1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/path.h" 11 #include "qemu/queue.h" 12 #include "qemu/guest-random.h" 13 #include "qemu/units.h" 14 #include "qemu/selfmap.h" 15 16 #ifdef _ARCH_PPC64 17 #undef ARCH_DLINFO 18 #undef ELF_PLATFORM 19 #undef ELF_HWCAP 20 #undef ELF_HWCAP2 21 #undef ELF_CLASS 22 #undef ELF_DATA 23 #undef ELF_ARCH 24 #endif 25 26 #define ELF_OSABI ELFOSABI_SYSV 27 28 /* from personality.h */ 29 30 /* 31 * Flags for bug emulation. 32 * 33 * These occupy the top three bytes. 34 */ 35 enum { 36 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 37 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 38 descriptors (signal handling) */ 39 MMAP_PAGE_ZERO = 0x0100000, 40 ADDR_COMPAT_LAYOUT = 0x0200000, 41 READ_IMPLIES_EXEC = 0x0400000, 42 ADDR_LIMIT_32BIT = 0x0800000, 43 SHORT_INODE = 0x1000000, 44 WHOLE_SECONDS = 0x2000000, 45 STICKY_TIMEOUTS = 0x4000000, 46 ADDR_LIMIT_3GB = 0x8000000, 47 }; 48 49 /* 50 * Personality types. 51 * 52 * These go in the low byte. Avoid using the top bit, it will 53 * conflict with error returns. 54 */ 55 enum { 56 PER_LINUX = 0x0000, 57 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 58 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 59 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 60 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 61 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 62 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 63 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 64 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 65 PER_BSD = 0x0006, 66 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 67 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 68 PER_LINUX32 = 0x0008, 69 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 70 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 71 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 72 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 73 PER_RISCOS = 0x000c, 74 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 75 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 76 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 77 PER_HPUX = 0x0010, 78 PER_MASK = 0x00ff, 79 }; 80 81 /* 82 * Return the base personality without flags. 83 */ 84 #define personality(pers) (pers & PER_MASK) 85 86 int info_is_fdpic(struct image_info *info) 87 { 88 return info->personality == PER_LINUX_FDPIC; 89 } 90 91 /* this flag is uneffective under linux too, should be deleted */ 92 #ifndef MAP_DENYWRITE 93 #define MAP_DENYWRITE 0 94 #endif 95 96 /* should probably go in elf.h */ 97 #ifndef ELIBBAD 98 #define ELIBBAD 80 99 #endif 100 101 #ifdef TARGET_WORDS_BIGENDIAN 102 #define ELF_DATA ELFDATA2MSB 103 #else 104 #define ELF_DATA ELFDATA2LSB 105 #endif 106 107 #ifdef TARGET_ABI_MIPSN32 108 typedef abi_ullong target_elf_greg_t; 109 #define tswapreg(ptr) tswap64(ptr) 110 #else 111 typedef abi_ulong target_elf_greg_t; 112 #define tswapreg(ptr) tswapal(ptr) 113 #endif 114 115 #ifdef USE_UID16 116 typedef abi_ushort target_uid_t; 117 typedef abi_ushort target_gid_t; 118 #else 119 typedef abi_uint target_uid_t; 120 typedef abi_uint target_gid_t; 121 #endif 122 typedef abi_int target_pid_t; 123 124 #ifdef TARGET_I386 125 126 #define ELF_PLATFORM get_elf_platform() 127 128 static const char *get_elf_platform(void) 129 { 130 static char elf_platform[] = "i386"; 131 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 132 if (family > 6) 133 family = 6; 134 if (family >= 3) 135 elf_platform[1] = '0' + family; 136 return elf_platform; 137 } 138 139 #define ELF_HWCAP get_elf_hwcap() 140 141 static uint32_t get_elf_hwcap(void) 142 { 143 X86CPU *cpu = X86_CPU(thread_cpu); 144 145 return cpu->env.features[FEAT_1_EDX]; 146 } 147 148 #ifdef TARGET_X86_64 149 #define ELF_START_MMAP 0x2aaaaab000ULL 150 151 #define ELF_CLASS ELFCLASS64 152 #define ELF_ARCH EM_X86_64 153 154 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 155 { 156 regs->rax = 0; 157 regs->rsp = infop->start_stack; 158 regs->rip = infop->entry; 159 } 160 161 #define ELF_NREG 27 162 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 163 164 /* 165 * Note that ELF_NREG should be 29 as there should be place for 166 * TRAPNO and ERR "registers" as well but linux doesn't dump 167 * those. 168 * 169 * See linux kernel: arch/x86/include/asm/elf.h 170 */ 171 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 172 { 173 (*regs)[0] = env->regs[15]; 174 (*regs)[1] = env->regs[14]; 175 (*regs)[2] = env->regs[13]; 176 (*regs)[3] = env->regs[12]; 177 (*regs)[4] = env->regs[R_EBP]; 178 (*regs)[5] = env->regs[R_EBX]; 179 (*regs)[6] = env->regs[11]; 180 (*regs)[7] = env->regs[10]; 181 (*regs)[8] = env->regs[9]; 182 (*regs)[9] = env->regs[8]; 183 (*regs)[10] = env->regs[R_EAX]; 184 (*regs)[11] = env->regs[R_ECX]; 185 (*regs)[12] = env->regs[R_EDX]; 186 (*regs)[13] = env->regs[R_ESI]; 187 (*regs)[14] = env->regs[R_EDI]; 188 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 189 (*regs)[16] = env->eip; 190 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 191 (*regs)[18] = env->eflags; 192 (*regs)[19] = env->regs[R_ESP]; 193 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 194 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 195 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 196 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 197 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 198 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 199 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 200 } 201 202 #else 203 204 #define ELF_START_MMAP 0x80000000 205 206 /* 207 * This is used to ensure we don't load something for the wrong architecture. 208 */ 209 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 210 211 /* 212 * These are used to set parameters in the core dumps. 213 */ 214 #define ELF_CLASS ELFCLASS32 215 #define ELF_ARCH EM_386 216 217 static inline void init_thread(struct target_pt_regs *regs, 218 struct image_info *infop) 219 { 220 regs->esp = infop->start_stack; 221 regs->eip = infop->entry; 222 223 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 224 starts %edx contains a pointer to a function which might be 225 registered using `atexit'. This provides a mean for the 226 dynamic linker to call DT_FINI functions for shared libraries 227 that have been loaded before the code runs. 228 229 A value of 0 tells we have no such handler. */ 230 regs->edx = 0; 231 } 232 233 #define ELF_NREG 17 234 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 235 236 /* 237 * Note that ELF_NREG should be 19 as there should be place for 238 * TRAPNO and ERR "registers" as well but linux doesn't dump 239 * those. 240 * 241 * See linux kernel: arch/x86/include/asm/elf.h 242 */ 243 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 244 { 245 (*regs)[0] = env->regs[R_EBX]; 246 (*regs)[1] = env->regs[R_ECX]; 247 (*regs)[2] = env->regs[R_EDX]; 248 (*regs)[3] = env->regs[R_ESI]; 249 (*regs)[4] = env->regs[R_EDI]; 250 (*regs)[5] = env->regs[R_EBP]; 251 (*regs)[6] = env->regs[R_EAX]; 252 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 253 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 254 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 255 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 256 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 257 (*regs)[12] = env->eip; 258 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 259 (*regs)[14] = env->eflags; 260 (*regs)[15] = env->regs[R_ESP]; 261 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 262 } 263 #endif 264 265 #define USE_ELF_CORE_DUMP 266 #define ELF_EXEC_PAGESIZE 4096 267 268 #endif 269 270 #ifdef TARGET_ARM 271 272 #ifndef TARGET_AARCH64 273 /* 32 bit ARM definitions */ 274 275 #define ELF_START_MMAP 0x80000000 276 277 #define ELF_ARCH EM_ARM 278 #define ELF_CLASS ELFCLASS32 279 280 static inline void init_thread(struct target_pt_regs *regs, 281 struct image_info *infop) 282 { 283 abi_long stack = infop->start_stack; 284 memset(regs, 0, sizeof(*regs)); 285 286 regs->uregs[16] = ARM_CPU_MODE_USR; 287 if (infop->entry & 1) { 288 regs->uregs[16] |= CPSR_T; 289 } 290 regs->uregs[15] = infop->entry & 0xfffffffe; 291 regs->uregs[13] = infop->start_stack; 292 /* FIXME - what to for failure of get_user()? */ 293 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 294 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 295 /* XXX: it seems that r0 is zeroed after ! */ 296 regs->uregs[0] = 0; 297 /* For uClinux PIC binaries. */ 298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 299 regs->uregs[10] = infop->start_data; 300 301 /* Support ARM FDPIC. */ 302 if (info_is_fdpic(infop)) { 303 /* As described in the ABI document, r7 points to the loadmap info 304 * prepared by the kernel. If an interpreter is needed, r8 points 305 * to the interpreter loadmap and r9 points to the interpreter 306 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 307 * r9 points to the main program PT_DYNAMIC info. 308 */ 309 regs->uregs[7] = infop->loadmap_addr; 310 if (infop->interpreter_loadmap_addr) { 311 /* Executable is dynamically loaded. */ 312 regs->uregs[8] = infop->interpreter_loadmap_addr; 313 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 314 } else { 315 regs->uregs[8] = 0; 316 regs->uregs[9] = infop->pt_dynamic_addr; 317 } 318 } 319 } 320 321 #define ELF_NREG 18 322 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 323 324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 325 { 326 (*regs)[0] = tswapreg(env->regs[0]); 327 (*regs)[1] = tswapreg(env->regs[1]); 328 (*regs)[2] = tswapreg(env->regs[2]); 329 (*regs)[3] = tswapreg(env->regs[3]); 330 (*regs)[4] = tswapreg(env->regs[4]); 331 (*regs)[5] = tswapreg(env->regs[5]); 332 (*regs)[6] = tswapreg(env->regs[6]); 333 (*regs)[7] = tswapreg(env->regs[7]); 334 (*regs)[8] = tswapreg(env->regs[8]); 335 (*regs)[9] = tswapreg(env->regs[9]); 336 (*regs)[10] = tswapreg(env->regs[10]); 337 (*regs)[11] = tswapreg(env->regs[11]); 338 (*regs)[12] = tswapreg(env->regs[12]); 339 (*regs)[13] = tswapreg(env->regs[13]); 340 (*regs)[14] = tswapreg(env->regs[14]); 341 (*regs)[15] = tswapreg(env->regs[15]); 342 343 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 344 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 345 } 346 347 #define USE_ELF_CORE_DUMP 348 #define ELF_EXEC_PAGESIZE 4096 349 350 enum 351 { 352 ARM_HWCAP_ARM_SWP = 1 << 0, 353 ARM_HWCAP_ARM_HALF = 1 << 1, 354 ARM_HWCAP_ARM_THUMB = 1 << 2, 355 ARM_HWCAP_ARM_26BIT = 1 << 3, 356 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 357 ARM_HWCAP_ARM_FPA = 1 << 5, 358 ARM_HWCAP_ARM_VFP = 1 << 6, 359 ARM_HWCAP_ARM_EDSP = 1 << 7, 360 ARM_HWCAP_ARM_JAVA = 1 << 8, 361 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 362 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 363 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 364 ARM_HWCAP_ARM_NEON = 1 << 12, 365 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 366 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 367 ARM_HWCAP_ARM_TLS = 1 << 15, 368 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 369 ARM_HWCAP_ARM_IDIVA = 1 << 17, 370 ARM_HWCAP_ARM_IDIVT = 1 << 18, 371 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 372 ARM_HWCAP_ARM_LPAE = 1 << 20, 373 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 374 }; 375 376 enum { 377 ARM_HWCAP2_ARM_AES = 1 << 0, 378 ARM_HWCAP2_ARM_PMULL = 1 << 1, 379 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 380 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 381 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 382 }; 383 384 /* The commpage only exists for 32 bit kernels */ 385 386 #define ARM_COMMPAGE (intptr_t)0xffff0f00u 387 388 static bool init_guest_commpage(void) 389 { 390 void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size); 391 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 392 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 393 394 if (addr == MAP_FAILED) { 395 perror("Allocating guest commpage"); 396 exit(EXIT_FAILURE); 397 } 398 if (addr != want) { 399 return false; 400 } 401 402 /* Set kernel helper versions; rest of page is 0. */ 403 __put_user(5, (uint32_t *)g2h(0xffff0ffcu)); 404 405 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 406 perror("Protecting guest commpage"); 407 exit(EXIT_FAILURE); 408 } 409 return true; 410 } 411 412 #define ELF_HWCAP get_elf_hwcap() 413 #define ELF_HWCAP2 get_elf_hwcap2() 414 415 static uint32_t get_elf_hwcap(void) 416 { 417 ARMCPU *cpu = ARM_CPU(thread_cpu); 418 uint32_t hwcaps = 0; 419 420 hwcaps |= ARM_HWCAP_ARM_SWP; 421 hwcaps |= ARM_HWCAP_ARM_HALF; 422 hwcaps |= ARM_HWCAP_ARM_THUMB; 423 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 424 425 /* probe for the extra features */ 426 #define GET_FEATURE(feat, hwcap) \ 427 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 428 429 #define GET_FEATURE_ID(feat, hwcap) \ 430 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 431 432 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 433 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 434 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 435 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 436 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 437 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 438 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 439 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 440 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 441 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 442 443 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 444 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 445 hwcaps |= ARM_HWCAP_ARM_VFPv3; 446 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 447 hwcaps |= ARM_HWCAP_ARM_VFPD32; 448 } else { 449 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 450 } 451 } 452 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 453 454 return hwcaps; 455 } 456 457 static uint32_t get_elf_hwcap2(void) 458 { 459 ARMCPU *cpu = ARM_CPU(thread_cpu); 460 uint32_t hwcaps = 0; 461 462 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 463 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 464 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 465 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 466 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 467 return hwcaps; 468 } 469 470 #undef GET_FEATURE 471 #undef GET_FEATURE_ID 