xref: /openbmc/qemu/linux-user/elfload.c (revision 382c7160d1cd9e815fb94d3889a5ddcf0e1845ab)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
17 
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27 
28 #define ELF_OSABI   ELFOSABI_SYSV
29 
30 /* from personality.h */
31 
32 /*
33  * Flags for bug emulation.
34  *
35  * These occupy the top three bytes.
36  */
37 enum {
38     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
39     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
40                                            descriptors (signal handling) */
41     MMAP_PAGE_ZERO =    0x0100000,
42     ADDR_COMPAT_LAYOUT = 0x0200000,
43     READ_IMPLIES_EXEC = 0x0400000,
44     ADDR_LIMIT_32BIT =  0x0800000,
45     SHORT_INODE =       0x1000000,
46     WHOLE_SECONDS =     0x2000000,
47     STICKY_TIMEOUTS =   0x4000000,
48     ADDR_LIMIT_3GB =    0x8000000,
49 };
50 
51 /*
52  * Personality types.
53  *
54  * These go in the low byte.  Avoid using the top bit, it will
55  * conflict with error returns.
56  */
57 enum {
58     PER_LINUX =         0x0000,
59     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
60     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
61     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
67     PER_BSD =           0x0006,
68     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
69     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_LINUX32 =       0x0008,
71     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
72     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75     PER_RISCOS =        0x000c,
76     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
77     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
79     PER_HPUX =          0x0010,
80     PER_MASK =          0x00ff,
81 };
82 
83 /*
84  * Return the base personality without flags.
85  */
86 #define personality(pers)       (pers & PER_MASK)
87 
88 int info_is_fdpic(struct image_info *info)
89 {
90     return info->personality == PER_LINUX_FDPIC;
91 }
92 
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
97 
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
102 
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA        ELFDATA2MSB
105 #else
106 #define ELF_DATA        ELFDATA2LSB
107 #endif
108 
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong      target_elf_greg_t;
111 #define tswapreg(ptr)   tswap64(ptr)
112 #else
113 typedef abi_ulong       target_elf_greg_t;
114 #define tswapreg(ptr)   tswapal(ptr)
115 #endif
116 
117 #ifdef USE_UID16
118 typedef abi_ushort      target_uid_t;
119 typedef abi_ushort      target_gid_t;
120 #else
121 typedef abi_uint        target_uid_t;
122 typedef abi_uint        target_gid_t;
123 #endif
124 typedef abi_int         target_pid_t;
125 
126 #ifdef TARGET_I386
127 
128 #define ELF_PLATFORM get_elf_platform()
129 
130 static const char *get_elf_platform(void)
131 {
132     static char elf_platform[] = "i386";
133     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134     if (family > 6)
135         family = 6;
136     if (family >= 3)
137         elf_platform[1] = '0' + family;
138     return elf_platform;
139 }
140 
141 #define ELF_HWCAP get_elf_hwcap()
142 
143 static uint32_t get_elf_hwcap(void)
144 {
145     X86CPU *cpu = X86_CPU(thread_cpu);
146 
147     return cpu->env.features[FEAT_1_EDX];
148 }
149 
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
152 
153 #define ELF_CLASS      ELFCLASS64
154 #define ELF_ARCH       EM_X86_64
155 
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157 {
158     regs->rax = 0;
159     regs->rsp = infop->start_stack;
160     regs->rip = infop->entry;
161 }
162 
163 #define ELF_NREG    27
164 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
165 
166 /*
167  * Note that ELF_NREG should be 29 as there should be place for
168  * TRAPNO and ERR "registers" as well but linux doesn't dump
169  * those.
170  *
171  * See linux kernel: arch/x86/include/asm/elf.h
172  */
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
174 {
175     (*regs)[0] = env->regs[15];
176     (*regs)[1] = env->regs[14];
177     (*regs)[2] = env->regs[13];
178     (*regs)[3] = env->regs[12];
179     (*regs)[4] = env->regs[R_EBP];
180     (*regs)[5] = env->regs[R_EBX];
181     (*regs)[6] = env->regs[11];
182     (*regs)[7] = env->regs[10];
183     (*regs)[8] = env->regs[9];
184     (*regs)[9] = env->regs[8];
185     (*regs)[10] = env->regs[R_EAX];
186     (*regs)[11] = env->regs[R_ECX];
187     (*regs)[12] = env->regs[R_EDX];
188     (*regs)[13] = env->regs[R_ESI];
189     (*regs)[14] = env->regs[R_EDI];
190     (*regs)[15] = env->regs[R_EAX]; /* XXX */
191     (*regs)[16] = env->eip;
192     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193     (*regs)[18] = env->eflags;
194     (*regs)[19] = env->regs[R_ESP];
195     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202 }
203 
204 #else
205 
206 #define ELF_START_MMAP 0x80000000
207 
208 /*
209  * This is used to ensure we don't load something for the wrong architecture.
210  */
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212 
213 /*
214  * These are used to set parameters in the core dumps.
215  */
216 #define ELF_CLASS       ELFCLASS32
217 #define ELF_ARCH        EM_386
218 
219 static inline void init_thread(struct target_pt_regs *regs,
220                                struct image_info *infop)
221 {
222     regs->esp = infop->start_stack;
223     regs->eip = infop->entry;
224 
225     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226        starts %edx contains a pointer to a function which might be
227        registered using `atexit'.  This provides a mean for the
228        dynamic linker to call DT_FINI functions for shared libraries
229        that have been loaded before the code runs.
230 
231        A value of 0 tells we have no such handler.  */
232     regs->edx = 0;
233 }
234 
235 #define ELF_NREG    17
236 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
237 
238 /*
239  * Note that ELF_NREG should be 19 as there should be place for
240  * TRAPNO and ERR "registers" as well but linux doesn't dump
241  * those.
242  *
243  * See linux kernel: arch/x86/include/asm/elf.h
244  */
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
246 {
247     (*regs)[0] = env->regs[R_EBX];
248     (*regs)[1] = env->regs[R_ECX];
249     (*regs)[2] = env->regs[R_EDX];
250     (*regs)[3] = env->regs[R_ESI];
251     (*regs)[4] = env->regs[R_EDI];
252     (*regs)[5] = env->regs[R_EBP];
253     (*regs)[6] = env->regs[R_EAX];
254     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258     (*regs)[11] = env->regs[R_EAX]; /* XXX */
259     (*regs)[12] = env->eip;
260     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261     (*regs)[14] = env->eflags;
262     (*regs)[15] = env->regs[R_ESP];
263     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264 }
265 #endif
266 
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE       4096
269 
270 #endif
271 
272 #ifdef TARGET_ARM
273 
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
276 
277 #define ELF_START_MMAP 0x80000000
278 
279 #define ELF_ARCH        EM_ARM
280 #define ELF_CLASS       ELFCLASS32
281 
282 static inline void init_thread(struct target_pt_regs *regs,
283                                struct image_info *infop)
284 {
285     abi_long stack = infop->start_stack;
286     memset(regs, 0, sizeof(*regs));
287 
288     regs->uregs[16] = ARM_CPU_MODE_USR;
289     if (infop->entry & 1) {
290         regs->uregs[16] |= CPSR_T;
291     }
292     regs->uregs[15] = infop->entry & 0xfffffffe;
293     regs->uregs[13] = infop->start_stack;
294     /* FIXME - what to for failure of get_user()? */
295     get_user_ual(regs->uregs[2], stack + 8); /* envp */
296     get_user_ual(regs->uregs[1], stack + 4); /* envp */
297     /* XXX: it seems that r0 is zeroed after ! */
298     regs->uregs[0] = 0;
299     /* For uClinux PIC binaries.  */
300     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301     regs->uregs[10] = infop->start_data;
302 
303     /* Support ARM FDPIC.  */
304     if (info_is_fdpic(infop)) {
305         /* As described in the ABI document, r7 points to the loadmap info
306          * prepared by the kernel. If an interpreter is needed, r8 points
307          * to the interpreter loadmap and r9 points to the interpreter
308          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309          * r9 points to the main program PT_DYNAMIC info.
310          */
311         regs->uregs[7] = infop->loadmap_addr;
312         if (infop->interpreter_loadmap_addr) {
313             /* Executable is dynamically loaded.  */
314             regs->uregs[8] = infop->interpreter_loadmap_addr;
315             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316         } else {
317             regs->uregs[8] = 0;
318             regs->uregs[9] = infop->pt_dynamic_addr;
319         }
320     }
321 }
322 
323 #define ELF_NREG    18
324 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
325 
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
327 {
328     (*regs)[0] = tswapreg(env->regs[0]);
329     (*regs)[1] = tswapreg(env->regs[1]);
330     (*regs)[2] = tswapreg(env->regs[2]);
331     (*regs)[3] = tswapreg(env->regs[3]);
332     (*regs)[4] = tswapreg(env->regs[4]);
333     (*regs)[5] = tswapreg(env->regs[5]);
334     (*regs)[6] = tswapreg(env->regs[6]);
335     (*regs)[7] = tswapreg(env->regs[7]);
336     (*regs)[8] = tswapreg(env->regs[8]);
337     (*regs)[9] = tswapreg(env->regs[9]);
338     (*regs)[10] = tswapreg(env->regs[10]);
339     (*regs)[11] = tswapreg(env->regs[11]);
340     (*regs)[12] = tswapreg(env->regs[12]);
341     (*regs)[13] = tswapreg(env->regs[13]);
342     (*regs)[14] = tswapreg(env->regs[14]);
343     (*regs)[15] = tswapreg(env->regs[15]);
344 
345     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
347 }
348 
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE       4096
351 
352 enum
353 {
354     ARM_HWCAP_ARM_SWP       = 1 << 0,
355     ARM_HWCAP_ARM_HALF      = 1 << 1,
356     ARM_HWCAP_ARM_THUMB     = 1 << 2,
357     ARM_HWCAP_ARM_26BIT     = 1 << 3,
358     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359     ARM_HWCAP_ARM_FPA       = 1 << 5,
360     ARM_HWCAP_ARM_VFP       = 1 << 6,
361     ARM_HWCAP_ARM_EDSP      = 1 << 7,
362     ARM_HWCAP_ARM_JAVA      = 1 << 8,
363     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
364     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
365     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
366     ARM_HWCAP_ARM_NEON      = 1 << 12,
367     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
368     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
369     ARM_HWCAP_ARM_TLS       = 1 << 15,
370     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
371     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
372     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
373     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
374     ARM_HWCAP_ARM_LPAE      = 1 << 20,
375     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
376 };
377 
378 enum {
379     ARM_HWCAP2_ARM_AES      = 1 << 0,
380     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
381     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
382     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
383     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
384 };
385 
386 /* The commpage only exists for 32 bit kernels */
387 
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
389 
390 static bool init_guest_commpage(void)
391 {
392     void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
393     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
395 
396     if (addr == MAP_FAILED) {
397         perror("Allocating guest commpage");
398         exit(EXIT_FAILURE);
399     }
400     if (addr != want) {
401         return false;
402     }
403 
404     /* Set kernel helper versions; rest of page is 0.  */
405     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
406 
407     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408         perror("Protecting guest commpage");
409         exit(EXIT_FAILURE);
410     }
411     return true;
412 }
413 
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
416 
417 static uint32_t get_elf_hwcap(void)
418 {
419     ARMCPU *cpu = ARM_CPU(thread_cpu);
420     uint32_t hwcaps = 0;
421 
422     hwcaps |= ARM_HWCAP_ARM_SWP;
423     hwcaps |= ARM_HWCAP_ARM_HALF;
424     hwcaps |= ARM_HWCAP_ARM_THUMB;
425     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
426 
427     /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
430 
431 #define GET_FEATURE_ID(feat, hwcap) \
432     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433 
434     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444 
445     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447         hwcaps |= ARM_HWCAP_ARM_VFPv3;
448         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449             hwcaps |= ARM_HWCAP_ARM_VFPD32;
450         } else {
451             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452         }
453     }
454     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
455 
456     return hwcaps;
457 }
458 
459 static uint32_t get_elf_hwcap2(void)
460 {
461     ARMCPU *cpu = ARM_CPU(thread_cpu);
462     uint32_t hwcaps = 0;
463 
464     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469     return hwcaps;
470 }
471 
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
474 
475 #define ELF_PLATFORM get_elf_platform()
476 
477 static const char *get_elf_platform(void)
478 {
479     CPUARMState *env = thread_cpu->env_ptr;
480 
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END  "b"
483 #else
484 # define END  "l"
485 #endif
486 
487     if (arm_feature(env, ARM_FEATURE_V8)) {
488         return "v8" END;
489     } else if (arm_feature(env, ARM_FEATURE_V7)) {
490         if (arm_feature(env, ARM_FEATURE_M)) {
491             return "v7m" END;
492         } else {
493             return "v7" END;
494         }
495     } else if (arm_feature(env, ARM_FEATURE_V6)) {
496         return "v6" END;
497     } else if (arm_feature(env, ARM_FEATURE_V5)) {
498         return "v5" END;
499     } else {
500         return "v4" END;
501     }
502 
503 #undef END
504 }
505 
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
509 
510 #define ELF_ARCH        EM_AARCH64
511 #define ELF_CLASS       ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM    "aarch64_be"
514 #else
515 # define ELF_PLATFORM    "aarch64"
516 #endif
517 
518 static inline void init_thread(struct target_pt_regs *regs,
519                                struct image_info *infop)
520 {
521     abi_long stack = infop->start_stack;
522     memset(regs, 0, sizeof(*regs));
523 
524     regs->pc = infop->entry & ~0x3ULL;
525     regs->sp = stack;
526 }
527 
528 #define ELF_NREG    34
529 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
530 
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532                                const CPUARMState *env)
533 {
534     int i;
535 
536     for (i = 0; i < 32; i++) {
537         (*regs)[i] = tswapreg(env->xregs[i]);
538     }
539     (*regs)[32] = tswapreg(env->pc);
540     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541 }
542 
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE       4096
545 
546 enum {
547     ARM_HWCAP_A64_FP            = 1 << 0,
548     ARM_HWCAP_A64_ASIMD         = 1 << 1,
549     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
550     ARM_HWCAP_A64_AES           = 1 << 3,
551     ARM_HWCAP_A64_PMULL         = 1 << 4,
552     ARM_HWCAP_A64_SHA1          = 1 << 5,
553     ARM_HWCAP_A64_SHA2          = 1 << 6,
554     ARM_HWCAP_A64_CRC32         = 1 << 7,
555     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
556     ARM_HWCAP_A64_FPHP          = 1 << 9,
557     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
558     ARM_HWCAP_A64_CPUID         = 1 << 11,
559     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
560     ARM_HWCAP_A64_JSCVT         = 1 << 13,
561     ARM_HWCAP_A64_FCMA          = 1 << 14,
562     ARM_HWCAP_A64_LRCPC         = 1 << 15,
563     ARM_HWCAP_A64_DCPOP         = 1 << 16,
564     ARM_HWCAP_A64_SHA3          = 1 << 17,
565     ARM_HWCAP_A64_SM3           = 1 << 18,
566     ARM_HWCAP_A64_SM4           = 1 << 19,
567     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
568     ARM_HWCAP_A64_SHA512        = 1 << 21,
569     ARM_HWCAP_A64_SVE           = 1 << 22,
570     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
571     ARM_HWCAP_A64_DIT           = 1 << 24,
572     ARM_HWCAP_A64_USCAT         = 1 << 25,
573     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
574     ARM_HWCAP_A64_FLAGM         = 1 << 27,
575     ARM_HWCAP_A64_SSBS          = 1 << 28,
576     ARM_HWCAP_A64_SB            = 1 << 29,
577     ARM_HWCAP_A64_PACA          = 1 << 30,
578     ARM_HWCAP_A64_PACG          = 1UL << 31,
579 
580     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
581     ARM_HWCAP2_A64_SVE2         = 1 << 1,
582     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
583     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
584     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
585     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
586     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
587     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
588     ARM_HWCAP2_A64_FRINT        = 1 << 8,
589     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
590     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
591     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
592     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
593     ARM_HWCAP2_A64_I8MM         = 1 << 13,
594     ARM_HWCAP2_A64_BF16         = 1 << 14,
595     ARM_HWCAP2_A64_DGH          = 1 << 15,
596     ARM_HWCAP2_A64_RNG          = 1 << 16,
597     ARM_HWCAP2_A64_BTI          = 1 << 17,
598     ARM_HWCAP2_A64_MTE          = 1 << 18,
599 };
600 
601 #define ELF_HWCAP   get_elf_hwcap()
602 #define ELF_HWCAP2  get_elf_hwcap2()
603 
604 #define GET_FEATURE_ID(feat, hwcap) \
605     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
606 
607 static uint32_t get_elf_hwcap(void)
608 {
609     ARMCPU *cpu = ARM_CPU(thread_cpu);
610     uint32_t hwcaps = 0;
611 
612     hwcaps |= ARM_HWCAP_A64_FP;
613     hwcaps |= ARM_HWCAP_A64_ASIMD;
614     hwcaps |= ARM_HWCAP_A64_CPUID;
615 
616     /* probe for the extra features */
617 
618     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
619     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
620     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
621     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
622     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
623     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
624     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
625     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
626     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
627     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
628     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
629     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
630     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
631     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
632     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
633     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
634     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
635     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
636     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
637     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
638     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
639     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
640     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
641 
642     return hwcaps;
643 }
644 
645 static uint32_t get_elf_hwcap2(void)
646 {
647     ARMCPU *cpu = ARM_CPU(thread_cpu);
648     uint32_t hwcaps = 0;
649 
650     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
651     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
652     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
653     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
654     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
655     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
656 
657     return hwcaps;
658 }
659 
660 #undef GET_FEATURE_ID
661 
662 #endif /* not TARGET_AARCH64 */
663 #endif /* TARGET_ARM */
664 
665 #ifdef TARGET_SPARC
666 #ifdef TARGET_SPARC64
667 
668 #define ELF_START_MMAP 0x80000000
669 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
670                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
