) {
1911         perror("Allocating guest commpage");
1912         exit(EXIT_FAILURE);
1913     }
1914     if (addr != want) {
1915         return false;
1916     }
1917 
1918     /*
1919      * On Linux, page zero is normally marked execute only + gateway.
1920      * Normal read or write is supposed to fail (thus PROT_NONE above),
1921      * but specific offsets have kernel code mapped to raise permissions
1922      * and implement syscalls.  Here, simply mark the page executable.
1923      * Special case the entry points during translation (see do_page_zero).
1924      */
1925     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1926                    PAGE_EXEC | PAGE_VALID);
1927     return true;
1928 }
1929 
1930 #endif /* TARGET_HPPA */
1931 
1932 #ifdef TARGET_XTENSA
1933 
1934 #define ELF_CLASS       ELFCLASS32
1935 #define ELF_ARCH        EM_XTENSA
1936 
1937 static inline void init_thread(struct target_pt_regs *regs,
1938                                struct image_info *infop)
1939 {
1940     regs->windowbase = 0;
1941     regs->windowstart = 1;
1942     regs->areg[1] = infop->start_stack;
1943     regs->pc = infop->entry;
1944     if (info_is_fdpic(infop)) {
1945         regs->areg[4] = infop->loadmap_addr;
1946         regs->areg[5] = infop->interpreter_loadmap_addr;
1947         if (infop->interpreter_loadmap_addr) {
1948             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1949         } else {
1950             regs->areg[6] = infop->pt_dynamic_addr;
1951         }
1952     }
1953 }
1954 
1955 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1956 #define ELF_NREG 128
1957 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1958 
1959 enum {
1960     TARGET_REG_PC,
1961     TARGET_REG_PS,
1962     TARGET_REG_LBEG,
1963     TARGET_REG_LEND,
1964     TARGET_REG_LCOUNT,
1965     TARGET_REG_SAR,
1966     TARGET_REG_WINDOWSTART,
1967     TARGET_REG_WINDOWBASE,
1968     TARGET_REG_THREADPTR,
1969     TARGET_REG_AR0 = 64,
1970 };
1971 
1972 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1973                                const CPUXtensaState *env)
1974 {
1975     unsigned i;
1976 
1977     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1978     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1979     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1980     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1981     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1982     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1983     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1984     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1985     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1986     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1987     for (i = 0; i < env->config->nareg; ++i) {
1988         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1989     }
1990 }
1991 
1992 #define USE_ELF_CORE_DUMP
1993 #define ELF_EXEC_PAGESIZE       4096
1994 
1995 #endif /* TARGET_XTENSA */
1996 
1997 #ifdef TARGET_HEXAGON
1998 
1999 #define ELF_CLASS       ELFCLASS32
2000 #define ELF_ARCH        EM_HEXAGON
2001 
2002 static inline void init_thread(struct target_pt_regs *regs,
2003                                struct image_info *infop)
2004 {
2005     regs->sepc = infop->entry;
2006     regs->sp = infop->start_stack;
2007 }
2008 
2009 #endif /* TARGET_HEXAGON */
2010 
2011 #ifndef ELF_BASE_PLATFORM
2012 #define ELF_BASE_PLATFORM (NULL)
2013 #endif
2014 
2015 #ifndef ELF_PLATFORM
2016 #define ELF_PLATFORM (NULL)
2017 #endif
2018 
2019 #ifndef ELF_MACHINE
2020 #define ELF_MACHINE ELF_ARCH
2021 #endif
2022 
2023 #ifndef elf_check_arch
2024 #define elf_check_arch(x) ((x) == ELF_ARCH)
2025 #endif
2026 
2027 #ifndef elf_check_abi
2028 #define elf_check_abi(x) (1)
2029 #endif
2030 
2031 #ifndef ELF_HWCAP
2032 #define ELF_HWCAP 0
2033 #endif
2034 
2035 #ifndef STACK_GROWS_DOWN
2036 #define STACK_GROWS_DOWN 1
2037 #endif
2038 
2039 #ifndef STACK_ALIGNMENT
2040 #define STACK_ALIGNMENT 16
2041 #endif
2042 
2043 #ifdef TARGET_ABI32
2044 #undef ELF_CLASS
2045 #define ELF_CLASS ELFCLASS32
2046 #undef bswaptls
2047 #define bswaptls(ptr) bswap32s(ptr)
2048 #endif
2049 
2050 #ifndef EXSTACK_DEFAULT
2051 #define EXSTACK_DEFAULT false
2052 #endif
2053 
2054 #include "elf.h"
2055 
2056 /* We must delay the following stanzas until after "elf.h". */
2057 #if defined(TARGET_AARCH64)
2058 
2059 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2060                                     const uint32_t *data,
2061                                     struct image_info *info,
2062                                     Error **errp)
2063 {
2064     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2065         if (pr_datasz != sizeof(uint32_t)) {
2066             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2067             return false;
2068         }
2069         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2070         info->note_flags = *data;
2071     }
2072     return true;
2073 }
2074 #define ARCH_USE_GNU_PROPERTY 1
2075 
2076 #else
2077 
2078 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2079                                     const uint32_t *data,
2080                                     struct image_info *info,
2081                                     Error **errp)
2082 {
2083     g_assert_not_reached();
2084 }
2085 #define ARCH_USE_GNU_PROPERTY 0
2086 
2087 #endif
2088 
2089 struct exec
2090 {
2091     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2092     unsigned int a_text;   /* length of text, in bytes */
2093     unsigned int a_data;   /* length of data, in bytes */
2094     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2095     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2096     unsigned int a_entry;  /* start address */
2097     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2098     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2099 };
2100 
2101 
2102 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2103 #define OMAGIC 0407
2104 #define NMAGIC 0410
2105 #define ZMAGIC 0413
2106 #define QMAGIC 0314
2107 
2108 #define DLINFO_ITEMS 16
2109 
2110 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2111 {
2112     memcpy(to, from, n);
2113 }
2114 
2115 #ifdef BSWAP_NEEDED
2116 static void bswap_ehdr(struct elfhdr *ehdr)
2117 {
2118     bswap16s(&ehdr->e_type);            /* Object file type */
2119     bswap16s(&ehdr->e_machine);         /* Architecture */
2120     bswap32s(&ehdr->e_version);         /* Object file version */
2121     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2122     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2123     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2124     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2125     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2126     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2127     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2128     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2129     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2130     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2131 }
2132 
2133 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2134 {
2135     int i;
2136     for (i = 0; i < phnum; ++i, ++phdr) {
2137         bswap32s(&phdr->p_type);        /* Segment type */
2138         bswap32s(&phdr->p_flags);       /* Segment flags */
2139         bswaptls(&phdr->p_offset);      /* Segment file offset */
2140         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2141         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2142         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2143         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2144         bswaptls(&phdr->p_align);       /* Segment alignment */
2145     }
2146 }
2147 
2148 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2149 {
2150     int i;
2151     for (i = 0; i < shnum; ++i, ++shdr) {
2152         bswap32s(&shdr->sh_name);
2153         bswap32s(&shdr->sh_type);
2154         bswaptls(&shdr->sh_flags);
2155         bswaptls(&shdr->sh_addr);
2156         bswaptls(&shdr->sh_offset);
2157         bswaptls(&shdr->sh_size);
2158         bswap32s(&shdr->sh_link);
2159         bswap32s(&shdr->sh_info);
2160         bswaptls(&shdr->sh_addralign);
2161         bswaptls(&shdr->sh_entsize);
2162     }
2163 }
2164 
2165 static void bswap_sym(struct elf_sym *sym)
2166 {
2167     bswap32s(&sym->st_name);
2168     bswaptls(&sym->st_value);
2169     bswaptls(&sym->st_size);
2170     bswap16s(&sym->st_shndx);
2171 }
2172 
2173 #ifdef TARGET_MIPS
2174 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2175 {
2176     bswap16s(&abiflags->version);
2177     bswap32s(&abiflags->ases);
2178     bswap32s(&abiflags->isa_ext);
2179     bswap32s(&abiflags->flags1);
2180     bswap32s(&abiflags->flags2);
2181 }
2182 #endif
2183 #else
2184 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2185 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2186 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2187 static inline void bswap_sym(struct elf_sym *sym) { }
2188 #ifdef TARGET_MIPS
2189 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2190 #endif
2191 #endif
2192 
2193 #ifdef USE_ELF_CORE_DUMP
2194 static int elf_core_dump(int, const CPUArchState *);
2195 #endif /* USE_ELF_CORE_DUMP */
2196 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2197 
2198 /* Verify the portions of EHDR within E_IDENT for the target.
2199    This can be performed before bswapping the entire header.  */
2200 static bool elf_check_ident(struct elfhdr *ehdr)
2201 {
2202     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2203             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2204             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2205             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2206             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2207             && ehdr->e_ident[EI_DATA] == ELF_DATA
2208             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2209 }
2210 
2211 /* Verify the portions of EHDR outside of E_IDENT for the target.
2212    This has to wait until after bswapping the header.  */
2213 static bool elf_check_ehdr(struct elfhdr *ehdr)
2214 {
2215     return (elf_check_arch(ehdr->e_machine)
2216             && elf_check_abi(ehdr->e_flags)
2217             && ehdr->e_ehsize == sizeof(struct elfhdr)
2218             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2219             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2220 }
2221 
2222 /*
2223  * 'copy_elf_strings()' copies argument/envelope strings from user
2224  * memory to free pages in kernel mem. These are in a format ready
2225  * to be put directly into the top of new user memory.
