xref: /openbmc/qemu/linux-user/elfload.c (revision 3a2e982d)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
17 
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27 
28 #define ELF_OSABI   ELFOSABI_SYSV
29 
30 /* from personality.h */
31 
32 /*
33  * Flags for bug emulation.
34  *
35  * These occupy the top three bytes.
36  */
37 enum {
38     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
39     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
40                                            descriptors (signal handling) */
41     MMAP_PAGE_ZERO =    0x0100000,
42     ADDR_COMPAT_LAYOUT = 0x0200000,
43     READ_IMPLIES_EXEC = 0x0400000,
44     ADDR_LIMIT_32BIT =  0x0800000,
45     SHORT_INODE =       0x1000000,
46     WHOLE_SECONDS =     0x2000000,
47     STICKY_TIMEOUTS =   0x4000000,
48     ADDR_LIMIT_3GB =    0x8000000,
49 };
50 
51 /*
52  * Personality types.
53  *
54  * These go in the low byte.  Avoid using the top bit, it will
55  * conflict with error returns.
56  */
57 enum {
58     PER_LINUX =         0x0000,
59     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
60     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
61     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
67     PER_BSD =           0x0006,
68     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
69     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_LINUX32 =       0x0008,
71     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
72     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75     PER_RISCOS =        0x000c,
76     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
77     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
79     PER_HPUX =          0x0010,
80     PER_MASK =          0x00ff,
81 };
82 
83 /*
84  * Return the base personality without flags.
85  */
86 #define personality(pers)       (pers & PER_MASK)
87 
88 int info_is_fdpic(struct image_info *info)
89 {
90     return info->personality == PER_LINUX_FDPIC;
91 }
92 
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
97 
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
102 
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA        ELFDATA2MSB
105 #else
106 #define ELF_DATA        ELFDATA2LSB
107 #endif
108 
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong      target_elf_greg_t;
111 #define tswapreg(ptr)   tswap64(ptr)
112 #else
113 typedef abi_ulong       target_elf_greg_t;
114 #define tswapreg(ptr)   tswapal(ptr)
115 #endif
116 
117 #ifdef USE_UID16
118 typedef abi_ushort      target_uid_t;
119 typedef abi_ushort      target_gid_t;
120 #else
121 typedef abi_uint        target_uid_t;
122 typedef abi_uint        target_gid_t;
123 #endif
124 typedef abi_int         target_pid_t;
125 
126 #ifdef TARGET_I386
127 
128 #define ELF_PLATFORM get_elf_platform()
129 
130 static const char *get_elf_platform(void)
131 {
132     static char elf_platform[] = "i386";
133     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134     if (family > 6)
135         family = 6;
136     if (family >= 3)
137         elf_platform[1] = '0' + family;
138     return elf_platform;
139 }
140 
141 #define ELF_HWCAP get_elf_hwcap()
142 
143 static uint32_t get_elf_hwcap(void)
144 {
145     X86CPU *cpu = X86_CPU(thread_cpu);
146 
147     return cpu->env.features[FEAT_1_EDX];
148 }
149 
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
152 
153 #define ELF_CLASS      ELFCLASS64
154 #define ELF_ARCH       EM_X86_64
155 
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157 {
158     regs->rax = 0;
159     regs->rsp = infop->start_stack;
160     regs->rip = infop->entry;
161 }
162 
163 #define ELF_NREG    27
164 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
165 
166 /*
167  * Note that ELF_NREG should be 29 as there should be place for
168  * TRAPNO and ERR "registers" as well but linux doesn't dump
169  * those.
170  *
171  * See linux kernel: arch/x86/include/asm/elf.h
172  */
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
174 {
175     (*regs)[0] = env->regs[15];
176     (*regs)[1] = env->regs[14];
177     (*regs)[2] = env->regs[13];
178     (*regs)[3] = env->regs[12];
179     (*regs)[4] = env->regs[R_EBP];
180     (*regs)[5] = env->regs[R_EBX];
181     (*regs)[6] = env->regs[11];
182     (*regs)[7] = env->regs[10];
183     (*regs)[8] = env->regs[9];
184     (*regs)[9] = env->regs[8];
185     (*regs)[10] = env->regs[R_EAX];
186     (*regs)[11] = env->regs[R_ECX];
187     (*regs)[12] = env->regs[R_EDX];
188     (*regs)[13] = env->regs[R_ESI];
189     (*regs)[14] = env->regs[R_EDI];
190     (*regs)[15] = env->regs[R_EAX]; /* XXX */
191     (*regs)[16] = env->eip;
192     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193     (*regs)[18] = env->eflags;
194     (*regs)[19] = env->regs[R_ESP];
195     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202 }
203 
204 #else
205 
206 #define ELF_START_MMAP 0x80000000
207 
208 /*
209  * This is used to ensure we don't load something for the wrong architecture.
210  */
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212 
213 /*
214  * These are used to set parameters in the core dumps.
215  */
216 #define ELF_CLASS       ELFCLASS32
217 #define ELF_ARCH        EM_386
218 
219 static inline void init_thread(struct target_pt_regs *regs,
220                                struct image_info *infop)
221 {
222     regs->esp = infop->start_stack;
223     regs->eip = infop->entry;
224 
225     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226        starts %edx contains a pointer to a function which might be
227        registered using `atexit'.  This provides a mean for the
228        dynamic linker to call DT_FINI functions for shared libraries
229        that have been loaded before the code runs.
230 
231        A value of 0 tells we have no such handler.  */
232     regs->edx = 0;
233 }
234 
235 #define ELF_NREG    17
236 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
237 
238 /*
239  * Note that ELF_NREG should be 19 as there should be place for
240  * TRAPNO and ERR "registers" as well but linux doesn't dump
241  * those.
242  *
243  * See linux kernel: arch/x86/include/asm/elf.h
244  */
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
246 {
247     (*regs)[0] = env->regs[R_EBX];
248     (*regs)[1] = env->regs[R_ECX];
249     (*regs)[2] = env->regs[R_EDX];
250     (*regs)[3] = env->regs[R_ESI];
251     (*regs)[4] = env->regs[R_EDI];
252     (*regs)[5] = env->regs[R_EBP];
253     (*regs)[6] = env->regs[R_EAX];
254     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258     (*regs)[11] = env->regs[R_EAX]; /* XXX */
259     (*regs)[12] = env->eip;
260     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261     (*regs)[14] = env->eflags;
262     (*regs)[15] = env->regs[R_ESP];
263     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264 }
265 #endif
266 
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE       4096
269 
270 #endif
271 
272 #ifdef TARGET_ARM
273 
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
276 
277 #define ELF_START_MMAP 0x80000000
278 
279 #define ELF_ARCH        EM_ARM
280 #define ELF_CLASS       ELFCLASS32
281 
282 static inline void init_thread(struct target_pt_regs *regs,
283                                struct image_info *infop)
284 {
285     abi_long stack = infop->start_stack;
286     memset(regs, 0, sizeof(*regs));
287 
288     regs->uregs[16] = ARM_CPU_MODE_USR;
289     if (infop->entry & 1) {
290         regs->uregs[16] |= CPSR_T;
291     }
292     regs->uregs[15] = infop->entry & 0xfffffffe;
293     regs->uregs[13] = infop->start_stack;
294     /* FIXME - what to for failure of get_user()? */
295     get_user_ual(regs->uregs[2], stack + 8); /* envp */
296     get_user_ual(regs->uregs[1], stack + 4); /* envp */
297     /* XXX: it seems that r0 is zeroed after ! */
298     regs->uregs[0] = 0;
299     /* For uClinux PIC binaries.  */
300     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301     regs->uregs[10] = infop->start_data;
302 
303     /* Support ARM FDPIC.  */
304     if (info_is_fdpic(infop)) {
305         /* As described in the ABI document, r7 points to the loadmap info
306          * prepared by the kernel. If an interpreter is needed, r8 points
307          * to the interpreter loadmap and r9 points to the interpreter
308          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309          * r9 points to the main program PT_DYNAMIC info.
310          */
311         regs->uregs[7] = infop->loadmap_addr;
312         if (infop->interpreter_loadmap_addr) {
313             /* Executable is dynamically loaded.  */
314             regs->uregs[8] = infop->interpreter_loadmap_addr;
315             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316         } else {
317             regs->uregs[8] = 0;
318             regs->uregs[9] = infop->pt_dynamic_addr;
319         }
320     }
321 }
322 
323 #define ELF_NREG    18
324 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
325 
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
327 {
328     (*regs)[0] = tswapreg(env->regs[0]);
329     (*regs)[1] = tswapreg(env->regs[1]);
330     (*regs)[2] = tswapreg(env->regs[2]);
331     (*regs)[3] = tswapreg(env->regs[3]);
332     (*regs)[4] = tswapreg(env->regs[4]);
333     (*regs)[5] = tswapreg(env->regs[5]);
334     (*regs)[6] = tswapreg(env->regs[6]);
335     (*regs)[7] = tswapreg(env->regs[7]);
336     (*regs)[8] = tswapreg(env->regs[8]);
337     (*regs)[9] = tswapreg(env->regs[9]);
338     (*regs)[10] = tswapreg(env->regs[10]);
339     (*regs)[11] = tswapreg(env->regs[11]);
340     (*regs)[12] = tswapreg(env->regs[12]);
341     (*regs)[13] = tswapreg(env->regs[13]);
342     (*regs)[14] = tswapreg(env->regs[14]);
343     (*regs)[15] = tswapreg(env->regs[15]);
344 
345     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
347 }
348 
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE       4096
351 
352 enum
353 {
354     ARM_HWCAP_ARM_SWP       = 1 << 0,
355     ARM_HWCAP_ARM_HALF      = 1 << 1,
356     ARM_HWCAP_ARM_THUMB     = 1 << 2,
357     ARM_HWCAP_ARM_26BIT     = 1 << 3,
358     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359     ARM_HWCAP_ARM_FPA       = 1 << 5,
360     ARM_HWCAP_ARM_VFP       = 1 << 6,
361     ARM_HWCAP_ARM_EDSP      = 1 << 7,
362     ARM_HWCAP_ARM_JAVA      = 1 << 8,
363     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
364     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
365     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
366     ARM_HWCAP_ARM_NEON      = 1 << 12,
367     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
368     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
369     ARM_HWCAP_ARM_TLS       = 1 << 15,
370     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
371     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
372     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
373     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
374     ARM_HWCAP_ARM_LPAE      = 1 << 20,
375     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
376 };
377 
378 enum {
379     ARM_HWCAP2_ARM_AES      = 1 << 0,
380     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
381     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
382     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
383     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
384 };
385 
386 /* The commpage only exists for 32 bit kernels */
387 
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
389 
390 static bool init_guest_commpage(void)
391 {
392     void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
393     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
395 
396     if (addr == MAP_FAILED) {
397         perror("Allocating guest commpage");
398         exit(EXIT_FAILURE);
399     }
400     if (addr != want) {
401         return false;
402     }
403 
404     /* Set kernel helper versions; rest of page is 0.  */
405     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
406 
407     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408         perror("Protecting guest commpage");
409         exit(EXIT_FAILURE);
410     }
411     return true;
412 }
413 
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
416 
417 static uint32_t get_elf_hwcap(void)
418 {
419     ARMCPU *cpu = ARM_CPU(thread_cpu);
420     uint32_t hwcaps = 0;
421 
422     hwcaps |= ARM_HWCAP_ARM_SWP;
423     hwcaps |= ARM_HWCAP_ARM_HALF;
424     hwcaps |= ARM_HWCAP_ARM_THUMB;
425     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
426 
427     /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
430 
431 #define GET_FEATURE_ID(feat, hwcap) \
432     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433 
434     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444 
445     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447         hwcaps |= ARM_HWCAP_ARM_VFPv3;
448         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449             hwcaps |= ARM_HWCAP_ARM_VFPD32;
450         } else {
451             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452         }
453     }
454     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
455 
456     return hwcaps;
457 }
458 
459 static uint32_t get_elf_hwcap2(void)
460 {
461     ARMCPU *cpu = ARM_CPU(thread_cpu);
462     uint32_t hwcaps = 0;
463 
464     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469     return hwcaps;
470 }
471 
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
474 
475 #define ELF_PLATFORM get_elf_platform()
476 
477 static const char *get_elf_platform(void)
478 {
479     CPUARMState *env = thread_cpu->env_ptr;
480 
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END  "b"
483 #else
484 # define END  "l"
485 #endif
486 
487     if (arm_feature(env, ARM_FEATURE_V8)) {
488         return "v8" END;
489     } else if (arm_feature(env, ARM_FEATURE_V7)) {
490         if (arm_feature(env, ARM_FEATURE_M)) {
491             return "v7m" END;
492         } else {
493             return "v7" END;
494         }
495     } else if (arm_feature(env, ARM_FEATURE_V6)) {
496         return "v6" END;
497     } else if (arm_feature(env, ARM_FEATURE_V5)) {
498         return "v5" END;
499     } else {
500         return "v4" END;
501     }
502 
503 #undef END
504 }
505 
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
509 
510 #define ELF_ARCH        EM_AARCH64
511 #define ELF_CLASS       ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM    "aarch64_be"
514 #else
515 # define ELF_PLATFORM    "aarch64"
516 #endif
517 
518 static inline void init_thread(struct target_pt_regs *regs,
519                                struct image_info *infop)
520 {
521     abi_long stack = infop->start_stack;
522     memset(regs, 0, sizeof(*regs));
523 
524     regs->pc = infop->entry & ~0x3ULL;
525     regs->sp = stack;
526 }
527 
528 #define ELF_NREG    34
529 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
530 
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532                                const CPUARMState *env)
533 {
534     int i;
535 
536     for (i = 0; i < 32; i++) {
537         (*regs)[i] = tswapreg(env->xregs[i]);
538     }
539     (*regs)[32] = tswapreg(env->pc);
540     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541 }
542 
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE       4096
545 
546 enum {
547     ARM_HWCAP_A64_FP            = 1 << 0,
548     ARM_HWCAP_A64_ASIMD         = 1 << 1,
549     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
550     ARM_HWCAP_A64_AES           = 1 << 3,
551     ARM_HWCAP_A64_PMULL         = 1 << 4,
552     ARM_HWCAP_A64_SHA1          = 1 << 5,
553     ARM_HWCAP_A64_SHA2          = 1 << 6,
554     ARM_HWCAP_A64_CRC32         = 1 << 7,
555     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
556     ARM_HWCAP_A64_FPHP          = 1 << 9,
557     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
558     ARM_HWCAP_A64_CPUID         = 1 << 11,
559     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
560     ARM_HWCAP_A64_JSCVT         = 1 << 13,
561     ARM_HWCAP_A64_FCMA          = 1 << 14,
562     ARM_HWCAP_A64_LRCPC         = 1 << 15,
563     ARM_HWCAP_A64_DCPOP         = 1 << 16,
564     ARM_HWCAP_A64_SHA3          = 1 << 17,
565     ARM_HWCAP_A64_SM3           = 1 << 18,
566     ARM_HWCAP_A64_SM4           = 1 << 19,
567     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
568     ARM_HWCAP_A64_SHA512        = 1 << 21,
569     ARM_HWCAP_A64_SVE           = 1 << 22,
570     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
571     ARM_HWCAP_A64_DIT           = 1 << 24,
572     ARM_HWCAP_A64_USCAT         = 1 << 25,
573     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
574     ARM_HWCAP_A64_FLAGM         = 1 << 27,
575     ARM_HWCAP_A64_SSBS          = 1 << 28,
576     ARM_HWCAP_A64_SB            = 1 << 29,
577     ARM_HWCAP_A64_PACA          = 1 << 30,
578     ARM_HWCAP_A64_PACG          = 1UL << 31,
579 
580     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
581     ARM_HWCAP2_A64_SVE2         = 1 << 1,
582     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
583     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
584     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
585     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
586     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
587     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
588     ARM_HWCAP2_A64_FRINT        = 1 << 8,
589 };
590 
591 #define ELF_HWCAP   get_elf_hwcap()
592 #define ELF_HWCAP2  get_elf_hwcap2()
593 
594 #define GET_FEATURE_ID(feat, hwcap) \
595     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
596 
597 static uint32_t get_elf_hwcap(void)
598 {
599     ARMCPU *cpu = ARM_CPU(thread_cpu);
600     uint32_t hwcaps = 0;
601 
602     hwcaps |= ARM_HWCAP_A64_FP;
603     hwcaps |= ARM_HWCAP_A64_ASIMD;
604     hwcaps |= ARM_HWCAP_A64_CPUID;
605 
606     /* probe for the extra features */
607 
608     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
609     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
610     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
611     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
612     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
613     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
614     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
615     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
616     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
617     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
618     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
619     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
620     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
621     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
622     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
623     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
624     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
625     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
626     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
627     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
628     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
629     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
630     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
631 
632     return hwcaps;
633 }
634 
635 static uint32_t get_elf_hwcap2(void)
636 {
637     ARMCPU *cpu = ARM_CPU(thread_cpu);
638     uint32_t hwcaps = 0;
639 
640     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
641     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
642     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
643 
644     return hwcaps;
645 }
646 
647 #undef GET_FEATURE_ID
648 
649 #endif /* not TARGET_AARCH64 */
650 #endif /* TARGET_ARM */
651 
652 #ifdef TARGET_SPARC
653 #ifdef TARGET_SPARC64
654 
655 #define ELF_START_MMAP 0x80000000
656 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
657                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
658 #ifndef TARGET_ABI32
659 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
660 #else
661 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
662 #endif
663 
664 #define ELF_CLASS   ELFCLASS64
665 #define ELF_ARCH    EM_SPARCV9
666 
667 #define STACK_BIAS              2047
668 
669 static inline void init_thread(struct target_pt_regs *regs,
670                                struct image_info *infop)
671 {
672 #ifndef TARGET_ABI32
673     regs->tstate = 0;
674 #endif
675     regs->pc = infop->entry;
676     regs->npc = regs->pc + 4;
677     regs->y = 0;
678 #ifdef TARGET_ABI32