472 473 #define ELF_PLATFORM get_elf_platform() 474 475 static const char *get_elf_platform(void) 476 { 477 CPUARMState *env = thread_cpu->env_ptr; 478 479 #ifdef TARGET_WORDS_BIGENDIAN 480 # define END "b" 481 #else 482 # define END "l" 483 #endif 484 485 if (arm_feature(env, ARM_FEATURE_V8)) { 486 return "v8" END; 487 } else if (arm_feature(env, ARM_FEATURE_V7)) { 488 if (arm_feature(env, ARM_FEATURE_M)) { 489 return "v7m" END; 490 } else { 491 return "v7" END; 492 } 493 } else if (arm_feature(env, ARM_FEATURE_V6)) { 494 return "v6" END; 495 } else if (arm_feature(env, ARM_FEATURE_V5)) { 496 return "v5" END; 497 } else { 498 return "v4" END; 499 } 500 501 #undef END 502 } 503 504 #else 505 /* 64 bit ARM definitions */ 506 #define ELF_START_MMAP 0x80000000 507 508 #define ELF_ARCH EM_AARCH64 509 #define ELF_CLASS ELFCLASS64 510 #ifdef TARGET_WORDS_BIGENDIAN 511 # define ELF_PLATFORM "aarch64_be" 512 #else 513 # define ELF_PLATFORM "aarch64" 514 #endif 515 516 static inline void init_thread(struct target_pt_regs *regs, 517 struct image_info *infop) 518 { 519 abi_long stack = infop->start_stack; 520 memset(regs, 0, sizeof(*regs)); 521 522 regs->pc = infop->entry & ~0x3ULL; 523 regs->sp = stack; 524 } 525 526 #define ELF_NREG 34 527 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 528 529 static void elf_core_copy_regs(target_elf_gregset_t *regs, 530 const CPUARMState *env) 531 { 532 int i; 533 534 for (i = 0; i < 32; i++) { 535 (*regs)[i] = tswapreg(env->xregs[i]); 536 } 537 (*regs)[32] = tswapreg(env->pc); 538 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 539 } 540 541 #define USE_ELF_CORE_DUMP 542 #define ELF_EXEC_PAGESIZE 4096 543 544 enum { 545 ARM_HWCAP_A64_FP = 1 << 0, 546 ARM_HWCAP_A64_ASIMD = 1 << 1, 547 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 548 ARM_HWCAP_A64_AES = 1 << 3, 549 ARM_HWCAP_A64_PMULL = 1 << 4, 550 ARM_HWCAP_A64_SHA1 = 1 << 5, 551 ARM_HWCAP_A64_SHA2 = 1 << 6, 552 ARM_HWCAP_A64_CRC32 = 1 << 7, 553 ARM_HWCAP_A64_ATOMICS = 1 << 8, 554 ARM_HWCAP_A64_FPHP = 1 << 9, 555 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 556 ARM_HWCAP_A64_CPUID = 1 << 11, 557 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 558 ARM_HWCAP_A64_JSCVT = 1 << 13, 559 ARM_HWCAP_A64_FCMA = 1 << 14, 560 ARM_HWCAP_A64_LRCPC = 1 << 15, 561 ARM_HWCAP_A64_DCPOP = 1 << 16, 562 ARM_HWCAP_A64_SHA3 = 1 << 17, 563 ARM_HWCAP_A64_SM3 = 1 << 18, 564 ARM_HWCAP_A64_SM4 = 1 << 19, 565 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 566 ARM_HWCAP_A64_SHA512 = 1 << 21, 567 ARM_HWCAP_A64_SVE = 1 << 22, 568 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 569 ARM_HWCAP_A64_DIT = 1 << 24, 570 ARM_HWCAP_A64_USCAT = 1 << 25, 571 ARM_HWCAP_A64_ILRCPC = 1 << 26, 572 ARM_HWCAP_A64_FLAGM = 1 << 27, 573 ARM_HWCAP_A64_SSBS = 1 << 28, 574 ARM_HWCAP_A64_SB = 1 << 29, 575 ARM_HWCAP_A64_PACA = 1 << 30, 576 ARM_HWCAP_A64_PACG = 1UL << 31, 577 578 ARM_HWCAP2_A64_DCPODP = 1 << 0, 579 ARM_HWCAP2_A64_SVE2 = 1 << 1, 580 ARM_HWCAP2_A64_SVEAES = 1 << 2, 581 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 582 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 583 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 584 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 585 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 586 ARM_HWCAP2_A64_FRINT = 1 << 8, 587 }; 588 589 #define ELF_HWCAP get_elf_hwcap() 590 #define ELF_HWCAP2 get_elf_hwcap2() 591 592 #define GET_FEATURE_ID(feat, hwcap) \ 593 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 594 595 static uint32_t get_elf_hwcap(void) 596 { 597 ARMCPU *cpu = ARM_CPU(thread_cpu); 598 uint32_t hwcaps = 0; 599 600 hwcaps |= ARM_HWCAP_A64_FP; 601 hwcaps |= ARM_HWCAP_A64_ASIMD; 602 hwcaps |= ARM_HWCAP_A64_CPUID; 603 604 /* probe for the extra features */ 605 606 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 607 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 608 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 609 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 610 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 611 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 612 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 613 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 614 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 615 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 616 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 617 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 618 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 619 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 620 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 621 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 622 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 623 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 624 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 625 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 626 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 627 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 628 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 629 630 return hwcaps; 631 } 632 633 static uint32_t get_elf_hwcap2(void) 634 { 635 ARMCPU *cpu = ARM_CPU(thread_cpu); 636 uint32_t hwcaps = 0; 637 638 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 639 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 640 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 641 642 return hwcaps; 643 } 644 645 #undef GET_FEATURE_ID 646 647 #endif /* not TARGET_AARCH64 */ 648 #endif /* TARGET_ARM */ 649 650 #ifdef TARGET_SPARC 651 #ifdef TARGET_SPARC64 652 653 #define ELF_START_MMAP 0x80000000 654 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 655 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 656 #ifndef TARGET_ABI32 657 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 658 #else 659 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 660 #endif 661 662 #define ELF_CLASS ELFCLASS64 663 #define ELF_ARCH EM_SPARCV9 664 665 #define STACK_BIAS 2047 666 667 static inline void init_thread(struct target_pt_regs *regs, 668 struct image_info *infop) 669 { 670 #ifndef TARGET_ABI32 671 regs->tstate = 0; 672 #endif 673 regs->pc = infop->entry; 674 regs->npc = regs->pc + 4; 675 regs->y = 0; 676 #ifdef TARGET_ABI32 677 regs->u_regs[14] = infop->start_stack - 16 * 4; 678 #else 679 if (personality(infop->personality) == PER_LINUX32) 680 regs->u_regs[14] = infop->start_stack - 16 * 4; 681 else 682 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 683 #endif 684 } 685 686 #else 687 #define ELF_START_MMAP 0x80000000 688 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 689 | HWCAP_SPARC_MULDIV) 690 691 #define ELF_CLASS ELFCLASS32 692 #define ELF_ARCH EM_SPARC 693 694 static inline void init_thread(struct target_pt_regs *regs, 695 struct image_info *infop) 696 { 697 regs->psr = 0; 698 regs->pc = infop->entry; 699 regs->npc = regs->pc + 4; 700 regs->y = 0; 701 regs->u_regs[14] = infop->start_stack - 16 * 4; 702 } 703 704 #endif 705 #endif 706 707 #ifdef TARGET_PPC 708 709 #define ELF_MACHINE PPC_ELF_MACHINE 710 #define ELF_START_MMAP 0x80000000 711 712 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 713 714 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 715 716 #define ELF_CLASS ELFCLASS64 717 718 #else 719 720 #define ELF_CLASS ELFCLASS32 721 722 #endif 723 724 #define ELF_ARCH EM_PPC 725 726 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 727 See arch/powerpc/include/asm/cputable.h. */ 728 enum { 729 QEMU_PPC_FEATURE_32 = 0x80000000, 730 QEMU_PPC_FEATURE_64 = 0x40000000, 731 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 732 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 733 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 734 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 735 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 736 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 737 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 738 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 739 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 740 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 741 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 742 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 743 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 744 QEMU_PPC_FEATURE_CELL = 0x00010000, 745 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 746 QEMU_PPC_FEATURE_SMT = 0x00004000, 747 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 748 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 749 QEMU_PPC_FEATURE_PA6T = 0x00000800, 750 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 751 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 752 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 753 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 754 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 755 756 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 757 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 758 759 /* Feature definitions in AT_HWCAP2. */ 760 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 761 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 762 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 763 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 764 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 765 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 766 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 767 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 768 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 769 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 770 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 771 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 772 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 773 }; 774 775 #define ELF_HWCAP get_elf_hwcap() 776 777 static uint32_t get_elf_hwcap(void) 778 { 779 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 780 uint32_t features = 0; 781 782 /* We don't have to be terribly complete here; the high points are 783 Altivec/FP/SPE support. Anything else is just a bonus. */ 784 #define GET_FEATURE(flag, feature) \ 785 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 786 #define GET_FEATURE2(flags, feature) \ 787 do { \ 788 if ((cpu->env.insns_flags2 & flags) == flags) { \ 789 features |= feature; \ 790 } \ 791 } while (0) 792 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 793 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 794 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 795 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 796 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 797 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 798 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 799 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 800 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 801 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 802 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 803 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 804 QEMU_PPC_FEATURE_ARCH_2_06); 805 #undef GET_FEATURE 806 #undef GET_FEATURE2 807 808 return features; 809 } 810 811 #define ELF_HWCAP2 get_elf_hwcap2() 812 813 static uint32_t get_elf_hwcap2(void) 814 { 815 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 816 uint32_t features = 0; 817 818 #define GET_FEATURE(flag, feature) \ 819 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 820 #define GET_FEATURE2(flag, feature) \ 821 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 822 823 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 824 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 825 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 826 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 827 QEMU_PPC_FEATURE2_VEC_CRYPTO); 828 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 829 QEMU_PPC_FEATURE2_DARN); 830 831 #undef GET_FEATURE 832 #undef GET_FEATURE2 833 834 return features; 835 } 836 837 /* 838 * The requirements here are: 839 * - keep the final alignment of sp (sp & 0xf) 840 * - make sure the 32-bit value at the first 16 byte aligned position of 841 * AUXV is greater than 16 for glibc compatibility. 