2226  *
2227  */
2228 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2229                                   abi_ulong p, abi_ulong stack_limit)
2230 {
2231     char *tmp;
2232     int len, i;
2233     abi_ulong top = p;
2234 
2235     if (!p) {
2236         return 0;       /* bullet-proofing */
2237     }
2238 
2239     if (STACK_GROWS_DOWN) {
2240         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2241         for (i = argc - 1; i >= 0; --i) {
2242             tmp = argv[i];
2243             if (!tmp) {
2244                 fprintf(stderr, "VFS: argc is wrong");
2245                 exit(-1);
2246             }
2247             len = strlen(tmp) + 1;
2248             tmp += len;
2249 
2250             if (len > (p - stack_limit)) {
2251                 return 0;
2252             }
2253             while (len) {
2254                 int bytes_to_copy = (len > offset) ? offset : len;
2255                 tmp -= bytes_to_copy;
2256                 p -= bytes_to_copy;
2257                 offset -= bytes_to_copy;
2258                 len -= bytes_to_copy;
2259 
2260                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2261 
2262                 if (offset == 0) {
2263                     memcpy_to_target(p, scratch, top - p);
2264                     top = p;
2265                     offset = TARGET_PAGE_SIZE;
2266                 }
2267             }
2268         }
2269         if (p != top) {
2270             memcpy_to_target(p, scratch + offset, top - p);
2271         }
2272     } else {
2273         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2274         for (i = 0; i < argc; ++i) {
2275             tmp = argv[i];
2276             if (!tmp) {
2277                 fprintf(stderr, "VFS: argc is wrong");
2278                 exit(-1);
2279             }
2280             len = strlen(tmp) + 1;
2281             if (len > (stack_limit - p)) {
2282                 return 0;
2283             }
2284             while (len) {
2285                 int bytes_to_copy = (len > remaining) ? remaining : len;
2286 
2287                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2288 
2289                 tmp += bytes_to_copy;
2290                 remaining -= bytes_to_copy;
2291                 p += bytes_to_copy;
2292                 len -= bytes_to_copy;
2293 
2294                 if (remaining == 0) {
2295                     memcpy_to_target(top, scratch, p - top);
2296                     top = p;
2297                     remaining = TARGET_PAGE_SIZE;
2298                 }
2299             }
2300         }
2301         if (p != top) {
2302             memcpy_to_target(top, scratch, p - top);
2303         }
2304     }
2305 
2306     return p;
2307 }
2308 
2309 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2310  * argument/environment space. Newer kernels (>2.6.33) allow more,
2311  * dependent on stack size, but guarantee at least 32 pages for
2312  * backwards compatibility.
2313  */
2314 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2315 
2316 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2317                                  struct image_info *info)
2318 {
2319     abi_ulong size, error, guard;
2320     int prot;
2321 
2322     size = guest_stack_size;
2323     if (size < STACK_LOWER_LIMIT) {
2324         size = STACK_LOWER_LIMIT;
2325     }
2326 
2327     if (STACK_GROWS_DOWN) {
2328         guard = TARGET_PAGE_SIZE;
2329         if (guard < qemu_real_host_page_size()) {
2330             guard = qemu_real_host_page_size();
2331         }
2332     } else {
2333         /* no guard page for hppa target where stack grows upwards. */
2334         guard = 0;
2335     }
2336 
2337     prot = PROT_READ | PROT_WRITE;
2338     if (info->exec_stack) {
2339         prot |= PROT_EXEC;
2340     }
2341     error = target_mmap(0, size + guard, prot,
2342                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2343     if (error == -1) {
2344         perror("mmap stack");
2345         exit(-1);
2346     }
2347 
2348     /* We reserve one extra page at the top of the stack as guard.  */
2349     if (STACK_GROWS_DOWN) {
2350         target_mprotect(error, guard, PROT_NONE);
2351         info->stack_limit = error + guard;
2352         return info->stack_limit + size - sizeof(void *);
2353     } else {
2354         info->stack_limit = error + size;
2355         return error;
2356     }
2357 }
2358 
2359 /**
2360  * zero_bss:
2361  *
2362  * Map and zero the bss.  We need to explicitly zero any fractional pages
2363  * after the data section (i.e. bss).  Return false on mapping failure.
2364  */
2365 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2366                      int prot, Error **errp)
2367 {
2368     abi_ulong align_bss;
2369 
2370     /* We only expect writable bss; the code segment shouldn't need this. */
2371     if (!(prot & PROT_WRITE)) {
2372         error_setg(errp, "PT_LOAD with non-writable bss");
2373         return false;
2374     }
2375 
2376     align_bss = TARGET_PAGE_ALIGN(start_bss);
2377     end_bss = TARGET_PAGE_ALIGN(end_bss);
2378 
2379     if (start_bss < align_bss) {
2380         int flags = page_get_flags(start_bss);
2381 
2382         if (!(flags & PAGE_BITS)) {
2383             /*
2384              * The whole address space of the executable was reserved
2385              * at the start, therefore all pages will be VALID.
2386              * But assuming there are no PROT_NONE PT_LOAD segments,
2387              * a PROT_NONE page means no data all bss, and we can
2388              * simply extend the new anon mapping back to the start
2389              * of the page of bss.
2390              */
2391             align_bss -= TARGET_PAGE_SIZE;
2392         } else {
2393             /*
2394              * The start of the bss shares a page with something.
2395              * The only thing that we expect is the data section,
2396              * which would already be marked writable.
2397              * Overlapping the RX code segment seems malformed.
2398              */
2399             if (!(flags & PAGE_WRITE)) {
2400                 error_setg(errp, "PT_LOAD with bss overlapping "
2401                            "non-writable page");
2402                 return false;
2403             }
2404 
2405             /* The page is already mapped and writable. */
2406             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2407         }
2408     }
2409 
2410     if (align_bss < end_bss &&
2411         target_mmap(align_bss, end_bss - align_bss, prot,
2412                     MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2413         error_setg_errno(errp, errno, "Error mapping bss");
2414         return false;
2415     }
2416     return true;
2417 }
2418 
2419 #if defined(TARGET_ARM)
2420 static int elf_is_fdpic(struct elfhdr *exec)
2421 {
2422     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2423 }
2424 #elif defined(TARGET_XTENSA)
2425 static int elf_is_fdpic(struct elfhdr *exec)
2426 {
2427     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2428 }
2429 #else
2430 /* Default implementation, always false.  */
2431 static int elf_is_fdpic(struct elfhdr *exec)
2432 {
2433     return 0;
2434 }
2435 #endif
2436 
2437 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2438 {
2439     uint16_t n;
2440     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2441 
2442     /* elf32_fdpic_loadseg */
2443     n = info->nsegs;
2444     while (n--) {
2445         sp -= 12;
2446         put_user_u32(loadsegs[n].addr, sp+0);
2447         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2448         put_user_u32(loadsegs[n].p_memsz, sp+8);
2449     }
2450 
2451     /* elf32_fdpic_loadmap */
2452     sp -= 4;
2453     put_user_u16(0, sp+0); /* version */
2454     put_user_u16(info->nsegs, sp+2); /* nsegs */
2455 
2456     info->personality = PER_LINUX_FDPIC;
2457     info->loadmap_addr = sp;
2458 
2459     return sp;
2460 }
2461 
2462 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2463                                    struct elfhdr *exec,
2464                                    struct image_info *info,
2465                                    struct image_info *interp_info)
2466 {
2467     abi_ulong sp;
2468     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2469     int size;
2470     int i;
2471     abi_ulong u_rand_bytes;
2472     uint8_t k_rand_bytes[16];
2473     abi_ulong u_platform, u_base_platform;
2474     const char *k_platform, *k_base_platform;
2475     const int n = sizeof(elf_addr_t);
2476 
2477     sp = p;
2478 
2479     /* Needs to be before we load the env/argc/... */
2480     if (elf_is_fdpic(exec)) {
2481         /* Need 4 byte alignment for these structs */
2482         sp &= ~3;
2483         sp = loader_build_fdpic_loadmap(info, sp);
2484         info->other_info = interp_info;
2485         if (interp_info) {
2486             interp_info->other_info = info;
2487             sp = loader_build_fdpic_loadmap(interp_info, sp);
2488             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2489             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2490         } else {
2491             info->interpreter_loadmap_addr = 0;
2492             info->interpreter_pt_dynamic_addr = 0;
2493         }
2494     }
2495 
2496     u_base_platform = 0;
2497     k_base_platform = ELF_BASE_PLATFORM;
2498     if (k_base_platform) {
2499         size_t len = strlen(k_base_platform) + 1;
2500         if (STACK_GROWS_DOWN) {
2501             sp -= (len + n - 1) & ~(n - 1);
2502             u_base_platform = sp;
2503             /* FIXME - check return value of memcpy_to_target() for failure */
2504             memcpy_to_target(sp, k_base_platform, len);
2505         } else {
2506             memcpy_to_target(sp, k_base_platform, len);
2507             u_base_platform = sp;
2508             sp += len + 1;
2509         }
2510     }
2511 
2512     u_platform = 0;
2513     k_platform = ELF_PLATFORM;
2514     if (k_platform) {
2515         size_t len = strlen(k_platform) + 1;
2516         if (STACK_GROWS_DOWN) {
2517             sp -= (len + n - 1) & ~(n - 1);
2518             u_platform = sp;
2519             /* FIXME - check return value of memcpy_to_target() for failure */
2520             memcpy_to_target(sp, k_platform, len);
2521         } else {
2522             memcpy_to_target(sp, k_platform, len);
2523             u_platform = sp;
2524             sp += len + 1;
2525         }
2526     }
2527 
2528     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2529      * the argv and envp pointers.
2530      */
2531     if (STACK_GROWS_DOWN) {
2532         sp = QEMU_ALIGN_DOWN(sp, 16);
2533     } else {
2534         sp = QEMU_ALIGN_UP(sp, 16);
2535     }
2536 
2537     /*
2538      * Generate 16 random bytes for userspace PRNG seeding.
2539      */
2540     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2541     if (STACK_GROWS_DOWN) {
2542         sp -= 16;
2543         u_rand_bytes = sp;
2544         /* FIXME - check return value of memcpy_to_target() for failure */
2545         memcpy_to_target(sp, k_rand_bytes, 16);
2546     } else {
2547         memcpy_to_target(sp, k_rand_bytes, 16);
2548         u_rand_bytes = sp;
2549         sp += 16;
2550     }
2551 
2552     size = (DLINFO_ITEMS + 1) * 2;
2553     if (k_base_platform)
2554         size += 2;
2555     if (k_platform)
2556         size += 2;
2557 #ifdef DLINFO_ARCH_ITEMS
2558     size += DLINFO_ARCH_ITEMS * 2;
2559 #endif
2560 #ifdef ELF_HWCAP2
2561     size += 2;
2562 #endif
2563     info->auxv_len = size * n;
2564 
2565     size += envc + argc + 2;
2566     size += 1;  /* argc itself */
2567     size *= n;
2568 
2569     /* Allocate space and finalize stack alignment for entry now.  */
2570     if (STACK_GROWS_DOWN) {
2571         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2572         sp = u_argc;
2573     } else {
2574         u_argc = sp;
2575         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2576     }
2577 
2578     u_argv = u_argc + n;
2579     u_envp = u_argv + (argc + 1) * n;
2580     u_auxv = u_envp + (envc + 1) * n;
2581     info->saved_auxv = u_auxv;
2582     info->argc = argc;
2583     info->envc = envc;
2584     info->argv = u_argv;
2585     info->envp = u_envp;
2586 
2587     /* This is correct because Linux defines
2588      * elf_addr_t as Elf32_Off / Elf64_Off
2589      */
2590 #define NEW_AUX_ENT(id, val) do {               \
2591         put_user_ual(id, u_auxv);  u_auxv += n; \
2592         put_user_ual(val, u_auxv); u_auxv += n; \
2593     } while(0)
2594 
2595 #ifdef ARCH_DLINFO
2596     /*
2597      * ARCH_DLINFO must come first so platform specific code can enforce
2598      * special alignment requirements on the AUXV if necessary (eg. PPC).
