1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/bitops.h" 11 #include "qemu/path.h" 12 #include "qemu/queue.h" 13 #include "qemu/guest-random.h" 14 #include "qemu/units.h" 15 #include "qemu/selfmap.h" 16 #include "qapi/error.h" 17 18 #ifdef _ARCH_PPC64 19 #undef ARCH_DLINFO 20 #undef ELF_PLATFORM 21 #undef ELF_HWCAP 22 #undef ELF_HWCAP2 23 #undef ELF_CLASS 24 #undef ELF_DATA 25 #undef ELF_ARCH 26 #endif 27 28 #define ELF_OSABI ELFOSABI_SYSV 29 30 /* from personality.h */ 31 32 /* 33 * Flags for bug emulation. 34 * 35 * These occupy the top three bytes. 36 */ 37 enum { 38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 40 descriptors (signal handling) */ 41 MMAP_PAGE_ZERO = 0x0100000, 42 ADDR_COMPAT_LAYOUT = 0x0200000, 43 READ_IMPLIES_EXEC = 0x0400000, 44 ADDR_LIMIT_32BIT = 0x0800000, 45 SHORT_INODE = 0x1000000, 46 WHOLE_SECONDS = 0x2000000, 47 STICKY_TIMEOUTS = 0x4000000, 48 ADDR_LIMIT_3GB = 0x8000000, 49 }; 50 51 /* 52 * Personality types. 53 * 54 * These go in the low byte. Avoid using the top bit, it will 55 * conflict with error returns. 56 */ 57 enum { 58 PER_LINUX = 0x0000, 59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 67 PER_BSD = 0x0006, 68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 70 PER_LINUX32 = 0x0008, 71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 75 PER_RISCOS = 0x000c, 76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 78 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 79 PER_HPUX = 0x0010, 80 PER_MASK = 0x00ff, 81 }; 82 83 /* 84 * Return the base personality without flags. 85 */ 86 #define personality(pers) (pers & PER_MASK) 87 88 int info_is_fdpic(struct image_info *info) 89 { 90 return info->personality == PER_LINUX_FDPIC; 91 } 92 93 /* this flag is uneffective under linux too, should be deleted */ 94 #ifndef MAP_DENYWRITE 95 #define MAP_DENYWRITE 0 96 #endif 97 98 /* should probably go in elf.h */ 99 #ifndef ELIBBAD 100 #define ELIBBAD 80 101 #endif 102 103 #ifdef TARGET_WORDS_BIGENDIAN 104 #define ELF_DATA ELFDATA2MSB 105 #else 106 #define ELF_DATA ELFDATA2LSB 107 #endif 108 109 #ifdef TARGET_ABI_MIPSN32 110 typedef abi_ullong target_elf_greg_t; 111 #define tswapreg(ptr) tswap64(ptr) 112 #else 113 typedef abi_ulong target_elf_greg_t; 114 #define tswapreg(ptr) tswapal(ptr) 115 #endif 116 117 #ifdef USE_UID16 118 typedef abi_ushort target_uid_t; 119 typedef abi_ushort target_gid_t; 120 #else 121 typedef abi_uint target_uid_t; 122 typedef abi_uint target_gid_t; 123 #endif 124 typedef abi_int target_pid_t; 125 126 #ifdef TARGET_I386 127 128 #define ELF_PLATFORM get_elf_platform() 129 130 static const char *get_elf_platform(void) 131 { 132 static char elf_platform[] = "i386"; 133 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 134 if (family > 6) 135 family = 6; 136 if (family >= 3) 137 elf_platform[1] = '0' + family; 138 return elf_platform; 139 } 140 141 #define ELF_HWCAP get_elf_hwcap() 142 143 static uint32_t get_elf_hwcap(void) 144 { 145 X86CPU *cpu = X86_CPU(thread_cpu); 146 147 return cpu->env.features[FEAT_1_EDX]; 148 } 149 150 #ifdef TARGET_X86_64 151 #define ELF_START_MMAP 0x2aaaaab000ULL 152 153 #define ELF_CLASS ELFCLASS64 154 #define ELF_ARCH EM_X86_64 155 156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 157 { 158 regs->rax = 0; 159 regs->rsp = infop->start_stack; 160 regs->rip = infop->entry; 161 } 162 163 #define ELF_NREG 27 164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 165 166 /* 167 * Note that ELF_NREG should be 29 as there should be place for 168 * TRAPNO and ERR "registers" as well but linux doesn't dump 169 * those. 170 * 171 * See linux kernel: arch/x86/include/asm/elf.h 172 */ 173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 174 { 175 (*regs)[0] = env->regs[15]; 176 (*regs)[1] = env->regs[14]; 177 (*regs)[2] = env->regs[13]; 178 (*regs)[3] = env->regs[12]; 179 (*regs)[4] = env->regs[R_EBP]; 180 (*regs)[5] = env->regs[R_EBX]; 181 (*regs)[6] = env->regs[11]; 182 (*regs)[7] = env->regs[10]; 183 (*regs)[8] = env->regs[9]; 184 (*regs)[9] = env->regs[8]; 185 (*regs)[10] = env->regs[R_EAX]; 186 (*regs)[11] = env->regs[R_ECX]; 187 (*regs)[12] = env->regs[R_EDX]; 188 (*regs)[13] = env->regs[R_ESI]; 189 (*regs)[14] = env->regs[R_EDI]; 190 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 191 (*regs)[16] = env->eip; 192 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 193 (*regs)[18] = env->eflags; 194 (*regs)[19] = env->regs[R_ESP]; 195 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 196 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 197 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 198 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 199 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 200 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 201 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 202 } 203 204 #else 205 206 #define ELF_START_MMAP 0x80000000 207 208 /* 209 * This is used to ensure we don't load something for the wrong architecture. 210 */ 211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 212 213 /* 214 * These are used to set parameters in the core dumps. 215 */ 216 #define ELF_CLASS ELFCLASS32 217 #define ELF_ARCH EM_386 218 219 static inline void init_thread(struct target_pt_regs *regs, 220 struct image_info *infop) 221 { 222 regs->esp = infop->start_stack; 223 regs->eip = infop->entry; 224 225 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 226 starts %edx contains a pointer to a function which might be 227 registered using `atexit'. This provides a mean for the 228 dynamic linker to call DT_FINI functions for shared libraries 229 that have been loaded before the code runs. 230 231 A value of 0 tells we have no such handler. */ 232 regs->edx = 0; 233 } 234 235 #define ELF_NREG 17 236 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 237 238 /* 239 * Note that ELF_NREG should be 19 as there should be place for 240 * TRAPNO and ERR "registers" as well but linux doesn't dump 241 * those. 242 * 243 * See linux kernel: arch/x86/include/asm/elf.h 244 */ 245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 246 { 247 (*regs)[0] = env->regs[R_EBX]; 248 (*regs)[1] = env->regs[R_ECX]; 249 (*regs)[2] = env->regs[R_EDX]; 250 (*regs)[3] = env->regs[R_ESI]; 251 (*regs)[4] = env->regs[R_EDI]; 252 (*regs)[5] = env->regs[R_EBP]; 253 (*regs)[6] = env->regs[R_EAX]; 254 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 255 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 256 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 257 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 258 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 259 (*regs)[12] = env->eip; 260 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 261 (*regs)[14] = env->eflags; 262 (*regs)[15] = env->regs[R_ESP]; 263 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 264 } 265 #endif 266 267 #define USE_ELF_CORE_DUMP 268 #define ELF_EXEC_PAGESIZE 4096 269 270 #endif 271 272 #ifdef TARGET_ARM 273 274 #ifndef TARGET_AARCH64 275 /* 32 bit ARM definitions */ 276 277 #define ELF_START_MMAP 0x80000000 278 279 #define ELF_ARCH EM_ARM 280 #define ELF_CLASS ELFCLASS32 281 282 static inline void init_thread(struct target_pt_regs *regs, 283 struct image_info *infop) 284 { 285 abi_long stack = infop->start_stack; 286 memset(regs, 0, sizeof(*regs)); 287 288 regs->uregs[16] = ARM_CPU_MODE_USR; 289 if (infop->entry & 1) { 290 regs->uregs[16] |= CPSR_T; 291 } 292 regs->uregs[15] = infop->entry & 0xfffffffe; 293 regs->uregs[13] = infop->start_stack; 294 /* FIXME - what to for failure of get_user()? */ 295 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 296 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 297 /* XXX: it seems that r0 is zeroed after ! */ 298 regs->uregs[0] = 0; 299 /* For uClinux PIC binaries. */ 300 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 301 regs->uregs[10] = infop->start_data; 302 303 /* Support ARM FDPIC. */ 304 if (info_is_fdpic(infop)) { 305 /* As described in the ABI document, r7 points to the loadmap info 306 * prepared by the kernel. If an interpreter is needed, r8 points 307 * to the interpreter loadmap and r9 points to the interpreter 308 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 309 * r9 points to the main program PT_DYNAMIC info. 310 */ 311 regs->uregs[7] = infop->loadmap_addr; 312 if (infop->interpreter_loadmap_addr) { 313 /* Executable is dynamically loaded. */ 314 regs->uregs[8] = infop->interpreter_loadmap_addr; 315 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 316 } else { 317 regs->uregs[8] = 0; 318 regs->uregs[9] = infop->pt_dynamic_addr; 319 } 320 } 321 } 322 323 #define ELF_NREG 18 324 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 325 326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 327 { 328 (*regs)[0] = tswapreg(env->regs[0]); 329 (*regs)[1] = tswapreg(env->regs[1]); 330 (*regs)[2] = tswapreg(env->regs[2]); 331 (*regs)[3] = tswapreg(env->regs[3]); 332 (*regs)[4] = tswapreg(env->regs[4]); 333 (*regs)[5] = tswapreg(env->regs[5]); 334 (*regs)[6] = tswapreg(env->regs[6]); 335 (*regs)[7] = tswapreg(env->regs[7]); 336 (*regs)[8] = tswapreg(env->regs[8]); 337 (*regs)[9] = tswapreg(env->regs[9]); 338 (*regs)[10] = tswapreg(env->regs[10]); 339 (*regs)[11] = tswapreg(env->regs[11]); 340 (*regs)[12] = tswapreg(env->regs[12]); 341 (*regs)[13] = tswapreg(env->regs[13]); 342 (*regs)[14] = tswapreg(env->regs[14]); 343 (*regs)[15] = tswapreg(env->regs[15]); 344 345 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 346 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 347 } 348 349 #define USE_ELF_CORE_DUMP 350 #define ELF_EXEC_PAGESIZE 4096 351 352 enum 353 { 354 ARM_HWCAP_ARM_SWP = 1 << 0, 355 ARM_HWCAP_ARM_HALF = 1 << 1, 356 ARM_HWCAP_ARM_THUMB = 1 << 2, 357 ARM_HWCAP_ARM_26BIT = 1 << 3, 358 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 359 ARM_HWCAP_ARM_FPA = 1 << 5, 360 ARM_HWCAP_ARM_VFP = 1 << 6, 361 ARM_HWCAP_ARM_EDSP = 1 << 7, 362 ARM_HWCAP_ARM_JAVA = 1 << 8, 363 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 364 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 365 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 366 ARM_HWCAP_ARM_NEON = 1 << 12, 367 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 368 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 369 ARM_HWCAP_ARM_TLS = 1 << 15, 370 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 371 ARM_HWCAP_ARM_IDIVA = 1 << 17, 372 ARM_HWCAP_ARM_IDIVT = 1 << 18, 373 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 374 ARM_HWCAP_ARM_LPAE = 1 << 20, 375 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 376 }; 377 378 enum { 379 ARM_HWCAP2_ARM_AES = 1 << 0, 380 ARM_HWCAP2_ARM_PMULL = 1 << 1, 381 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 382 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 383 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 384 }; 385 386 /* The commpage only exists for 32 bit kernels */ 387 388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u 389 390 static bool init_guest_commpage(void) 391 { 392 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size); 393 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 394 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 395 396 if (addr == MAP_FAILED) { 397 perror("Allocating guest commpage"); 398 exit(EXIT_FAILURE); 399 } 400 if (addr != want) { 401 return false; 402 } 403 404 /* Set kernel helper versions; rest of page is 0. */ 405 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 406 407 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 408 perror("Protecting guest commpage"); 409 exit(EXIT_FAILURE); 410 } 411 return true; 412 } 413 414 #define ELF_HWCAP get_elf_hwcap() 415 #define ELF_HWCAP2 get_elf_hwcap2() 416 417 static uint32_t get_elf_hwcap(void) 418 { 419 ARMCPU *cpu = ARM_CPU(thread_cpu); 420 uint32_t hwcaps = 0; 421 422 hwcaps |= ARM_HWCAP_ARM_SWP; 423 hwcaps |= ARM_HWCAP_ARM_HALF; 424 hwcaps |= ARM_HWCAP_ARM_THUMB; 425 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 426 427 /* probe for the extra features */ 428 #define GET_FEATURE(feat, hwcap) \ 429 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 430 431 #define GET_FEATURE_ID(feat, hwcap) \ 432 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 433 434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 440 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 441 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 442 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 443 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 444 445 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 446 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 447 hwcaps |= ARM_HWCAP_ARM_VFPv3; 448 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 449 hwcaps |= ARM_HWCAP_ARM_VFPD32; 450 } else { 451 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 452 } 453 } 454 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 455 456 return hwcaps; 457 } 458 459 static uint32_t get_elf_hwcap2(void) 460 { 461 ARMCPU *cpu = ARM_CPU(thread_cpu); 462 uint32_t hwcaps = 0; 463 464 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 465 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 466 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 467 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 468 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 469 return hwcaps; 470 } 471 472 #undef GET_FEATURE 473 #undef GET_FEATURE_ID 474 475 #define ELF_PLATFORM get_elf_platform() 476 477 static const char *get_elf_platform(void) 478 { 479 CPUARMState *env = thread_cpu->env_ptr; 480 481 #ifdef TARGET_WORDS_BIGENDIAN 482 # define END "b" 483 #else 484 # define END "l" 485 #endif 486 487 if (arm_feature(env, ARM_FEATURE_V8)) { 488 return "v8" END; 489 } else if (arm_feature(env, ARM_FEATURE_V7)) { 490 if (arm_feature(env, ARM_FEATURE_M)) { 491 return "v7m" END; 492 } else { 493 return "v7" END; 494 } 495 } else if (arm_feature(env, ARM_FEATURE_V6)) { 496 return "v6" END; 497 } else if (arm_feature(env, ARM_FEATURE_V5)) { 498 return "v5" END; 499 } else { 500 return "v4" END; 501 } 502 503 #undef END 504 } 505 506 #else 507 /* 64 bit ARM definitions */ 508 #define ELF_START_MMAP 0x80000000 509 510 #define ELF_ARCH EM_AARCH64 511 #define ELF_CLASS ELFCLASS64 512 #ifdef TARGET_WORDS_BIGENDIAN 513 # define ELF_PLATFORM "aarch64_be" 514 #else 515 # define ELF_PLATFORM "aarch64" 516 #endif 517 518 static inline void init_thread(struct target_pt_regs *regs, 519 struct image_info *infop) 520 { 521 abi_long stack = infop->start_stack; 522 memset(regs, 0, sizeof(*regs)); 523 524 regs->pc = infop->entry & ~0x3ULL; 525 regs->sp = stack; 526 } 527 528 #define ELF_NREG 34 529 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 530 531 static void elf_core_copy_regs(target_elf_gregset_t *regs, 532 const CPUARMState *env) 533 { 534 int i; 535 536 for (i = 0; i < 32; i++) { 537 (*regs)[i] = tswapreg(env->xregs[i]); 538 } 539 (*regs)[32] = tswapreg(env->pc); 540 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 541 } 542 543 #define USE_ELF_CORE_DUMP 544 #define ELF_EXEC_PAGESIZE 4096 545 546 enum { 547 ARM_HWCAP_A64_FP = 1 << 0, 548 ARM_HWCAP_A64_ASIMD = 1 << 1, 549 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 550 ARM_HWCAP_A64_AES = 1 << 3, 551 ARM_HWCAP_A64_PMULL = 1 << 4, 552 ARM_HWCAP_A64_SHA1 = 1 << 5, 553 ARM_HWCAP_A64_SHA2 = 