842 * AT_IGNOREPPC is used for that. 843 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 844 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 845 */ 846 #define DLINFO_ARCH_ITEMS 5 847 #define ARCH_DLINFO \ 848 do { \ 849 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 850 /* \ 851 * Handle glibc compatibility: these magic entries must \ 852 * be at the lowest addresses in the final auxv. \ 853 */ \ 854 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 855 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 856 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 857 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 858 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 859 } while (0) 860 861 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 862 { 863 _regs->gpr[1] = infop->start_stack; 864 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 865 if (get_ppc64_abi(infop) < 2) { 866 uint64_t val; 867 get_user_u64(val, infop->entry + 8); 868 _regs->gpr[2] = val + infop->load_bias; 869 get_user_u64(val, infop->entry); 870 infop->entry = val + infop->load_bias; 871 } else { 872 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 873 } 874 #endif 875 _regs->nip = infop->entry; 876 } 877 878 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 879 #define ELF_NREG 48 880 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 881 882 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 883 { 884 int i; 885 target_ulong ccr = 0; 886 887 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 888 (*regs)[i] = tswapreg(env->gpr[i]); 889 } 890 891 (*regs)[32] = tswapreg(env->nip); 892 (*regs)[33] = tswapreg(env->msr); 893 (*regs)[35] = tswapreg(env->ctr); 894 (*regs)[36] = tswapreg(env->lr); 895 (*regs)[37] = tswapreg(env->xer); 896 897 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 898 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 899 } 900 (*regs)[38] = tswapreg(ccr); 901 } 902 903 #define USE_ELF_CORE_DUMP 904 #define ELF_EXEC_PAGESIZE 4096 905 906 #endif 907 908 #ifdef TARGET_MIPS 909 910 #define ELF_START_MMAP 0x80000000 911 912 #ifdef TARGET_MIPS64 913 #define ELF_CLASS ELFCLASS64 914 #else 915 #define ELF_CLASS ELFCLASS32 916 #endif 917 #define ELF_ARCH EM_MIPS 918 919 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 920 921 static inline void init_thread(struct target_pt_regs *regs, 922 struct image_info *infop) 923 { 924 regs->cp0_status = 2 << CP0St_KSU; 925 regs->cp0_epc = infop->entry; 926 regs->regs[29] = infop->start_stack; 927 } 928 929 /* See linux kernel: arch/mips/include/asm/elf.h. */ 930 #define ELF_NREG 45 931 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 932 933 /* See linux kernel: arch/mips/include/asm/reg.h. */ 934 enum { 935 #ifdef TARGET_MIPS64 936 TARGET_EF_R0 = 0, 937 #else 938 TARGET_EF_R0 = 6, 939 #endif 940 TARGET_EF_R26 = TARGET_EF_R0 + 26, 941 TARGET_EF_R27 = TARGET_EF_R0 + 27, 942 TARGET_EF_LO = TARGET_EF_R0 + 32, 943 TARGET_EF_HI = TARGET_EF_R0 + 33, 944 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 945 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 946 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 947 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 948 }; 949 950 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 951 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 952 { 953 int i; 954 955 for (i = 0; i < TARGET_EF_R0; i++) { 956 (*regs)[i] = 0; 957 } 958 (*regs)[TARGET_EF_R0] = 0; 959 960 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 961 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 962 } 963 964 (*regs)[TARGET_EF_R26] = 0; 965 (*regs)[TARGET_EF_R27] = 0; 966 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 967 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 968 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 969 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 970 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 971 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 972 } 973 974 #define USE_ELF_CORE_DUMP 975 #define ELF_EXEC_PAGESIZE 4096 976 977 /* See arch/mips/include/uapi/asm/hwcap.h. */ 978 enum { 979 HWCAP_MIPS_R6 = (1 << 0), 980 HWCAP_MIPS_MSA = (1 << 1), 981 }; 982 983 #define ELF_HWCAP get_elf_hwcap() 984 985 static uint32_t get_elf_hwcap(void) 986 { 987 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 988 uint32_t hwcaps = 0; 989 990 #define GET_FEATURE(flag, hwcap) \ 991 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 992 993 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 994 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 995 996 #undef GET_FEATURE 997 998 return hwcaps; 999 } 1000 1001 #endif /* TARGET_MIPS */ 1002 1003 #ifdef TARGET_MICROBLAZE 1004 1005 #define ELF_START_MMAP 0x80000000 1006 1007 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1008 1009 #define ELF_CLASS ELFCLASS32 1010 #define ELF_ARCH EM_MICROBLAZE 1011 1012 static inline void init_thread(struct target_pt_regs *regs, 1013 struct image_info *infop) 1014 { 1015 regs->pc = infop->entry; 1016 regs->r1 = infop->start_stack; 1017 1018 } 1019 1020 #define ELF_EXEC_PAGESIZE 4096 1021 1022 #define USE_ELF_CORE_DUMP 1023 #define ELF_NREG 38 1024 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1025 1026 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1027 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1028 { 1029 int i, pos = 0; 1030 1031 for (i = 0; i < 32; i++) { 1032 (*regs)[pos++] = tswapreg(env->regs[i]); 1033 } 1034 1035 for (i = 0; i < 6; i++) { 1036 (*regs)[pos++] = tswapreg(env->sregs[i]); 1037 } 1038 } 1039 1040 #endif /* TARGET_MICROBLAZE */ 1041 1042 #ifdef TARGET_NIOS2 1043 1044 #define ELF_START_MMAP 0x80000000 1045 1046 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1047 1048 #define ELF_CLASS ELFCLASS32 1049 #define ELF_ARCH EM_ALTERA_NIOS2 1050 1051 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1052 { 1053 regs->ea = infop->entry; 1054 regs->sp = infop->start_stack; 1055 regs->estatus = 0x3; 1056 } 1057 1058 #define ELF_EXEC_PAGESIZE 4096 1059 1060 #define USE_ELF_CORE_DUMP 1061 #define ELF_NREG 49 1062 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1063 1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1065 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1066 const CPUNios2State *env) 1067 { 1068 int i; 1069 1070 (*regs)[0] = -1; 1071 for (i = 1; i < 8; i++) /* r0-r7 */ 1072 (*regs)[i] = tswapreg(env->regs[i + 7]); 1073 1074 for (i = 8; i < 16; i++) /* r8-r15 */ 1075 (*regs)[i] = tswapreg(env->regs[i - 8]); 1076 1077 for (i = 16; i < 24; i++) /* r16-r23 */ 1078 (*regs)[i] = tswapreg(env->regs[i + 7]); 1079 (*regs)[24] = -1; /* R_ET */ 1080 (*regs)[25] = -1; /* R_BT */ 1081 (*regs)[26] = tswapreg(env->regs[R_GP]); 1082 (*regs)[27] = tswapreg(env->regs[R_SP]); 1083 (*regs)[28] = tswapreg(env->regs[R_FP]); 1084 (*regs)[29] = tswapreg(env->regs[R_EA]); 1085 (*regs)[30] = -1; /* R_SSTATUS */ 1086 (*regs)[31] = tswapreg(env->regs[R_RA]); 1087 1088 (*regs)[32] = tswapreg(env->regs[R_PC]); 1089 1090 (*regs)[33] = -1; /* R_STATUS */ 1091 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1092 1093 for (i = 35; i < 49; i++) /* ... */ 1094 (*regs)[i] = -1; 1095 } 1096 1097 #endif /* TARGET_NIOS2 */ 1098 1099 #ifdef TARGET_OPENRISC 1100 1101 #define ELF_START_MMAP 0x08000000 1102 1103 #define ELF_ARCH EM_OPENRISC 1104 #define ELF_CLASS ELFCLASS32 1105 #define ELF_DATA ELFDATA2MSB 1106 1107 static inline void init_thread(struct target_pt_regs *regs, 1108 struct image_info *infop) 1109 { 1110 regs->pc = infop->entry; 1111 regs->gpr[1] = infop->start_stack; 1112 } 1113 1114 #define USE_ELF_CORE_DUMP 1115 #define ELF_EXEC_PAGESIZE 8192 1116 1117 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1118 #define ELF_NREG 34 /* gprs and pc, sr */ 1119 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1120 1121 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1122 const CPUOpenRISCState *env) 1123 { 1124 int i; 1125 1126 for (i = 0; i < 32; i++) { 1127 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1128 } 1129 (*regs)[32] = tswapreg(env->pc); 1130 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1131 } 1132 #define ELF_HWCAP 0 1133 #define ELF_PLATFORM NULL 1134 1135 #endif /* TARGET_OPENRISC */ 1136 1137 #ifdef TARGET_SH4 1138 1139 #define ELF_START_MMAP 0x80000000 1140 1141 #define ELF_CLASS ELFCLASS32 1142 #define ELF_ARCH EM_SH 1143 1144 static inline void init_thread(struct target_pt_regs *regs, 1145 struct image_info *infop) 1146 { 1147 /* Check other registers XXXXX */ 1148 regs->pc = infop->entry; 1149 regs->regs[15] = infop->start_stack; 1150 } 1151 1152 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1153 #define ELF_NREG 23 1154 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1155 1156 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1157 enum { 1158 TARGET_REG_PC = 16, 1159 TARGET_REG_PR = 17, 1160 TARGET_REG_SR = 18, 1161 TARGET_REG_GBR = 19, 1162 TARGET_REG_MACH = 20, 1163 TARGET_REG_MACL = 21, 1164 TARGET_REG_SYSCALL = 22 1165 }; 1166 1167 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1168 const CPUSH4State *env) 1169 { 1170 int i; 1171 1172 for (i = 0; i < 16; i++) { 1173 (*regs)[i] = tswapreg(env->gregs[i]); 1174 } 1175 1176 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1177 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1178 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1179 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1180 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1181 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1182 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1183 } 1184 1185 #define USE_ELF_CORE_DUMP 1186 #define ELF_EXEC_PAGESIZE 4096 1187 1188 enum { 1189 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1190 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1191 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1192 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1193 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1194 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1195 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1196 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1197 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1198 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1199 }; 1200 1201 #define ELF_HWCAP get_elf_hwcap() 1202 1203 static uint32_t get_elf_hwcap(void) 1204 { 1205 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1206 uint32_t hwcap = 0; 1207 1208 hwcap |= SH_CPU_HAS_FPU; 1209 1210 if (cpu->env.features & SH_FEATURE_SH4A) { 1211 hwcap |= SH_CPU_HAS_LLSC; 1212 } 1213 1214 return hwcap; 1215 } 1216 1217 #endif 1218 1219 #ifdef TARGET_CRIS 1220 1221 #define ELF_START_MMAP 0x80000000 1222 1223 #define ELF_CLASS ELFCLASS32 1224 #define ELF_ARCH EM_CRIS 1225 1226 static inline void init_thread(struct target_pt_regs *regs, 1227 struct image_info *infop) 1228 { 1229 regs->erp = infop->entry; 1230 } 1231 1232 #define ELF_EXEC_PAGESIZE 8192 1233 1234 #endif 1235 1236 #ifdef TARGET_M68K 1237 1238 #define ELF_START_MMAP 0x80000000 1239 1240 #define ELF_CLASS ELFCLASS32 1241 #define ELF_ARCH EM_68K 1242 1243 /* ??? Does this need to do anything? 1244 #define ELF_PLAT_INIT(_r) */ 1245 1246 static inline void init_thread(struct target_pt_regs *regs, 1247 struct image_info *infop) 1248 { 1249 regs->usp = infop->start_stack; 1250 regs->sr = 0; 1251 regs->pc = infop->entry; 1252 } 1253 1254 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1255 #define ELF_NREG 20 1256 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1257 1258 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1259 { 1260 (*regs)[0] = tswapreg(env->dregs[1]); 1261 (*regs)[1] = tswapreg(env->dregs[2]); 1262 (*regs)[2] = tswapreg(env->dregs[3]); 1263 (*regs)[3] = tswapreg(env->dregs[4]); 1264 (*regs)[4] = tswapreg(env->dregs[5]); 1265 (*regs)[5] = tswapreg(env->dregs[6]); 1266 (*regs)[6] = tswapreg(env->dregs[7]); 1267 (*regs)[7] = tswapreg(env->aregs[0]); 1268 (*regs)[8] = tswapreg(env->aregs[1]); 1269 (*regs)[9] = tswapreg(env->aregs[2]); 1270 (*regs)[10] = tswapreg(env->aregs[3]); 1271 (*regs)[11] = tswapreg(env->aregs[4]); 1272 (*regs)[12] = tswapreg(env->aregs[5]); 1273 (*regs)[13] = tswapreg(env->aregs[6]); 1274 (*regs)[14] = tswapreg(env->dregs[0]); 1275 (*regs)[15] = tswapreg(env->aregs[7]); 1276 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1277 (*regs)[17] = tswapreg(env->sr); 1278 (*regs)[18] = tswapreg(env->pc); 1279 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1280 } 1281 1282 #define USE_ELF_CORE_DUMP 1283 #define ELF_EXEC_PAGESIZE 8192 1284 1285 #endif 1286 1287 #ifdef TARGET_ALPHA 1288 1289 #define ELF_START_MMAP (0x30000000000ULL) 1290 1291 #define ELF_CLASS ELFCLASS64 1292 #define ELF_ARCH EM_ALPHA 1293 1294 static inline void init_thread(struct target_pt_regs *regs, 1295 struct image_info *infop) 1296 { 1297 regs->pc = infop->entry; 1298 regs->ps = 8; 1299 regs->usp = infop->start_stack; 1300 } 1301 1302 #define ELF_EXEC_PAGESIZE 8192 1303 1304 #endif /* TARGET_ALPHA */ 1305 1306 #ifdef TARGET_S390X 1307 1308 #define ELF_START_MMAP (0x20000000000ULL) 1309 1310 #define ELF_CLASS ELFCLASS64 1311 #define ELF_DATA ELFDATA2MSB 1312 #define ELF_ARCH EM_S390 1313 1314 #include "elf.h" 1315 1316 #define ELF_HWCAP get_elf_hwcap() 1317 1318 #define GET_FEATURE(_feat, _hwcap) \ 1319 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1320 1321 static uint32_t get_elf_hwcap(void) 1322 { 1323 /* 1324 * Let's assume we always have esan3 and zarch. 1325 * 31-bit processes can use 64-bit registers (high gprs). 1326 */ 1327 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1328 1329 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1330 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1331 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1332 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1333 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1334 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1335 hwcap |= HWCAP_S390_ETF3EH; 1336 } 1337 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1338 1339 return hwcap; 1340 } 1341 1342 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1343 { 1344 regs->psw.addr = infop->entry; 1345 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1346 regs->gprs[15] = infop->start_stack; 1347 } 1348 1349 #endif /* TARGET_S390X */ 1350 1351 #ifdef TARGET_TILEGX 1352 1353 /* 42 bits real used address, a half for user mode */ 1354 #define ELF_START_MMAP (0x00000020000000000ULL) 1355 1356 #define elf_check_arch(x) ((x) == EM_TILEGX) 1357 1358 #define ELF_CLASS ELFCLASS64 1359 #define ELF_DATA ELFDATA2LSB 1360 #define ELF_ARCH EM_TILEGX 1361 1362 static inline void init_thread(struct target_pt_regs *regs, 1363 struct image_info *infop) 1364 { 1365 regs->pc = infop->entry; 1366 regs->sp = infop->start_stack; 1367 1368 } 1369 1370 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1371 1372 #endif /* TARGET_TILEGX */ 1373 1374 #ifdef TARGET_RISCV 1375 1376 #define ELF_START_MMAP 0x80000000 1377 #define ELF_ARCH EM_RISCV 1378 1379 #ifdef TARGET_RISCV32 1380 #define ELF_CLASS ELFCLASS32 1381 #else 1382 #define ELF_CLASS ELFCLASS64 1383 #endif 1384 1385 static inline void init_thread(struct target_pt_regs *regs, 1386 struct image_info *infop) 1387 { 1388 regs->sepc = infop->entry; 1389 regs->sp = infop->start_stack; 1390 } 1391 1392 #define ELF_EXEC_PAGESIZE 4096 1393 1394 #endif /* TARGET_RISCV */ 1395 1396 #ifdef TARGET_HPPA 1397 1398 #define ELF_START_MMAP 0x80000000 1399 #define ELF_CLASS ELFCLASS32 1400 #define ELF_ARCH EM_PARISC 1401 #define ELF_PLATFORM "PARISC" 1402 #define STACK_GROWS_DOWN 0 1403 #define STACK_ALIGNMENT 64 1404 1405 static inline void init_thread(struct target_pt_regs *regs, 1406 struct image_info *infop) 1407 { 1408 regs->iaoq[0] = infop->entry; 1409 regs->iaoq[1] = infop->entry + 4; 1410 regs->gr[23] = 0; 1411 regs->gr[24] = infop->arg_start; 1412 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1413 /* The top-of-stack contains a linkage buffer. */ 1414 regs->gr[30] = infop->start_stack + 64; 1415 regs->gr[31] = infop->entry; 1416 } 1417 1418 #endif /* TARGET_HPPA */ 1419 1420 #ifdef TARGET_XTENSA 1421 1422 #define ELF_START_MMAP 0x20000000 1423 1424 #define ELF_CLASS ELFCLASS32 1425 #define ELF_ARCH EM_XTENSA 1426 1427 static inline void init_thread(struct target_pt_regs *regs, 1428 struct image_info *infop) 1429 { 1430 regs->windowbase = 0; 1431 regs->windowstart = 1; 1432 regs->areg[1] = infop->start_stack; 1433 regs->pc = infop->entry; 1434 } 1435 1436 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1437 #define ELF_NREG 128 1438 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1439 1440 enum { 1441 TARGET_REG_PC, 1442 TARGET_REG_PS, 1443 TARGET_REG_LBEG, 1444 TARGET_REG_LEND, 1445 TARGET_REG_LCOUNT, 1446 TARGET_REG_SAR, 1447 TARGET_REG_WINDOWSTART, 1448 TARGET_REG_WINDOWBASE, 1449 TARGET_REG_THREADPTR, 1450 TARGET_REG_AR0 = 64, 1451 }; 1452 1453 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1454 const CPUXtensaState *env) 1455 { 1456 unsigned i; 1457 1458 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1459 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1460 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1461 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1462 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1463 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1464 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1465 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1466 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1467 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1468 for (i = 0; i < env->config->nareg; ++i) { 1469 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1470 } 1471 } 1472 1473 #define USE_ELF_CORE_DUMP 1474 #define ELF_EXEC_PAGESIZE 4096 1475 1476 #endif /* TARGET_XTENSA */ 1477 1478 #ifndef ELF_PLATFORM 1479 #define ELF_PLATFORM (NULL) 1480 #endif 1481 1482 #ifndef ELF_MACHINE 1483 #define ELF_MACHINE ELF_ARCH 1484 #endif 1485 1486 #ifndef elf_check_arch 1487 #define elf_check_arch(x) ((x) == ELF_ARCH) 1488 #endif 1489 1490 #ifndef ELF_HWCAP 1491 #define ELF_HWCAP 0 1492 #endif 1493 1494 #ifndef STACK_GROWS_DOWN 1495 #define STACK_GROWS_DOWN 1 1496 #endif 1497 1498 #ifndef STACK_ALIGNMENT 1499 #define STACK_ALIGNMENT 16 1500 #endif 1501 1502 #ifdef TARGET_ABI32 1503 #undef ELF_CLASS 1504 #define ELF_CLASS ELFCLASS32 1505 #undef bswaptls 1506 #define bswaptls(ptr) bswap32s(ptr) 1507 #endif 1508 1509 #include "elf.h" 1510 1511 struct exec 1512 { 1513 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1514 unsigned int a_text; /* length of text, in bytes */ 1515 unsigned int a_data; /* length of data, in bytes */ 1516 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1517 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1518 unsigned int a_entry; /* start address */ 1519 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1520 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1521 }; 1522 1523 1524 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1525 #define OMAGIC 0407 1526 #define NMAGIC 0410 1527 #define ZMAGIC 0413 1528 #define QMAGIC 0314 1529 1530 /* Necessary parameters */ 1531 #define TARGET_ELF_EXEC_PAGESIZE \ 1532 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1533 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1534 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1535 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1536 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1537 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1538 1539 #define DLINFO_ITEMS 16 1540 1541 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1542 { 1543 memcpy(to, from, n); 1544 } 1545 1546 #ifdef BSWAP_NEEDED 1547 static void bswap_ehdr(struct elfhdr *ehdr) 1548 { 1549 bswap16s(&ehdr->e_type); /* Object file type */ 1550 bswap16s(&ehdr->e_machine); /* Architecture */ 1551 bswap32s(&ehdr->e_version); /* Object file version */ 1552 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1553 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1554 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1555 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1556 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1557 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1558 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1559 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1560 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1561 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1562 } 1563 1564 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1565 { 1566 int i; 1567 for (i = 0; i < phnum; ++i, ++phdr) { 1568 bswap32s(&phdr->p_type); /* Segment type */ 1569 bswap32s(&phdr->p_flags); /* Segment flags */ 1570 bswaptls(&phdr->p_offset); /* Segment file offset */ 1571 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1572 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1573 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1574 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1575 bswaptls(&phdr->p_align); /* Segment alignment */ 1576 } 1577 } 1578 1579 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1580 { 1581 int i; 1582 for (i = 0; i < shnum; ++i, ++shdr) { 1583 bswap32s(&shdr->sh_name); 1584 bswap32s(&shdr->sh_type); 1585 bswaptls(&shdr->sh_flags); 1586 bswaptls(&shdr->sh_addr); 1587 bswaptls(&shdr->sh_offset); 1588 bswaptls(&shdr->sh_size); 1589 bswap32s(&shdr->sh_link); 1590 bswap32s(&shdr->sh_info); 1591 bswaptls(&shdr->sh_addralign); 1592 bswaptls(&shdr->sh_entsize); 1593 } 1594 } 1595 1596 static void bswap_sym(struct elf_sym *sym) 1597 { 1598 bswap32s(&sym->st_name); 1599 bswaptls(&sym->st_value); 1600 bswaptls(&sym->st_size); 1601 bswap16s(&sym->st_shndx); 1602 } 1603 1604 #ifdef TARGET_MIPS 1605 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1606 { 1607 bswap16s(&abiflags->version); 1608 bswap32s(&abiflags->ases); 1609 bswap32s(&abiflags->isa_ext); 1610 bswap32s(&abiflags->flags1); 1611 bswap32s(&abiflags->flags2); 1612 } 1613 #endif 1614 #else 1615 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1616 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1617 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1618 static inline void bswap_sym(struct elf_sym *sym) { } 1619 #ifdef TARGET_MIPS 1620 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1621 #endif 1622 #endif 1623 1624 #ifdef USE_ELF_CORE_DUMP 1625 static int elf_core_dump(int, const CPUArchState *); 1626 #endif /* USE_ELF_CORE_DUMP */ 1627 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1628 1629 /* Verify the portions of EHDR within E_IDENT for the target. 1630 This can be performed before bswapping the entire header. */ 1631 static bool elf_check_ident(struct elfhdr *ehdr) 1632 { 1633 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1634 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1635 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1636 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1637 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1638 && ehdr->e_ident[EI_DATA] == ELF_DATA 1639 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1640 } 1641 1642 /* Verify the portions of EHDR outside of E_IDENT for the target. 1643 This has to wait until after bswapping the header. */ 1644 static bool elf_check_ehdr(struct elfhdr *ehdr) 1645 { 1646 return (elf_check_arch(ehdr->e_machine) 1647 && ehdr->e_ehsize == sizeof(struct elfhdr) 1648 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1649 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1650 } 1651 1652 /* 1653 * 'copy_elf_strings()' copies argument/envelope strings from user 1654 * memory to free pages in kernel mem. These are in a format ready 1655 * to be put directly into the top of new user memory. 1656 * 1657 */ 1658 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1659 abi_ulong p, abi_ulong stack_limit) 1660 { 1661 char *tmp; 1662 int len, i; 1663 abi_ulong top = p; 1664 1665 if (!p) { 1666 return 0; /* bullet-proofing */ 1667 } 1668 1669 if (STACK_GROWS_DOWN) { 1670 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1671 for (i = argc - 1; i >= 0; --i) { 1672 tmp = argv[i]; 1673 if (!tmp) { 1674 fprintf(stderr, "VFS: argc is wrong"); 1675 exit(-1); 1676 } 1677 len = strlen(tmp) + 1; 1678 tmp += len; 1679 1680 if (len > (p - stack_limit)) { 1681 return 0; 1682 } 1683 while (len) { 1684 int bytes_to_copy = (len > offset) ? offset : len; 1685 tmp -= bytes_to_copy; 1686 p -= bytes_to_copy; 1687 offset -= bytes_to_copy; 1688 len -= bytes_to_copy; 1689 1690 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1691 1692 if (offset == 0) { 1693 memcpy_to_target(p, scratch, top - p); 1694 top = p; 1695 offset = TARGET_PAGE_SIZE; 1696 } 1697 } 1698 } 1699 if (p != top) { 1700 memcpy_to_target(p, scratch + offset, top - p); 1701 } 1702 } else { 1703 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1704 for (i = 0; i < argc; ++i) { 1705 tmp = argv[i]; 1706 if (!tmp) { 1707 fprintf(stderr, "VFS: argc is wrong"); 1708 exit(-1); 1709 } 1710 len = strlen(tmp) + 1; 1711 if (len > (stack_limit - p)) { 1712 return 0; 1713 } 1714 while (len) { 1715 int bytes_to_copy = (len > remaining) ? remaining : len; 1716 1717 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1718 1719 tmp += bytes_to_copy; 1720 remaining -= bytes_to_copy; 1721 p += bytes_to_copy; 1722 len -= bytes_to_copy; 1723 1724 if (remaining == 0) { 1725 memcpy_to_target(top, scratch, p - top); 1726 top = p; 1727 remaining = TARGET_PAGE_SIZE; 1728 } 1729 } 1730 } 1731 if (p != top) { 1732 memcpy_to_target(top, scratch, p - top); 1733 } 1734 } 1735 1736 return p; 1737 } 1738 1739 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1740 * argument/environment space. Newer kernels (>2.6.33) allow more, 1741 * dependent on stack size, but guarantee at least 32 pages for 1742 * backwards compatibility. 1743 */ 1744 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1745 1746 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1747 struct image_info *info) 1748 { 1749 abi_ulong size, error, guard; 1750 1751 size = guest_stack_size; 1752 if (size < STACK_LOWER_LIMIT) { 1753 size = STACK_LOWER_LIMIT; 1754 } 1755 guard = TARGET_PAGE_SIZE; 1756 if (guard < qemu_real_host_page_size) { 1757 guard = qemu_real_host_page_size; 1758 } 1759 1760 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1761 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1762 if (error == -1) { 1763 perror("mmap stack"); 1764 exit(-1); 1765 } 1766 1767 /* We reserve one extra page at the top of the stack as guard. */ 1768 if (STACK_GROWS_DOWN) { 1769 target_mprotect(error, guard, PROT_NONE); 1770 info->stack_limit = error + guard; 1771 return info->stack_limit + size - sizeof(void *); 1772 } else { 1773 target_mprotect(error + size, guard, PROT_NONE); 1774 info->stack_limit = error + size; 1775 return error; 1776 } 1777 } 1778 1779 /* Map and zero the bss. We need to explicitly zero any fractional pages 1780 after the data section (i.e. bss). */ 1781 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1782 { 1783 uintptr_t host_start, host_map_start, host_end; 1784 1785 last_bss = TARGET_PAGE_ALIGN(last_bss); 1786 1787 /* ??? There is confusion between qemu_real_host_page_size and 1788 qemu_host_page_size here and elsewhere in target_mmap, which 1789 may lead to the end of the data section mapping from the file 1790 not being mapped. At least there was an explicit test and 1791 comment for that here, suggesting that "the file size must 1792 be known". The comment probably pre-dates the introduction 1793 of the fstat system call in target_mmap which does in fact 1794 find out the size. What isn't clear is if the workaround 1795 here is still actually needed. For now, continue with it, 1796 but merge it with the "normal" mmap that would allocate the bss. */ 1797 1798 host_start = (uintptr_t) g2h(elf_bss); 1799 host_end = (uintptr_t) g2h(last_bss); 1800 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1801 1802 if (host_map_start < host_end) { 1803 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1804 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1805 if (p == MAP_FAILED) { 1806 perror("cannot mmap brk"); 1807 exit(-1); 1808 } 1809 } 1810 1811 /* Ensure that the bss page(s) are valid */ 1812 if ((page_get_flags(last_bss-1) & prot) != prot) { 1813 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1814 } 1815 1816 if (host_start < host_map_start) { 1817 memset((void *)host_start, 0, host_map_start - host_start); 1818 } 1819 } 1820 1821 #ifdef TARGET_ARM 1822 static int elf_is_fdpic(struct elfhdr *exec) 1823 { 1824 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1825 } 1826 #else 1827 /* Default implementation, always false. */ 1828 static int elf_is_fdpic(struct elfhdr *exec) 1829 { 1830 return 0; 1831 } 1832 #endif 1833 1834 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1835 { 1836 uint16_t n; 1837 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1838 1839 /* elf32_fdpic_loadseg */ 1840 n = info->nsegs; 1841 while (n--) { 1842 sp -= 12; 1843 put_user_u32(loadsegs[n].addr, sp+0); 1844 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1845 put_user_u32(loadsegs[n].p_memsz, sp+8); 1846 } 1847 1848 /* elf32_fdpic_loadmap */ 1849 sp -= 4; 1850 put_user_u16(0, sp+0); /* version */ 1851 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1852 1853 info->personality = PER_LINUX_FDPIC; 1854 info->loadmap_addr = sp; 1855 1856 return sp; 1857 } 1858 1859 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1860 struct elfhdr *exec, 1861 struct image_info *info, 1862 struct image_info *interp_info) 1863 { 1864 abi_ulong sp; 1865 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1866 int size; 1867 int i; 1868 abi_ulong u_rand_bytes; 1869 uint8_t k_rand_bytes[16]; 1870 abi_ulong u_platform; 1871 const char *k_platform; 1872 const int n = sizeof(elf_addr_t); 1873 1874 sp = p; 1875 1876 /* Needs to be before we load the env/argc/... */ 1877 if (elf_is_fdpic(exec)) { 1878 /* Need 4 byte alignment for these structs */ 1879 sp &= ~3; 1880 sp = loader_build_fdpic_loadmap(info, sp); 1881 info->other_info = interp_info; 1882 if (interp_info) { 1883 interp_info->other_info = info; 1884 sp = loader_build_fdpic_loadmap(interp_info, sp); 1885 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1886 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1887 } else { 1888 info->interpreter_loadmap_addr = 0; 1889 info->interpreter_pt_dynamic_addr = 0; 1890 } 1891 } 1892 1893 u_platform = 0; 1894 k_platform = ELF_PLATFORM; 1895 if (k_platform) { 1896 size_t len = strlen(k_platform) + 1; 1897 if (STACK_GROWS_DOWN) { 1898 sp -= (len + n - 1) & ~(n - 1); 1899 u_platform = sp; 1900 /* FIXME - check return value of memcpy_to_target() for failure */ 1901 memcpy_to_target(sp, k_platform, len); 1902 } else { 1903 memcpy_to_target(sp, k_platform, len); 1904 u_platform = sp; 1905 sp += len + 1; 1906 } 1907 } 1908 1909 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1910 * the argv and envp pointers. 