1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qapi/error.h" 21 #include "target_signal.h" 22 23 #ifdef _ARCH_PPC64 24 #undef ARCH_DLINFO 25 #undef ELF_PLATFORM 26 #undef ELF_HWCAP 27 #undef ELF_HWCAP2 28 #undef ELF_CLASS 29 #undef ELF_DATA 30 #undef ELF_ARCH 31 #endif 32 33 #define ELF_OSABI ELFOSABI_SYSV 34 35 /* from personality.h */ 36 37 /* 38 * Flags for bug emulation. 39 * 40 * These occupy the top three bytes. 41 */ 42 enum { 43 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 44 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 45 descriptors (signal handling) */ 46 MMAP_PAGE_ZERO = 0x0100000, 47 ADDR_COMPAT_LAYOUT = 0x0200000, 48 READ_IMPLIES_EXEC = 0x0400000, 49 ADDR_LIMIT_32BIT = 0x0800000, 50 SHORT_INODE = 0x1000000, 51 WHOLE_SECONDS = 0x2000000, 52 STICKY_TIMEOUTS = 0x4000000, 53 ADDR_LIMIT_3GB = 0x8000000, 54 }; 55 56 /* 57 * Personality types. 58 * 59 * These go in the low byte. Avoid using the top bit, it will 60 * conflict with error returns. 61 */ 62 enum { 63 PER_LINUX = 0x0000, 64 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 65 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 66 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 67 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 68 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 69 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 70 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 72 PER_BSD = 0x0006, 73 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 74 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 75 PER_LINUX32 = 0x0008, 76 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 77 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 78 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 79 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 80 PER_RISCOS = 0x000c, 81 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 82 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 83 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 84 PER_HPUX = 0x0010, 85 PER_MASK = 0x00ff, 86 }; 87 88 /* 89 * Return the base personality without flags. 90 */ 91 #define personality(pers) (pers & PER_MASK) 92 93 int info_is_fdpic(struct image_info *info) 94 { 95 return info->personality == PER_LINUX_FDPIC; 96 } 97 98 /* this flag is uneffective under linux too, should be deleted */ 99 #ifndef MAP_DENYWRITE 100 #define MAP_DENYWRITE 0 101 #endif 102 103 /* should probably go in elf.h */ 104 #ifndef ELIBBAD 105 #define ELIBBAD 80 106 #endif 107 108 #ifdef TARGET_WORDS_BIGENDIAN 109 #define ELF_DATA ELFDATA2MSB 110 #else 111 #define ELF_DATA ELFDATA2LSB 112 #endif 113 114 #ifdef TARGET_ABI_MIPSN32 115 typedef abi_ullong target_elf_greg_t; 116 #define tswapreg(ptr) tswap64(ptr) 117 #else 118 typedef abi_ulong target_elf_greg_t; 119 #define tswapreg(ptr) tswapal(ptr) 120 #endif 121 122 #ifdef USE_UID16 123 typedef abi_ushort target_uid_t; 124 typedef abi_ushort target_gid_t; 125 #else 126 typedef abi_uint target_uid_t; 127 typedef abi_uint target_gid_t; 128 #endif 129 typedef abi_int target_pid_t; 130 131 #ifdef TARGET_I386 132 133 #define ELF_PLATFORM get_elf_platform() 134 135 static const char *get_elf_platform(void) 136 { 137 static char elf_platform[] = "i386"; 138 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 139 if (family > 6) 140 family = 6; 141 if (family >= 3) 142 elf_platform[1] = '0' + family; 143 return elf_platform; 144 } 145 146 #define ELF_HWCAP get_elf_hwcap() 147 148 static uint32_t get_elf_hwcap(void) 149 { 150 X86CPU *cpu = X86_CPU(thread_cpu); 151 152 return cpu->env.features[FEAT_1_EDX]; 153 } 154 155 #ifdef TARGET_X86_64 156 #define ELF_START_MMAP 0x2aaaaab000ULL 157 158 #define ELF_CLASS ELFCLASS64 159 #define ELF_ARCH EM_X86_64 160 161 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 162 { 163 regs->rax = 0; 164 regs->rsp = infop->start_stack; 165 regs->rip = infop->entry; 166 } 167 168 #define ELF_NREG 27 169 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 170 171 /* 172 * Note that ELF_NREG should be 29 as there should be place for 173 * TRAPNO and ERR "registers" as well but linux doesn't dump 174 * those. 175 * 176 * See linux kernel: arch/x86/include/asm/elf.h 177 */ 178 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 179 { 180 (*regs)[0] = tswapreg(env->regs[15]); 181 (*regs)[1] = tswapreg(env->regs[14]); 182 (*regs)[2] = tswapreg(env->regs[13]); 183 (*regs)[3] = tswapreg(env->regs[12]); 184 (*regs)[4] = tswapreg(env->regs[R_EBP]); 185 (*regs)[5] = tswapreg(env->regs[R_EBX]); 186 (*regs)[6] = tswapreg(env->regs[11]); 187 (*regs)[7] = tswapreg(env->regs[10]); 188 (*regs)[8] = tswapreg(env->regs[9]); 189 (*regs)[9] = tswapreg(env->regs[8]); 190 (*regs)[10] = tswapreg(env->regs[R_EAX]); 191 (*regs)[11] = tswapreg(env->regs[R_ECX]); 192 (*regs)[12] = tswapreg(env->regs[R_EDX]); 193 (*regs)[13] = tswapreg(env->regs[R_ESI]); 194 (*regs)[14] = tswapreg(env->regs[R_EDI]); 195 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 196 (*regs)[16] = tswapreg(env->eip); 197 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 198 (*regs)[18] = tswapreg(env->eflags); 199 (*regs)[19] = tswapreg(env->regs[R_ESP]); 200 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 201 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 202 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 203 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 204 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 205 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 206 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 207 } 208 209 #else 210 211 #define ELF_START_MMAP 0x80000000 212 213 /* 214 * This is used to ensure we don't load something for the wrong architecture. 215 */ 216 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 217 218 /* 219 * These are used to set parameters in the core dumps. 220 */ 221 #define ELF_CLASS ELFCLASS32 222 #define ELF_ARCH EM_386 223 224 static inline void init_thread(struct target_pt_regs *regs, 225 struct image_info *infop) 226 { 227 regs->esp = infop->start_stack; 228 regs->eip = infop->entry; 229 230 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 231 starts %edx contains a pointer to a function which might be 232 registered using `atexit'. This provides a mean for the 233 dynamic linker to call DT_FINI functions for shared libraries 234 that have been loaded before the code runs. 235 236 A value of 0 tells we have no such handler. */ 237 regs->edx = 0; 238 } 239 240 #define ELF_NREG 17 241 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 242 243 /* 244 * Note that ELF_NREG should be 19 as there should be place for 245 * TRAPNO and ERR "registers" as well but linux doesn't dump 246 * those. 247 * 248 * See linux kernel: arch/x86/include/asm/elf.h 249 */ 250 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 251 { 252 (*regs)[0] = tswapreg(env->regs[R_EBX]); 253 (*regs)[1] = tswapreg(env->regs[R_ECX]); 254 (*regs)[2] = tswapreg(env->regs[R_EDX]); 255 (*regs)[3] = tswapreg(env->regs[R_ESI]); 256 (*regs)[4] = tswapreg(env->regs[R_EDI]); 257 (*regs)[5] = tswapreg(env->regs[R_EBP]); 258 (*regs)[6] = tswapreg(env->regs[R_EAX]); 259 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 260 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 261 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 262 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 263 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 264 (*regs)[12] = tswapreg(env->eip); 265 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 266 (*regs)[14] = tswapreg(env->eflags); 267 (*regs)[15] = tswapreg(env->regs[R_ESP]); 268 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 269 } 270 #endif 271 272 #define USE_ELF_CORE_DUMP 273 #define ELF_EXEC_PAGESIZE 4096 274 275 #endif 276 277 #ifdef TARGET_ARM 278 279 #ifndef TARGET_AARCH64 280 /* 32 bit ARM definitions */ 281 282 #define ELF_START_MMAP 0x80000000 283 284 #define ELF_ARCH EM_ARM 285 #define ELF_CLASS ELFCLASS32 286 287 static inline void init_thread(struct target_pt_regs *regs, 288 struct image_info *infop) 289 { 290 abi_long stack = infop->start_stack; 291 memset(regs, 0, sizeof(*regs)); 292 293 regs->uregs[16] = ARM_CPU_MODE_USR; 294 if (infop->entry & 1) { 295 regs->uregs[16] |= CPSR_T; 296 } 297 regs->uregs[15] = infop->entry & 0xfffffffe; 298 regs->uregs[13] = infop->start_stack; 299 /* FIXME - what to for failure of get_user()? */ 300 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 301 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 302 /* XXX: it seems that r0 is zeroed after ! */ 303 regs->uregs[0] = 0; 304 /* For uClinux PIC binaries. */ 305 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 306 regs->uregs[10] = infop->start_data; 307 308 /* Support ARM FDPIC. */ 309 if (info_is_fdpic(infop)) { 310 /* As described in the ABI document, r7 points to the loadmap info 311 * prepared by the kernel. If an interpreter is needed, r8 points 312 * to the interpreter loadmap and r9 points to the interpreter 313 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 314 * r9 points to the main program PT_DYNAMIC info. 315 */ 316 regs->uregs[7] = infop->loadmap_addr; 317 if (infop->interpreter_loadmap_addr) { 318 /* Executable is dynamically loaded. */ 319 regs->uregs[8] = infop->interpreter_loadmap_addr; 320 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 321 } else { 322 regs->uregs[8] = 0; 323 regs->uregs[9] = infop->pt_dynamic_addr; 324 } 325 } 326 } 327 328 #define ELF_NREG 18 329 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 330 331 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 332 { 333 (*regs)[0] = tswapreg(env->regs[0]); 334 (*regs)[1] = tswapreg(env->regs[1]); 335 (*regs)[2] = tswapreg(env->regs[2]); 336 (*regs)[3] = tswapreg(env->regs[3]); 337 (*regs)[4] = tswapreg(env->regs[4]); 338 (*regs)[5] = tswapreg(env->regs[5]); 339 (*regs)[6] = tswapreg(env->regs[6]); 340 (*regs)[7] = tswapreg(env->regs[7]); 341 (*regs)[8] = tswapreg(env->regs[8]); 342 (*regs)[9] = tswapreg(env->regs[9]); 343 (*regs)[10] = tswapreg(env->regs[10]); 344 (*regs)[11] = tswapreg(env->regs[11]); 345 (*regs)[12] = tswapreg(env->regs[12]); 346 (*regs)[13] = tswapreg(env->regs[13]); 347 (*regs)[14] = tswapreg(env->regs[14]); 348 (*regs)[15] = tswapreg(env->regs[15]); 349 350 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 351 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 352 } 353 354 #define USE_ELF_CORE_DUMP 355 #define ELF_EXEC_PAGESIZE 4096 356 357 enum 358 { 359 ARM_HWCAP_ARM_SWP = 1 << 0, 360 ARM_HWCAP_ARM_HALF = 1 << 1, 361 ARM_HWCAP_ARM_THUMB = 1 << 2, 362 ARM_HWCAP_ARM_26BIT = 1 << 3, 363 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 364 ARM_HWCAP_ARM_FPA = 1 << 5, 365 ARM_HWCAP_ARM_VFP = 1 << 6, 366 ARM_HWCAP_ARM_EDSP = 1 << 7, 367 ARM_HWCAP_ARM_JAVA = 1 << 8, 368 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 369 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 370 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 371 ARM_HWCAP_ARM_NEON = 1 << 12, 372 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 373 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 374 ARM_HWCAP_ARM_TLS = 1 << 15, 375 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 376 ARM_HWCAP_ARM_IDIVA = 1 << 17, 377 ARM_HWCAP_ARM_IDIVT = 1 << 18, 378 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 379 ARM_HWCAP_ARM_LPAE = 1 << 20, 380 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 381 }; 382 383 enum { 384 ARM_HWCAP2_ARM_AES = 1 << 0, 385 ARM_HWCAP2_ARM_PMULL = 1 << 1, 386 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 387 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 388 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 389 }; 390 391 /* The commpage only exists for 32 bit kernels */ 392 393 #define HI_COMMPAGE (intptr_t)0xffff0f00u 394 395 static bool init_guest_commpage(void) 396 { 397 void *want = g2h_untagged(HI_COMMPAGE & -qemu_host_page_size); 398 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 399 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 400 401 if (addr == MAP_FAILED) { 402 perror("Allocating guest commpage"); 403 exit(EXIT_FAILURE); 404 } 405 if (addr != want) { 406 return false; 407 } 408 409 /* Set kernel helper versions; rest of page is 0. */ 410 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 411 412 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 413 perror("Protecting guest commpage"); 414 exit(EXIT_FAILURE); 415 } 416 return true; 417 } 418 419 #define ELF_HWCAP get_elf_hwcap() 420 #define ELF_HWCAP2 get_elf_hwcap2() 421 422 static uint32_t get_elf_hwcap(void) 423 { 424 ARMCPU *cpu = ARM_CPU(thread_cpu); 425 uint32_t hwcaps = 0; 426 427 hwcaps |= ARM_HWCAP_ARM_SWP; 428 hwcaps |= ARM_HWCAP_ARM_HALF; 429 hwcaps |= ARM_HWCAP_ARM_THUMB; 430 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 431 432 /* probe for the extra features */ 433 #define GET_FEATURE(feat, hwcap) \ 434 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 435 436 #define GET_FEATURE_ID(feat, hwcap) \ 437 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 438 439 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 440 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 441 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 442 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 443 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 444 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 445 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 446 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 447 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 448 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 449 450 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 451 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 452 hwcaps |= ARM_HWCAP_ARM_VFPv3; 453 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 454 hwcaps |= ARM_HWCAP_ARM_VFPD32; 455 } else { 456 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 457 } 458 } 459 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 460 461 return hwcaps; 462 } 463 464 static uint32_t get_elf_hwcap2(void) 465 { 466 ARMCPU *cpu = ARM_CPU(thread_cpu); 467 uint32_t hwcaps = 0; 468 469 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 470 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 471 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 472 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 473 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 474 return hwcaps; 475 } 476 477 #undef GET_FEATURE 478 #undef GET_FEATURE_ID 479 480 #define ELF_PLATFORM get_elf_platform() 481 482 static const char *get_elf_platform(void) 483 { 484 CPUARMState *env = thread_cpu->env_ptr; 485 486 #ifdef TARGET_WORDS_BIGENDIAN 487 # define END "b" 488 #else 489 # define END "l" 490 #endif 491 492 if (arm_feature(env, ARM_FEATURE_V8)) { 493 return "v8" END; 494 } else if (arm_feature(env, ARM_FEATURE_V7)) { 495 if (arm_feature(env, ARM_FEATURE_M)) { 496 return "v7m" END; 497 } else { 498 return "v7" END; 499 } 500 } else if (arm_feature(env, ARM_FEATURE_V6)) { 501 return "v6" END; 502 } else if (arm_feature(env, ARM_FEATURE_V5)) { 503 return "v5" END; 504 } else { 505 return "v4" END; 506 } 507 508 #undef END 509 } 510 511 #else 512 /* 64 bit ARM definitions */ 513 #define ELF_START_MMAP 0x80000000 514 515 #define ELF_ARCH EM_AARCH64 516 #define ELF_CLASS ELFCLASS64 517 #ifdef TARGET_WORDS_BIGENDIAN 518 # define ELF_PLATFORM "aarch64_be" 519 #else 520 # define ELF_PLATFORM "aarch64" 521 #endif 522 523 static inline void init_thread(struct target_pt_regs *regs, 524 struct image_info *infop) 525 { 526 abi_long stack = infop->start_stack; 527 memset(regs, 0, sizeof(*regs)); 528 529 regs->pc = infop->entry & ~0x3ULL; 530 regs->sp = stack; 531 } 532 533 #define ELF_NREG 34 534 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 535 536 static void