671 #ifndef TARGET_ABI32
672 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
673 #else
674 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
675 #endif
676 
677 #define ELF_CLASS   ELFCLASS64
678 #define ELF_ARCH    EM_SPARCV9
679 #else
680 #define ELF_START_MMAP 0x80000000
681 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
682                     | HWCAP_SPARC_MULDIV)
683 #define ELF_CLASS   ELFCLASS32
684 #define ELF_ARCH    EM_SPARC
685 #endif /* TARGET_SPARC64 */
686 
687 static inline void init_thread(struct target_pt_regs *regs,
688                                struct image_info *infop)
689 {
690     /* Note that target_cpu_copy_regs does not read psr/tstate. */
691     regs->pc = infop->entry;
692     regs->npc = regs->pc + 4;
693     regs->y = 0;
694     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
695                         - TARGET_STACK_BIAS);
696 }
697 #endif /* TARGET_SPARC */
698 
699 #ifdef TARGET_PPC
700 
701 #define ELF_MACHINE    PPC_ELF_MACHINE
702 #define ELF_START_MMAP 0x80000000
703 
704 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
705 
706 #define elf_check_arch(x) ( (x) == EM_PPC64 )
707 
708 #define ELF_CLASS       ELFCLASS64
709 
710 #else
711 
712 #define ELF_CLASS       ELFCLASS32
713 
714 #endif
715 
716 #define ELF_ARCH        EM_PPC
717 
718 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
719    See arch/powerpc/include/asm/cputable.h.  */
720 enum {
721     QEMU_PPC_FEATURE_32 = 0x80000000,
722     QEMU_PPC_FEATURE_64 = 0x40000000,
723     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
724     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
725     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
726     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
727     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
728     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
729     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
730     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
731     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
732     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
733     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
734     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
735     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
736     QEMU_PPC_FEATURE_CELL = 0x00010000,
737     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
738     QEMU_PPC_FEATURE_SMT = 0x00004000,
739     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
740     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
741     QEMU_PPC_FEATURE_PA6T = 0x00000800,
742     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
743     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
744     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
745     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
746     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
747 
748     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
749     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
750 
751     /* Feature definitions in AT_HWCAP2.  */
752     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
753     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
754     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
755     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
756     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
757     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
758     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
759     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
760     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
761     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
762     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
763     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
764     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
765 };
766 
767 #define ELF_HWCAP get_elf_hwcap()
768 
769 static uint32_t get_elf_hwcap(void)
770 {
771     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
772     uint32_t features = 0;
773 
774     /* We don't have to be terribly complete here; the high points are
775        Altivec/FP/SPE support.  Anything else is just a bonus.  */
776 #define GET_FEATURE(flag, feature)                                      \
777     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778 #define GET_FEATURE2(flags, feature) \
779     do { \
780         if ((cpu->env.insns_flags2 & flags) == flags) { \
781             features |= feature; \
782         } \
783     } while (0)
784     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
785     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
786     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
787     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
788     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
789     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
790     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
791     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
792     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
793     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
794     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
795                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
796                   QEMU_PPC_FEATURE_ARCH_2_06);
797 #undef GET_FEATURE
798 #undef GET_FEATURE2
799 
800     return features;
801 }
802 
803 #define ELF_HWCAP2 get_elf_hwcap2()
804 
805 static uint32_t get_elf_hwcap2(void)
806 {
807     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
808     uint32_t features = 0;
809 
810 #define GET_FEATURE(flag, feature)                                      \
811     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
812 #define GET_FEATURE2(flag, feature)                                      \
813     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
814 
815     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
816     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
817     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
818                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
819                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
820     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
821                  QEMU_PPC_FEATURE2_DARN);
822 
823 #undef GET_FEATURE
824 #undef GET_FEATURE2
825 
826     return features;
827 }
828 
829 /*
830  * The requirements here are:
831  * - keep the final alignment of sp (sp & 0xf)
832  * - make sure the 32-bit value at the first 16 byte aligned position of
833  *   AUXV is greater than 16 for glibc compatibility.
834  *   AT_IGNOREPPC is used for that.
835  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
836  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
837  */
838 #define DLINFO_ARCH_ITEMS       5
839 #define ARCH_DLINFO                                     \
840     do {                                                \
841         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
842         /*                                              \
843          * Handle glibc compatibility: these magic entries must \
844          * be at the lowest addresses in the final auxv.        \
845          */                                             \
846         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
847         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
848         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
849         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
850         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
851     } while (0)
852 
853 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
854 {
855     _regs->gpr[1] = infop->start_stack;
856 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
857     if (get_ppc64_abi(infop) < 2) {
858         uint64_t val;
859         get_user_u64(val, infop->entry + 8);
860         _regs->gpr[2] = val + infop->load_bias;
861         get_user_u64(val, infop->entry);
862         infop->entry = val + infop->load_bias;
863     } else {
864         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
865     }
866 #endif
867     _regs->nip = infop->entry;
868 }
869 
870 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
871 #define ELF_NREG 48
872 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
873 
874 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
875 {
876     int i;
877     target_ulong ccr = 0;
878 
879     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
880         (*regs)[i] = tswapreg(env->gpr[i]);
881     }
882 
883     (*regs)[32] = tswapreg(env->nip);
884     (*regs)[33] = tswapreg(env->msr);
885     (*regs)[35] = tswapreg(env->ctr);
886     (*regs)[36] = tswapreg(env->lr);
887     (*regs)[37] = tswapreg(env->xer);
888 
889     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
890         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
891     }
892     (*regs)[38] = tswapreg(ccr);
893 }
894 
895 #define USE_ELF_CORE_DUMP
896 #define ELF_EXEC_PAGESIZE       4096
897 
898 #endif
899 
900 #ifdef TARGET_MIPS
901 
902 #define ELF_START_MMAP 0x80000000
903 
904 #ifdef TARGET_MIPS64
905 #define ELF_CLASS   ELFCLASS64
906 #else
907 #define ELF_CLASS   ELFCLASS32
908 #endif
909 #define ELF_ARCH    EM_MIPS
910 
911 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
912 
913 #ifdef TARGET_ABI_MIPSN32
914 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
915 #else
916 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
917 #endif
918 
919 static inline void init_thread(struct target_pt_regs *regs,
920                                struct image_info *infop)
921 {
922     regs->cp0_status = 2 << CP0St_KSU;
923     regs->cp0_epc = infop->entry;
924     regs->regs[29] = infop->start_stack;
925 }
926 
927 /* See linux kernel: arch/mips/include/asm/elf.h.  */
928 #define ELF_NREG 45
929 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
930 
931 /* See linux kernel: arch/mips/include/asm/reg.h.  */
932 enum {
933 #ifdef TARGET_MIPS64
934     TARGET_EF_R0 = 0,
935 #else
936     TARGET_EF_R0 = 6,
937 #endif
938     TARGET_EF_R26 = TARGET_EF_R0 + 26,
939     TARGET_EF_R27 = TARGET_EF_R0 + 27,
940     TARGET_EF_LO = TARGET_EF_R0 + 32,
941     TARGET_EF_HI = TARGET_EF_R0 + 33,
942     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
943     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
944     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
945     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
946 };
947 
948 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
949 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
950 {
951     int i;
952 
953     for (i = 0; i < TARGET_EF_R0; i++) {
954         (*regs)[i] = 0;
955     }
956     (*regs)[TARGET_EF_R0] = 0;
957 
958     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
959         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
960     }
961 
962     (*regs)[TARGET_EF_R26] = 0;
963     (*regs)[TARGET_EF_R27] = 0;
964     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
965     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
966     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
967     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
968     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
969     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
970 }
971 
972 #define USE_ELF_CORE_DUMP
973 #define ELF_EXEC_PAGESIZE        4096
974 
975 /* See arch/mips/include/uapi/asm/hwcap.h.  */
976 enum {
977     HWCAP_MIPS_R6           = (1 << 0),
978     HWCAP_MIPS_MSA          = (1 << 1),
979     HWCAP_MIPS_CRC32        = (1 << 2),
980     HWCAP_MIPS_MIPS16       = (1 << 3),
981     HWCAP_MIPS_MDMX         = (1 << 4),
982     HWCAP_MIPS_MIPS3D       = (1 << 5),
983     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
984     HWCAP_MIPS_DSP          = (1 << 7),
985     HWCAP_MIPS_DSP2         = (1 << 8),
986     HWCAP_MIPS_DSP3         = (1 << 9),
987     HWCAP_MIPS_MIPS16E2     = (1 << 10),
988     HWCAP_LOONGSON_MMI      = (1 << 11),
989     HWCAP_LOONGSON_EXT      = (1 << 12),
990     HWCAP_LOONGSON_EXT2     = (1 << 13),
991     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
992 };
993 
994 #define ELF_HWCAP get_elf_hwcap()
995 
996 #define GET_FEATURE_INSN(_flag, _hwcap) \
997     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
998 
999 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1000     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1001 
1002 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1003     do { \
1004         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1005             hwcaps |= _hwcap; \
1006         } \
1007     } while (0)
1008 
1009 static uint32_t get_elf_hwcap(void)
1010 {
1011     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1012     uint32_t hwcaps = 0;
1013 
1014     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1015                         2, HWCAP_MIPS_R6);
1016     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1017     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1018     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1019 
1020     return hwcaps;
1021 }
1022 
1023 #undef GET_FEATURE_REG_EQU
1024 #undef GET_FEATURE_REG_SET
1025 #undef GET_FEATURE_INSN
1026 
1027 #endif /* TARGET_MIPS */
1028 
1029 #ifdef TARGET_MICROBLAZE
1030 
1031 #define ELF_START_MMAP 0x80000000
1032 
1033 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1034 
1035 #define ELF_CLASS   ELFCLASS32
1036 #define ELF_ARCH    EM_MICROBLAZE
1037 
1038 static inline void init_thread(struct target_pt_regs *regs,
1039                                struct image_info *infop)
1040 {
1041     regs->pc = infop->entry;
1042     regs->r1 = infop->start_stack;
1043 
1044 }
1045 
1046 #define ELF_EXEC_PAGESIZE        4096
1047 
1048 #define USE_ELF_CORE_DUMP
1049 #define ELF_NREG 38
1050 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1051 
1052 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1053 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1054 {
1055     int i, pos = 0;
1056 
1057     for (i = 0; i < 32; i++) {
1058         (*regs)[pos++] = tswapreg(env->regs[i]);
1059     }
1060 
1061     (*regs)[pos++] = tswapreg(env->pc);
1062     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1063     (*regs)[pos++] = 0;
1064     (*regs)[pos++] = tswapreg(env->ear);
1065     (*regs)[pos++] = 0;
1066     (*regs)[pos++] = tswapreg(env->esr);
1067 }
1068 
1069 #endif /* TARGET_MICROBLAZE */
1070 
1071 #ifdef TARGET_NIOS2
1072 
1073 #define ELF_START_MMAP 0x80000000
1074 
1075 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1076 
1077 #define ELF_CLASS   ELFCLASS32
1078 #define ELF_ARCH    EM_ALTERA_NIOS2
1079 
1080 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1081 {
1082     regs->ea = infop->entry;
1083     regs->sp = infop->start_stack;
1084     regs->estatus = 0x3;
1085 }
1086 
1087 #define ELF_EXEC_PAGESIZE        4096
1088 
1089 #define USE_ELF_CORE_DUMP
1090 #define ELF_NREG 49
1091 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1092 
1093 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1094 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1095                                const CPUNios2State *env)
1096 {
1097     int i;
1098 
1099     (*regs)[0] = -1;
1100     for (i = 1; i < 8; i++)    /* r0-r7 */
1101         (*regs)[i] = tswapreg(env->regs[i + 7]);
1102 
1103     for (i = 8; i < 16; i++)   /* r8-r15 */
1104         (*regs)[i] = tswapreg(env->regs[i - 8]);
1105 
1106     for (i = 16; i < 24; i++)  /* r16-r23 */
1107         (*regs)[i] = tswapreg(env->regs[i + 7]);
1108     (*regs)[24] = -1;    /* R_ET */
1109     (*regs)[25] = -1;    /* R_BT */
1110     (*regs)[26] = tswapreg(env->regs[R_GP]);
1111     (*regs)[27] = tswapreg(env->regs[R_SP]);
1112     (*regs)[28] = tswapreg(env->regs[R_FP]);
1113     (*regs)[29] = tswapreg(env->regs[R_EA]);
1114     (*regs)[30] = -1;    /* R_SSTATUS */
1115     (*regs)[31] = tswapreg(env->regs[R_RA]);
1116 
1117     (*regs)[32] = tswapreg(env->regs[R_PC]);
1118 
1119     (*regs)[33] = -1; /* R_STATUS */
1120     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1121 
1122     for (i = 35; i < 49; i++)    /* ... */
1123         (*regs)[i] = -1;
1124 }
1125 
1126 #endif /* TARGET_NIOS2 */
1127 
1128 #ifdef TARGET_OPENRISC
1129 
1130 #define ELF_START_MMAP 0x08000000
1131 
1132 #define ELF_ARCH EM_OPENRISC
1133 #define ELF_CLASS ELFCLASS32
1134 #define ELF_DATA  ELFDATA2MSB
1135 
1136 static inline void init_thread(struct target_pt_regs *regs,
1137                                struct image_info *infop)
1138 {
1139     regs->pc = infop->entry;
1140     regs->gpr[1] = infop->start_stack;
1141 }
1142 
1143 #define USE_ELF_CORE_DUMP
1144 #define ELF_EXEC_PAGESIZE 8192
1145 
1146 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1147 #define ELF_NREG 34 /* gprs and pc, sr */
1148 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1149 
1150 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1151                                const CPUOpenRISCState *env)
1152 {
1153     int i;
1154 
1155     for (i = 0; i < 32; i++) {
1156         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1157     }
1158     (*regs)[32] = tswapreg(env->pc);
1159     (*regs)[33] = tswapreg(cpu_get_sr(env));
1160 }
1161 #define ELF_HWCAP 0
1162 #define ELF_PLATFORM NULL
1163 
1164 #endif /* TARGET_OPENRISC */
1165 
1166 #ifdef TARGET_SH4
1167 
1168 #define ELF_START_MMAP 0x80000000
1169 
1170 #define ELF_CLASS ELFCLASS32
1171 #define ELF_ARCH  EM_SH
1172 
1173 static inline void init_thread(struct target_pt_regs *regs,
1174                                struct image_info *infop)
1175 {
1176     /* Check other registers XXXXX */
1177     regs->pc = infop->entry;
1178     regs->regs[15] = infop->start_stack;
1179 }
1180 
1181 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1182 #define ELF_NREG 23
1183 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1184 
1185 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1186 enum {
1187     TARGET_REG_PC = 16,
1188     TARGET_REG_PR = 17,
1189     TARGET_REG_SR = 18,
1190     TARGET_REG_GBR = 19,
1191     TARGET_REG_MACH = 20,
1192     TARGET_REG_MACL = 21,
1193     TARGET_REG_SYSCALL = 22
1194 };
1195 
1196 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1197                                       const CPUSH4State *env)
1198 {
1199     int i;
1200 
1201     for (i = 0; i < 16; i++) {
1202         (*regs)[i] = tswapreg(env->gregs[i]);
1203     }
1204 
1205     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1206     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1207     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1208     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1209     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1210     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1211     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1212 }
1213 
1214 #define USE_ELF_CORE_DUMP
1215 #define ELF_EXEC_PAGESIZE        4096
1216 
1217 enum {
1218     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1219     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1220     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1221     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1222     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1223     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1224     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1225     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1226     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1227     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1228 };
1229 
1230 #define ELF_HWCAP get_elf_hwcap()
1231 
1232 static uint32_t get_elf_hwcap(void)
1233 {
1234     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1235     uint32_t hwcap = 0;
1236 
1237     hwcap |= SH_CPU_HAS_FPU;
1238 
1239     if (cpu->env.features & SH_FEATURE_SH4A) {
1240         hwcap |= SH_CPU_HAS_LLSC;
1241     }
1242 
1243     return hwcap;
1244 }
1245 
1246 #endif
1247 
1248 #ifdef TARGET_CRIS
1249 
1250 #define ELF_START_MMAP 0x80000000
1251 
1252 #define ELF_CLASS ELFCLASS32
1253 #define ELF_ARCH  EM_CRIS
1254 
1255 static inline void init_thread(struct target_pt_regs *regs,
1256                                struct image_info *infop)
1257 {
1258     regs->erp = infop->entry;
1259 }
1260 
1261 #define ELF_EXEC_PAGESIZE        8192
1262 
1263 #endif
1264 
1265 #ifdef TARGET_M68K
1266 
1267 #define ELF_START_MMAP 0x80000000
1268 
1269 #define ELF_CLASS       ELFCLASS32
1270 #define ELF_ARCH        EM_68K
1271 
1272 /* ??? Does this need to do anything?