1 << 6, 554 ARM_HWCAP_A64_CRC32 = 1 << 7, 555 ARM_HWCAP_A64_ATOMICS = 1 << 8, 556 ARM_HWCAP_A64_FPHP = 1 << 9, 557 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 558 ARM_HWCAP_A64_CPUID = 1 << 11, 559 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 560 ARM_HWCAP_A64_JSCVT = 1 << 13, 561 ARM_HWCAP_A64_FCMA = 1 << 14, 562 ARM_HWCAP_A64_LRCPC = 1 << 15, 563 ARM_HWCAP_A64_DCPOP = 1 << 16, 564 ARM_HWCAP_A64_SHA3 = 1 << 17, 565 ARM_HWCAP_A64_SM3 = 1 << 18, 566 ARM_HWCAP_A64_SM4 = 1 << 19, 567 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 568 ARM_HWCAP_A64_SHA512 = 1 << 21, 569 ARM_HWCAP_A64_SVE = 1 << 22, 570 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 571 ARM_HWCAP_A64_DIT = 1 << 24, 572 ARM_HWCAP_A64_USCAT = 1 << 25, 573 ARM_HWCAP_A64_ILRCPC = 1 << 26, 574 ARM_HWCAP_A64_FLAGM = 1 << 27, 575 ARM_HWCAP_A64_SSBS = 1 << 28, 576 ARM_HWCAP_A64_SB = 1 << 29, 577 ARM_HWCAP_A64_PACA = 1 << 30, 578 ARM_HWCAP_A64_PACG = 1UL << 31, 579 580 ARM_HWCAP2_A64_DCPODP = 1 << 0, 581 ARM_HWCAP2_A64_SVE2 = 1 << 1, 582 ARM_HWCAP2_A64_SVEAES = 1 << 2, 583 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 584 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 585 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 586 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 587 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 588 ARM_HWCAP2_A64_FRINT = 1 << 8, 589 }; 590 591 #define ELF_HWCAP get_elf_hwcap() 592 #define ELF_HWCAP2 get_elf_hwcap2() 593 594 #define GET_FEATURE_ID(feat, hwcap) \ 595 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 596 597 static uint32_t get_elf_hwcap(void) 598 { 599 ARMCPU *cpu = ARM_CPU(thread_cpu); 600 uint32_t hwcaps = 0; 601 602 hwcaps |= ARM_HWCAP_A64_FP; 603 hwcaps |= ARM_HWCAP_A64_ASIMD; 604 hwcaps |= ARM_HWCAP_A64_CPUID; 605 606 /* probe for the extra features */ 607 608 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 609 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 610 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 611 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 612 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 613 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 614 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 615 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 616 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 617 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 618 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 619 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 620 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 621 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 622 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 623 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 624 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 625 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 626 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 627 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 628 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 629 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 630 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 631 632 return hwcaps; 633 } 634 635 static uint32_t get_elf_hwcap2(void) 636 { 637 ARMCPU *cpu = ARM_CPU(thread_cpu); 638 uint32_t hwcaps = 0; 639 640 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 641 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 642 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 643 644 return hwcaps; 645 } 646 647 #undef GET_FEATURE_ID 648 649 #endif /* not TARGET_AARCH64 */ 650 #endif /* TARGET_ARM */ 651 652 #ifdef TARGET_SPARC 653 #ifdef TARGET_SPARC64 654 655 #define ELF_START_MMAP 0x80000000 656 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 657 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 658 #ifndef TARGET_ABI32 659 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 660 #else 661 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 662 #endif 663 664 #define ELF_CLASS ELFCLASS64 665 #define ELF_ARCH EM_SPARCV9 666 667 #define STACK_BIAS 2047 668 669 static inline void init_thread(struct target_pt_regs *regs, 670 struct image_info *infop) 671 { 672 #ifndef TARGET_ABI32 673 regs->tstate = 0; 674 #endif 675 regs->pc = infop->entry; 676 regs->npc = regs->pc + 4; 677 regs->y = 0; 678 #ifdef TARGET_ABI32 679 regs->u_regs[14] = infop->start_stack - 16 * 4; 680 #else 681 if (personality(infop->personality) == PER_LINUX32) 682 regs->u_regs[14] = infop->start_stack - 16 * 4; 683 else 684 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 685 #endif 686 } 687 688 #else 689 #define ELF_START_MMAP 0x80000000 690 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 691 | HWCAP_SPARC_MULDIV) 692 693 #define ELF_CLASS ELFCLASS32 694 #define ELF_ARCH EM_SPARC 695 696 static inline void init_thread(struct target_pt_regs *regs, 697 struct image_info *infop) 698 { 699 regs->psr = 0; 700 regs->pc = infop->entry; 701 regs->npc = regs->pc + 4; 702 regs->y = 0; 703 regs->u_regs[14] = infop->start_stack - 16 * 4; 704 } 705 706 #endif 707 #endif 708 709 #ifdef TARGET_PPC 710 711 #define ELF_MACHINE PPC_ELF_MACHINE 712 #define ELF_START_MMAP 0x80000000 713 714 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 715 716 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 717 718 #define ELF_CLASS ELFCLASS64 719 720 #else 721 722 #define ELF_CLASS ELFCLASS32 723 724 #endif 725 726 #define ELF_ARCH EM_PPC 727 728 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 729 See arch/powerpc/include/asm/cputable.h. */ 730 enum { 731 QEMU_PPC_FEATURE_32 = 0x80000000, 732 QEMU_PPC_FEATURE_64 = 0x40000000, 733 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 734 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 735 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 736 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 737 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 738 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 739 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 740 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 741 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 742 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 743 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 744 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 745 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 746 QEMU_PPC_FEATURE_CELL = 0x00010000, 747 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 748 QEMU_PPC_FEATURE_SMT = 0x00004000, 749 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 750 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 751 QEMU_PPC_FEATURE_PA6T = 0x00000800, 752 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 753 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 754 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 755 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 756 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 757 758 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 759 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 760 761 /* Feature definitions in AT_HWCAP2. */ 762 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 763 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 764 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 765 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 766 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 767 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 768 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 769 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 770 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 771 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 772 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 773 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 774 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 775 }; 776 777 #define ELF_HWCAP get_elf_hwcap() 778 779 static uint32_t get_elf_hwcap(void) 780 { 781 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 782 uint32_t features = 0; 783 784 /* We don't have to be terribly complete here; the high points are 785 Altivec/FP/SPE support. Anything else is just a bonus. */ 786 #define GET_FEATURE(flag, feature) \ 787 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 788 #define GET_FEATURE2(flags, feature) \ 789 do { \ 790 if ((cpu->env.insns_flags2 & flags) == flags) { \ 791 features |= feature; \ 792 } \ 793 } while (0) 794 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 795 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 796 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 797 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 798 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 799 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 800 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 801 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 802 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 803 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 804 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 805 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 806 QEMU_PPC_FEATURE_ARCH_2_06); 807 #undef GET_FEATURE 808 #undef GET_FEATURE2 809 810 return features; 811 } 812 813 #define ELF_HWCAP2 get_elf_hwcap2() 814 815 static uint32_t get_elf_hwcap2(void) 816 { 817 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 818 uint32_t features = 0; 819 820 #define GET_FEATURE(flag, feature) \ 821 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 822 #define GET_FEATURE2(flag, feature) \ 823 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 824 825 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 826 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 827 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 828 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 829 QEMU_PPC_FEATURE2_VEC_CRYPTO); 830 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 831 QEMU_PPC_FEATURE2_DARN); 832 833 #undef GET_FEATURE 834 #undef GET_FEATURE2 835 836 return features; 837 } 838 839 /* 840 * The requirements here are: 841 * - keep the final alignment of sp (sp & 0xf) 842 * - make sure the 32-bit value at the first 16 byte aligned position of 843 * AUXV is greater than 16 for glibc compatibility. 844 * AT_IGNOREPPC is used for that. 845 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 846 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 847 */ 848 #define DLINFO_ARCH_ITEMS 5 849 #define ARCH_DLINFO \ 850 do { \ 851 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 852 /* \ 853 * Handle glibc compatibility: these magic entries must \ 854 * be at the lowest addresses in the final auxv. \ 855 */ \ 856 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 857 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 858 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 859 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 860 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 861 } while (0) 862 863 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 864 { 865 _regs->gpr[1] = infop->start_stack; 866 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 867 if (get_ppc64_abi(infop) < 2) { 868 uint64_t val; 869 get_user_u64(val, infop->entry + 8); 870 _regs->gpr[2] = val + infop->load_bias; 871 get_user_u64(val, infop->entry); 872 infop->entry = val + infop->load_bias; 873 } else { 874 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 875 } 876 #endif 877 _regs->nip = infop->entry; 878 } 879 880 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 881 #define ELF_NREG 48 882 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 883 884 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 885 { 886 int i; 887 target_ulong ccr = 0; 888 889 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 890 (*regs)[i] = tswapreg(env->gpr[i]); 891 } 892 893 (*regs)[32] = tswapreg(env->nip); 894 (*regs)[33] = tswapreg(env->msr); 895 (*regs)[35] = tswapreg(env->ctr); 896 (*regs)[36] = tswapreg(env->lr); 897 (*regs)[37] = tswapreg(env->xer); 898 899 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 900 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 901 } 902 (*regs)[38] = tswapreg(ccr); 903 } 904 905 #define USE_ELF_CORE_DUMP 906 #define ELF_EXEC_PAGESIZE 4096 907 908 #endif 909 910 #ifdef TARGET_MIPS 911 912 #define ELF_START_MMAP 0x80000000 913 914 #ifdef TARGET_MIPS64 915 #define ELF_CLASS ELFCLASS64 916 #else 917 #define ELF_CLASS ELFCLASS32 918 #endif 919 #define ELF_ARCH EM_MIPS 920 921 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 922 923 #ifdef TARGET_ABI_MIPSN32 924 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 925 #else 926 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 927 #endif 928 929 static inline void init_thread(struct target_pt_regs *regs, 930 struct image_info *infop) 931 { 932 regs->cp0_status = 2 << CP0St_KSU; 933 regs->cp0_epc = infop->entry; 934 regs->regs[29] = infop->start_stack; 935 } 936 937 /* See linux kernel: arch/mips/include/asm/elf.h. */ 938 #define ELF_NREG 45 939 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 940 941 /* See linux kernel: arch/mips/include/asm/reg.h. */ 942 enum { 943 #ifdef TARGET_MIPS64 944 TARGET_EF_R0 = 0, 945 #else 946 TARGET_EF_R0 = 6, 947 #endif 948 TARGET_EF_R26 = TARGET_EF_R0 + 26, 949 TARGET_EF_R27 = TARGET_EF_R0 + 27, 950 TARGET_EF_LO = TARGET_EF_R0 + 32, 951 TARGET_EF_HI = TARGET_EF_R0 + 33, 952 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 953 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 954 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 955 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 956 }; 957 958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 959 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 960 { 961 int i; 962 963 for (i = 0; i < TARGET_EF_R0; i++) { 964 (*regs)[i] = 0; 965 } 966 (*regs)[TARGET_EF_R0] = 0; 967 968 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 969 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 970 } 971 972 (*regs)[TARGET_EF_R26] = 0; 973 (*regs)[TARGET_EF_R27] = 0; 974 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 975 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 976 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 977 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 978 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 979 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 980 } 981 982 #define USE_ELF_CORE_DUMP 983 #define ELF_EXEC_PAGESIZE 4096 984 985 /* See arch/mips/include/uapi/asm/hwcap.h. */ 986 enum { 987 HWCAP_MIPS_R6 = (1 << 0), 988 HWCAP_MIPS_MSA = (1 << 1), 989 HWCAP_MIPS_CRC32 = (1 << 2), 990 HWCAP_MIPS_MIPS16 = (1 << 3), 991 HWCAP_MIPS_MDMX = (1 << 4), 992 HWCAP_MIPS_MIPS3D = (1 << 5), 993 HWCAP_MIPS_SMARTMIPS = (1 << 6), 994 HWCAP_MIPS_DSP = (1 << 7), 995 HWCAP_MIPS_DSP2 = (1 << 8), 996 HWCAP_MIPS_DSP3 = (1 << 9), 997 HWCAP_MIPS_MIPS16E2 = (1 << 10), 998 HWCAP_LOONGSON_MMI = (1 << 11), 999 HWCAP_LOONGSON_EXT = (1 << 12), 1000 HWCAP_LOONGSON_EXT2 = (1 << 13), 1001 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1002 }; 1003 1004 #define ELF_HWCAP get_elf_hwcap() 1005 1006 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1007 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1008 1009 