elf_core_copy_regs(target_elf_gregset_t *regs, 537 const CPUARMState *env) 538 { 539 int i; 540 541 for (i = 0; i < 32; i++) { 542 (*regs)[i] = tswapreg(env->xregs[i]); 543 } 544 (*regs)[32] = tswapreg(env->pc); 545 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 546 } 547 548 #define USE_ELF_CORE_DUMP 549 #define ELF_EXEC_PAGESIZE 4096 550 551 enum { 552 ARM_HWCAP_A64_FP = 1 << 0, 553 ARM_HWCAP_A64_ASIMD = 1 << 1, 554 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 555 ARM_HWCAP_A64_AES = 1 << 3, 556 ARM_HWCAP_A64_PMULL = 1 << 4, 557 ARM_HWCAP_A64_SHA1 = 1 << 5, 558 ARM_HWCAP_A64_SHA2 = 1 << 6, 559 ARM_HWCAP_A64_CRC32 = 1 << 7, 560 ARM_HWCAP_A64_ATOMICS = 1 << 8, 561 ARM_HWCAP_A64_FPHP = 1 << 9, 562 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 563 ARM_HWCAP_A64_CPUID = 1 << 11, 564 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 565 ARM_HWCAP_A64_JSCVT = 1 << 13, 566 ARM_HWCAP_A64_FCMA = 1 << 14, 567 ARM_HWCAP_A64_LRCPC = 1 << 15, 568 ARM_HWCAP_A64_DCPOP = 1 << 16, 569 ARM_HWCAP_A64_SHA3 = 1 << 17, 570 ARM_HWCAP_A64_SM3 = 1 << 18, 571 ARM_HWCAP_A64_SM4 = 1 << 19, 572 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 573 ARM_HWCAP_A64_SHA512 = 1 << 21, 574 ARM_HWCAP_A64_SVE = 1 << 22, 575 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 576 ARM_HWCAP_A64_DIT = 1 << 24, 577 ARM_HWCAP_A64_USCAT = 1 << 25, 578 ARM_HWCAP_A64_ILRCPC = 1 << 26, 579 ARM_HWCAP_A64_FLAGM = 1 << 27, 580 ARM_HWCAP_A64_SSBS = 1 << 28, 581 ARM_HWCAP_A64_SB = 1 << 29, 582 ARM_HWCAP_A64_PACA = 1 << 30, 583 ARM_HWCAP_A64_PACG = 1UL << 31, 584 585 ARM_HWCAP2_A64_DCPODP = 1 << 0, 586 ARM_HWCAP2_A64_SVE2 = 1 << 1, 587 ARM_HWCAP2_A64_SVEAES = 1 << 2, 588 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 589 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 590 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 591 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 592 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 593 ARM_HWCAP2_A64_FRINT = 1 << 8, 594 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 595 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 596 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 597 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 598 ARM_HWCAP2_A64_I8MM = 1 << 13, 599 ARM_HWCAP2_A64_BF16 = 1 << 14, 600 ARM_HWCAP2_A64_DGH = 1 << 15, 601 ARM_HWCAP2_A64_RNG = 1 << 16, 602 ARM_HWCAP2_A64_BTI = 1 << 17, 603 ARM_HWCAP2_A64_MTE = 1 << 18, 604 }; 605 606 #define ELF_HWCAP get_elf_hwcap() 607 #define ELF_HWCAP2 get_elf_hwcap2() 608 609 #define GET_FEATURE_ID(feat, hwcap) \ 610 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 611 612 static uint32_t get_elf_hwcap(void) 613 { 614 ARMCPU *cpu = ARM_CPU(thread_cpu); 615 uint32_t hwcaps = 0; 616 617 hwcaps |= ARM_HWCAP_A64_FP; 618 hwcaps |= ARM_HWCAP_A64_ASIMD; 619 hwcaps |= ARM_HWCAP_A64_CPUID; 620 621 /* probe for the extra features */ 622 623 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 624 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 625 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 626 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 627 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 628 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 629 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 630 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 631 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 632 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 633 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 634 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 635 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 636 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 637 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 638 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 639 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 640 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 641 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 642 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 643 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 644 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 645 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 646 647 return hwcaps; 648 } 649 650 static uint32_t get_elf_hwcap2(void) 651 { 652 ARMCPU *cpu = ARM_CPU(thread_cpu); 653 uint32_t hwcaps = 0; 654 655 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 656 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 657 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 658 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 659 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 660 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 661 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 662 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 663 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 664 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 665 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 666 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 667 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 668 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 669 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 670 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 671 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 672 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 673 674 return hwcaps; 675 } 676 677 #undef GET_FEATURE_ID 678 679 #endif /* not TARGET_AARCH64 */ 680 #endif /* TARGET_ARM */ 681 682 #ifdef TARGET_SPARC 683 #ifdef TARGET_SPARC64 684 685 #define ELF_START_MMAP 0x80000000 686 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 687 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 688 #ifndef TARGET_ABI32 689 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 690 #else 691 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 692 #endif 693 694 #define ELF_CLASS ELFCLASS64 695 #define ELF_ARCH EM_SPARCV9 696 #else 697 #define ELF_START_MMAP 0x80000000 698 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 699 | HWCAP_SPARC_MULDIV) 700 #define ELF_CLASS ELFCLASS32 701 #define ELF_ARCH EM_SPARC 702 #endif /* TARGET_SPARC64 */ 703 704 static inline void init_thread(struct target_pt_regs *regs, 705 struct image_info *infop) 706 { 707 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 708 regs->pc = infop->entry; 709 regs->npc = regs->pc + 4; 710 regs->y = 0; 711 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 712 - TARGET_STACK_BIAS); 713 } 714 #endif /* TARGET_SPARC */ 715 716 #ifdef TARGET_PPC 717 718 #define ELF_MACHINE PPC_ELF_MACHINE 719 #define ELF_START_MMAP 0x80000000 720 721 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 722 723 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 724 725 #define ELF_CLASS ELFCLASS64 726 727 #else 728 729 #define ELF_CLASS ELFCLASS32 730 731 #endif 732 733 #define ELF_ARCH EM_PPC 734 735 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 736 See arch/powerpc/include/asm/cputable.h. */ 737 enum { 738 QEMU_PPC_FEATURE_32 = 0x80000000, 739 QEMU_PPC_FEATURE_64 = 0x40000000, 740 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 741 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 742 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 743 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 744 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 745 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 746 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 747 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 748 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 749 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 750 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 751 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 752 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 753 QEMU_PPC_FEATURE_CELL = 0x00010000, 754 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 755 QEMU_PPC_FEATURE_SMT = 0x00004000, 756 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 757 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 758 QEMU_PPC_FEATURE_PA6T = 0x00000800, 759 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 760 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 761 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 762 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 763 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 764 765 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 766 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 767 768 /* Feature definitions in AT_HWCAP2. */ 769 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 770 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 771 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 772 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 773 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 774 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 775 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 776 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 777 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 778 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 779 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 780 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 781 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 782 }; 783 784 #define ELF_HWCAP get_elf_hwcap() 785 786 static uint32_t get_elf_hwcap(void) 787 { 788 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 789 uint32_t features = 0; 790 791 /* We don't have to be terribly complete here; the high points are 792 Altivec/FP/SPE support. Anything else is just a bonus. */ 793 #define GET_FEATURE(flag, feature) \ 794 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 795 #define GET_FEATURE2(flags, feature) \ 796 do { \ 797 if ((cpu->env.insns_flags2 & flags) == flags) { \ 798 features |= feature; \ 799 } \ 800 } while (0) 801 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 802 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 803 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 804 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 805 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 806 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 807 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 808 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 809 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 810 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 811 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 812 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 813 QEMU_PPC_FEATURE_ARCH_2_06); 814 #undef GET_FEATURE 815 #undef GET_FEATURE2 816 817 return features; 818 } 819 820 #define ELF_HWCAP2 get_elf_hwcap2() 821 822 static uint32_t get_elf_hwcap2(void) 823 { 824 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 825 uint32_t features = 0; 826 827 #define GET_FEATURE(flag, feature) \ 828 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 829 #define GET_FEATURE2(flag, feature) \ 830 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 831 832 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 833 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 834 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 835 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 836 QEMU_PPC_FEATURE2_VEC_CRYPTO); 837 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 838 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 839 840 #undef GET_FEATURE 841 #undef GET_FEATURE2 842 843 return features; 844 } 845 846 /* 847 * The requirements here are: 848 * - keep the final alignment of sp (sp & 0xf) 849 * - make sure the 32-bit value at the first 16 byte aligned position of 850 * AUXV is greater than 16 for glibc compatibility. 851 * AT_IGNOREPPC is used for that. 852 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 853 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 854 */ 855 #define DLINFO_ARCH_ITEMS 5 856 #define ARCH_DLINFO \ 857 do { \ 858 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 859 /* \ 860 * Handle glibc compatibility: these magic entries must \ 861 * be at the lowest addresses in the final auxv. \ 862 */ \ 863 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 864 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 865 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 866 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 867 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 868 } while (0) 869 870 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 871 { 872 _regs->gpr[1] = infop->start_stack; 873 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 874 if (get_ppc64_abi(infop) < 2) { 875 uint64_t val; 876 get_user_u64(val, infop->entry + 8); 877 _regs->gpr[2] = val + infop->load_bias; 878 get_user_u64(val, infop->entry); 879 infop->entry = val + infop->load_bias; 880 } else { 881 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 882 } 883 #endif 884 _regs->nip = infop->entry; 885 } 886 887 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 888 #define ELF_NREG 48 889 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 890 891 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 892 { 893 int i; 894 target_ulong ccr = 0; 895 896 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 897 (*regs)[i] = tswapreg(env->gpr[i]); 898 } 899 900 (*regs)[32] = tswapreg(env->nip); 901 (*regs)[33] = tswapreg(env->msr); 902 (*regs)[35] = tswapreg(env->ctr); 903 (*regs)[36] = tswapreg(env->lr); 904 (*regs)[37] = tswapreg(cpu_read_xer(env)); 905 906 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 907 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 908 } 909 (*regs)[38] = tswapreg(ccr); 910 } 911 912 #define USE_ELF_CORE_DUMP 913 #define ELF_EXEC_PAGESIZE 4096 914 915 #endif 916 917 #ifdef TARGET_MIPS 918 919 #define ELF_START_MMAP 0x80000000 920 921 #ifdef TARGET_MIPS64 922 #define ELF_CLASS ELFCLASS64 923 #else 924 #define ELF_CLASS ELFCLASS32 925 #endif 926 #define ELF_ARCH EM_MIPS 927 928 #ifdef TARGET_ABI_MIPSN32 929 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 930 #else 931 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 932 #endif 933 934 static inline void init_thread(struct target_pt_regs *regs, 935 struct image_info *infop) 936 { 937 regs->cp0_status = 2 << CP0St_KSU; 938 regs->cp0_epc = infop->entry; 939 regs->regs[29] = infop->start_stack; 940 } 941 942 /* See linux kernel: arch/mips/include/asm/elf.h. */ 943 #define ELF_NREG 45 944 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 945 946 /* See linux kernel: arch/mips/include/asm/reg.h. */ 947 enum { 948 #ifdef TARGET_MIPS64 949 TARGET_EF_R0 = 0, 950 #else 951 TARGET_EF_R0 = 6, 952 #endif 953 TARGET_EF_R26 = TARGET_EF_R0 + 26, 954 TARGET_EF_R27 = TARGET_EF_R0 + 27, 955 TARGET_EF_LO = TARGET_EF_R0 + 32, 956 TARGET_EF_HI = TARGET_EF_R0 + 33, 957 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 958 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 959 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 960 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 961 }; 962 963 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 964 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 965 { 966 int i; 967 968 for (i = 0; i < TARGET_EF_R0; i++) { 969 (*regs)[i] = 0; 970 } 971 (*regs)[TARGET_EF_R0] = 0; 972 973 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 974 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 975 } 976 977 (*regs)[TARGET_EF_R26] = 0; 978 (*regs)[TARGET_EF_R27] = 0; 979 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 980 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 981 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 982 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 983 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 984 