2599      */
2600     ARCH_DLINFO;
2601 #endif
2602     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2603      * on info->auxv_len will trigger.
2604      */
2605     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2606     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2607     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2608     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2609         /* Target doesn't support host page size alignment */
2610         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2611     } else {
2612         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2613                                                qemu_host_page_size)));
2614     }
2615     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2616     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2617     NEW_AUX_ENT(AT_ENTRY, info->entry);
2618     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2619     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2620     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2621     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2622     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2623     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2624     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2625     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2626     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2627 
2628 #ifdef ELF_HWCAP2
2629     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2630 #endif
2631 
2632     if (u_base_platform) {
2633         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2634     }
2635     if (u_platform) {
2636         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2637     }
2638     NEW_AUX_ENT (AT_NULL, 0);
2639 #undef NEW_AUX_ENT
2640 
2641     /* Check that our initial calculation of the auxv length matches how much
2642      * we actually put into it.
2643      */
2644     assert(info->auxv_len == u_auxv - info->saved_auxv);
2645 
2646     put_user_ual(argc, u_argc);
2647 
2648     p = info->arg_strings;
2649     for (i = 0; i < argc; ++i) {
2650         put_user_ual(p, u_argv);
2651         u_argv += n;
2652         p += target_strlen(p) + 1;
2653     }
2654     put_user_ual(0, u_argv);
2655 
2656     p = info->env_strings;
2657     for (i = 0; i < envc; ++i) {
2658         put_user_ual(p, u_envp);
2659         u_envp += n;
2660         p += target_strlen(p) + 1;
2661     }
2662     put_user_ual(0, u_envp);
2663 
2664     return sp;
2665 }
2666 
2667 #if defined(HI_COMMPAGE)
2668 #define LO_COMMPAGE -1
2669 #elif defined(LO_COMMPAGE)
2670 #define HI_COMMPAGE 0
2671 #else
2672 #define HI_COMMPAGE 0
2673 #define LO_COMMPAGE -1
2674 #ifndef INIT_GUEST_COMMPAGE
2675 #define init_guest_commpage() true
2676 #endif
2677 #endif
2678 
2679 /**
2680  * pgb_try_mmap:
2681  * @addr: host start address
2682  * @addr_last: host last address
2683  * @keep: do not unmap the probe region
2684  *
2685  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2686  * return 0 if it is not available to map, and -1 on mmap error.
2687  * If @keep, the region is left mapped on success, otherwise unmapped.
2688  */
2689 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2690 {
2691     size_t size = addr_last - addr + 1;
2692     void *p = mmap((void *)addr, size, PROT_NONE,
2693                    MAP_ANONYMOUS | MAP_PRIVATE |
2694                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2695     int ret;
2696 
2697     if (p == MAP_FAILED) {
2698         return errno == EEXIST ? 0 : -1;
2699     }
2700     ret = p == (void *)addr;
2701     if (!keep || !ret) {
2702         munmap(p, size);
2703     }
2704     return ret;
2705 }
2706 
2707 /**
2708  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2709  * @addr: host address
2710  * @addr_last: host last address
2711  * @brk: host brk
2712  *
2713  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2714  */
2715 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2716                                  uintptr_t brk, bool keep)
2717 {
2718     uintptr_t brk_last = brk + 16 * MiB - 1;
2719 
2720     /* Do not map anything close to the host brk. */
2721     if (addr <= brk_last && brk <= addr_last) {
2722         return 0;
2723     }
2724     return pgb_try_mmap(addr, addr_last, keep);
2725 }
2726 
2727 /**
2728  * pgb_try_mmap_set:
2729  * @ga: set of guest addrs
2730  * @base: guest_base
2731  * @brk: host brk
2732  *
2733  * Return true if all @ga can be mapped by the host at @base.
2734  * On success, retain the mapping at index 0 for reserved_va.
2735  */
2736 
2737 typedef struct PGBAddrs {
2738     uintptr_t bounds[3][2]; /* start/last pairs */
2739     int nbounds;
2740 } PGBAddrs;
2741 
2742 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2743 {
2744     for (int i = ga->nbounds - 1; i >= 0; --i) {
2745         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2746                                   ga->bounds[i][1] + base,
2747                                   brk, i == 0 && reserved_va) <= 0) {
2748             return false;
2749         }
2750     }
2751     return true;
2752 }
2753 
2754 /**
2755  * pgb_addr_set:
2756  * @ga: output set of guest addrs
2757  * @guest_loaddr: guest image low address
2758  * @guest_loaddr: guest image high address
2759  * @identity: create for identity mapping
2760  *
2761  * Fill in @ga with the image, COMMPAGE and NULL page.
2762  */
2763 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2764                          abi_ulong guest_hiaddr, bool try_identity)
2765 {
2766     int n;
2767 
2768     /*
2769      * With a low commpage, or a guest mapped very low,
2770      * we may not be able to use the identity map.
2771      */
2772     if (try_identity) {
2773         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2774             return false;
2775         }
2776         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2777             return false;
2778         }
2779     }
2780 
2781     memset(ga, 0, sizeof(*ga));
2782     n = 0;
2783 
2784     if (reserved_va) {
2785         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2786         ga->bounds[n][1] = reserved_va;
2787         n++;
2788         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2789     } else {
2790         /* Add any LO_COMMPAGE or NULL page. */
2791         if (LO_COMMPAGE != -1) {
2792             ga->bounds[n][0] = 0;
2793             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2794             n++;
2795         } else if (!try_identity) {
2796             ga->bounds[n][0] = 0;
2797             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2798             n++;
2799         }
2800 
2801         /* Add the guest image for ET_EXEC. */
2802         if (guest_loaddr) {
2803             ga->bounds[n][0] = guest_loaddr;
2804             ga->bounds[n][1] = guest_hiaddr;
2805             n++;
2806         }
2807     }
2808 
2809     /*
2810      * Temporarily disable
2811      *   "comparison is always false due to limited range of data type"
2812      * due to comparison between unsigned and (possible) 0.
2813      */
2814 #pragma GCC diagnostic push
2815 #pragma GCC diagnostic ignored "-Wtype-limits"
2816 
2817     /* Add any HI_COMMPAGE not covered by reserved_va. */
2818     if (reserved_va < HI_COMMPAGE) {
2819         ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask;
2820         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2821         n++;
2822     }
2823 
2824 #pragma GCC diagnostic pop
2825 
2826     ga->nbounds = n;
2827     return true;
2828 }
2829 
2830 static void pgb_fail_in_use(const char *image_name)
2831 {
2832     error_report("%s: requires virtual address space that is in use "
2833                  "(omit the -B option or choose a different value)",
2834                  image_name);
2835     exit(EXIT_FAILURE);
2836 }
2837 
2838 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2839                       uintptr_t guest_hiaddr, uintptr_t align)
2840 {
2841     PGBAddrs ga;
2842     uintptr_t brk = (uintptr_t)sbrk(0);
2843 
2844     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2845         fprintf(stderr, "Requested guest base %p does not satisfy "
2846                 "host minimum alignment (0x%" PRIxPTR ")\n",
2847                 (void *)guest_base, align);
2848         exit(EXIT_FAILURE);
2849     }
2850 
2851     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2852         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2853         pgb_fail_in_use(image_name);
2854     }
2855 }
2856 
2857 /**
2858  * pgb_find_fallback:
2859  *
2860  * This is a fallback method for finding holes in the host address space
2861  * if we don't have the benefit of being able to access /proc/self/map.
2862  * It can potentially take a very long time as we can only dumbly iterate
2863  * up the host address space seeing if the allocation would work.
2864  */
2865 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2866                                    uintptr_t brk)
2867 {
2868     /* TODO: come up with a better estimate of how much to skip. */
2869     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2870 
2871     for (uintptr_t base = skip; ; base += skip) {
2872         base = ROUND_UP(base, align);
2873         if (pgb_try_mmap_set(ga, base, brk)) {
2874             return base;
2875         }
2876         if (base >= -skip) {
2877             return -1;
2878         }
2879     }
2880 }
2881 
2882 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2883                                IntervalTreeRoot *root)
2884 {
2885     for (int i = ga->nbounds - 1; i >= 0; --i) {
2886         uintptr_t s = base + ga->bounds[i][0];
2887         uintptr_t l = base + ga->bounds[i][1];
2888         IntervalTreeNode *n;
2889 
2890         if (l < s) {
2891             /* Wraparound. Skip to advance S to mmap_min_addr. */
2892             return mmap_min_addr - s;
2893         }
2894 
2895         n = interval_tree_iter_first(root, s, l);
2896         if (n != NULL) {
2897             /* Conflict.  Skip to advance S to LAST + 1. */
2898             return n->last - s + 1;
2899         }
2900     }
2901     return 0;  /* success */
2902 }
2903 
2904 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2905                                 uintptr_t align, uintptr_t brk)
2906 {
2907     uintptr_t last = mmap_min_addr;
2908     uintptr_t base, skip;
2909 
2910     while (true) {
2911         base = ROUND_UP(last, align);
2912         if (base < last) {
2913             return -1;
2914         }
2915 
2916         skip = pgb_try_itree(ga, base, root);
2917         if (skip == 0) {
2918             break;
2919         }
2920 
2921         last = base + skip;
2922         if (last < base) {
2923             return -1;
2924         }
2925     }
2926 
2927     /*
2928      * We've chosen 'base' based on holes in the interval tree,
2929      * but we don't yet know if it is a valid host address.
2930      * Because it is the first matching hole, if the host addresses
2931      * are invalid we know there are no further matches.
2932      */
2933     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2934 }
2935 
2936 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2937                         uintptr_t guest_hiaddr, uintptr_t align)
2938 {
2939     IntervalTreeRoot *root;
2940     uintptr_t brk, ret;
2941     PGBAddrs ga;
2942 
2943     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2944 
2945     /* Try the identity map first. */
2946     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2947         brk = (uintptr_t)sbrk(0);
2948         if (pgb_try_mmap_set(&ga, 0, brk)) {
2949             guest_base = 0;
2950             return;
2951         }
2952     }
2953 
2954     /*
2955      * Rebuild the address set for non-identity map.
2956      * This differs in the mapping of the guest NULL page.
2957      */
2958     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2959 
2960     root = read_self_maps();
2961 
2962     /* Read brk after we've read the maps, which will malloc. */
2963     brk = (uintptr_t)sbrk(0);
2964 
2965     if (!root) {
2966         ret = pgb_find_fallback(&ga, align, brk);
2967     } else {
2968         /*
2969          * Reserve the area close to the host brk.