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1010 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1011 1012 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1013 do { \ 1014 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1015 hwcaps |= _hwcap; \ 1016 } \ 1017 } while (0) 1018 1019 static uint32_t get_elf_hwcap(void) 1020 { 1021 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1022 uint32_t hwcaps = 0; 1023 1024 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1025 2, HWCAP_MIPS_R6); 1026 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1027 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1028 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1029 1030 return hwcaps; 1031 } 1032 1033 #undef GET_FEATURE_REG_EQU 1034 #undef GET_FEATURE_REG_SET 1035 #undef GET_FEATURE_INSN 1036 1037 #endif /* TARGET_MIPS */ 1038 1039 #ifdef TARGET_MICROBLAZE 1040 1041 #define ELF_START_MMAP 0x80000000 1042 1043 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1044 1045 #define ELF_CLASS ELFCLASS32 1046 #define ELF_ARCH EM_MICROBLAZE 1047 1048 static inline void init_thread(struct target_pt_regs *regs, 1049 struct image_info *infop) 1050 { 1051 regs->pc = infop->entry; 1052 regs->r1 = infop->start_stack; 1053 1054 } 1055 1056 #define ELF_EXEC_PAGESIZE 4096 1057 1058 #define USE_ELF_CORE_DUMP 1059 #define ELF_NREG 38 1060 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1061 1062 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1063 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1064 { 1065 int i, pos = 0; 1066 1067 for (i = 0; i < 32; i++) { 1068 (*regs)[pos++] = tswapreg(env->regs[i]); 1069 } 1070 1071 (*regs)[pos++] = tswapreg(env->pc); 1072 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1073 (*regs)[pos++] = 0; 1074 (*regs)[pos++] = tswapreg(env->ear); 1075 (*regs)[pos++] = 0; 1076 (*regs)[pos++] = tswapreg(env->esr); 1077 } 1078 1079 #endif /* TARGET_MICROBLAZE */ 1080 1081 #ifdef TARGET_NIOS2 1082 1083 #define ELF_START_MMAP 0x80000000 1084 1085 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1086 1087 #define ELF_CLASS ELFCLASS32 1088 #define ELF_ARCH EM_ALTERA_NIOS2 1089 1090 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1091 { 1092 regs->ea = infop->entry; 1093 regs->sp = infop->start_stack; 1094 regs->estatus = 0x3; 1095 } 1096 1097 #define ELF_EXEC_PAGESIZE 4096 1098 1099 #define USE_ELF_CORE_DUMP 1100 #define ELF_NREG 49 1101 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1102 1103 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1104 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1105 const CPUNios2State *env) 1106 { 1107 int i; 1108 1109 (*regs)[0] = -1; 1110 for (i = 1; i < 8; i++) /* r0-r7 */ 1111 (*regs)[i] = tswapreg(env->regs[i + 7]); 1112 1113 for (i = 8; i < 16; i++) /* r8-r15 */ 1114 (*regs)[i] = tswapreg(env->regs[i - 8]); 1115 1116 for (i = 16; i < 24; i++) /* r16-r23 */ 1117 (*regs)[i] = tswapreg(env->regs[i + 7]); 1118 (*regs)[24] = -1; /* R_ET */ 1119 (*regs)[25] = -1; /* R_BT */ 1120 (*regs)[26] = tswapreg(env->regs[R_GP]); 1121 (*regs)[27] = tswapreg(env->regs[R_SP]); 1122 (*regs)[28] = tswapreg(env->regs[R_FP]); 1123 (*regs)[29] = tswapreg(env->regs[R_EA]); 1124 (*regs)[30] = -1; /* R_SSTATUS */ 1125 (*regs)[31] = tswapreg(env->regs[R_RA]); 1126 1127 (*regs)[32] = tswapreg(env->regs[R_PC]); 1128 1129 (*regs)[33] = -1; /* R_STATUS */ 1130 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1131 1132 for (i = 35; i < 49; i++) /* ... */ 1133 (*regs)[i] = -1; 1134 } 1135 1136 #endif /* TARGET_NIOS2 */ 1137 1138 #ifdef TARGET_OPENRISC 1139 1140 #define ELF_START_MMAP 0x08000000 1141 1142 #define ELF_ARCH EM_OPENRISC 1143 #define ELF_CLASS ELFCLASS32 1144 #define ELF_DATA ELFDATA2MSB 1145 1146 static inline void init_thread(struct target_pt_regs *regs, 1147 struct image_info *infop) 1148 { 1149 regs->pc = infop->entry; 1150 regs->gpr[1] = infop->start_stack; 1151 } 1152 1153 #define USE_ELF_CORE_DUMP 1154 #define ELF_EXEC_PAGESIZE 8192 1155 1156 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1157 #define ELF_NREG 34 /* gprs and pc, sr */ 1158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1159 1160 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1161 const CPUOpenRISCState *env) 1162 { 1163 int i; 1164 1165 for (i = 0; i < 32; i++) { 1166 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1167 } 1168 (*regs)[32] = tswapreg(env->pc); 1169 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1170 } 1171 #define ELF_HWCAP 0 1172 #define ELF_PLATFORM NULL 1173 1174 #endif /* TARGET_OPENRISC */ 1175 1176 #ifdef TARGET_SH4 1177 1178 #define ELF_START_MMAP 0x80000000 1179 1180 #define ELF_CLASS ELFCLASS32 1181 #define ELF_ARCH EM_SH 1182 1183 static inline void init_thread(struct target_pt_regs *regs, 1184 struct image_info *infop) 1185 { 1186 /* Check other registers XXXXX */ 1187 regs->pc = infop->entry; 1188 regs->regs[15] = infop->start_stack; 1189 } 1190 1191 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1192 #define ELF_NREG 23 1193 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1194 1195 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1196 enum { 1197 TARGET_REG_PC = 16, 1198 TARGET_REG_PR = 17, 1199 TARGET_REG_SR = 18, 1200 TARGET_REG_GBR = 19, 1201 TARGET_REG_MACH = 20, 1202 TARGET_REG_MACL = 21, 1203 TARGET_REG_SYSCALL = 22 1204 }; 1205 1206 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1207 const CPUSH4State *env) 1208 { 1209 int i; 1210 1211 for (i = 0; i < 16; i++) { 1212 (*regs)[i] = tswapreg(env->gregs[i]); 1213 } 1214 1215 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1216 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1217 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1218 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1219 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1220 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1221 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1222 } 1223 1224 #define USE_ELF_CORE_DUMP 1225 #define ELF_EXEC_PAGESIZE 4096 1226 1227 enum { 1228 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1229 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1230 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1231 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1232 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1233 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1234 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1235 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1236 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1237 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1238 }; 1239 1240 #define ELF_HWCAP get_elf_hwcap() 1241 1242 static uint32_t get_elf_hwcap(void) 1243 { 1244 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1245 uint32_t hwcap = 0; 1246 1247 hwcap |= SH_CPU_HAS_FPU; 1248 1249 if (cpu->env.features & SH_FEATURE_SH4A) { 1250 hwcap |= SH_CPU_HAS_LLSC; 1251 } 1252 1253 return hwcap; 1254 } 1255 1256 #endif 1257 1258 #ifdef TARGET_CRIS 1259 1260 #define ELF_START_MMAP 0x80000000 1261 1262 #define ELF_CLASS ELFCLASS32 1263 #define ELF_ARCH EM_CRIS 1264 1265 static inline void init_thread(struct target_pt_regs *regs, 1266 struct image_info *infop) 1267 { 1268 regs->erp = infop->entry; 1269 } 1270 1271 #define ELF_EXEC_PAGESIZE 8192 1272 1273 #endif 1274 1275 #ifdef TARGET_M68K 1276 1277 #define ELF_START_MMAP 0x80000000 1278 1279 #define ELF_CLASS ELFCLASS32 1280 #define ELF_ARCH EM_68K 1281 1282 /* ??? Does this need to do anything? 1283 #define ELF_PLAT_INIT(_r) */ 1284 1285 static inline void init_thread(struct target_pt_regs *regs, 1286 struct image_info *infop) 1287 { 1288 regs->usp = infop->start_stack; 1289 regs->sr = 0; 1290 regs->pc = infop->entry; 1291 } 1292 1293 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1294 #define ELF_NREG 20 1295 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1296 1297 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1298 { 1299 (*regs)[0] = tswapreg(env->dregs[1]); 1300 (*regs)[1] = tswapreg(env->dregs[2]); 1301 (*regs)[2] = tswapreg(env->dregs[3]); 1302 (*regs)[3] = tswapreg(env->dregs[4]); 1303 (*regs)[4] = tswapreg(env->dregs[5]); 1304 (*regs)[5] = tswapreg(env->dregs[6]); 1305 (*regs)[6] = tswapreg(env->dregs[7]); 1306 (*regs)[7] = tswapreg(env->aregs[0]); 1307 (*regs)[8] = tswapreg(env->aregs[1]); 1308 (*regs)[9] = tswapreg(env->aregs[2]); 1309 (*regs)[10] = tswapreg(env->aregs[3]); 1310 (*regs)[11] = tswapreg(env->aregs[4]); 1311 (*regs)[12] = tswapreg(env->aregs[5]); 1312 (*regs)[13] = tswapreg(env->aregs[6]); 1313 (*regs)[14] = tswapreg(env->dregs[0]); 1314 (*regs)[15] = tswapreg(env->aregs[7]); 1315 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1316 (*regs)[17] = tswapreg(env->sr); 1317 (*regs)[18] = tswapreg(env->pc); 1318 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1319 } 1320 1321 #define USE_ELF_CORE_DUMP 1322 #define ELF_EXEC_PAGESIZE 8192 1323 1324 #endif 1325 1326 #ifdef TARGET_ALPHA 1327 1328 #define ELF_START_MMAP (0x30000000000ULL) 1329 1330 #define ELF_CLASS ELFCLASS64 1331 #define ELF_ARCH EM_ALPHA 1332 1333 static inline void init_thread(struct target_pt_regs *regs, 1334 struct image_info *infop) 1335 { 1336 regs->pc = infop->entry; 1337 regs->ps = 8; 1338 regs->usp = infop->start_stack; 1339 } 1340 1341 #define ELF_EXEC_PAGESIZE 8192 1342 1343 #endif /* TARGET_ALPHA */ 1344 1345 #ifdef TARGET_S390X 1346 1347 #define ELF_START_MMAP (0x20000000000ULL) 1348 1349 #define ELF_CLASS ELFCLASS64 1350 #define ELF_DATA ELFDATA2MSB 1351 #define ELF_ARCH EM_S390 1352 1353 #include "elf.h" 1354 1355 #define ELF_HWCAP get_elf_hwcap() 1356 1357 #define GET_FEATURE(_feat, _hwcap) \ 1358 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1359 1360 static uint32_t get_elf_hwcap(void) 1361 { 1362 /* 1363 * Let's assume we always have esan3 and zarch. 1364 * 31-bit processes can use 64-bit registers (high gprs). 1365 */ 1366 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1367 1368 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1369 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1370 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1371 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1372 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1373 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1374 hwcap |= HWCAP_S390_ETF3EH; 1375 } 1376 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1377 1378 return hwcap; 1379 } 1380 1381 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1382 { 1383 regs->psw.addr = infop->entry; 1384 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1385 regs->gprs[15] = infop->start_stack; 1386 } 1387 1388 #endif /* TARGET_S390X */ 1389 1390 #ifdef TARGET_TILEGX 1391 1392 /* 42 bits real used address, a half for user mode */ 1393 #define ELF_START_MMAP (0x00000020000000000ULL) 1394 1395 #define elf_check_arch(x) ((x) == EM_TILEGX) 1396 1397 #define ELF_CLASS ELFCLASS64 1398 #define ELF_DATA ELFDATA2LSB 1399 #define ELF_ARCH EM_TILEGX 1400 1401 static inline void init_thread(struct target_pt_regs *regs, 1402 struct image_info *infop) 1403 { 1404 regs->pc = infop->entry; 1405 regs->sp = infop->start_stack; 1406 1407 } 1408 1409 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1410 1411 #endif /* TARGET_TILEGX */ 1412 1413 #ifdef TARGET_RISCV 1414 1415 #define ELF_START_MMAP 0x80000000 1416 #define ELF_ARCH EM_RISCV 1417 1418 #ifdef TARGET_RISCV32 1419 #define ELF_CLASS ELFCLASS32 1420 #else 1421 #define ELF_CLASS ELFCLASS64 1422 #endif 1423 1424 static inline void init_thread(struct target_pt_regs *regs, 1425 struct image_info *infop) 1426 { 1427 regs->sepc = infop->entry; 1428 regs->sp = infop->start_stack; 1429 } 1430 1431 #define ELF_EXEC_PAGESIZE 4096 1432 1433 #endif /* TARGET_RISCV */ 1434 1435 #ifdef TARGET_HPPA 1436 1437 #define ELF_START_MMAP 0x80000000 1438 #define ELF_CLASS ELFCLASS32 1439 #define ELF_ARCH EM_PARISC 1440 #define ELF_PLATFORM "PARISC" 1441 #define STACK_GROWS_DOWN 0 1442 #define STACK_ALIGNMENT 64 1443 1444 static inline void init_thread(struct target_pt_regs *regs, 1445 struct image_info *infop) 1446 { 1447 regs->iaoq[0] = infop->entry; 1448 regs->iaoq[1] = infop->entry + 4; 1449 regs->gr[23] = 0; 1450 regs->gr[24] = infop->arg_start; 1451 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1452 /* The top-of-stack contains a linkage buffer. */ 1453 regs->gr[30] = infop->start_stack + 64; 1454 regs->gr[31] = infop->entry; 1455 } 1456 1457 #endif /* TARGET_HPPA */ 1458 1459 #ifdef TARGET_XTENSA 1460 1461 #define ELF_START_MMAP 0x20000000 1462 1463 #define ELF_CLASS ELFCLASS32 1464 #define ELF_ARCH EM_XTENSA 1465 1466 static inline void init_thread(struct target_pt_regs *regs, 1467 struct image_info *infop) 1468 { 1469 regs->windowbase = 0; 1470 regs->windowstart = 1; 1471 regs->areg[1] = infop->start_stack; 1472 regs->pc = infop->entry; 1473 } 1474 1475 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1476 #define ELF_NREG 128 1477 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1478 1479 enum { 1480 TARGET_REG_PC, 1481 TARGET_REG_PS, 1482 TARGET_REG_LBEG, 1483 TARGET_REG_LEND, 1484 TARGET_REG_LCOUNT, 1485 TARGET_REG_SAR, 1486 TARGET_REG_WINDOWSTART, 1487 TARGET_REG_WINDOWBASE, 1488 TARGET_REG_THREADPTR, 1489 TARGET_REG_AR0 = 64, 1490 }; 1491 1492 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1493 const CPUXtensaState *env) 1494 { 1495 unsigned i; 1496 1497 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1498 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1499 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1500 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1501 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1502 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1503 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1504 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1505 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1506 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1507 for (i = 0; i < env->config->nareg; ++i) { 1508 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1509 } 1510 } 1511 1512 #define USE_ELF_CORE_DUMP 1513 #define ELF_EXEC_PAGESIZE 4096 1514 1515 #endif /* TARGET_XTENSA */ 1516 1517 #ifdef TARGET_HEXAGON 1518 1519 #define ELF_START_MMAP 0x20000000 1520 1521 #define ELF_CLASS ELFCLASS32 1522 #define ELF_ARCH EM_HEXAGON 1523 1524 static inline void init_thread(struct target_pt_regs *regs, 1525 struct image_info *infop) 1526 { 1527 regs->sepc = infop->entry; 1528 regs->sp = infop->start_stack; 1529 } 1530 1531 #endif /* TARGET_HEXAGON */ 1532 1533 #ifndef ELF_PLATFORM 1534 #define ELF_PLATFORM (NULL) 1535 #endif 1536 1537 #ifndef ELF_MACHINE 1538 #define ELF_MACHINE ELF_ARCH 1539 #endif 1540 1541 #ifndef elf_check_arch 1542 #define elf_check_arch(x) ((x) == ELF_ARCH) 1543 #endif 1544 1545 #ifndef elf_check_abi 1546 #define elf_check_abi(x) (1) 1547 #endif 1548 1549 #ifndef ELF_HWCAP 1550 #define ELF_HWCAP 0 1551 #endif 1552 1553 #ifndef STACK_GROWS_DOWN 1554 #define STACK_GROWS_DOWN 1 1555 #endif 1556 1557 #ifndef STACK_ALIGNMENT 1558 #define STACK_ALIGNMENT 16 1559 #endif 1560 1561 #ifdef TARGET_ABI32 1562 #undef ELF_CLASS 1563 #define ELF_CLASS ELFCLASS32 1564 #undef bswaptls 1565 #define bswaptls(ptr) bswap32s(ptr) 1566 #endif 1567 1568 #include "elf.h" 1569 1570 /* We must delay the following stanzas until after "elf.h". */ 1571 #if defined(TARGET_AARCH64) 1572 1573 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1574 const uint32_t *data, 1575 struct image_info *info, 1576 Error **errp) 1577 { 1578 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1579 if (pr_datasz != sizeof(uint32_t)) { 1580 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1581 return false; 1582 } 1583 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1584 info->note_flags = *data; 1585 } 1586 return true; 1587 } 1588 #define ARCH_USE_GNU_PROPERTY 1 1589 1590 #else 1591 1592 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1593 const uint32_t *data, 1594 struct image_info *info, 1595 Error **errp) 1596 { 1597 g_assert_not_reached(); 1598 } 1599 #define ARCH_USE_GNU_PROPERTY 0 1600 1601 #endif 1602 1603 struct exec 1604 { 1605 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1606 unsigned int a_text; /* length of text, in bytes */ 1607 unsigned int a_data; /* length of data, in bytes */ 1608 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1609 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1610 unsigned int a_entry; /* start address */ 1611 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1612 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1613 }; 1614 1615 1616 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1617 #define OMAGIC 0407 1618 #define NMAGIC 0410 1619 #define ZMAGIC 0413 1620 #define QMAGIC 0314 1621 1622 /* Necessary parameters */ 1623 #define TARGET_ELF_EXEC_PAGESIZE \ 1624 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1625 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1626 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1627 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1628 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1629 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1630 1631 #define DLINFO_ITEMS 16 1632 1633 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1634 { 1635 memcpy(to, from, n); 1636 } 1637 1638 #ifdef BSWAP_NEEDED 1639 static void bswap_ehdr(struct elfhdr *ehdr) 1640 { 1641 bswap16s(&ehdr->e_type); /* Object file type */ 1642 bswap16s(&ehdr->e_machine); /* Architecture */ 1643 bswap32s(&ehdr->e_version); /* Object file version */ 1644 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1645 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1646 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1647 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1648 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1649 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1650 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1651 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1652 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1653 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1654 } 1655 1656 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1657 { 1658 int i; 1659 for (i = 0; i < phnum; ++i, ++phdr) { 1660 bswap32s(&phdr->p_type); /* Segment type */ 1661 bswap32s(&phdr->p_flags); /* Segment flags */ 1662 bswaptls(&phdr->p_offset); /* Segment file offset */ 1663 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1664 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1665 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1666 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1667 bswaptls(&phdr->p_align); /* Segment alignment */ 1668 } 1669 } 1670 1671 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1672 { 1673 int i; 1674 for (i = 0; i < shnum; ++i, ++shdr) { 1675 bswap32s(&shdr->sh_name); 1676 bswap32s(&shdr->sh_type); 1677 bswaptls(&shdr->sh_flags); 1678 bswaptls(&shdr->sh_addr); 1679 bswaptls(&shdr->sh_offset); 1680 bswaptls(&shdr->sh_size); 1681 bswap32s(&shdr->sh_link); 1682 bswap32s(&shdr->sh_info); 1683 bswaptls(&shdr->sh_addralign); 1684 bswaptls(&shdr->sh_entsize); 1685 } 1686 } 1687 1688 static void bswap_sym(struct elf_sym *sym) 1689 { 1690 bswap32s(&sym->st_name); 1691 bswaptls(&sym->st_value); 1692 bswaptls(&sym->st_size); 1693 bswap16s(&sym->st_shndx); 1694 } 1695 1696 #ifdef TARGET_MIPS 1697 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1698 { 1699 bswap16s(&abiflags->version); 1700 bswap32s(&abiflags->ases); 1701 bswap32s(&abiflags->isa_ext); 1702 bswap32s(&abiflags->flags1); 1703 bswap32s(&abiflags->flags2); 1704 } 1705 #endif 1706 #else 1707 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1708 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1709 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1710 static inline void bswap_sym(struct elf_sym *sym) { } 1711 #ifdef TARGET_MIPS 1712 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1713 #endif 1714 #endif 1715 1716 #ifdef USE_ELF_CORE_DUMP 1717 static int elf_core_dump(int, const CPUArchState *); 1718 #endif /* USE_ELF_CORE_DUMP */ 1719 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1720 1721 /* Verify the portions of EHDR within E_IDENT for the target. 1722 This can be performed before bswapping the entire header. */ 1723 static bool elf_check_ident(struct elfhdr *ehdr) 1724 { 1725 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1726 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1727 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1728 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1729 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1730 && ehdr->e_ident[EI_DATA] == ELF_DATA 1731 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1732 } 1733 1734 /* Verify the portions of EHDR outside of E_IDENT for the target. 1735 This has to wait until after bswapping the header. */ 1736 static bool elf_check_ehdr(struct elfhdr *ehdr) 1737 { 1738 return (elf_check_arch(ehdr->e_machine) 1739 && elf_check_abi(ehdr->e_flags) 1740 && ehdr->e_ehsize == sizeof(struct elfhdr) 1741 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1742 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1743 } 1744 1745 /* 1746 * 'copy_elf_strings()' copies argument/envelope strings from user 1747 * memory to free pages in kernel mem. These are in a format ready 1748 * to be put directly into the top of new user memory. 1749 * 1750 */ 1751 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1752 abi_ulong p, abi_ulong stack_limit) 1753 { 1754 char *tmp; 1755 int len, i; 1756 abi_ulong top = p; 1757 1758 if (!p) { 1759 return 0; /* bullet-proofing */ 1760 } 1761 1762 if (STACK_GROWS_DOWN) { 1763 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1764 for (i = argc - 1; i >= 0; --i) { 1765 tmp = argv[i]; 1766 if (!tmp) { 1767 fprintf(stderr, "VFS: argc is wrong"); 1768 exit(-1); 1769 } 1770 len = strlen(tmp) + 1; 1771 tmp += len; 1772 1773 if (len > (p - stack_limit)) { 1774 return 0; 1775 } 1776 while (len) { 1777 int bytes_to_copy = (len > offset) ? offset : len; 1778 tmp -= bytes_to_copy; 1779 p -= bytes_to_copy; 1780 offset -= bytes_to_copy; 1781 len -= bytes_to_copy; 1782 1783 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1784 1785 if (offset == 0) { 1786 memcpy_to_target(p, scratch, top - p); 1787 top = p; 1788 offset = TARGET_PAGE_SIZE; 1789 } 1790 } 1791 } 1792 if (p != top) { 1793 memcpy_to_target(p, scratch + offset, top - p); 1794 } 1795 } else { 1796 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1797 for (i = 0; i < argc; ++i) { 1798 tmp = argv[i]; 1799 if (!tmp) { 1800 fprintf(stderr, "VFS: argc is wrong"); 1801 exit(-1); 1802 } 1803 len = strlen(tmp) + 1; 1804 if (len > (stack_limit - p)) { 1805 return 0; 1806 } 1807 while (len) { 1808 int bytes_to_copy = (len > remaining) ? remaining : len; 1809 1810 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1811 1812 tmp += bytes_to_copy; 1813 remaining -= bytes_to_copy; 1814 p += bytes_to_copy; 1815 len -= bytes_to_copy; 1816 1817 if (remaining == 0) { 1818 memcpy_to_target(top, scratch, p - top); 1819 top = p; 1820 remaining = TARGET_PAGE_SIZE; 1821 } 1822 } 1823 } 1824 if (p != top) { 1825 memcpy_to_target(top, scratch, p - top); 1826 } 1827 } 1828 1829 return p; 1830 } 1831 1832 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1833 * argument/environment space. Newer kernels (>2.6.33) allow more, 1834 * dependent on stack size, but guarantee at least 32 pages for 1835 * backwards compatibility. 1836 */ 1837 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1838 1839 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1840 struct image_info *info) 1841 { 1842 abi_ulong size, error, guard; 1843 1844 size = guest_stack_size; 1845 if (size < STACK_LOWER_LIMIT) { 1846 size = STACK_LOWER_LIMIT; 1847 } 1848 guard = TARGET_PAGE_SIZE; 1849 if (guard < qemu_real_host_page_size) { 1850 guard = qemu_real_host_page_size; 1851 } 1852 1853 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1854 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1855 if (error == -1) { 1856 perror("mmap stack"); 1857 exit(-1); 1858 } 1859 1860 /* We reserve one extra page at the top of the stack as guard. */ 1861 if (STACK_GROWS_DOWN) { 1862 target_mprotect(error, guard, PROT_NONE); 1863 info->stack_limit = error + guard; 1864 return info->stack_limit + size - sizeof(void *); 1865 } else { 1866 target_mprotect(error + size, guard, PROT_NONE); 1867 info->stack_limit = error + size; 1868 return error; 1869 } 1870 } 1871 1872 /* Map and zero the bss. We need to explicitly zero any fractional pages 1873 after the data section (i.e. bss). */ 1874 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1875 { 1876 uintptr_t host_start, host_map_start, host_end; 1877 1878 last_bss = TARGET_PAGE_ALIGN(last_bss); 1879 1880 /* ??? There is confusion between qemu_real_host_page_size and 1881 qemu_host_page_size here and elsewhere in target_mmap, which 1882 may lead to the end of the data section mapping from the file 1883 not being mapped. At least there was an explicit test and 1884 comment for that here, suggesting that "the file size must 1885 be known". The comment probably pre-dates the introduction 1886 of the fstat system call in target_mmap which does in fact 1887 find out the size. What isn't clear is if the workaround 1888 here is still actually needed. For now, continue with it, 1889 but merge it with the "normal" mmap that would allocate the bss. */ 1890 1891 host_start = (uintptr_t) g2h_untagged(elf_bss); 1892 host_end = (uintptr_t) g2h_untagged(last_bss); 1893 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1894 1895 if (host_map_start < host_end) { 1896 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1897 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1898 if (p == MAP_FAILED) { 1899 perror("cannot mmap brk"); 1900 exit(-1); 1901 } 1902 } 1903 1904 /* Ensure that the bss page(s) are valid */ 1905 if ((page_get_flags(last_bss-1) & prot) != prot) { 1906 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1907 } 1908 1909 if (host_start < host_map_start) { 1910 memset((void *)host_start, 0, host_map_start - host_start); 1911 } 1912 } 1913 1914 #ifdef TARGET_ARM 1915 static int elf_is_fdpic(struct elfhdr *exec) 1916 { 1917 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1918 } 1919 #else 1920 /* Default implementation, always false. */ 1921 static int elf_is_fdpic(struct elfhdr *exec) 1922 { 1923 return 0; 1924 } 1925 #endif 1926 1927 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1928 { 1929 uint16_t n; 1930 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1931 1932 /* elf32_fdpic_loadseg */ 1933 n = info->nsegs; 1934 while (n--) { 1935 sp -= 12; 1936 put_user_u32(loadsegs[n].addr, sp+0); 1937 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1938 put_user_u32(loadsegs[n].p_memsz, sp+8); 1939 } 1940 1941 /* elf32_fdpic_loadmap */ 1942 sp -= 4; 1943 put_user_u16(0, sp+0); /* version */ 1944 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1945 1946 info->personality = PER_LINUX_FDPIC; 1947 info->loadmap_addr = sp; 1948 1949 return sp; 1950 } 1951 1952 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1953 struct elfhdr *exec, 1954 struct image_info *info, 1955 struct image_info *interp_info) 1956 { 1957 abi_ulong sp; 1958 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1959 int size; 1960 int i; 1961 abi_ulong u_rand_bytes; 1962 uint8_t k_rand_bytes[16]; 1963 abi_ulong u_platform; 1964 const char *k_platform; 1965 const int n = sizeof(elf_addr_t); 1966 1967 sp = p; 1968 1969 /* Needs to be before we load the env/argc/... */ 1970 if (elf_is_fdpic(exec)) { 1971 /* Need 4 byte alignment for these structs */ 1972 sp &= ~3; 1973 sp = loader_build_fdpic_loadmap(info, sp); 1974 info->other_info = interp_info; 1975 if (interp_info) { 1976 interp_info->other_info = info; 1977 sp = loader_build_fdpic_loadmap(interp_info, sp); 1978 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1979 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1980 } else { 1981 info->interpreter_loadmap_addr = 0; 1982 info->interpreter_pt_dynamic_addr = 0; 1983 } 1984 } 1985 1986 u_platform = 0; 1987 k_platform = ELF_PLATFORM; 1988 if (k_platform) { 1989 size_t len = strlen(k_platform) + 1; 1990 if (STACK_GROWS_DOWN) { 1991 sp -= (len + n - 1) & ~(n - 1); 1992 u_platform = sp; 1993 /* FIXME - check return value of memcpy_to_target() for failure */ 1994 memcpy_to_target(sp, k_platform, len); 1995 } else { 1996 memcpy_to_target(sp, k_platform, len); 1997 u_platform = sp; 1998 sp += len + 1; 1999 } 2000 } 2001 2002 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2003 * the argv and envp pointers. 2004 */ 2005 if (STACK_GROWS_DOWN) { 2006 sp = QEMU_ALIGN_DOWN(sp, 16); 2007 } else { 2008 sp = QEMU_ALIGN_UP(sp, 16); 2009 } 2010 2011 /* 2012 * Generate 16 random bytes for userspace PRNG seeding. 2013 */ 2014 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2015 if (STACK_GROWS_DOWN) { 2016 sp -= 16; 2017 u_rand_bytes = sp; 2018 /* FIXME - check return value of memcpy_to_target() for failure */ 2019 memcpy_to_target(sp, k_rand_bytes, 16); 2020 } else { 2021 memcpy_to_target(sp, k_rand_bytes, 16); 2022 u_rand_bytes = sp; 2023 sp += 16; 2024 } 2025 2026 size = (DLINFO_ITEMS + 1) * 2; 2027 if (k_platform) 2028 size += 2; 2029 #ifdef DLINFO_ARCH_ITEMS 2030 size += DLINFO_ARCH_ITEMS * 2; 2031 #endif 2032 #ifdef ELF_HWCAP2 2033 size += 2; 2034 #endif 2035 info->auxv_len = size * n; 2036 2037 size += envc + argc + 2; 2038 size += 1; /* argc itself */ 2039 size *= n; 2040 2041 /* Allocate space and finalize stack alignment for entry now. */ 2042 if (STACK_GROWS_DOWN) { 2043 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2044 sp = u_argc; 2045 } else { 2046 u_argc = sp; 2047 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2048 } 2049 2050 u_argv = u_argc + n; 2051 u_envp = u_argv + (argc + 1) * n; 2052 u_auxv = u_envp + (envc + 1) * n; 2053 info->saved_auxv = u_auxv; 2054 info->arg_start = u_argv; 2055 info->arg_end = u_argv + argc * n; 2056 2057 /* This is correct because Linux defines 2058 * elf_addr_t as Elf32_Off / Elf64_Off 2059 */ 2060 #define NEW_AUX_ENT(id, val) do { \ 2061 put_user_ual(id, u_auxv); u_auxv += n; \ 2062 put_user_ual(val, u_auxv); u_auxv += n; \ 2063 } while(0) 2064 2065 #ifdef ARCH_DLINFO 2066 /* 2067 * ARCH_DLINFO must come first so platform specific code can enforce 2068 * special alignment requirements on the AUXV if necessary (eg. PPC). 2069 */ 2070 ARCH_DLINFO; 2071 #endif 2072 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2073 * on info->auxv_len will trigger. 