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 985 } 986 987 #define USE_ELF_CORE_DUMP 988 #define ELF_EXEC_PAGESIZE 4096 989 990 /* See arch/mips/include/uapi/asm/hwcap.h. */ 991 enum { 992 HWCAP_MIPS_R6 = (1 << 0), 993 HWCAP_MIPS_MSA = (1 << 1), 994 HWCAP_MIPS_CRC32 = (1 << 2), 995 HWCAP_MIPS_MIPS16 = (1 << 3), 996 HWCAP_MIPS_MDMX = (1 << 4), 997 HWCAP_MIPS_MIPS3D = (1 << 5), 998 HWCAP_MIPS_SMARTMIPS = (1 << 6), 999 HWCAP_MIPS_DSP = (1 << 7), 1000 HWCAP_MIPS_DSP2 = (1 << 8), 1001 HWCAP_MIPS_DSP3 = (1 << 9), 1002 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1003 HWCAP_LOONGSON_MMI = (1 << 11), 1004 HWCAP_LOONGSON_EXT = (1 << 12), 1005 HWCAP_LOONGSON_EXT2 = (1 << 13), 1006 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1007 }; 1008 1009 #define ELF_HWCAP get_elf_hwcap() 1010 1011 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1012 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1013 1014 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1015 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1016 1017 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1018 do { \ 1019 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1020 hwcaps |= _hwcap; \ 1021 } \ 1022 } while (0) 1023 1024 static uint32_t get_elf_hwcap(void) 1025 { 1026 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1027 uint32_t hwcaps = 0; 1028 1029 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1030 2, HWCAP_MIPS_R6); 1031 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1032 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1033 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1034 1035 return hwcaps; 1036 } 1037 1038 #undef GET_FEATURE_REG_EQU 1039 #undef GET_FEATURE_REG_SET 1040 #undef GET_FEATURE_INSN 1041 1042 #endif /* TARGET_MIPS */ 1043 1044 #ifdef TARGET_MICROBLAZE 1045 1046 #define ELF_START_MMAP 0x80000000 1047 1048 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1049 1050 #define ELF_CLASS ELFCLASS32 1051 #define ELF_ARCH EM_MICROBLAZE 1052 1053 static inline void init_thread(struct target_pt_regs *regs, 1054 struct image_info *infop) 1055 { 1056 regs->pc = infop->entry; 1057 regs->r1 = infop->start_stack; 1058 1059 } 1060 1061 #define ELF_EXEC_PAGESIZE 4096 1062 1063 #define USE_ELF_CORE_DUMP 1064 #define ELF_NREG 38 1065 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1066 1067 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1068 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1069 { 1070 int i, pos = 0; 1071 1072 for (i = 0; i < 32; i++) { 1073 (*regs)[pos++] = tswapreg(env->regs[i]); 1074 } 1075 1076 (*regs)[pos++] = tswapreg(env->pc); 1077 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1078 (*regs)[pos++] = 0; 1079 (*regs)[pos++] = tswapreg(env->ear); 1080 (*regs)[pos++] = 0; 1081 (*regs)[pos++] = tswapreg(env->esr); 1082 } 1083 1084 #endif /* TARGET_MICROBLAZE */ 1085 1086 #ifdef TARGET_NIOS2 1087 1088 #define ELF_START_MMAP 0x80000000 1089 1090 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1091 1092 #define ELF_CLASS ELFCLASS32 1093 #define ELF_ARCH EM_ALTERA_NIOS2 1094 1095 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1096 { 1097 regs->ea = infop->entry; 1098 regs->sp = infop->start_stack; 1099 regs->estatus = 0x3; 1100 } 1101 1102 #define LO_COMMPAGE TARGET_PAGE_SIZE 1103 1104 static bool init_guest_commpage(void) 1105 { 1106 static const uint8_t kuser_page[4 + 2 * 64] = { 1107 /* __kuser_helper_version */ 1108 [0x00] = 0x02, 0x00, 0x00, 0x00, 1109 1110 /* __kuser_cmpxchg */ 1111 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1112 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1113 1114 /* __kuser_sigtramp */ 1115 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1116 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1117 }; 1118 1119 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1120 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1121 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1122 1123 if (addr == MAP_FAILED) { 1124 perror("Allocating guest commpage"); 1125 exit(EXIT_FAILURE); 1126 } 1127 if (addr != want) { 1128 return false; 1129 } 1130 1131 memcpy(addr, kuser_page, sizeof(kuser_page)); 1132 1133 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1134 perror("Protecting guest commpage"); 1135 exit(EXIT_FAILURE); 1136 } 1137 1138 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1139 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1140 return true; 1141 } 1142 1143 #define ELF_EXEC_PAGESIZE 4096 1144 1145 #define USE_ELF_CORE_DUMP 1146 #define ELF_NREG 49 1147 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1148 1149 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1150 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1151 const CPUNios2State *env) 1152 { 1153 int i; 1154 1155 (*regs)[0] = -1; 1156 for (i = 1; i < 8; i++) /* r0-r7 */ 1157 (*regs)[i] = tswapreg(env->regs[i + 7]); 1158 1159 for (i = 8; i < 16; i++) /* r8-r15 */ 1160 (*regs)[i] = tswapreg(env->regs[i - 8]); 1161 1162 for (i = 16; i < 24; i++) /* r16-r23 */ 1163 (*regs)[i] = tswapreg(env->regs[i + 7]); 1164 (*regs)[24] = -1; /* R_ET */ 1165 (*regs)[25] = -1; /* R_BT */ 1166 (*regs)[26] = tswapreg(env->regs[R_GP]); 1167 (*regs)[27] = tswapreg(env->regs[R_SP]); 1168 (*regs)[28] = tswapreg(env->regs[R_FP]); 1169 (*regs)[29] = tswapreg(env->regs[R_EA]); 1170 (*regs)[30] = -1; /* R_SSTATUS */ 1171 (*regs)[31] = tswapreg(env->regs[R_RA]); 1172 1173 (*regs)[32] = tswapreg(env->regs[R_PC]); 1174 1175 (*regs)[33] = -1; /* R_STATUS */ 1176 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1177 1178 for (i = 35; i < 49; i++) /* ... */ 1179 (*regs)[i] = -1; 1180 } 1181 1182 #endif /* TARGET_NIOS2 */ 1183 1184 #ifdef TARGET_OPENRISC 1185 1186 #define ELF_START_MMAP 0x08000000 1187 1188 #define ELF_ARCH EM_OPENRISC 1189 #define ELF_CLASS ELFCLASS32 1190 #define ELF_DATA ELFDATA2MSB 1191 1192 static inline void init_thread(struct target_pt_regs *regs, 1193 struct image_info *infop) 1194 { 1195 regs->pc = infop->entry; 1196 regs->gpr[1] = infop->start_stack; 1197 } 1198 1199 #define USE_ELF_CORE_DUMP 1200 #define ELF_EXEC_PAGESIZE 8192 1201 1202 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1203 #define ELF_NREG 34 /* gprs and pc, sr */ 1204 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1205 1206 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1207 const CPUOpenRISCState *env) 1208 { 1209 int i; 1210 1211 for (i = 0; i < 32; i++) { 1212 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1213 } 1214 (*regs)[32] = tswapreg(env->pc); 1215 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1216 } 1217 #define ELF_HWCAP 0 1218 #define ELF_PLATFORM NULL 1219 1220 #endif /* TARGET_OPENRISC */ 1221 1222 #ifdef TARGET_SH4 1223 1224 #define ELF_START_MMAP 0x80000000 1225 1226 #define ELF_CLASS ELFCLASS32 1227 #define ELF_ARCH EM_SH 1228 1229 static inline void init_thread(struct target_pt_regs *regs, 1230 struct image_info *infop) 1231 { 1232 /* Check other registers XXXXX */ 1233 regs->pc = infop->entry; 1234 regs->regs[15] = infop->start_stack; 1235 } 1236 1237 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1238 #define ELF_NREG 23 1239 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1240 1241 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1242 enum { 1243 TARGET_REG_PC = 16, 1244 TARGET_REG_PR = 17, 1245 TARGET_REG_SR = 18, 1246 TARGET_REG_GBR = 19, 1247 TARGET_REG_MACH = 20, 1248 TARGET_REG_MACL = 21, 1249 TARGET_REG_SYSCALL = 22 1250 }; 1251 1252 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1253 const CPUSH4State *env) 1254 { 1255 int i; 1256 1257 for (i = 0; i < 16; i++) { 1258 (*regs)[i] = tswapreg(env->gregs[i]); 1259 } 1260 1261 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1262 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1263 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1264 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1265 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1266 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1267 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1268 } 1269 1270 #define USE_ELF_CORE_DUMP 1271 #define ELF_EXEC_PAGESIZE 4096 1272 1273 enum { 1274 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1275 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1276 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1277 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1278 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1279 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1280 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1281 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1282 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1283 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1284 }; 1285 1286 #define ELF_HWCAP get_elf_hwcap() 1287 1288 static uint32_t get_elf_hwcap(void) 1289 { 1290 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1291 uint32_t hwcap = 0; 1292 1293 hwcap |= SH_CPU_HAS_FPU; 1294 1295 if (cpu->env.features & SH_FEATURE_SH4A) { 1296 hwcap |= SH_CPU_HAS_LLSC; 1297 } 1298 1299 return hwcap; 1300 } 1301 1302 #endif 1303 1304 #ifdef TARGET_CRIS 1305 1306 #define ELF_START_MMAP 0x80000000 1307 1308 #define ELF_CLASS ELFCLASS32 1309 #define ELF_ARCH EM_CRIS 1310 1311 static inline void init_thread(struct target_pt_regs *regs, 1312 struct image_info *infop) 1313 { 1314 regs->erp = infop->entry; 1315 } 1316 1317 #define ELF_EXEC_PAGESIZE 8192 1318 1319 #endif 1320 1321 #ifdef TARGET_M68K 1322 1323 #define ELF_START_MMAP 0x80000000 1324 1325 #define ELF_CLASS ELFCLASS32 1326 #define ELF_ARCH EM_68K 1327 1328 /* ??? Does this need to do anything? 1329 #define ELF_PLAT_INIT(_r) */ 1330 1331 static inline void init_thread(struct target_pt_regs *regs, 1332 struct image_info *infop) 1333 { 1334 regs->usp = infop->start_stack; 1335 regs->sr = 0; 1336 regs->pc = infop->entry; 1337 } 1338 1339 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1340 #define ELF_NREG 20 1341 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1342 1343 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1344 { 1345 (*regs)[0] = tswapreg(env->dregs[1]); 1346 (*regs)[1] = tswapreg(env->dregs[2]); 1347 (*regs)[2] = tswapreg(env->dregs[3]); 1348 (*regs)[3] = tswapreg(env->dregs[4]); 1349 (*regs)[4] = tswapreg(env->dregs[5]); 1350 (*regs)[5] = tswapreg(env->dregs[6]); 1351 (*regs)[6] = tswapreg(env->dregs[7]); 1352 (*regs)[7] = tswapreg(env->aregs[0]); 1353 (*regs)[8] = tswapreg(env->aregs[1]); 1354 (*regs)[9] = tswapreg(env->aregs[2]); 1355 (*regs)[10] = tswapreg(env->aregs[3]); 1356 (*regs)[11] = tswapreg(env->aregs[4]); 1357 (*regs)[12] = tswapreg(env->aregs[5]); 1358 (*regs)[13] = tswapreg(env->aregs[6]); 1359 (*regs)[14] = tswapreg(env->dregs[0]); 1360 (*regs)[15] = tswapreg(env->aregs[7]); 1361 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1362 (*regs)[17] = tswapreg(env->sr); 1363 (*regs)[18] = tswapreg(env->pc); 1364 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1365 } 1366 1367 #define USE_ELF_CORE_DUMP 1368 #define ELF_EXEC_PAGESIZE 8192 1369 1370 #endif 1371 1372 #ifdef TARGET_ALPHA 1373 1374 #define ELF_START_MMAP (0x30000000000ULL) 1375 1376 #define ELF_CLASS ELFCLASS64 1377 #define ELF_ARCH EM_ALPHA 1378 1379 static inline void init_thread(struct target_pt_regs *regs, 1380 struct image_info *infop) 1381 { 1382 regs->pc = infop->entry; 1383 regs->ps = 8; 1384 regs->usp = infop->start_stack; 1385 } 1386 1387 #define ELF_EXEC_PAGESIZE 8192 1388 1389 #endif /* TARGET_ALPHA */ 1390 1391 #ifdef TARGET_S390X 1392 1393 #define ELF_START_MMAP (0x20000000000ULL) 1394 1395 #define ELF_CLASS ELFCLASS64 1396 #define ELF_DATA ELFDATA2MSB 1397 #define ELF_ARCH EM_S390 1398 1399 #include "elf.h" 1400 1401 #define ELF_HWCAP get_elf_hwcap() 1402 1403 #define GET_FEATURE(_feat, _hwcap) \ 1404 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1405 1406 static uint32_t get_elf_hwcap(void) 1407 { 1408 /* 1409 * Let's assume we always have esan3 and zarch. 1410 * 31-bit processes can use 64-bit registers (high gprs). 1411 */ 1412 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1413 1414 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1415 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1416 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1417 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1418 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1419 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1420 hwcap |= HWCAP_S390_ETF3EH; 1421 } 1422 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1423 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1424 1425 return hwcap; 1426 } 1427 1428 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1429 { 1430 regs->psw.addr = infop->entry; 1431 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1432 regs->gprs[15] = infop->start_stack; 1433 } 1434 1435 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1436 #define ELF_NREG 27 1437 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1438 1439 enum { 1440 TARGET_REG_PSWM = 0, 1441 TARGET_REG_PSWA = 1, 1442 TARGET_REG_GPRS = 2, 1443 TARGET_REG_ARS = 18, 1444 TARGET_REG_ORIG_R2 = 26, 1445 }; 1446 1447 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1448 const CPUS390XState *env) 1449 { 1450 int i; 1451 uint32_t *aregs; 1452 1453 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1454 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1455 for (i = 0; i < 16; i++) { 1456 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1457 } 1458 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1459 for (i = 0; i < 16; i++) { 1460 aregs[i] = tswap32(env->aregs[i]); 1461 } 1462 (*regs)[TARGET_REG_ORIG_R2] = 0; 1463 } 1464 1465 #define USE_ELF_CORE_DUMP 1466 #define ELF_EXEC_PAGESIZE 4096 1467 1468 #endif /* TARGET_S390X */ 1469 1470 #ifdef TARGET_RISCV 1471 1472 #define ELF_START_MMAP 0x80000000 1473 #define ELF_ARCH EM_RISCV 1474 1475 #ifdef TARGET_RISCV32 1476 #define ELF_CLASS ELFCLASS32 1477 #else 1478 #define ELF_CLASS ELFCLASS64 1479 #endif 1480 1481 #define ELF_HWCAP get_elf_hwcap() 1482 1483 static uint32_t get_elf_hwcap(void) 1484 { 1485 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1486 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1487 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1488 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C'); 1489 1490 return cpu->env.misa_ext & mask; 1491 #undef MISA_BIT 1492 } 1493 1494 static inline void init_thread(struct target_pt_regs *regs, 1495 struct image_info *infop) 1496 { 1497 regs->sepc = infop->entry; 1498 regs->sp = infop->start_stack; 1499 } 1500 1501 #define ELF_EXEC_PAGESIZE 4096 1502 1503 #endif /* TARGET_RISCV */ 1504 1505 #ifdef TARGET_HPPA 1506 1507 #define ELF_START_MMAP 0x80000000 1508 #define ELF_CLASS ELFCLASS32 1509 #define ELF_ARCH EM_PARISC 1510 #define ELF_PLATFORM "PARISC" 1511 #define STACK_GROWS_DOWN 0 1512 #define STACK_ALIGNMENT 64 1513 1514 static inline void init_thread(struct target_pt_regs *regs, 1515 struct image_info *infop) 1516 { 1517 regs->iaoq[0] = infop->entry; 1518 regs->iaoq[1] = infop->entry + 4; 1519 regs->gr[23] = 0; 1520 regs->gr[24] = infop->arg_start; 1521 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1522 /* The top-of-stack contains a linkage buffer. */ 1523 regs->gr[30] = infop->start_stack + 64; 1524 regs->gr[31] = infop->entry; 1525 } 1526 1527 #endif /* TARGET_HPPA */ 1528 1529 #ifdef TARGET_XTENSA 1530 1531 #define ELF_START_MMAP 0x20000000 1532 1533 #define ELF_CLASS ELFCLASS32 1534 #define ELF_ARCH EM_XTENSA 1535 1536 static inline void init_thread(struct target_pt_regs *regs, 1537 struct image_info *infop) 1538 { 1539 regs->windowbase = 0; 1540 regs->windowstart = 1; 1541 regs->areg[1] = infop->start_stack; 1542 regs->pc = infop->entry; 1543 } 1544 1545 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1546 #define ELF_NREG 128 1547 