1273    #define ELF_PLAT_INIT(_r) */
1274 
1275 static inline void init_thread(struct target_pt_regs *regs,
1276                                struct image_info *infop)
1277 {
1278     regs->usp = infop->start_stack;
1279     regs->sr = 0;
1280     regs->pc = infop->entry;
1281 }
1282 
1283 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1284 #define ELF_NREG 20
1285 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1286 
1287 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1288 {
1289     (*regs)[0] = tswapreg(env->dregs[1]);
1290     (*regs)[1] = tswapreg(env->dregs[2]);
1291     (*regs)[2] = tswapreg(env->dregs[3]);
1292     (*regs)[3] = tswapreg(env->dregs[4]);
1293     (*regs)[4] = tswapreg(env->dregs[5]);
1294     (*regs)[5] = tswapreg(env->dregs[6]);
1295     (*regs)[6] = tswapreg(env->dregs[7]);
1296     (*regs)[7] = tswapreg(env->aregs[0]);
1297     (*regs)[8] = tswapreg(env->aregs[1]);
1298     (*regs)[9] = tswapreg(env->aregs[2]);
1299     (*regs)[10] = tswapreg(env->aregs[3]);
1300     (*regs)[11] = tswapreg(env->aregs[4]);
1301     (*regs)[12] = tswapreg(env->aregs[5]);
1302     (*regs)[13] = tswapreg(env->aregs[6]);
1303     (*regs)[14] = tswapreg(env->dregs[0]);
1304     (*regs)[15] = tswapreg(env->aregs[7]);
1305     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1306     (*regs)[17] = tswapreg(env->sr);
1307     (*regs)[18] = tswapreg(env->pc);
1308     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1309 }
1310 
1311 #define USE_ELF_CORE_DUMP
1312 #define ELF_EXEC_PAGESIZE       8192
1313 
1314 #endif
1315 
1316 #ifdef TARGET_ALPHA
1317 
1318 #define ELF_START_MMAP (0x30000000000ULL)
1319 
1320 #define ELF_CLASS      ELFCLASS64
1321 #define ELF_ARCH       EM_ALPHA
1322 
1323 static inline void init_thread(struct target_pt_regs *regs,
1324                                struct image_info *infop)
1325 {
1326     regs->pc = infop->entry;
1327     regs->ps = 8;
1328     regs->usp = infop->start_stack;
1329 }
1330 
1331 #define ELF_EXEC_PAGESIZE        8192
1332 
1333 #endif /* TARGET_ALPHA */
1334 
1335 #ifdef TARGET_S390X
1336 
1337 #define ELF_START_MMAP (0x20000000000ULL)
1338 
1339 #define ELF_CLASS	ELFCLASS64
1340 #define ELF_DATA	ELFDATA2MSB
1341 #define ELF_ARCH	EM_S390
1342 
1343 #include "elf.h"
1344 
1345 #define ELF_HWCAP get_elf_hwcap()
1346 
1347 #define GET_FEATURE(_feat, _hwcap) \
1348     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1349 
1350 static uint32_t get_elf_hwcap(void)
1351 {
1352     /*
1353      * Let's assume we always have esan3 and zarch.
1354      * 31-bit processes can use 64-bit registers (high gprs).
1355      */
1356     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1357 
1358     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1359     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1360     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1361     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1362     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1363         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1364         hwcap |= HWCAP_S390_ETF3EH;
1365     }
1366     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1367 
1368     return hwcap;
1369 }
1370 
1371 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1372 {
1373     regs->psw.addr = infop->entry;
1374     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1375     regs->gprs[15] = infop->start_stack;
1376 }
1377 
1378 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1379 #define ELF_NREG 27
1380 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1381 
1382 enum {
1383     TARGET_REG_PSWM = 0,
1384     TARGET_REG_PSWA = 1,
1385     TARGET_REG_GPRS = 2,
1386     TARGET_REG_ARS = 18,
1387     TARGET_REG_ORIG_R2 = 26,
1388 };
1389 
1390 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1391                                const CPUS390XState *env)
1392 {
1393     int i;
1394     uint32_t *aregs;
1395 
1396     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1397     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1398     for (i = 0; i < 16; i++) {
1399         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1400     }
1401     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1402     for (i = 0; i < 16; i++) {
1403         aregs[i] = tswap32(env->aregs[i]);
1404     }
1405     (*regs)[TARGET_REG_ORIG_R2] = 0;
1406 }
1407 
1408 #define USE_ELF_CORE_DUMP
1409 #define ELF_EXEC_PAGESIZE 4096
1410 
1411 #endif /* TARGET_S390X */
1412 
1413 #ifdef TARGET_RISCV
1414 
1415 #define ELF_START_MMAP 0x80000000
1416 #define ELF_ARCH  EM_RISCV
1417 
1418 #ifdef TARGET_RISCV32
1419 #define ELF_CLASS ELFCLASS32
1420 #else
1421 #define ELF_CLASS ELFCLASS64
1422 #endif
1423 
1424 static inline void init_thread(struct target_pt_regs *regs,
1425                                struct image_info *infop)
1426 {
1427     regs->sepc = infop->entry;
1428     regs->sp = infop->start_stack;
1429 }
1430 
1431 #define ELF_EXEC_PAGESIZE 4096
1432 
1433 #endif /* TARGET_RISCV */
1434 
1435 #ifdef TARGET_HPPA
1436 
1437 #define ELF_START_MMAP  0x80000000
1438 #define ELF_CLASS       ELFCLASS32
1439 #define ELF_ARCH        EM_PARISC
1440 #define ELF_PLATFORM    "PARISC"
1441 #define STACK_GROWS_DOWN 0
1442 #define STACK_ALIGNMENT  64
1443 
1444 static inline void init_thread(struct target_pt_regs *regs,
1445                                struct image_info *infop)
1446 {
1447     regs->iaoq[0] = infop->entry;
1448     regs->iaoq[1] = infop->entry + 4;
1449     regs->gr[23] = 0;
1450     regs->gr[24] = infop->arg_start;
1451     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1452     /* The top-of-stack contains a linkage buffer.  */
1453     regs->gr[30] = infop->start_stack + 64;
1454     regs->gr[31] = infop->entry;
1455 }
1456 
1457 #endif /* TARGET_HPPA */
1458 
1459 #ifdef TARGET_XTENSA
1460 
1461 #define ELF_START_MMAP 0x20000000
1462 
1463 #define ELF_CLASS       ELFCLASS32
1464 #define ELF_ARCH        EM_XTENSA
1465 
1466 static inline void init_thread(struct target_pt_regs *regs,
1467                                struct image_info *infop)
1468 {
1469     regs->windowbase = 0;
1470     regs->windowstart = 1;
1471     regs->areg[1] = infop->start_stack;
1472     regs->pc = infop->entry;
1473 }
1474 
1475 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1476 #define ELF_NREG 128
1477 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1478 
1479 enum {
1480     TARGET_REG_PC,
1481     TARGET_REG_PS,
1482     TARGET_REG_LBEG,
1483     TARGET_REG_LEND,
1484     TARGET_REG_LCOUNT,
1485     TARGET_REG_SAR,
1486     TARGET_REG_WINDOWSTART,
1487     TARGET_REG_WINDOWBASE,
1488     TARGET_REG_THREADPTR,
1489     TARGET_REG_AR0 = 64,
1490 };
1491 
1492 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1493                                const CPUXtensaState *env)
1494 {
1495     unsigned i;
1496 
1497     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1498     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1499     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1500     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1501     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1502     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1503     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1504     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1505     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1506     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1507     for (i = 0; i < env->config->nareg; ++i) {
1508         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1509     }
1510 }
1511 
1512 #define USE_ELF_CORE_DUMP
1513 #define ELF_EXEC_PAGESIZE       4096
1514 
1515 #endif /* TARGET_XTENSA */
1516 
1517 #ifdef TARGET_HEXAGON
1518 
1519 #define ELF_START_MMAP 0x20000000
1520 
1521 #define ELF_CLASS       ELFCLASS32
1522 #define ELF_ARCH        EM_HEXAGON
1523 
1524 static inline void init_thread(struct target_pt_regs *regs,
1525                                struct image_info *infop)
1526 {
1527     regs->sepc = infop->entry;
1528     regs->sp = infop->start_stack;
1529 }
1530 
1531 #endif /* TARGET_HEXAGON */
1532 
1533 #ifndef ELF_PLATFORM
1534 #define ELF_PLATFORM (NULL)
1535 #endif
1536 
1537 #ifndef ELF_MACHINE
1538 #define ELF_MACHINE ELF_ARCH
1539 #endif
1540 
1541 #ifndef elf_check_arch
1542 #define elf_check_arch(x) ((x) == ELF_ARCH)
1543 #endif
1544 
1545 #ifndef elf_check_abi
1546 #define elf_check_abi(x) (1)
1547 #endif
1548 
1549 #ifndef ELF_HWCAP
1550 #define ELF_HWCAP 0
1551 #endif
1552 
1553 #ifndef STACK_GROWS_DOWN
1554 #define STACK_GROWS_DOWN 1
1555 #endif
1556 
1557 #ifndef STACK_ALIGNMENT
1558 #define STACK_ALIGNMENT 16
1559 #endif
1560 
1561 #ifdef TARGET_ABI32
1562 #undef ELF_CLASS
1563 #define ELF_CLASS ELFCLASS32
1564 #undef bswaptls
1565 #define bswaptls(ptr) bswap32s(ptr)
1566 #endif
1567 
1568 #include "elf.h"
1569 
1570 /* We must delay the following stanzas until after "elf.h". */
1571 #if defined(TARGET_AARCH64)
1572 
1573 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1574                                     const uint32_t *data,
1575                                     struct image_info *info,
1576                                     Error **errp)
1577 {
1578     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1579         if (pr_datasz != sizeof(uint32_t)) {
1580             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1581             return false;
1582         }
1583         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1584         info->note_flags = *data;
1585     }
1586     return true;
1587 }
1588 #define ARCH_USE_GNU_PROPERTY 1
1589 
1590 #else
1591 
1592 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1593                                     const uint32_t *data,
1594                                     struct image_info *info,
1595                                     Error **errp)
1596 {
1597     g_assert_not_reached();
1598 }
1599 #define ARCH_USE_GNU_PROPERTY 0
1600 
1601 #endif
1602 
1603 struct exec
1604 {
1605     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1606     unsigned int a_text;   /* length of text, in bytes */
1607     unsigned int a_data;   /* length of data, in bytes */
1608     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1609     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1610     unsigned int a_entry;  /* start address */
1611     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1612     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1613 };
1614 
1615 
1616 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1617 #define OMAGIC 0407
1618 #define NMAGIC 0410
1619 #define ZMAGIC 0413
1620 #define QMAGIC 0314
1621 
1622 /* Necessary parameters */
1623 #define TARGET_ELF_EXEC_PAGESIZE \
1624         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1625          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1626 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1627 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1628                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1629 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1630 
1631 #define DLINFO_ITEMS 16
1632 
1633 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1634 {
1635     memcpy(to, from, n);
1636 }
1637 
1638 #ifdef BSWAP_NEEDED
1639 static void bswap_ehdr(struct elfhdr *ehdr)
1640 {
1641     bswap16s(&ehdr->e_type);            /* Object file type */
1642     bswap16s(&ehdr->e_machine);         /* Architecture */
1643     bswap32s(&ehdr->e_version);         /* Object file version */
1644     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1645     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1646     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1647     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1648     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1649     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1650     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1651     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1652     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1653     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1654 }
1655 
1656 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1657 {
1658     int i;
1659     for (i = 0; i < phnum; ++i, ++phdr) {
1660         bswap32s(&phdr->p_type);        /* Segment type */
1661         bswap32s(&phdr->p_flags);       /* Segment flags */
1662         bswaptls(&phdr->p_offset);      /* Segment file offset */
1663         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1664         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1665         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1666         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1667         bswaptls(&phdr->p_align);       /* Segment alignment */
1668     }
1669 }
1670 
1671 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1672 {
1673     int i;
1674     for (i = 0; i < shnum; ++i, ++shdr) {
1675         bswap32s(&shdr->sh_name);
1676         bswap32s(&shdr->sh_type);
1677         bswaptls(&shdr->sh_flags);
1678         bswaptls(&shdr->sh_addr);
1679         bswaptls(&shdr->sh_offset);
1680         bswaptls(&shdr->sh_size);
1681         bswap32s(&shdr->sh_link);
1682         bswap32s(&shdr->sh_info);
1683         bswaptls(&shdr->sh_addralign);
1684         bswaptls(&shdr->sh_entsize);
1685     }
1686 }
1687 
1688 static void bswap_sym(struct elf_sym *sym)
1689 {
1690     bswap32s(&sym->st_name);
1691     bswaptls(&sym->st_value);
1692     bswaptls(&sym->st_size);
1693     bswap16s(&sym->st_shndx);
1694 }
1695 
1696 #ifdef TARGET_MIPS
1697 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1698 {
1699     bswap16s(&abiflags->version);
1700     bswap32s(&abiflags->ases);
1701     bswap32s(&abiflags->isa_ext);
1702     bswap32s(&abiflags->flags1);
1703     bswap32s(&abiflags->flags2);
1704 }
1705 #endif
1706 #else
1707 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1708 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1709 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1710 static inline void bswap_sym(struct elf_sym *sym) { }
1711 #ifdef TARGET_MIPS
1712 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1713 #endif
1714 #endif
1715 
1716 #ifdef USE_ELF_CORE_DUMP
1717 static int elf_core_dump(int, const CPUArchState *);
1718 #endif /* USE_ELF_CORE_DUMP */
1719 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1720 
1721 /* Verify the portions of EHDR within E_IDENT for the target.