679     regs->u_regs[14] = infop->start_stack - 16 * 4;
680 #else
681     if (personality(infop->personality) == PER_LINUX32)
682         regs->u_regs[14] = infop->start_stack - 16 * 4;
683     else
684         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
685 #endif
686 }
687 
688 #else
689 #define ELF_START_MMAP 0x80000000
690 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
691                     | HWCAP_SPARC_MULDIV)
692 
693 #define ELF_CLASS   ELFCLASS32
694 #define ELF_ARCH    EM_SPARC
695 
696 static inline void init_thread(struct target_pt_regs *regs,
697                                struct image_info *infop)
698 {
699     regs->psr = 0;
700     regs->pc = infop->entry;
701     regs->npc = regs->pc + 4;
702     regs->y = 0;
703     regs->u_regs[14] = infop->start_stack - 16 * 4;
704 }
705 
706 #endif
707 #endif
708 
709 #ifdef TARGET_PPC
710 
711 #define ELF_MACHINE    PPC_ELF_MACHINE
712 #define ELF_START_MMAP 0x80000000
713 
714 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
715 
716 #define elf_check_arch(x) ( (x) == EM_PPC64 )
717 
718 #define ELF_CLASS       ELFCLASS64
719 
720 #else
721 
722 #define ELF_CLASS       ELFCLASS32
723 
724 #endif
725 
726 #define ELF_ARCH        EM_PPC
727 
728 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
729    See arch/powerpc/include/asm/cputable.h.  */
730 enum {
731     QEMU_PPC_FEATURE_32 = 0x80000000,
732     QEMU_PPC_FEATURE_64 = 0x40000000,
733     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
734     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
735     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
736     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
737     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
738     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
739     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
740     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
741     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
742     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
743     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
744     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
745     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
746     QEMU_PPC_FEATURE_CELL = 0x00010000,
747     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
748     QEMU_PPC_FEATURE_SMT = 0x00004000,
749     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
750     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
751     QEMU_PPC_FEATURE_PA6T = 0x00000800,
752     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
753     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
754     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
755     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
756     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
757 
758     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
759     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
760 
761     /* Feature definitions in AT_HWCAP2.  */
762     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
763     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
764     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
765     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
766     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
767     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
768     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
769     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
770     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
771     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
772     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
773     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
774     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
775 };
776 
777 #define ELF_HWCAP get_elf_hwcap()
778 
779 static uint32_t get_elf_hwcap(void)
780 {
781     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
782     uint32_t features = 0;
783 
784     /* We don't have to be terribly complete here; the high points are
785        Altivec/FP/SPE support.  Anything else is just a bonus.  */
786 #define GET_FEATURE(flag, feature)                                      \
787     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
788 #define GET_FEATURE2(flags, feature) \
789     do { \
790         if ((cpu->env.insns_flags2 & flags) == flags) { \
791             features |= feature; \
792         } \
793     } while (0)
794     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
795     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
796     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
797     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
798     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
799     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
800     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
801     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
802     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
803     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
804     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
805                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
806                   QEMU_PPC_FEATURE_ARCH_2_06);
807 #undef GET_FEATURE
808 #undef GET_FEATURE2
809 
810     return features;
811 }
812 
813 #define ELF_HWCAP2 get_elf_hwcap2()
814 
815 static uint32_t get_elf_hwcap2(void)
816 {
817     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
818     uint32_t features = 0;
819 
820 #define GET_FEATURE(flag, feature)                                      \
821     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
822 #define GET_FEATURE2(flag, feature)                                      \
823     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
824 
825     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
826     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
827     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
828                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
829                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
830     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
831                  QEMU_PPC_FEATURE2_DARN);
832 
833 #undef GET_FEATURE
834 #undef GET_FEATURE2
835 
836     return features;
837 }
838 
839 /*
840  * The requirements here are:
841  * - keep the final alignment of sp (sp & 0xf)
842  * - make sure the 32-bit value at the first 16 byte aligned position of
843  *   AUXV is greater than 16 for glibc compatibility.
844  *   AT_IGNOREPPC is used for that.
845  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
846  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
847  */
848 #define DLINFO_ARCH_ITEMS       5
849 #define ARCH_DLINFO                                     \
850     do {                                                \
851         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
852         /*                                              \
853          * Handle glibc compatibility: these magic entries must \
854          * be at the lowest addresses in the final auxv.        \
855          */                                             \
856         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
857         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
858         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
859         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
860         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
861     } while (0)
862 
863 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
864 {
865     _regs->gpr[1] = infop->start_stack;
866 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
867     if (get_ppc64_abi(infop) < 2) {
868         uint64_t val;
869         get_user_u64(val, infop->entry + 8);
870         _regs->gpr[2] = val + infop->load_bias;
871         get_user_u64(val, infop->entry);
872         infop->entry = val + infop->load_bias;
873     } else {
874         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
875     }
876 #endif
877     _regs->nip = infop->entry;
878 }
879 
880 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
881 #define ELF_NREG 48
882 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
883 
884 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
885 {
886     int i;
887     target_ulong ccr = 0;
888 
889     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
890         (*regs)[i] = tswapreg(env->gpr[i]);
891     }
892 
893     (*regs)[32] = tswapreg(env->nip);
894     (*regs)[33] = tswapreg(env->msr);
895     (*regs)[35] = tswapreg(env->ctr);
896     (*regs)[36] = tswapreg(env->lr);
897     (*regs)[37] = tswapreg(env->xer);
898 
899     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
900         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
901     }
902     (*regs)[38] = tswapreg(ccr);
903 }
904 
905 #define USE_ELF_CORE_DUMP
906 #define ELF_EXEC_PAGESIZE       4096
907 
908 #endif
909 
910 #ifdef TARGET_MIPS
911 
912 #define ELF_START_MMAP 0x80000000
913 
914 #ifdef TARGET_MIPS64
915 #define ELF_CLASS   ELFCLASS64
916 #else
917 #define ELF_CLASS   ELFCLASS32
918 #endif
919 #define ELF_ARCH    EM_MIPS
920 
921 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
922 
923 #ifdef TARGET_ABI_MIPSN32
924 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
925 #else
926 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
927 #endif
928 
929 static inline void init_thread(struct target_pt_regs *regs,
930                                struct image_info *infop)
931 {
932     regs->cp0_status = 2 << CP0St_KSU;
933     regs->cp0_epc = infop->entry;
934     regs->regs[29] = infop->start_stack;
935 }
936 
937 /* See linux kernel: arch/mips/include/asm/elf.h.  */
938 #define ELF_NREG 45
939 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
940 
941 /* See linux kernel: arch/mips/include/asm/reg.h.  */
942 enum {
943 #ifdef TARGET_MIPS64
944     TARGET_EF_R0 = 0,
945 #else
946     TARGET_EF_R0 = 6,
947 #endif
948     TARGET_EF_R26 = TARGET_EF_R0 + 26,
949     TARGET_EF_R27 = TARGET_EF_R0 + 27,
950     TARGET_EF_LO = TARGET_EF_R0 + 32,
951     TARGET_EF_HI = TARGET_EF_R0 + 33,
952     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
953     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
954     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
955     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
956 };
957 
958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
959 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
960 {
961     int i;
962 
963     for (i = 0; i < TARGET_EF_R0; i++) {
964         (*regs)[i] = 0;
965     }
966     (*regs)[TARGET_EF_R0] = 0;
967 
968     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
969         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
970     }
971 
972     (*regs)[TARGET_EF_R26] = 0;
973     (*regs)[TARGET_EF_R27] = 0;
974     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
975     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
976     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
977     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
978     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
979     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
980 }
981 
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE        4096
984 
985 /* See arch/mips/include/uapi/asm/hwcap.h.  */
986 enum {
987     HWCAP_MIPS_R6           = (1 << 0),
988     HWCAP_MIPS_MSA          = (1 << 1),
989     HWCAP_MIPS_CRC32        = (1 << 2),
990     HWCAP_MIPS_MIPS16       = (1 << 3),
991     HWCAP_MIPS_MDMX         = (1 << 4),
992     HWCAP_MIPS_MIPS3D       = (1 << 5),
993     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
994     HWCAP_MIPS_DSP          = (1 << 7),
995     HWCAP_MIPS_DSP2         = (1 << 8),
996     HWCAP_MIPS_DSP3         = (1 << 9),
997     HWCAP_MIPS_MIPS16E2     = (1 << 10),
998     HWCAP_LOONGSON_MMI      = (1 << 11),
999     HWCAP_LOONGSON_EXT      = (1 << 12),
1000     HWCAP_LOONGSON_EXT2     = (1 << 13),
1001     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1002 };
1003 
1004 #define ELF_HWCAP get_elf_hwcap()
1005 
1006 #define GET_FEATURE_INSN(_flag, _hwcap) \
1007     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1008 
1009 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1010     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1011 
1012 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1013     do { \
1014         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1015             hwcaps |= _hwcap; \
1016         } \
1017     } while (0)
1018 
1019 static uint32_t get_elf_hwcap(void)
1020 {
1021     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1022     uint32_t hwcaps = 0;
1023 
1024     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1025                         2, HWCAP_MIPS_R6);
1026     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1027     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1028     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1029 
1030     return hwcaps;
1031 }
1032 
1033 #undef GET_FEATURE_REG_EQU
1034 #undef GET_FEATURE_REG_SET
1035 #undef GET_FEATURE_INSN
1036 
1037 #endif /* TARGET_MIPS */
1038 
1039 #ifdef TARGET_MICROBLAZE
1040 
1041 #define ELF_START_MMAP 0x80000000
1042 
1043 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1044 
1045 #define ELF_CLASS   ELFCLASS32
1046 #define ELF_ARCH    EM_MICROBLAZE
1047 
1048 static inline void init_thread(struct target_pt_regs *regs,
1049                                struct image_info *infop)
1050 {
1051     regs->pc = infop->entry;
1052     regs->r1 = infop->start_stack;
1053 
1054 }
1055 
1056 #define ELF_EXEC_PAGESIZE        4096
1057 
1058 #define USE_ELF_CORE_DUMP
1059 #define ELF_NREG 38
1060 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1061 
1062 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1063 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1064 {
1065     int i, pos = 0;
1066 
1067     for (i = 0; i < 32; i++) {
1068         (*regs)[pos++] = tswapreg(env->regs[i]);
1069     }
1070 
1071     (*regs)[pos++] = tswapreg(env->pc);
1072     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1073     (*regs)[pos++] = 0;
1074     (*regs)[pos++] = tswapreg(env->ear);
1075     (*regs)[pos++] = 0;
1076     (*regs)[pos++] = tswapreg(env->esr);
1077 }
1078 
1079 #endif /* TARGET_MICROBLAZE */
1080 
1081 #ifdef TARGET_NIOS2
1082 
1083 #define ELF_START_MMAP 0x80000000
1084 
1085 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1086 
1087 #define ELF_CLASS   ELFCLASS32
1088 #define ELF_ARCH    EM_ALTERA_NIOS2
1089 
1090 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1091 {
1092     regs->ea = infop->entry;
1093     regs->sp = infop->start_stack;
1094     regs->estatus = 0x3;
1095 }
1096 
1097 #define ELF_EXEC_PAGESIZE        4096
1098 
1099 #define USE_ELF_CORE_DUMP
1100 #define ELF_NREG 49
1101 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1102 
1103 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1104 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1105                                const CPUNios2State *env)
1106 {
1107     int i;
1108 
1109     (*regs)[0] = -1;
1110     for (i = 1; i < 8; i++)    /* r0-r7 */
1111         (*regs)[i] = tswapreg(env->regs[i + 7]);
1112 
1113     for (i = 8; i < 16; i++)   /* r8-r15 */
1114         (*regs)[i] = tswapreg(env->regs[i - 8]);
1115 
1116     for (i = 16; i < 24; i++)  /* r16-r23 */
1117         (*regs)[i] = tswapreg(env->regs[i + 7]);
1118     (*regs)[24] = -1;    /* R_ET */
1119     (*regs)[25] = -1;    /* R_BT */
1120     (*regs)[26] = tswapreg(env->regs[R_GP]);
1121     (*regs)[27] = tswapreg(env->regs[R_SP]);
1122     (*regs)[28] = tswapreg(env->regs[R_FP]);
1123     (*regs)[29] = tswapreg(env->regs[R_EA]);
1124     (*regs)[30] = -1;    /* R_SSTATUS */
1125     (*regs)[31] = tswapreg(env->regs[R_RA]);
1126 
1127     (*regs)[32] = tswapreg(env->regs[R_PC]);
1128 
1129     (*regs)[33] = -1; /* R_STATUS */
1130     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1131 
1132     for (i = 35; i < 49; i++)    /* ... */
1133         (*regs)[i] = -1;
1134 }
1135 
1136 #endif /* TARGET_NIOS2 */
1137 
1138 #ifdef TARGET_OPENRISC
1139 
1140 #define ELF_START_MMAP 0x08000000
1141 
1142 #define ELF_ARCH EM_OPENRISC
1143 #define ELF_CLASS ELFCLASS32
1144 #define ELF_DATA  ELFDATA2MSB
1145 
1146 static inline void init_thread(struct target_pt_regs *regs,
1147                                struct image_info *infop)
1148 {
1149     regs->pc = infop->entry;
1150     regs->gpr[1] = infop->start_stack;
1151 }
1152 
1153 #define USE_ELF_CORE_DUMP
1154 #define ELF_EXEC_PAGESIZE 8192
1155 
1156 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1157 #define ELF_NREG 34 /* gprs and pc, sr */
1158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1159 
1160 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1161                                const CPUOpenRISCState *env)
1162 {
1163     int i;
1164 
1165     for (i = 0; i < 32; i++) {
1166         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1167     }
1168     (*regs)[32] = tswapreg(env->pc);
1169     (*regs)[33] = tswapreg(cpu_get_sr(env));
1170 }
1171 #define ELF_HWCAP 0
1172 #define ELF_PLATFORM NULL
1173 
1174 #endif /* TARGET_OPENRISC */
1175 
1176 #ifdef TARGET_SH4
1177 
1178 #define ELF_START_MMAP 0x80000000
1179 
1180 #define ELF_CLASS ELFCLASS32
1181 #define ELF_ARCH  EM_SH
1182 
1183 static inline void init_thread(struct target_pt_regs *regs,
1184                                struct image_info *infop)
1185 {
1186     /* Check other registers XXXXX */
1187     regs->pc = infop->entry;
1188     regs->regs[15] = infop->start_stack;
1189 }
1190 
1191 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1192 #define ELF_NREG 23
1193 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1194 
1195 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1196 enum {
1197     TARGET_REG_PC = 16,
1198     TARGET_REG_PR = 17,
1199     TARGET_REG_SR = 18,
1200     TARGET_REG_GBR = 19,
1201     TARGET_REG_MACH = 20,
1202     TARGET_REG_MACL = 21,
1203     TARGET_REG_SYSCALL = 22
1204 };
1205 
1206 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1207                                       const CPUSH4State *env)
1208 {
1209     int i;
1210 
1211     for (i = 0; i < 16; i++) {
1212         (*regs)[i] = tswapreg(env->gregs[i]);
1213     }
1214 
1215     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1216     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1217     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1218     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1219     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1220     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1221     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1222 }
1223 
1224 #define USE_ELF_CORE_DUMP
1225 #define ELF_EXEC_PAGESIZE        4096
1226 
1227 enum {
1228     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1229     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1230     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1231     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1232     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1233     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1234     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1235     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1236     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1237     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1238 };
1239 
1240 #define ELF_HWCAP get_elf_hwcap()
1241 
1242 static uint32_t get_elf_hwcap(void)
1243 {
1244     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1245     uint32_t hwcap = 0;
1246 
1247     hwcap |= SH_CPU_HAS_FPU;
1248 
1249     if (cpu->env.features & SH_FEATURE_SH4A) {
1250         hwcap |= SH_CPU_HAS_LLSC;
1251     }
1252 
1253     return hwcap;
1254 }
1255 
1256 #endif
1257 
1258 #ifdef TARGET_CRIS
1259 
1260 #define ELF_START_MMAP 0x80000000
1261 
1262 #define ELF_CLASS ELFCLASS32
1263 #define ELF_ARCH  EM_CRIS
1264 
1265 static inline void init_thread(struct target_pt_regs *regs,
1266                                struct image_info *infop)
1267 {
1268     regs->erp = infop->entry;
1269 }
1270 
1271 #define ELF_EXEC_PAGESIZE        8192
1272 
1273 #endif
1274 
1275 #ifdef TARGET_M68K
1276 
1277 #define ELF_START_MMAP 0x80000000
1278 
1279 #define ELF_CLASS       ELFCLASS32
1280 #define ELF_ARCH        EM_68K
1281 
1282 /* ??? Does this need to do anything?