2074 */ 2075 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2076 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2077 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2078 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2079 /* Target doesn't support host page size alignment */ 2080 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2081 } else { 2082 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2083 qemu_host_page_size))); 2084 } 2085 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2086 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2087 NEW_AUX_ENT(AT_ENTRY, info->entry); 2088 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2089 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2090 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2091 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2092 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2093 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2094 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2095 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2096 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2097 2098 #ifdef ELF_HWCAP2 2099 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2100 #endif 2101 2102 if (u_platform) { 2103 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2104 } 2105 NEW_AUX_ENT (AT_NULL, 0); 2106 #undef NEW_AUX_ENT 2107 2108 /* Check that our initial calculation of the auxv length matches how much 2109 * we actually put into it. 2110 */ 2111 assert(info->auxv_len == u_auxv - info->saved_auxv); 2112 2113 put_user_ual(argc, u_argc); 2114 2115 p = info->arg_strings; 2116 for (i = 0; i < argc; ++i) { 2117 put_user_ual(p, u_argv); 2118 u_argv += n; 2119 p += target_strlen(p) + 1; 2120 } 2121 put_user_ual(0, u_argv); 2122 2123 p = info->env_strings; 2124 for (i = 0; i < envc; ++i) { 2125 put_user_ual(p, u_envp); 2126 u_envp += n; 2127 p += target_strlen(p) + 1; 2128 } 2129 put_user_ual(0, u_envp); 2130 2131 return sp; 2132 } 2133 2134 #ifndef ARM_COMMPAGE 2135 #define ARM_COMMPAGE 0 2136 #define init_guest_commpage() true 2137 #endif 2138 2139 static void pgb_fail_in_use(const char *image_name) 2140 { 2141 error_report("%s: requires virtual address space that is in use " 2142 "(omit the -B option or choose a different value)", 2143 image_name); 2144 exit(EXIT_FAILURE); 2145 } 2146 2147 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2148 abi_ulong guest_hiaddr, long align) 2149 { 2150 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2151 void *addr, *test; 2152 2153 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2154 fprintf(stderr, "Requested guest base %p does not satisfy " 2155 "host minimum alignment (0x%lx)\n", 2156 (void *)guest_base, align); 2157 exit(EXIT_FAILURE); 2158 } 2159 2160 /* Sanity check the guest binary. */ 2161 if (reserved_va) { 2162 if (guest_hiaddr > reserved_va) { 2163 error_report("%s: requires more than reserved virtual " 2164 "address space (0x%" PRIx64 " > 0x%lx)", 2165 image_name, (uint64_t)guest_hiaddr, reserved_va); 2166 exit(EXIT_FAILURE); 2167 } 2168 } else { 2169 #if HOST_LONG_BITS < TARGET_ABI_BITS 2170 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2171 error_report("%s: requires more virtual address space " 2172 "than the host can provide (0x%" PRIx64 ")", 2173 image_name, (uint64_t)guest_hiaddr - guest_base); 2174 exit(EXIT_FAILURE); 2175 } 2176 #endif 2177 } 2178 2179 /* 2180 * Expand the allocation to the entire reserved_va. 2181 * Exclude the mmap_min_addr hole. 2182 */ 2183 if (reserved_va) { 2184 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2185 : mmap_min_addr - guest_base); 2186 guest_hiaddr = reserved_va; 2187 } 2188 2189 /* Reserve the address space for the binary, or reserved_va. */ 2190 test = g2h_untagged(guest_loaddr); 2191 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2192 if (test != addr) { 2193 pgb_fail_in_use(image_name); 2194 } 2195 } 2196 2197 /** 2198 * pgd_find_hole_fallback: potential mmap address 2199 * @guest_size: size of available space 2200 * @brk: location of break 2201 * @align: memory alignment 2202 * 2203 * This is a fallback method for finding a hole in the host address 2204 * space if we don't have the benefit of being able to access 2205 * /proc/self/map. It can potentially take a very long time as we can 2206 * only dumbly iterate up the host address space seeing if the 2207 * allocation would work. 2208 */ 2209 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2210 long align, uintptr_t offset) 2211 { 2212 uintptr_t base; 2213 2214 /* Start (aligned) at the bottom and work our way up */ 2215 base = ROUND_UP(mmap_min_addr, align); 2216 2217 while (true) { 2218 uintptr_t align_start, end; 2219 align_start = ROUND_UP(base, align); 2220 end = align_start + guest_size + offset; 2221 2222 /* if brk is anywhere in the range give ourselves some room to grow. */ 2223 if (align_start <= brk && brk < end) { 2224 base = brk + (16 * MiB); 2225 continue; 2226 } else if (align_start + guest_size < align_start) { 2227 /* we have run out of space */ 2228 return -1; 2229 } else { 2230 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2231 MAP_FIXED_NOREPLACE; 2232 void * mmap_start = mmap((void *) align_start, guest_size, 2233 PROT_NONE, flags, -1, 0); 2234 if (mmap_start != MAP_FAILED) { 2235 munmap((void *) align_start, guest_size); 2236 if (MAP_FIXED_NOREPLACE != 0 || 2237 mmap_start == (void *) align_start) { 2238 return (uintptr_t) mmap_start + offset; 2239 } 2240 } 2241 base += qemu_host_page_size; 2242 } 2243 } 2244 } 2245 2246 /* Return value for guest_base, or -1 if no hole found. */ 2247 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2248 long align, uintptr_t offset) 2249 { 2250 GSList *maps, *iter; 2251 uintptr_t this_start, this_end, next_start, brk; 2252 intptr_t ret = -1; 2253 2254 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2255 2256 maps = read_self_maps(); 2257 2258 /* Read brk after we've read the maps, which will malloc. */ 2259 brk = (uintptr_t)sbrk(0); 2260 2261 if (!maps) { 2262 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2263 } 2264 2265 /* The first hole is before the first map entry. */ 2266 this_start = mmap_min_addr; 2267 2268 for (iter = maps; iter; 2269 this_start = next_start, iter = g_slist_next(iter)) { 2270 uintptr_t align_start, hole_size; 2271 2272 this_end = ((MapInfo *)iter->data)->start; 2273 next_start = ((MapInfo *)iter->data)->end; 2274 align_start = ROUND_UP(this_start + offset, align); 2275 2276 /* Skip holes that are too small. */ 2277 if (align_start >= this_end) { 2278 continue; 2279 } 2280 hole_size = this_end - align_start; 2281 if (hole_size < guest_size) { 2282 continue; 2283 } 2284 2285 /* If this hole contains brk, give ourselves some room to grow. */ 2286 if (this_start <= brk && brk < this_end) { 2287 hole_size -= guest_size; 2288 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2289 align_start += 1 * GiB; 2290 } else if (hole_size >= 16 * MiB) { 2291 align_start += 16 * MiB; 2292 } else { 2293 align_start = (this_end - guest_size) & -align; 2294 if (align_start < this_start) { 2295 continue; 2296 } 2297 } 2298 } 2299 2300 /* Record the lowest successful match. */ 2301 if (ret < 0) { 2302 ret = align_start - guest_loaddr; 2303 } 2304 /* If this hole contains the identity map, select it. */ 2305 if (align_start <= guest_loaddr && 2306 guest_loaddr + guest_size <= this_end) { 2307 ret = 0; 2308 } 2309 /* If this hole ends above the identity map, stop looking. */ 2310 if (this_end >= guest_loaddr) { 2311 break; 2312 } 2313 } 2314 free_self_maps(maps); 2315 2316 return ret; 2317 } 2318 2319 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2320 abi_ulong orig_hiaddr, long align) 2321 { 2322 uintptr_t loaddr = orig_loaddr; 2323 uintptr_t hiaddr = orig_hiaddr; 2324 uintptr_t offset = 0; 2325 uintptr_t addr; 2326 2327 if (hiaddr != orig_hiaddr) { 2328 error_report("%s: requires virtual address space that the " 2329 "host cannot provide (0x%" PRIx64 ")", 2330 image_name, (uint64_t)orig_hiaddr); 2331 exit(EXIT_FAILURE); 2332 } 2333 2334 loaddr &= -align; 2335 if (ARM_COMMPAGE) { 2336 /* 2337 * Extend the allocation to include the commpage. 2338 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2339 * need to ensure there is space bellow the guest_base so we 2340 * can map the commpage in the place needed when the address 2341 * arithmetic wraps around. 2342 */ 2343 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2344 hiaddr = (uintptr_t) 4 << 30; 2345 } else { 2346 offset = -(ARM_COMMPAGE & -align); 2347 } 2348 } 2349 2350 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2351 if (addr == -1) { 2352 /* 2353 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation 2354 * that can satisfy both. But as the normal arm32 link base address 2355 * is ~32k, and we extend down to include the commpage, making the 2356 * overhead only ~96k, this is unlikely. 2357 */ 2358 error_report("%s: Unable to allocate %#zx bytes of " 2359 "virtual address space", image_name, 2360 (size_t)(hiaddr - loaddr)); 2361 exit(EXIT_FAILURE); 2362 } 2363 2364 guest_base = addr; 2365 } 2366 2367 static void pgb_dynamic(const char *image_name, long align) 2368 { 2369 /* 2370 * The executable is dynamic and does not require a fixed address. 2371 * All we need is a commpage that satisfies align. 2372 * If we do not need a commpage, leave guest_base == 0. 2373 */ 2374 if (ARM_COMMPAGE) { 2375 uintptr_t addr, commpage; 2376 2377 /* 64-bit hosts should have used reserved_va. */ 2378 assert(sizeof(uintptr_t) == 4); 2379 2380 /* 2381 * By putting the commpage at the first hole, that puts guest_base 2382 * just above that, and maximises the positive guest addresses. 2383 */ 2384 commpage = ARM_COMMPAGE & -align; 2385 addr = pgb_find_hole(commpage, -commpage, align, 0); 2386 assert(addr != -1); 2387 guest_base = addr; 2388 } 2389 } 2390 2391 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2392 abi_ulong guest_hiaddr, long align) 2393 { 2394 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2395 void *addr, *test; 2396 2397 if (guest_hiaddr > reserved_va) { 2398 error_report("%s: requires more than reserved virtual " 2399 "address space (0x%" PRIx64 " > 0x%lx)", 2400 image_name, (uint64_t)guest_hiaddr, reserved_va); 2401 exit(EXIT_FAILURE); 2402 } 2403 2404 /* Widen the "image" to the entire reserved address space. */ 2405 pgb_static(image_name, 0, reserved_va, align); 2406 2407 /* osdep.h defines this as 0 if it's missing */ 2408 flags |= MAP_FIXED_NOREPLACE; 2409 2410 /* Reserve the memory on the host. */ 2411 assert(guest_base != 0); 2412 test = g2h_untagged(0); 2413 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2414 if (addr == MAP_FAILED || addr != test) { 2415 error_report("Unable to reserve 0x%lx bytes of virtual address " 2416 "space at %p (%s) for use as guest address space (check your" 2417 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2418 "using -R option)", reserved_va, test, strerror(errno)); 2419 exit(EXIT_FAILURE); 2420 } 2421 } 2422 2423 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2424 abi_ulong guest_hiaddr) 2425 { 2426 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2427 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2428 2429 if (have_guest_base) { 2430 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2431 } else if (reserved_va) { 2432 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2433 } else if (guest_loaddr) { 2434 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2435 } else { 2436 pgb_dynamic(image_name, align); 2437 } 2438 2439 /* Reserve and initialize the commpage. */ 2440 if (!init_guest_commpage()) { 2441 /* 2442 * With have_guest_base, the user has selected the address and 2443 * we are trying to work with that. Otherwise, we have selected 2444 * free space and init_guest_commpage must succeeded. 2445 */ 2446 assert(have_guest_base); 2447 pgb_fail_in_use(image_name); 2448 } 2449 2450 assert(QEMU_IS_ALIGNED(guest_base, align)); 2451 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2452 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2453 } 2454 2455 enum { 2456 /* The string "GNU\0" as a magic number. */ 2457 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2458 NOTE_DATA_SZ = 1 * KiB, 2459 NOTE_NAME_SZ = 4, 2460 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2461 }; 2462 2463 /* 2464 * Process a single gnu_property entry. 2465 * Return false for error. 2466 */ 2467 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2468 struct image_info *info, bool have_prev_type, 2469 uint32_t *prev_type, Error **errp) 2470 { 2471 uint32_t pr_type, pr_datasz, step; 2472 2473 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2474 goto error_data; 2475 } 2476 datasz -= *off; 2477 data += *off / sizeof(uint32_t); 2478 2479 if (datasz < 2 * sizeof(uint32_t)) { 2480 goto error_data; 2481 } 2482 pr_type = data[0]; 2483 pr_datasz = data[1]; 2484 data += 2; 2485 datasz -= 2 * sizeof(uint32_t); 2486 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2487 if (step > datasz) { 2488 goto error_data; 2489 } 2490 2491 /* Properties are supposed to be unique and sorted on pr_type. */ 2492 if (have_prev_type && pr_type <= *prev_type) { 2493 if (pr_type == *prev_type) { 2494 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2495 } else { 2496 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2497 } 2498 return false; 2499 } 2500 *prev_type = pr_type; 2501 2502 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2503 return false; 2504 } 2505 2506 *off += 2 * sizeof(uint32_t) + step; 2507 return true; 2508 2509 error_data: 2510 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2511 return false; 2512 } 2513 2514 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2515 static bool parse_elf_properties(int image_fd, 2516 struct image_info *info, 2517 const struct elf_phdr *phdr, 2518 char bprm_buf[BPRM_BUF_SIZE], 2519 Error **errp) 2520 { 2521 union { 2522 struct elf_note nhdr; 2523 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2524 } note; 2525 2526 int n, off, datasz; 2527 bool have_prev_type; 2528 uint32_t prev_type; 2529 2530 /* Unless the arch requires properties, ignore them. */ 2531 if (!ARCH_USE_GNU_PROPERTY) { 2532 return true; 2533 } 2534 2535 /* If the properties are crazy large, that's too bad. */ 2536 n = phdr->p_filesz; 2537 if (n > sizeof(note)) { 2538 error_setg(errp, "PT_GNU_PROPERTY too large"); 2539 return false; 2540 } 2541 if (n < sizeof(note.nhdr)) { 2542 error_setg(errp, "PT_GNU_PROPERTY too small"); 2543 return false; 2544 } 2545 2546 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2547 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2548 } else { 2549 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2550 if (len != n) { 2551 error_setg_errno(errp, errno, "Error reading file header"); 2552 return false; 2553 } 2554 } 2555 2556 /* 2557 * The contents of a valid PT_GNU_PROPERTY is a sequence 2558 * of uint32_t -- swap them all now. 2559 */ 2560 #ifdef BSWAP_NEEDED 2561 for (int i = 0; i < n / 4; i++) { 2562 bswap32s(note.data + i); 2563 } 2564 #endif 2565 2566 /* 2567 * Note that nhdr is 3 words, and that the "name" described by namesz 2568 * immediately follows nhdr and is thus at the 4th word. Further, all 2569 * of the inputs to the kernel's round_up are multiples of 4. 