1722    This can be performed before bswapping the entire header.  */
1723 static bool elf_check_ident(struct elfhdr *ehdr)
1724 {
1725     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1726             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1727             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1728             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1729             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1730             && ehdr->e_ident[EI_DATA] == ELF_DATA
1731             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1732 }
1733 
1734 /* Verify the portions of EHDR outside of E_IDENT for the target.
1735    This has to wait until after bswapping the header.  */
1736 static bool elf_check_ehdr(struct elfhdr *ehdr)
1737 {
1738     return (elf_check_arch(ehdr->e_machine)
1739             && elf_check_abi(ehdr->e_flags)
1740             && ehdr->e_ehsize == sizeof(struct elfhdr)
1741             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1742             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1743 }
1744 
1745 /*
1746  * 'copy_elf_strings()' copies argument/envelope strings from user
1747  * memory to free pages in kernel mem. These are in a format ready
1748  * to be put directly into the top of new user memory.
1749  *
1750  */
1751 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1752                                   abi_ulong p, abi_ulong stack_limit)
1753 {
1754     char *tmp;
1755     int len, i;
1756     abi_ulong top = p;
1757 
1758     if (!p) {
1759         return 0;       /* bullet-proofing */
1760     }
1761 
1762     if (STACK_GROWS_DOWN) {
1763         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1764         for (i = argc - 1; i >= 0; --i) {
1765             tmp = argv[i];
1766             if (!tmp) {
1767                 fprintf(stderr, "VFS: argc is wrong");
1768                 exit(-1);
1769             }
1770             len = strlen(tmp) + 1;
1771             tmp += len;
1772 
1773             if (len > (p - stack_limit)) {
1774                 return 0;
1775             }
1776             while (len) {
1777                 int bytes_to_copy = (len > offset) ? offset : len;
1778                 tmp -= bytes_to_copy;
1779                 p -= bytes_to_copy;
1780                 offset -= bytes_to_copy;
1781                 len -= bytes_to_copy;
1782 
1783                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1784 
1785                 if (offset == 0) {
1786                     memcpy_to_target(p, scratch, top - p);
1787                     top = p;
1788                     offset = TARGET_PAGE_SIZE;
1789                 }
1790             }
1791         }
1792         if (p != top) {
1793             memcpy_to_target(p, scratch + offset, top - p);
1794         }
1795     } else {
1796         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1797         for (i = 0; i < argc; ++i) {
1798             tmp = argv[i];
1799             if (!tmp) {
1800                 fprintf(stderr, "VFS: argc is wrong");
1801                 exit(-1);
1802             }
1803             len = strlen(tmp) + 1;
1804             if (len > (stack_limit - p)) {
1805                 return 0;
1806             }
1807             while (len) {
1808                 int bytes_to_copy = (len > remaining) ? remaining : len;
1809 
1810                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1811 
1812                 tmp += bytes_to_copy;
1813                 remaining -= bytes_to_copy;
1814                 p += bytes_to_copy;
1815                 len -= bytes_to_copy;
1816 
1817                 if (remaining == 0) {
1818                     memcpy_to_target(top, scratch, p - top);
1819                     top = p;
1820                     remaining = TARGET_PAGE_SIZE;
1821                 }
1822             }
1823         }
1824         if (p != top) {
1825             memcpy_to_target(top, scratch, p - top);
1826         }
1827     }
1828 
1829     return p;
1830 }
1831 
1832 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1833  * argument/environment space. Newer kernels (>2.6.33) allow more,
1834  * dependent on stack size, but guarantee at least 32 pages for
1835  * backwards compatibility.
1836  */
1837 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1838 
1839 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1840                                  struct image_info *info)
1841 {
1842     abi_ulong size, error, guard;
1843 
1844     size = guest_stack_size;
1845     if (size < STACK_LOWER_LIMIT) {
1846         size = STACK_LOWER_LIMIT;
1847     }
1848     guard = TARGET_PAGE_SIZE;
1849     if (guard < qemu_real_host_page_size) {
1850         guard = qemu_real_host_page_size;
1851     }
1852 
1853     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1854                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1855     if (error == -1) {
1856         perror("mmap stack");
1857         exit(-1);
1858     }
1859 
1860     /* We reserve one extra page at the top of the stack as guard.  */
1861     if (STACK_GROWS_DOWN) {
1862         target_mprotect(error, guard, PROT_NONE);
1863         info->stack_limit = error + guard;
1864         return info->stack_limit + size - sizeof(void *);
1865     } else {
1866         target_mprotect(error + size, guard, PROT_NONE);
1867         info->stack_limit = error + size;
1868         return error;
1869     }
1870 }
1871 
1872 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1873    after the data section (i.e. bss).  */
1874 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1875 {
1876     uintptr_t host_start, host_map_start, host_end;
1877 
1878     last_bss = TARGET_PAGE_ALIGN(last_bss);
1879 
1880     /* ??? There is confusion between qemu_real_host_page_size and
1881        qemu_host_page_size here and elsewhere in target_mmap, which
1882        may lead to the end of the data section mapping from the file
1883        not being mapped.  At least there was an explicit test and
1884        comment for that here, suggesting that "the file size must
1885        be known".  The comment probably pre-dates the introduction
1886        of the fstat system call in target_mmap which does in fact
1887        find out the size.  What isn't clear is if the workaround
1888        here is still actually needed.  For now, continue with it,
1889        but merge it with the "normal" mmap that would allocate the bss.  */
1890 
1891     host_start = (uintptr_t) g2h_untagged(elf_bss);
1892     host_end = (uintptr_t) g2h_untagged(last_bss);
1893     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1894 
1895     if (host_map_start < host_end) {
1896         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1897                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1898         if (p == MAP_FAILED) {
1899             perror("cannot mmap brk");
1900             exit(-1);
1901         }
1902     }
1903 
1904     /* Ensure that the bss page(s) are valid */
1905     if ((page_get_flags(last_bss-1) & prot) != prot) {
1906         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1907     }
1908 
1909     if (host_start < host_map_start) {
1910         memset((void *)host_start, 0, host_map_start - host_start);
1911     }
1912 }
1913 
1914 #ifdef TARGET_ARM
1915 static int elf_is_fdpic(struct elfhdr *exec)
1916 {
1917     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1918 }
1919 #else
1920 /* Default implementation, always false.  */
1921 static int elf_is_fdpic(struct elfhdr *exec)
1922 {
1923     return 0;
1924 }
1925 #endif
1926 
1927 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1928 {
1929     uint16_t n;
1930     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1931 
1932     /* elf32_fdpic_loadseg */
1933     n = info->nsegs;
1934     while (n--) {
1935         sp -= 12;
1936         put_user_u32(loadsegs[n].addr, sp+0);
1937         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1938         put_user_u32(loadsegs[n].p_memsz, sp+8);
1939     }
1940 
1941     /* elf32_fdpic_loadmap */
1942     sp -= 4;
1943     put_user_u16(0, sp+0); /* version */
1944     put_user_u16(info->nsegs, sp+2); /* nsegs */
1945 
1946     info->personality = PER_LINUX_FDPIC;
1947     info->loadmap_addr = sp;
1948 
1949     return sp;
1950 }
1951 
1952 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1953                                    struct elfhdr *exec,
1954                                    struct image_info *info,
1955                                    struct image_info *interp_info)
1956 {
1957     abi_ulong sp;
1958     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1959     int size;
1960     int i;
1961     abi_ulong u_rand_bytes;
1962     uint8_t k_rand_bytes[16];
1963     abi_ulong u_platform;
1964     const char *k_platform;
1965     const int n = sizeof(elf_addr_t);
1966 
1967     sp = p;
1968 
1969     /* Needs to be before we load the env/argc/... */
1970     if (elf_is_fdpic(exec)) {
1971         /* Need 4 byte alignment for these structs */
1972         sp &= ~3;
1973         sp = loader_build_fdpic_loadmap(info, sp);
1974         info->other_info = interp_info;
1975         if (interp_info) {
1976             interp_info->other_info = info;
1977             sp = loader_build_fdpic_loadmap(interp_info, sp);
1978             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1979             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1980         } else {
1981             info->interpreter_loadmap_addr = 0;
1982             info->interpreter_pt_dynamic_addr = 0;
1983         }
1984     }
1985 
1986     u_platform = 0;
1987     k_platform = ELF_PLATFORM;
1988     if (k_platform) {
1989         size_t len = strlen(k_platform) + 1;
1990         if (STACK_GROWS_DOWN) {
1991             sp -= (len + n - 1) & ~(n - 1);
1992             u_platform = sp;
1993             /* FIXME - check return value of memcpy_to_target() for failure */
1994             memcpy_to_target(sp, k_platform, len);
1995         } else {
1996             memcpy_to_target(sp, k_platform, len);
1997             u_platform = sp;
1998             sp += len + 1;
1999         }
2000     }
2001 
2002     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2003      * the argv and envp pointers.
2004      */
2005     if (STACK_GROWS_DOWN) {
2006         sp = QEMU_ALIGN_DOWN(sp, 16);
2007     } else {
2008         sp = QEMU_ALIGN_UP(sp, 16);
2009     }
2010 
2011     /*
2012      * Generate 16 random bytes for userspace PRNG seeding.
2013      */
2014     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2015     if (STACK_GROWS_DOWN) {
2016         sp -= 16;
2017         u_rand_bytes = sp;
2018         /* FIXME - check return value of memcpy_to_target() for failure */
2019         memcpy_to_target(sp, k_rand_bytes, 16);
2020     } else {
2021         memcpy_to_target(sp, k_rand_bytes, 16);
2022         u_rand_bytes = sp;
2023         sp += 16;
2024     }
2025 
2026     size = (DLINFO_ITEMS + 1) * 2;
2027     if (k_platform)
2028         size += 2;
2029 #ifdef DLINFO_ARCH_ITEMS
2030     size += DLINFO_ARCH_ITEMS * 2;
2031 #endif
2032 #ifdef ELF_HWCAP2
2033     size += 2;
2034 #endif
2035     info->auxv_len = size * n;
2036 
2037     size += envc + argc + 2;
2038     size += 1;  /* argc itself */
2039     size *= n;
2040 
2041     /* Allocate space and finalize stack alignment for entry now.  */
2042     if (STACK_GROWS_DOWN) {
2043         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2044         sp = u_argc;
2045     } else {
2046         u_argc = sp;
2047         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2048     }
2049 
2050     u_argv = u_argc + n;
2051     u_envp = u_argv + (argc + 1) * n;
2052     u_auxv = u_envp + (envc + 1) * n;
2053     info->saved_auxv = u_auxv;
2054     info->arg_start = u_argv;
2055     info->arg_end = u_argv + argc * n;
2056 
2057     /* This is correct because Linux defines
2058      * elf_addr_t as Elf32_Off / Elf64_Off
2059      */
2060 #define NEW_AUX_ENT(id, val) do {               \
2061         put_user_ual(id, u_auxv);  u_auxv += n; \
2062         put_user_ual(val, u_auxv); u_auxv += n; \
2063     } while(0)
2064 
2065 #ifdef ARCH_DLINFO
2066     /*
2067      * ARCH_DLINFO must come first so platform specific code can enforce
2068      * special alignment requirements on the AUXV if necessary (eg. PPC).
2069      */
2070     ARCH_DLINFO;
2071 #endif
2072     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2073      * on info->auxv_len will trigger.
2074      */
2075     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2076     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2077     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2078     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2079         /* Target doesn't support host page size alignment */
2080         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2081     } else {
2082         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2083                                                qemu_host_page_size)));
2084     }
2085     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2086     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2087     NEW_AUX_ENT(AT_ENTRY, info->entry);
2088     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2089     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2090     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2091     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2092     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2093     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2094     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2095     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2096     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2097 
2098 #ifdef ELF_HWCAP2
2099     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2100 #endif
2101 
2102     if (u_platform) {
2103         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2104     }
2105     NEW_AUX_ENT (AT_NULL, 0);
2106 #undef NEW_AUX_ENT
2107 
2108     /* Check that our initial calculation of the auxv length matches how much
2109      * we actually put into it.