2970          * This will be freed with the rest of the tree.
2971          */
2972         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2973         b->start = brk;
2974         b->last = brk + 16 * MiB - 1;
2975         interval_tree_insert(b, root);
2976 
2977         ret = pgb_find_itree(&ga, root, align, brk);
2978         free_self_maps(root);
2979     }
2980 
2981     if (ret == -1) {
2982         int w = TARGET_LONG_BITS / 4;
2983 
2984         error_report("%s: Unable to find a guest_base to satisfy all "
2985                      "guest address mapping requirements", image_name);
2986 
2987         for (int i = 0; i < ga.nbounds; ++i) {
2988             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
2989                          w, (uint64_t)ga.bounds[i][0],
2990                          w, (uint64_t)ga.bounds[i][1]);
2991         }
2992         exit(EXIT_FAILURE);
2993     }
2994     guest_base = ret;
2995 }
2996 
2997 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2998                       abi_ulong guest_hiaddr)
2999 {
3000     /* In order to use host shmat, we must be able to honor SHMLBA.  */
3001     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
3002 
3003     /* Sanity check the guest binary. */
3004     if (reserved_va) {
3005         if (guest_hiaddr > reserved_va) {
3006             error_report("%s: requires more than reserved virtual "
3007                          "address space (0x%" PRIx64 " > 0x%lx)",
3008                          image_name, (uint64_t)guest_hiaddr, reserved_va);
3009             exit(EXIT_FAILURE);
3010         }
3011     } else {
3012         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3013             error_report("%s: requires more virtual address space "
3014                          "than the host can provide (0x%" PRIx64 ")",
3015                          image_name, (uint64_t)guest_hiaddr + 1);
3016             exit(EXIT_FAILURE);
3017         }
3018     }
3019 
3020     if (have_guest_base) {
3021         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3022     } else {
3023         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3024     }
3025 
3026     /* Reserve and initialize the commpage. */
3027     if (!init_guest_commpage()) {
3028         /* We have already probed for the commpage being free. */
3029         g_assert_not_reached();
3030     }
3031 
3032     assert(QEMU_IS_ALIGNED(guest_base, align));
3033     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3034                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3035 }
3036 
3037 enum {
3038     /* The string "GNU\0" as a magic number. */
3039     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3040     NOTE_DATA_SZ = 1 * KiB,
3041     NOTE_NAME_SZ = 4,
3042     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3043 };
3044 
3045 /*
3046  * Process a single gnu_property entry.
3047  * Return false for error.
3048  */
3049 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3050                                struct image_info *info, bool have_prev_type,
3051                                uint32_t *prev_type, Error **errp)
3052 {
3053     uint32_t pr_type, pr_datasz, step;
3054 
3055     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3056         goto error_data;
3057     }
3058     datasz -= *off;
3059     data += *off / sizeof(uint32_t);
3060 
3061     if (datasz < 2 * sizeof(uint32_t)) {
3062         goto error_data;
3063     }
3064     pr_type = data[0];
3065     pr_datasz = data[1];
3066     data += 2;
3067     datasz -= 2 * sizeof(uint32_t);
3068     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3069     if (step > datasz) {
3070         goto error_data;
3071     }
3072 
3073     /* Properties are supposed to be unique and sorted on pr_type. */
3074     if (have_prev_type && pr_type <= *prev_type) {
3075         if (pr_type == *prev_type) {
3076             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3077         } else {
3078             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3079         }
3080         return false;
3081     }
3082     *prev_type = pr_type;
3083 
3084     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3085         return false;
3086     }
3087 
3088     *off += 2 * sizeof(uint32_t) + step;
3089     return true;
3090 
3091  error_data:
3092     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3093     return false;
3094 }
3095 
3096 /* Process NT_GNU_PROPERTY_TYPE_0. */
3097 static bool parse_elf_properties(int image_fd,
3098                                  struct image_info *info,
3099                                  const struct elf_phdr *phdr,
3100                                  char bprm_buf[BPRM_BUF_SIZE],
3101                                  Error **errp)
3102 {
3103     union {
3104         struct elf_note nhdr;
3105         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3106     } note;
3107 
3108     int n, off, datasz;
3109     bool have_prev_type;
3110     uint32_t prev_type;
3111 
3112     /* Unless the arch requires properties, ignore them. */
3113     if (!ARCH_USE_GNU_PROPERTY) {
3114         return true;
3115     }
3116 
3117     /* If the properties are crazy large, that's too bad. */
3118     n = phdr->p_filesz;
3119     if (n > sizeof(note)) {
3120         error_setg(errp, "PT_GNU_PROPERTY too large");
3121         return false;
3122     }
3123     if (n < sizeof(note.nhdr)) {
3124         error_setg(errp, "PT_GNU_PROPERTY too small");
3125         return false;
3126     }
3127 
3128     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
3129         memcpy(&note, bprm_buf + phdr->p_offset, n);
3130     } else {
3131         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
3132         if (len != n) {
3133             error_setg_errno(errp, errno, "Error reading file header");
3134             return false;
3135         }
3136     }
3137 
3138     /*
3139      * The contents of a valid PT_GNU_PROPERTY is a sequence
3140      * of uint32_t -- swap them all now.
3141      */
3142 #ifdef BSWAP_NEEDED
3143     for (int i = 0; i < n / 4; i++) {
3144         bswap32s(note.data + i);
3145     }
3146 #endif
3147 
3148     /*
3149      * Note that nhdr is 3 words, and that the "name" described by namesz
3150      * immediately follows nhdr and is thus at the 4th word.  Further, all
3151      * of the inputs to the kernel's round_up are multiples of 4.
3152      */
3153     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
3154         note.nhdr.n_namesz != NOTE_NAME_SZ ||
3155         note.data[3] != GNU0_MAGIC) {
3156         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3157         return false;
3158     }
3159     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3160 
3161     datasz = note.nhdr.n_descsz + off;
3162     if (datasz > n) {
3163         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3164         return false;
3165     }
3166 
3167     have_prev_type = false;
3168     prev_type = 0;
3169     while (1) {
3170         if (off == datasz) {
3171             return true;  /* end, exit ok */
3172         }
3173         if (!parse_elf_property(note.data, &off, datasz, info,
3174                                 have_prev_type, &prev_type, errp)) {
3175             return false;
3176         }
3177         have_prev_type = true;
3178     }
3179 }
3180 
3181 /* Load an ELF image into the address space.
3182 
3183    IMAGE_NAME is the filename of the image, to use in error messages.
3184    IMAGE_FD is the open file descriptor for the image.
3185 
3186    BPRM_BUF is a copy of the beginning of the file; this of course
3187    contains the elf file header at offset 0.  It is assumed that this
3188    buffer is sufficiently aligned to present no problems to the host
3189    in accessing data at aligned offsets within the buffer.
3190 
3191    On return: INFO values will be filled in, as necessary or available.  */
3192 
3193 static void load_elf_image(const char *image_name, int image_fd,
3194                            struct image_info *info, char **pinterp_name,
3195                            char bprm_buf[BPRM_BUF_SIZE])
3196 {
3197     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3198     struct elf_phdr *phdr;
3199     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3200     int i, retval, prot_exec;
3201     Error *err = NULL;
3202 
3203     /* First of all, some simple consistency checks */
3204     if (!elf_check_ident(ehdr)) {
3205         error_setg(&err, "Invalid ELF image for this architecture");
3206         goto exit_errmsg;
3207     }
3208     bswap_ehdr(ehdr);
3209     if (!elf_check_ehdr(ehdr)) {
3210         error_setg(&err, "Invalid ELF image for this architecture");
3211         goto exit_errmsg;
3212     }
3213 
3214     i = ehdr->e_phnum * sizeof(struct elf_phdr);
3215     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3216         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
3217     } else {
3218         phdr = (struct elf_phdr *) alloca(i);
3219         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
3220         if (retval != i) {
3221             goto exit_read;
3222         }
3223     }
3224     bswap_phdr(phdr, ehdr->e_phnum);
3225 
3226     info->nsegs = 0;
3227     info->pt_dynamic_addr = 0;
3228 
3229     mmap_lock();
3230 
3231     /*
3232      * Find the maximum size of the image and allocate an appropriate
3233      * amount of memory to handle that.  Locate the interpreter, if any.
3234      */
3235     loaddr = -1, hiaddr = 0;
3236     info->alignment = 0;
3237     info->exec_stack = EXSTACK_DEFAULT;
3238     for (i = 0; i < ehdr->e_phnum; ++i) {
3239         struct elf_phdr *eppnt = phdr + i;
3240         if (eppnt->p_type == PT_LOAD) {
3241             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3242             if (a < loaddr) {
3243                 loaddr = a;
3244             }
3245             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3246             if (a > hiaddr) {
3247                 hiaddr = a;
3248             }
3249             ++info->nsegs;
3250             info->alignment |= eppnt->p_align;
3251         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3252             g_autofree char *interp_name = NULL;
3253 
3254             if (*pinterp_name) {
3255                 error_setg(&err, "Multiple PT_INTERP entries");
3256                 goto exit_errmsg;
3257             }
3258 
3259             interp_name = g_malloc(eppnt->p_filesz);
3260 
3261             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3262                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3263                        eppnt->p_filesz);
3264             } else {
3265                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3266                                eppnt->p_offset);
3267                 if (retval != eppnt->p_filesz) {
3268                     goto exit_read;
3269                 }
3270             }
3271             if (interp_name[eppnt->p_filesz - 1] != 0) {
3272                 error_setg(&err, "Invalid PT_INTERP entry");
3273                 goto exit_errmsg;
3274             }
3275             *pinterp_name = g_steal_pointer(&interp_name);
3276         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3277             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3278                 goto exit_errmsg;
3279             }
3280         } else if (eppnt->p_type == PT_GNU_STACK) {
3281             info->exec_stack = eppnt->p_flags & PF_X;
3282         }
3283     }
3284 
3285     load_addr = loaddr;
3286 
3287     if (pinterp_name != NULL) {
3288         if (ehdr->e_type == ET_EXEC) {
3289             /*
3290              * Make sure that the low address does not conflict with
3291              * MMAP_MIN_ADDR or the QEMU application itself.
3292              */
3293             probe_guest_base(image_name, loaddr, hiaddr);
3294         } else {
3295             abi_ulong align;
3296 
3297             /*
3298              * The binary is dynamic, but we still need to
3299              * select guest_base.  In this case we pass a size.
3300              */
3301             probe_guest_base(image_name, 0, hiaddr - loaddr);
3302 
3303             /*
3304              * Avoid collision with the loader by providing a different
3305              * default load address.
3306              */
3307             load_addr += elf_et_dyn_base;
3308 
3309             /*
3310              * TODO: Better support for mmap alignment is desirable.