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1548 1549 enum { 1550 TARGET_REG_PC, 1551 TARGET_REG_PS, 1552 TARGET_REG_LBEG, 1553 TARGET_REG_LEND, 1554 TARGET_REG_LCOUNT, 1555 TARGET_REG_SAR, 1556 TARGET_REG_WINDOWSTART, 1557 TARGET_REG_WINDOWBASE, 1558 TARGET_REG_THREADPTR, 1559 TARGET_REG_AR0 = 64, 1560 }; 1561 1562 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1563 const CPUXtensaState *env) 1564 { 1565 unsigned i; 1566 1567 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1568 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1569 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1570 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1571 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1572 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1573 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1574 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1575 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1576 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1577 for (i = 0; i < env->config->nareg; ++i) { 1578 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1579 } 1580 } 1581 1582 #define USE_ELF_CORE_DUMP 1583 #define ELF_EXEC_PAGESIZE 4096 1584 1585 #endif /* TARGET_XTENSA */ 1586 1587 #ifdef TARGET_HEXAGON 1588 1589 #define ELF_START_MMAP 0x20000000 1590 1591 #define ELF_CLASS ELFCLASS32 1592 #define ELF_ARCH EM_HEXAGON 1593 1594 static inline void init_thread(struct target_pt_regs *regs, 1595 struct image_info *infop) 1596 { 1597 regs->sepc = infop->entry; 1598 regs->sp = infop->start_stack; 1599 } 1600 1601 #endif /* TARGET_HEXAGON */ 1602 1603 #ifndef ELF_PLATFORM 1604 #define ELF_PLATFORM (NULL) 1605 #endif 1606 1607 #ifndef ELF_MACHINE 1608 #define ELF_MACHINE ELF_ARCH 1609 #endif 1610 1611 #ifndef elf_check_arch 1612 #define elf_check_arch(x) ((x) == ELF_ARCH) 1613 #endif 1614 1615 #ifndef elf_check_abi 1616 #define elf_check_abi(x) (1) 1617 #endif 1618 1619 #ifndef ELF_HWCAP 1620 #define ELF_HWCAP 0 1621 #endif 1622 1623 #ifndef STACK_GROWS_DOWN 1624 #define STACK_GROWS_DOWN 1 1625 #endif 1626 1627 #ifndef STACK_ALIGNMENT 1628 #define STACK_ALIGNMENT 16 1629 #endif 1630 1631 #ifdef TARGET_ABI32 1632 #undef ELF_CLASS 1633 #define ELF_CLASS ELFCLASS32 1634 #undef bswaptls 1635 #define bswaptls(ptr) bswap32s(ptr) 1636 #endif 1637 1638 #include "elf.h" 1639 1640 /* We must delay the following stanzas until after "elf.h". */ 1641 #if defined(TARGET_AARCH64) 1642 1643 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1644 const uint32_t *data, 1645 struct image_info *info, 1646 Error **errp) 1647 { 1648 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1649 if (pr_datasz != sizeof(uint32_t)) { 1650 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1651 return false; 1652 } 1653 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1654 info->note_flags = *data; 1655 } 1656 return true; 1657 } 1658 #define ARCH_USE_GNU_PROPERTY 1 1659 1660 #else 1661 1662 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1663 const uint32_t *data, 1664 struct image_info *info, 1665 Error **errp) 1666 { 1667 g_assert_not_reached(); 1668 } 1669 #define ARCH_USE_GNU_PROPERTY 0 1670 1671 #endif 1672 1673 struct exec 1674 { 1675 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1676 unsigned int a_text; /* length of text, in bytes */ 1677 unsigned int a_data; /* length of data, in bytes */ 1678 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1679 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1680 unsigned int a_entry; /* start address */ 1681 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1682 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1683 }; 1684 1685 1686 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1687 #define OMAGIC 0407 1688 #define NMAGIC 0410 1689 #define ZMAGIC 0413 1690 #define QMAGIC 0314 1691 1692 /* Necessary parameters */ 1693 #define TARGET_ELF_EXEC_PAGESIZE \ 1694 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1695 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1696 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1697 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1698 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1699 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1700 1701 #define DLINFO_ITEMS 16 1702 1703 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1704 { 1705 memcpy(to, from, n); 1706 } 1707 1708 #ifdef BSWAP_NEEDED 1709 static void bswap_ehdr(struct elfhdr *ehdr) 1710 { 1711 bswap16s(&ehdr->e_type); /* Object file type */ 1712 bswap16s(&ehdr->e_machine); /* Architecture */ 1713 bswap32s(&ehdr->e_version); /* Object file version */ 1714 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1715 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1716 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1717 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1718 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1719 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1720 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1721 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1722 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1723 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1724 } 1725 1726 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1727 { 1728 int i; 1729 for (i = 0; i < phnum; ++i, ++phdr) { 1730 bswap32s(&phdr->p_type); /* Segment type */ 1731 bswap32s(&phdr->p_flags); /* Segment flags */ 1732 bswaptls(&phdr->p_offset); /* Segment file offset */ 1733 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1734 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1735 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1736 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1737 bswaptls(&phdr->p_align); /* Segment alignment */ 1738 } 1739 } 1740 1741 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1742 { 1743 int i; 1744 for (i = 0; i < shnum; ++i, ++shdr) { 1745 bswap32s(&shdr->sh_name); 1746 bswap32s(&shdr->sh_type); 1747 bswaptls(&shdr->sh_flags); 1748 bswaptls(&shdr->sh_addr); 1749 bswaptls(&shdr->sh_offset); 1750 bswaptls(&shdr->sh_size); 1751 bswap32s(&shdr->sh_link); 1752 bswap32s(&shdr->sh_info); 1753 bswaptls(&shdr->sh_addralign); 1754 bswaptls(&shdr->sh_entsize); 1755 } 1756 } 1757 1758 static void bswap_sym(struct elf_sym *sym) 1759 { 1760 bswap32s(&sym->st_name); 1761 bswaptls(&sym->st_value); 1762 bswaptls(&sym->st_size); 1763 bswap16s(&sym->st_shndx); 1764 } 1765 1766 #ifdef TARGET_MIPS 1767 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1768 { 1769 bswap16s(&abiflags->version); 1770 bswap32s(&abiflags->ases); 1771 bswap32s(&abiflags->isa_ext); 1772 bswap32s(&abiflags->flags1); 1773 bswap32s(&abiflags->flags2); 1774 } 1775 #endif 1776 #else 1777 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1778 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1779 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1780 static inline void bswap_sym(struct elf_sym *sym) { } 1781 #ifdef TARGET_MIPS 1782 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1783 #endif 1784 #endif 1785 1786 #ifdef USE_ELF_CORE_DUMP 1787 static int elf_core_dump(int, const CPUArchState *); 1788 #endif /* USE_ELF_CORE_DUMP */ 1789 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1790 1791 /* Verify the portions of EHDR within E_IDENT for the target. 1792 This can be performed before bswapping the entire header. */ 1793 static bool elf_check_ident(struct elfhdr *ehdr) 1794 { 1795 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1796 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1797 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1798 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1799 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1800 && ehdr->e_ident[EI_DATA] == ELF_DATA 1801 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1802 } 1803 1804 /* Verify the portions of EHDR outside of E_IDENT for the target. 1805 This has to wait until after bswapping the header. */ 1806 static bool elf_check_ehdr(struct elfhdr *ehdr) 1807 { 1808 return (elf_check_arch(ehdr->e_machine) 1809 && elf_check_abi(ehdr->e_flags) 1810 && ehdr->e_ehsize == sizeof(struct elfhdr) 1811 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1812 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1813 } 1814 1815 /* 1816 * 'copy_elf_strings()' copies argument/envelope strings from user 1817 * memory to free pages in kernel mem. These are in a format ready 1818 * to be put directly into the top of new user memory. 1819 * 1820 */ 1821 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1822 abi_ulong p, abi_ulong stack_limit) 1823 { 1824 char *tmp; 1825 int len, i; 1826 abi_ulong top = p; 1827 1828 if (!p) { 1829 return 0; /* bullet-proofing */ 1830 } 1831 1832 if (STACK_GROWS_DOWN) { 1833 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1834 for (i = argc - 1; i >= 0; --i) { 1835 tmp = argv[i]; 1836 if (!tmp) { 1837 fprintf(stderr, "VFS: argc is wrong"); 1838 exit(-1); 1839 } 1840 len = strlen(tmp) + 1; 1841 tmp += len; 1842 1843 if (len > (p - stack_limit)) { 1844 return 0; 1845 } 1846 while (len) { 1847 int bytes_to_copy = (len > offset) ? offset : len; 1848 tmp -= bytes_to_copy; 1849 p -= bytes_to_copy; 1850 offset -= bytes_to_copy; 1851 len -= bytes_to_copy; 1852 1853 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1854 1855 if (offset == 0) { 1856 memcpy_to_target(p, scratch, top - p); 1857 top = p; 1858 offset = TARGET_PAGE_SIZE; 1859 } 1860 } 1861 } 1862 if (p != top) { 1863 memcpy_to_target(p, scratch + offset, top - p); 1864 } 1865 } else { 1866 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1867 for (i = 0; i < argc; ++i) { 1868 tmp = argv[i]; 1869 if (!tmp) { 1870 fprintf(stderr, "VFS: argc is wrong"); 1871 exit(-1); 1872 } 1873 len = strlen(tmp) + 1; 1874 if (len > (stack_limit - p)) { 1875 return 0; 1876 } 1877 while (len) { 1878 int bytes_to_copy = (len > remaining) ? remaining : len; 1879 1880 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1881 1882 tmp += bytes_to_copy; 1883 remaining -= bytes_to_copy; 1884 p += bytes_to_copy; 1885 len -= bytes_to_copy; 1886 1887 if (remaining == 0) { 1888 memcpy_to_target(top, scratch, p - top); 1889 top = p; 1890 remaining = TARGET_PAGE_SIZE; 1891 } 1892 } 1893 } 1894 if (p != top) { 1895 memcpy_to_target(top, scratch, p - top); 1896 } 1897 } 1898 1899 return p; 1900 } 1901 1902 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1903 * argument/environment space. Newer kernels (>2.6.33) allow more, 1904 * dependent on stack size, but guarantee at least 32 pages for 1905 * backwards compatibility. 1906 */ 1907 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1908 1909 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1910 struct image_info *info) 1911 { 1912 abi_ulong size, error, guard; 1913 1914 size = guest_stack_size; 1915 if (size < STACK_LOWER_LIMIT) { 1916 size = STACK_LOWER_LIMIT; 1917 } 1918 guard = TARGET_PAGE_SIZE; 1919 if (guard < qemu_real_host_page_size) { 1920 guard = qemu_real_host_page_size; 1921 } 1922 1923 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1924 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1925 if (error == -1) { 1926 perror("mmap stack"); 1927 exit(-1); 1928 } 1929 1930 /* We reserve one extra page at the top of the stack as guard. */ 1931 if (STACK_GROWS_DOWN) { 1932 target_mprotect(error, guard, PROT_NONE); 1933 info->stack_limit = error + guard; 1934 return info->stack_limit + size - sizeof(void *); 1935 } else { 1936 target_mprotect(error + size, guard, PROT_NONE); 1937 info->stack_limit = error + size; 1938 return error; 1939 } 1940 } 1941 1942 /* Map and zero the bss. We need to explicitly zero any fractional pages 1943 after the data section (i.e. bss). */ 1944 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1945 { 1946 uintptr_t host_start, host_map_start, host_end; 1947 1948 last_bss = TARGET_PAGE_ALIGN(last_bss); 1949 1950 /* ??? There is confusion between qemu_real_host_page_size and 1951 qemu_host_page_size here and elsewhere in target_mmap, which 1952 may lead to the end of the data section mapping from the file 1953 not being mapped. At least there was an explicit test and 1954 comment for that here, suggesting that "the file size must 1955 be known". The comment probably pre-dates the introduction 1956 of the fstat system call in target_mmap which does in fact 1957 find out the size. What isn't clear is if the workaround 1958 here is still actually needed. For now, continue with it, 1959 but merge it with the "normal" mmap that would allocate the bss. */ 1960 1961 host_start = (uintptr_t) g2h_untagged(elf_bss); 1962 host_end = (uintptr_t) g2h_untagged(last_bss); 1963 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1964 1965 if (host_map_start < host_end) { 1966 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1967 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1968 if (p == MAP_FAILED) { 1969 perror("cannot mmap brk"); 1970 exit(-1); 1971 } 1972 } 1973 1974 /* Ensure that the bss page(s) are valid */ 1975 if ((page_get_flags(last_bss-1) & prot) != prot) { 1976 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1977 } 1978 1979 if (host_start < host_map_start) { 1980 memset((void *)host_start, 0, host_map_start - host_start); 1981 } 1982 } 1983 1984 #ifdef TARGET_ARM 1985 static int elf_is_fdpic(struct elfhdr *exec) 1986 { 1987 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1988 } 1989 #else 1990 /* Default implementation, always false. */ 1991 static int elf_is_fdpic(struct elfhdr *exec) 1992 { 1993 return 0; 1994 } 1995 #endif 1996 1997 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1998 { 1999 uint16_t n; 2000 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2001 2002 /* elf32_fdpic_loadseg */ 2003 n = info->nsegs; 2004 while (n--) { 2005 sp -= 12; 2006 put_user_u32(loadsegs[n].addr, sp+0); 2007 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2008 put_user_u32(loadsegs[n].p_memsz, sp+8); 2009 } 2010 2011 /* elf32_fdpic_loadmap */ 2012 sp -= 4; 2013 put_user_u16(0, sp+0); /* version */ 2014 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2015 2016 info->personality = PER_LINUX_FDPIC; 2017 info->loadmap_addr = sp; 2018 2019 return sp; 2020 } 2021 2022 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2023 struct elfhdr *exec, 2024 struct image_info *info, 2025 struct image_info *interp_info) 2026 { 2027 abi_ulong sp; 2028 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2029 int size; 2030 int i; 2031 abi_ulong u_rand_bytes; 2032 uint8_t k_rand_bytes[16]; 2033 abi_ulong u_platform; 2034 const char *k_platform; 2035 const int n = sizeof(elf_addr_t); 2036 2037 sp = p; 2038 2039 /* Needs to be before we load the env/argc/... */ 2040 if (elf_is_fdpic(exec)) { 2041 /* Need 4 byte alignment for these structs */ 2042 sp &= ~3; 2043 sp = loader_build_fdpic_loadmap(info, sp); 2044 info->other_info = interp_info; 2045 if (interp_info) { 2046 interp_info->other_info = info; 2047 sp = loader_build_fdpic_loadmap(interp_info, sp); 2048 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2049 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2050 } else { 2051 info->interpreter_loadmap_addr = 0; 2052 info->interpreter_pt_dynamic_addr = 0; 2053 } 2054 } 2055 2056 u_platform = 0; 2057 k_platform = ELF_PLATFORM; 2058 if (k_platform) { 2059 size_t len = strlen(k_platform) + 1; 2060 if (STACK_GROWS_DOWN) { 2061 sp -= (len + n - 1) & ~(n - 1); 2062 u_platform = sp; 2063 /* FIXME - check return value of memcpy_to_target() for failure */ 2064 memcpy_to_target(sp, k_platform, len); 2065 } else { 2066 memcpy_to_target(sp, k_platform, len); 2067 u_platform = sp; 2068 sp += len + 1; 2069 } 2070 } 2071 2072 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2073 * the argv and envp pointers. 2074 */ 2075 if (STACK_GROWS_DOWN) { 2076 sp = QEMU_ALIGN_DOWN(sp, 16); 2077 } else { 2078 sp = QEMU_ALIGN_UP(sp, 16); 2079 } 2080 2081 /* 2082 * Generate 16 random bytes for userspace PRNG seeding. 