1283    #define ELF_PLAT_INIT(_r) */
1284 
1285 static inline void init_thread(struct target_pt_regs *regs,
1286                                struct image_info *infop)
1287 {
1288     regs->usp = infop->start_stack;
1289     regs->sr = 0;
1290     regs->pc = infop->entry;
1291 }
1292 
1293 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1294 #define ELF_NREG 20
1295 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1296 
1297 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1298 {
1299     (*regs)[0] = tswapreg(env->dregs[1]);
1300     (*regs)[1] = tswapreg(env->dregs[2]);
1301     (*regs)[2] = tswapreg(env->dregs[3]);
1302     (*regs)[3] = tswapreg(env->dregs[4]);
1303     (*regs)[4] = tswapreg(env->dregs[5]);
1304     (*regs)[5] = tswapreg(env->dregs[6]);
1305     (*regs)[6] = tswapreg(env->dregs[7]);
1306     (*regs)[7] = tswapreg(env->aregs[0]);
1307     (*regs)[8] = tswapreg(env->aregs[1]);
1308     (*regs)[9] = tswapreg(env->aregs[2]);
1309     (*regs)[10] = tswapreg(env->aregs[3]);
1310     (*regs)[11] = tswapreg(env->aregs[4]);
1311     (*regs)[12] = tswapreg(env->aregs[5]);
1312     (*regs)[13] = tswapreg(env->aregs[6]);
1313     (*regs)[14] = tswapreg(env->dregs[0]);
1314     (*regs)[15] = tswapreg(env->aregs[7]);
1315     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1316     (*regs)[17] = tswapreg(env->sr);
1317     (*regs)[18] = tswapreg(env->pc);
1318     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1319 }
1320 
1321 #define USE_ELF_CORE_DUMP
1322 #define ELF_EXEC_PAGESIZE       8192
1323 
1324 #endif
1325 
1326 #ifdef TARGET_ALPHA
1327 
1328 #define ELF_START_MMAP (0x30000000000ULL)
1329 
1330 #define ELF_CLASS      ELFCLASS64
1331 #define ELF_ARCH       EM_ALPHA
1332 
1333 static inline void init_thread(struct target_pt_regs *regs,
1334                                struct image_info *infop)
1335 {
1336     regs->pc = infop->entry;
1337     regs->ps = 8;
1338     regs->usp = infop->start_stack;
1339 }
1340 
1341 #define ELF_EXEC_PAGESIZE        8192
1342 
1343 #endif /* TARGET_ALPHA */
1344 
1345 #ifdef TARGET_S390X
1346 
1347 #define ELF_START_MMAP (0x20000000000ULL)
1348 
1349 #define ELF_CLASS	ELFCLASS64
1350 #define ELF_DATA	ELFDATA2MSB
1351 #define ELF_ARCH	EM_S390
1352 
1353 #include "elf.h"
1354 
1355 #define ELF_HWCAP get_elf_hwcap()
1356 
1357 #define GET_FEATURE(_feat, _hwcap) \
1358     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1359 
1360 static uint32_t get_elf_hwcap(void)
1361 {
1362     /*
1363      * Let's assume we always have esan3 and zarch.
1364      * 31-bit processes can use 64-bit registers (high gprs).
1365      */
1366     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1367 
1368     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1369     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1370     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1371     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1372     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1373         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1374         hwcap |= HWCAP_S390_ETF3EH;
1375     }
1376     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1377 
1378     return hwcap;
1379 }
1380 
1381 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1382 {
1383     regs->psw.addr = infop->entry;
1384     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1385     regs->gprs[15] = infop->start_stack;
1386 }
1387 
1388 #endif /* TARGET_S390X */
1389 
1390 #ifdef TARGET_TILEGX
1391 
1392 /* 42 bits real used address, a half for user mode */
1393 #define ELF_START_MMAP (0x00000020000000000ULL)
1394 
1395 #define elf_check_arch(x) ((x) == EM_TILEGX)
1396 
1397 #define ELF_CLASS   ELFCLASS64
1398 #define ELF_DATA    ELFDATA2LSB
1399 #define ELF_ARCH    EM_TILEGX
1400 
1401 static inline void init_thread(struct target_pt_regs *regs,
1402                                struct image_info *infop)
1403 {
1404     regs->pc = infop->entry;
1405     regs->sp = infop->start_stack;
1406 
1407 }
1408 
1409 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1410 
1411 #endif /* TARGET_TILEGX */
1412 
1413 #ifdef TARGET_RISCV
1414 
1415 #define ELF_START_MMAP 0x80000000
1416 #define ELF_ARCH  EM_RISCV
1417 
1418 #ifdef TARGET_RISCV32
1419 #define ELF_CLASS ELFCLASS32
1420 #else
1421 #define ELF_CLASS ELFCLASS64
1422 #endif
1423 
1424 static inline void init_thread(struct target_pt_regs *regs,
1425                                struct image_info *infop)
1426 {
1427     regs->sepc = infop->entry;
1428     regs->sp = infop->start_stack;
1429 }
1430 
1431 #define ELF_EXEC_PAGESIZE 4096
1432 
1433 #endif /* TARGET_RISCV */
1434 
1435 #ifdef TARGET_HPPA
1436 
1437 #define ELF_START_MMAP  0x80000000
1438 #define ELF_CLASS       ELFCLASS32
1439 #define ELF_ARCH        EM_PARISC
1440 #define ELF_PLATFORM    "PARISC"
1441 #define STACK_GROWS_DOWN 0
1442 #define STACK_ALIGNMENT  64
1443 
1444 static inline void init_thread(struct target_pt_regs *regs,
1445                                struct image_info *infop)
1446 {
1447     regs->iaoq[0] = infop->entry;
1448     regs->iaoq[1] = infop->entry + 4;
1449     regs->gr[23] = 0;
1450     regs->gr[24] = infop->arg_start;
1451     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1452     /* The top-of-stack contains a linkage buffer.  */
1453     regs->gr[30] = infop->start_stack + 64;
1454     regs->gr[31] = infop->entry;
1455 }
1456 
1457 #endif /* TARGET_HPPA */
1458 
1459 #ifdef TARGET_XTENSA
1460 
1461 #define ELF_START_MMAP 0x20000000
1462 
1463 #define ELF_CLASS       ELFCLASS32
1464 #define ELF_ARCH        EM_XTENSA
1465 
1466 static inline void init_thread(struct target_pt_regs *regs,
1467                                struct image_info *infop)
1468 {
1469     regs->windowbase = 0;
1470     regs->windowstart = 1;
1471     regs->areg[1] = infop->start_stack;
1472     regs->pc = infop->entry;
1473 }
1474 
1475 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1476 #define ELF_NREG 128
1477 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1478 
1479 enum {
1480     TARGET_REG_PC,
1481     TARGET_REG_PS,
1482     TARGET_REG_LBEG,
1483     TARGET_REG_LEND,
1484     TARGET_REG_LCOUNT,
1485     TARGET_REG_SAR,
1486     TARGET_REG_WINDOWSTART,
1487     TARGET_REG_WINDOWBASE,
1488     TARGET_REG_THREADPTR,
1489     TARGET_REG_AR0 = 64,
1490 };
1491 
1492 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1493                                const CPUXtensaState *env)
1494 {
1495     unsigned i;
1496 
1497     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1498     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1499     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1500     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1501     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1502     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1503     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1504     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1505     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1506     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1507     for (i = 0; i < env->config->nareg; ++i) {
1508         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1509     }
1510 }
1511 
1512 #define USE_ELF_CORE_DUMP
1513 #define ELF_EXEC_PAGESIZE       4096
1514 
1515 #endif /* TARGET_XTENSA */
1516 
1517 #ifdef TARGET_HEXAGON
1518 
1519 #define ELF_START_MMAP 0x20000000
1520 
1521 #define ELF_CLASS       ELFCLASS32
1522 #define ELF_ARCH        EM_HEXAGON
1523 
1524 static inline void init_thread(struct target_pt_regs *regs,
1525                                struct image_info *infop)
1526 {
1527     regs->sepc = infop->entry;
1528     regs->sp = infop->start_stack;
1529 }
1530 
1531 #endif /* TARGET_HEXAGON */
1532 
1533 #ifndef ELF_PLATFORM
1534 #define ELF_PLATFORM (NULL)
1535 #endif
1536 
1537 #ifndef ELF_MACHINE
1538 #define ELF_MACHINE ELF_ARCH
1539 #endif
1540 
1541 #ifndef elf_check_arch
1542 #define elf_check_arch(x) ((x) == ELF_ARCH)
1543 #endif
1544 
1545 #ifndef elf_check_abi
1546 #define elf_check_abi(x) (1)
1547 #endif
1548 
1549 #ifndef ELF_HWCAP
1550 #define ELF_HWCAP 0
1551 #endif
1552 
1553 #ifndef STACK_GROWS_DOWN
1554 #define STACK_GROWS_DOWN 1
1555 #endif
1556 
1557 #ifndef STACK_ALIGNMENT
1558 #define STACK_ALIGNMENT 16
1559 #endif
1560 
1561 #ifdef TARGET_ABI32
1562 #undef ELF_CLASS
1563 #define ELF_CLASS ELFCLASS32
1564 #undef bswaptls
1565 #define bswaptls(ptr) bswap32s(ptr)
1566 #endif
1567 
1568 #include "elf.h"
1569 
1570 /* We must delay the following stanzas until after "elf.h". */
1571 #if defined(TARGET_AARCH64)
1572 
1573 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1574                                     const uint32_t *data,
1575                                     struct image_info *info,
1576                                     Error **errp)
1577 {
1578     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1579         if (pr_datasz != sizeof(uint32_t)) {
1580             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1581             return false;
1582         }
1583         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1584         info->note_flags = *data;
1585     }
1586     return true;
1587 }
1588 #define ARCH_USE_GNU_PROPERTY 1
1589 
1590 #else
1591 
1592 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1593                                     const uint32_t *data,
1594                                     struct image_info *info,
1595                                     Error **errp)
1596 {
1597     g_assert_not_reached();
1598 }
1599 #define ARCH_USE_GNU_PROPERTY 0
1600 
1601 #endif
1602 
1603 struct exec
1604 {
1605     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1606     unsigned int a_text;   /* length of text, in bytes */
1607     unsigned int a_data;   /* length of data, in bytes */
1608     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1609     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1610     unsigned int a_entry;  /* start address */
1611     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1612     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1613 };
1614 
1615 
1616 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1617 #define OMAGIC 0407
1618 #define NMAGIC 0410
1619 #define ZMAGIC 0413
1620 #define QMAGIC 0314
1621 
1622 /* Necessary parameters */
1623 #define TARGET_ELF_EXEC_PAGESIZE \
1624         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1625          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1626 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1627 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1628                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1629 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1630 
1631 #define DLINFO_ITEMS 16
1632 
1633 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1634 {
1635     memcpy(to, from, n);
1636 }
1637 
1638 #ifdef BSWAP_NEEDED
1639 static void bswap_ehdr(struct elfhdr *ehdr)
1640 {
1641     bswap16s(&ehdr->e_type);            /* Object file type */
1642     bswap16s(&ehdr->e_machine);         /* Architecture */
1643     bswap32s(&ehdr->e_version);         /* Object file version */
1644     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1645     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1646     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1647     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1648     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1649     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1650     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1651     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1652     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1653     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1654 }
1655 
1656 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1657 {
1658     int i;
1659     for (i = 0; i < phnum; ++i, ++phdr) {
1660         bswap32s(&phdr->p_type);        /* Segment type */
1661         bswap32s(&phdr->p_flags);       /* Segment flags */
1662         bswaptls(&phdr->p_offset);      /* Segment file offset */
1663         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1664         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1665         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1666         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1667         bswaptls(&phdr->p_align);       /* Segment alignment */
1668     }
1669 }
1670 
1671 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1672 {
1673     int i;
1674     for (i = 0; i < shnum; ++i, ++shdr) {
1675         bswap32s(&shdr->sh_name);
1676         bswap32s(&shdr->sh_type);
1677         bswaptls(&shdr->sh_flags);
1678         bswaptls(&shdr->sh_addr);
1679         bswaptls(&shdr->sh_offset);
1680         bswaptls(&shdr->sh_size);
1681         bswap32s(&shdr->sh_link);
1682         bswap32s(&shdr->sh_info);
1683         bswaptls(&shdr->sh_addralign);
1684         bswaptls(&shdr->sh_entsize);
1685     }
1686 }
1687 
1688 static void bswap_sym(struct elf_sym *sym)
1689 {
1690     bswap32s(&sym->st_name);
1691     bswaptls(&sym->st_value);
1692     bswaptls(&sym->st_size);
1693     bswap16s(&sym->st_shndx);
1694 }
1695 
1696 #ifdef TARGET_MIPS
1697 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1698 {
1699     bswap16s(&abiflags->version);
1700     bswap32s(&abiflags->ases);
1701     bswap32s(&abiflags->isa_ext);
1702     bswap32s(&abiflags->flags1);
1703     bswap32s(&abiflags->flags2);
1704 }
1705 #endif
1706 #else
1707 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1708 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1709 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1710 static inline void bswap_sym(struct elf_sym *sym) { }
1711 #ifdef TARGET_MIPS
1712 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1713 #endif
1714 #endif
1715 
1716 #ifdef USE_ELF_CORE_DUMP
1717 static int elf_core_dump(int, const CPUArchState *);
1718 #endif /* USE_ELF_CORE_DUMP */
1719 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1720 
1721 /* Verify the portions of EHDR within E_IDENT for the target.