2570 */ 2571 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2572 note.nhdr.n_namesz != NOTE_NAME_SZ || 2573 note.data[3] != GNU0_MAGIC) { 2574 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2575 return false; 2576 } 2577 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2578 2579 datasz = note.nhdr.n_descsz + off; 2580 if (datasz > n) { 2581 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2582 return false; 2583 } 2584 2585 have_prev_type = false; 2586 prev_type = 0; 2587 while (1) { 2588 if (off == datasz) { 2589 return true; /* end, exit ok */ 2590 } 2591 if (!parse_elf_property(note.data, &off, datasz, info, 2592 have_prev_type, &prev_type, errp)) { 2593 return false; 2594 } 2595 have_prev_type = true; 2596 } 2597 } 2598 2599 /* Load an ELF image into the address space. 2600 2601 IMAGE_NAME is the filename of the image, to use in error messages. 2602 IMAGE_FD is the open file descriptor for the image. 2603 2604 BPRM_BUF is a copy of the beginning of the file; this of course 2605 contains the elf file header at offset 0. It is assumed that this 2606 buffer is sufficiently aligned to present no problems to the host 2607 in accessing data at aligned offsets within the buffer. 2608 2609 On return: INFO values will be filled in, as necessary or available. */ 2610 2611 static void load_elf_image(const char *image_name, int image_fd, 2612 struct image_info *info, char **pinterp_name, 2613 char bprm_buf[BPRM_BUF_SIZE]) 2614 { 2615 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2616 struct elf_phdr *phdr; 2617 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2618 int i, retval, prot_exec; 2619 Error *err = NULL; 2620 2621 /* First of all, some simple consistency checks */ 2622 if (!elf_check_ident(ehdr)) { 2623 error_setg(&err, "Invalid ELF image for this architecture"); 2624 goto exit_errmsg; 2625 } 2626 bswap_ehdr(ehdr); 2627 if (!elf_check_ehdr(ehdr)) { 2628 error_setg(&err, "Invalid ELF image for this architecture"); 2629 goto exit_errmsg; 2630 } 2631 2632 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2633 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2634 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2635 } else { 2636 phdr = (struct elf_phdr *) alloca(i); 2637 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2638 if (retval != i) { 2639 goto exit_read; 2640 } 2641 } 2642 bswap_phdr(phdr, ehdr->e_phnum); 2643 2644 info->nsegs = 0; 2645 info->pt_dynamic_addr = 0; 2646 2647 mmap_lock(); 2648 2649 /* 2650 * Find the maximum size of the image and allocate an appropriate 2651 * amount of memory to handle that. Locate the interpreter, if any. 2652 */ 2653 loaddr = -1, hiaddr = 0; 2654 info->alignment = 0; 2655 for (i = 0; i < ehdr->e_phnum; ++i) { 2656 struct elf_phdr *eppnt = phdr + i; 2657 if (eppnt->p_type == PT_LOAD) { 2658 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 2659 if (a < loaddr) { 2660 loaddr = a; 2661 } 2662 a = eppnt->p_vaddr + eppnt->p_memsz; 2663 if (a > hiaddr) { 2664 hiaddr = a; 2665 } 2666 ++info->nsegs; 2667 info->alignment |= eppnt->p_align; 2668 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2669 g_autofree char *interp_name = NULL; 2670 2671 if (*pinterp_name) { 2672 error_setg(&err, "Multiple PT_INTERP entries"); 2673 goto exit_errmsg; 2674 } 2675 2676 interp_name = g_malloc(eppnt->p_filesz); 2677 2678 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2679 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2680 eppnt->p_filesz); 2681 } else { 2682 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2683 eppnt->p_offset); 2684 if (retval != eppnt->p_filesz) { 2685 goto exit_read; 2686 } 2687 } 2688 if (interp_name[eppnt->p_filesz - 1] != 0) { 2689 error_setg(&err, "Invalid PT_INTERP entry"); 2690 goto exit_errmsg; 2691 } 2692 *pinterp_name = g_steal_pointer(&interp_name); 2693 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 2694 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 2695 goto exit_errmsg; 2696 } 2697 } 2698 } 2699 2700 if (pinterp_name != NULL) { 2701 /* 2702 * This is the main executable. 2703 * 2704 * Reserve extra space for brk. 2705 * We hold on to this space while placing the interpreter 2706 * and the stack, lest they be placed immediately after 2707 * the data segment and block allocation from the brk. 2708 * 2709 * 16MB is chosen as "large enough" without being so large 2710 * as to allow the result to not fit with a 32-bit guest on 2711 * a 32-bit host. 2712 */ 2713 info->reserve_brk = 16 * MiB; 2714 hiaddr += info->reserve_brk; 2715 2716 if (ehdr->e_type == ET_EXEC) { 2717 /* 2718 * Make sure that the low address does not conflict with 2719 * MMAP_MIN_ADDR or the QEMU application itself. 2720 */ 2721 probe_guest_base(image_name, loaddr, hiaddr); 2722 } else { 2723 /* 2724 * The binary is dynamic, but we still need to 2725 * select guest_base. In this case we pass a size. 2726 */ 2727 probe_guest_base(image_name, 0, hiaddr - loaddr); 2728 } 2729 } 2730 2731 /* 2732 * Reserve address space for all of this. 2733 * 2734 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2735 * exactly the address range that is required. 2736 * 2737 * Otherwise this is ET_DYN, and we are searching for a location 2738 * that can hold the memory space required. If the image is 2739 * pre-linked, LOADDR will be non-zero, and the kernel should 2740 * honor that address if it happens to be free. 2741 * 2742 * In both cases, we will overwrite pages in this range with mappings 2743 * from the executable. 2744 */ 2745 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2746 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2747 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2748 -1, 0); 2749 if (load_addr == -1) { 2750 goto exit_mmap; 2751 } 2752 load_bias = load_addr - loaddr; 2753 2754 if (elf_is_fdpic(ehdr)) { 2755 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2756 g_malloc(sizeof(*loadsegs) * info->nsegs); 2757 2758 for (i = 0; i < ehdr->e_phnum; ++i) { 2759 switch (phdr[i].p_type) { 2760 case PT_DYNAMIC: 2761 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2762 break; 2763 case PT_LOAD: 2764 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2765 loadsegs->p_vaddr = phdr[i].p_vaddr; 2766 loadsegs->p_memsz = phdr[i].p_memsz; 2767 ++loadsegs; 2768 break; 2769 } 2770 } 2771 } 2772 2773 info->load_bias = load_bias; 2774 info->code_offset = load_bias; 2775 info->data_offset = load_bias; 2776 info->load_addr = load_addr; 2777 info->entry = ehdr->e_entry + load_bias; 2778 info->start_code = -1; 2779 info->end_code = 0; 2780 info->start_data = -1; 2781 info->end_data = 0; 2782 info->brk = 0; 2783 info->elf_flags = ehdr->e_flags; 2784 2785 prot_exec = PROT_EXEC; 2786 #ifdef TARGET_AARCH64 2787 /* 2788 * If the BTI feature is present, this indicates that the executable 2789 * pages of the startup binary should be mapped with PROT_BTI, so that 2790 * branch targets are enforced. 2791 * 2792 * The startup binary is either the interpreter or the static executable. 2793 * The interpreter is responsible for all pages of a dynamic executable. 2794 * 2795 * Elf notes are backward compatible to older cpus. 2796 * Do not enable BTI unless it is supported. 2797 */ 2798 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 2799 && (pinterp_name == NULL || *pinterp_name == 0) 2800 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 2801 prot_exec |= TARGET_PROT_BTI; 2802 } 2803 #endif 2804 2805 for (i = 0; i < ehdr->e_phnum; i++) { 2806 struct elf_phdr *eppnt = phdr + i; 2807 if (eppnt->p_type == PT_LOAD) { 2808 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2809 int elf_prot = 0; 2810 2811 if (eppnt->p_flags & PF_R) { 2812 elf_prot |= PROT_READ; 2813 } 2814 if (eppnt->p_flags & PF_W) { 2815 elf_prot |= PROT_WRITE; 2816 } 2817 if (eppnt->p_flags & PF_X) { 2818 elf_prot |= prot_exec; 2819 } 2820 2821 vaddr = load_bias + eppnt->p_vaddr; 2822 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2823 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2824 2825 vaddr_ef = vaddr + eppnt->p_filesz; 2826 vaddr_em = vaddr + eppnt->p_memsz; 2827 2828 /* 2829 * Some segments may be completely empty, with a non-zero p_memsz 2830 * but no backing file segment. 2831 */ 2832 if (eppnt->p_filesz != 0) { 2833 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2834 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2835 MAP_PRIVATE | MAP_FIXED, 2836 image_fd, eppnt->p_offset - vaddr_po); 2837 2838 if (error == -1) { 2839 goto exit_mmap; 2840 } 2841 2842 /* 2843 * If the load segment requests extra zeros (e.g. bss), map it. 2844 */ 2845 if (eppnt->p_filesz < eppnt->p_memsz) { 2846 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2847 } 2848 } else if (eppnt->p_memsz != 0) { 2849 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 2850 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2851 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 2852 -1, 0); 2853 2854 if (error == -1) { 2855 goto exit_mmap; 2856 } 2857 } 2858 2859 /* Find the full program boundaries. */ 2860 if (elf_prot & PROT_EXEC) { 2861 if (vaddr < info->start_code) { 2862 info->start_code = vaddr; 2863 } 2864 if (vaddr_ef > info->end_code) { 2865 info->end_code = vaddr_ef; 2866 } 2867 } 2868 if (elf_prot & PROT_WRITE) { 2869 if (vaddr < info->start_data) { 2870 info->start_data = vaddr; 2871 } 2872 if (vaddr_ef > info->end_data) { 2873 info->end_data = vaddr_ef; 2874 } 2875 } 2876 if (vaddr_em > info->brk) { 2877 info->brk = vaddr_em; 2878 } 2879 #ifdef TARGET_MIPS 2880 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2881 Mips_elf_abiflags_v0 abiflags; 2882 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2883 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 2884 goto exit_errmsg; 2885 } 2886 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2887 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2888 sizeof(Mips_elf_abiflags_v0)); 2889 } else { 2890 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2891 eppnt->p_offset); 2892 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2893 goto exit_read; 2894 } 2895 } 2896 bswap_mips_abiflags(&abiflags); 2897 info->fp_abi = abiflags.fp_abi; 2898 #endif 2899 } 2900 } 2901 2902 if (info->end_data == 0) { 2903 info->start_data = info->end_code; 2904 info->end_data = info->end_code; 2905 } 2906 2907 if (qemu_log_enabled()) { 2908 load_symbols(ehdr, image_fd, load_bias); 2909 } 2910 2911 mmap_unlock(); 2912 2913 close(image_fd); 2914 return; 2915 2916 exit_read: 2917 if (retval >= 0) { 2918 error_setg(&err, "Incomplete read of file header"); 2919 } else { 2920 error_setg_errno(&err, errno, "Error reading file header"); 2921 } 2922 goto exit_errmsg; 2923 exit_mmap: 2924 error_setg_errno(&err, errno, "Error mapping file"); 2925 goto exit_errmsg; 2926 exit_errmsg: 2927 error_reportf_err(err, "%s: ", image_name); 2928 exit(-1); 2929 } 2930 2931 static void load_elf_interp(const char *filename, struct image_info *info, 2932 char bprm_buf[BPRM_BUF_SIZE]) 2933 { 2934 int fd, retval; 2935 Error *err = NULL; 2936 2937 fd = open(path(filename), O_RDONLY); 2938 if (fd < 0) { 2939 error_setg_file_open(&err, errno, filename); 2940 error_report_err(err); 2941 exit(-1); 2942 } 2943 2944 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2945 if (retval < 0) { 2946 error_setg_errno(&err, errno, "Error reading file header"); 2947 error_reportf_err(err, "%s: ", filename); 2948 exit(-1); 2949 } 2950 2951 if (retval < BPRM_BUF_SIZE) { 2952 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2953 } 2954 2955 load_elf_image(filename, fd, info, NULL, bprm_buf); 2956 } 2957 2958 static int symfind(const void *s0, const void *s1) 2959 { 2960 target_ulong addr = *(target_ulong *)s0; 2961 struct elf_sym *sym = (struct elf_sym *)s1; 2962 int result = 0; 2963 if (addr < sym->st_value) { 2964 result = -1; 2965 } else if (addr >= sym->st_value + sym->st_size) { 2966 result = 1; 2967 } 2968 return result; 2969 } 2970 2971 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2972 { 2973 #if ELF_CLASS == ELFCLASS32 2974 struct elf_sym *syms = s->disas_symtab.elf32; 2975 #else 2976 struct elf_sym *syms = s->disas_symtab.elf64; 2977 #endif 2978 2979 // binary search 2980 struct elf_sym *sym; 2981 2982 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2983 if (sym != NULL) { 2984 return s->disas_strtab + sym->st_name; 2985 } 2986 2987 return ""; 2988 } 2989 2990 /* FIXME: This should use elf_ops.h */ 2991 static int symcmp(const void *s0, const void *s1) 2992 { 2993 struct elf_sym *sym0 = (struct elf_sym *)s0; 2994 struct elf_sym *sym1 = (struct elf_sym *)s1; 2995 return (sym0->st_value < sym1->st_value) 2996 ? -1 2997 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2998 } 2999 3000 /* Best attempt to load symbols from this ELF object. */ 3001 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3002 { 3003 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3004 uint64_t segsz; 3005 struct elf_shdr *shdr; 3006 char *strings = NULL; 3007 struct syminfo *s = NULL; 3008 struct elf_sym *new_syms, *syms = NULL; 3009 3010 shnum = hdr->e_shnum; 3011 i = shnum * sizeof(struct elf_shdr); 3012 shdr = (struct elf_shdr *)alloca(i); 3013 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3014 return; 3015 } 3016 3017 bswap_shdr(shdr, shnum); 3018 for (i = 0; i < shnum; ++i) { 3019 if (shdr[i].sh_type == SHT_SYMTAB) { 3020 sym_idx = i; 3021 str_idx = shdr[i].sh_link; 3022 goto found; 3023 } 3024 } 3025 3026 /* There will be no symbol table if the file was stripped. */ 3027 return; 3028 3029 found: 3030 /* Now know where the strtab and symtab are. Snarf them. */ 3031 s = g_try_new(struct syminfo, 1); 3032 if (!s) { 3033 goto give_up; 3034 } 3035 3036 segsz = shdr[str_idx].sh_size; 3037 s->disas_strtab = strings = g_try_malloc(segsz); 3038 if (!strings || 3039 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3040 goto give_up; 3041 } 3042 3043 segsz = shdr[sym_idx].sh_size; 3044 syms = g_try_malloc(segsz); 3045 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3046 goto give_up; 3047 } 3048 3049 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3050 /* Implausibly large symbol table: give up rather than ploughing 3051 * on with the number of symbols calculation overflowing 3052 */ 3053 goto give_up; 3054 } 3055 nsyms = segsz / sizeof(struct elf_sym); 3056 for (i = 0; i < nsyms; ) { 3057 bswap_sym(syms + i); 3058 /* Throw away entries which we do not need. */ 3059 if (syms[i].st_shndx == SHN_UNDEF 3060 || syms[i].st_shndx >= SHN_LORESERVE 3061 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3062 if (i < --nsyms) { 3063 syms[i] = syms[nsyms]; 3064 } 3065 } else { 3066 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3067 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3068 syms[i].st_value &= ~(target_ulong)1; 3069 #endif 3070 syms[i].st_value += load_bias; 3071 i++; 3072 } 3073 } 3074 3075 /* No "useful" symbol. */ 3076 if (nsyms == 0) { 3077 goto give_up; 3078 } 3079 3080 /* Attempt to free the storage associated with the local symbols 3081 that we threw away. Whether or not this has any effect on the 3082 memory allocation depends on the malloc implementation and how 3083 many symbols we managed to discard. */ 3084 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3085 if (new_syms == NULL) { 3086 goto give_up; 3087 } 3088 syms = new_syms; 3089 3090 qsort(syms, nsyms, sizeof(*syms), symcmp); 3091 3092 s->disas_num_syms = nsyms; 3093 #if ELF_CLASS == ELFCLASS32 3094 s->disas_symtab.elf32 = syms; 3095 #else 3096 s->disas_symtab.elf64 = syms; 3097 #endif 3098 s->lookup_symbol = lookup_symbolxx; 3099 s->next = syminfos; 3100 syminfos = s; 3101 3102 return; 3103 3104 give_up: 3105 g_free(s); 3106 g_free(strings); 3107 g_free(syms); 3108 } 3109 3110 uint32_t get_elf_eflags(int fd) 3111 { 3112 struct elfhdr ehdr; 3113 off_t offset; 3114 int ret; 3115 3116 /* Read ELF header */ 3117 offset = lseek(fd, 0, SEEK_SET); 3118 if (offset == (off_t) -1) { 3119 return 0; 3120 } 3121 ret = read(fd, &ehdr, sizeof(ehdr)); 3122 if (ret < sizeof(ehdr)) { 3123 return 0; 3124 } 3125 offset = lseek(fd, offset, SEEK_SET); 3126 if (offset == (off_t) -1) { 3127 return 0; 3128 } 3129 3130 /* Check ELF signature */ 3131 if (!elf_check_ident(&ehdr)) { 3132 return 0; 3133 } 3134 3135 /* check header */ 3136 bswap_ehdr(&ehdr); 3137 if (!elf_check_ehdr(&ehdr)) { 3138 return 0; 3139 } 3140 3141 /* return architecture id */ 3142 return ehdr.e_flags; 3143 } 3144 3145 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3146 { 3147 struct image_info interp_info; 3148 struct elfhdr elf_ex; 3149 char *elf_interpreter = NULL; 3150 char *scratch; 3151 3152 memset(&interp_info, 0, sizeof(interp_info)); 3153 #ifdef TARGET_MIPS 3154 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3155 #endif 3156 3157 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3158 3159 load_elf_image(bprm->filename, bprm->fd, info, 3160 &elf_interpreter, bprm->buf); 3161 3162 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3163 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3164 when we load the interpreter. */ 3165 elf_ex = *(struct elfhdr *)bprm->buf; 3166 3167 /* Do this so that we can load the interpreter, if need be. We will 3168 change some of these later */ 3169 bprm->p = setup_arg_pages(bprm, info); 3170 3171 scratch = g_new0(char, TARGET_PAGE_SIZE); 3172 if (STACK_GROWS_DOWN) { 3173 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3174 bprm->p, info->stack_limit); 3175 info->file_string = bprm->p; 3176 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3177 bprm->p, info->stack_limit); 3178 info->env_strings = bprm->p; 3179 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3180 bprm->p, info->stack_limit); 3181 info->arg_strings = bprm->p; 3182 } else { 3183 info->arg_strings = bprm->p; 3184 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3185 bprm->p, info->stack_limit); 3186 info->env_strings = bprm->p; 3187 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3188 bprm->p, info->stack_limit); 3189 info->file_string = bprm->p; 3190 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3191 bprm->p, info->stack_limit); 3192 } 3193 3194 g_free(scratch); 3195 3196 if (!bprm->p) { 3197 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3198 exit(-1); 3199 } 3200 3201 if (elf_interpreter) { 3202 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3203 3204 /* If the program interpreter is one of these two, then assume 3205 an iBCS2 image. Otherwise assume a native linux image. */ 3206 3207 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3208 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3209 info->personality = PER_SVR4; 3210 3211 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3212 and some applications "depend" upon this behavior. Since 3213 we do not have the power to recompile these, we emulate 3214 the SVr4 behavior. Sigh. */ 3215 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3216 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3217 } 3218 #ifdef TARGET_MIPS 3219 info->interp_fp_abi = interp_info.fp_abi; 3220 #endif 3221 } 3222 3223 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3224 info, (elf_interpreter ? &interp_info : NULL)); 3225 info->start_stack = bprm->p; 3226 3227 /* If we have an interpreter, set that as the program's entry point. 3228 Copy the load_bias as well, to help PPC64 interpret the entry 3229 point as a function descriptor. Do this after creating elf tables 3230 so that we copy the original program entry point into the AUXV. */ 3231 if (elf_interpreter) { 3232 info->load_bias = interp_info.load_bias; 3233 info->entry = interp_info.entry; 3234 g_free(elf_interpreter); 3235 } 3236 3237 #ifdef USE_ELF_CORE_DUMP 3238 bprm->core_dump = &elf_core_dump; 3239 #endif 3240 3241 /* 3242 * If we reserved extra space for brk, release it now. 3243 * The implementation of do_brk in syscalls.c expects to be able 3244 * to mmap pages in this space. 3245 */ 3246 if (info->reserve_brk) { 3247 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3248 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3249 target_munmap(start_brk, end_brk - start_brk); 3250 } 3251 3252 return 0; 3253 } 3254 3255 #ifdef USE_ELF_CORE_DUMP 3256 /* 3257 * Definitions to generate Intel SVR4-like core files. 3258 * These mostly have the same names as the SVR4 types with "target_elf_" 3259 * tacked on the front to prevent clashes with linux definitions, 3260 * and the typedef forms have been avoided. This is mostly like 3261 * the SVR4 structure, but more Linuxy, with things that Linux does 3262 * not support and which gdb doesn't really use excluded. 3263 * 3264 * Fields we don't dump (their contents is zero) in linux-user qemu 3265 * are marked with XXX. 3266 * 3267 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3268 * 3269 * Porting ELF coredump for target is (quite) simple process. First you 3270 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3271 * the target resides): 3272 * 3273 * #define USE_ELF_CORE_DUMP 3274 * 3275 * Next you define type of register set used for dumping. ELF specification 3276 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3277 * 3278 * typedef <target_regtype> target_elf_greg_t; 3279 * #define ELF_NREG <number of registers> 3280 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3281 * 3282 * Last step is to implement target specific function that copies registers 3283 * from given cpu into just specified register set. Prototype is: 3284 * 3285 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3286 * const CPUArchState *env); 3287 * 3288 * Parameters: 3289 * regs - copy register values into here (allocated and zeroed by caller) 3290 * env - copy registers from here 3291 * 3292 * Example for ARM target is provided in this file. 3293 */ 3294 3295 /* An ELF note in memory */ 3296 struct memelfnote { 3297 const char *name; 3298 size_t namesz; 3299 size_t namesz_rounded; 3300 int type; 3301 size_t datasz; 3302 size_t datasz_rounded; 3303 void *data; 3304 size_t notesz; 3305 }; 3306 3307 struct target_elf_siginfo { 3308 abi_int si_signo; /* signal number */ 3309 abi_int si_code; /* extra code */ 3310 abi_int si_errno; /* errno */ 3311 }; 3312 3313 struct target_elf_prstatus { 3314 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3315 abi_short pr_cursig; /* Current signal */ 3316 abi_ulong pr_sigpend; /* XXX */ 3317 abi_ulong pr_sighold; /* XXX */ 3318 target_pid_t pr_pid; 3319 target_pid_t pr_ppid; 3320 target_pid_t pr_pgrp; 3321 target_pid_t pr_sid; 3322 struct target_timeval pr_utime; /* XXX User time */ 3323 struct target_timeval pr_stime; /* XXX System time */ 3324 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3325 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3326 target_elf_gregset_t pr_reg; /* GP registers */ 3327 abi_int pr_fpvalid; /* XXX */ 3328 }; 3329 3330 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3331 3332 struct target_elf_prpsinfo { 3333 char pr_state; /* numeric process state */ 3334 char pr_sname; /* char for pr_state */ 3335 char pr_zomb; /* zombie */ 3336 char pr_nice; /* nice val */ 3337 abi_ulong pr_flag; /* flags */ 3338 target_uid_t pr_uid; 3339 target_gid_t pr_gid; 3340 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3341 /* Lots missing */ 3342 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3343 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3344 }; 3345 3346 /* Here is the structure in which status of each thread is captured. */ 3347 struct elf_thread_status { 3348 QTAILQ_ENTRY(elf_thread_status) ets_link; 3349 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3350 #if 0 3351 elf_fpregset_t fpu; /* NT_PRFPREG */ 3352 struct task_struct *thread; 3353 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3354 #endif 3355 struct memelfnote notes[1]; 3356 int num_notes; 3357 }; 3358 3359 struct elf_note_info { 3360 struct memelfnote *notes; 3361 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3362 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3363 3364 QTAILQ_HEAD(, elf_thread_status) thread_list; 3365 #if 0 3366 /* 3367 * Current version of ELF coredump doesn't support 3368 * dumping fp regs etc. 3369 */ 3370 elf_fpregset_t *fpu; 3371 elf_fpxregset_t *xfpu; 3372 int thread_status_size; 3373 #endif 3374 int notes_size; 3375 int numnote; 3376 }; 3377 3378 struct vm_area_struct { 3379 target_ulong vma_start; /* start vaddr of memory region */ 3380 target_ulong vma_end; /* end vaddr of memory region */ 3381 abi_ulong vma_flags; /* protection etc. flags for the region */ 3382 QTAILQ_ENTRY(vm_area_struct) vma_link; 3383 }; 3384 3385 struct mm_struct { 3386 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3387 int mm_count; /* number of mappings */ 3388 }; 3389 3390 static struct mm_struct *vma_init(void); 3391 static void vma_delete(struct mm_struct *); 3392 static int vma_add_mapping(struct mm_struct *, target_ulong, 3393 target_ulong, abi_ulong); 3394 static int vma_get_mapping_count(const struct mm_struct *); 3395 static struct vm_area_struct *vma_first(const struct mm_struct *); 3396 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3397 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3398 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3399 unsigned long flags); 3400 3401 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3402 static void fill_note(struct memelfnote *, const char *, int, 3403 unsigned int, void *); 3404 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3405 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3406 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3407 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3408 static size_t note_size(const struct memelfnote *); 3409 static void free_note_info(struct elf_note_info *); 3410 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3411 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3412 static int core_dump_filename(const TaskState *, char *, size_t); 3413 3414 static int dump_write(int, const void *, size_t); 3415 static int write_note(struct memelfnote *, int); 3416 static int write_note_info(struct elf_note_info *, int); 3417 3418 #ifdef BSWAP_NEEDED 3419 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3420 { 3421 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3422 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3423 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3424 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3425 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3426 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3427 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3428 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3429 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3430 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3431 /* cpu times are not filled, so we skip them */ 3432 /* regs should be in correct format already */ 3433 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3434 } 3435 3436 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3437 { 3438 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3439 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3440 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3441 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3442 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3443 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3444 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3445 } 3446 3447 static void bswap_note(struct elf_note *en) 3448 { 3449 bswap32s(&en->n_namesz); 3450 bswap32s(&en->n_descsz); 3451 bswap32s(&en->n_type); 3452 } 3453 #else 3454 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3455 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3456 static inline void bswap_note(struct elf_note *en) { } 3457 #endif /* BSWAP_NEEDED */ 3458 3459 /* 3460 * Minimal support for linux memory regions. These are needed 3461 * when we are finding out what memory exactly belongs to 3462 * emulated process. No locks needed here, as long as 3463 * thread that received the signal is stopped. 3464 */ 3465 3466 static struct mm_struct *vma_init(void) 3467 { 3468 struct mm_struct *mm; 3469 3470 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3471 return (NULL); 3472 3473 mm->mm_count = 0; 3474 QTAILQ_INIT(&mm->mm_mmap); 3475 3476 return (mm); 3477 } 3478 3479 static void vma_delete(struct mm_struct *mm) 3480 { 3481 struct vm_area_struct *vma; 3482 3483 while ((vma = vma_first(mm)) != NULL) { 3484 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3485 g_free(vma); 3486 } 3487 g_free(mm); 3488 } 3489 3490 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3491 target_ulong end, abi_ulong flags) 3492 { 3493 struct vm_area_struct *vma; 3494 3495 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3496 return (-1); 3497 3498 vma->vma_start = start; 3499 vma->vma_end = end; 3500 vma->vma_flags = flags; 3501 3502 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3503 mm->mm_count++; 3504 3505 return (0); 3506 } 3507 3508 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3509 { 3510 return (QTAILQ_FIRST(&mm->mm_mmap)); 3511 } 3512 3513 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3514 { 3515 return (QTAILQ_NEXT(vma, vma_link)); 3516 } 3517 3518 static int vma_get_mapping_count(const struct mm_struct *mm) 3519 { 3520 return (mm->mm_count); 3521 } 3522 3523 /* 3524 * Calculate file (dump) size of given memory region. 3525 */ 3526 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3527 { 3528 /* if we cannot even read the first page, skip it */ 3529 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3530 return (0); 3531 3532 /* 3533 * Usually we don't dump executable pages as they contain 3534 * non-writable code that debugger can read directly from 3535 * target library etc. However, thread stacks are marked 3536 * also executable so we read in first page of given region 3537 * and check whether it contains elf header. If there is 3538 * no elf header, we dump it. 3539 */ 3540 if (vma->vma_flags & PROT_EXEC) { 3541 char page[TARGET_PAGE_SIZE]; 3542 3543 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3544 return 0; 3545 } 3546 if ((page[EI_MAG0] == ELFMAG0) && 3547 (page[EI_MAG1] == ELFMAG1) && 3548 (page[EI_MAG2] == ELFMAG2) && 3549 (page[EI_MAG3] == ELFMAG3)) { 3550 /* 3551 * Mappings are possibly from ELF binary. Don't dump 3552 * them. 3553 */ 3554 return (0); 3555 } 3556 } 3557 3558 return (vma->vma_end - vma->vma_start); 3559 } 3560 3561 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3562 unsigned long flags) 3563 { 3564 struct mm_struct *mm = (struct mm_struct *)priv; 3565 3566 vma_add_mapping(mm, start, end, flags); 3567 return (0); 3568 } 3569 3570 static void fill_note(struct memelfnote *note, const char *name, int type, 3571 unsigned int sz, void *data) 3572 { 3573 unsigned int namesz; 3574 3575 namesz = strlen(name) + 1; 3576 note->name = name; 3577 note->namesz = namesz; 3578 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3579 note->type = type; 3580 note->datasz = sz; 3581 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3582 3583 note->data = data; 3584 3585 /* 3586 * We calculate rounded up note size here as specified by 3587 * ELF document. 