2083 */ 2084 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2085 if (STACK_GROWS_DOWN) { 2086 sp -= 16; 2087 u_rand_bytes = sp; 2088 /* FIXME - check return value of memcpy_to_target() for failure */ 2089 memcpy_to_target(sp, k_rand_bytes, 16); 2090 } else { 2091 memcpy_to_target(sp, k_rand_bytes, 16); 2092 u_rand_bytes = sp; 2093 sp += 16; 2094 } 2095 2096 size = (DLINFO_ITEMS + 1) * 2; 2097 if (k_platform) 2098 size += 2; 2099 #ifdef DLINFO_ARCH_ITEMS 2100 size += DLINFO_ARCH_ITEMS * 2; 2101 #endif 2102 #ifdef ELF_HWCAP2 2103 size += 2; 2104 #endif 2105 info->auxv_len = size * n; 2106 2107 size += envc + argc + 2; 2108 size += 1; /* argc itself */ 2109 size *= n; 2110 2111 /* Allocate space and finalize stack alignment for entry now. */ 2112 if (STACK_GROWS_DOWN) { 2113 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2114 sp = u_argc; 2115 } else { 2116 u_argc = sp; 2117 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2118 } 2119 2120 u_argv = u_argc + n; 2121 u_envp = u_argv + (argc + 1) * n; 2122 u_auxv = u_envp + (envc + 1) * n; 2123 info->saved_auxv = u_auxv; 2124 info->arg_start = u_argv; 2125 info->arg_end = u_argv + argc * n; 2126 2127 /* This is correct because Linux defines 2128 * elf_addr_t as Elf32_Off / Elf64_Off 2129 */ 2130 #define NEW_AUX_ENT(id, val) do { \ 2131 put_user_ual(id, u_auxv); u_auxv += n; \ 2132 put_user_ual(val, u_auxv); u_auxv += n; \ 2133 } while(0) 2134 2135 #ifdef ARCH_DLINFO 2136 /* 2137 * ARCH_DLINFO must come first so platform specific code can enforce 2138 * special alignment requirements on the AUXV if necessary (eg. PPC). 2139 */ 2140 ARCH_DLINFO; 2141 #endif 2142 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2143 * on info->auxv_len will trigger. 2144 */ 2145 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2146 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2147 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2148 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2149 /* Target doesn't support host page size alignment */ 2150 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2151 } else { 2152 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2153 qemu_host_page_size))); 2154 } 2155 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2156 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2157 NEW_AUX_ENT(AT_ENTRY, info->entry); 2158 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2159 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2160 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2161 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2162 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2163 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2164 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2165 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2166 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2167 2168 #ifdef ELF_HWCAP2 2169 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2170 #endif 2171 2172 if (u_platform) { 2173 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2174 } 2175 NEW_AUX_ENT (AT_NULL, 0); 2176 #undef NEW_AUX_ENT 2177 2178 /* Check that our initial calculation of the auxv length matches how much 2179 * we actually put into it. 2180 */ 2181 assert(info->auxv_len == u_auxv - info->saved_auxv); 2182 2183 put_user_ual(argc, u_argc); 2184 2185 p = info->arg_strings; 2186 for (i = 0; i < argc; ++i) { 2187 put_user_ual(p, u_argv); 2188 u_argv += n; 2189 p += target_strlen(p) + 1; 2190 } 2191 put_user_ual(0, u_argv); 2192 2193 p = info->env_strings; 2194 for (i = 0; i < envc; ++i) { 2195 put_user_ual(p, u_envp); 2196 u_envp += n; 2197 p += target_strlen(p) + 1; 2198 } 2199 put_user_ual(0, u_envp); 2200 2201 return sp; 2202 } 2203 2204 #if defined(HI_COMMPAGE) 2205 #define LO_COMMPAGE 0 2206 #elif defined(LO_COMMPAGE) 2207 #define HI_COMMPAGE 0 2208 #else 2209 #define HI_COMMPAGE 0 2210 #define LO_COMMPAGE 0 2211 #define init_guest_commpage() true 2212 #endif 2213 2214 static void pgb_fail_in_use(const char *image_name) 2215 { 2216 error_report("%s: requires virtual address space that is in use " 2217 "(omit the -B option or choose a different value)", 2218 image_name); 2219 exit(EXIT_FAILURE); 2220 } 2221 2222 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2223 abi_ulong guest_hiaddr, long align) 2224 { 2225 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2226 void *addr, *test; 2227 2228 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2229 fprintf(stderr, "Requested guest base %p does not satisfy " 2230 "host minimum alignment (0x%lx)\n", 2231 (void *)guest_base, align); 2232 exit(EXIT_FAILURE); 2233 } 2234 2235 /* Sanity check the guest binary. */ 2236 if (reserved_va) { 2237 if (guest_hiaddr > reserved_va) { 2238 error_report("%s: requires more than reserved virtual " 2239 "address space (0x%" PRIx64 " > 0x%lx)", 2240 image_name, (uint64_t)guest_hiaddr, reserved_va); 2241 exit(EXIT_FAILURE); 2242 } 2243 } else { 2244 #if HOST_LONG_BITS < TARGET_ABI_BITS 2245 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2246 error_report("%s: requires more virtual address space " 2247 "than the host can provide (0x%" PRIx64 ")", 2248 image_name, (uint64_t)guest_hiaddr - guest_base); 2249 exit(EXIT_FAILURE); 2250 } 2251 #endif 2252 } 2253 2254 /* 2255 * Expand the allocation to the entire reserved_va. 2256 * Exclude the mmap_min_addr hole. 2257 */ 2258 if (reserved_va) { 2259 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2260 : mmap_min_addr - guest_base); 2261 guest_hiaddr = reserved_va; 2262 } 2263 2264 /* Reserve the address space for the binary, or reserved_va. */ 2265 test = g2h_untagged(guest_loaddr); 2266 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2267 if (test != addr) { 2268 pgb_fail_in_use(image_name); 2269 } 2270 } 2271 2272 /** 2273 * pgd_find_hole_fallback: potential mmap address 2274 * @guest_size: size of available space 2275 * @brk: location of break 2276 * @align: memory alignment 2277 * 2278 * This is a fallback method for finding a hole in the host address 2279 * space if we don't have the benefit of being able to access 2280 * /proc/self/map. It can potentially take a very long time as we can 2281 * only dumbly iterate up the host address space seeing if the 2282 * allocation would work. 2283 */ 2284 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2285 long align, uintptr_t offset) 2286 { 2287 uintptr_t base; 2288 2289 /* Start (aligned) at the bottom and work our way up */ 2290 base = ROUND_UP(mmap_min_addr, align); 2291 2292 while (true) { 2293 uintptr_t align_start, end; 2294 align_start = ROUND_UP(base, align); 2295 end = align_start + guest_size + offset; 2296 2297 /* if brk is anywhere in the range give ourselves some room to grow. */ 2298 if (align_start <= brk && brk < end) { 2299 base = brk + (16 * MiB); 2300 continue; 2301 } else if (align_start + guest_size < align_start) { 2302 /* we have run out of space */ 2303 return -1; 2304 } else { 2305 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2306 MAP_FIXED_NOREPLACE; 2307 void * mmap_start = mmap((void *) align_start, guest_size, 2308 PROT_NONE, flags, -1, 0); 2309 if (mmap_start != MAP_FAILED) { 2310 munmap(mmap_start, guest_size); 2311 if (mmap_start == (void *) align_start) { 2312 return (uintptr_t) mmap_start + offset; 2313 } 2314 } 2315 base += qemu_host_page_size; 2316 } 2317 } 2318 } 2319 2320 /* Return value for guest_base, or -1 if no hole found. */ 2321 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2322 long align, uintptr_t offset) 2323 { 2324 GSList *maps, *iter; 2325 uintptr_t this_start, this_end, next_start, brk; 2326 intptr_t ret = -1; 2327 2328 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2329 2330 maps = read_self_maps(); 2331 2332 /* Read brk after we've read the maps, which will malloc. */ 2333 brk = (uintptr_t)sbrk(0); 2334 2335 if (!maps) { 2336 ret = pgd_find_hole_fallback(guest_size, brk, align, offset); 2337 return ret == -1 ? -1 : ret - guest_loaddr; 2338 } 2339 2340 /* The first hole is before the first map entry. */ 2341 this_start = mmap_min_addr; 2342 2343 for (iter = maps; iter; 2344 this_start = next_start, iter = g_slist_next(iter)) { 2345 uintptr_t align_start, hole_size; 2346 2347 this_end = ((MapInfo *)iter->data)->start; 2348 next_start = ((MapInfo *)iter->data)->end; 2349 align_start = ROUND_UP(this_start + offset, align); 2350 2351 /* Skip holes that are too small. */ 2352 if (align_start >= this_end) { 2353 continue; 2354 } 2355 hole_size = this_end - align_start; 2356 if (hole_size < guest_size) { 2357 continue; 2358 } 2359 2360 /* If this hole contains brk, give ourselves some room to grow. */ 2361 if (this_start <= brk && brk < this_end) { 2362 hole_size -= guest_size; 2363 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2364 align_start += 1 * GiB; 2365 } else if (hole_size >= 16 * MiB) { 2366 align_start += 16 * MiB; 2367 } else { 2368 align_start = (this_end - guest_size) & -align; 2369 if (align_start < this_start) { 2370 continue; 2371 } 2372 } 2373 } 2374 2375 /* Record the lowest successful match. */ 2376 if (ret < 0) { 2377 ret = align_start - guest_loaddr; 2378 } 2379 /* If this hole contains the identity map, select it. */ 2380 if (align_start <= guest_loaddr && 2381 guest_loaddr + guest_size <= this_end) { 2382 ret = 0; 2383 } 2384 /* If this hole ends above the identity map, stop looking. */ 2385 if (this_end >= guest_loaddr) { 2386 break; 2387 } 2388 } 2389 free_self_maps(maps); 2390 2391 return ret; 2392 } 2393 2394 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2395 abi_ulong orig_hiaddr, long align) 2396 { 2397 uintptr_t loaddr = orig_loaddr; 2398 uintptr_t hiaddr = orig_hiaddr; 2399 uintptr_t offset = 0; 2400 uintptr_t addr; 2401 2402 if (hiaddr != orig_hiaddr) { 2403 error_report("%s: requires virtual address space that the " 2404 "host cannot provide (0x%" PRIx64 ")", 2405 image_name, (uint64_t)orig_hiaddr); 2406 exit(EXIT_FAILURE); 2407 } 2408 2409 loaddr &= -align; 2410 if (HI_COMMPAGE) { 2411 /* 2412 * Extend the allocation to include the commpage. 2413 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2414 * need to ensure there is space bellow the guest_base so we 2415 * can map the commpage in the place needed when the address 2416 * arithmetic wraps around. 2417 */ 2418 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2419 hiaddr = (uintptr_t) 4 << 30; 2420 } else { 2421 offset = -(HI_COMMPAGE & -align); 2422 } 2423 } else if (LO_COMMPAGE != 0) { 2424 loaddr = MIN(loaddr, LO_COMMPAGE & -align); 2425 } 2426 2427 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2428 if (addr == -1) { 2429 /* 2430 * If HI_COMMPAGE, there *might* be a non-consecutive allocation 2431 * that can satisfy both. But as the normal arm32 link base address 2432 * is ~32k, and we extend down to include the commpage, making the 2433 * overhead only ~96k, this is unlikely. 2434 */ 2435 error_report("%s: Unable to allocate %#zx bytes of " 2436 "virtual address space", image_name, 2437 (size_t)(hiaddr - loaddr)); 2438 exit(EXIT_FAILURE); 2439 } 2440 2441 guest_base = addr; 2442 } 2443 2444 static void pgb_dynamic(const char *image_name, long align) 2445 { 2446 /* 2447 * The executable is dynamic and does not require a fixed address. 2448 * All we need is a commpage that satisfies align. 2449 * If we do not need a commpage, leave guest_base == 0. 2450 */ 2451 if (HI_COMMPAGE) { 2452 uintptr_t addr, commpage; 2453 2454 /* 64-bit hosts should have used reserved_va. */ 2455 assert(sizeof(uintptr_t) == 4); 2456 2457 /* 2458 * By putting the commpage at the first hole, that puts guest_base 2459 * just above that, and maximises the positive guest addresses. 2460 */ 2461 commpage = HI_COMMPAGE & -align; 2462 addr = pgb_find_hole(commpage, -commpage, align, 0); 2463 assert(addr != -1); 2464 guest_base = addr; 2465 } 2466 } 2467 2468 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2469 abi_ulong guest_hiaddr, long align) 2470 { 2471 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2472 void *addr, *test; 2473 2474 if (guest_hiaddr > reserved_va) { 2475 error_report("%s: requires more than reserved virtual " 2476 "address space (0x%" PRIx64 " > 0x%lx)", 2477 image_name, (uint64_t)guest_hiaddr, reserved_va); 2478 exit(EXIT_FAILURE); 2479 } 2480 2481 /* Widen the "image" to the entire reserved address space. */ 2482 pgb_static(image_name, 0, reserved_va, align); 2483 2484 /* osdep.h defines this as 0 if it's missing */ 2485 flags |= MAP_FIXED_NOREPLACE; 2486 2487 /* Reserve the memory on the host. */ 2488 assert(guest_base != 0); 2489 test = g2h_untagged(0); 2490 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2491 if (addr == MAP_FAILED || addr != test) { 2492 error_report("Unable to reserve 0x%lx bytes of virtual address " 2493 "space at %p (%s) for use as guest address space (check your" 2494 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2495 "using -R option)", reserved_va, test, strerror(errno)); 2496 exit(EXIT_FAILURE); 2497 } 2498 } 2499 2500 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2501 abi_ulong guest_hiaddr) 2502 { 2503 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2504 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2505 2506 if (have_guest_base) { 2507 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2508 } else if (reserved_va) { 2509 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2510 } else if (guest_loaddr) { 2511 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2512 } else { 2513 pgb_dynamic(image_name, align); 2514 } 2515 2516 /* Reserve and initialize the commpage. */ 2517 if (!init_guest_commpage()) { 2518 /* 2519 * With have_guest_base, the user has selected the address and 2520 * we are trying to work with that. Otherwise, we have selected 2521 * free space and init_guest_commpage must succeeded. 2522 */ 2523 assert(have_guest_base); 2524 pgb_fail_in_use(image_name); 2525 } 2526 2527 assert(QEMU_IS_ALIGNED(guest_base, align)); 2528 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2529 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2530 } 2531 2532 enum { 2533 /* The string "GNU\0" as a magic number. */ 2534 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2535 NOTE_DATA_SZ = 1 * KiB, 2536 NOTE_NAME_SZ = 4, 2537 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2538 }; 2539 2540 /* 2541 * Process a single gnu_property entry. 2542 * Return false for error. 