1722    This can be performed before bswapping the entire header.  */
1723 static bool elf_check_ident(struct elfhdr *ehdr)
1724 {
1725     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1726             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1727             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1728             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1729             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1730             && ehdr->e_ident[EI_DATA] == ELF_DATA
1731             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1732 }
1733 
1734 /* Verify the portions of EHDR outside of E_IDENT for the target.
1735    This has to wait until after bswapping the header.  */
1736 static bool elf_check_ehdr(struct elfhdr *ehdr)
1737 {
1738     return (elf_check_arch(ehdr->e_machine)
1739             && elf_check_abi(ehdr->e_flags)
1740             && ehdr->e_ehsize == sizeof(struct elfhdr)
1741             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1742             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1743 }
1744 
1745 /*
1746  * 'copy_elf_strings()' copies argument/envelope strings from user
1747  * memory to free pages in kernel mem. These are in a format ready
1748  * to be put directly into the top of new user memory.
1749  *
1750  */
1751 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1752                                   abi_ulong p, abi_ulong stack_limit)
1753 {
1754     char *tmp;
1755     int len, i;
1756     abi_ulong top = p;
1757 
1758     if (!p) {
1759         return 0;       /* bullet-proofing */
1760     }
1761 
1762     if (STACK_GROWS_DOWN) {
1763         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1764         for (i = argc - 1; i >= 0; --i) {
1765             tmp = argv[i];
1766             if (!tmp) {
1767                 fprintf(stderr, "VFS: argc is wrong");
1768                 exit(-1);
1769             }
1770             len = strlen(tmp) + 1;
1771             tmp += len;
1772 
1773             if (len > (p - stack_limit)) {
1774                 return 0;
1775             }
1776             while (len) {
1777                 int bytes_to_copy = (len > offset) ? offset : len;
1778                 tmp -= bytes_to_copy;
1779                 p -= bytes_to_copy;
1780                 offset -= bytes_to_copy;
1781                 len -= bytes_to_copy;
1782 
1783                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1784 
1785                 if (offset == 0) {
1786                     memcpy_to_target(p, scratch, top - p);
1787                     top = p;
1788                     offset = TARGET_PAGE_SIZE;
1789                 }
1790             }
1791         }
1792         if (p != top) {
1793             memcpy_to_target(p, scratch + offset, top - p);
1794         }
1795     } else {
1796         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1797         for (i = 0; i < argc; ++i) {
1798             tmp = argv[i];
1799             if (!tmp) {
1800                 fprintf(stderr, "VFS: argc is wrong");
1801                 exit(-1);
1802             }
1803             len = strlen(tmp) + 1;
1804             if (len > (stack_limit - p)) {
1805                 return 0;
1806             }
1807             while (len) {
1808                 int bytes_to_copy = (len > remaining) ? remaining : len;
1809 
1810                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1811 
1812                 tmp += bytes_to_copy;
1813                 remaining -= bytes_to_copy;
1814                 p += bytes_to_copy;
1815                 len -= bytes_to_copy;
1816 
1817                 if (remaining == 0) {
1818                     memcpy_to_target(top, scratch, p - top);
1819                     top = p;
1820                     remaining = TARGET_PAGE_SIZE;
1821                 }
1822             }
1823         }
1824         if (p != top) {
1825             memcpy_to_target(top, scratch, p - top);
1826         }
1827     }
1828 
1829     return p;
1830 }
1831 
1832 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1833  * argument/environment space. Newer kernels (>2.6.33) allow more,
1834  * dependent on stack size, but guarantee at least 32 pages for
1835  * backwards compatibility.
1836  */
1837 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1838 
1839 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1840                                  struct image_info *info)
1841 {
1842     abi_ulong size, error, guard;
1843 
1844     size = guest_stack_size;
1845     if (size < STACK_LOWER_LIMIT) {
1846         size = STACK_LOWER_LIMIT;
1847     }
1848     guard = TARGET_PAGE_SIZE;
1849     if (guard < qemu_real_host_page_size) {
1850         guard = qemu_real_host_page_size;
1851     }
1852 
1853     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1854                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1855     if (error == -1) {
1856         perror("mmap stack");
1857         exit(-1);
1858     }
1859 
1860     /* We reserve one extra page at the top of the stack as guard.  */
1861     if (STACK_GROWS_DOWN) {
1862         target_mprotect(error, guard, PROT_NONE);
1863         info->stack_limit = error + guard;
1864         return info->stack_limit + size - sizeof(void *);
1865     } else {
1866         target_mprotect(error + size, guard, PROT_NONE);
1867         info->stack_limit = error + size;
1868         return error;
1869     }
1870 }
1871 
1872 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1873    after the data section (i.e. bss).  */
1874 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1875 {
1876     uintptr_t host_start, host_map_start, host_end;
1877 
1878     last_bss = TARGET_PAGE_ALIGN(last_bss);
1879 
1880     /* ??? There is confusion between qemu_real_host_page_size and
1881        qemu_host_page_size here and elsewhere in target_mmap, which
1882        may lead to the end of the data section mapping from the file
1883        not being mapped.  At least there was an explicit test and
1884        comment for that here, suggesting that "the file size must
1885        be known".  The comment probably pre-dates the introduction
1886        of the fstat system call in target_mmap which does in fact
1887        find out the size.  What isn't clear is if the workaround
1888        here is still actually needed.  For now, continue with it,
1889        but merge it with the "normal" mmap that would allocate the bss.  */
1890 
1891     host_start = (uintptr_t) g2h_untagged(elf_bss);
1892     host_end = (uintptr_t) g2h_untagged(last_bss);
1893     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1894 
1895     if (host_map_start < host_end) {
1896         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1897                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1898         if (p == MAP_FAILED) {
1899             perror("cannot mmap brk");
1900             exit(-1);
1901         }
1902     }
1903 
1904     /* Ensure that the bss page(s) are valid */
1905     if ((page_get_flags(last_bss-1) & prot) != prot) {
1906         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1907     }
1908 
1909     if (host_start < host_map_start) {
1910         memset((void *)host_start, 0, host_map_start - host_start);
1911     }
1912 }
1913 
1914 #ifdef TARGET_ARM
1915 static int elf_is_fdpic(struct elfhdr *exec)
1916 {
1917     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1918 }
1919 #else
1920 /* Default implementation, always false.  */
1921 static int elf_is_fdpic(struct elfhdr *exec)
1922 {
1923     return 0;
1924 }
1925 #endif
1926 
1927 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1928 {
1929     uint16_t n;
1930     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1931 
1932     /* elf32_fdpic_loadseg */
1933     n = info->nsegs;
1934     while (n--) {
1935         sp -= 12;
1936         put_user_u32(loadsegs[n].addr, sp+0);
1937         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1938         put_user_u32(loadsegs[n].p_memsz, sp+8);
1939     }
1940 
1941     /* elf32_fdpic_loadmap */
1942     sp -= 4;
1943     put_user_u16(0, sp+0); /* version */
1944     put_user_u16(info->nsegs, sp+2); /* nsegs */
1945 
1946     info->personality = PER_LINUX_FDPIC;
1947     info->loadmap_addr = sp;
1948 
1949     return sp;
1950 }
1951 
1952 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1953                                    struct elfhdr *exec,
1954                                    struct image_info *info,
1955                                    struct image_info *interp_info)
1956 {
1957     abi_ulong sp;
1958     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1959     int size;
1960     int i;
1961     abi_ulong u_rand_bytes;
1962     uint8_t k_rand_bytes[16];
1963     abi_ulong u_platform;
1964     const char *k_platform;
1965     const int n = sizeof(elf_addr_t);
1966 
1967     sp = p;
1968 
1969     /* Needs to be before we load the env/argc/... */
1970     if (elf_is_fdpic(exec)) {
1971         /* Need 4 byte alignment for these structs */
1972         sp &= ~3;
1973         sp = loader_build_fdpic_loadmap(info, sp);
1974         info->other_info = interp_info;
1975         if (interp_info) {
1976             interp_info->other_info = info;
1977             sp = loader_build_fdpic_loadmap(interp_info, sp);
1978             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1979             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1980         } else {
1981             info->interpreter_loadmap_addr = 0;
1982             info->interpreter_pt_dynamic_addr = 0;
1983         }
1984     }
1985 
1986     u_platform = 0;
1987     k_platform = ELF_PLATFORM;
1988     if (k_platform) {
1989         size_t len = strlen(k_platform) + 1;
1990         if (STACK_GROWS_DOWN) {
1991             sp -= (len + n - 1) & ~(n - 1);
1992             u_platform = sp;
1993             /* FIXME - check return value of memcpy_to_target() for failure */
1994             memcpy_to_target(sp, k_platform, len);
1995         } else {
1996             memcpy_to_target(sp, k_platform, len);
1997             u_platform = sp;
1998             sp += len + 1;
1999         }
2000     }
2001 
2002     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2003      * the argv and envp pointers.
2004      */
2005     if (STACK_GROWS_DOWN) {
2006         sp = QEMU_ALIGN_DOWN(sp, 16);
2007     } else {
2008         sp = QEMU_ALIGN_UP(sp, 16);
2009     }
2010 
2011     /*
2012      * Generate 16 random bytes for userspace PRNG seeding.
2013      */
2014     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2015     if (STACK_GROWS_DOWN) {
2016         sp -= 16;
2017         u_rand_bytes = sp;
2018         /* FIXME - check return value of memcpy_to_target() for failure */
2019         memcpy_to_target(sp, k_rand_bytes, 16);
2020     } else {
2021         memcpy_to_target(sp, k_rand_bytes, 16);
2022         u_rand_bytes = sp;
2023         sp += 16;
2024     }
2025 
2026     size = (DLINFO_ITEMS + 1) * 2;
2027     if (k_platform)
2028         size += 2;
2029 #ifdef DLINFO_ARCH_ITEMS
2030     size += DLINFO_ARCH_ITEMS * 2;
2031 #endif
2032 #ifdef ELF_HWCAP2
2033     size += 2;
2034 #endif
2035     info->auxv_len = size * n;
2036 
2037     size += envc + argc + 2;
2038     size += 1;  /* argc itself */
2039     size *= n;
2040 
2041     /* Allocate space and finalize stack alignment for entry now.  */
2042     if (STACK_GROWS_DOWN) {
2043         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2044         sp = u_argc;
2045     } else {
2046         u_argc = sp;
2047         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2048     }
2049 
2050     u_argv = u_argc + n;
2051     u_envp = u_argv + (argc + 1) * n;
2052     u_auxv = u_envp + (envc + 1) * n;
2053     info->saved_auxv = u_auxv;
2054     info->arg_start = u_argv;
2055     info->arg_end = u_argv + argc * n;
2056 
2057     /* This is correct because Linux defines
2058      * elf_addr_t as Elf32_Off / Elf64_Off
2059      */
2060 #define NEW_AUX_ENT(id, val) do {               \
2061         put_user_ual(id, u_auxv);  u_auxv += n; \
2062         put_user_ual(val, u_auxv); u_auxv += n; \
2063     } while(0)
2064 
2065 #ifdef ARCH_DLINFO
2066     /*
2067      * ARCH_DLINFO must come first so platform specific code can enforce
2068      * special alignment requirements on the AUXV if necessary (eg. PPC).
2069      */
2070     ARCH_DLINFO;
2071 #endif
2072     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2073      * on info->auxv_len will trigger.
2074      */
2075     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2076     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2077     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2078     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2079         /* Target doesn't support host page size alignment */
2080         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2081     } else {
2082         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2083                                                qemu_host_page_size)));
2084     }
2085     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2086     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2087     NEW_AUX_ENT(AT_ENTRY, info->entry);
2088     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2089     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2090     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2091     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2092     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2093     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2094     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2095     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2096     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2097 
2098 #ifdef ELF_HWCAP2
2099     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2100 #endif
2101 
2102     if (u_platform) {
2103         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2104     }
2105     NEW_AUX_ENT (AT_NULL, 0);
2106 #undef NEW_AUX_ENT
2107 
2108     /* Check that our initial calculation of the auxv length matches how much
2109      * we actually put into it.