2110      */
2111     assert(info->auxv_len == u_auxv - info->saved_auxv);
2112 
2113     put_user_ual(argc, u_argc);
2114 
2115     p = info->arg_strings;
2116     for (i = 0; i < argc; ++i) {
2117         put_user_ual(p, u_argv);
2118         u_argv += n;
2119         p += target_strlen(p) + 1;
2120     }
2121     put_user_ual(0, u_argv);
2122 
2123     p = info->env_strings;
2124     for (i = 0; i < envc; ++i) {
2125         put_user_ual(p, u_envp);
2126         u_envp += n;
2127         p += target_strlen(p) + 1;
2128     }
2129     put_user_ual(0, u_envp);
2130 
2131     return sp;
2132 }
2133 
2134 #ifndef ARM_COMMPAGE
2135 #define ARM_COMMPAGE 0
2136 #define init_guest_commpage() true
2137 #endif
2138 
2139 static void pgb_fail_in_use(const char *image_name)
2140 {
2141     error_report("%s: requires virtual address space that is in use "
2142                  "(omit the -B option or choose a different value)",
2143                  image_name);
2144     exit(EXIT_FAILURE);
2145 }
2146 
2147 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2148                                 abi_ulong guest_hiaddr, long align)
2149 {
2150     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2151     void *addr, *test;
2152 
2153     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2154         fprintf(stderr, "Requested guest base %p does not satisfy "
2155                 "host minimum alignment (0x%lx)\n",
2156                 (void *)guest_base, align);
2157         exit(EXIT_FAILURE);
2158     }
2159 
2160     /* Sanity check the guest binary. */
2161     if (reserved_va) {
2162         if (guest_hiaddr > reserved_va) {
2163             error_report("%s: requires more than reserved virtual "
2164                          "address space (0x%" PRIx64 " > 0x%lx)",
2165                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2166             exit(EXIT_FAILURE);
2167         }
2168     } else {
2169 #if HOST_LONG_BITS < TARGET_ABI_BITS
2170         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2171             error_report("%s: requires more virtual address space "
2172                          "than the host can provide (0x%" PRIx64 ")",
2173                          image_name, (uint64_t)guest_hiaddr - guest_base);
2174             exit(EXIT_FAILURE);
2175         }
2176 #endif
2177     }
2178 
2179     /*
2180      * Expand the allocation to the entire reserved_va.
2181      * Exclude the mmap_min_addr hole.
2182      */
2183     if (reserved_va) {
2184         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2185                         : mmap_min_addr - guest_base);
2186         guest_hiaddr = reserved_va;
2187     }
2188 
2189     /* Reserve the address space for the binary, or reserved_va. */
2190     test = g2h_untagged(guest_loaddr);
2191     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2192     if (test != addr) {
2193         pgb_fail_in_use(image_name);
2194     }
2195 }
2196 
2197 /**
2198  * pgd_find_hole_fallback: potential mmap address
2199  * @guest_size: size of available space
2200  * @brk: location of break
2201  * @align: memory alignment
2202  *
2203  * This is a fallback method for finding a hole in the host address
2204  * space if we don't have the benefit of being able to access
2205  * /proc/self/map. It can potentially take a very long time as we can
2206  * only dumbly iterate up the host address space seeing if the
2207  * allocation would work.
2208  */
2209 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2210                                         long align, uintptr_t offset)
2211 {
2212     uintptr_t base;
2213 
2214     /* Start (aligned) at the bottom and work our way up */
2215     base = ROUND_UP(mmap_min_addr, align);
2216 
2217     while (true) {
2218         uintptr_t align_start, end;
2219         align_start = ROUND_UP(base, align);
2220         end = align_start + guest_size + offset;
2221 
2222         /* if brk is anywhere in the range give ourselves some room to grow. */
2223         if (align_start <= brk && brk < end) {
2224             base = brk + (16 * MiB);
2225             continue;
2226         } else if (align_start + guest_size < align_start) {
2227             /* we have run out of space */
2228             return -1;
2229         } else {
2230             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2231                 MAP_FIXED_NOREPLACE;
2232             void * mmap_start = mmap((void *) align_start, guest_size,
2233                                      PROT_NONE, flags, -1, 0);
2234             if (mmap_start != MAP_FAILED) {
2235                 munmap(mmap_start, guest_size);
2236                 if (mmap_start == (void *) align_start) {
2237                     return (uintptr_t) mmap_start + offset;
2238                 }
2239             }
2240             base += qemu_host_page_size;
2241         }
2242     }
2243 }
2244 
2245 /* Return value for guest_base, or -1 if no hole found. */
2246 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2247                                long align, uintptr_t offset)
2248 {
2249     GSList *maps, *iter;
2250     uintptr_t this_start, this_end, next_start, brk;
2251     intptr_t ret = -1;
2252 
2253     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2254 
2255     maps = read_self_maps();
2256 
2257     /* Read brk after we've read the maps, which will malloc. */
2258     brk = (uintptr_t)sbrk(0);
2259 
2260     if (!maps) {
2261         ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2262         return ret == -1 ? -1 : ret - guest_loaddr;
2263     }
2264 
2265     /* The first hole is before the first map entry. */
2266     this_start = mmap_min_addr;
2267 
2268     for (iter = maps; iter;
2269          this_start = next_start, iter = g_slist_next(iter)) {
2270         uintptr_t align_start, hole_size;
2271 
2272         this_end = ((MapInfo *)iter->data)->start;
2273         next_start = ((MapInfo *)iter->data)->end;
2274         align_start = ROUND_UP(this_start + offset, align);
2275 
2276         /* Skip holes that are too small. */
2277         if (align_start >= this_end) {
2278             continue;
2279         }
2280         hole_size = this_end - align_start;
2281         if (hole_size < guest_size) {
2282             continue;
2283         }
2284 
2285         /* If this hole contains brk, give ourselves some room to grow. */
2286         if (this_start <= brk && brk < this_end) {
2287             hole_size -= guest_size;
2288             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2289                 align_start += 1 * GiB;
2290             } else if (hole_size >= 16 * MiB) {
2291                 align_start += 16 * MiB;
2292             } else {
2293                 align_start = (this_end - guest_size) & -align;
2294                 if (align_start < this_start) {
2295                     continue;
2296                 }
2297             }
2298         }
2299 
2300         /* Record the lowest successful match. */
2301         if (ret < 0) {
2302             ret = align_start - guest_loaddr;
2303         }
2304         /* If this hole contains the identity map, select it. */
2305         if (align_start <= guest_loaddr &&
2306             guest_loaddr + guest_size <= this_end) {
2307             ret = 0;
2308         }
2309         /* If this hole ends above the identity map, stop looking. */
2310         if (this_end >= guest_loaddr) {
2311             break;
2312         }
2313     }
2314     free_self_maps(maps);
2315 
2316     return ret;
2317 }
2318 
2319 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2320                        abi_ulong orig_hiaddr, long align)
2321 {
2322     uintptr_t loaddr = orig_loaddr;
2323     uintptr_t hiaddr = orig_hiaddr;
2324     uintptr_t offset = 0;
2325     uintptr_t addr;
2326 
2327     if (hiaddr != orig_hiaddr) {
2328         error_report("%s: requires virtual address space that the "
2329                      "host cannot provide (0x%" PRIx64 ")",
2330                      image_name, (uint64_t)orig_hiaddr);
2331         exit(EXIT_FAILURE);
2332     }
2333 
2334     loaddr &= -align;
2335     if (ARM_COMMPAGE) {
2336         /*
2337          * Extend the allocation to include the commpage.
2338          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2339          * need to ensure there is space bellow the guest_base so we
2340          * can map the commpage in the place needed when the address
2341          * arithmetic wraps around.
2342          */
2343         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2344             hiaddr = (uintptr_t) 4 << 30;
2345         } else {
2346             offset = -(ARM_COMMPAGE & -align);
2347         }
2348     }
2349 
2350     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2351     if (addr == -1) {
2352         /*
2353          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2354          * that can satisfy both.  But as the normal arm32 link base address
2355          * is ~32k, and we extend down to include the commpage, making the
2356          * overhead only ~96k, this is unlikely.
2357          */
2358         error_report("%s: Unable to allocate %#zx bytes of "
2359                      "virtual address space", image_name,
2360                      (size_t)(hiaddr - loaddr));
2361         exit(EXIT_FAILURE);
2362     }
2363 
2364     guest_base = addr;
2365 }
2366 
2367 static void pgb_dynamic(const char *image_name, long align)
2368 {
2369     /*
2370      * The executable is dynamic and does not require a fixed address.
2371      * All we need is a commpage that satisfies align.
2372      * If we do not need a commpage, leave guest_base == 0.
2373      */
2374     if (ARM_COMMPAGE) {
2375         uintptr_t addr, commpage;
2376 
2377         /* 64-bit hosts should have used reserved_va. */
2378         assert(sizeof(uintptr_t) == 4);
2379 
2380         /*
2381          * By putting the commpage at the first hole, that puts guest_base
2382          * just above that, and maximises the positive guest addresses.
2383          */
2384         commpage = ARM_COMMPAGE & -align;
2385         addr = pgb_find_hole(commpage, -commpage, align, 0);
2386         assert(addr != -1);
2387         guest_base = addr;
2388     }
2389 }
2390 
2391 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2392                             abi_ulong guest_hiaddr, long align)
2393 {
2394     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2395     void *addr, *test;
2396 
2397     if (guest_hiaddr > reserved_va) {
2398         error_report("%s: requires more than reserved virtual "
2399                      "address space (0x%" PRIx64 " > 0x%lx)",
2400                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2401         exit(EXIT_FAILURE);
2402     }
2403 
2404     /* Widen the "image" to the entire reserved address space. */
2405     pgb_static(image_name, 0, reserved_va, align);
2406 
2407     /* osdep.h defines this as 0 if it's missing */
2408     flags |= MAP_FIXED_NOREPLACE;
2409 
2410     /* Reserve the memory on the host. */
2411     assert(guest_base != 0);
2412     test = g2h_untagged(0);
2413     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2414     if (addr == MAP_FAILED || addr != test) {
2415         error_report("Unable to reserve 0x%lx bytes of virtual address "
2416                      "space at %p (%s) for use as guest address space (check your"
2417                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2418                      "using -R option)", reserved_va, test, strerror(errno));
2419         exit(EXIT_FAILURE);
2420     }
2421 }
2422 
2423 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2424                       abi_ulong guest_hiaddr)
2425 {
2426     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2427     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2428 
2429     if (have_guest_base) {
2430         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2431     } else if (reserved_va) {
2432         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2433     } else if (guest_loaddr) {
2434         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2435     } else {
2436         pgb_dynamic(image_name, align);
2437     }
2438 
2439     /* Reserve and initialize the commpage. */
2440     if (!init_guest_commpage()) {
2441         /*
2442          * With have_guest_base, the user has selected the address and
2443          * we are trying to work with that.  Otherwise, we have selected
2444          * free space and init_guest_commpage must succeeded.
2445          */
2446         assert(have_guest_base);
2447         pgb_fail_in_use(image_name);
2448     }
2449 
2450     assert(QEMU_IS_ALIGNED(guest_base, align));
2451     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2452                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2453 }
2454 
2455 enum {
2456     /* The string "GNU\0" as a magic number. */
2457     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2458     NOTE_DATA_SZ = 1 * KiB,
2459     NOTE_NAME_SZ = 4,
2460     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2461 };
2462 
2463 /*
2464  * Process a single gnu_property entry.
2465  * Return false for error.
2466  */
2467 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2468                                struct image_info *info, bool have_prev_type,
2469                                uint32_t *prev_type, Error **errp)
2470 {
2471     uint32_t pr_type, pr_datasz, step;
2472 
2473     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2474         goto error_data;
2475     }
2476     datasz -= *off;
2477     data += *off / sizeof(uint32_t);
2478 
2479     if (datasz < 2 * sizeof(uint32_t)) {
2480         goto error_data;
2481     }
2482     pr_type = data[0];
2483     pr_datasz = data[1];
2484     data += 2;
2485     datasz -= 2 * sizeof(uint32_t);
2486     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2487     if (step > datasz) {
2488         goto error_data;
2489     }
2490 
2491     /* Properties are supposed to be unique and sorted on pr_type. */
2492     if (have_prev_type && pr_type <= *prev_type) {
2493         if (pr_type == *prev_type) {
2494             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2495         } else {
2496             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2497         }
2498         return false;
2499     }
2500     *prev_type = pr_type;
2501 
2502     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2503         return false;
2504     }
2505 
2506     *off += 2 * sizeof(uint32_t) + step;
2507     return true;
2508 
2509  error_data:
2510     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2511     return false;
2512 }
2513 
2514 /* Process NT_GNU_PROPERTY_TYPE_0. */
2515 static bool parse_elf_properties(int image_fd,
2516                                  struct image_info *info,
2517                                  const struct elf_phdr *phdr,
2518                                  char bprm_buf[BPRM_BUF_SIZE],
2519                                  Error **errp)
2520 {
2521     union {
2522         struct elf_note nhdr;
2523         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2524     } note;
2525 
2526     int n, off, datasz;
2527     bool have_prev_type;
2528     uint32_t prev_type;
2529 
2530     /* Unless the arch requires properties, ignore them. */
2531     if (!ARCH_USE_GNU_PROPERTY) {
2532         return true;
2533     }
2534 
2535     /* If the properties are crazy large, that's too bad. */
2536     n = phdr->p_filesz;
2537     if (n > sizeof(note)) {
2538         error_setg(errp, "PT_GNU_PROPERTY too large");
2539         return false;
2540     }
2541     if (n < sizeof(note.nhdr)) {
2542         error_setg(errp, "PT_GNU_PROPERTY too small");
2543         return false;
2544     }
2545 
2546     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2547         memcpy(&note, bprm_buf + phdr->p_offset, n);
2548     } else {
2549         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2550         if (len != n) {
2551             error_setg_errno(errp, errno, "Error reading file header");
2552             return false;
2553         }
2554     }
2555 
2556     /*
2557      * The contents of a valid PT_GNU_PROPERTY is a sequence
2558      * of uint32_t -- swap them all now.
2559      */
2560 #ifdef BSWAP_NEEDED
2561     for (int i = 0; i < n / 4; i++) {
2562         bswap32s(note.data + i);
2563     }
2564 #endif
2565 
2566     /*
2567      * Note that nhdr is 3 words, and that the "name" described by namesz
2568      * immediately follows nhdr and is thus at the 4th word.  Further, all
2569      * of the inputs to the kernel's round_up are multiples of 4.
2570      */
2571     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2572         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2573         note.data[3] != GNU0_MAGIC) {
2574         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2575         return false;
2576     }
2577     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2578 
2579     datasz = note.nhdr.n_descsz + off;
2580     if (datasz > n) {
2581         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2582         return false;
2583     }
2584 
2585     have_prev_type = false;
2586     prev_type = 0;
2587     while (1) {
2588         if (off == datasz) {
2589             return true;  /* end, exit ok */
2590         }
2591         if (!parse_elf_property(note.data, &off, datasz, info,
2592                                 have_prev_type, &prev_type, errp)) {
2593             return false;
2594         }
2595         have_prev_type = true;
2596     }
2597 }
2598 
2599 /* Load an ELF image into the address space.