1911 */ 1912 if (STACK_GROWS_DOWN) { 1913 sp = QEMU_ALIGN_DOWN(sp, 16); 1914 } else { 1915 sp = QEMU_ALIGN_UP(sp, 16); 1916 } 1917 1918 /* 1919 * Generate 16 random bytes for userspace PRNG seeding. 1920 */ 1921 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 1922 if (STACK_GROWS_DOWN) { 1923 sp -= 16; 1924 u_rand_bytes = sp; 1925 /* FIXME - check return value of memcpy_to_target() for failure */ 1926 memcpy_to_target(sp, k_rand_bytes, 16); 1927 } else { 1928 memcpy_to_target(sp, k_rand_bytes, 16); 1929 u_rand_bytes = sp; 1930 sp += 16; 1931 } 1932 1933 size = (DLINFO_ITEMS + 1) * 2; 1934 if (k_platform) 1935 size += 2; 1936 #ifdef DLINFO_ARCH_ITEMS 1937 size += DLINFO_ARCH_ITEMS * 2; 1938 #endif 1939 #ifdef ELF_HWCAP2 1940 size += 2; 1941 #endif 1942 info->auxv_len = size * n; 1943 1944 size += envc + argc + 2; 1945 size += 1; /* argc itself */ 1946 size *= n; 1947 1948 /* Allocate space and finalize stack alignment for entry now. */ 1949 if (STACK_GROWS_DOWN) { 1950 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1951 sp = u_argc; 1952 } else { 1953 u_argc = sp; 1954 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1955 } 1956 1957 u_argv = u_argc + n; 1958 u_envp = u_argv + (argc + 1) * n; 1959 u_auxv = u_envp + (envc + 1) * n; 1960 info->saved_auxv = u_auxv; 1961 info->arg_start = u_argv; 1962 info->arg_end = u_argv + argc * n; 1963 1964 /* This is correct because Linux defines 1965 * elf_addr_t as Elf32_Off / Elf64_Off 1966 */ 1967 #define NEW_AUX_ENT(id, val) do { \ 1968 put_user_ual(id, u_auxv); u_auxv += n; \ 1969 put_user_ual(val, u_auxv); u_auxv += n; \ 1970 } while(0) 1971 1972 #ifdef ARCH_DLINFO 1973 /* 1974 * ARCH_DLINFO must come first so platform specific code can enforce 1975 * special alignment requirements on the AUXV if necessary (eg. PPC). 1976 */ 1977 ARCH_DLINFO; 1978 #endif 1979 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1980 * on info->auxv_len will trigger. 1981 */ 1982 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1983 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1984 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1985 if ((info->alignment & ~qemu_host_page_mask) != 0) { 1986 /* Target doesn't support host page size alignment */ 1987 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1988 } else { 1989 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 1990 qemu_host_page_size))); 1991 } 1992 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1993 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1994 NEW_AUX_ENT(AT_ENTRY, info->entry); 1995 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1996 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1997 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1998 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1999 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2000 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2001 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2002 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2003 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2004 2005 #ifdef ELF_HWCAP2 2006 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2007 #endif 2008 2009 if (u_platform) { 2010 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2011 } 2012 NEW_AUX_ENT (AT_NULL, 0); 2013 #undef NEW_AUX_ENT 2014 2015 /* Check that our initial calculation of the auxv length matches how much 2016 * we actually put into it. 2017 */ 2018 assert(info->auxv_len == u_auxv - info->saved_auxv); 2019 2020 put_user_ual(argc, u_argc); 2021 2022 p = info->arg_strings; 2023 for (i = 0; i < argc; ++i) { 2024 put_user_ual(p, u_argv); 2025 u_argv += n; 2026 p += target_strlen(p) + 1; 2027 } 2028 put_user_ual(0, u_argv); 2029 2030 p = info->env_strings; 2031 for (i = 0; i < envc; ++i) { 2032 put_user_ual(p, u_envp); 2033 u_envp += n; 2034 p += target_strlen(p) + 1; 2035 } 2036 put_user_ual(0, u_envp); 2037 2038 return sp; 2039 } 2040 2041 #ifndef ARM_COMMPAGE 2042 #define ARM_COMMPAGE 0 2043 #define init_guest_commpage() true 2044 #endif 2045 2046 static void pgb_fail_in_use(const char *image_name) 2047 { 2048 error_report("%s: requires virtual address space that is in use " 2049 "(omit the -B option or choose a different value)", 2050 image_name); 2051 exit(EXIT_FAILURE); 2052 } 2053 2054 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2055 abi_ulong guest_hiaddr, long align) 2056 { 2057 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2058 void *addr, *test; 2059 2060 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2061 fprintf(stderr, "Requested guest base 0x%lx does not satisfy " 2062 "host minimum alignment (0x%lx)\n", 2063 guest_base, align); 2064 exit(EXIT_FAILURE); 2065 } 2066 2067 /* Sanity check the guest binary. */ 2068 if (reserved_va) { 2069 if (guest_hiaddr > reserved_va) { 2070 error_report("%s: requires more than reserved virtual " 2071 "address space (0x%" PRIx64 " > 0x%lx)", 2072 image_name, (uint64_t)guest_hiaddr, reserved_va); 2073 exit(EXIT_FAILURE); 2074 } 2075 } else { 2076 #if HOST_LONG_BITS < TARGET_ABI_BITS 2077 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2078 error_report("%s: requires more virtual address space " 2079 "than the host can provide (0x%" PRIx64 ")", 2080 image_name, (uint64_t)guest_hiaddr - guest_base); 2081 exit(EXIT_FAILURE); 2082 } 2083 #endif 2084 } 2085 2086 /* 2087 * Expand the allocation to the entire reserved_va. 2088 * Exclude the mmap_min_addr hole. 2089 */ 2090 if (reserved_va) { 2091 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2092 : mmap_min_addr - guest_base); 2093 guest_hiaddr = reserved_va; 2094 } 2095 2096 /* Reserve the address space for the binary, or reserved_va. */ 2097 test = g2h(guest_loaddr); 2098 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2099 if (test != addr) { 2100 pgb_fail_in_use(image_name); 2101 } 2102 } 2103 2104 /** 2105 * pgd_find_hole_fallback: potential mmap address 2106 * @guest_size: size of available space 2107 * @brk: location of break 2108 * @align: memory alignment 2109 * 2110 * This is a fallback method for finding a hole in the host address 2111 * space if we don't have the benefit of being able to access 2112 * /proc/self/map. It can potentially take a very long time as we can 2113 * only dumbly iterate up the host address space seeing if the 2114 * allocation would work. 2115 */ 2116 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2117 long align, uintptr_t offset) 2118 { 2119 uintptr_t base; 2120 2121 /* Start (aligned) at the bottom and work our way up */ 2122 base = ROUND_UP(mmap_min_addr, align); 2123 2124 while (true) { 2125 uintptr_t align_start, end; 2126 align_start = ROUND_UP(base, align); 2127 end = align_start + guest_size + offset; 2128 2129 /* if brk is anywhere in the range give ourselves some room to grow. */ 2130 if (align_start <= brk && brk < end) { 2131 base = brk + (16 * MiB); 2132 continue; 2133 } else if (align_start + guest_size < align_start) { 2134 /* we have run out of space */ 2135 return -1; 2136 } else { 2137 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2138 MAP_FIXED_NOREPLACE; 2139 void * mmap_start = mmap((void *) align_start, guest_size, 2140 PROT_NONE, flags, -1, 0); 2141 if (mmap_start != MAP_FAILED) { 2142 munmap((void *) align_start, guest_size); 2143 if (MAP_FIXED_NOREPLACE || mmap_start == (void *) align_start) { 2144 return (uintptr_t) mmap_start + offset; 2145 } 2146 } 2147 base += qemu_host_page_size; 2148 } 2149 } 2150 } 2151 2152 /* Return value for guest_base, or -1 if no hole found. */ 2153 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2154 long align, uintptr_t offset) 2155 { 2156 GSList *maps, *iter; 2157 uintptr_t this_start, this_end, next_start, brk; 2158 intptr_t ret = -1; 2159 2160 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2161 2162 maps = read_self_maps(); 2163 2164 /* Read brk after we've read the maps, which will malloc. */ 2165 brk = (uintptr_t)sbrk(0); 2166 2167 if (!maps) { 2168 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2169 } 2170 2171 /* The first hole is before the first map entry. */ 2172 this_start = mmap_min_addr; 2173 2174 for (iter = maps; iter; 2175 this_start = next_start, iter = g_slist_next(iter)) { 2176 uintptr_t align_start, hole_size; 2177 2178 this_end = ((MapInfo *)iter->data)->start; 2179 next_start = ((MapInfo *)iter->data)->end; 2180 align_start = ROUND_UP(this_start + offset, align); 2181 2182 /* Skip holes that are too small. */ 2183 if (align_start >= this_end) { 2184 continue; 2185 } 2186 hole_size = this_end - align_start; 2187 if (hole_size < guest_size) { 2188 continue; 2189 } 2190 2191 /* If this hole contains brk, give ourselves some room to grow. */ 2192 if (this_start <= brk && brk < this_end) { 2193 hole_size -= guest_size; 2194 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2195 align_start += 1 * GiB; 2196 } else if (hole_size >= 16 * MiB) { 2197 align_start += 16 * MiB; 2198 } else { 2199 align_start = (this_end - guest_size) & -align; 2200 if (align_start < this_start) { 2201 continue; 2202 } 2203 } 2204 } 2205 2206 /* Record the lowest successful match. */ 2207 if (ret < 0) { 2208 ret = align_start - guest_loaddr; 2209 } 2210 /* If this hole contains the identity map, select it. */ 2211 if (align_start <= guest_loaddr && 2212 guest_loaddr + guest_size <= this_end) { 2213 ret = 0; 2214 } 2215 /* If this hole ends above the identity map, stop looking. */ 2216 if (this_end >= guest_loaddr) { 2217 break; 2218 } 2219 } 2220 free_self_maps(maps); 2221 2222 return ret; 2223 } 2224 2225 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2226 abi_ulong orig_hiaddr, long align) 2227 { 2228 uintptr_t loaddr = orig_loaddr; 2229 uintptr_t hiaddr = orig_hiaddr; 2230 uintptr_t offset = 0; 2231 uintptr_t addr; 2232 2233 if (hiaddr != orig_hiaddr) { 2234 error_report("%s: requires virtual address space that the " 2235 "host cannot provide (0x%" PRIx64 ")", 2236 image_name, (uint64_t)orig_hiaddr); 2237 exit(EXIT_FAILURE); 2238 } 2239 2240 loaddr &= -align; 2241 if (ARM_COMMPAGE) { 2242 /* 2243 * Extend the allocation to include the commpage. 2244 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2245 * need to ensure there is space bellow the guest_base so we 2246 * can map the commpage in the place needed when the address 2247 * arithmetic wraps around. 2248 */ 2249 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2250 hiaddr = (uintptr_t) 4 << 30; 2251 } else { 2252 offset = -(ARM_COMMPAGE & -align); 2253 } 2254 } 2255 2256 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2257 if (addr == -1) { 2258 /* 2259 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation 2260 * that can satisfy both. But as the normal arm32 link base address 2261 * is ~32k, and we extend down to include the commpage, making the 2262 * overhead only ~96k, this is unlikely. 2263 */ 2264 error_report("%s: Unable to allocate %#zx bytes of " 2265 "virtual address space", image_name, 2266 (size_t)(hiaddr - loaddr)); 2267 exit(EXIT_FAILURE); 2268 } 2269 2270 guest_base = addr; 2271 } 2272 2273 static void pgb_dynamic(const char *image_name, long align) 2274 { 2275 /* 2276 * The executable is dynamic and does not require a fixed address. 2277 * All we need is a commpage that satisfies align. 2278 * If we do not need a commpage, leave guest_base == 0. 2279 */ 2280 if (ARM_COMMPAGE) { 2281 uintptr_t addr, commpage; 2282 2283 /* 64-bit hosts should have used reserved_va. */ 2284 assert(sizeof(uintptr_t) == 4); 2285 2286 /* 2287 * By putting the commpage at the first hole, that puts guest_base 2288 * just above that, and maximises the positive guest addresses. 2289 */ 2290 commpage = ARM_COMMPAGE & -align; 2291 addr = pgb_find_hole(commpage, -commpage, align, 0); 2292 assert(addr != -1); 2293 guest_base = addr; 2294 } 2295 } 2296 2297 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2298 abi_ulong guest_hiaddr, long align) 2299 { 2300 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2301 void *addr, *test; 2302 2303 if (guest_hiaddr > reserved_va) { 2304 error_report("%s: requires more than reserved virtual " 2305 "address space (0x%" PRIx64 " > 0x%lx)", 2306 image_name, (uint64_t)guest_hiaddr, reserved_va); 2307 exit(EXIT_FAILURE); 2308 } 2309 2310 /* Widen the "image" to the entire reserved address space. */ 2311 pgb_static(image_name, 0, reserved_va, align); 2312 2313 /* osdep.h defines this as 0 if it's missing */ 2314 flags |= MAP_FIXED_NOREPLACE; 2315 2316 /* Reserve the memory on the host. */ 2317 assert(guest_base != 0); 2318 test = g2h(0); 2319 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2320 if (addr == MAP_FAILED) { 2321 error_report("Unable to reserve 0x%lx bytes of virtual address " 2322 "space (%s) for use as guest address space (check your " 2323 "virtual memory ulimit setting or reserve less " 2324 "using -R option)", reserved_va, strerror(errno)); 2325 exit(EXIT_FAILURE); 2326 } 2327 assert(addr == test); 2328 } 2329 2330 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2331 abi_ulong guest_hiaddr) 2332 { 2333 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2334 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2335 2336 if (have_guest_base) { 2337 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2338 } else if (reserved_va) { 2339 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2340 } else if (guest_loaddr) { 2341 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2342 } else { 2343 pgb_dynamic(image_name, align); 2344 } 2345 2346 /* Reserve and initialize the commpage. */ 2347 if (!init_guest_commpage()) { 2348 /* 2349 * With have_guest_base, the user has selected the address and 2350 * we are trying to work with that. Otherwise, we have selected 2351 * free space and init_guest_commpage must succeeded. 2352 */ 2353 assert(have_guest_base); 2354 pgb_fail_in_use(image_name); 2355 } 2356 2357 assert(QEMU_IS_ALIGNED(guest_base, align)); 2358 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2359 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2360 } 2361 2362 /* Load an ELF image into the address space. 2363 2364 IMAGE_NAME is the filename of the image, to use in error messages. 2365 IMAGE_FD is the open file descriptor for the image. 