2110      */
2111     assert(info->auxv_len == u_auxv - info->saved_auxv);
2112 
2113     put_user_ual(argc, u_argc);
2114 
2115     p = info->arg_strings;
2116     for (i = 0; i < argc; ++i) {
2117         put_user_ual(p, u_argv);
2118         u_argv += n;
2119         p += target_strlen(p) + 1;
2120     }
2121     put_user_ual(0, u_argv);
2122 
2123     p = info->env_strings;
2124     for (i = 0; i < envc; ++i) {
2125         put_user_ual(p, u_envp);
2126         u_envp += n;
2127         p += target_strlen(p) + 1;
2128     }
2129     put_user_ual(0, u_envp);
2130 
2131     return sp;
2132 }
2133 
2134 #ifndef ARM_COMMPAGE
2135 #define ARM_COMMPAGE 0
2136 #define init_guest_commpage() true
2137 #endif
2138 
2139 static void pgb_fail_in_use(const char *image_name)
2140 {
2141     error_report("%s: requires virtual address space that is in use "
2142                  "(omit the -B option or choose a different value)",
2143                  image_name);
2144     exit(EXIT_FAILURE);
2145 }
2146 
2147 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2148                                 abi_ulong guest_hiaddr, long align)
2149 {
2150     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2151     void *addr, *test;
2152 
2153     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2154         fprintf(stderr, "Requested guest base %p does not satisfy "
2155                 "host minimum alignment (0x%lx)\n",
2156                 (void *)guest_base, align);
2157         exit(EXIT_FAILURE);
2158     }
2159 
2160     /* Sanity check the guest binary. */
2161     if (reserved_va) {
2162         if (guest_hiaddr > reserved_va) {
2163             error_report("%s: requires more than reserved virtual "
2164                          "address space (0x%" PRIx64 " > 0x%lx)",
2165                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2166             exit(EXIT_FAILURE);
2167         }
2168     } else {
2169 #if HOST_LONG_BITS < TARGET_ABI_BITS
2170         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2171             error_report("%s: requires more virtual address space "
2172                          "than the host can provide (0x%" PRIx64 ")",
2173                          image_name, (uint64_t)guest_hiaddr - guest_base);
2174             exit(EXIT_FAILURE);
2175         }
2176 #endif
2177     }
2178 
2179     /*
2180      * Expand the allocation to the entire reserved_va.
2181      * Exclude the mmap_min_addr hole.
2182      */
2183     if (reserved_va) {
2184         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2185                         : mmap_min_addr - guest_base);
2186         guest_hiaddr = reserved_va;
2187     }
2188 
2189     /* Reserve the address space for the binary, or reserved_va. */
2190     test = g2h_untagged(guest_loaddr);
2191     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2192     if (test != addr) {
2193         pgb_fail_in_use(image_name);
2194     }
2195 }
2196 
2197 /**
2198  * pgd_find_hole_fallback: potential mmap address
2199  * @guest_size: size of available space
2200  * @brk: location of break
2201  * @align: memory alignment
2202  *
2203  * This is a fallback method for finding a hole in the host address
2204  * space if we don't have the benefit of being able to access
2205  * /proc/self/map. It can potentially take a very long time as we can
2206  * only dumbly iterate up the host address space seeing if the
2207  * allocation would work.
2208  */
2209 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2210                                         long align, uintptr_t offset)
2211 {
2212     uintptr_t base;
2213 
2214     /* Start (aligned) at the bottom and work our way up */
2215     base = ROUND_UP(mmap_min_addr, align);
2216 
2217     while (true) {
2218         uintptr_t align_start, end;
2219         align_start = ROUND_UP(base, align);
2220         end = align_start + guest_size + offset;
2221 
2222         /* if brk is anywhere in the range give ourselves some room to grow. */
2223         if (align_start <= brk && brk < end) {
2224             base = brk + (16 * MiB);
2225             continue;
2226         } else if (align_start + guest_size < align_start) {
2227             /* we have run out of space */
2228             return -1;
2229         } else {
2230             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2231                 MAP_FIXED_NOREPLACE;
2232             void * mmap_start = mmap((void *) align_start, guest_size,
2233                                      PROT_NONE, flags, -1, 0);
2234             if (mmap_start != MAP_FAILED) {
2235                 munmap((void *) align_start, guest_size);
2236                 if (MAP_FIXED_NOREPLACE != 0 ||
2237                     mmap_start == (void *) align_start) {
2238                     return (uintptr_t) mmap_start + offset;
2239                 }
2240             }
2241             base += qemu_host_page_size;
2242         }
2243     }
2244 }
2245 
2246 /* Return value for guest_base, or -1 if no hole found. */
2247 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2248                                long align, uintptr_t offset)
2249 {
2250     GSList *maps, *iter;
2251     uintptr_t this_start, this_end, next_start, brk;
2252     intptr_t ret = -1;
2253 
2254     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2255 
2256     maps = read_self_maps();
2257 
2258     /* Read brk after we've read the maps, which will malloc. */
2259     brk = (uintptr_t)sbrk(0);
2260 
2261     if (!maps) {
2262         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2263     }
2264 
2265     /* The first hole is before the first map entry. */
2266     this_start = mmap_min_addr;
2267 
2268     for (iter = maps; iter;
2269          this_start = next_start, iter = g_slist_next(iter)) {
2270         uintptr_t align_start, hole_size;
2271 
2272         this_end = ((MapInfo *)iter->data)->start;
2273         next_start = ((MapInfo *)iter->data)->end;
2274         align_start = ROUND_UP(this_start + offset, align);
2275 
2276         /* Skip holes that are too small. */
2277         if (align_start >= this_end) {
2278             continue;
2279         }
2280         hole_size = this_end - align_start;
2281         if (hole_size < guest_size) {
2282             continue;
2283         }
2284 
2285         /* If this hole contains brk, give ourselves some room to grow. */
2286         if (this_start <= brk && brk < this_end) {
2287             hole_size -= guest_size;
2288             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2289                 align_start += 1 * GiB;
2290             } else if (hole_size >= 16 * MiB) {
2291                 align_start += 16 * MiB;
2292             } else {
2293                 align_start = (this_end - guest_size) & -align;
2294                 if (align_start < this_start) {
2295                     continue;
2296                 }
2297             }
2298         }
2299 
2300         /* Record the lowest successful match. */
2301         if (ret < 0) {
2302             ret = align_start - guest_loaddr;
2303         }
2304         /* If this hole contains the identity map, select it. */
2305         if (align_start <= guest_loaddr &&
2306             guest_loaddr + guest_size <= this_end) {
2307             ret = 0;
2308         }
2309         /* If this hole ends above the identity map, stop looking. */
2310         if (this_end >= guest_loaddr) {
2311             break;
2312         }
2313     }
2314     free_self_maps(maps);
2315 
2316     return ret;
2317 }
2318 
2319 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2320                        abi_ulong orig_hiaddr, long align)
2321 {
2322     uintptr_t loaddr = orig_loaddr;
2323     uintptr_t hiaddr = orig_hiaddr;
2324     uintptr_t offset = 0;
2325     uintptr_t addr;
2326 
2327     if (hiaddr != orig_hiaddr) {
2328         error_report("%s: requires virtual address space that the "
2329                      "host cannot provide (0x%" PRIx64 ")",
2330                      image_name, (uint64_t)orig_hiaddr);
2331         exit(EXIT_FAILURE);
2332     }
2333 
2334     loaddr &= -align;
2335     if (ARM_COMMPAGE) {
2336         /*
2337          * Extend the allocation to include the commpage.
2338          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2339          * need to ensure there is space bellow the guest_base so we
2340          * can map the commpage in the place needed when the address
2341          * arithmetic wraps around.
2342          */
2343         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2344             hiaddr = (uintptr_t) 4 << 30;
2345         } else {
2346             offset = -(ARM_COMMPAGE & -align);
2347         }
2348     }
2349 
2350     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2351     if (addr == -1) {
2352         /*
2353          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2354          * that can satisfy both.  But as the normal arm32 link base address
2355          * is ~32k, and we extend down to include the commpage, making the
2356          * overhead only ~96k, this is unlikely.
2357          */
2358         error_report("%s: Unable to allocate %#zx bytes of "
2359                      "virtual address space", image_name,
2360                      (size_t)(hiaddr - loaddr));
2361         exit(EXIT_FAILURE);
2362     }
2363 
2364     guest_base = addr;
2365 }
2366 
2367 static void pgb_dynamic(const char *image_name, long align)
2368 {
2369     /*
2370      * The executable is dynamic and does not require a fixed address.
2371      * All we need is a commpage that satisfies align.
2372      * If we do not need a commpage, leave guest_base == 0.
2373      */
2374     if (ARM_COMMPAGE) {
2375         uintptr_t addr, commpage;
2376 
2377         /* 64-bit hosts should have used reserved_va. */
2378         assert(sizeof(uintptr_t) == 4);
2379 
2380         /*
2381          * By putting the commpage at the first hole, that puts guest_base
2382          * just above that, and maximises the positive guest addresses.
2383          */
2384         commpage = ARM_COMMPAGE & -align;
2385         addr = pgb_find_hole(commpage, -commpage, align, 0);
2386         assert(addr != -1);
2387         guest_base = addr;
2388     }
2389 }
2390 
2391 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2392                             abi_ulong guest_hiaddr, long align)
2393 {
2394     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2395     void *addr, *test;
2396 
2397     if (guest_hiaddr > reserved_va) {
2398         error_report("%s: requires more than reserved virtual "
2399                      "address space (0x%" PRIx64 " > 0x%lx)",
2400                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2401         exit(EXIT_FAILURE);
2402     }
2403 
2404     /* Widen the "image" to the entire reserved address space. */
2405     pgb_static(image_name, 0, reserved_va, align);
2406 
2407     /* osdep.h defines this as 0 if it's missing */
2408     flags |= MAP_FIXED_NOREPLACE;
2409 
2410     /* Reserve the memory on the host. */
2411     assert(guest_base != 0);
2412     test = g2h_untagged(0);
2413     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2414     if (addr == MAP_FAILED || addr != test) {
2415         error_report("Unable to reserve 0x%lx bytes of virtual address "
2416                      "space at %p (%s) for use as guest address space (check your"
2417                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2418                      "using -R option)", reserved_va, test, strerror(errno));
2419         exit(EXIT_FAILURE);
2420     }
2421 }
2422 
2423 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2424                       abi_ulong guest_hiaddr)
2425 {
2426     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2427     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2428 
2429     if (have_guest_base) {
2430         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2431     } else if (reserved_va) {
2432         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2433     } else if (guest_loaddr) {
2434         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2435     } else {
2436         pgb_dynamic(image_name, align);
2437     }
2438 
2439     /* Reserve and initialize the commpage. */
2440     if (!init_guest_commpage()) {
2441         /*
2442          * With have_guest_base, the user has selected the address and
2443          * we are trying to work with that.  Otherwise, we have selected
2444          * free space and init_guest_commpage must succeeded.
2445          */
2446         assert(have_guest_base);
2447         pgb_fail_in_use(image_name);
2448     }
2449 
2450     assert(QEMU_IS_ALIGNED(guest_base, align));
2451     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2452                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2453 }
2454 
2455 enum {
2456     /* The string "GNU\0" as a magic number. */
2457     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2458     NOTE_DATA_SZ = 1 * KiB,
2459     NOTE_NAME_SZ = 4,
2460     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2461 };
2462 
2463 /*
2464  * Process a single gnu_property entry.
2465  * Return false for error.
2466  */
2467 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2468                                struct image_info *info, bool have_prev_type,
2469                                uint32_t *prev_type, Error **errp)
2470 {
2471     uint32_t pr_type, pr_datasz, step;
2472 
2473     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2474         goto error_data;
2475     }
2476     datasz -= *off;
2477     data += *off / sizeof(uint32_t);
2478 
2479     if (datasz < 2 * sizeof(uint32_t)) {
2480         goto error_data;
2481     }
2482     pr_type = data[0];
2483     pr_datasz = data[1];
2484     data += 2;
2485     datasz -= 2 * sizeof(uint32_t);
2486     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2487     if (step > datasz) {
2488         goto error_data;
2489     }
2490 
2491     /* Properties are supposed to be unique and sorted on pr_type. */
2492     if (have_prev_type && pr_type <= *prev_type) {
2493         if (pr_type == *prev_type) {
2494             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2495         } else {
2496             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2497         }
2498         return false;
2499     }
2500     *prev_type = pr_type;
2501 
2502     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2503         return false;
2504     }
2505 
2506     *off += 2 * sizeof(uint32_t) + step;
2507     return true;
2508 
2509  error_data:
2510     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2511     return false;
2512 }
2513 
2514 /* Process NT_GNU_PROPERTY_TYPE_0. */
2515 static bool parse_elf_properties(int image_fd,
2516                                  struct image_info *info,
2517                                  const struct elf_phdr *phdr,
2518                                  char bprm_buf[BPRM_BUF_SIZE],
2519                                  Error **errp)
2520 {
2521     union {
2522         struct elf_note nhdr;
2523         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2524     } note;
2525 
2526     int n, off, datasz;
2527     bool have_prev_type;
2528     uint32_t prev_type;
2529 
2530     /* Unless the arch requires properties, ignore them. */
2531     if (!ARCH_USE_GNU_PROPERTY) {
2532         return true;
2533     }
2534 
2535     /* If the properties are crazy large, that's too bad. */
2536     n = phdr->p_filesz;
2537     if (n > sizeof(note)) {
2538         error_setg(errp, "PT_GNU_PROPERTY too large");
2539         return false;
2540     }
2541     if (n < sizeof(note.nhdr)) {
2542         error_setg(errp, "PT_GNU_PROPERTY too small");
2543         return false;
2544     }
2545 
2546     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2547         memcpy(&note, bprm_buf + phdr->p_offset, n);
2548     } else {
2549         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2550         if (len != n) {
2551             error_setg_errno(errp, errno, "Error reading file header");
2552             return false;
2553         }
2554     }
2555 
2556     /*
2557      * The contents of a valid PT_GNU_PROPERTY is a sequence
2558      * of uint32_t -- swap them all now.
2559      */
2560 #ifdef BSWAP_NEEDED
2561     for (int i = 0; i < n / 4; i++) {
2562         bswap32s(note.data + i);
2563     }
2564 #endif
2565 
2566     /*
2567      * Note that nhdr is 3 words, and that the "name" described by namesz
2568      * immediately follows nhdr and is thus at the 4th word.  Further, all
2569      * of the inputs to the kernel's round_up are multiples of 4.
2570      */
2571     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2572         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2573         note.data[3] != GNU0_MAGIC) {
2574         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2575         return false;
2576     }
2577     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2578 
2579     datasz = note.nhdr.n_descsz + off;
2580     if (datasz > n) {
2581         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2582         return false;
2583     }
2584 
2585     have_prev_type = false;
2586     prev_type = 0;
2587     while (1) {
2588         if (off == datasz) {
2589             return true;  /* end, exit ok */
2590         }
2591         if (!parse_elf_property(note.data, &off, datasz, info,
2592                                 have_prev_type, &prev_type, errp)) {
2593             return false;
2594         }
2595         have_prev_type = true;
2596     }
2597 }
2598 
2599 /* Load an ELF image into the address space.
2600 
2601    IMAGE_NAME is the filename of the image, to use in error messages.
2602    IMAGE_FD is the open file descriptor for the image.
2603 
2604    BPRM_BUF is a copy of the beginning of the file; this of course
2605    contains the elf file header at offset 0.  It is assumed that this
2606    buffer is sufficiently aligned to present no problems to the host
2607    in accessing data at aligned offsets within the buffer.