2600 
2601    IMAGE_NAME is the filename of the image, to use in error messages.
2602    IMAGE_FD is the open file descriptor for the image.
2603 
2604    BPRM_BUF is a copy of the beginning of the file; this of course
2605    contains the elf file header at offset 0.  It is assumed that this
2606    buffer is sufficiently aligned to present no problems to the host
2607    in accessing data at aligned offsets within the buffer.
2608 
2609    On return: INFO values will be filled in, as necessary or available.  */
2610 
2611 static void load_elf_image(const char *image_name, int image_fd,
2612                            struct image_info *info, char **pinterp_name,
2613                            char bprm_buf[BPRM_BUF_SIZE])
2614 {
2615     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2616     struct elf_phdr *phdr;
2617     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2618     int i, retval, prot_exec;
2619     Error *err = NULL;
2620 
2621     /* First of all, some simple consistency checks */
2622     if (!elf_check_ident(ehdr)) {
2623         error_setg(&err, "Invalid ELF image for this architecture");
2624         goto exit_errmsg;
2625     }
2626     bswap_ehdr(ehdr);
2627     if (!elf_check_ehdr(ehdr)) {
2628         error_setg(&err, "Invalid ELF image for this architecture");
2629         goto exit_errmsg;
2630     }
2631 
2632     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2633     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2634         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2635     } else {
2636         phdr = (struct elf_phdr *) alloca(i);
2637         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2638         if (retval != i) {
2639             goto exit_read;
2640         }
2641     }
2642     bswap_phdr(phdr, ehdr->e_phnum);
2643 
2644     info->nsegs = 0;
2645     info->pt_dynamic_addr = 0;
2646 
2647     mmap_lock();
2648 
2649     /*
2650      * Find the maximum size of the image and allocate an appropriate
2651      * amount of memory to handle that.  Locate the interpreter, if any.
2652      */
2653     loaddr = -1, hiaddr = 0;
2654     info->alignment = 0;
2655     for (i = 0; i < ehdr->e_phnum; ++i) {
2656         struct elf_phdr *eppnt = phdr + i;
2657         if (eppnt->p_type == PT_LOAD) {
2658             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2659             if (a < loaddr) {
2660                 loaddr = a;
2661             }
2662             a = eppnt->p_vaddr + eppnt->p_memsz;
2663             if (a > hiaddr) {
2664                 hiaddr = a;
2665             }
2666             ++info->nsegs;
2667             info->alignment |= eppnt->p_align;
2668         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2669             g_autofree char *interp_name = NULL;
2670 
2671             if (*pinterp_name) {
2672                 error_setg(&err, "Multiple PT_INTERP entries");
2673                 goto exit_errmsg;
2674             }
2675 
2676             interp_name = g_malloc(eppnt->p_filesz);
2677 
2678             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2679                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2680                        eppnt->p_filesz);
2681             } else {
2682                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2683                                eppnt->p_offset);
2684                 if (retval != eppnt->p_filesz) {
2685                     goto exit_read;
2686                 }
2687             }
2688             if (interp_name[eppnt->p_filesz - 1] != 0) {
2689                 error_setg(&err, "Invalid PT_INTERP entry");
2690                 goto exit_errmsg;
2691             }
2692             *pinterp_name = g_steal_pointer(&interp_name);
2693         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2694             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2695                 goto exit_errmsg;
2696             }
2697         }
2698     }
2699 
2700     if (pinterp_name != NULL) {
2701         /*
2702          * This is the main executable.
2703          *
2704          * Reserve extra space for brk.
2705          * We hold on to this space while placing the interpreter
2706          * and the stack, lest they be placed immediately after
2707          * the data segment and block allocation from the brk.
2708          *
2709          * 16MB is chosen as "large enough" without being so large
2710          * as to allow the result to not fit with a 32-bit guest on
2711          * a 32-bit host.
2712          */
2713         info->reserve_brk = 16 * MiB;
2714         hiaddr += info->reserve_brk;
2715 
2716         if (ehdr->e_type == ET_EXEC) {
2717             /*
2718              * Make sure that the low address does not conflict with
2719              * MMAP_MIN_ADDR or the QEMU application itself.
2720              */
2721             probe_guest_base(image_name, loaddr, hiaddr);
2722         } else {
2723             /*
2724              * The binary is dynamic, but we still need to
2725              * select guest_base.  In this case we pass a size.
2726              */
2727             probe_guest_base(image_name, 0, hiaddr - loaddr);
2728         }
2729     }
2730 
2731     /*
2732      * Reserve address space for all of this.
2733      *
2734      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2735      * exactly the address range that is required.
2736      *
2737      * Otherwise this is ET_DYN, and we are searching for a location
2738      * that can hold the memory space required.  If the image is
2739      * pre-linked, LOADDR will be non-zero, and the kernel should
2740      * honor that address if it happens to be free.
2741      *
2742      * In both cases, we will overwrite pages in this range with mappings
2743      * from the executable.
2744      */
2745     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2746                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2747                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2748                             -1, 0);
2749     if (load_addr == -1) {
2750         goto exit_mmap;
2751     }
2752     load_bias = load_addr - loaddr;
2753 
2754     if (elf_is_fdpic(ehdr)) {
2755         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2756             g_malloc(sizeof(*loadsegs) * info->nsegs);
2757 
2758         for (i = 0; i < ehdr->e_phnum; ++i) {
2759             switch (phdr[i].p_type) {
2760             case PT_DYNAMIC:
2761                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2762                 break;
2763             case PT_LOAD:
2764                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2765                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2766                 loadsegs->p_memsz = phdr[i].p_memsz;
2767                 ++loadsegs;
2768                 break;
2769             }
2770         }
2771     }
2772 
2773     info->load_bias = load_bias;
2774     info->code_offset = load_bias;
2775     info->data_offset = load_bias;
2776     info->load_addr = load_addr;
2777     info->entry = ehdr->e_entry + load_bias;
2778     info->start_code = -1;
2779     info->end_code = 0;
2780     info->start_data = -1;
2781     info->end_data = 0;
2782     info->brk = 0;
2783     info->elf_flags = ehdr->e_flags;
2784 
2785     prot_exec = PROT_EXEC;
2786 #ifdef TARGET_AARCH64
2787     /*
2788      * If the BTI feature is present, this indicates that the executable
2789      * pages of the startup binary should be mapped with PROT_BTI, so that
2790      * branch targets are enforced.
2791      *
2792      * The startup binary is either the interpreter or the static executable.
2793      * The interpreter is responsible for all pages of a dynamic executable.
2794      *
2795      * Elf notes are backward compatible to older cpus.
2796      * Do not enable BTI unless it is supported.
2797      */
2798     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2799         && (pinterp_name == NULL || *pinterp_name == 0)
2800         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2801         prot_exec |= TARGET_PROT_BTI;
2802     }
2803 #endif
2804 
2805     for (i = 0; i < ehdr->e_phnum; i++) {
2806         struct elf_phdr *eppnt = phdr + i;
2807         if (eppnt->p_type == PT_LOAD) {
2808             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2809             int elf_prot = 0;
2810 
2811             if (eppnt->p_flags & PF_R) {
2812                 elf_prot |= PROT_READ;
2813             }
2814             if (eppnt->p_flags & PF_W) {
2815                 elf_prot |= PROT_WRITE;
2816             }
2817             if (eppnt->p_flags & PF_X) {
2818                 elf_prot |= prot_exec;
2819             }
2820 
2821             vaddr = load_bias + eppnt->p_vaddr;
2822             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2823             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2824 
2825             vaddr_ef = vaddr + eppnt->p_filesz;
2826             vaddr_em = vaddr + eppnt->p_memsz;
2827 
2828             /*
2829              * Some segments may be completely empty, with a non-zero p_memsz
2830              * but no backing file segment.
2831              */
2832             if (eppnt->p_filesz != 0) {
2833                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2834                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2835                                     MAP_PRIVATE | MAP_FIXED,
2836                                     image_fd, eppnt->p_offset - vaddr_po);
2837 
2838                 if (error == -1) {
2839                     goto exit_mmap;
2840                 }
2841 
2842                 /*
2843                  * If the load segment requests extra zeros (e.g. bss), map it.
2844                  */
2845                 if (eppnt->p_filesz < eppnt->p_memsz) {
2846                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2847                 }
2848             } else if (eppnt->p_memsz != 0) {
2849                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2850                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2851                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2852                                     -1, 0);
2853 
2854                 if (error == -1) {
2855                     goto exit_mmap;
2856                 }
2857             }
2858 
2859             /* Find the full program boundaries.  */
2860             if (elf_prot & PROT_EXEC) {
2861                 if (vaddr < info->start_code) {
2862                     info->start_code = vaddr;
2863                 }
2864                 if (vaddr_ef > info->end_code) {
2865                     info->end_code = vaddr_ef;
2866                 }
2867             }
2868             if (elf_prot & PROT_WRITE) {
2869                 if (vaddr < info->start_data) {
2870                     info->start_data = vaddr;
2871                 }
2872                 if (vaddr_ef > info->end_data) {
2873                     info->end_data = vaddr_ef;
2874                 }
2875             }
2876             if (vaddr_em > info->brk) {
2877                 info->brk = vaddr_em;
2878             }
2879 #ifdef TARGET_MIPS
2880         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2881             Mips_elf_abiflags_v0 abiflags;
2882             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2883                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2884                 goto exit_errmsg;
2885             }
2886             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2887                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2888                        sizeof(Mips_elf_abiflags_v0));
2889             } else {
2890                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2891                                eppnt->p_offset);
2892                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2893                     goto exit_read;
2894                 }
2895             }
2896             bswap_mips_abiflags(&abiflags);
2897             info->fp_abi = abiflags.fp_abi;
2898 #endif
2899         }
2900     }
2901 
2902     if (info->end_data == 0) {
2903         info->start_data = info->end_code;
2904         info->end_data = info->end_code;
2905     }
2906 
2907     if (qemu_log_enabled()) {
2908         load_symbols(ehdr, image_fd, load_bias);
2909     }
2910 
2911     mmap_unlock();
2912 
2913     close(image_fd);
2914     return;
2915 
2916  exit_read:
2917     if (retval >= 0) {
2918         error_setg(&err, "Incomplete read of file header");
2919     } else {
2920         error_setg_errno(&err, errno, "Error reading file header");
2921     }
2922     goto exit_errmsg;
2923  exit_mmap:
2924     error_setg_errno(&err, errno, "Error mapping file");
2925     goto exit_errmsg;
2926  exit_errmsg:
2927     error_reportf_err(err, "%s: ", image_name);
2928     exit(-1);
2929 }
2930 
2931 static void load_elf_interp(const char *filename, struct image_info *info,
2932                             char bprm_buf[BPRM_BUF_SIZE])
2933 {
2934     int fd, retval;
2935     Error *err = NULL;
2936 
2937     fd = open(path(filename), O_RDONLY);
2938     if (fd < 0) {
2939         error_setg_file_open(&err, errno, filename);
2940         error_report_err(err);
2941         exit(-1);
2942     }
2943 
2944     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2945     if (retval < 0) {
2946         error_setg_errno(&err, errno, "Error reading file header");
2947         error_reportf_err(err, "%s: ", filename);
2948         exit(-1);
2949     }
2950 
2951     if (retval < BPRM_BUF_SIZE) {
2952         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2953     }
2954 
2955     load_elf_image(filename, fd, info, NULL, bprm_buf);
2956 }
2957 
2958 static int symfind(const void *s0, const void *s1)
2959 {
2960     target_ulong addr = *(target_ulong *)s0;
2961     struct elf_sym *sym = (struct elf_sym *)s1;
2962     int result = 0;
2963     if (addr < sym->st_value) {
2964         result = -1;
2965     } else if (addr >= sym->st_value + sym->st_size) {
2966         result = 1;
2967     }
2968     return result;
2969 }
2970 
2971 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2972 {
2973 #if ELF_CLASS == ELFCLASS32
2974     struct elf_sym *syms = s->disas_symtab.elf32;
2975 #else
2976     struct elf_sym *syms = s->disas_symtab.elf64;
2977 #endif
2978 
2979     // binary search
2980     struct elf_sym *sym;
2981 
2982     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2983     if (sym != NULL) {
2984         return s->disas_strtab + sym->st_name;
2985     }
2986 
2987     return "";
2988 }
2989 
2990 /* FIXME: This should use elf_ops.h  */
2991 static int symcmp(const void *s0, const void *s1)
2992 {
2993     struct elf_sym *sym0 = (struct elf_sym *)s0;
2994     struct elf_sym *sym1 = (struct elf_sym *)s1;
2995     return (sym0->st_value < sym1->st_value)
2996         ? -1
2997         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2998 }
2999 
3000 /* Best attempt to load symbols from this ELF object. */
3001 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3002 {
3003     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3004     uint64_t segsz;
3005     struct elf_shdr *shdr;
3006     char *strings = NULL;
3007     struct syminfo *s = NULL;
3008     struct elf_sym *new_syms, *syms = NULL;
3009 
3010     shnum = hdr->e_shnum;
3011     i = shnum * sizeof(struct elf_shdr);
3012     shdr = (struct elf_shdr *)alloca(i);
3013     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3014         return;
3015     }
3016 
3017     bswap_shdr(shdr, shnum);
3018     for (i = 0; i < shnum; ++i) {
3019         if (shdr[i].sh_type == SHT_SYMTAB) {
3020             sym_idx = i;
3021             str_idx = shdr[i].sh_link;
3022             goto found;
3023         }
3024     }
3025 
3026     /* There will be no symbol table if the file was stripped.  */
3027     return;
3028 
3029  found:
3030     /* Now know where the strtab and symtab are.  Snarf them.  */
3031     s = g_try_new(struct syminfo, 1);
3032     if (!s) {
3033         goto give_up;
3034     }
3035 
3036     segsz = shdr[str_idx].sh_size;
3037     s->disas_strtab = strings = g_try_malloc(segsz);
3038     if (!strings ||
3039         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3040         goto give_up;
3041     }
3042 
3043     segsz = shdr[sym_idx].sh_size;
3044     syms = g_try_malloc(segsz);
3045     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3046         goto give_up;
3047     }
3048 
3049     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3050         /* Implausibly large symbol table: give up rather than ploughing
3051          * on with the number of symbols calculation overflowing
3052          */
3053         goto give_up;
3054     }
3055     nsyms = segsz / sizeof(struct elf_sym);
3056     for (i = 0; i < nsyms; ) {
3057         bswap_sym(syms + i);
3058         /* Throw away entries which we do not need.  */
3059         if (syms[i].st_shndx == SHN_UNDEF
3060             || syms[i].st_shndx >= SHN_LORESERVE
3061             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3062             if (i < --nsyms) {
3063                 syms[i] = syms[nsyms];
3064             }
3065         } else {
3066 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3067             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3068             syms[i].st_value &= ~(target_ulong)1;
3069 #endif
3070             syms[i].st_value += load_bias;
3071             i++;
3072         }
3073     }
3074 
3075     /* No "useful" symbol.  */
3076     if (nsyms == 0) {
3077         goto give_up;
3078     }
3079 
3080     /* Attempt to free the storage associated with the local symbols
3081        that we threw away.  Whether or not this has any effect on the
3082        memory allocation depends on the malloc implementation and how
3083        many symbols we managed to discard.  */
3084     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3085     if (new_syms == NULL) {
3086         goto give_up;
3087     }
3088     syms = new_syms;
3089 
3090     qsort(syms, nsyms, sizeof(*syms), symcmp);
3091 
3092     s->disas_num_syms = nsyms;
3093 #if ELF_CLASS == ELFCLASS32
3094     s->disas_symtab.elf32 = syms;
3095 #else
3096     s->disas_symtab.elf64 = syms;
3097 #endif
3098     s->lookup_symbol = lookup_symbolxx;
3099     s->next = syminfos;
3100     syminfos = s;
3101 
3102     return;
3103 
3104 give_up:
3105     g_free(s);
3106     g_free(strings);
3107     g_free(syms);
3108 }
3109 
3110 uint32_t get_elf_eflags(int fd)
3111 {
3112     struct elfhdr ehdr;
3113     off_t offset;
3114     int ret;
3115 
3116     /* Read ELF header */
3117     offset = lseek(fd, 0, SEEK_SET);
3118     if (offset == (off_t) -1) {
3119         return 0;
3120     }
3121     ret = read(fd, &ehdr, sizeof(ehdr));
3122     if (ret < sizeof(ehdr)) {
3123         return 0;
3124     }
3125     offset = lseek(fd, offset, SEEK_SET);
3126     if (offset == (off_t) -1) {
3127         return 0;
3128     }
3129 
3130     /* Check ELF signature */
3131     if (!elf_check_ident(&ehdr)) {
3132         return 0;
3133     }
3134 
3135     /* check header */
3136     bswap_ehdr(&ehdr);
3137     if (!elf_check_ehdr(&ehdr)) {
3138         return 0;
3139     }
3140 
3141     /* return architecture id */
3142     return ehdr.e_flags;
3143 }
3144 
3145 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3146 {
3147     struct image_info interp_info;
3148     struct elfhdr elf_ex;
3149     char *elf_interpreter = NULL;
3150     char *scratch;
3151 
3152     memset(&interp_info, 0, sizeof(interp_info));
3153 #ifdef TARGET_MIPS
3154     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3155 #endif
3156 
3157     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3158 
3159     load_elf_image(bprm->filename, bprm->fd, info,
3160                    &elf_interpreter, bprm->buf);
3161 
3162     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3163        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3164        when we load the interpreter.  */
3165     elf_ex = *(struct elfhdr *)bprm->buf;
3166 
3167     /* Do this so that we can load the interpreter, if need be.  We will
3168        change some of these later */
3169     bprm->p = setup_arg_pages(bprm, info);
3170 
3171     scratch = g_new0(char, TARGET_PAGE_SIZE);
3172     if (STACK_GROWS_DOWN) {
3173         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3174                                    bprm->p, info->stack_limit);
3175         info->file_string = bprm->p;
3176         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3177                                    bprm->p, info->stack_limit);
3178         info->env_strings = bprm->p;
3179         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3180                                    bprm->p, info->stack_limit);
3181         info->arg_strings = bprm->p;
3182     } else {
3183         info->arg_strings = bprm->p;
3184         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3185                                    bprm->p, info->stack_limit);
3186         info->env_strings = bprm->p;
3187         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3188                                    bprm->p, info->stack_limit);
3189         info->file_string = bprm->p;
3190         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3191                                    bprm->p, info->stack_limit);
3192     }
3193 
3194     g_free(scratch);
3195 
3196     if (!bprm->p) {
3197         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3198         exit(-1);
3199     }
3200 
3201     if (elf_interpreter) {
3202         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3203 
3204         /* If the program interpreter is one of these two, then assume
3205            an iBCS2 image.  Otherwise assume a native linux image.  */
3206 
3207         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3208             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3209             info->personality = PER_SVR4;
3210 
3211             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3212                and some applications "depend" upon this behavior.  Since
3213                we do not have the power to recompile these, we emulate
3214                the SVr4 behavior.  Sigh.  */
3215             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3216                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3217         }
3218 #ifdef TARGET_MIPS
3219         info->interp_fp_abi = interp_info.fp_abi;
3220 #endif
3221     }
3222 
3223     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3224                                 info, (elf_interpreter ? &interp_info : NULL));
3225     info->start_stack = bprm->p;
3226 
3227     /* If we have an interpreter, set that as the program's entry point.