3588 */ 3589 note->notesz = sizeof (struct elf_note) + 3590 note->namesz_rounded + note->datasz_rounded; 3591 } 3592 3593 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3594 uint32_t flags) 3595 { 3596 (void) memset(elf, 0, sizeof(*elf)); 3597 3598 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3599 elf->e_ident[EI_CLASS] = ELF_CLASS; 3600 elf->e_ident[EI_DATA] = ELF_DATA; 3601 elf->e_ident[EI_VERSION] = EV_CURRENT; 3602 elf->e_ident[EI_OSABI] = ELF_OSABI; 3603 3604 elf->e_type = ET_CORE; 3605 elf->e_machine = machine; 3606 elf->e_version = EV_CURRENT; 3607 elf->e_phoff = sizeof(struct elfhdr); 3608 elf->e_flags = flags; 3609 elf->e_ehsize = sizeof(struct elfhdr); 3610 elf->e_phentsize = sizeof(struct elf_phdr); 3611 elf->e_phnum = segs; 3612 3613 bswap_ehdr(elf); 3614 } 3615 3616 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3617 { 3618 phdr->p_type = PT_NOTE; 3619 phdr->p_offset = offset; 3620 phdr->p_vaddr = 0; 3621 phdr->p_paddr = 0; 3622 phdr->p_filesz = sz; 3623 phdr->p_memsz = 0; 3624 phdr->p_flags = 0; 3625 phdr->p_align = 0; 3626 3627 bswap_phdr(phdr, 1); 3628 } 3629 3630 static size_t note_size(const struct memelfnote *note) 3631 { 3632 return (note->notesz); 3633 } 3634 3635 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3636 const TaskState *ts, int signr) 3637 { 3638 (void) memset(prstatus, 0, sizeof (*prstatus)); 3639 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3640 prstatus->pr_pid = ts->ts_tid; 3641 prstatus->pr_ppid = getppid(); 3642 prstatus->pr_pgrp = getpgrp(); 3643 prstatus->pr_sid = getsid(0); 3644 3645 bswap_prstatus(prstatus); 3646 } 3647 3648 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3649 { 3650 char *base_filename; 3651 unsigned int i, len; 3652 3653 (void) memset(psinfo, 0, sizeof (*psinfo)); 3654 3655 len = ts->info->arg_end - ts->info->arg_start; 3656 if (len >= ELF_PRARGSZ) 3657 len = ELF_PRARGSZ - 1; 3658 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3659 return -EFAULT; 3660 for (i = 0; i < len; i++) 3661 if (psinfo->pr_psargs[i] == 0) 3662 psinfo->pr_psargs[i] = ' '; 3663 psinfo->pr_psargs[len] = 0; 3664 3665 psinfo->pr_pid = getpid(); 3666 psinfo->pr_ppid = getppid(); 3667 psinfo->pr_pgrp = getpgrp(); 3668 psinfo->pr_sid = getsid(0); 3669 psinfo->pr_uid = getuid(); 3670 psinfo->pr_gid = getgid(); 3671 3672 base_filename = g_path_get_basename(ts->bprm->filename); 3673 /* 3674 * Using strncpy here is fine: at max-length, 3675 * this field is not NUL-terminated. 3676 */ 3677 (void) strncpy(psinfo->pr_fname, base_filename, 3678 sizeof(psinfo->pr_fname)); 3679 3680 g_free(base_filename); 3681 bswap_psinfo(psinfo); 3682 return (0); 3683 } 3684 3685 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3686 { 3687 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3688 elf_addr_t orig_auxv = auxv; 3689 void *ptr; 3690 int len = ts->info->auxv_len; 3691 3692 /* 3693 * Auxiliary vector is stored in target process stack. It contains 3694 * {type, value} pairs that we need to dump into note. This is not 3695 * strictly necessary but we do it here for sake of completeness. 3696 */ 3697 3698 /* read in whole auxv vector and copy it to memelfnote */ 3699 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3700 if (ptr != NULL) { 3701 fill_note(note, "CORE", NT_AUXV, len, ptr); 3702 unlock_user(ptr, auxv, len); 3703 } 3704 } 3705 3706 /* 3707 * Constructs name of coredump file. We have following convention 3708 * for the name: 3709 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3710 * 3711 * Returns 0 in case of success, -1 otherwise (errno is set). 3712 */ 3713 static int core_dump_filename(const TaskState *ts, char *buf, 3714 size_t bufsize) 3715 { 3716 char timestamp[64]; 3717 char *base_filename = NULL; 3718 struct timeval tv; 3719 struct tm tm; 3720 3721 assert(bufsize >= PATH_MAX); 3722 3723 if (gettimeofday(&tv, NULL) < 0) { 3724 (void) fprintf(stderr, "unable to get current timestamp: %s", 3725 strerror(errno)); 3726 return (-1); 3727 } 3728 3729 base_filename = g_path_get_basename(ts->bprm->filename); 3730 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3731 localtime_r(&tv.tv_sec, &tm)); 3732 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3733 base_filename, timestamp, (int)getpid()); 3734 g_free(base_filename); 3735 3736 return (0); 3737 } 3738 3739 static int dump_write(int fd, const void *ptr, size_t size) 3740 { 3741 const char *bufp = (const char *)ptr; 3742 ssize_t bytes_written, bytes_left; 3743 struct rlimit dumpsize; 3744 off_t pos; 3745 3746 bytes_written = 0; 3747 getrlimit(RLIMIT_CORE, &dumpsize); 3748 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3749 if (errno == ESPIPE) { /* not a seekable stream */ 3750 bytes_left = size; 3751 } else { 3752 return pos; 3753 } 3754 } else { 3755 if (dumpsize.rlim_cur <= pos) { 3756 return -1; 3757 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3758 bytes_left = size; 3759 } else { 3760 size_t limit_left=dumpsize.rlim_cur - pos; 3761 bytes_left = limit_left >= size ? size : limit_left ; 3762 } 3763 } 3764 3765 /* 3766 * In normal conditions, single write(2) should do but 3767 * in case of socket etc. this mechanism is more portable. 3768 */ 3769 do { 3770 bytes_written = write(fd, bufp, bytes_left); 3771 if (bytes_written < 0) { 3772 if (errno == EINTR) 3773 continue; 3774 return (-1); 3775 } else if (bytes_written == 0) { /* eof */ 3776 return (-1); 3777 } 3778 bufp += bytes_written; 3779 bytes_left -= bytes_written; 3780 } while (bytes_left > 0); 3781 3782 return (0); 3783 } 3784 3785 static int write_note(struct memelfnote *men, int fd) 3786 { 3787 struct elf_note en; 3788 3789 en.n_namesz = men->namesz; 3790 en.n_type = men->type; 3791 en.n_descsz = men->datasz; 3792 3793 bswap_note(&en); 3794 3795 if (dump_write(fd, &en, sizeof(en)) != 0) 3796 return (-1); 3797 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3798 return (-1); 3799 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3800 return (-1); 3801 3802 return (0); 3803 } 3804 3805 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3806 { 3807 CPUState *cpu = env_cpu((CPUArchState *)env); 3808 TaskState *ts = (TaskState *)cpu->opaque; 3809 struct elf_thread_status *ets; 3810 3811 ets = g_malloc0(sizeof (*ets)); 3812 ets->num_notes = 1; /* only prstatus is dumped */ 3813 fill_prstatus(&ets->prstatus, ts, 0); 3814 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3815 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3816 &ets->prstatus); 3817 3818 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3819 3820 info->notes_size += note_size(&ets->notes[0]); 3821 } 3822 3823 static void init_note_info(struct elf_note_info *info) 3824 { 3825 /* Initialize the elf_note_info structure so that it is at 3826 * least safe to call free_note_info() on it. Must be 3827 * called before calling fill_note_info(). 3828 */ 3829 memset(info, 0, sizeof (*info)); 3830 QTAILQ_INIT(&info->thread_list); 3831 } 3832 3833 static int fill_note_info(struct elf_note_info *info, 3834 long signr, const CPUArchState *env) 3835 { 3836 #define NUMNOTES 3 3837 CPUState *cpu = env_cpu((CPUArchState *)env); 3838 TaskState *ts = (TaskState *)cpu->opaque; 3839 int i; 3840 3841 info->notes = g_new0(struct memelfnote, NUMNOTES); 3842 if (info->notes == NULL) 3843 return (-ENOMEM); 3844 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3845 if (info->prstatus == NULL) 3846 return (-ENOMEM); 3847 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3848 if (info->prstatus == NULL) 3849 return (-ENOMEM); 3850 3851 /* 3852 * First fill in status (and registers) of current thread 3853 * including process info & aux vector. 3854 */ 3855 fill_prstatus(info->prstatus, ts, signr); 3856 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3857 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3858 sizeof (*info->prstatus), info->prstatus); 3859 fill_psinfo(info->psinfo, ts); 3860 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3861 sizeof (*info->psinfo), info->psinfo); 3862 fill_auxv_note(&info->notes[2], ts); 3863 info->numnote = 3; 3864 3865 info->notes_size = 0; 3866 for (i = 0; i < info->numnote; i++) 3867 info->notes_size += note_size(&info->notes[i]); 3868 3869 /* read and fill status of all threads */ 3870 cpu_list_lock(); 3871 CPU_FOREACH(cpu) { 3872 if (cpu == thread_cpu) { 3873 continue; 3874 } 3875 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3876 } 3877 cpu_list_unlock(); 3878 3879 return (0); 3880 } 3881 3882 static void free_note_info(struct elf_note_info *info) 3883 { 3884 struct elf_thread_status *ets; 3885 3886 while (!QTAILQ_EMPTY(&info->thread_list)) { 3887 ets = QTAILQ_FIRST(&info->thread_list); 3888 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3889 g_free(ets); 3890 } 3891 3892 g_free(info->prstatus); 3893 g_free(info->psinfo); 3894 g_free(info->notes); 3895 } 3896 3897 static int write_note_info(struct elf_note_info *info, int fd) 3898 { 3899 struct elf_thread_status *ets; 3900 int i, error = 0; 3901 3902 /* write prstatus, psinfo and auxv for current thread */ 3903 for (i = 0; i < info->numnote; i++) 3904 if ((error = write_note(&info->notes[i], fd)) != 0) 3905 return (error); 3906 3907 /* write prstatus for each thread */ 3908 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3909 if ((error = write_note(&ets->notes[0], fd)) != 0) 3910 return (error); 3911 } 3912 3913 return (0); 3914 } 3915 3916 /* 3917 * Write out ELF coredump. 3918 * 3919 * See documentation of ELF object file format in: 3920 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3921 * 3922 * Coredump format in linux is following: 3923 * 3924 * 0 +----------------------+ \ 3925 * | ELF header | ET_CORE | 3926 * +----------------------+ | 3927 * | ELF program headers | |--- headers 3928 * | - NOTE section | | 3929 * | - PT_LOAD sections | | 3930 * +----------------------+ / 3931 * | NOTEs: | 3932 * | - NT_PRSTATUS | 3933 * | - NT_PRSINFO | 3934 * | - NT_AUXV | 3935 * +----------------------+ <-- aligned to target page 3936 * | Process memory dump | 3937 * : : 3938 * . . 3939 * : : 3940 * | | 3941 * +----------------------+ 3942 * 3943 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3944 * NT_PRSINFO -> struct elf_prpsinfo 3945 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3946 * 3947 * Format follows System V format as close as possible. Current 3948 * version limitations are as follows: 3949 * - no floating point registers are dumped 3950 * 3951 * Function returns 0 in case of success, negative errno otherwise. 3952 * 3953 * TODO: make this work also during runtime: it should be 3954 * possible to force coredump from running process and then 3955 * continue processing. For example qemu could set up SIGUSR2 3956 * handler (provided that target process haven't registered 3957 * handler for that) that does the dump when signal is received. 3958 */ 3959 static int elf_core_dump(int signr, const CPUArchState *env) 3960 { 3961 const CPUState *cpu = env_cpu((CPUArchState *)env); 3962 const TaskState *ts = (const TaskState *)cpu->opaque; 3963 struct vm_area_struct *vma = NULL; 3964 char corefile[PATH_MAX]; 3965 struct elf_note_info info; 3966 struct elfhdr elf; 3967 struct elf_phdr phdr; 3968 struct rlimit dumpsize; 3969 struct mm_struct *mm = NULL; 3970 off_t offset = 0, data_offset = 0; 3971 int segs = 0; 3972 int fd = -1; 3973 3974 init_note_info(&info); 3975 3976 errno = 0; 3977 getrlimit(RLIMIT_CORE, &dumpsize); 3978 if (dumpsize.rlim_cur == 0) 3979 return 0; 3980 3981 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3982 return (-errno); 3983 3984 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3985 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3986 return (-errno); 3987 3988 /* 3989 * Walk through target process memory mappings and 3990 * set up structure containing this information. After 3991 * this point vma_xxx functions can be used. 3992 */ 3993 if ((mm = vma_init()) == NULL) 3994 goto out; 3995 3996 walk_memory_regions(mm, vma_walker); 3997 segs = vma_get_mapping_count(mm); 3998 3999 /* 4000 * Construct valid coredump ELF header. We also 4001 * add one more segment for notes. 4002 */ 4003 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4004 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4005 goto out; 4006 4007 /* fill in the in-memory version of notes */ 4008 if (fill_note_info(&info, signr, env) < 0) 4009 goto out; 4010 4011 offset += sizeof (elf); /* elf header */ 4012 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4013 4014 /* write out notes program header */ 4015 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4016 4017 offset += info.notes_size; 4018 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4019 goto out; 4020 4021 /* 4022 * ELF specification wants data to start at page boundary so 4023 * we align it here. 4024 */ 4025 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4026 4027 /* 4028 * Write program headers for memory regions mapped in 4029 * the target process. 4030 */ 4031 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4032 (void) memset(&phdr, 0, sizeof (phdr)); 4033 4034 phdr.p_type = PT_LOAD; 4035 phdr.p_offset = offset; 4036 phdr.p_vaddr = vma->vma_start; 4037 phdr.p_paddr = 0; 4038 phdr.p_filesz = vma_dump_size(vma); 4039 offset += phdr.p_filesz; 4040 phdr.p_memsz = vma->vma_end - vma->vma_start; 4041 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4042 if (vma->vma_flags & PROT_WRITE) 4043 phdr.p_flags |= PF_W; 4044 if (vma->vma_flags & PROT_EXEC) 4045 phdr.p_flags |= PF_X; 4046 phdr.p_align = ELF_EXEC_PAGESIZE; 4047 4048 bswap_phdr(&phdr, 1); 4049 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4050 goto out; 4051 } 4052 } 4053 4054 /* 4055 * Next we write notes just after program headers. No 4056 * alignment needed here. 4057 */ 4058 if (write_note_info(&info, fd) < 0) 4059 goto out; 4060 4061 /* align data to page boundary */ 4062 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4063 goto out; 4064 4065 /* 4066 * Finally we can dump process memory into corefile as well. 4067 */ 4068 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4069 abi_ulong addr; 4070 abi_ulong end; 4071 4072 end = vma->vma_start + vma_dump_size(vma); 4073 4074 for (addr = vma->vma_start; addr < end; 4075 addr += TARGET_PAGE_SIZE) { 4076 char page[TARGET_PAGE_SIZE]; 4077 int error; 4078 4079 /* 4080 * Read in page from target process memory and 4081 * write it to coredump file. 4082 */ 4083 error = copy_from_user(page, addr, sizeof (page)); 4084 if (error != 0) { 4085 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4086 addr); 4087 errno = -error; 4088 goto out; 4089 } 4090 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4091 goto out; 4092 } 4093 } 4094 4095 out: 4096 free_note_info(&info); 4097 if (mm != NULL) 4098 vma_delete(mm); 4099 (void) close(fd); 4100 4101 if (errno != 0) 4102 return (-errno); 4103 return (0); 4104 } 4105 #endif /* USE_ELF_CORE_DUMP */ 4106 4107 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4108 { 4109 init_thread(regs, infop); 4110 } 4111