2608 
2609    On return: INFO values will be filled in, as necessary or available.  */
2610 
2611 static void load_elf_image(const char *image_name, int image_fd,
2612                            struct image_info *info, char **pinterp_name,
2613                            char bprm_buf[BPRM_BUF_SIZE])
2614 {
2615     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2616     struct elf_phdr *phdr;
2617     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2618     int i, retval, prot_exec;
2619     Error *err = NULL;
2620 
2621     /* First of all, some simple consistency checks */
2622     if (!elf_check_ident(ehdr)) {
2623         error_setg(&err, "Invalid ELF image for this architecture");
2624         goto exit_errmsg;
2625     }
2626     bswap_ehdr(ehdr);
2627     if (!elf_check_ehdr(ehdr)) {
2628         error_setg(&err, "Invalid ELF image for this architecture");
2629         goto exit_errmsg;
2630     }
2631 
2632     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2633     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2634         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2635     } else {
2636         phdr = (struct elf_phdr *) alloca(i);
2637         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2638         if (retval != i) {
2639             goto exit_read;
2640         }
2641     }
2642     bswap_phdr(phdr, ehdr->e_phnum);
2643 
2644     info->nsegs = 0;
2645     info->pt_dynamic_addr = 0;
2646 
2647     mmap_lock();
2648 
2649     /*
2650      * Find the maximum size of the image and allocate an appropriate
2651      * amount of memory to handle that.  Locate the interpreter, if any.
2652      */
2653     loaddr = -1, hiaddr = 0;
2654     info->alignment = 0;
2655     for (i = 0; i < ehdr->e_phnum; ++i) {
2656         struct elf_phdr *eppnt = phdr + i;
2657         if (eppnt->p_type == PT_LOAD) {
2658             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2659             if (a < loaddr) {
2660                 loaddr = a;
2661             }
2662             a = eppnt->p_vaddr + eppnt->p_memsz;
2663             if (a > hiaddr) {
2664                 hiaddr = a;
2665             }
2666             ++info->nsegs;
2667             info->alignment |= eppnt->p_align;
2668         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2669             g_autofree char *interp_name = NULL;
2670 
2671             if (*pinterp_name) {
2672                 error_setg(&err, "Multiple PT_INTERP entries");
2673                 goto exit_errmsg;
2674             }
2675 
2676             interp_name = g_malloc(eppnt->p_filesz);
2677 
2678             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2679                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2680                        eppnt->p_filesz);
2681             } else {
2682                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2683                                eppnt->p_offset);
2684                 if (retval != eppnt->p_filesz) {
2685                     goto exit_read;
2686                 }
2687             }
2688             if (interp_name[eppnt->p_filesz - 1] != 0) {
2689                 error_setg(&err, "Invalid PT_INTERP entry");
2690                 goto exit_errmsg;
2691             }
2692             *pinterp_name = g_steal_pointer(&interp_name);
2693         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2694             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2695                 goto exit_errmsg;
2696             }
2697         }
2698     }
2699 
2700     if (pinterp_name != NULL) {
2701         /*
2702          * This is the main executable.
2703          *
2704          * Reserve extra space for brk.
2705          * We hold on to this space while placing the interpreter
2706          * and the stack, lest they be placed immediately after
2707          * the data segment and block allocation from the brk.
2708          *
2709          * 16MB is chosen as "large enough" without being so large
2710          * as to allow the result to not fit with a 32-bit guest on
2711          * a 32-bit host.
2712          */
2713         info->reserve_brk = 16 * MiB;
2714         hiaddr += info->reserve_brk;
2715 
2716         if (ehdr->e_type == ET_EXEC) {
2717             /*
2718              * Make sure that the low address does not conflict with
2719              * MMAP_MIN_ADDR or the QEMU application itself.
2720              */
2721             probe_guest_base(image_name, loaddr, hiaddr);
2722         } else {
2723             /*
2724              * The binary is dynamic, but we still need to
2725              * select guest_base.  In this case we pass a size.
2726              */
2727             probe_guest_base(image_name, 0, hiaddr - loaddr);
2728         }
2729     }
2730 
2731     /*
2732      * Reserve address space for all of this.
2733      *
2734      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2735      * exactly the address range that is required.
2736      *
2737      * Otherwise this is ET_DYN, and we are searching for a location
2738      * that can hold the memory space required.  If the image is
2739      * pre-linked, LOADDR will be non-zero, and the kernel should
2740      * honor that address if it happens to be free.
2741      *
2742      * In both cases, we will overwrite pages in this range with mappings
2743      * from the executable.
2744      */
2745     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2746                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2747                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2748                             -1, 0);
2749     if (load_addr == -1) {
2750         goto exit_mmap;
2751     }
2752     load_bias = load_addr - loaddr;
2753 
2754     if (elf_is_fdpic(ehdr)) {
2755         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2756             g_malloc(sizeof(*loadsegs) * info->nsegs);
2757 
2758         for (i = 0; i < ehdr->e_phnum; ++i) {
2759             switch (phdr[i].p_type) {
2760             case PT_DYNAMIC:
2761                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2762                 break;
2763             case PT_LOAD:
2764                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2765                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2766                 loadsegs->p_memsz = phdr[i].p_memsz;
2767                 ++loadsegs;
2768                 break;
2769             }
2770         }
2771     }
2772 
2773     info->load_bias = load_bias;
2774     info->code_offset = load_bias;
2775     info->data_offset = load_bias;
2776     info->load_addr = load_addr;
2777     info->entry = ehdr->e_entry + load_bias;
2778     info->start_code = -1;
2779     info->end_code = 0;
2780     info->start_data = -1;
2781     info->end_data = 0;
2782     info->brk = 0;
2783     info->elf_flags = ehdr->e_flags;
2784 
2785     prot_exec = PROT_EXEC;
2786 #ifdef TARGET_AARCH64
2787     /*
2788      * If the BTI feature is present, this indicates that the executable
2789      * pages of the startup binary should be mapped with PROT_BTI, so that
2790      * branch targets are enforced.
2791      *
2792      * The startup binary is either the interpreter or the static executable.
2793      * The interpreter is responsible for all pages of a dynamic executable.
2794      *
2795      * Elf notes are backward compatible to older cpus.
2796      * Do not enable BTI unless it is supported.
2797      */
2798     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2799         && (pinterp_name == NULL || *pinterp_name == 0)
2800         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2801         prot_exec |= TARGET_PROT_BTI;
2802     }
2803 #endif
2804 
2805     for (i = 0; i < ehdr->e_phnum; i++) {
2806         struct elf_phdr *eppnt = phdr + i;
2807         if (eppnt->p_type == PT_LOAD) {
2808             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2809             int elf_prot = 0;
2810 
2811             if (eppnt->p_flags & PF_R) {
2812                 elf_prot |= PROT_READ;
2813             }
2814             if (eppnt->p_flags & PF_W) {
2815                 elf_prot |= PROT_WRITE;
2816             }
2817             if (eppnt->p_flags & PF_X) {
2818                 elf_prot |= prot_exec;
2819             }
2820 
2821             vaddr = load_bias + eppnt->p_vaddr;
2822             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2823             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2824 
2825             vaddr_ef = vaddr + eppnt->p_filesz;
2826             vaddr_em = vaddr + eppnt->p_memsz;
2827 
2828             /*
2829              * Some segments may be completely empty, with a non-zero p_memsz
2830              * but no backing file segment.
2831              */
2832             if (eppnt->p_filesz != 0) {
2833                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2834                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2835                                     MAP_PRIVATE | MAP_FIXED,
2836                                     image_fd, eppnt->p_offset - vaddr_po);
2837 
2838                 if (error == -1) {
2839                     goto exit_mmap;
2840                 }
2841 
2842                 /*
2843                  * If the load segment requests extra zeros (e.g. bss), map it.
2844                  */
2845                 if (eppnt->p_filesz < eppnt->p_memsz) {
2846                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2847                 }
2848             } else if (eppnt->p_memsz != 0) {
2849                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2850                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2851                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2852                                     -1, 0);
2853 
2854                 if (error == -1) {
2855                     goto exit_mmap;
2856                 }
2857             }
2858 
2859             /* Find the full program boundaries.  */
2860             if (elf_prot & PROT_EXEC) {
2861                 if (vaddr < info->start_code) {
2862                     info->start_code = vaddr;
2863                 }
2864                 if (vaddr_ef > info->end_code) {
2865                     info->end_code = vaddr_ef;
2866                 }
2867             }
2868             if (elf_prot & PROT_WRITE) {
2869                 if (vaddr < info->start_data) {
2870                     info->start_data = vaddr;
2871                 }
2872                 if (vaddr_ef > info->end_data) {
2873                     info->end_data = vaddr_ef;
2874                 }
2875             }
2876             if (vaddr_em > info->brk) {
2877                 info->brk = vaddr_em;
2878             }
2879 #ifdef TARGET_MIPS
2880         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2881             Mips_elf_abiflags_v0 abiflags;
2882             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2883                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2884                 goto exit_errmsg;
2885             }
2886             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2887                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2888                        sizeof(Mips_elf_abiflags_v0));
2889             } else {
2890                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2891                                eppnt->p_offset);
2892                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2893                     goto exit_read;
2894                 }
2895             }
2896             bswap_mips_abiflags(&abiflags);
2897             info->fp_abi = abiflags.fp_abi;
2898 #endif
2899         }
2900     }
2901 
2902     if (info->end_data == 0) {
2903         info->start_data = info->end_code;
2904         info->end_data = info->end_code;
2905     }
2906 
2907     if (qemu_log_enabled()) {
2908         load_symbols(ehdr, image_fd, load_bias);
2909     }
2910 
2911     mmap_unlock();
2912 
2913     close(image_fd);
2914     return;
2915 
2916  exit_read:
2917     if (retval >= 0) {
2918         error_setg(&err, "Incomplete read of file header");
2919     } else {
2920         error_setg_errno(&err, errno, "Error reading file header");
2921     }
2922     goto exit_errmsg;
2923  exit_mmap:
2924     error_setg_errno(&err, errno, "Error mapping file");
2925     goto exit_errmsg;
2926  exit_errmsg:
2927     error_reportf_err(err, "%s: ", image_name);
2928     exit(-1);
2929 }
2930 
2931 static void load_elf_interp(const char *filename, struct image_info *info,
2932                             char bprm_buf[BPRM_BUF_SIZE])
2933 {
2934     int fd, retval;
2935     Error *err = NULL;
2936 
2937     fd = open(path(filename), O_RDONLY);
2938     if (fd < 0) {
2939         error_setg_file_open(&err, errno, filename);
2940         error_report_err(err);
2941         exit(-1);
2942     }
2943 
2944     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2945     if (retval < 0) {
2946         error_setg_errno(&err, errno, "Error reading file header");
2947         error_reportf_err(err, "%s: ", filename);
2948         exit(-1);
2949     }
2950 
2951     if (retval < BPRM_BUF_SIZE) {
2952         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2953     }
2954 
2955     load_elf_image(filename, fd, info, NULL, bprm_buf);
2956 }
2957 
2958 static int symfind(const void *s0, const void *s1)
2959 {
2960     target_ulong addr = *(target_ulong *)s0;
2961     struct elf_sym *sym = (struct elf_sym *)s1;
2962     int result = 0;
2963     if (addr < sym->st_value) {
2964         result = -1;
2965     } else if (addr >= sym->st_value + sym->st_size) {
2966         result = 1;
2967     }
2968     return result;
2969 }
2970 
2971 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2972 {
2973 #if ELF_CLASS == ELFCLASS32
2974     struct elf_sym *syms = s->disas_symtab.elf32;
2975 #else
2976     struct elf_sym *syms = s->disas_symtab.elf64;
2977 #endif
2978 
2979     // binary search
2980     struct elf_sym *sym;
2981 
2982     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2983     if (sym != NULL) {
2984         return s->disas_strtab + sym->st_name;
2985     }
2986 
2987     return "";
2988 }
2989 
2990 /* FIXME: This should use elf_ops.h  */
2991 static int symcmp(const void *s0, const void *s1)
2992 {
2993     struct elf_sym *sym0 = (struct elf_sym *)s0;
2994     struct elf_sym *sym1 = (struct elf_sym *)s1;
2995     return (sym0->st_value < sym1->st_value)
2996         ? -1
2997         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2998 }
2999 
3000 /* Best attempt to load symbols from this ELF object. */
3001 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3002 {
3003     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3004     uint64_t segsz;
3005     struct elf_shdr *shdr;
3006     char *strings = NULL;
3007     struct syminfo *s = NULL;
3008     struct elf_sym *new_syms, *syms = NULL;
3009 
3010     shnum = hdr->e_shnum;
3011     i = shnum * sizeof(struct elf_shdr);
3012     shdr = (struct elf_shdr *)alloca(i);
3013     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3014         return;
3015     }
3016 
3017     bswap_shdr(shdr, shnum);
3018     for (i = 0; i < shnum; ++i) {
3019         if (shdr[i].sh_type == SHT_SYMTAB) {
3020             sym_idx = i;
3021             str_idx = shdr[i].sh_link;
3022             goto found;
3023         }
3024     }
3025 
3026     /* There will be no symbol table if the file was stripped.  */
3027     return;
3028 
3029  found:
3030     /* Now know where the strtab and symtab are.  Snarf them.  */
3031     s = g_try_new(struct syminfo, 1);
3032     if (!s) {
3033         goto give_up;
3034     }
3035 
3036     segsz = shdr[str_idx].sh_size;
3037     s->disas_strtab = strings = g_try_malloc(segsz);
3038     if (!strings ||
3039         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3040         goto give_up;
3041     }
3042 
3043     segsz = shdr[sym_idx].sh_size;
3044     syms = g_try_malloc(segsz);
3045     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3046         goto give_up;
3047     }
3048 
3049     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3050         /* Implausibly large symbol table: give up rather than ploughing
3051          * on with the number of symbols calculation overflowing
3052          */
3053         goto give_up;
3054     }
3055     nsyms = segsz / sizeof(struct elf_sym);
3056     for (i = 0; i < nsyms; ) {
3057         bswap_sym(syms + i);
3058         /* Throw away entries which we do not need.  */
3059         if (syms[i].st_shndx == SHN_UNDEF
3060             || syms[i].st_shndx >= SHN_LORESERVE
3061             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3062             if (i < --nsyms) {
3063                 syms[i] = syms[nsyms];
3064             }
3065         } else {
3066 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3067             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3068             syms[i].st_value &= ~(target_ulong)1;
3069 #endif
3070             syms[i].st_value += load_bias;
3071             i++;
3072         }
3073     }
3074 
3075     /* No "useful" symbol.  */
3076     if (nsyms == 0) {
3077         goto give_up;
3078     }
3079 
3080     /* Attempt to free the storage associated with the local symbols
3081        that we threw away.  Whether or not this has any effect on the
3082        memory allocation depends on the malloc implementation and how
3083        many symbols we managed to discard.  */
3084     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3085     if (new_syms == NULL) {
3086         goto give_up;
3087     }
3088     syms = new_syms;
3089 
3090     qsort(syms, nsyms, sizeof(*syms), symcmp);
3091 
3092     s->disas_num_syms = nsyms;
3093 #if ELF_CLASS == ELFCLASS32
3094     s->disas_symtab.elf32 = syms;
3095 #else
3096     s->disas_symtab.elf64 = syms;
3097 #endif
3098     s->lookup_symbol = lookup_symbolxx;
3099     s->next = syminfos;
3100     syminfos = s;
3101 
3102     return;
3103 
3104 give_up:
3105     g_free(s);
3106     g_free(strings);
3107     g_free(syms);
3108 }
3109 
3110 uint32_t get_elf_eflags(int fd)
3111 {
3112     struct elfhdr ehdr;
3113     off_t offset;
3114     int ret;
3115 
3116     /* Read ELF header */
3117     offset = lseek(fd, 0, SEEK_SET);
3118     if (offset == (off_t) -1) {
3119         return 0;
3120     }
3121     ret = read(fd, &ehdr, sizeof(ehdr));
3122     if (ret < sizeof(ehdr)) {
3123         return 0;
3124     }
3125     offset = lseek(fd, offset, SEEK_SET);
3126     if (offset == (off_t) -1) {
3127         return 0;
3128     }
3129 
3130     /* Check ELF signature */
3131     if (!elf_check_ident(&ehdr)) {
3132         return 0;
3133     }
3134 
3135     /* check header */
3136     bswap_ehdr(&ehdr);
3137     if (!elf_check_ehdr(&ehdr)) {
3138         return 0;
3139     }
3140 
3141     /* return architecture id */
3142     return ehdr.e_flags;
3143 }
3144 
3145 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3146 {
3147     struct image_info interp_info;
3148     struct elfhdr elf_ex;
3149     char *elf_interpreter = NULL;
3150     char *scratch;
3151 
3152     memset(&interp_info, 0, sizeof(interp_info));
3153 #ifdef TARGET_MIPS
3154     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3155 #endif
3156 
3157     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3158 
3159     load_elf_image(bprm->filename, bprm->fd, info,
3160                    &elf_interpreter, bprm->buf);
3161 
3162     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3163        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3164        when we load the interpreter.  */
3165     elf_ex = *(struct elfhdr *)bprm->buf;
3166 
3167     /* Do this so that we can load the interpreter, if need be.  We will
3168        change some of these later */
3169     bprm->p = setup_arg_pages(bprm, info);
3170 
3171     scratch = g_new0(char, TARGET_PAGE_SIZE);
3172     if (STACK_GROWS_DOWN) {
3173         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3174                                    bprm->p, info->stack_limit);
3175         info->file_string = bprm->p;
3176         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3177                                    bprm->p, info->stack_limit);
3178         info->env_strings = bprm->p;
3179         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3180                                    bprm->p, info->stack_limit);
3181         info->arg_strings = bprm->p;
3182     } else {
3183         info->arg_strings = bprm->p;
3184         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3185                                    bprm->p, info->stack_limit);
3186         info->env_strings = bprm->p;
3187         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3188                                    bprm->p, info->stack_limit);
3189         info->file_string = bprm->p;
3190         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3191                                    bprm->p, info->stack_limit);
3192     }
3193 
3194     g_free(scratch);
3195 
3196     if (!bprm->p) {
3197         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3198         exit(-1);
3199     }
3200 
3201     if (elf_interpreter) {
3202         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3203 
3204         /* If the program interpreter is one of these two, then assume
3205            an iBCS2 image.  Otherwise assume a native linux image.  */
3206 
3207         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3208             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3209             info->personality = PER_SVR4;
3210 
3211             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3212                and some applications "depend" upon this behavior.  Since
3213                we do not have the power to recompile these, we emulate
3214                the SVr4 behavior.  Sigh.  */
3215             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3216                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3217         }
3218 #ifdef TARGET_MIPS
3219         info->interp_fp_abi = interp_info.fp_abi;
3220 #endif
3221     }
3222 
3223     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3224                                 info, (elf_interpreter ? &interp_info : NULL));
3225     info->start_stack = bprm->p;
3226 
3227     /* If we have an interpreter, set that as the program's entry point.