3228        Copy the load_bias as well, to help PPC64 interpret the entry
3229        point as a function descriptor.  Do this after creating elf tables
3230        so that we copy the original program entry point into the AUXV.  */
3231     if (elf_interpreter) {
3232         info->load_bias = interp_info.load_bias;
3233         info->entry = interp_info.entry;
3234         g_free(elf_interpreter);
3235     }
3236 
3237 #ifdef USE_ELF_CORE_DUMP
3238     bprm->core_dump = &elf_core_dump;
3239 #endif
3240 
3241     /*
3242      * If we reserved extra space for brk, release it now.
3243      * The implementation of do_brk in syscalls.c expects to be able
3244      * to mmap pages in this space.
3245      */
3246     if (info->reserve_brk) {
3247         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3248         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3249         target_munmap(start_brk, end_brk - start_brk);
3250     }
3251 
3252     return 0;
3253 }
3254 
3255 #ifdef USE_ELF_CORE_DUMP
3256 /*
3257  * Definitions to generate Intel SVR4-like core files.
3258  * These mostly have the same names as the SVR4 types with "target_elf_"
3259  * tacked on the front to prevent clashes with linux definitions,
3260  * and the typedef forms have been avoided.  This is mostly like
3261  * the SVR4 structure, but more Linuxy, with things that Linux does
3262  * not support and which gdb doesn't really use excluded.
3263  *
3264  * Fields we don't dump (their contents is zero) in linux-user qemu
3265  * are marked with XXX.
3266  *
3267  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3268  *
3269  * Porting ELF coredump for target is (quite) simple process.  First you
3270  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3271  * the target resides):
3272  *
3273  * #define USE_ELF_CORE_DUMP
3274  *
3275  * Next you define type of register set used for dumping.  ELF specification
3276  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3277  *
3278  * typedef <target_regtype> target_elf_greg_t;
3279  * #define ELF_NREG <number of registers>
3280  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3281  *
3282  * Last step is to implement target specific function that copies registers
3283  * from given cpu into just specified register set.  Prototype is:
3284  *
3285  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3286  *                                const CPUArchState *env);
3287  *
3288  * Parameters:
3289  *     regs - copy register values into here (allocated and zeroed by caller)
3290  *     env - copy registers from here
3291  *
3292  * Example for ARM target is provided in this file.
3293  */
3294 
3295 /* An ELF note in memory */
3296 struct memelfnote {
3297     const char *name;
3298     size_t     namesz;
3299     size_t     namesz_rounded;
3300     int        type;
3301     size_t     datasz;
3302     size_t     datasz_rounded;
3303     void       *data;
3304     size_t     notesz;
3305 };
3306 
3307 struct target_elf_siginfo {
3308     abi_int    si_signo; /* signal number */
3309     abi_int    si_code;  /* extra code */
3310     abi_int    si_errno; /* errno */
3311 };
3312 
3313 struct target_elf_prstatus {
3314     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3315     abi_short          pr_cursig;    /* Current signal */
3316     abi_ulong          pr_sigpend;   /* XXX */
3317     abi_ulong          pr_sighold;   /* XXX */
3318     target_pid_t       pr_pid;
3319     target_pid_t       pr_ppid;
3320     target_pid_t       pr_pgrp;
3321     target_pid_t       pr_sid;
3322     struct target_timeval pr_utime;  /* XXX User time */
3323     struct target_timeval pr_stime;  /* XXX System time */
3324     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3325     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3326     target_elf_gregset_t      pr_reg;       /* GP registers */
3327     abi_int            pr_fpvalid;   /* XXX */
3328 };
3329 
3330 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3331 
3332 struct target_elf_prpsinfo {
3333     char         pr_state;       /* numeric process state */
3334     char         pr_sname;       /* char for pr_state */
3335     char         pr_zomb;        /* zombie */
3336     char         pr_nice;        /* nice val */
3337     abi_ulong    pr_flag;        /* flags */
3338     target_uid_t pr_uid;
3339     target_gid_t pr_gid;
3340     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3341     /* Lots missing */
3342     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3343     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3344 };
3345 
3346 /* Here is the structure in which status of each thread is captured. */
3347 struct elf_thread_status {
3348     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3349     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3350 #if 0
3351     elf_fpregset_t fpu;             /* NT_PRFPREG */
3352     struct task_struct *thread;
3353     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3354 #endif
3355     struct memelfnote notes[1];
3356     int num_notes;
3357 };
3358 
3359 struct elf_note_info {
3360     struct memelfnote   *notes;
3361     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3362     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3363 
3364     QTAILQ_HEAD(, elf_thread_status) thread_list;
3365 #if 0
3366     /*
3367      * Current version of ELF coredump doesn't support
3368      * dumping fp regs etc.
3369      */
3370     elf_fpregset_t *fpu;
3371     elf_fpxregset_t *xfpu;
3372     int thread_status_size;
3373 #endif
3374     int notes_size;
3375     int numnote;
3376 };
3377 
3378 struct vm_area_struct {
3379     target_ulong   vma_start;  /* start vaddr of memory region */
3380     target_ulong   vma_end;    /* end vaddr of memory region */
3381     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3382     QTAILQ_ENTRY(vm_area_struct) vma_link;
3383 };
3384 
3385 struct mm_struct {
3386     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3387     int mm_count;           /* number of mappings */
3388 };
3389 
3390 static struct mm_struct *vma_init(void);
3391 static void vma_delete(struct mm_struct *);
3392 static int vma_add_mapping(struct mm_struct *, target_ulong,
3393                            target_ulong, abi_ulong);
3394 static int vma_get_mapping_count(const struct mm_struct *);
3395 static struct vm_area_struct *vma_first(const struct mm_struct *);
3396 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3397 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3398 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3399                       unsigned long flags);
3400 
3401 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3402 static void fill_note(struct memelfnote *, const char *, int,
3403                       unsigned int, void *);
3404 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3405 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3406 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3407 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3408 static size_t note_size(const struct memelfnote *);
3409 static void free_note_info(struct elf_note_info *);
3410 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3411 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3412 
3413 static int dump_write(int, const void *, size_t);
3414 static int write_note(struct memelfnote *, int);
3415 static int write_note_info(struct elf_note_info *, int);
3416 
3417 #ifdef BSWAP_NEEDED
3418 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3419 {
3420     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3421     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3422     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3423     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3424     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3425     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3426     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3427     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3428     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3429     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3430     /* cpu times are not filled, so we skip them */
3431     /* regs should be in correct format already */
3432     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3433 }
3434 
3435 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3436 {
3437     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3438     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3439     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3440     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3441     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3442     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3443     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3444 }
3445 
3446 static void bswap_note(struct elf_note *en)
3447 {
3448     bswap32s(&en->n_namesz);
3449     bswap32s(&en->n_descsz);
3450     bswap32s(&en->n_type);
3451 }
3452 #else
3453 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3454 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3455 static inline void bswap_note(struct elf_note *en) { }
3456 #endif /* BSWAP_NEEDED */
3457 
3458 /*
3459  * Minimal support for linux memory regions.  These are needed
3460  * when we are finding out what memory exactly belongs to
3461  * emulated process.  No locks needed here, as long as
3462  * thread that received the signal is stopped.
3463  */
3464 
3465 static struct mm_struct *vma_init(void)
3466 {
3467     struct mm_struct *mm;
3468 
3469     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3470         return (NULL);
3471 
3472     mm->mm_count = 0;
3473     QTAILQ_INIT(&mm->mm_mmap);
3474 
3475     return (mm);
3476 }
3477 
3478 static void vma_delete(struct mm_struct *mm)
3479 {
3480     struct vm_area_struct *vma;
3481 
3482     while ((vma = vma_first(mm)) != NULL) {
3483         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3484         g_free(vma);
3485     }
3486     g_free(mm);
3487 }
3488 
3489 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3490                            target_ulong end, abi_ulong flags)
3491 {
3492     struct vm_area_struct *vma;
3493 
3494     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3495         return (-1);
3496 
3497     vma->vma_start = start;
3498     vma->vma_end = end;
3499     vma->vma_flags = flags;
3500 
3501     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3502     mm->mm_count++;
3503 
3504     return (0);
3505 }
3506 
3507 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3508 {
3509     return (QTAILQ_FIRST(&mm->mm_mmap));
3510 }
3511 
3512 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3513 {
3514     return (QTAILQ_NEXT(vma, vma_link));
3515 }
3516 
3517 static int vma_get_mapping_count(const struct mm_struct *mm)
3518 {
3519     return (mm->mm_count);
3520 }
3521 
3522 /*
3523  * Calculate file (dump) size of given memory region.
3524  */
3525 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3526 {
3527     /* if we cannot even read the first page, skip it */
3528     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3529         return (0);
3530 
3531     /*
3532      * Usually we don't dump executable pages as they contain
3533      * non-writable code that debugger can read directly from
3534      * target library etc.  However, thread stacks are marked
3535      * also executable so we read in first page of given region
3536      * and check whether it contains elf header.  If there is
3537      * no elf header, we dump it.
3538      */
3539     if (vma->vma_flags & PROT_EXEC) {
3540         char page[TARGET_PAGE_SIZE];
3541 
3542         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3543             return 0;
3544         }
3545         if ((page[EI_MAG0] == ELFMAG0) &&
3546             (page[EI_MAG1] == ELFMAG1) &&
3547             (page[EI_MAG2] == ELFMAG2) &&
3548             (page[EI_MAG3] == ELFMAG3)) {
3549             /*
3550              * Mappings are possibly from ELF binary.  Don't dump
3551              * them.
3552              */
3553             return (0);
3554         }
3555     }
3556 
3557     return (vma->vma_end - vma->vma_start);
3558 }
3559 
3560 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3561                       unsigned long flags)
3562 {
3563     struct mm_struct *mm = (struct mm_struct *)priv;
3564 
3565     vma_add_mapping(mm, start, end, flags);
3566     return (0);
3567 }
3568 
3569 static void fill_note(struct memelfnote *note, const char *name, int type,
3570                       unsigned int sz, void *data)
3571 {
3572     unsigned int namesz;
3573 
3574     namesz = strlen(name) + 1;
3575     note->name = name;
3576     note->namesz = namesz;
3577     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3578     note->type = type;
3579     note->datasz = sz;
3580     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3581 
3582     note->data = data;
3583 
3584     /*
3585      * We calculate rounded up note size here as specified by
3586      * ELF document.