3311              * Since we do not have complete control over the guest
3312              * address space, we prefer the kernel to choose some address
3313              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3314              * But without MAP_FIXED we cannot guarantee alignment,
3315              * only suggest it.
3316              */
3317             align = pow2ceil(info->alignment);
3318             if (align) {
3319                 load_addr &= -align;
3320             }
3321         }
3322     }
3323 
3324     /*
3325      * Reserve address space for all of this.
3326      *
3327      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3328      * exactly the address range that is required.  Without reserved_va,
3329      * the guest address space is not isolated.  We have attempted to avoid
3330      * conflict with the host program itself via probe_guest_base, but using
3331      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3332      *
3333      * Otherwise this is ET_DYN, and we are searching for a location
3334      * that can hold the memory space required.  If the image is
3335      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3336      * honor that address if it happens to be free.
3337      *
3338      * In both cases, we will overwrite pages in this range with mappings
3339      * from the executable.
3340      */
3341     load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3342                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3343                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3344                             -1, 0);
3345     if (load_addr == -1) {
3346         goto exit_mmap;
3347     }
3348     load_bias = load_addr - loaddr;
3349 
3350     if (elf_is_fdpic(ehdr)) {
3351         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3352             g_malloc(sizeof(*loadsegs) * info->nsegs);
3353 
3354         for (i = 0; i < ehdr->e_phnum; ++i) {
3355             switch (phdr[i].p_type) {
3356             case PT_DYNAMIC:
3357                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3358                 break;
3359             case PT_LOAD:
3360                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3361                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3362                 loadsegs->p_memsz = phdr[i].p_memsz;
3363                 ++loadsegs;
3364                 break;
3365             }
3366         }
3367     }
3368 
3369     info->load_bias = load_bias;
3370     info->code_offset = load_bias;
3371     info->data_offset = load_bias;
3372     info->load_addr = load_addr;
3373     info->entry = ehdr->e_entry + load_bias;
3374     info->start_code = -1;
3375     info->end_code = 0;
3376     info->start_data = -1;
3377     info->end_data = 0;
3378     /* Usual start for brk is after all sections of the main executable. */
3379     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3380     info->elf_flags = ehdr->e_flags;
3381 
3382     prot_exec = PROT_EXEC;
3383 #ifdef TARGET_AARCH64
3384     /*
3385      * If the BTI feature is present, this indicates that the executable
3386      * pages of the startup binary should be mapped with PROT_BTI, so that
3387      * branch targets are enforced.
3388      *
3389      * The startup binary is either the interpreter or the static executable.
3390      * The interpreter is responsible for all pages of a dynamic executable.
3391      *
3392      * Elf notes are backward compatible to older cpus.
3393      * Do not enable BTI unless it is supported.
3394      */
3395     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3396         && (pinterp_name == NULL || *pinterp_name == 0)
3397         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3398         prot_exec |= TARGET_PROT_BTI;
3399     }
3400 #endif
3401 
3402     for (i = 0; i < ehdr->e_phnum; i++) {
3403         struct elf_phdr *eppnt = phdr + i;
3404         if (eppnt->p_type == PT_LOAD) {
3405             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3406             int elf_prot = 0;
3407 
3408             if (eppnt->p_flags & PF_R) {
3409                 elf_prot |= PROT_READ;
3410             }
3411             if (eppnt->p_flags & PF_W) {
3412                 elf_prot |= PROT_WRITE;
3413             }
3414             if (eppnt->p_flags & PF_X) {
3415                 elf_prot |= prot_exec;
3416             }
3417 
3418             vaddr = load_bias + eppnt->p_vaddr;
3419             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3420             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3421 
3422             vaddr_ef = vaddr + eppnt->p_filesz;
3423             vaddr_em = vaddr + eppnt->p_memsz;
3424 
3425             /*
3426              * Some segments may be completely empty, with a non-zero p_memsz
3427              * but no backing file segment.
3428              */
3429             if (eppnt->p_filesz != 0) {
3430                 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3431                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3432                                     image_fd, eppnt->p_offset - vaddr_po);
3433                 if (error == -1) {
3434                     goto exit_mmap;
3435                 }
3436             }
3437 
3438             /* If the load segment requests extra zeros (e.g. bss), map it. */
3439             if (vaddr_ef < vaddr_em &&
3440                 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3441                 goto exit_errmsg;
3442             }
3443 
3444             /* Find the full program boundaries.  */
3445             if (elf_prot & PROT_EXEC) {
3446                 if (vaddr < info->start_code) {
3447                     info->start_code = vaddr;
3448                 }
3449                 if (vaddr_ef > info->end_code) {
3450                     info->end_code = vaddr_ef;
3451                 }
3452             }
3453             if (elf_prot & PROT_WRITE) {
3454                 if (vaddr < info->start_data) {
3455                     info->start_data = vaddr;
3456                 }
3457                 if (vaddr_ef > info->end_data) {
3458                     info->end_data = vaddr_ef;
3459                 }
3460             }
3461 #ifdef TARGET_MIPS
3462         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3463             Mips_elf_abiflags_v0 abiflags;
3464             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3465                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3466                 goto exit_errmsg;
3467             }
3468             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3469                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3470                        sizeof(Mips_elf_abiflags_v0));
3471             } else {
3472                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3473                                eppnt->p_offset);
3474                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3475                     goto exit_read;
3476                 }
3477             }
3478             bswap_mips_abiflags(&abiflags);
3479             info->fp_abi = abiflags.fp_abi;
3480 #endif
3481         }
3482     }
3483 
3484     if (info->end_data == 0) {
3485         info->start_data = info->end_code;
3486         info->end_data = info->end_code;
3487     }
3488 
3489     if (qemu_log_enabled()) {
3490         load_symbols(ehdr, image_fd, load_bias);
3491     }
3492 
3493     debuginfo_report_elf(image_name, image_fd, load_bias);
3494 
3495     mmap_unlock();
3496 
3497     close(image_fd);
3498     return;
3499 
3500  exit_read:
3501     if (retval >= 0) {
3502         error_setg(&err, "Incomplete read of file header");
3503     } else {
3504         error_setg_errno(&err, errno, "Error reading file header");
3505     }
3506     goto exit_errmsg;
3507  exit_mmap:
3508     error_setg_errno(&err, errno, "Error mapping file");
3509     goto exit_errmsg;
3510  exit_errmsg:
3511     error_reportf_err(err, "%s: ", image_name);
3512     exit(-1);
3513 }
3514 
3515 static void load_elf_interp(const char *filename, struct image_info *info,
3516                             char bprm_buf[BPRM_BUF_SIZE])
3517 {
3518     int fd, retval;
3519     Error *err = NULL;
3520 
3521     fd = open(path(filename), O_RDONLY);
3522     if (fd < 0) {
3523         error_setg_file_open(&err, errno, filename);
3524         error_report_err(err);
3525         exit(-1);
3526     }
3527 
3528     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3529     if (retval < 0) {
3530         error_setg_errno(&err, errno, "Error reading file header");
3531         error_reportf_err(err, "%s: ", filename);
3532         exit(-1);
3533     }
3534 
3535     if (retval < BPRM_BUF_SIZE) {
3536         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3537     }
3538 
3539     load_elf_image(filename, fd, info, NULL, bprm_buf);
3540 }
3541 
3542 static int symfind(const void *s0, const void *s1)
3543 {
3544     struct elf_sym *sym = (struct elf_sym *)s1;
3545     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3546     int result = 0;
3547 
3548     if (addr < sym->st_value) {
3549         result = -1;
3550     } else if (addr >= sym->st_value + sym->st_size) {
3551         result = 1;
3552     }
3553     return result;
3554 }
3555 
3556 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3557 {
3558 #if ELF_CLASS == ELFCLASS32
3559     struct elf_sym *syms = s->disas_symtab.elf32;
3560 #else
3561     struct elf_sym *syms = s->disas_symtab.elf64;
3562 #endif
3563 
3564     // binary search
3565     struct elf_sym *sym;
3566 
3567     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3568     if (sym != NULL) {
3569         return s->disas_strtab + sym->st_name;
3570     }
3571 
3572     return "";
3573 }
3574 
3575 /* FIXME: This should use elf_ops.h  */
3576 static int symcmp(const void *s0, const void *s1)
3577 {
3578     struct elf_sym *sym0 = (struct elf_sym *)s0;
3579     struct elf_sym *sym1 = (struct elf_sym *)s1;
3580     return (sym0->st_value < sym1->st_value)
3581         ? -1
3582         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3583 }
3584 
3585 /* Best attempt to load symbols from this ELF object. */
3586 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3587 {
3588     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3589     uint64_t segsz;
3590     struct elf_shdr *shdr;
3591     char *strings = NULL;
3592     struct syminfo *s = NULL;
3593     struct elf_sym *new_syms, *syms = NULL;
3594 
3595     shnum = hdr->e_shnum;
3596     i = shnum * sizeof(struct elf_shdr);
3597     shdr = (struct elf_shdr *)alloca(i);
3598     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3599         return;
3600     }
3601 
3602     bswap_shdr(shdr, shnum);
3603     for (i = 0; i < shnum; ++i) {
3604         if (shdr[i].sh_type == SHT_SYMTAB) {
3605             sym_idx = i;
3606             str_idx = shdr[i].sh_link;
3607             goto found;
3608         }
3609     }
3610 
3611     /* There will be no symbol table if the file was stripped.  */
3612     return;
3613 
3614  found:
3615     /* Now know where the strtab and symtab are.  Snarf them.  */
3616     s = g_try_new(struct syminfo, 1);
3617     if (!s) {
3618         goto give_up;
3619     }
3620 
3621     segsz = shdr[str_idx].sh_size;
3622     s->disas_strtab = strings = g_try_malloc(segsz);
3623     if (!strings ||
3624         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3625         goto give_up;
3626     }
3627 
3628     segsz = shdr[sym_idx].sh_size;
3629     syms = g_try_malloc(segsz);
3630     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3631         goto give_up;
3632     }
3633 
3634     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3635         /* Implausibly large symbol table: give up rather than ploughing
3636          * on with the number of symbols calculation overflowing
3637          */
3638         goto give_up;
3639     }
3640     nsyms = segsz / sizeof(struct elf_sym);
3641     for (i = 0; i < nsyms; ) {
3642         bswap_sym(syms + i);