2366 2367 BPRM_BUF is a copy of the beginning of the file; this of course 2368 contains the elf file header at offset 0. It is assumed that this 2369 buffer is sufficiently aligned to present no problems to the host 2370 in accessing data at aligned offsets within the buffer. 2371 2372 On return: INFO values will be filled in, as necessary or available. */ 2373 2374 static void load_elf_image(const char *image_name, int image_fd, 2375 struct image_info *info, char **pinterp_name, 2376 char bprm_buf[BPRM_BUF_SIZE]) 2377 { 2378 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2379 struct elf_phdr *phdr; 2380 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2381 int i, retval; 2382 const char *errmsg; 2383 2384 /* First of all, some simple consistency checks */ 2385 errmsg = "Invalid ELF image for this architecture"; 2386 if (!elf_check_ident(ehdr)) { 2387 goto exit_errmsg; 2388 } 2389 bswap_ehdr(ehdr); 2390 if (!elf_check_ehdr(ehdr)) { 2391 goto exit_errmsg; 2392 } 2393 2394 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2395 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2396 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2397 } else { 2398 phdr = (struct elf_phdr *) alloca(i); 2399 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2400 if (retval != i) { 2401 goto exit_read; 2402 } 2403 } 2404 bswap_phdr(phdr, ehdr->e_phnum); 2405 2406 info->nsegs = 0; 2407 info->pt_dynamic_addr = 0; 2408 2409 mmap_lock(); 2410 2411 /* Find the maximum size of the image and allocate an appropriate 2412 amount of memory to handle that. */ 2413 loaddr = -1, hiaddr = 0; 2414 info->alignment = 0; 2415 for (i = 0; i < ehdr->e_phnum; ++i) { 2416 if (phdr[i].p_type == PT_LOAD) { 2417 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2418 if (a < loaddr) { 2419 loaddr = a; 2420 } 2421 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2422 if (a > hiaddr) { 2423 hiaddr = a; 2424 } 2425 ++info->nsegs; 2426 info->alignment |= phdr[i].p_align; 2427 } 2428 } 2429 2430 if (pinterp_name != NULL) { 2431 /* 2432 * This is the main executable. 2433 * 2434 * Reserve extra space for brk. 2435 * We hold on to this space while placing the interpreter 2436 * and the stack, lest they be placed immediately after 2437 * the data segment and block allocation from the brk. 2438 * 2439 * 16MB is chosen as "large enough" without being so large 2440 * as to allow the result to not fit with a 32-bit guest on 2441 * a 32-bit host. 2442 */ 2443 info->reserve_brk = 16 * MiB; 2444 hiaddr += info->reserve_brk; 2445 2446 if (ehdr->e_type == ET_EXEC) { 2447 /* 2448 * Make sure that the low address does not conflict with 2449 * MMAP_MIN_ADDR or the QEMU application itself. 2450 */ 2451 probe_guest_base(image_name, loaddr, hiaddr); 2452 } else { 2453 /* 2454 * The binary is dynamic, but we still need to 2455 * select guest_base. In this case we pass a size. 2456 */ 2457 probe_guest_base(image_name, 0, hiaddr - loaddr); 2458 } 2459 } 2460 2461 /* 2462 * Reserve address space for all of this. 2463 * 2464 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2465 * exactly the address range that is required. 2466 * 2467 * Otherwise this is ET_DYN, and we are searching for a location 2468 * that can hold the memory space required. If the image is 2469 * pre-linked, LOADDR will be non-zero, and the kernel should 2470 * honor that address if it happens to be free. 2471 * 2472 * In both cases, we will overwrite pages in this range with mappings 2473 * from the executable. 2474 */ 2475 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2476 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2477 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2478 -1, 0); 2479 if (load_addr == -1) { 2480 goto exit_perror; 2481 } 2482 load_bias = load_addr - loaddr; 2483 2484 if (elf_is_fdpic(ehdr)) { 2485 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2486 g_malloc(sizeof(*loadsegs) * info->nsegs); 2487 2488 for (i = 0; i < ehdr->e_phnum; ++i) { 2489 switch (phdr[i].p_type) { 2490 case PT_DYNAMIC: 2491 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2492 break; 2493 case PT_LOAD: 2494 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2495 loadsegs->p_vaddr = phdr[i].p_vaddr; 2496 loadsegs->p_memsz = phdr[i].p_memsz; 2497 ++loadsegs; 2498 break; 2499 } 2500 } 2501 } 2502 2503 info->load_bias = load_bias; 2504 info->code_offset = load_bias; 2505 info->data_offset = load_bias; 2506 info->load_addr = load_addr; 2507 info->entry = ehdr->e_entry + load_bias; 2508 info->start_code = -1; 2509 info->end_code = 0; 2510 info->start_data = -1; 2511 info->end_data = 0; 2512 info->brk = 0; 2513 info->elf_flags = ehdr->e_flags; 2514 2515 for (i = 0; i < ehdr->e_phnum; i++) { 2516 struct elf_phdr *eppnt = phdr + i; 2517 if (eppnt->p_type == PT_LOAD) { 2518 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2519 int elf_prot = 0; 2520 2521 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2522 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2523 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2524 2525 vaddr = load_bias + eppnt->p_vaddr; 2526 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2527 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2528 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2529 2530 /* 2531 * Some segments may be completely empty without any backing file 2532 * segment, in that case just let zero_bss allocate an empty buffer 2533 * for it. 2534 */ 2535 if (eppnt->p_filesz != 0) { 2536 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2537 MAP_PRIVATE | MAP_FIXED, 2538 image_fd, eppnt->p_offset - vaddr_po); 2539 2540 if (error == -1) { 2541 goto exit_perror; 2542 } 2543 } 2544 2545 vaddr_ef = vaddr + eppnt->p_filesz; 2546 vaddr_em = vaddr + eppnt->p_memsz; 2547 2548 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2549 if (vaddr_ef < vaddr_em) { 2550 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2551 } 2552 2553 /* Find the full program boundaries. */ 2554 if (elf_prot & PROT_EXEC) { 2555 if (vaddr < info->start_code) { 2556 info->start_code = vaddr; 2557 } 2558 if (vaddr_ef > info->end_code) { 2559 info->end_code = vaddr_ef; 2560 } 2561 } 2562 if (elf_prot & PROT_WRITE) { 2563 if (vaddr < info->start_data) { 2564 info->start_data = vaddr; 2565 } 2566 if (vaddr_ef > info->end_data) { 2567 info->end_data = vaddr_ef; 2568 } 2569 if (vaddr_em > info->brk) { 2570 info->brk = vaddr_em; 2571 } 2572 } 2573 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2574 char *interp_name; 2575 2576 if (*pinterp_name) { 2577 errmsg = "Multiple PT_INTERP entries"; 2578 goto exit_errmsg; 2579 } 2580 interp_name = malloc(eppnt->p_filesz); 2581 if (!interp_name) { 2582 goto exit_perror; 2583 } 2584 2585 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2586 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2587 eppnt->p_filesz); 2588 } else { 2589 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2590 eppnt->p_offset); 2591 if (retval != eppnt->p_filesz) { 2592 goto exit_perror; 2593 } 2594 } 2595 if (interp_name[eppnt->p_filesz - 1] != 0) { 2596 errmsg = "Invalid PT_INTERP entry"; 2597 goto exit_errmsg; 2598 } 2599 *pinterp_name = interp_name; 2600 #ifdef TARGET_MIPS 2601 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2602 Mips_elf_abiflags_v0 abiflags; 2603 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2604 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2605 goto exit_errmsg; 2606 } 2607 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2608 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2609 sizeof(Mips_elf_abiflags_v0)); 2610 } else { 2611 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2612 eppnt->p_offset); 2613 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2614 goto exit_perror; 2615 } 2616 } 2617 bswap_mips_abiflags(&abiflags); 2618 info->fp_abi = abiflags.fp_abi; 2619 #endif 2620 } 2621 } 2622 2623 if (info->end_data == 0) { 2624 info->start_data = info->end_code; 2625 info->end_data = info->end_code; 2626 info->brk = info->end_code; 2627 } 2628 2629 if (qemu_log_enabled()) { 2630 load_symbols(ehdr, image_fd, load_bias); 2631 } 2632 2633 mmap_unlock(); 2634 2635 close(image_fd); 2636 return; 2637 2638 exit_read: 2639 if (retval >= 0) { 2640 errmsg = "Incomplete read of file header"; 2641 goto exit_errmsg; 2642 } 2643 exit_perror: 2644 errmsg = strerror(errno); 2645 exit_errmsg: 2646 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2647 exit(-1); 2648 } 2649 2650 static void load_elf_interp(const char *filename, struct image_info *info, 2651 char bprm_buf[BPRM_BUF_SIZE]) 2652 { 2653 int fd, retval; 2654 2655 fd = open(path(filename), O_RDONLY); 2656 if (fd < 0) { 2657 goto exit_perror; 2658 } 2659 2660 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2661 if (retval < 0) { 2662 goto exit_perror; 2663 } 2664 if (retval < BPRM_BUF_SIZE) { 2665 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2666 } 2667 2668 load_elf_image(filename, fd, info, NULL, bprm_buf); 2669 return; 2670 2671 exit_perror: 2672 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2673 exit(-1); 2674 } 2675 2676 static int symfind(const void *s0, const void *s1) 2677 { 2678 target_ulong addr = *(target_ulong *)s0; 2679 struct elf_sym *sym = (struct elf_sym *)s1; 2680 int result = 0; 2681 if (addr < sym->st_value) { 2682 result = -1; 2683 } else if (addr >= sym->st_value + sym->st_size) { 2684 result = 1; 2685 } 2686 return result; 2687 } 2688 2689 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2690 { 2691 #if ELF_CLASS == ELFCLASS32 2692 struct elf_sym *syms = s->disas_symtab.elf32; 2693 #else 2694 struct elf_sym *syms = s->disas_symtab.elf64; 2695 #endif 2696 2697 // binary search 2698 struct elf_sym *sym; 2699 2700 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2701 if (sym != NULL) { 2702 return s->disas_strtab + sym->st_name; 2703 } 2704 2705 return ""; 2706 } 2707 2708 /* FIXME: This should use elf_ops.h */ 2709 static int symcmp(const void *s0, const void *s1) 2710 { 2711 struct elf_sym *sym0 = (struct elf_sym *)s0; 2712 struct elf_sym *sym1 = (struct elf_sym *)s1; 2713 return (sym0->st_value < sym1->st_value) 2714 ? -1 2715 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2716 } 2717 2718 /* Best attempt to load symbols from this ELF object. */ 2719 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2720 { 2721 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2722 uint64_t segsz; 2723 struct elf_shdr *shdr; 2724 char *strings = NULL; 2725 struct syminfo *s = NULL; 2726 struct elf_sym *new_syms, *syms = NULL; 2727 2728 shnum = hdr->e_shnum; 2729 i = shnum * sizeof(struct elf_shdr); 2730 shdr = (struct elf_shdr *)alloca(i); 2731 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2732 return; 2733 } 2734 2735 bswap_shdr(shdr, shnum); 2736 for (i = 0; i < shnum; ++i) { 2737 if (shdr[i].sh_type == SHT_SYMTAB) { 2738 sym_idx = i; 2739 str_idx = shdr[i].sh_link; 2740 goto found; 2741 } 2742 } 2743 2744 /* There will be no symbol table if the file was stripped. */ 2745 return; 2746 2747 found: 2748 /* Now know where the strtab and symtab are. Snarf them. */ 2749 s = g_try_new(struct syminfo, 1); 2750 if (!s) { 2751 goto give_up; 2752 } 2753 2754 segsz = shdr[str_idx].sh_size; 2755 s->disas_strtab = strings = g_try_malloc(segsz); 2756 if (!strings || 2757 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2758 goto give_up; 2759 } 2760 2761 segsz = shdr[sym_idx].sh_size; 2762 syms = g_try_malloc(segsz); 2763 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2764 goto give_up; 2765 } 2766 2767 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2768 /* Implausibly large symbol table: give up rather than ploughing 2769 * on with the number of symbols calculation overflowing 2770 */ 2771 goto give_up; 2772 } 2773 nsyms = segsz / sizeof(struct elf_sym); 2774 for (i = 0; i < nsyms; ) { 2775 bswap_sym(syms + i); 2776 /* Throw away entries which we do not need. */ 2777 if (syms[i].st_shndx == SHN_UNDEF 2778 || syms[i].st_shndx >= SHN_LORESERVE 2779 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2780 if (i < --nsyms) { 2781 syms[i] = syms[nsyms]; 2782 } 2783 } else { 2784 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2785 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2786 syms[i].st_value &= ~(target_ulong)1; 2787 #endif 2788 syms[i].st_value += load_bias; 2789 i++; 2790 } 2791 } 2792 2793 /* No "useful" symbol. */ 2794 if (nsyms == 0) { 2795 goto give_up; 2796 } 2797 2798 /* Attempt to free the storage associated with the local symbols 2799 that we threw away. Whether or not this has any effect on the 2800 memory allocation depends on the malloc implementation and how 2801 many symbols we managed to discard. */ 2802 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2803 if (new_syms == NULL) { 2804 goto give_up; 2805 } 2806 syms = new_syms; 2807 2808 qsort(syms, nsyms, sizeof(*syms), symcmp); 2809 2810 s->disas_num_syms = nsyms; 2811 #if ELF_CLASS == ELFCLASS32 2812 s->disas_symtab.elf32 = syms; 2813 #else 2814 s->disas_symtab.elf64 = syms; 2815 #endif 2816 s->lookup_symbol = lookup_symbolxx; 2817 s->next = syminfos; 2818 syminfos = s; 2819 2820 return; 2821 2822 give_up: 2823 g_free(s); 2824 g_free(strings); 2825 g_free(syms); 2826 } 2827 2828 uint32_t get_elf_eflags(int fd) 2829 { 2830 struct elfhdr ehdr; 2831 off_t offset; 2832 int ret; 2833 2834 /* Read ELF header */ 2835 offset = lseek(fd, 0, SEEK_SET); 2836 if (offset == (off_t) -1) { 2837 return 0; 2838 } 2839 ret = read(fd, &ehdr, sizeof(ehdr)); 2840 if (ret < sizeof(ehdr)) { 2841 return 0; 2842 } 2843 offset = lseek(fd, offset, SEEK_SET); 2844 if (offset == (off_t) -1) { 2845 return 0; 2846 } 2847 2848 /* Check ELF signature */ 2849 if (!elf_check_ident(&ehdr)) { 2850 return 0; 2851 } 2852 2853 /* check header */ 2854 bswap_ehdr(&ehdr); 2855 if (!elf_check_ehdr(&ehdr)) { 2856 return 0; 2857 } 2858 2859 /* return architecture id */ 2860 return ehdr.e_flags; 2861 } 2862 2863 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2864 { 2865 struct image_info interp_info; 2866 struct elfhdr elf_ex; 2867 char *elf_interpreter = NULL; 2868 char *scratch; 2869 2870 memset(&interp_info, 0, sizeof(interp_info)); 2871 #ifdef TARGET_MIPS 2872 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 2873 #endif 2874 2875 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2876 2877 load_elf_image(bprm->filename, bprm->fd, info, 2878 &elf_interpreter, bprm->buf); 2879 2880 