3587      */
3588     note->notesz = sizeof (struct elf_note) +
3589         note->namesz_rounded + note->datasz_rounded;
3590 }
3591 
3592 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3593                             uint32_t flags)
3594 {
3595     (void) memset(elf, 0, sizeof(*elf));
3596 
3597     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3598     elf->e_ident[EI_CLASS] = ELF_CLASS;
3599     elf->e_ident[EI_DATA] = ELF_DATA;
3600     elf->e_ident[EI_VERSION] = EV_CURRENT;
3601     elf->e_ident[EI_OSABI] = ELF_OSABI;
3602 
3603     elf->e_type = ET_CORE;
3604     elf->e_machine = machine;
3605     elf->e_version = EV_CURRENT;
3606     elf->e_phoff = sizeof(struct elfhdr);
3607     elf->e_flags = flags;
3608     elf->e_ehsize = sizeof(struct elfhdr);
3609     elf->e_phentsize = sizeof(struct elf_phdr);
3610     elf->e_phnum = segs;
3611 
3612     bswap_ehdr(elf);
3613 }
3614 
3615 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3616 {
3617     phdr->p_type = PT_NOTE;
3618     phdr->p_offset = offset;
3619     phdr->p_vaddr = 0;
3620     phdr->p_paddr = 0;
3621     phdr->p_filesz = sz;
3622     phdr->p_memsz = 0;
3623     phdr->p_flags = 0;
3624     phdr->p_align = 0;
3625 
3626     bswap_phdr(phdr, 1);
3627 }
3628 
3629 static size_t note_size(const struct memelfnote *note)
3630 {
3631     return (note->notesz);
3632 }
3633 
3634 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3635                           const TaskState *ts, int signr)
3636 {
3637     (void) memset(prstatus, 0, sizeof (*prstatus));
3638     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3639     prstatus->pr_pid = ts->ts_tid;
3640     prstatus->pr_ppid = getppid();
3641     prstatus->pr_pgrp = getpgrp();
3642     prstatus->pr_sid = getsid(0);
3643 
3644     bswap_prstatus(prstatus);
3645 }
3646 
3647 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3648 {
3649     char *base_filename;
3650     unsigned int i, len;
3651 
3652     (void) memset(psinfo, 0, sizeof (*psinfo));
3653 
3654     len = ts->info->env_strings - ts->info->arg_strings;
3655     if (len >= ELF_PRARGSZ)
3656         len = ELF_PRARGSZ - 1;
3657     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3658         return -EFAULT;
3659     }
3660     for (i = 0; i < len; i++)
3661         if (psinfo->pr_psargs[i] == 0)
3662             psinfo->pr_psargs[i] = ' ';
3663     psinfo->pr_psargs[len] = 0;
3664 
3665     psinfo->pr_pid = getpid();
3666     psinfo->pr_ppid = getppid();
3667     psinfo->pr_pgrp = getpgrp();
3668     psinfo->pr_sid = getsid(0);
3669     psinfo->pr_uid = getuid();
3670     psinfo->pr_gid = getgid();
3671 
3672     base_filename = g_path_get_basename(ts->bprm->filename);
3673     /*
3674      * Using strncpy here is fine: at max-length,
3675      * this field is not NUL-terminated.
3676      */
3677     (void) strncpy(psinfo->pr_fname, base_filename,
3678                    sizeof(psinfo->pr_fname));
3679 
3680     g_free(base_filename);
3681     bswap_psinfo(psinfo);
3682     return (0);
3683 }
3684 
3685 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3686 {
3687     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3688     elf_addr_t orig_auxv = auxv;
3689     void *ptr;
3690     int len = ts->info->auxv_len;
3691 
3692     /*
3693      * Auxiliary vector is stored in target process stack.  It contains
3694      * {type, value} pairs that we need to dump into note.  This is not
3695      * strictly necessary but we do it here for sake of completeness.
3696      */
3697 
3698     /* read in whole auxv vector and copy it to memelfnote */
3699     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3700     if (ptr != NULL) {
3701         fill_note(note, "CORE", NT_AUXV, len, ptr);
3702         unlock_user(ptr, auxv, len);
3703     }
3704 }
3705 
3706 /*
3707  * Constructs name of coredump file.  We have following convention
3708  * for the name:
3709  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3710  *
3711  * Returns the filename
3712  */
3713 static char *core_dump_filename(const TaskState *ts)
3714 {
3715     g_autoptr(GDateTime) now = g_date_time_new_now_local();
3716     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3717     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3718 
3719     return g_strdup_printf("qemu_%s_%s_%d.core",
3720                            base_filename, nowstr, (int)getpid());
3721 }
3722 
3723 static int dump_write(int fd, const void *ptr, size_t size)
3724 {
3725     const char *bufp = (const char *)ptr;
3726     ssize_t bytes_written, bytes_left;
3727     struct rlimit dumpsize;
3728     off_t pos;
3729 
3730     bytes_written = 0;
3731     getrlimit(RLIMIT_CORE, &dumpsize);
3732     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3733         if (errno == ESPIPE) { /* not a seekable stream */
3734             bytes_left = size;
3735         } else {
3736             return pos;
3737         }
3738     } else {
3739         if (dumpsize.rlim_cur <= pos) {
3740             return -1;
3741         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3742             bytes_left = size;
3743         } else {
3744             size_t limit_left=dumpsize.rlim_cur - pos;
3745             bytes_left = limit_left >= size ? size : limit_left ;
3746         }
3747     }
3748 
3749     /*
3750      * In normal conditions, single write(2) should do but
3751      * in case of socket etc. this mechanism is more portable.
3752      */
3753     do {
3754         bytes_written = write(fd, bufp, bytes_left);
3755         if (bytes_written < 0) {
3756             if (errno == EINTR)
3757                 continue;
3758             return (-1);
3759         } else if (bytes_written == 0) { /* eof */
3760             return (-1);
3761         }
3762         bufp += bytes_written;
3763         bytes_left -= bytes_written;
3764     } while (bytes_left > 0);
3765 
3766     return (0);
3767 }
3768 
3769 static int write_note(struct memelfnote *men, int fd)
3770 {
3771     struct elf_note en;
3772 
3773     en.n_namesz = men->namesz;
3774     en.n_type = men->type;
3775     en.n_descsz = men->datasz;
3776 
3777     bswap_note(&en);
3778 
3779     if (dump_write(fd, &en, sizeof(en)) != 0)
3780         return (-1);
3781     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3782         return (-1);
3783     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3784         return (-1);
3785 
3786     return (0);
3787 }
3788 
3789 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3790 {
3791     CPUState *cpu = env_cpu((CPUArchState *)env);
3792     TaskState *ts = (TaskState *)cpu->opaque;
3793     struct elf_thread_status *ets;
3794 
3795     ets = g_malloc0(sizeof (*ets));
3796     ets->num_notes = 1; /* only prstatus is dumped */
3797     fill_prstatus(&ets->prstatus, ts, 0);
3798     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3799     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3800               &ets->prstatus);
3801 
3802     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3803 
3804     info->notes_size += note_size(&ets->notes[0]);
3805 }
3806 
3807 static void init_note_info(struct elf_note_info *info)
3808 {
3809     /* Initialize the elf_note_info structure so that it is at
3810      * least safe to call free_note_info() on it. Must be
3811      * called before calling fill_note_info().
3812      */
3813     memset(info, 0, sizeof (*info));
3814     QTAILQ_INIT(&info->thread_list);
3815 }
3816 
3817 static int fill_note_info(struct elf_note_info *info,
3818                           long signr, const CPUArchState *env)
3819 {
3820 #define NUMNOTES 3
3821     CPUState *cpu = env_cpu((CPUArchState *)env);
3822     TaskState *ts = (TaskState *)cpu->opaque;
3823     int i;
3824 
3825     info->notes = g_new0(struct memelfnote, NUMNOTES);
3826     if (info->notes == NULL)
3827         return (-ENOMEM);
3828     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3829     if (info->prstatus == NULL)
3830         return (-ENOMEM);
3831     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3832     if (info->prstatus == NULL)
3833         return (-ENOMEM);
3834 
3835     /*
3836      * First fill in status (and registers) of current thread
3837      * including process info & aux vector.
3838      */
3839     fill_prstatus(info->prstatus, ts, signr);
3840     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3841     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3842               sizeof (*info->prstatus), info->prstatus);
3843     fill_psinfo(info->psinfo, ts);
3844     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3845               sizeof (*info->psinfo), info->psinfo);
3846     fill_auxv_note(&info->notes[2], ts);
3847     info->numnote = 3;
3848 
3849     info->notes_size = 0;
3850     for (i = 0; i < info->numnote; i++)
3851         info->notes_size += note_size(&info->notes[i]);
3852 
3853     /* read and fill status of all threads */
3854     cpu_list_lock();
3855     CPU_FOREACH(cpu) {
3856         if (cpu == thread_cpu) {
3857             continue;
3858         }
3859         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3860     }
3861     cpu_list_unlock();
3862 
3863     return (0);
3864 }
3865 
3866 static void free_note_info(struct elf_note_info *info)
3867 {
3868     struct elf_thread_status *ets;
3869 
3870     while (!QTAILQ_EMPTY(&info->thread_list)) {
3871         ets = QTAILQ_FIRST(&info->thread_list);
3872         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3873         g_free(ets);
3874     }
3875 
3876     g_free(info->prstatus);
3877     g_free(info->psinfo);
3878     g_free(info->notes);
3879 }
3880 
3881 static int write_note_info(struct elf_note_info *info, int fd)
3882 {
3883     struct elf_thread_status *ets;
3884     int i, error = 0;
3885 
3886     /* write prstatus, psinfo and auxv for current thread */
3887     for (i = 0; i < info->numnote; i++)
3888         if ((error = write_note(&info->notes[i], fd)) != 0)
3889             return (error);
3890 
3891     /* write prstatus for each thread */
3892     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3893         if ((error = write_note(&ets->notes[0], fd)) != 0)
3894             return (error);
3895     }
3896 
3897     return (0);
3898 }
3899 
3900 /*
3901  * Write out ELF coredump.
3902  *
3903  * See documentation of ELF object file format in:
3904  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3905  *
3906  * Coredump format in linux is following:
3907  *
3908  * 0   +----------------------+         \
3909  *     | ELF header           | ET_CORE  |
3910  *     +----------------------+          |
3911  *     | ELF program headers  |          |--- headers
3912  *     | - NOTE section       |          |
3913  *     | - PT_LOAD sections   |          |
3914  *     +----------------------+         /
3915  *     | NOTEs:               |
3916  *     | - NT_PRSTATUS        |
3917  *     | - NT_PRSINFO         |
3918  *     | - NT_AUXV            |
3919  *     +----------------------+ <-- aligned to target page
3920  *     | Process memory dump  |
3921  *     :                      :
3922  *     .                      .
3923  *     :                      :
3924  *     |                      |
3925  *     +----------------------+
3926  *
3927  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3928  * NT_PRSINFO  -> struct elf_prpsinfo
3929  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3930  *
3931  * Format follows System V format as close as possible.  Current
3932  * version limitations are as follows:
3933  *     - no floating point registers are dumped
3934  *
3935  * Function returns 0 in case of success, negative errno otherwise.
3936  *
3937  * TODO: make this work also during runtime: it should be
3938  * possible to force coredump from running process and then
3939  * continue processing.  For example qemu could set up SIGUSR2
3940  * handler (provided that target process haven't registered
3941  * handler for that) that does the dump when signal is received.
3942  */
3943 static int elf_core_dump(int signr, const CPUArchState *env)
3944 {
3945     const CPUState *cpu = env_cpu((CPUArchState *)env);
3946     const TaskState *ts = (const TaskState *)cpu->opaque;
3947     struct vm_area_struct *vma = NULL;
3948     g_autofree char *corefile = NULL;
3949     struct elf_note_info info;
3950     struct elfhdr elf;
3951     struct elf_phdr phdr;
3952     struct rlimit dumpsize;
3953     struct mm_struct *mm = NULL;
3954     off_t offset = 0, data_offset = 0;
3955     int segs = 0;
3956     int fd = -1;
3957 
3958     init_note_info(&info);
3959 
3960     errno = 0;
3961     getrlimit(RLIMIT_CORE, &dumpsize);
3962     if (dumpsize.rlim_cur == 0)
3963         return 0;
3964 
3965     corefile = core_dump_filename(ts);
3966 
3967     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3968                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3969         return (-errno);
3970 
3971     /*
3972      * Walk through target process memory mappings and
3973      * set up structure containing this information.  After
3974      * this point vma_xxx functions can be used.
3975      */
3976     if ((mm = vma_init()) == NULL)
3977         goto out;
3978 
3979     walk_memory_regions(mm, vma_walker);
3980     segs = vma_get_mapping_count(mm);
3981 
3982     /*
3983      * Construct valid coredump ELF header.  We also
3984      * add one more segment for notes.
3985      */
3986     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3987     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3988         goto out;
3989 
3990     /* fill in the in-memory version of notes */
3991     if (fill_note_info(&info, signr, env) < 0)
3992         goto out;
3993 
3994     offset += sizeof (elf);                             /* elf header */
3995     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3996 
3997     /* write out notes program header */
3998     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3999 
4000     offset += info.notes_size;
4001     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4002         goto out;
4003 
4004     /*
4005      * ELF specification wants data to start at page boundary so
4006      * we align it here.
4007      */
4008     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4009 
4010     /*
4011      * Write program headers for memory regions mapped in
4012      * the target process.
4013      */
4014     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4015         (void) memset(&phdr, 0, sizeof (phdr));
4016 
4017         phdr.p_type = PT_LOAD;
4018         phdr.p_offset = offset;
4019         phdr.p_vaddr = vma->vma_start;
4020         phdr.p_paddr = 0;
4021         phdr.p_filesz = vma_dump_size(vma);
4022         offset += phdr.p_filesz;
4023         phdr.p_memsz = vma->vma_end - vma->vma_start;
4024         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4025         if (vma->vma_flags & PROT_WRITE)
4026             phdr.p_flags |= PF_W;
4027         if (vma->vma_flags & PROT_EXEC)
4028             phdr.p_flags |= PF_X;
4029         phdr.p_align = ELF_EXEC_PAGESIZE;
4030 
4031         bswap_phdr(&phdr, 1);
4032         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4033             goto out;
4034         }
4035     }
4036 
4037     /*
4038      * Next we write notes just after program headers.  No
4039      * alignment needed here.
4040      */
4041     if (write_note_info(&info, fd) < 0)
4042         goto out;
4043 
4044     /* align data to page boundary */
4045     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4046         goto out;
4047 
4048     /*
4049      * Finally we can dump process memory into corefile as well.
4050      */
4051     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4052         abi_ulong addr;
4053         abi_ulong end;
4054 
4055         end = vma->vma_start + vma_dump_size(vma);
4056 
4057         for (addr = vma->vma_start; addr < end;
4058              addr += TARGET_PAGE_SIZE) {
4059             char page[TARGET_PAGE_SIZE];
4060             int error;
4061 
4062             /*
4063              *  Read in page from target process memory and
4064              *  write it to coredump file.
4065              */
4066             error = copy_from_user(page, addr, sizeof (page));
4067             if (error != 0) {
4068                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4069                                addr);
4070                 errno = -error;
4071                 goto out;
4072             }
4073             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4074                 goto out;
4075         }
4076     }
4077 
4078  out:
4079     free_note_info(&info);
4080     if (mm != NULL)
4081         vma_delete(mm);
4082     (void) close(fd);
4083 
4084     if (errno != 0)
4085         return (-errno);
4086     return (0);
4087 }
4088 #endif /* USE_ELF_CORE_DUMP */
4089 
4090 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4091 {
4092     init_thread(regs, infop);
4093 }
4094