2543 */ 2544 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2545 struct image_info *info, bool have_prev_type, 2546 uint32_t *prev_type, Error **errp) 2547 { 2548 uint32_t pr_type, pr_datasz, step; 2549 2550 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2551 goto error_data; 2552 } 2553 datasz -= *off; 2554 data += *off / sizeof(uint32_t); 2555 2556 if (datasz < 2 * sizeof(uint32_t)) { 2557 goto error_data; 2558 } 2559 pr_type = data[0]; 2560 pr_datasz = data[1]; 2561 data += 2; 2562 datasz -= 2 * sizeof(uint32_t); 2563 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2564 if (step > datasz) { 2565 goto error_data; 2566 } 2567 2568 /* Properties are supposed to be unique and sorted on pr_type. */ 2569 if (have_prev_type && pr_type <= *prev_type) { 2570 if (pr_type == *prev_type) { 2571 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2572 } else { 2573 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2574 } 2575 return false; 2576 } 2577 *prev_type = pr_type; 2578 2579 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2580 return false; 2581 } 2582 2583 *off += 2 * sizeof(uint32_t) + step; 2584 return true; 2585 2586 error_data: 2587 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2588 return false; 2589 } 2590 2591 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2592 static bool parse_elf_properties(int image_fd, 2593 struct image_info *info, 2594 const struct elf_phdr *phdr, 2595 char bprm_buf[BPRM_BUF_SIZE], 2596 Error **errp) 2597 { 2598 union { 2599 struct elf_note nhdr; 2600 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2601 } note; 2602 2603 int n, off, datasz; 2604 bool have_prev_type; 2605 uint32_t prev_type; 2606 2607 /* Unless the arch requires properties, ignore them. */ 2608 if (!ARCH_USE_GNU_PROPERTY) { 2609 return true; 2610 } 2611 2612 /* If the properties are crazy large, that's too bad. */ 2613 n = phdr->p_filesz; 2614 if (n > sizeof(note)) { 2615 error_setg(errp, "PT_GNU_PROPERTY too large"); 2616 return false; 2617 } 2618 if (n < sizeof(note.nhdr)) { 2619 error_setg(errp, "PT_GNU_PROPERTY too small"); 2620 return false; 2621 } 2622 2623 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2624 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2625 } else { 2626 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2627 if (len != n) { 2628 error_setg_errno(errp, errno, "Error reading file header"); 2629 return false; 2630 } 2631 } 2632 2633 /* 2634 * The contents of a valid PT_GNU_PROPERTY is a sequence 2635 * of uint32_t -- swap them all now. 2636 */ 2637 #ifdef BSWAP_NEEDED 2638 for (int i = 0; i < n / 4; i++) { 2639 bswap32s(note.data + i); 2640 } 2641 #endif 2642 2643 /* 2644 * Note that nhdr is 3 words, and that the "name" described by namesz 2645 * immediately follows nhdr and is thus at the 4th word. Further, all 2646 * of the inputs to the kernel's round_up are multiples of 4. 2647 */ 2648 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2649 note.nhdr.n_namesz != NOTE_NAME_SZ || 2650 note.data[3] != GNU0_MAGIC) { 2651 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2652 return false; 2653 } 2654 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2655 2656 datasz = note.nhdr.n_descsz + off; 2657 if (datasz > n) { 2658 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2659 return false; 2660 } 2661 2662 have_prev_type = false; 2663 prev_type = 0; 2664 while (1) { 2665 if (off == datasz) { 2666 return true; /* end, exit ok */ 2667 } 2668 if (!parse_elf_property(note.data, &off, datasz, info, 2669 have_prev_type, &prev_type, errp)) { 2670 return false; 2671 } 2672 have_prev_type = true; 2673 } 2674 } 2675 2676 /* Load an ELF image into the address space. 2677 2678 IMAGE_NAME is the filename of the image, to use in error messages. 2679 IMAGE_FD is the open file descriptor for the image. 2680 2681 BPRM_BUF is a copy of the beginning of the file; this of course 2682 contains the elf file header at offset 0. It is assumed that this 2683 buffer is sufficiently aligned to present no problems to the host 2684 in accessing data at aligned offsets within the buffer. 2685 2686 On return: INFO values will be filled in, as necessary or available. */ 2687 2688 static void load_elf_image(const char *image_name, int image_fd, 2689 struct image_info *info, char **pinterp_name, 2690 char bprm_buf[BPRM_BUF_SIZE]) 2691 { 2692 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2693 struct elf_phdr *phdr; 2694 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2695 int i, retval, prot_exec; 2696 Error *err = NULL; 2697 2698 /* First of all, some simple consistency checks */ 2699 if (!elf_check_ident(ehdr)) { 2700 error_setg(&err, "Invalid ELF image for this architecture"); 2701 goto exit_errmsg; 2702 } 2703 bswap_ehdr(ehdr); 2704 if (!elf_check_ehdr(ehdr)) { 2705 error_setg(&err, "Invalid ELF image for this architecture"); 2706 goto exit_errmsg; 2707 } 2708 2709 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2710 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2711 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2712 } else { 2713 phdr = (struct elf_phdr *) alloca(i); 2714 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2715 if (retval != i) { 2716 goto exit_read; 2717 } 2718 } 2719 bswap_phdr(phdr, ehdr->e_phnum); 2720 2721 info->nsegs = 0; 2722 info->pt_dynamic_addr = 0; 2723 2724 mmap_lock(); 2725 2726 /* 2727 * Find the maximum size of the image and allocate an appropriate 2728 * amount of memory to handle that. Locate the interpreter, if any. 2729 */ 2730 loaddr = -1, hiaddr = 0; 2731 info->alignment = 0; 2732 for (i = 0; i < ehdr->e_phnum; ++i) { 2733 struct elf_phdr *eppnt = phdr + i; 2734 if (eppnt->p_type == PT_LOAD) { 2735 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 2736 if (a < loaddr) { 2737 loaddr = a; 2738 } 2739 a = eppnt->p_vaddr + eppnt->p_memsz; 2740 if (a > hiaddr) { 2741 hiaddr = a; 2742 } 2743 ++info->nsegs; 2744 info->alignment |= eppnt->p_align; 2745 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2746 g_autofree char *interp_name = NULL; 2747 2748 if (*pinterp_name) { 2749 error_setg(&err, "Multiple PT_INTERP entries"); 2750 goto exit_errmsg; 2751 } 2752 2753 interp_name = g_malloc(eppnt->p_filesz); 2754 2755 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2756 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2757 eppnt->p_filesz); 2758 } else { 2759 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2760 eppnt->p_offset); 2761 if (retval != eppnt->p_filesz) { 2762 goto exit_read; 2763 } 2764 } 2765 if (interp_name[eppnt->p_filesz - 1] != 0) { 2766 error_setg(&err, "Invalid PT_INTERP entry"); 2767 goto exit_errmsg; 2768 } 2769 *pinterp_name = g_steal_pointer(&interp_name); 2770 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 2771 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 2772 goto exit_errmsg; 2773 } 2774 } 2775 } 2776 2777 if (pinterp_name != NULL) { 2778 /* 2779 * This is the main executable. 2780 * 2781 * Reserve extra space for brk. 2782 * We hold on to this space while placing the interpreter 2783 * and the stack, lest they be placed immediately after 2784 * the data segment and block allocation from the brk. 2785 * 2786 * 16MB is chosen as "large enough" without being so large 2787 * as to allow the result to not fit with a 32-bit guest on 2788 * a 32-bit host. 2789 */ 2790 info->reserve_brk = 16 * MiB; 2791 hiaddr += info->reserve_brk; 2792 2793 if (ehdr->e_type == ET_EXEC) { 2794 /* 2795 * Make sure that the low address does not conflict with 2796 * MMAP_MIN_ADDR or the QEMU application itself. 2797 */ 2798 probe_guest_base(image_name, loaddr, hiaddr); 2799 } else { 2800 /* 2801 * The binary is dynamic, but we still need to 2802 * select guest_base. In this case we pass a size. 2803 */ 2804 probe_guest_base(image_name, 0, hiaddr - loaddr); 2805 } 2806 } 2807 2808 /* 2809 * Reserve address space for all of this. 2810 * 2811 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2812 * exactly the address range that is required. 2813 * 2814 * Otherwise this is ET_DYN, and we are searching for a location 2815 * that can hold the memory space required. If the image is 2816 * pre-linked, LOADDR will be non-zero, and the kernel should 2817 * honor that address if it happens to be free. 2818 * 2819 * In both cases, we will overwrite pages in this range with mappings 2820 * from the executable. 2821 */ 2822 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2823 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2824 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2825 -1, 0); 2826 if (load_addr == -1) { 2827 goto exit_mmap; 2828 } 2829 load_bias = load_addr - loaddr; 2830 2831 if (elf_is_fdpic(ehdr)) { 2832 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2833 g_malloc(sizeof(*loadsegs) * info->nsegs); 2834 2835 for (i = 0; i < ehdr->e_phnum; ++i) { 2836 switch (phdr[i].p_type) { 2837 case PT_DYNAMIC: 2838 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2839 break; 2840 case PT_LOAD: 2841 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2842 loadsegs->p_vaddr = phdr[i].p_vaddr; 2843 loadsegs->p_memsz = phdr[i].p_memsz; 2844 ++loadsegs; 2845 break; 2846 } 2847 } 2848 } 2849 2850 info->load_bias = load_bias; 2851 info->code_offset = load_bias; 2852 info->data_offset = load_bias; 2853 info->load_addr = load_addr; 2854 info->entry = ehdr->e_entry + load_bias; 2855 info->start_code = -1; 2856 info->end_code = 0; 2857 info->start_data = -1; 2858 info->end_data = 0; 2859 info->brk = 0; 2860 info->elf_flags = ehdr->e_flags; 2861 2862 prot_exec = PROT_EXEC; 2863 #ifdef TARGET_AARCH64 2864 /* 2865 * If the BTI feature is present, this indicates that the executable 2866 * pages of the startup binary should be mapped with PROT_BTI, so that 2867 * branch targets are enforced. 2868 * 2869 * The startup binary is either the interpreter or the static executable. 2870 * The interpreter is responsible for all pages of a dynamic executable. 2871 * 2872 * Elf notes are backward compatible to older cpus. 2873 * Do not enable BTI unless it is supported. 2874 */ 2875 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 2876 && (pinterp_name == NULL || *pinterp_name == 0) 2877 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 2878 prot_exec |= TARGET_PROT_BTI; 2879 } 2880 #endif 2881 2882 for (i = 0; i < ehdr->e_phnum; i++) { 2883 struct elf_phdr *eppnt = phdr + i; 2884 if (eppnt->p_type == PT_LOAD) { 2885 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2886 int elf_prot = 0; 2887 2888 if (eppnt->p_flags & PF_R) { 2889 elf_prot |= PROT_READ; 2890 } 2891 if (eppnt->p_flags & PF_W) { 2892 elf_prot |= PROT_WRITE; 2893 } 2894 if (eppnt->p_flags & PF_X) { 2895 elf_prot |= prot_exec; 2896 } 2897 2898 vaddr = load_bias + eppnt->p_vaddr; 2899 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2900 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2901 2902 vaddr_ef = vaddr + eppnt->p_filesz; 2903 vaddr_em = vaddr + eppnt->p_memsz; 2904 2905 /* 2906 * Some segments may be completely empty, with a non-zero p_memsz 2907 * but no backing file segment. 2908 */ 2909 if (eppnt->p_filesz != 0) { 2910 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2911 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2912 MAP_PRIVATE | MAP_FIXED, 2913 image_fd, eppnt->p_offset - vaddr_po); 2914 2915 if (error == -1) { 2916 goto exit_mmap; 2917 } 2918 2919 /* 2920 * If the load segment requests extra zeros (e.g. bss), map it. 2921 */ 2922 if (eppnt->p_filesz < eppnt->p_memsz) { 2923 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2924 } 2925 } else if (eppnt->p_memsz != 0) { 2926 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 2927 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2928 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 2929 -1, 0); 2930 2931 if (error == -1) { 2932 goto exit_mmap; 2933 } 2934 } 2935 2936 /* Find the full program boundaries. */ 2937 if (elf_prot & PROT_EXEC) { 2938 if (vaddr < info->start_code) { 2939 info->start_code = vaddr; 2940 } 2941 if (vaddr_ef > info->end_code) { 2942 info->end_code = vaddr_ef; 2943 } 2944 } 2945 if (elf_prot & PROT_WRITE) { 2946 if (vaddr < info->start_data) { 2947 info->start_data = vaddr; 2948 } 2949 if (vaddr_ef > info->end_data) { 2950 info->end_data = vaddr_ef; 2951 } 2952 } 2953 if (vaddr_em > info->brk) { 2954 info->brk = vaddr_em; 2955 } 2956 #ifdef TARGET_MIPS 2957 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2958 Mips_elf_abiflags_v0 abiflags; 2959 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2960 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 2961 goto exit_errmsg; 2962 } 2963 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2964 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2965 sizeof(Mips_elf_abiflags_v0)); 2966 } else { 2967 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2968 eppnt->p_offset); 2969 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2970 goto exit_read; 2971 } 2972 } 2973 bswap_mips_abiflags(&abiflags); 2974 info->fp_abi = abiflags.fp_abi; 2975 #endif 2976 } 2977 } 2978 2979 if (info->end_data == 0) { 2980 info->start_data = info->end_code; 2981 info->end_data = info->end_code; 2982 } 2983 2984 if (qemu_log_enabled()) { 2985 load_symbols(ehdr, image_fd, load_bias); 2986 } 2987 2988 mmap_unlock(); 2989 2990 close(image_fd); 2991 return; 2992 2993 exit_read: 2994 if (retval >= 0) { 2995 error_setg(&err, "Incomplete read of file header"); 2996 } else { 2997 error_setg_errno(&err, errno, "Error reading file header"); 2998 } 2999 goto exit_errmsg; 3000 exit_mmap: 3001 error_setg_errno(&err, errno, "Error mapping file"); 3002 goto exit_errmsg; 3003 exit_errmsg: 3004 error_reportf_err(err, "%s: ", image_name); 3005 exit(-1); 3006 } 3007 3008 static void load_elf_interp(const char *filename, struct image_info *info, 3009 char bprm_buf[BPRM_BUF_SIZE]) 3010 { 3011 int fd, retval; 3012 Error *err = NULL; 3013 3014 fd = open(path(filename), O_RDONLY); 3015 if (fd < 0) { 3016 error_setg_file_open(&err, errno, filename); 3017 error_report_err(err); 3018 exit(-1); 3019 } 3020 3021 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3022 if (retval < 0) { 3023 error_setg_errno(&err, errno, "Error reading file header"); 3024 error_reportf_err(err, "%s: ", filename); 3025 exit(-1); 3026 } 3027 3028 if (retval < BPRM_BUF_SIZE) { 3029 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 3030 } 3031 3032 load_elf_image(filename, fd, info, NULL, bprm_buf); 3033 } 3034 3035 static int symfind(const void *s0, const void *s1) 3036 { 3037 target_ulong addr = *(target_ulong *)s0; 3038 struct elf_sym *sym = (struct elf_sym *)s1; 3039 int result = 0; 3040 if (addr < sym->st_value) { 3041 result = -1; 3042 } else if (addr >= sym->st_value + sym->st_size) { 3043 result = 1; 3044 } 3045 return result; 3046 } 3047 3048 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 3049 { 3050 #if ELF_CLASS == ELFCLASS32 3051 struct elf_sym *syms = s->disas_symtab.elf32; 3052 #else 3053 struct elf_sym *syms = s->disas_symtab.elf64; 3054 #endif 3055 3056 // binary search 3057 struct elf_sym *sym; 3058 3059 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3060 if (sym != NULL) { 3061 return s->disas_strtab + sym->st_name; 3062 } 3063 3064 return ""; 3065 } 3066 3067 /* FIXME: This should use elf_ops.h */ 3068 static int symcmp(const void *s0, const void *s1) 3069 { 3070 struct elf_sym *sym0 = (struct elf_sym *)s0; 3071 struct elf_sym *sym1 = (struct elf_sym *)s1; 3072 return (sym0->st_value < sym1->st_value) 3073 ? -1 3074 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3075 } 3076 3077 /* Best attempt to load symbols from this ELF object. */ 3078 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3079 { 3080 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3081 uint64_t segsz; 3082 struct elf_shdr *shdr; 3083 char *strings = NULL; 3084 struct syminfo *s = NULL; 3085 struct elf_sym *new_syms, *syms = NULL; 3086 3087 shnum = hdr->e_shnum; 3088 i = shnum * sizeof(struct elf_shdr); 3089 shdr = (struct elf_shdr *)alloca(i); 3090 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3091 return; 3092 } 3093 3094 bswap_shdr(shdr, shnum); 3095 for (i = 0; i < shnum; ++i) { 3096 if (shdr[i].sh_type == SHT_SYMTAB) { 3097 sym_idx = i; 3098 str_idx = shdr[i].sh_link; 3099 goto found; 3100 } 3101 } 3102 3103 /* There will be no symbol table if the file was stripped. */ 3104 return; 3105 3106 found: 3107 /* Now know where the strtab and symtab are. Snarf them. */ 3108 s = g_try_new(struct syminfo, 1); 3109 if (!s) { 3110 goto give_up; 3111 } 3112 3113 segsz = shdr[str_idx].sh_size; 3114 s->disas_strtab = strings = g_try_malloc(segsz); 3115 if (!strings || 3116 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3117 goto give_up; 3118 } 3119 3120 segsz = shdr[sym_idx].sh_size; 3121 syms = g_try_malloc(segsz); 3122 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3123 goto give_up; 3124 } 3125 3126 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3127 /* Implausibly large symbol table: give up rather than ploughing 3128 * on with the number of symbols calculation overflowing 3129 */ 3130 goto give_up; 3131 } 3132 nsyms = segsz / sizeof(struct elf_sym); 3133 for (i = 0; i < nsyms; ) { 3134 bswap_sym(syms + i); 3135 /* Throw away entries which we do not need. */ 3136 