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2881 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2882 when we load the interpreter. */ 2883 elf_ex = *(struct elfhdr *)bprm->buf; 2884 2885 /* Do this so that we can load the interpreter, if need be. We will 2886 change some of these later */ 2887 bprm->p = setup_arg_pages(bprm, info); 2888 2889 scratch = g_new0(char, TARGET_PAGE_SIZE); 2890 if (STACK_GROWS_DOWN) { 2891 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2892 bprm->p, info->stack_limit); 2893 info->file_string = bprm->p; 2894 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2895 bprm->p, info->stack_limit); 2896 info->env_strings = bprm->p; 2897 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2898 bprm->p, info->stack_limit); 2899 info->arg_strings = bprm->p; 2900 } else { 2901 info->arg_strings = bprm->p; 2902 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2903 bprm->p, info->stack_limit); 2904 info->env_strings = bprm->p; 2905 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2906 bprm->p, info->stack_limit); 2907 info->file_string = bprm->p; 2908 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2909 bprm->p, info->stack_limit); 2910 } 2911 2912 g_free(scratch); 2913 2914 if (!bprm->p) { 2915 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2916 exit(-1); 2917 } 2918 2919 if (elf_interpreter) { 2920 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2921 2922 /* If the program interpreter is one of these two, then assume 2923 an iBCS2 image. Otherwise assume a native linux image. */ 2924 2925 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2926 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2927 info->personality = PER_SVR4; 2928 2929 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2930 and some applications "depend" upon this behavior. Since 2931 we do not have the power to recompile these, we emulate 2932 the SVr4 behavior. Sigh. */ 2933 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2934 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2935 } 2936 #ifdef TARGET_MIPS 2937 info->interp_fp_abi = interp_info.fp_abi; 2938 #endif 2939 } 2940 2941 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2942 info, (elf_interpreter ? &interp_info : NULL)); 2943 info->start_stack = bprm->p; 2944 2945 /* If we have an interpreter, set that as the program's entry point. 2946 Copy the load_bias as well, to help PPC64 interpret the entry 2947 point as a function descriptor. Do this after creating elf tables 2948 so that we copy the original program entry point into the AUXV. */ 2949 if (elf_interpreter) { 2950 info->load_bias = interp_info.load_bias; 2951 info->entry = interp_info.entry; 2952 free(elf_interpreter); 2953 } 2954 2955 #ifdef USE_ELF_CORE_DUMP 2956 bprm->core_dump = &elf_core_dump; 2957 #endif 2958 2959 /* 2960 * If we reserved extra space for brk, release it now. 2961 * The implementation of do_brk in syscalls.c expects to be able 2962 * to mmap pages in this space. 2963 */ 2964 if (info->reserve_brk) { 2965 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 2966 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 2967 target_munmap(start_brk, end_brk - start_brk); 2968 } 2969 2970 return 0; 2971 } 2972 2973 #ifdef USE_ELF_CORE_DUMP 2974 /* 2975 * Definitions to generate Intel SVR4-like core files. 2976 * These mostly have the same names as the SVR4 types with "target_elf_" 2977 * tacked on the front to prevent clashes with linux definitions, 2978 * and the typedef forms have been avoided. This is mostly like 2979 * the SVR4 structure, but more Linuxy, with things that Linux does 2980 * not support and which gdb doesn't really use excluded. 2981 * 2982 * Fields we don't dump (their contents is zero) in linux-user qemu 2983 * are marked with XXX. 2984 * 2985 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2986 * 2987 * Porting ELF coredump for target is (quite) simple process. First you 2988 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2989 * the target resides): 2990 * 2991 * #define USE_ELF_CORE_DUMP 2992 * 2993 * Next you define type of register set used for dumping. ELF specification 2994 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2995 * 2996 * typedef <target_regtype> target_elf_greg_t; 2997 * #define ELF_NREG <number of registers> 2998 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2999 * 3000 * Last step is to implement target specific function that copies registers 3001 * from given cpu into just specified register set. Prototype is: 3002 * 3003 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3004 * const CPUArchState *env); 3005 * 3006 * Parameters: 3007 * regs - copy register values into here (allocated and zeroed by caller) 3008 * env - copy registers from here 3009 * 3010 * Example for ARM target is provided in this file. 3011 */ 3012 3013 /* An ELF note in memory */ 3014 struct memelfnote { 3015 const char *name; 3016 size_t namesz; 3017 size_t namesz_rounded; 3018 int type; 3019 size_t datasz; 3020 size_t datasz_rounded; 3021 void *data; 3022 size_t notesz; 3023 }; 3024 3025 struct target_elf_siginfo { 3026 abi_int si_signo; /* signal number */ 3027 abi_int si_code; /* extra code */ 3028 abi_int si_errno; /* errno */ 3029 }; 3030 3031 struct target_elf_prstatus { 3032 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3033 abi_short pr_cursig; /* Current signal */ 3034 abi_ulong pr_sigpend; /* XXX */ 3035 abi_ulong pr_sighold; /* XXX */ 3036 target_pid_t pr_pid; 3037 target_pid_t pr_ppid; 3038 target_pid_t pr_pgrp; 3039 target_pid_t pr_sid; 3040 struct target_timeval pr_utime; /* XXX User time */ 3041 struct target_timeval pr_stime; /* XXX System time */ 3042 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3043 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3044 target_elf_gregset_t pr_reg; /* GP registers */ 3045 abi_int pr_fpvalid; /* XXX */ 3046 }; 3047 3048 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3049 3050 struct target_elf_prpsinfo { 3051 char pr_state; /* numeric process state */ 3052 char pr_sname; /* char for pr_state */ 3053 char pr_zomb; /* zombie */ 3054 char pr_nice; /* nice val */ 3055 abi_ulong pr_flag; /* flags */ 3056 target_uid_t pr_uid; 3057 target_gid_t pr_gid; 3058 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3059 /* Lots missing */ 3060 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3061 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3062 }; 3063 3064 /* Here is the structure in which status of each thread is captured. */ 3065 struct elf_thread_status { 3066 QTAILQ_ENTRY(elf_thread_status) ets_link; 3067 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3068 #if 0 3069 elf_fpregset_t fpu; /* NT_PRFPREG */ 3070 struct task_struct *thread; 3071 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3072 #endif 3073 struct memelfnote notes[1]; 3074 int num_notes; 3075 }; 3076 3077 struct elf_note_info { 3078 struct memelfnote *notes; 3079 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3080 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3081 3082 QTAILQ_HEAD(, elf_thread_status) thread_list; 3083 #if 0 3084 /* 3085 * Current version of ELF coredump doesn't support 3086 * dumping fp regs etc. 3087 */ 3088 elf_fpregset_t *fpu; 3089 elf_fpxregset_t *xfpu; 3090 int thread_status_size; 3091 #endif 3092 int notes_size; 3093 int numnote; 3094 }; 3095 3096 struct vm_area_struct { 3097 target_ulong vma_start; /* start vaddr of memory region */ 3098 target_ulong vma_end; /* end vaddr of memory region */ 3099 abi_ulong vma_flags; /* protection etc. flags for the region */ 3100 QTAILQ_ENTRY(vm_area_struct) vma_link; 3101 }; 3102 3103 struct mm_struct { 3104 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3105 int mm_count; /* number of mappings */ 3106 }; 3107 3108 static struct mm_struct *vma_init(void); 3109 static void vma_delete(struct mm_struct *); 3110 static int vma_add_mapping(struct mm_struct *, target_ulong, 3111 target_ulong, abi_ulong); 3112 static int vma_get_mapping_count(const struct mm_struct *); 3113 static struct vm_area_struct *vma_first(const struct mm_struct *); 3114 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3115 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3116 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3117 unsigned long flags); 3118 3119 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3120 static void fill_note(struct memelfnote *, const char *, int, 3121 unsigned int, void *); 3122 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3123 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3124 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3125 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3126 static size_t note_size(const struct memelfnote *); 3127 static void free_note_info(struct elf_note_info *); 3128 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3129 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3130 static int core_dump_filename(const TaskState *, char *, size_t); 3131 3132 static int dump_write(int, const void *, size_t); 3133 static int write_note(struct memelfnote *, int); 3134 static int write_note_info(struct elf_note_info *, int); 3135 3136 #ifdef BSWAP_NEEDED 3137 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3138 { 3139 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3140 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3141 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3142 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3143 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3144 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3145 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3146 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3147 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3148 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3149 /* cpu times are not filled, so we skip them */ 3150 /* regs should be in correct format already */ 3151 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3152 } 3153 3154 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3155 { 3156 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3157 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3158 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3159 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3160 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3161 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3162 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3163 } 3164 3165 static void bswap_note(struct elf_note *en) 3166 { 3167 bswap32s(&en->n_namesz); 3168 bswap32s(&en->n_descsz); 3169 bswap32s(&en->n_type); 3170 } 3171 #else 3172 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3173 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3174 static inline void bswap_note(struct elf_note *en) { } 3175 #endif /* BSWAP_NEEDED */ 3176 3177 /* 3178 * Minimal support for linux memory regions. These are needed 3179 * when we are finding out what memory exactly belongs to 3180 * emulated process. No locks needed here, as long as 3181 * thread that received the signal is stopped. 3182 */ 3183 3184 static struct mm_struct *vma_init(void) 3185 { 3186 struct mm_struct *mm; 3187 3188 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3189 return (NULL); 3190 3191 mm->mm_count = 0; 3192 QTAILQ_INIT(&mm->mm_mmap); 3193 3194 return (mm); 3195 } 3196 3197 static void vma_delete(struct mm_struct *mm) 3198 { 3199 struct vm_area_struct *vma; 3200 3201 while ((vma = vma_first(mm)) != NULL) { 3202 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3203 g_free(vma); 3204 } 3205 g_free(mm); 3206 } 3207 3208 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3209 target_ulong end, abi_ulong flags) 3210 { 3211 struct vm_area_struct *vma; 3212 3213 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3214 return (-1); 3215 3216 vma->vma_start = start; 3217 vma->vma_end = end; 3218 vma->vma_flags = flags; 3219 3220 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3221 mm->mm_count++; 3222 3223 return (0); 3224 } 3225 3226 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3227 { 3228 return (QTAILQ_FIRST(&mm->mm_mmap)); 3229 } 3230 3231 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3232 { 3233 return (QTAILQ_NEXT(vma, vma_link)); 3234 } 3235 3236 static int vma_get_mapping_count(const struct mm_struct *mm) 3237 { 3238 return (mm->mm_count); 3239 } 3240 3241 /* 3242 * Calculate file (dump) size of given memory region. 3243 */ 3244 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3245 { 3246 /* if we cannot even read the first page, skip it */ 3247 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3248 return (0); 3249 3250 /* 3251 * Usually we don't dump executable pages as they contain 3252 * non-writable code that debugger can read directly from 3253 * target library etc. However, thread stacks are marked 3254 * also executable so we read in first page of given region 3255 * and check whether it contains elf header. If there is 3256 * no elf header, we dump it. 3257 */ 3258 if (vma->vma_flags & PROT_EXEC) { 3259 char page[TARGET_PAGE_SIZE]; 3260 3261 copy_from_user(page, vma->vma_start, sizeof (page)); 3262 if ((page[EI_MAG0] == ELFMAG0) && 3263 (page[EI_MAG1] == ELFMAG1) && 3264 (page[EI_MAG2] == ELFMAG2) && 3265 (page[EI_MAG3] == ELFMAG3)) { 3266 /* 3267 * Mappings are possibly from ELF binary. Don't dump 3268 * them. 3269 */ 3270 return (0); 3271 } 3272 } 3273 3274 return (vma->vma_end - vma->vma_start); 3275 } 3276 3277 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3278 unsigned long flags) 3279 { 3280 struct mm_struct *mm = (struct mm_struct *)priv; 3281 3282 vma_add_mapping(mm, start, end, flags); 3283 return (0); 3284 } 3285 3286 static void fill_note(struct memelfnote *note, const char *name, int type, 3287 unsigned int sz, void *data) 3288 { 3289 unsigned int namesz; 3290 3291 namesz = strlen(name) + 1; 3292 note->name = name; 3293 note->namesz = namesz; 3294 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3295 note->type = type; 3296 note->datasz = sz; 3297 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3298 3299 note->data = data; 3300 3301 /* 3302 * We calculate rounded up note size here as specified by 3303 * ELF document. 