3643         /* Throw away entries which we do not need.  */
3644         if (syms[i].st_shndx == SHN_UNDEF
3645             || syms[i].st_shndx >= SHN_LORESERVE
3646             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3647             if (i < --nsyms) {
3648                 syms[i] = syms[nsyms];
3649             }
3650         } else {
3651 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3652             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3653             syms[i].st_value &= ~(target_ulong)1;
3654 #endif
3655             syms[i].st_value += load_bias;
3656             i++;
3657         }
3658     }
3659 
3660     /* No "useful" symbol.  */
3661     if (nsyms == 0) {
3662         goto give_up;
3663     }
3664 
3665     /* Attempt to free the storage associated with the local symbols
3666        that we threw away.  Whether or not this has any effect on the
3667        memory allocation depends on the malloc implementation and how
3668        many symbols we managed to discard.  */
3669     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3670     if (new_syms == NULL) {
3671         goto give_up;
3672     }
3673     syms = new_syms;
3674 
3675     qsort(syms, nsyms, sizeof(*syms), symcmp);
3676 
3677     s->disas_num_syms = nsyms;
3678 #if ELF_CLASS == ELFCLASS32
3679     s->disas_symtab.elf32 = syms;
3680 #else
3681     s->disas_symtab.elf64 = syms;
3682 #endif
3683     s->lookup_symbol = lookup_symbolxx;
3684     s->next = syminfos;
3685     syminfos = s;
3686 
3687     return;
3688 
3689 give_up:
3690     g_free(s);
3691     g_free(strings);
3692     g_free(syms);
3693 }
3694 
3695 uint32_t get_elf_eflags(int fd)
3696 {
3697     struct elfhdr ehdr;
3698     off_t offset;
3699     int ret;
3700 
3701     /* Read ELF header */
3702     offset = lseek(fd, 0, SEEK_SET);
3703     if (offset == (off_t) -1) {
3704         return 0;
3705     }
3706     ret = read(fd, &ehdr, sizeof(ehdr));
3707     if (ret < sizeof(ehdr)) {
3708         return 0;
3709     }
3710     offset = lseek(fd, offset, SEEK_SET);
3711     if (offset == (off_t) -1) {
3712         return 0;
3713     }
3714 
3715     /* Check ELF signature */
3716     if (!elf_check_ident(&ehdr)) {
3717         return 0;
3718     }
3719 
3720     /* check header */
3721     bswap_ehdr(&ehdr);
3722     if (!elf_check_ehdr(&ehdr)) {
3723         return 0;
3724     }
3725 
3726     /* return architecture id */
3727     return ehdr.e_flags;
3728 }
3729 
3730 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3731 {
3732     struct image_info interp_info;
3733     struct elfhdr elf_ex;
3734     char *elf_interpreter = NULL;
3735     char *scratch;
3736 
3737     memset(&interp_info, 0, sizeof(interp_info));
3738 #ifdef TARGET_MIPS
3739     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3740 #endif
3741 
3742     load_elf_image(bprm->filename, bprm->fd, info,
3743                    &elf_interpreter, bprm->buf);
3744 
3745     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3746        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3747        when we load the interpreter.  */
3748     elf_ex = *(struct elfhdr *)bprm->buf;
3749 
3750     /* Do this so that we can load the interpreter, if need be.  We will
3751        change some of these later */
3752     bprm->p = setup_arg_pages(bprm, info);
3753 
3754     scratch = g_new0(char, TARGET_PAGE_SIZE);
3755     if (STACK_GROWS_DOWN) {
3756         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3757                                    bprm->p, info->stack_limit);
3758         info->file_string = bprm->p;
3759         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3760                                    bprm->p, info->stack_limit);
3761         info->env_strings = bprm->p;
3762         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3763                                    bprm->p, info->stack_limit);
3764         info->arg_strings = bprm->p;
3765     } else {
3766         info->arg_strings = bprm->p;
3767         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3768                                    bprm->p, info->stack_limit);
3769         info->env_strings = bprm->p;
3770         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3771                                    bprm->p, info->stack_limit);
3772         info->file_string = bprm->p;
3773         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3774                                    bprm->p, info->stack_limit);
3775     }
3776 
3777     g_free(scratch);
3778 
3779     if (!bprm->p) {
3780         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3781         exit(-1);
3782     }
3783 
3784     if (elf_interpreter) {
3785         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3786 
3787         /*
3788          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3789          * with the mappings the interpreter can be loaded above but
3790          * near the main executable, which can leave very little room
3791          * for the heap.
3792          * If the current brk has less than 16MB, use the end of the
3793          * interpreter.
3794          */
3795         if (interp_info.brk > info->brk &&
3796             interp_info.load_bias - info->brk < 16 * MiB)  {
3797             info->brk = interp_info.brk;
3798         }
3799 
3800         /* If the program interpreter is one of these two, then assume
3801            an iBCS2 image.  Otherwise assume a native linux image.  */
3802 
3803         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3804             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3805             info->personality = PER_SVR4;
3806 
3807             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3808                and some applications "depend" upon this behavior.  Since
3809                we do not have the power to recompile these, we emulate
3810                the SVr4 behavior.  Sigh.  */
3811             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3812                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3813         }
3814 #ifdef TARGET_MIPS
3815         info->interp_fp_abi = interp_info.fp_abi;
3816 #endif
3817     }
3818 
3819     /*
3820      * TODO: load a vdso, which would also contain the signal trampolines.
3821      * Otherwise, allocate a private page to hold them.
3822      */
3823     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3824         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3825                                           PROT_READ | PROT_WRITE,
3826                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3827         if (tramp_page == -1) {
3828             return -errno;
3829         }
3830 
3831         setup_sigtramp(tramp_page);
3832         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3833     }
3834 
3835     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3836                                 info, (elf_interpreter ? &interp_info : NULL));
3837     info->start_stack = bprm->p;
3838 
3839     /* If we have an interpreter, set that as the program's entry point.
3840        Copy the load_bias as well, to help PPC64 interpret the entry
3841        point as a function descriptor.  Do this after creating elf tables
3842        so that we copy the original program entry point into the AUXV.  */
3843     if (elf_interpreter) {
3844         info->load_bias = interp_info.load_bias;
3845         info->entry = interp_info.entry;
3846         g_free(elf_interpreter);
3847     }
3848 
3849 #ifdef USE_ELF_CORE_DUMP
3850     bprm->core_dump = &elf_core_dump;
3851 #endif
3852 
3853     return 0;
3854 }
3855 
3856 #ifdef USE_ELF_CORE_DUMP
3857 /*
3858  * Definitions to generate Intel SVR4-like core files.
3859  * These mostly have the same names as the SVR4 types with "target_elf_"
3860  * tacked on the front to prevent clashes with linux definitions,
3861  * and the typedef forms have been avoided.  This is mostly like
3862  * the SVR4 structure, but more Linuxy, with things that Linux does
3863  * not support and which gdb doesn't really use excluded.
3864  *
3865  * Fields we don't dump (their contents is zero) in linux-user qemu
3866  * are marked with XXX.
3867  *
3868  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3869  *
3870  * Porting ELF coredump for target is (quite) simple process.  First you
3871  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3872  * the target resides):
3873  *
3874  * #define USE_ELF_CORE_DUMP
3875  *
3876  * Next you define type of register set used for dumping.  ELF specification
3877  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3878  *
3879  * typedef <target_regtype> target_elf_greg_t;
3880  * #define ELF_NREG <number of registers>
3881  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3882  *
3883  * Last step is to implement target specific function that copies registers
3884  * from given cpu into just specified register set.  Prototype is:
3885  *
3886  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3887  *                                const CPUArchState *env);
3888  *
3889  * Parameters:
3890  *     regs - copy register values into here (allocated and zeroed by caller)
3891  *     env - copy registers from here
3892  *
3893  * Example for ARM target is provided in this file.
3894  */
3895 
3896 /* An ELF note in memory */
3897 struct memelfnote {
3898     const char *name;
3899     size_t     namesz;
3900     size_t     namesz_rounded;
3901     int        type;
3902     size_t     datasz;
3903     size_t     datasz_rounded;
3904     void       *data;
3905     size_t     notesz;
3906 };
3907 
3908 struct target_elf_siginfo {
3909     abi_int    si_signo; /* signal number */
3910     abi_int    si_code;  /* extra code */
3911     abi_int    si_errno; /* errno */
3912 };
3913 
3914 struct target_elf_prstatus {
3915     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3916     abi_short          pr_cursig;    /* Current signal */
3917     abi_ulong          pr_sigpend;   /* XXX */
3918     abi_ulong          pr_sighold;   /* XXX */
3919     target_pid_t       pr_pid;
3920     target_pid_t       pr_ppid;
3921     target_pid_t       pr_pgrp;
3922     target_pid_t       pr_sid;
3923     struct target_timeval pr_utime;  /* XXX User time */
3924     struct target_timeval pr_stime;  /* XXX System time */
3925     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3926     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3927     target_elf_gregset_t      pr_reg;       /* GP registers */
3928     abi_int            pr_fpvalid;   /* XXX */
3929 };
3930 
3931 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3932 
3933 struct target_elf_prpsinfo {
3934     char         pr_state;       /* numeric process state */
3935     char         pr_sname;       /* char for pr_state */
3936     char         pr_zomb;        /* zombie */
3937     char         pr_nice;        /* nice val */
3938     abi_ulong    pr_flag;        /* flags */
3939     target_uid_t pr_uid;
3940     target_gid_t pr_gid;
3941     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3942     /* Lots missing */
3943     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3944     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3945 };
3946 
3947 /* Here is the structure in which status of each thread is captured. */
3948 struct elf_thread_status {
3949     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3950     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3951 #if 0
3952     elf_fpregset_t fpu;             /* NT_PRFPREG */
3953     struct task_struct *thread;
3954     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3955 #endif
3956     struct memelfnote notes[1];
3957     int num_notes;
3958 };
3959 
3960 struct elf_note_info {
3961     struct memelfnote   *notes;
3962     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3963     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3964 
3965     QTAILQ_HEAD(, elf_thread_status) thread_list;
3966 #if 0
3967     /*
3968      * Current version of ELF coredump doesn't support
3969      * dumping fp regs etc.