if (syms[i].st_shndx == SHN_UNDEF 3137 || syms[i].st_shndx >= SHN_LORESERVE 3138 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3139 if (i < --nsyms) { 3140 syms[i] = syms[nsyms]; 3141 } 3142 } else { 3143 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3144 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3145 syms[i].st_value &= ~(target_ulong)1; 3146 #endif 3147 syms[i].st_value += load_bias; 3148 i++; 3149 } 3150 } 3151 3152 /* No "useful" symbol. */ 3153 if (nsyms == 0) { 3154 goto give_up; 3155 } 3156 3157 /* Attempt to free the storage associated with the local symbols 3158 that we threw away. Whether or not this has any effect on the 3159 memory allocation depends on the malloc implementation and how 3160 many symbols we managed to discard. */ 3161 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3162 if (new_syms == NULL) { 3163 goto give_up; 3164 } 3165 syms = new_syms; 3166 3167 qsort(syms, nsyms, sizeof(*syms), symcmp); 3168 3169 s->disas_num_syms = nsyms; 3170 #if ELF_CLASS == ELFCLASS32 3171 s->disas_symtab.elf32 = syms; 3172 #else 3173 s->disas_symtab.elf64 = syms; 3174 #endif 3175 s->lookup_symbol = lookup_symbolxx; 3176 s->next = syminfos; 3177 syminfos = s; 3178 3179 return; 3180 3181 give_up: 3182 g_free(s); 3183 g_free(strings); 3184 g_free(syms); 3185 } 3186 3187 uint32_t get_elf_eflags(int fd) 3188 { 3189 struct elfhdr ehdr; 3190 off_t offset; 3191 int ret; 3192 3193 /* Read ELF header */ 3194 offset = lseek(fd, 0, SEEK_SET); 3195 if (offset == (off_t) -1) { 3196 return 0; 3197 } 3198 ret = read(fd, &ehdr, sizeof(ehdr)); 3199 if (ret < sizeof(ehdr)) { 3200 return 0; 3201 } 3202 offset = lseek(fd, offset, SEEK_SET); 3203 if (offset == (off_t) -1) { 3204 return 0; 3205 } 3206 3207 /* Check ELF signature */ 3208 if (!elf_check_ident(&ehdr)) { 3209 return 0; 3210 } 3211 3212 /* check header */ 3213 bswap_ehdr(&ehdr); 3214 if (!elf_check_ehdr(&ehdr)) { 3215 return 0; 3216 } 3217 3218 /* return architecture id */ 3219 return ehdr.e_flags; 3220 } 3221 3222 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3223 { 3224 struct image_info interp_info; 3225 struct elfhdr elf_ex; 3226 char *elf_interpreter = NULL; 3227 char *scratch; 3228 3229 memset(&interp_info, 0, sizeof(interp_info)); 3230 #ifdef TARGET_MIPS 3231 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3232 #endif 3233 3234 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3235 3236 load_elf_image(bprm->filename, bprm->fd, info, 3237 &elf_interpreter, bprm->buf); 3238 3239 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3240 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3241 when we load the interpreter. */ 3242 elf_ex = *(struct elfhdr *)bprm->buf; 3243 3244 /* Do this so that we can load the interpreter, if need be. We will 3245 change some of these later */ 3246 bprm->p = setup_arg_pages(bprm, info); 3247 3248 scratch = g_new0(char, TARGET_PAGE_SIZE); 3249 if (STACK_GROWS_DOWN) { 3250 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3251 bprm->p, info->stack_limit); 3252 info->file_string = bprm->p; 3253 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3254 bprm->p, info->stack_limit); 3255 info->env_strings = bprm->p; 3256 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3257 bprm->p, info->stack_limit); 3258 info->arg_strings = bprm->p; 3259 } else { 3260 info->arg_strings = bprm->p; 3261 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3262 bprm->p, info->stack_limit); 3263 info->env_strings = bprm->p; 3264 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3265 bprm->p, info->stack_limit); 3266 info->file_string = bprm->p; 3267 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3268 bprm->p, info->stack_limit); 3269 } 3270 3271 g_free(scratch); 3272 3273 if (!bprm->p) { 3274 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3275 exit(-1); 3276 } 3277 3278 if (elf_interpreter) { 3279 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3280 3281 /* If the program interpreter is one of these two, then assume 3282 an iBCS2 image. Otherwise assume a native linux image. */ 3283 3284 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3285 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3286 info->personality = PER_SVR4; 3287 3288 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3289 and some applications "depend" upon this behavior. Since 3290 we do not have the power to recompile these, we emulate 3291 the SVr4 behavior. Sigh. */ 3292 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3293 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3294 } 3295 #ifdef TARGET_MIPS 3296 info->interp_fp_abi = interp_info.fp_abi; 3297 #endif 3298 } 3299 3300 /* 3301 * TODO: load a vdso, which would also contain the signal trampolines. 3302 * Otherwise, allocate a private page to hold them. 3303 */ 3304 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3305 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3306 PROT_READ | PROT_WRITE, 3307 MAP_PRIVATE | MAP_ANON, -1, 0); 3308 if (tramp_page == -1) { 3309 return -errno; 3310 } 3311 3312 setup_sigtramp(tramp_page); 3313 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3314 } 3315 3316 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3317 info, (elf_interpreter ? &interp_info : NULL)); 3318 info->start_stack = bprm->p; 3319 3320 /* If we have an interpreter, set that as the program's entry point. 3321 Copy the load_bias as well, to help PPC64 interpret the entry 3322 point as a function descriptor. Do this after creating elf tables 3323 so that we copy the original program entry point into the AUXV. */ 3324 if (elf_interpreter) { 3325 info->load_bias = interp_info.load_bias; 3326 info->entry = interp_info.entry; 3327 g_free(elf_interpreter); 3328 } 3329 3330 #ifdef USE_ELF_CORE_DUMP 3331 bprm->core_dump = &elf_core_dump; 3332 #endif 3333 3334 /* 3335 * If we reserved extra space for brk, release it now. 3336 * The implementation of do_brk in syscalls.c expects to be able 3337 * to mmap pages in this space. 3338 */ 3339 if (info->reserve_brk) { 3340 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3341 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3342 target_munmap(start_brk, end_brk - start_brk); 3343 } 3344 3345 return 0; 3346 } 3347 3348 #ifdef USE_ELF_CORE_DUMP 3349 /* 3350 * Definitions to generate Intel SVR4-like core files. 3351 * These mostly have the same names as the SVR4 types with "target_elf_" 3352 * tacked on the front to prevent clashes with linux definitions, 3353 * and the typedef forms have been avoided. This is mostly like 3354 * the SVR4 structure, but more Linuxy, with things that Linux does 3355 * not support and which gdb doesn't really use excluded. 3356 * 3357 * Fields we don't dump (their contents is zero) in linux-user qemu 3358 * are marked with XXX. 3359 * 3360 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3361 * 3362 * Porting ELF coredump for target is (quite) simple process. First you 3363 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3364 * the target resides): 3365 * 3366 * #define USE_ELF_CORE_DUMP 3367 * 3368 * Next you define type of register set used for dumping. ELF specification 3369 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3370 * 3371 * typedef <target_regtype> target_elf_greg_t; 3372 * #define ELF_NREG <number of registers> 3373 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3374 * 3375 * Last step is to implement target specific function that copies registers 3376 * from given cpu into just specified register set. Prototype is: 3377 * 3378 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3379 * const CPUArchState *env); 3380 * 3381 * Parameters: 3382 * regs - copy register values into here (allocated and zeroed by caller) 3383 * env - copy registers from here 3384 * 3385 * Example for ARM target is provided in this file. 3386 */ 3387 3388 /* An ELF note in memory */ 3389 struct memelfnote { 3390 const char *name; 3391 size_t namesz; 3392 size_t namesz_rounded; 3393 int type; 3394 size_t datasz; 3395 size_t datasz_rounded; 3396 void *data; 3397 size_t notesz; 3398 }; 3399 3400 struct target_elf_siginfo { 3401 abi_int si_signo; /* signal number */ 3402 abi_int si_code; /* extra code */ 3403 abi_int si_errno; /* errno */ 3404 }; 3405 3406 struct target_elf_prstatus { 3407 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3408 abi_short pr_cursig; /* Current signal */ 3409 abi_ulong pr_sigpend; /* XXX */ 3410 abi_ulong pr_sighold; /* XXX */ 3411 target_pid_t pr_pid; 3412 target_pid_t pr_ppid; 3413 target_pid_t pr_pgrp; 3414 target_pid_t pr_sid; 3415 struct target_timeval pr_utime; /* XXX User time */ 3416 struct target_timeval pr_stime; /* XXX System time */ 3417 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3418 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3419 target_elf_gregset_t pr_reg; /* GP registers */ 3420 abi_int pr_fpvalid; /* XXX */ 3421 }; 3422 3423 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3424 3425 struct target_elf_prpsinfo { 3426 char pr_state; /* numeric process state */ 3427 char pr_sname; /* char for pr_state */ 3428 char pr_zomb; /* zombie */ 3429 char pr_nice; /* nice val */ 3430 abi_ulong pr_flag; /* flags */ 3431 target_uid_t pr_uid; 3432 target_gid_t pr_gid; 3433 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3434 /* Lots missing */ 3435 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3436 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3437 }; 3438 3439 /* Here is the structure in which status of each thread is captured. */ 3440 struct elf_thread_status { 3441 QTAILQ_ENTRY(elf_thread_status) ets_link; 3442 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3443 #if 0 3444 elf_fpregset_t fpu; /* NT_PRFPREG */ 3445 struct task_struct *thread; 3446 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3447 #endif 3448 struct memelfnote notes[1]; 3449 int num_notes; 3450 }; 3451 3452 struct elf_note_info { 3453 struct memelfnote *notes; 3454 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3455 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3456 3457 QTAILQ_HEAD(, elf_thread_status) thread_list; 3458 #if 0 3459 /* 3460 * Current version of ELF coredump doesn't support 3461 * dumping fp regs etc. 3462 */ 3463 elf_fpregset_t *fpu; 3464 elf_fpxregset_t *xfpu; 3465 int thread_status_size; 3466 #endif 3467 int notes_size; 3468 int numnote; 3469 }; 3470 3471 struct vm_area_struct { 3472 target_ulong vma_start; /* start vaddr of memory region */ 3473 target_ulong vma_end; /* end vaddr of memory region */ 3474 abi_ulong vma_flags; /* protection etc. flags for the region */ 3475 QTAILQ_ENTRY(vm_area_struct) vma_link; 3476 }; 3477 3478 struct mm_struct { 3479 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3480 int mm_count; /* number of mappings */ 3481 }; 3482 3483 static struct mm_struct *vma_init(void); 3484 static void vma_delete(struct mm_struct *); 3485 static int vma_add_mapping(struct mm_struct *, target_ulong, 3486 target_ulong, abi_ulong); 3487 static int vma_get_mapping_count(const struct mm_struct *); 3488 static struct vm_area_struct *vma_first(const struct mm_struct *); 3489 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3490 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3491 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3492 unsigned long flags); 3493 3494 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3495 static void fill_note(struct memelfnote *, const char *, int, 3496 unsigned int, void *); 3497 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3498 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3499 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3500 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3501 static size_t note_size(const struct memelfnote *); 3502 static void free_note_info(struct elf_note_info *); 3503 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3504 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3505 3506 static int dump_write(int, const void *, size_t); 3507 static int write_note(struct memelfnote *, int); 3508 static int write_note_info(struct elf_note_info *, int); 3509 3510 #ifdef BSWAP_NEEDED 3511 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3512 { 3513 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3514 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3515 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3516 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3517 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3518 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3519 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3520 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3521 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3522 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3523 /* cpu times are not filled, so we skip them */ 3524 /* regs should be in correct format already */ 3525 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3526 } 3527 3528 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3529 { 3530 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3531 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3532 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3533 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3534 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3535 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3536 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3537 } 3538 3539 static void bswap_note(struct elf_note *en) 3540 { 3541 bswap32s(&en->n_namesz); 3542 bswap32s(&en->n_descsz); 3543 bswap32s(&en->n_type); 3544 } 3545 #else 3546 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3547 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3548 static inline void bswap_note(struct elf_note *en) { } 3549 #endif /* BSWAP_NEEDED */ 3550 3551 /* 3552 * Minimal support for linux memory regions. These are needed 3553 * when we are finding out what memory exactly belongs to 3554 * emulated process. No locks needed here, as long as 3555 * thread that received the signal is stopped. 3556 */ 3557 3558 static struct mm_struct *vma_init(void) 3559 { 3560 struct mm_struct *mm; 3561 3562 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3563 return (NULL); 3564 3565 mm->mm_count = 0; 3566 QTAILQ_INIT(&mm->mm_mmap); 3567 3568 return (mm); 3569 } 3570 3571 static void vma_delete(struct mm_struct *mm) 3572 { 3573 struct vm_area_struct *vma; 3574 3575 while ((vma = vma_first(mm)) != NULL) { 3576 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3577 g_free(vma); 3578 } 3579 g_free(mm); 3580 } 3581 3582 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3583 target_ulong end, abi_ulong flags) 3584 { 3585 struct vm_area_struct *vma; 3586 3587 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3588 return (-1); 3589 3590 vma->vma_start = start; 3591 vma->vma_end = end; 3592 vma->vma_flags = flags; 3593 3594 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3595 mm->mm_count++; 3596 3597 return (0); 3598 } 3599 3600 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3601 { 3602 return (QTAILQ_FIRST(&mm->mm_mmap)); 3603 } 3604 3605 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3606 { 3607 return (QTAILQ_NEXT(vma, vma_link)); 3608 } 3609 3610 static int vma_get_mapping_count(const struct mm_struct *mm) 3611 { 3612 return (mm->mm_count); 3613 } 3614 3615 /* 3616 * Calculate file (dump) size of given memory region. 