3228        Copy the load_bias as well, to help PPC64 interpret the entry
3229        point as a function descriptor.  Do this after creating elf tables
3230        so that we copy the original program entry point into the AUXV.  */
3231     if (elf_interpreter) {
3232         info->load_bias = interp_info.load_bias;
3233         info->entry = interp_info.entry;
3234         g_free(elf_interpreter);
3235     }
3236 
3237 #ifdef USE_ELF_CORE_DUMP
3238     bprm->core_dump = &elf_core_dump;
3239 #endif
3240 
3241     /*
3242      * If we reserved extra space for brk, release it now.
3243      * The implementation of do_brk in syscalls.c expects to be able
3244      * to mmap pages in this space.
3245      */
3246     if (info->reserve_brk) {
3247         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3248         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3249         target_munmap(start_brk, end_brk - start_brk);
3250     }
3251 
3252     return 0;
3253 }
3254 
3255 #ifdef USE_ELF_CORE_DUMP
3256 /*
3257  * Definitions to generate Intel SVR4-like core files.
3258  * These mostly have the same names as the SVR4 types with "target_elf_"
3259  * tacked on the front to prevent clashes with linux definitions,
3260  * and the typedef forms have been avoided.  This is mostly like
3261  * the SVR4 structure, but more Linuxy, with things that Linux does
3262  * not support and which gdb doesn't really use excluded.
3263  *
3264  * Fields we don't dump (their contents is zero) in linux-user qemu
3265  * are marked with XXX.
3266  *
3267  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3268  *
3269  * Porting ELF coredump for target is (quite) simple process.  First you
3270  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3271  * the target resides):
3272  *
3273  * #define USE_ELF_CORE_DUMP
3274  *
3275  * Next you define type of register set used for dumping.  ELF specification
3276  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3277  *
3278  * typedef <target_regtype> target_elf_greg_t;
3279  * #define ELF_NREG <number of registers>
3280  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3281  *
3282  * Last step is to implement target specific function that copies registers
3283  * from given cpu into just specified register set.  Prototype is:
3284  *
3285  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3286  *                                const CPUArchState *env);
3287  *
3288  * Parameters:
3289  *     regs - copy register values into here (allocated and zeroed by caller)
3290  *     env - copy registers from here
3291  *
3292  * Example for ARM target is provided in this file.
3293  */
3294 
3295 /* An ELF note in memory */
3296 struct memelfnote {
3297     const char *name;
3298     size_t     namesz;
3299     size_t     namesz_rounded;
3300     int        type;
3301     size_t     datasz;
3302     size_t     datasz_rounded;
3303     void       *data;
3304     size_t     notesz;
3305 };
3306 
3307 struct target_elf_siginfo {
3308     abi_int    si_signo; /* signal number */
3309     abi_int    si_code;  /* extra code */
3310     abi_int    si_errno; /* errno */
3311 };
3312 
3313 struct target_elf_prstatus {
3314     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3315     abi_short          pr_cursig;    /* Current signal */
3316     abi_ulong          pr_sigpend;   /* XXX */
3317     abi_ulong          pr_sighold;   /* XXX */
3318     target_pid_t       pr_pid;
3319     target_pid_t       pr_ppid;
3320     target_pid_t       pr_pgrp;
3321     target_pid_t       pr_sid;
3322     struct target_timeval pr_utime;  /* XXX User time */
3323     struct target_timeval pr_stime;  /* XXX System time */
3324     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3325     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3326     target_elf_gregset_t      pr_reg;       /* GP registers */
3327     abi_int            pr_fpvalid;   /* XXX */
3328 };
3329 
3330 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3331 
3332 struct target_elf_prpsinfo {
3333     char         pr_state;       /* numeric process state */
3334     char         pr_sname;       /* char for pr_state */
3335     char         pr_zomb;        /* zombie */
3336     char         pr_nice;        /* nice val */
3337     abi_ulong    pr_flag;        /* flags */
3338     target_uid_t pr_uid;
3339     target_gid_t pr_gid;
3340     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3341     /* Lots missing */
3342     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3343     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3344 };
3345 
3346 /* Here is the structure in which status of each thread is captured. */
3347 struct elf_thread_status {
3348     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3349     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3350 #if 0
3351     elf_fpregset_t fpu;             /* NT_PRFPREG */
3352     struct task_struct *thread;
3353     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3354 #endif
3355     struct memelfnote notes[1];
3356     int num_notes;
3357 };
3358 
3359 struct elf_note_info {
3360     struct memelfnote   *notes;
3361     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3362     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3363 
3364     QTAILQ_HEAD(, elf_thread_status) thread_list;
3365 #if 0
3366     /*
3367      * Current version of ELF coredump doesn't support
3368      * dumping fp regs etc.
3369      */
3370     elf_fpregset_t *fpu;
3371     elf_fpxregset_t *xfpu;
3372     int thread_status_size;
3373 #endif
3374     int notes_size;
3375     int numnote;
3376 };
3377 
3378 struct vm_area_struct {
3379     target_ulong   vma_start;  /* start vaddr of memory region */
3380     target_ulong   vma_end;    /* end vaddr of memory region */
3381     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3382     QTAILQ_ENTRY(vm_area_struct) vma_link;
3383 };
3384 
3385 struct mm_struct {
3386     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3387     int mm_count;           /* number of mappings */
3388 };
3389 
3390 static struct mm_struct *vma_init(void);
3391 static void vma_delete(struct mm_struct *);
3392 static int vma_add_mapping(struct mm_struct *, target_ulong,
3393                            target_ulong, abi_ulong);
3394 static int vma_get_mapping_count(const struct mm_struct *);
3395 static struct vm_area_struct *vma_first(const struct mm_struct *);
3396 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3397 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3398 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3399                       unsigned long flags);
3400 
3401 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3402 static void fill_note(struct memelfnote *, const char *, int,
3403                       unsigned int, void *);
3404 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3405 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3406 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3407 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3408 static size_t note_size(const struct memelfnote *);
3409 static void free_note_info(struct elf_note_info *);
3410 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3411 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3412 static int core_dump_filename(const TaskState *, char *, size_t);
3413 
3414 static int dump_write(int, const void *, size_t);
3415 static int write_note(struct memelfnote *, int);
3416 static int write_note_info(struct elf_note_info *, int);
3417 
3418 #ifdef BSWAP_NEEDED
3419 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3420 {
3421     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3422     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3423     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3424     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3425     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3426     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3427     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3428     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3429     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3430     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3431     /* cpu times are not filled, so we skip them */
3432     /* regs should be in correct format already */
3433     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3434 }
3435 
3436 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3437 {
3438     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3439     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3440     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3441     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3442     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3443     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3444     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3445 }
3446 
3447 static void bswap_note(struct elf_note *en)
3448 {
3449     bswap32s(&en->n_namesz);
3450     bswap32s(&en->n_descsz);
3451     bswap32s(&en->n_type);
3452 }
3453 #else
3454 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3455 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3456 static inline void bswap_note(struct elf_note *en) { }
3457 #endif /* BSWAP_NEEDED */
3458 
3459 /*
3460  * Minimal support for linux memory regions.  These are needed
3461  * when we are finding out what memory exactly belongs to
3462  * emulated process.  No locks needed here, as long as
3463  * thread that received the signal is stopped.
3464  */
3465 
3466 static struct mm_struct *vma_init(void)
3467 {
3468     struct mm_struct *mm;
3469 
3470     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3471         return (NULL);
3472 
3473     mm->mm_count = 0;
3474     QTAILQ_INIT(&mm->mm_mmap);
3475 
3476     return (mm);
3477 }
3478 
3479 static void vma_delete(struct mm_struct *mm)
3480 {
3481     struct vm_area_struct *vma;
3482 
3483     while ((vma = vma_first(mm)) != NULL) {
3484         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3485         g_free(vma);
3486     }
3487     g_free(mm);
3488 }
3489 
3490 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3491                            target_ulong end, abi_ulong flags)
3492 {
3493     struct vm_area_struct *vma;
3494 
3495     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3496         return (-1);
3497 
3498     vma->vma_start = start;
3499     vma->vma_end = end;
3500     vma->vma_flags = flags;
3501 
3502     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3503     mm->mm_count++;
3504 
3505     return (0);
3506 }
3507 
3508 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3509 {
3510     return (QTAILQ_FIRST(&mm->mm_mmap));
3511 }
3512 
3513 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3514 {
3515     return (QTAILQ_NEXT(vma, vma_link));
3516 }
3517 
3518 static int vma_get_mapping_count(const struct mm_struct *mm)
3519 {
3520     return (mm->mm_count);
3521 }
3522 
3523 /*
3524  * Calculate file (dump) size of given memory region.
3525  */
3526 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3527 {
3528     /* if we cannot even read the first page, skip it */
3529     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3530         return (0);
3531 
3532     /*
3533      * Usually we don't dump executable pages as they contain
3534      * non-writable code that debugger can read directly from
3535      * target library etc.  However, thread stacks are marked
3536      * also executable so we read in first page of given region
3537      * and check whether it contains elf header.  If there is
3538      * no elf header, we dump it.
3539      */
3540     if (vma->vma_flags & PROT_EXEC) {
3541         char page[TARGET_PAGE_SIZE];
3542 
3543         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3544             return 0;
3545         }
3546         if ((page[EI_MAG0] == ELFMAG0) &&
3547             (page[EI_MAG1] == ELFMAG1) &&
3548             (page[EI_MAG2] == ELFMAG2) &&
3549             (page[EI_MAG3] == ELFMAG3)) {
3550             /*
3551              * Mappings are possibly from ELF binary.  Don't dump
3552              * them.
3553              */
3554             return (0);
3555         }
3556     }
3557 
3558     return (vma->vma_end - vma->vma_start);
3559 }
3560 
3561 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3562                       unsigned long flags)
3563 {
3564     struct mm_struct *mm = (struct mm_struct *)priv;
3565 
3566     vma_add_mapping(mm, start, end, flags);
3567     return (0);
3568 }
3569 
3570 static void fill_note(struct memelfnote *note, const char *name, int type,
3571                       unsigned int sz, void *data)
3572 {
3573     unsigned int namesz;
3574 
3575     namesz = strlen(name) + 1;
3576     note->name = name;
3577     note->namesz = namesz;
3578     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3579     note->type = type;
3580     note->datasz = sz;
3581     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3582 
3583     note->data = data;
3584 
3585     /*
3586      * We calculate rounded up note size here as specified by
3587      * ELF document.