3970      */
3971     elf_fpregset_t *fpu;
3972     elf_fpxregset_t *xfpu;
3973     int thread_status_size;
3974 #endif
3975     int notes_size;
3976     int numnote;
3977 };
3978 
3979 struct vm_area_struct {
3980     target_ulong   vma_start;  /* start vaddr of memory region */
3981     target_ulong   vma_end;    /* end vaddr of memory region */
3982     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3983     QTAILQ_ENTRY(vm_area_struct) vma_link;
3984 };
3985 
3986 struct mm_struct {
3987     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3988     int mm_count;           /* number of mappings */
3989 };
3990 
3991 static struct mm_struct *vma_init(void);
3992 static void vma_delete(struct mm_struct *);
3993 static int vma_add_mapping(struct mm_struct *, target_ulong,
3994                            target_ulong, abi_ulong);
3995 static int vma_get_mapping_count(const struct mm_struct *);
3996 static struct vm_area_struct *vma_first(const struct mm_struct *);
3997 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3998 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3999 static int vma_walker(void *priv, target_ulong start, target_ulong end,
4000                       unsigned long flags);
4001 
4002 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
4003 static void fill_note(struct memelfnote *, const char *, int,
4004                       unsigned int, void *);
4005 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
4006 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
4007 static void fill_auxv_note(struct memelfnote *, const TaskState *);
4008 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
4009 static size_t note_size(const struct memelfnote *);
4010 static void free_note_info(struct elf_note_info *);
4011 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
4012 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
4013 
4014 static int dump_write(int, const void *, size_t);
4015 static int write_note(struct memelfnote *, int);
4016 static int write_note_info(struct elf_note_info *, int);
4017 
4018 #ifdef BSWAP_NEEDED
4019 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
4020 {
4021     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
4022     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
4023     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
4024     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
4025     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
4026     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
4027     prstatus->pr_pid = tswap32(prstatus->pr_pid);
4028     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
4029     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
4030     prstatus->pr_sid = tswap32(prstatus->pr_sid);
4031     /* cpu times are not filled, so we skip them */
4032     /* regs should be in correct format already */
4033     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
4034 }
4035 
4036 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
4037 {
4038     psinfo->pr_flag = tswapal(psinfo->pr_flag);
4039     psinfo->pr_uid = tswap16(psinfo->pr_uid);
4040     psinfo->pr_gid = tswap16(psinfo->pr_gid);
4041     psinfo->pr_pid = tswap32(psinfo->pr_pid);
4042     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4043     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4044     psinfo->pr_sid = tswap32(psinfo->pr_sid);
4045 }
4046 
4047 static void bswap_note(struct elf_note *en)
4048 {
4049     bswap32s(&en->n_namesz);
4050     bswap32s(&en->n_descsz);
4051     bswap32s(&en->n_type);
4052 }
4053 #else
4054 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
4055 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4056 static inline void bswap_note(struct elf_note *en) { }
4057 #endif /* BSWAP_NEEDED */
4058 
4059 /*
4060  * Minimal support for linux memory regions.  These are needed
4061  * when we are finding out what memory exactly belongs to
4062  * emulated process.  No locks needed here, as long as
4063  * thread that received the signal is stopped.
4064  */
4065 
4066 static struct mm_struct *vma_init(void)
4067 {
4068     struct mm_struct *mm;
4069 
4070     if ((mm = g_malloc(sizeof (*mm))) == NULL)
4071         return (NULL);
4072 
4073     mm->mm_count = 0;
4074     QTAILQ_INIT(&mm->mm_mmap);
4075 
4076     return (mm);
4077 }
4078 
4079 static void vma_delete(struct mm_struct *mm)
4080 {
4081     struct vm_area_struct *vma;
4082 
4083     while ((vma = vma_first(mm)) != NULL) {
4084         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
4085         g_free(vma);
4086     }
4087     g_free(mm);
4088 }
4089 
4090 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
4091                            target_ulong end, abi_ulong flags)
4092 {
4093     struct vm_area_struct *vma;
4094 
4095     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
4096         return (-1);
4097 
4098     vma->vma_start = start;
4099     vma->vma_end = end;
4100     vma->vma_flags = flags;
4101 
4102     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
4103     mm->mm_count++;
4104 
4105     return (0);
4106 }
4107 
4108 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
4109 {
4110     return (QTAILQ_FIRST(&mm->mm_mmap));
4111 }
4112 
4113 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
4114 {
4115     return (QTAILQ_NEXT(vma, vma_link));
4116 }
4117 
4118 static int vma_get_mapping_count(const struct mm_struct *mm)
4119 {
4120     return (mm->mm_count);
4121 }
4122 
4123 /*
4124  * Calculate file (dump) size of given memory region.
4125  */
4126 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
4127 {
4128     /* if we cannot even read the first page, skip it */
4129     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
4130         return (0);
4131 
4132     /*
4133      * Usually we don't dump executable pages as they contain
4134      * non-writable code that debugger can read directly from
4135      * target library etc.  However, thread stacks are marked
4136      * also executable so we read in first page of given region
4137      * and check whether it contains elf header.  If there is
4138      * no elf header, we dump it.
4139      */
4140     if (vma->vma_flags & PROT_EXEC) {
4141         char page[TARGET_PAGE_SIZE];
4142 
4143         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
4144             return 0;
4145         }
4146         if ((page[EI_MAG0] == ELFMAG0) &&
4147             (page[EI_MAG1] == ELFMAG1) &&
4148             (page[EI_MAG2] == ELFMAG2) &&
4149             (page[EI_MAG3] == ELFMAG3)) {
4150             /*
4151              * Mappings are possibly from ELF binary.  Don't dump
4152              * them.
4153              */
4154             return (0);
4155         }
4156     }
4157 
4158     return (vma->vma_end - vma->vma_start);
4159 }
4160 
4161 static int vma_walker(void *priv, target_ulong start, target_ulong end,
4162                       unsigned long flags)
4163 {
4164     struct mm_struct *mm = (struct mm_struct *)priv;
4165 
4166     vma_add_mapping(mm, start, end, flags);
4167     return (0);
4168 }
4169 
4170 static void fill_note(struct memelfnote *note, const char *name, int type,
4171                       unsigned int sz, void *data)
4172 {
4173     unsigned int namesz;
4174 
4175     namesz = strlen(name) + 1;
4176     note->name = name;
4177     note->namesz = namesz;
4178     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4179     note->type = type;
4180     note->datasz = sz;
4181     note->datasz_rounded = roundup(sz, sizeof (int32_t));
4182 
4183     note->data = data;
4184 
4185     /*
4186      * We calculate rounded up note size here as specified by
4187      * ELF document.
4188      */
4189     note->notesz = sizeof (struct elf_note) +
4190         note->namesz_rounded + note->datasz_rounded;
4191 }
4192 
4193 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4194                             uint32_t flags)
4195 {
4196     (void) memset(elf, 0, sizeof(*elf));
4197 
4198     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4199     elf->e_ident[EI_CLASS] = ELF_CLASS;
4200     elf->e_ident[EI_DATA] = ELF_DATA;
4201     elf->e_ident[EI_VERSION] = EV_CURRENT;
4202     elf->e_ident[EI_OSABI] = ELF_OSABI;
4203 
4204     elf->e_type = ET_CORE;
4205     elf->e_machine = machine;
4206     elf->e_version = EV_CURRENT;
4207     elf->e_phoff = sizeof(struct elfhdr);
4208     elf->e_flags = flags;
4209     elf->e_ehsize = sizeof(struct elfhdr);
4210     elf->e_phentsize = sizeof(struct elf_phdr);
4211     elf->e_phnum = segs;
4212 
4213     bswap_ehdr(elf);
4214 }
4215 
4216 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4217 {
4218     phdr->p_type = PT_NOTE;
4219     phdr->p_offset = offset;
4220     phdr->p_vaddr = 0;
4221     phdr->p_paddr = 0;
4222     phdr->p_filesz = sz;
4223     phdr->p_memsz = 0;
4224     phdr->p_flags = 0;
4225     phdr->p_align = 0;
4226 
4227     bswap_phdr(phdr, 1);
4228 }
4229 
4230 static size_t note_size(const struct memelfnote *note)
4231 {
4232     return (note->notesz);
4233 }
4234 
4235 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4236                           const TaskState *ts, int signr)
4237 {
4238     (void) memset(prstatus, 0, sizeof (*prstatus));
4239     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4240     prstatus->pr_pid = ts->ts_tid;
4241     prstatus->pr_ppid = getppid();
4242     prstatus->pr_pgrp = getpgrp();
4243     prstatus->pr_sid = getsid(0);
4244 
4245     bswap_prstatus(prstatus);
4246 }
4247 
4248 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4249 {
4250     char *base_filename;
4251     unsigned int i, len;
4252 
4253     (void) memset(psinfo, 0, sizeof (*psinfo));
4254 
4255     len = ts->info->env_strings - ts->info->arg_strings;
4256     if (len >= ELF_PRARGSZ)
4257         len = ELF_PRARGSZ - 1;
4258     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4259         return -EFAULT;
4260     }
4261     for (i = 0; i < len; i++)
4262         if (psinfo->pr_psargs[i] == 0)
4263             psinfo->pr_psargs[i] = ' ';
4264     psinfo->pr_psargs[len] = 0;
4265 
4266     psinfo->pr_pid = getpid();
4267     psinfo->pr_ppid = getppid();
4268     psinfo->pr_pgrp = getpgrp();
4269     psinfo->pr_sid = getsid(0);
4270     psinfo->pr_uid = getuid();
4271     psinfo->pr_gid = getgid();
4272 
4273     base_filename = g_path_get_basename(ts->bprm->filename);
4274     /*
4275      * Using strncpy here is fine: at max-length,
4276      * this field is not NUL-terminated.
4277      */
4278     (void) strncpy(psinfo->pr_fname, base_filename,
4279                    sizeof(psinfo->pr_fname));
4280 
4281     g_free(base_filename);
4282     bswap_psinfo(psinfo);
4283     return (0);
4284 }
4285 
4286 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4287 {
4288     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4289     elf_addr_t orig_auxv = auxv;
4290     void *ptr;
4291     int len = ts->info->auxv_len;
4292 
4293     /*
4294      * Auxiliary vector is stored in target process stack.  It contains
4295      * {type, value} pairs that we need to dump into note.  This is not
4296      * strictly necessary but we do it here for sake of completeness.
4297      */
4298 
4299     /* read in whole auxv vector and copy it to memelfnote */
4300     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4301     if (ptr != NULL) {
4302         fill_note(note, "CORE", NT_AUXV, len, ptr);
4303         unlock_user(ptr, auxv, len);
4304     }
4305 }
4306 
4307 /*
4308  * Constructs name of coredump file.  We have following convention
4309  * for the name:
4310  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4311  *
4312  * Returns the filename
4313  */
4314 static char *core_dump_filename(const TaskState *ts)
4315 {
4316     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4317     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4318     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4319 
4320     return g_strdup_printf("qemu_%s_%s_%d.core",
4321                            base_filename, nowstr, (int)getpid());
4322 }
4323 
4324 static int dump_write(int fd, const void *ptr, size_t size)
4325 {
4326     const char *bufp = (const char *)ptr;
4327     ssize_t bytes_written, bytes_left;
4328     struct rlimit dumpsize;
4329     off_t pos;
4330 
4331     bytes_written = 0;
4332     getrlimit(RLIMIT_CORE, &dumpsize);
4333     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4334         if (errno == ESPIPE) { /* not a seekable stream */
4335             bytes_left = size;
4336         } else {
4337             return pos;
4338         }
4339     } else {
4340         if (dumpsize.rlim_cur <= pos) {
4341             return -1;
4342         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4343             bytes_left = size;
4344         } else {
4345             size_t limit_left=dumpsize.rlim_cur - pos;
4346             bytes_left = limit_left >= size ? size : limit_left ;
4347         }
4348     }
4349 
4350     /*
4351      * In normal conditions, single write(2) should do but
4352      * in case of socket etc. this mechanism is more portable.