3617 */ 3618 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3619 { 3620 /* if we cannot even read the first page, skip it */ 3621 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3622 return (0); 3623 3624 /* 3625 * Usually we don't dump executable pages as they contain 3626 * non-writable code that debugger can read directly from 3627 * target library etc. However, thread stacks are marked 3628 * also executable so we read in first page of given region 3629 * and check whether it contains elf header. If there is 3630 * no elf header, we dump it. 3631 */ 3632 if (vma->vma_flags & PROT_EXEC) { 3633 char page[TARGET_PAGE_SIZE]; 3634 3635 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3636 return 0; 3637 } 3638 if ((page[EI_MAG0] == ELFMAG0) && 3639 (page[EI_MAG1] == ELFMAG1) && 3640 (page[EI_MAG2] == ELFMAG2) && 3641 (page[EI_MAG3] == ELFMAG3)) { 3642 /* 3643 * Mappings are possibly from ELF binary. Don't dump 3644 * them. 3645 */ 3646 return (0); 3647 } 3648 } 3649 3650 return (vma->vma_end - vma->vma_start); 3651 } 3652 3653 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3654 unsigned long flags) 3655 { 3656 struct mm_struct *mm = (struct mm_struct *)priv; 3657 3658 vma_add_mapping(mm, start, end, flags); 3659 return (0); 3660 } 3661 3662 static void fill_note(struct memelfnote *note, const char *name, int type, 3663 unsigned int sz, void *data) 3664 { 3665 unsigned int namesz; 3666 3667 namesz = strlen(name) + 1; 3668 note->name = name; 3669 note->namesz = namesz; 3670 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3671 note->type = type; 3672 note->datasz = sz; 3673 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3674 3675 note->data = data; 3676 3677 /* 3678 * We calculate rounded up note size here as specified by 3679 * ELF document. 3680 */ 3681 note->notesz = sizeof (struct elf_note) + 3682 note->namesz_rounded + note->datasz_rounded; 3683 } 3684 3685 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3686 uint32_t flags) 3687 { 3688 (void) memset(elf, 0, sizeof(*elf)); 3689 3690 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3691 elf->e_ident[EI_CLASS] = ELF_CLASS; 3692 elf->e_ident[EI_DATA] = ELF_DATA; 3693 elf->e_ident[EI_VERSION] = EV_CURRENT; 3694 elf->e_ident[EI_OSABI] = ELF_OSABI; 3695 3696 elf->e_type = ET_CORE; 3697 elf->e_machine = machine; 3698 elf->e_version = EV_CURRENT; 3699 elf->e_phoff = sizeof(struct elfhdr); 3700 elf->e_flags = flags; 3701 elf->e_ehsize = sizeof(struct elfhdr); 3702 elf->e_phentsize = sizeof(struct elf_phdr); 3703 elf->e_phnum = segs; 3704 3705 bswap_ehdr(elf); 3706 } 3707 3708 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3709 { 3710 phdr->p_type = PT_NOTE; 3711 phdr->p_offset = offset; 3712 phdr->p_vaddr = 0; 3713 phdr->p_paddr = 0; 3714 phdr->p_filesz = sz; 3715 phdr->p_memsz = 0; 3716 phdr->p_flags = 0; 3717 phdr->p_align = 0; 3718 3719 bswap_phdr(phdr, 1); 3720 } 3721 3722 static size_t note_size(const struct memelfnote *note) 3723 { 3724 return (note->notesz); 3725 } 3726 3727 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3728 const TaskState *ts, int signr) 3729 { 3730 (void) memset(prstatus, 0, sizeof (*prstatus)); 3731 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3732 prstatus->pr_pid = ts->ts_tid; 3733 prstatus->pr_ppid = getppid(); 3734 prstatus->pr_pgrp = getpgrp(); 3735 prstatus->pr_sid = getsid(0); 3736 3737 bswap_prstatus(prstatus); 3738 } 3739 3740 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3741 { 3742 char *base_filename; 3743 unsigned int i, len; 3744 3745 (void) memset(psinfo, 0, sizeof (*psinfo)); 3746 3747 len = ts->info->env_strings - ts->info->arg_strings; 3748 if (len >= ELF_PRARGSZ) 3749 len = ELF_PRARGSZ - 1; 3750 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 3751 return -EFAULT; 3752 } 3753 for (i = 0; i < len; i++) 3754 if (psinfo->pr_psargs[i] == 0) 3755 psinfo->pr_psargs[i] = ' '; 3756 psinfo->pr_psargs[len] = 0; 3757 3758 psinfo->pr_pid = getpid(); 3759 psinfo->pr_ppid = getppid(); 3760 psinfo->pr_pgrp = getpgrp(); 3761 psinfo->pr_sid = getsid(0); 3762 psinfo->pr_uid = getuid(); 3763 psinfo->pr_gid = getgid(); 3764 3765 base_filename = g_path_get_basename(ts->bprm->filename); 3766 /* 3767 * Using strncpy here is fine: at max-length, 3768 * this field is not NUL-terminated. 3769 */ 3770 (void) strncpy(psinfo->pr_fname, base_filename, 3771 sizeof(psinfo->pr_fname)); 3772 3773 g_free(base_filename); 3774 bswap_psinfo(psinfo); 3775 return (0); 3776 } 3777 3778 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3779 { 3780 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3781 elf_addr_t orig_auxv = auxv; 3782 void *ptr; 3783 int len = ts->info->auxv_len; 3784 3785 /* 3786 * Auxiliary vector is stored in target process stack. It contains 3787 * {type, value} pairs that we need to dump into note. This is not 3788 * strictly necessary but we do it here for sake of completeness. 3789 */ 3790 3791 /* read in whole auxv vector and copy it to memelfnote */ 3792 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3793 if (ptr != NULL) { 3794 fill_note(note, "CORE", NT_AUXV, len, ptr); 3795 unlock_user(ptr, auxv, len); 3796 } 3797 } 3798 3799 /* 3800 * Constructs name of coredump file. We have following convention 3801 * for the name: 3802 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3803 * 3804 * Returns the filename 3805 */ 3806 static char *core_dump_filename(const TaskState *ts) 3807 { 3808 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 3809 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 3810 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 3811 3812 return g_strdup_printf("qemu_%s_%s_%d.core", 3813 base_filename, nowstr, (int)getpid()); 3814 } 3815 3816 static int dump_write(int fd, const void *ptr, size_t size) 3817 { 3818 const char *bufp = (const char *)ptr; 3819 ssize_t bytes_written, bytes_left; 3820 struct rlimit dumpsize; 3821 off_t pos; 3822 3823 bytes_written = 0; 3824 getrlimit(RLIMIT_CORE, &dumpsize); 3825 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3826 if (errno == ESPIPE) { /* not a seekable stream */ 3827 bytes_left = size; 3828 } else { 3829 return pos; 3830 } 3831 } else { 3832 if (dumpsize.rlim_cur <= pos) { 3833 return -1; 3834 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3835 bytes_left = size; 3836 } else { 3837 size_t limit_left=dumpsize.rlim_cur - pos; 3838 bytes_left = limit_left >= size ? size : limit_left ; 3839 } 3840 } 3841 3842 /* 3843 * In normal conditions, single write(2) should do but 3844 * in case of socket etc. this mechanism is more portable. 3845 */ 3846 do { 3847 bytes_written = write(fd, bufp, bytes_left); 3848 if (bytes_written < 0) { 3849 if (errno == EINTR) 3850 continue; 3851 return (-1); 3852 } else if (bytes_written == 0) { /* eof */ 3853 return (-1); 3854 } 3855 bufp += bytes_written; 3856 bytes_left -= bytes_written; 3857 } while (bytes_left > 0); 3858 3859 return (0); 3860 } 3861 3862 static int write_note(struct memelfnote *men, int fd) 3863 { 3864 struct elf_note en; 3865 3866 en.n_namesz = men->namesz; 3867 en.n_type = men->type; 3868 en.n_descsz = men->datasz; 3869 3870 bswap_note(&en); 3871 3872 if (dump_write(fd, &en, sizeof(en)) != 0) 3873 return (-1); 3874 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3875 return (-1); 3876 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3877 return (-1); 3878 3879 return (0); 3880 } 3881 3882 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3883 { 3884 CPUState *cpu = env_cpu((CPUArchState *)env); 3885 TaskState *ts = (TaskState *)cpu->opaque; 3886 struct elf_thread_status *ets; 3887 3888 ets = g_malloc0(sizeof (*ets)); 3889 ets->num_notes = 1; /* only prstatus is dumped */ 3890 fill_prstatus(&ets->prstatus, ts, 0); 3891 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3892 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3893 &ets->prstatus); 3894 3895 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3896 3897 info->notes_size += note_size(&ets->notes[0]); 3898 } 3899 3900 static void init_note_info(struct elf_note_info *info) 3901 { 3902 /* Initialize the elf_note_info structure so that it is at 3903 * least safe to call free_note_info() on it. Must be 3904 * called before calling fill_note_info(). 3905 */ 3906 memset(info, 0, sizeof (*info)); 3907 QTAILQ_INIT(&info->thread_list); 3908 } 3909 3910 static int fill_note_info(struct elf_note_info *info, 3911 long signr, const CPUArchState *env) 3912 { 3913 #define NUMNOTES 3 3914 CPUState *cpu = env_cpu((CPUArchState *)env); 3915 TaskState *ts = (TaskState *)cpu->opaque; 3916 int i; 3917 3918 info->notes = g_new0(struct memelfnote, NUMNOTES); 3919 if (info->notes == NULL) 3920 return (-ENOMEM); 3921 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3922 if (info->prstatus == NULL) 3923 return (-ENOMEM); 3924 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3925 if (info->prstatus == NULL) 3926 return (-ENOMEM); 3927 3928 /* 3929 * First fill in status (and registers) of current thread 3930 * including process info & aux vector. 3931 */ 3932 fill_prstatus(info->prstatus, ts, signr); 3933 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3934 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3935 sizeof (*info->prstatus), info->prstatus); 3936 fill_psinfo(info->psinfo, ts); 3937 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3938 sizeof (*info->psinfo), info->psinfo); 3939 fill_auxv_note(&info->notes[2], ts); 3940 info->numnote = 3; 3941 3942 info->notes_size = 0; 3943 for (i = 0; i < info->numnote; i++) 3944 info->notes_size += note_size(&info->notes[i]); 3945 3946 /* read and fill status of all threads */ 3947 cpu_list_lock(); 3948 CPU_FOREACH(cpu) { 3949 if (cpu == thread_cpu) { 3950 continue; 3951 } 3952 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3953 } 3954 cpu_list_unlock(); 3955 3956 return (0); 3957 } 3958 3959 static void free_note_info(struct elf_note_info *info) 3960 { 3961 struct elf_thread_status *ets; 3962 3963 while (!QTAILQ_EMPTY(&info->thread_list)) { 3964 ets = QTAILQ_FIRST(&info->thread_list); 3965 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3966 g_free(ets); 3967 } 3968 3969 g_free(info->prstatus); 3970 g_free(info->psinfo); 3971 g_free(info->notes); 3972 } 3973 3974 static int write_note_info(struct elf_note_info *info, int fd) 3975 { 3976 struct elf_thread_status *ets; 3977 int i, error = 0; 3978 3979 /* write prstatus, psinfo and auxv for current thread */ 3980 for (i = 0; i < info->numnote; i++) 3981 if ((error = write_note(&info->notes[i], fd)) != 0) 3982 return (error); 3983 3984 /* write prstatus for each thread */ 3985 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3986 if ((error = write_note(&ets->notes[0], fd)) != 0) 3987 return (error); 3988 } 3989 3990 return (0); 3991 } 3992 3993 /* 3994 * Write out ELF coredump. 3995 * 3996 * See documentation of ELF object file format in: 3997 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3998 * 3999 * Coredump format in linux is following: 4000 * 4001 * 0 +----------------------+ \ 4002 * | ELF header | ET_CORE | 4003 * +----------------------+ | 4004 * | ELF program headers | |--- headers 4005 * | - NOTE section | | 4006 * | - PT_LOAD sections | | 4007 * +----------------------+ / 4008 * | NOTEs: | 4009 * | - NT_PRSTATUS | 4010 * | - NT_PRSINFO | 4011 * | - NT_AUXV | 4012 * +----------------------+ <-- aligned to target page 4013 * | Process memory dump | 4014 * : : 4015 * . . 4016 * : : 4017 * | | 4018 * +----------------------+ 4019 * 4020 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4021 * NT_PRSINFO -> struct elf_prpsinfo 4022 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4023 * 4024 * Format follows System V format as close as possible. Current 4025 * version limitations are as follows: 4026 * - no floating point registers are dumped 4027 * 4028 * Function returns 0 in case of success, negative errno otherwise. 4029 * 4030 * TODO: make this work also during runtime: it should be 4031 * possible to force coredump from running process and then 4032 * continue processing. For example qemu could set up SIGUSR2 4033 * handler (provided that target process haven't registered 4034 * handler for that) that does the dump when signal is received. 4035 */ 4036 static int elf_core_dump(int signr, const CPUArchState *env) 4037 { 4038 const CPUState *cpu = env_cpu((CPUArchState *)env); 4039 const TaskState *ts = (const TaskState *)cpu->opaque; 4040 struct vm_area_struct *vma = NULL; 4041 g_autofree char *corefile = NULL; 4042 struct elf_note_info info; 4043 struct elfhdr elf; 4044 struct elf_phdr phdr; 4045 struct rlimit dumpsize; 4046 struct mm_struct *mm = NULL; 4047 off_t offset = 0, data_offset = 0; 4048 int segs = 0; 4049 int fd = -1; 4050 4051 init_note_info(&info); 4052 4053 errno = 0; 4054 getrlimit(RLIMIT_CORE, &dumpsize); 4055 if (dumpsize.rlim_cur == 0) 4056 return 0; 4057 4058 corefile = core_dump_filename(ts); 4059 4060 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4061 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4062 return (-errno); 4063 4064 /* 4065 * Walk through target process memory mappings and 4066 * set up structure containing this information. After 4067 * this point vma_xxx functions can be used. 4068 */ 4069 if ((mm = vma_init()) == NULL) 4070 goto out; 4071 4072 walk_memory_regions(mm, vma_walker); 4073 segs = vma_get_mapping_count(mm); 4074 4075 /* 4076 * Construct valid coredump ELF header. We also 4077 * add one more segment for notes. 4078 */ 4079 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4080 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4081 goto out; 4082 4083 /* fill in the in-memory version of notes */ 4084 if (fill_note_info(&info, signr, env) < 0) 4085 goto out; 4086 4087 offset += sizeof (elf); /* elf header */ 4088 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4089 4090 /* write out notes program header */ 4091 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4092 4093 offset += info.notes_size; 4094 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4095 goto out; 4096 4097 /* 4098 * ELF specification wants data to start at page boundary so 4099 * we align it here. 4100 */ 4101 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4102 4103 /* 4104 * Write program headers for memory regions mapped in 4105 * the target process. 4106 */ 4107 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4108 (void) memset(&phdr, 0, sizeof (phdr)); 4109 4110 phdr.p_type = PT_LOAD; 4111 phdr.p_offset = offset; 4112 phdr.p_vaddr = vma->vma_start; 4113 phdr.p_paddr = 0; 4114 phdr.p_filesz = vma_dump_size(vma); 4115 offset += phdr.p_filesz; 4116 phdr.p_memsz = vma->vma_end - vma->vma_start; 4117 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4118 if (vma->vma_flags & PROT_WRITE) 4119 phdr.p_flags |= PF_W; 4120 if (vma->vma_flags & PROT_EXEC) 4121 phdr.p_flags |= PF_X; 4122 phdr.p_align = ELF_EXEC_PAGESIZE; 4123 4124 bswap_phdr(&phdr, 1); 4125 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4126 goto out; 4127 } 4128 } 4129 4130 /* 4131 * Next we write notes just after program headers. No 4132 * alignment needed here. 4133 */ 4134 if (write_note_info(&info, fd) < 0) 4135 goto out; 4136 4137 /* align data to page boundary */ 4138 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4139 goto out; 4140 4141 /* 4142 * Finally we can dump process memory into corefile as well. 4143 */ 4144 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4145 abi_ulong addr; 4146 abi_ulong end; 4147 4148 end = vma->vma_start + vma_dump_size(vma); 4149 4150 for (addr = vma->vma_start; addr < end; 4151 addr += TARGET_PAGE_SIZE) { 4152 char page[TARGET_PAGE_SIZE]; 4153 int error; 4154 4155 /* 4156 * Read in page from target process memory and 4157 * write it to coredump file. 4158 */ 4159 error = copy_from_user(page, addr, sizeof (page)); 4160 if (error != 0) { 4161 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4162 addr); 4163 errno = -error; 4164 goto out; 4165 } 4166 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4167 goto out; 4168 } 4169 } 4170 4171 out: 4172 free_note_info(&info); 4173 if (mm != NULL) 4174 vma_delete(mm); 4175 (void) close(fd); 4176 4177 if (errno != 0) 4178 return (-errno); 4179 return (0); 4180 } 4181 #endif /* USE_ELF_CORE_DUMP */ 4182 4183 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4184 { 4185 init_thread(regs, infop); 4186 } 4187