3588      */
3589     note->notesz = sizeof (struct elf_note) +
3590         note->namesz_rounded + note->datasz_rounded;
3591 }
3592 
3593 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3594                             uint32_t flags)
3595 {
3596     (void) memset(elf, 0, sizeof(*elf));
3597 
3598     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3599     elf->e_ident[EI_CLASS] = ELF_CLASS;
3600     elf->e_ident[EI_DATA] = ELF_DATA;
3601     elf->e_ident[EI_VERSION] = EV_CURRENT;
3602     elf->e_ident[EI_OSABI] = ELF_OSABI;
3603 
3604     elf->e_type = ET_CORE;
3605     elf->e_machine = machine;
3606     elf->e_version = EV_CURRENT;
3607     elf->e_phoff = sizeof(struct elfhdr);
3608     elf->e_flags = flags;
3609     elf->e_ehsize = sizeof(struct elfhdr);
3610     elf->e_phentsize = sizeof(struct elf_phdr);
3611     elf->e_phnum = segs;
3612 
3613     bswap_ehdr(elf);
3614 }
3615 
3616 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3617 {
3618     phdr->p_type = PT_NOTE;
3619     phdr->p_offset = offset;
3620     phdr->p_vaddr = 0;
3621     phdr->p_paddr = 0;
3622     phdr->p_filesz = sz;
3623     phdr->p_memsz = 0;
3624     phdr->p_flags = 0;
3625     phdr->p_align = 0;
3626 
3627     bswap_phdr(phdr, 1);
3628 }
3629 
3630 static size_t note_size(const struct memelfnote *note)
3631 {
3632     return (note->notesz);
3633 }
3634 
3635 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3636                           const TaskState *ts, int signr)
3637 {
3638     (void) memset(prstatus, 0, sizeof (*prstatus));
3639     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3640     prstatus->pr_pid = ts->ts_tid;
3641     prstatus->pr_ppid = getppid();
3642     prstatus->pr_pgrp = getpgrp();
3643     prstatus->pr_sid = getsid(0);
3644 
3645     bswap_prstatus(prstatus);
3646 }
3647 
3648 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3649 {
3650     char *base_filename;
3651     unsigned int i, len;
3652 
3653     (void) memset(psinfo, 0, sizeof (*psinfo));
3654 
3655     len = ts->info->arg_end - ts->info->arg_start;
3656     if (len >= ELF_PRARGSZ)
3657         len = ELF_PRARGSZ - 1;
3658     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3659         return -EFAULT;
3660     for (i = 0; i < len; i++)
3661         if (psinfo->pr_psargs[i] == 0)
3662             psinfo->pr_psargs[i] = ' ';
3663     psinfo->pr_psargs[len] = 0;
3664 
3665     psinfo->pr_pid = getpid();
3666     psinfo->pr_ppid = getppid();
3667     psinfo->pr_pgrp = getpgrp();
3668     psinfo->pr_sid = getsid(0);
3669     psinfo->pr_uid = getuid();
3670     psinfo->pr_gid = getgid();
3671 
3672     base_filename = g_path_get_basename(ts->bprm->filename);
3673     /*
3674      * Using strncpy here is fine: at max-length,
3675      * this field is not NUL-terminated.
3676      */
3677     (void) strncpy(psinfo->pr_fname, base_filename,
3678                    sizeof(psinfo->pr_fname));
3679 
3680     g_free(base_filename);
3681     bswap_psinfo(psinfo);
3682     return (0);
3683 }
3684 
3685 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3686 {
3687     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3688     elf_addr_t orig_auxv = auxv;
3689     void *ptr;
3690     int len = ts->info->auxv_len;
3691 
3692     /*
3693      * Auxiliary vector is stored in target process stack.  It contains
3694      * {type, value} pairs that we need to dump into note.  This is not
3695      * strictly necessary but we do it here for sake of completeness.
3696      */
3697 
3698     /* read in whole auxv vector and copy it to memelfnote */
3699     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3700     if (ptr != NULL) {
3701         fill_note(note, "CORE", NT_AUXV, len, ptr);
3702         unlock_user(ptr, auxv, len);
3703     }
3704 }
3705 
3706 /*
3707  * Constructs name of coredump file.  We have following convention
3708  * for the name:
3709  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3710  *
3711  * Returns 0 in case of success, -1 otherwise (errno is set).
3712  */
3713 static int core_dump_filename(const TaskState *ts, char *buf,
3714                               size_t bufsize)
3715 {
3716     char timestamp[64];
3717     char *base_filename = NULL;
3718     struct timeval tv;
3719     struct tm tm;
3720 
3721     assert(bufsize >= PATH_MAX);
3722 
3723     if (gettimeofday(&tv, NULL) < 0) {
3724         (void) fprintf(stderr, "unable to get current timestamp: %s",
3725                        strerror(errno));
3726         return (-1);
3727     }
3728 
3729     base_filename = g_path_get_basename(ts->bprm->filename);
3730     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3731                     localtime_r(&tv.tv_sec, &tm));
3732     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3733                     base_filename, timestamp, (int)getpid());
3734     g_free(base_filename);
3735 
3736     return (0);
3737 }
3738 
3739 static int dump_write(int fd, const void *ptr, size_t size)
3740 {
3741     const char *bufp = (const char *)ptr;
3742     ssize_t bytes_written, bytes_left;
3743     struct rlimit dumpsize;
3744     off_t pos;
3745 
3746     bytes_written = 0;
3747     getrlimit(RLIMIT_CORE, &dumpsize);
3748     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3749         if (errno == ESPIPE) { /* not a seekable stream */
3750             bytes_left = size;
3751         } else {
3752             return pos;
3753         }
3754     } else {
3755         if (dumpsize.rlim_cur <= pos) {
3756             return -1;
3757         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3758             bytes_left = size;
3759         } else {
3760             size_t limit_left=dumpsize.rlim_cur - pos;
3761             bytes_left = limit_left >= size ? size : limit_left ;
3762         }
3763     }
3764 
3765     /*
3766      * In normal conditions, single write(2) should do but
3767      * in case of socket etc. this mechanism is more portable.
3768      */
3769     do {
3770         bytes_written = write(fd, bufp, bytes_left);
3771         if (bytes_written < 0) {
3772             if (errno == EINTR)
3773                 continue;
3774             return (-1);
3775         } else if (bytes_written == 0) { /* eof */
3776             return (-1);
3777         }
3778         bufp += bytes_written;
3779         bytes_left -= bytes_written;
3780     } while (bytes_left > 0);
3781 
3782     return (0);
3783 }
3784 
3785 static int write_note(struct memelfnote *men, int fd)
3786 {
3787     struct elf_note en;
3788 
3789     en.n_namesz = men->namesz;
3790     en.n_type = men->type;
3791     en.n_descsz = men->datasz;
3792 
3793     bswap_note(&en);
3794 
3795     if (dump_write(fd, &en, sizeof(en)) != 0)
3796         return (-1);
3797     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3798         return (-1);
3799     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3800         return (-1);
3801 
3802     return (0);
3803 }
3804 
3805 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3806 {
3807     CPUState *cpu = env_cpu((CPUArchState *)env);
3808     TaskState *ts = (TaskState *)cpu->opaque;
3809     struct elf_thread_status *ets;
3810 
3811     ets = g_malloc0(sizeof (*ets));
3812     ets->num_notes = 1; /* only prstatus is dumped */
3813     fill_prstatus(&ets->prstatus, ts, 0);
3814     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3815     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3816               &ets->prstatus);
3817 
3818     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3819 
3820     info->notes_size += note_size(&ets->notes[0]);
3821 }
3822 
3823 static void init_note_info(struct elf_note_info *info)
3824 {
3825     /* Initialize the elf_note_info structure so that it is at
3826      * least safe to call free_note_info() on it. Must be
3827      * called before calling fill_note_info().
3828      */
3829     memset(info, 0, sizeof (*info));
3830     QTAILQ_INIT(&info->thread_list);
3831 }
3832 
3833 static int fill_note_info(struct elf_note_info *info,
3834                           long signr, const CPUArchState *env)
3835 {
3836 #define NUMNOTES 3
3837     CPUState *cpu = env_cpu((CPUArchState *)env);
3838     TaskState *ts = (TaskState *)cpu->opaque;
3839     int i;
3840 
3841     info->notes = g_new0(struct memelfnote, NUMNOTES);
3842     if (info->notes == NULL)
3843         return (-ENOMEM);
3844     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3845     if (info->prstatus == NULL)
3846         return (-ENOMEM);
3847     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3848     if (info->prstatus == NULL)
3849         return (-ENOMEM);
3850 
3851     /*
3852      * First fill in status (and registers) of current thread
3853      * including process info & aux vector.
3854      */
3855     fill_prstatus(info->prstatus, ts, signr);
3856     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3857     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3858               sizeof (*info->prstatus), info->prstatus);
3859     fill_psinfo(info->psinfo, ts);
3860     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3861               sizeof (*info->psinfo), info->psinfo);
3862     fill_auxv_note(&info->notes[2], ts);
3863     info->numnote = 3;
3864 
3865     info->notes_size = 0;
3866     for (i = 0; i < info->numnote; i++)
3867         info->notes_size += note_size(&info->notes[i]);
3868 
3869     /* read and fill status of all threads */
3870     cpu_list_lock();
3871     CPU_FOREACH(cpu) {
3872         if (cpu == thread_cpu) {
3873             continue;
3874         }
3875         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3876     }
3877     cpu_list_unlock();
3878 
3879     return (0);
3880 }
3881 
3882 static void free_note_info(struct elf_note_info *info)
3883 {
3884     struct elf_thread_status *ets;
3885 
3886     while (!QTAILQ_EMPTY(&info->thread_list)) {
3887         ets = QTAILQ_FIRST(&info->thread_list);
3888         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3889         g_free(ets);
3890     }
3891 
3892     g_free(info->prstatus);
3893     g_free(info->psinfo);
3894     g_free(info->notes);
3895 }
3896 
3897 static int write_note_info(struct elf_note_info *info, int fd)
3898 {
3899     struct elf_thread_status *ets;
3900     int i, error = 0;
3901 
3902     /* write prstatus, psinfo and auxv for current thread */
3903     for (i = 0; i < info->numnote; i++)
3904         if ((error = write_note(&info->notes[i], fd)) != 0)
3905             return (error);
3906 
3907     /* write prstatus for each thread */
3908     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3909         if ((error = write_note(&ets->notes[0], fd)) != 0)
3910             return (error);
3911     }
3912 
3913     return (0);
3914 }
3915 
3916 /*
3917  * Write out ELF coredump.
3918  *
3919  * See documentation of ELF object file format in:
3920  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3921  *
3922  * Coredump format in linux is following:
3923  *
3924  * 0   +----------------------+         \
3925  *     | ELF header           | ET_CORE  |
3926  *     +----------------------+          |
3927  *     | ELF program headers  |          |--- headers
3928  *     | - NOTE section       |          |
3929  *     | - PT_LOAD sections   |          |
3930  *     +----------------------+         /
3931  *     | NOTEs:               |
3932  *     | - NT_PRSTATUS        |
3933  *     | - NT_PRSINFO         |
3934  *     | - NT_AUXV            |
3935  *     +----------------------+ <-- aligned to target page
3936  *     | Process memory dump  |
3937  *     :                      :
3938  *     .                      .
3939  *     :                      :
3940  *     |                      |
3941  *     +----------------------+
3942  *
3943  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3944  * NT_PRSINFO  -> struct elf_prpsinfo
3945  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3946  *
3947  * Format follows System V format as close as possible.  Current
3948  * version limitations are as follows:
3949  *     - no floating point registers are dumped
3950  *
3951  * Function returns 0 in case of success, negative errno otherwise.
3952  *
3953  * TODO: make this work also during runtime: it should be
3954  * possible to force coredump from running process and then
3955  * continue processing.  For example qemu could set up SIGUSR2
3956  * handler (provided that target process haven't registered
3957  * handler for that) that does the dump when signal is received.
3958  */
3959 static int elf_core_dump(int signr, const CPUArchState *env)
3960 {
3961     const CPUState *cpu = env_cpu((CPUArchState *)env);
3962     const TaskState *ts = (const TaskState *)cpu->opaque;
3963     struct vm_area_struct *vma = NULL;
3964     char corefile[PATH_MAX];
3965     struct elf_note_info info;
3966     struct elfhdr elf;
3967     struct elf_phdr phdr;
3968     struct rlimit dumpsize;
3969     struct mm_struct *mm = NULL;
3970     off_t offset = 0, data_offset = 0;
3971     int segs = 0;
3972     int fd = -1;
3973 
3974     init_note_info(&info);
3975 
3976     errno = 0;
3977     getrlimit(RLIMIT_CORE, &dumpsize);
3978     if (dumpsize.rlim_cur == 0)
3979         return 0;
3980 
3981     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3982         return (-errno);
3983 
3984     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3985                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3986         return (-errno);
3987 
3988     /*
3989      * Walk through target process memory mappings and
3990      * set up structure containing this information.  After
3991      * this point vma_xxx functions can be used.
3992      */
3993     if ((mm = vma_init()) == NULL)
3994         goto out;
3995 
3996     walk_memory_regions(mm, vma_walker);
3997     segs = vma_get_mapping_count(mm);
3998 
3999     /*
4000      * Construct valid coredump ELF header.  We also
4001      * add one more segment for notes.
4002      */
4003     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4004     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4005         goto out;
4006 
4007     /* fill in the in-memory version of notes */
4008     if (fill_note_info(&info, signr, env) < 0)
4009         goto out;
4010 
4011     offset += sizeof (elf);                             /* elf header */
4012     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4013 
4014     /* write out notes program header */
4015     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4016 
4017     offset += info.notes_size;
4018     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4019         goto out;
4020 
4021     /*
4022      * ELF specification wants data to start at page boundary so
4023      * we align it here.
4024      */
4025     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4026 
4027     /*
4028      * Write program headers for memory regions mapped in
4029      * the target process.
4030      */
4031     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4032         (void) memset(&phdr, 0, sizeof (phdr));
4033 
4034         phdr.p_type = PT_LOAD;
4035         phdr.p_offset = offset;
4036         phdr.p_vaddr = vma->vma_start;
4037         phdr.p_paddr = 0;
4038         phdr.p_filesz = vma_dump_size(vma);
4039         offset += phdr.p_filesz;
4040         phdr.p_memsz = vma->vma_end - vma->vma_start;
4041         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4042         if (vma->vma_flags & PROT_WRITE)
4043             phdr.p_flags |= PF_W;
4044         if (vma->vma_flags & PROT_EXEC)
4045             phdr.p_flags |= PF_X;
4046         phdr.p_align = ELF_EXEC_PAGESIZE;
4047 
4048         bswap_phdr(&phdr, 1);
4049         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4050             goto out;
4051         }
4052     }
4053 
4054     /*
4055      * Next we write notes just after program headers.  No
4056      * alignment needed here.
4057      */
4058     if (write_note_info(&info, fd) < 0)
4059         goto out;
4060 
4061     /* align data to page boundary */
4062     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4063         goto out;
4064 
4065     /*
4066      * Finally we can dump process memory into corefile as well.
4067      */
4068     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4069         abi_ulong addr;
4070         abi_ulong end;
4071 
4072         end = vma->vma_start + vma_dump_size(vma);
4073 
4074         for (addr = vma->vma_start; addr < end;
4075              addr += TARGET_PAGE_SIZE) {
4076             char page[TARGET_PAGE_SIZE];
4077             int error;
4078 
4079             /*
4080              *  Read in page from target process memory and
4081              *  write it to coredump file.
4082              */
4083             error = copy_from_user(page, addr, sizeof (page));
4084             if (error != 0) {
4085                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4086                                addr);
4087                 errno = -error;
4088                 goto out;
4089             }
4090             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4091                 goto out;
4092         }
4093     }
4094 
4095  out:
4096     free_note_info(&info);
4097     if (mm != NULL)
4098         vma_delete(mm);
4099     (void) close(fd);
4100 
4101     if (errno != 0)
4102         return (-errno);
4103     return (0);
4104 }
4105 #endif /* USE_ELF_CORE_DUMP */
4106 
4107 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4108 {
4109     init_thread(regs, infop);
4110 }
4111