4353      */
4354     do {
4355         bytes_written = write(fd, bufp, bytes_left);
4356         if (bytes_written < 0) {
4357             if (errno == EINTR)
4358                 continue;
4359             return (-1);
4360         } else if (bytes_written == 0) { /* eof */
4361             return (-1);
4362         }
4363         bufp += bytes_written;
4364         bytes_left -= bytes_written;
4365     } while (bytes_left > 0);
4366 
4367     return (0);
4368 }
4369 
4370 static int write_note(struct memelfnote *men, int fd)
4371 {
4372     struct elf_note en;
4373 
4374     en.n_namesz = men->namesz;
4375     en.n_type = men->type;
4376     en.n_descsz = men->datasz;
4377 
4378     bswap_note(&en);
4379 
4380     if (dump_write(fd, &en, sizeof(en)) != 0)
4381         return (-1);
4382     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4383         return (-1);
4384     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4385         return (-1);
4386 
4387     return (0);
4388 }
4389 
4390 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4391 {
4392     CPUState *cpu = env_cpu((CPUArchState *)env);
4393     TaskState *ts = (TaskState *)cpu->opaque;
4394     struct elf_thread_status *ets;
4395 
4396     ets = g_malloc0(sizeof (*ets));
4397     ets->num_notes = 1; /* only prstatus is dumped */
4398     fill_prstatus(&ets->prstatus, ts, 0);
4399     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4400     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4401               &ets->prstatus);
4402 
4403     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4404 
4405     info->notes_size += note_size(&ets->notes[0]);
4406 }
4407 
4408 static void init_note_info(struct elf_note_info *info)
4409 {
4410     /* Initialize the elf_note_info structure so that it is at
4411      * least safe to call free_note_info() on it. Must be
4412      * called before calling fill_note_info().
4413      */
4414     memset(info, 0, sizeof (*info));
4415     QTAILQ_INIT(&info->thread_list);
4416 }
4417 
4418 static int fill_note_info(struct elf_note_info *info,
4419                           long signr, const CPUArchState *env)
4420 {
4421 #define NUMNOTES 3
4422     CPUState *cpu = env_cpu((CPUArchState *)env);
4423     TaskState *ts = (TaskState *)cpu->opaque;
4424     int i;
4425 
4426     info->notes = g_new0(struct memelfnote, NUMNOTES);
4427     if (info->notes == NULL)
4428         return (-ENOMEM);
4429     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4430     if (info->prstatus == NULL)
4431         return (-ENOMEM);
4432     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4433     if (info->prstatus == NULL)
4434         return (-ENOMEM);
4435 
4436     /*
4437      * First fill in status (and registers) of current thread
4438      * including process info & aux vector.
4439      */
4440     fill_prstatus(info->prstatus, ts, signr);
4441     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4442     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4443               sizeof (*info->prstatus), info->prstatus);
4444     fill_psinfo(info->psinfo, ts);
4445     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4446               sizeof (*info->psinfo), info->psinfo);
4447     fill_auxv_note(&info->notes[2], ts);
4448     info->numnote = 3;
4449 
4450     info->notes_size = 0;
4451     for (i = 0; i < info->numnote; i++)
4452         info->notes_size += note_size(&info->notes[i]);
4453 
4454     /* read and fill status of all threads */
4455     WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4456         CPU_FOREACH(cpu) {
4457             if (cpu == thread_cpu) {
4458                 continue;
4459             }
4460             fill_thread_info(info, cpu_env(cpu));
4461         }
4462     }
4463 
4464     return (0);
4465 }
4466 
4467 static void free_note_info(struct elf_note_info *info)
4468 {
4469     struct elf_thread_status *ets;
4470 
4471     while (!QTAILQ_EMPTY(&info->thread_list)) {
4472         ets = QTAILQ_FIRST(&info->thread_list);
4473         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4474         g_free(ets);
4475     }
4476 
4477     g_free(info->prstatus);
4478     g_free(info->psinfo);
4479     g_free(info->notes);
4480 }
4481 
4482 static int write_note_info(struct elf_note_info *info, int fd)
4483 {
4484     struct elf_thread_status *ets;
4485     int i, error = 0;
4486 
4487     /* write prstatus, psinfo and auxv for current thread */
4488     for (i = 0; i < info->numnote; i++)
4489         if ((error = write_note(&info->notes[i], fd)) != 0)
4490             return (error);
4491 
4492     /* write prstatus for each thread */
4493     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4494         if ((error = write_note(&ets->notes[0], fd)) != 0)
4495             return (error);
4496     }
4497 
4498     return (0);
4499 }
4500 
4501 /*
4502  * Write out ELF coredump.
4503  *
4504  * See documentation of ELF object file format in:
4505  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4506  *
4507  * Coredump format in linux is following:
4508  *
4509  * 0   +----------------------+         \
4510  *     | ELF header           | ET_CORE  |
4511  *     +----------------------+          |
4512  *     | ELF program headers  |          |--- headers
4513  *     | - NOTE section       |          |
4514  *     | - PT_LOAD sections   |          |
4515  *     +----------------------+         /
4516  *     | NOTEs:               |
4517  *     | - NT_PRSTATUS        |
4518  *     | - NT_PRSINFO         |
4519  *     | - NT_AUXV            |
4520  *     +----------------------+ <-- aligned to target page
4521  *     | Process memory dump  |
4522  *     :                      :
4523  *     .                      .
4524  *     :                      :
4525  *     |                      |
4526  *     +----------------------+
4527  *
4528  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4529  * NT_PRSINFO  -> struct elf_prpsinfo
4530  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4531  *
4532  * Format follows System V format as close as possible.  Current
4533  * version limitations are as follows:
4534  *     - no floating point registers are dumped
4535  *
4536  * Function returns 0 in case of success, negative errno otherwise.
4537  *
4538  * TODO: make this work also during runtime: it should be
4539  * possible to force coredump from running process and then
4540  * continue processing.  For example qemu could set up SIGUSR2
4541  * handler (provided that target process haven't registered
4542  * handler for that) that does the dump when signal is received.
4543  */
4544 static int elf_core_dump(int signr, const CPUArchState *env)
4545 {
4546     const CPUState *cpu = env_cpu((CPUArchState *)env);
4547     const TaskState *ts = (const TaskState *)cpu->opaque;
4548     struct vm_area_struct *vma = NULL;
4549     g_autofree char *corefile = NULL;
4550     struct elf_note_info info;
4551     struct elfhdr elf;
4552     struct elf_phdr phdr;
4553     struct rlimit dumpsize;
4554     struct mm_struct *mm = NULL;
4555     off_t offset = 0, data_offset = 0;
4556     int segs = 0;
4557     int fd = -1;
4558 
4559     init_note_info(&info);
4560 
4561     errno = 0;
4562     getrlimit(RLIMIT_CORE, &dumpsize);
4563     if (dumpsize.rlim_cur == 0)
4564         return 0;
4565 
4566     corefile = core_dump_filename(ts);
4567 
4568     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4569                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4570         return (-errno);
4571 
4572     /*
4573      * Walk through target process memory mappings and
4574      * set up structure containing this information.  After
4575      * this point vma_xxx functions can be used.
4576      */
4577     if ((mm = vma_init()) == NULL)
4578         goto out;
4579 
4580     walk_memory_regions(mm, vma_walker);
4581     segs = vma_get_mapping_count(mm);
4582 
4583     /*
4584      * Construct valid coredump ELF header.  We also
4585      * add one more segment for notes.
4586      */
4587     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4588     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4589         goto out;
4590 
4591     /* fill in the in-memory version of notes */
4592     if (fill_note_info(&info, signr, env) < 0)
4593         goto out;
4594 
4595     offset += sizeof (elf);                             /* elf header */
4596     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4597 
4598     /* write out notes program header */
4599     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4600 
4601     offset += info.notes_size;
4602     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4603         goto out;
4604 
4605     /*
4606      * ELF specification wants data to start at page boundary so
4607      * we align it here.
4608      */
4609     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4610 
4611     /*
4612      * Write program headers for memory regions mapped in
4613      * the target process.
4614      */
4615     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4616         (void) memset(&phdr, 0, sizeof (phdr));
4617 
4618         phdr.p_type = PT_LOAD;
4619         phdr.p_offset = offset;
4620         phdr.p_vaddr = vma->vma_start;
4621         phdr.p_paddr = 0;
4622         phdr.p_filesz = vma_dump_size(vma);
4623         offset += phdr.p_filesz;
4624         phdr.p_memsz = vma->vma_end - vma->vma_start;
4625         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4626         if (vma->vma_flags & PROT_WRITE)
4627             phdr.p_flags |= PF_W;
4628         if (vma->vma_flags & PROT_EXEC)
4629             phdr.p_flags |= PF_X;
4630         phdr.p_align = ELF_EXEC_PAGESIZE;
4631 
4632         bswap_phdr(&phdr, 1);
4633         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4634             goto out;
4635         }
4636     }
4637 
4638     /*
4639      * Next we write notes just after program headers.  No
4640      * alignment needed here.
4641      */
4642     if (write_note_info(&info, fd) < 0)
4643         goto out;
4644 
4645     /* align data to page boundary */
4646     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4647         goto out;
4648 
4649     /*
4650      * Finally we can dump process memory into corefile as well.
4651      */
4652     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4653         abi_ulong addr;
4654         abi_ulong end;
4655 
4656         end = vma->vma_start + vma_dump_size(vma);
4657 
4658         for (addr = vma->vma_start; addr < end;
4659              addr += TARGET_PAGE_SIZE) {
4660             char page[TARGET_PAGE_SIZE];
4661             int error;
4662 
4663             /*
4664              *  Read in page from target process memory and
4665              *  write it to coredump file.
4666              */
4667             error = copy_from_user(page, addr, sizeof (page));
4668             if (error != 0) {
4669                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4670                                addr);
4671                 errno = -error;
4672                 goto out;
4673             }
4674             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4675                 goto out;
4676         }
4677     }
4678 
4679  out:
4680     free_note_info(&info);
4681     if (mm != NULL)
4682         vma_delete(mm);
4683     (void) close(fd);
4684 
4685     if (errno != 0)
4686         return (-errno);
4687     return (0);
4688 }
4689 #endif /* USE_ELF_CORE_DUMP */
4690 
4691 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4692 {
4693     init_thread(regs, infop);
4694 }
4695