3304 */ 3305 note->notesz = sizeof (struct elf_note) + 3306 note->namesz_rounded + note->datasz_rounded; 3307 } 3308 3309 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3310 uint32_t flags) 3311 { 3312 (void) memset(elf, 0, sizeof(*elf)); 3313 3314 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3315 elf->e_ident[EI_CLASS] = ELF_CLASS; 3316 elf->e_ident[EI_DATA] = ELF_DATA; 3317 elf->e_ident[EI_VERSION] = EV_CURRENT; 3318 elf->e_ident[EI_OSABI] = ELF_OSABI; 3319 3320 elf->e_type = ET_CORE; 3321 elf->e_machine = machine; 3322 elf->e_version = EV_CURRENT; 3323 elf->e_phoff = sizeof(struct elfhdr); 3324 elf->e_flags = flags; 3325 elf->e_ehsize = sizeof(struct elfhdr); 3326 elf->e_phentsize = sizeof(struct elf_phdr); 3327 elf->e_phnum = segs; 3328 3329 bswap_ehdr(elf); 3330 } 3331 3332 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3333 { 3334 phdr->p_type = PT_NOTE; 3335 phdr->p_offset = offset; 3336 phdr->p_vaddr = 0; 3337 phdr->p_paddr = 0; 3338 phdr->p_filesz = sz; 3339 phdr->p_memsz = 0; 3340 phdr->p_flags = 0; 3341 phdr->p_align = 0; 3342 3343 bswap_phdr(phdr, 1); 3344 } 3345 3346 static size_t note_size(const struct memelfnote *note) 3347 { 3348 return (note->notesz); 3349 } 3350 3351 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3352 const TaskState *ts, int signr) 3353 { 3354 (void) memset(prstatus, 0, sizeof (*prstatus)); 3355 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3356 prstatus->pr_pid = ts->ts_tid; 3357 prstatus->pr_ppid = getppid(); 3358 prstatus->pr_pgrp = getpgrp(); 3359 prstatus->pr_sid = getsid(0); 3360 3361 bswap_prstatus(prstatus); 3362 } 3363 3364 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3365 { 3366 char *base_filename; 3367 unsigned int i, len; 3368 3369 (void) memset(psinfo, 0, sizeof (*psinfo)); 3370 3371 len = ts->info->arg_end - ts->info->arg_start; 3372 if (len >= ELF_PRARGSZ) 3373 len = ELF_PRARGSZ - 1; 3374 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3375 return -EFAULT; 3376 for (i = 0; i < len; i++) 3377 if (psinfo->pr_psargs[i] == 0) 3378 psinfo->pr_psargs[i] = ' '; 3379 psinfo->pr_psargs[len] = 0; 3380 3381 psinfo->pr_pid = getpid(); 3382 psinfo->pr_ppid = getppid(); 3383 psinfo->pr_pgrp = getpgrp(); 3384 psinfo->pr_sid = getsid(0); 3385 psinfo->pr_uid = getuid(); 3386 psinfo->pr_gid = getgid(); 3387 3388 base_filename = g_path_get_basename(ts->bprm->filename); 3389 /* 3390 * Using strncpy here is fine: at max-length, 3391 * this field is not NUL-terminated. 3392 */ 3393 (void) strncpy(psinfo->pr_fname, base_filename, 3394 sizeof(psinfo->pr_fname)); 3395 3396 g_free(base_filename); 3397 bswap_psinfo(psinfo); 3398 return (0); 3399 } 3400 3401 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3402 { 3403 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3404 elf_addr_t orig_auxv = auxv; 3405 void *ptr; 3406 int len = ts->info->auxv_len; 3407 3408 /* 3409 * Auxiliary vector is stored in target process stack. It contains 3410 * {type, value} pairs that we need to dump into note. This is not 3411 * strictly necessary but we do it here for sake of completeness. 3412 */ 3413 3414 /* read in whole auxv vector and copy it to memelfnote */ 3415 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3416 if (ptr != NULL) { 3417 fill_note(note, "CORE", NT_AUXV, len, ptr); 3418 unlock_user(ptr, auxv, len); 3419 } 3420 } 3421 3422 /* 3423 * Constructs name of coredump file. We have following convention 3424 * for the name: 3425 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3426 * 3427 * Returns 0 in case of success, -1 otherwise (errno is set). 3428 */ 3429 static int core_dump_filename(const TaskState *ts, char *buf, 3430 size_t bufsize) 3431 { 3432 char timestamp[64]; 3433 char *base_filename = NULL; 3434 struct timeval tv; 3435 struct tm tm; 3436 3437 assert(bufsize >= PATH_MAX); 3438 3439 if (gettimeofday(&tv, NULL) < 0) { 3440 (void) fprintf(stderr, "unable to get current timestamp: %s", 3441 strerror(errno)); 3442 return (-1); 3443 } 3444 3445 base_filename = g_path_get_basename(ts->bprm->filename); 3446 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3447 localtime_r(&tv.tv_sec, &tm)); 3448 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3449 base_filename, timestamp, (int)getpid()); 3450 g_free(base_filename); 3451 3452 return (0); 3453 } 3454 3455 static int dump_write(int fd, const void *ptr, size_t size) 3456 { 3457 const char *bufp = (const char *)ptr; 3458 ssize_t bytes_written, bytes_left; 3459 struct rlimit dumpsize; 3460 off_t pos; 3461 3462 bytes_written = 0; 3463 getrlimit(RLIMIT_CORE, &dumpsize); 3464 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3465 if (errno == ESPIPE) { /* not a seekable stream */ 3466 bytes_left = size; 3467 } else { 3468 return pos; 3469 } 3470 } else { 3471 if (dumpsize.rlim_cur <= pos) { 3472 return -1; 3473 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3474 bytes_left = size; 3475 } else { 3476 size_t limit_left=dumpsize.rlim_cur - pos; 3477 bytes_left = limit_left >= size ? size : limit_left ; 3478 } 3479 } 3480 3481 /* 3482 * In normal conditions, single write(2) should do but 3483 * in case of socket etc. this mechanism is more portable. 3484 */ 3485 do { 3486 bytes_written = write(fd, bufp, bytes_left); 3487 if (bytes_written < 0) { 3488 if (errno == EINTR) 3489 continue; 3490 return (-1); 3491 } else if (bytes_written == 0) { /* eof */ 3492 return (-1); 3493 } 3494 bufp += bytes_written; 3495 bytes_left -= bytes_written; 3496 } while (bytes_left > 0); 3497 3498 return (0); 3499 } 3500 3501 static int write_note(struct memelfnote *men, int fd) 3502 { 3503 struct elf_note en; 3504 3505 en.n_namesz = men->namesz; 3506 en.n_type = men->type; 3507 en.n_descsz = men->datasz; 3508 3509 bswap_note(&en); 3510 3511 if (dump_write(fd, &en, sizeof(en)) != 0) 3512 return (-1); 3513 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3514 return (-1); 3515 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3516 return (-1); 3517 3518 return (0); 3519 } 3520 3521 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3522 { 3523 CPUState *cpu = env_cpu((CPUArchState *)env); 3524 TaskState *ts = (TaskState *)cpu->opaque; 3525 struct elf_thread_status *ets; 3526 3527 ets = g_malloc0(sizeof (*ets)); 3528 ets->num_notes = 1; /* only prstatus is dumped */ 3529 fill_prstatus(&ets->prstatus, ts, 0); 3530 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3531 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3532 &ets->prstatus); 3533 3534 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3535 3536 info->notes_size += note_size(&ets->notes[0]); 3537 } 3538 3539 static void init_note_info(struct elf_note_info *info) 3540 { 3541 /* Initialize the elf_note_info structure so that it is at 3542 * least safe to call free_note_info() on it. Must be 3543 * called before calling fill_note_info(). 3544 */ 3545 memset(info, 0, sizeof (*info)); 3546 QTAILQ_INIT(&info->thread_list); 3547 } 3548 3549 static int fill_note_info(struct elf_note_info *info, 3550 long signr, const CPUArchState *env) 3551 { 3552 #define NUMNOTES 3 3553 CPUState *cpu = env_cpu((CPUArchState *)env); 3554 TaskState *ts = (TaskState *)cpu->opaque; 3555 int i; 3556 3557 info->notes = g_new0(struct memelfnote, NUMNOTES); 3558 if (info->notes == NULL) 3559 return (-ENOMEM); 3560 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3561 if (info->prstatus == NULL) 3562 return (-ENOMEM); 3563 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3564 if (info->prstatus == NULL) 3565 return (-ENOMEM); 3566 3567 /* 3568 * First fill in status (and registers) of current thread 3569 * including process info & aux vector. 3570 */ 3571 fill_prstatus(info->prstatus, ts, signr); 3572 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3573 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3574 sizeof (*info->prstatus), info->prstatus); 3575 fill_psinfo(info->psinfo, ts); 3576 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3577 sizeof (*info->psinfo), info->psinfo); 3578 fill_auxv_note(&info->notes[2], ts); 3579 info->numnote = 3; 3580 3581 info->notes_size = 0; 3582 for (i = 0; i < info->numnote; i++) 3583 info->notes_size += note_size(&info->notes[i]); 3584 3585 /* read and fill status of all threads */ 3586 cpu_list_lock(); 3587 CPU_FOREACH(cpu) { 3588 if (cpu == thread_cpu) { 3589 continue; 3590 } 3591 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3592 } 3593 cpu_list_unlock(); 3594 3595 return (0); 3596 } 3597 3598 static void free_note_info(struct elf_note_info *info) 3599 { 3600 struct elf_thread_status *ets; 3601 3602 while (!QTAILQ_EMPTY(&info->thread_list)) { 3603 ets = QTAILQ_FIRST(&info->thread_list); 3604 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3605 g_free(ets); 3606 } 3607 3608 g_free(info->prstatus); 3609 g_free(info->psinfo); 3610 g_free(info->notes); 3611 } 3612 3613 static int write_note_info(struct elf_note_info *info, int fd) 3614 { 3615 struct elf_thread_status *ets; 3616 int i, error = 0; 3617 3618 /* write prstatus, psinfo and auxv for current thread */ 3619 for (i = 0; i < info->numnote; i++) 3620 if ((error = write_note(&info->notes[i], fd)) != 0) 3621 return (error); 3622 3623 /* write prstatus for each thread */ 3624 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3625 if ((error = write_note(&ets->notes[0], fd)) != 0) 3626 return (error); 3627 } 3628 3629 return (0); 3630 } 3631 3632 /* 3633 * Write out ELF coredump. 3634 * 3635 * See documentation of ELF object file format in: 3636 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3637 * 3638 * Coredump format in linux is following: 3639 * 3640 * 0 +----------------------+ \ 3641 * | ELF header | ET_CORE | 3642 * +----------------------+ | 3643 * | ELF program headers | |--- headers 3644 * | - NOTE section | | 3645 * | - PT_LOAD sections | | 3646 * +----------------------+ / 3647 * | NOTEs: | 3648 * | - NT_PRSTATUS | 3649 * | - NT_PRSINFO | 3650 * | - NT_AUXV | 3651 * +----------------------+ <-- aligned to target page 3652 * | Process memory dump | 3653 * : : 3654 * . . 3655 * : : 3656 * | | 3657 * +----------------------+ 3658 * 3659 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3660 * NT_PRSINFO -> struct elf_prpsinfo 3661 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3662 * 3663 * Format follows System V format as close as possible. Current 3664 * version limitations are as follows: 3665 * - no floating point registers are dumped 3666 * 3667 * Function returns 0 in case of success, negative errno otherwise. 3668 * 3669 * TODO: make this work also during runtime: it should be 3670 * possible to force coredump from running process and then 3671 * continue processing. For example qemu could set up SIGUSR2 3672 * handler (provided that target process haven't registered 3673 * handler for that) that does the dump when signal is received. 3674 */ 3675 static int elf_core_dump(int signr, const CPUArchState *env) 3676 { 3677 const CPUState *cpu = env_cpu((CPUArchState *)env); 3678 const TaskState *ts = (const TaskState *)cpu->opaque; 3679 struct vm_area_struct *vma = NULL; 3680 char corefile[PATH_MAX]; 3681 struct elf_note_info info; 3682 struct elfhdr elf; 3683 struct elf_phdr phdr; 3684 struct rlimit dumpsize; 3685 struct mm_struct *mm = NULL; 3686 off_t offset = 0, data_offset = 0; 3687 int segs = 0; 3688 int fd = -1; 3689 3690 init_note_info(&info); 3691 3692 errno = 0; 3693 getrlimit(RLIMIT_CORE, &dumpsize); 3694 if (dumpsize.rlim_cur == 0) 3695 return 0; 3696 3697 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3698 return (-errno); 3699 3700 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3701 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3702 return (-errno); 3703 3704 /* 3705 * Walk through target process memory mappings and 3706 * set up structure containing this information. After 3707 * this point vma_xxx functions can be used. 3708 */ 3709 if ((mm = vma_init()) == NULL) 3710 goto out; 3711 3712 walk_memory_regions(mm, vma_walker); 3713 segs = vma_get_mapping_count(mm); 3714 3715 /* 3716 * Construct valid coredump ELF header. We also 3717 * add one more segment for notes. 3718 */ 3719 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3720 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3721 goto out; 3722 3723 /* fill in the in-memory version of notes */ 3724 if (fill_note_info(&info, signr, env) < 0) 3725 goto out; 3726 3727 offset += sizeof (elf); /* elf header */ 3728 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3729 3730 /* write out notes program header */ 3731 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3732 3733 offset += info.notes_size; 3734 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3735 goto out; 3736 3737 /* 3738 * ELF specification wants data to start at page boundary so 3739 * we align it here. 3740 */ 3741 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3742 3743 /* 3744 * Write program headers for memory regions mapped in 3745 * the target process. 3746 */ 3747 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3748 (void) memset(&phdr, 0, sizeof (phdr)); 3749 3750 phdr.p_type = PT_LOAD; 3751 phdr.p_offset = offset; 3752 phdr.p_vaddr = vma->vma_start; 3753 phdr.p_paddr = 0; 3754 phdr.p_filesz = vma_dump_size(vma); 3755 offset += phdr.p_filesz; 3756 phdr.p_memsz = vma->vma_end - vma->vma_start; 3757 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3758 if (vma->vma_flags & PROT_WRITE) 3759 phdr.p_flags |= PF_W; 3760 if (vma->vma_flags & PROT_EXEC) 3761 phdr.p_flags |= PF_X; 3762 phdr.p_align = ELF_EXEC_PAGESIZE; 3763 3764 bswap_phdr(&phdr, 1); 3765 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3766 goto out; 3767 } 3768 } 3769 3770 /* 3771 * Next we write notes just after program headers. No 3772 * alignment needed here. 3773 */ 3774 if (write_note_info(&info, fd) < 0) 3775 goto out; 3776 3777 /* align data to page boundary */ 3778 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3779 goto out; 3780 3781 /* 3782 * Finally we can dump process memory into corefile as well. 3783 */ 3784 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3785 abi_ulong addr; 3786 abi_ulong end; 3787 3788 end = vma->vma_start + vma_dump_size(vma); 3789 3790 for (addr = vma->vma_start; addr < end; 3791 addr += TARGET_PAGE_SIZE) { 3792 char page[TARGET_PAGE_SIZE]; 3793 int error; 3794 3795 /* 3796 * Read in page from target process memory and 3797 * write it to coredump file. 3798 */ 3799 error = copy_from_user(page, addr, sizeof (page)); 3800 if (error != 0) { 3801 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3802 addr); 3803 errno = -error; 3804 goto out; 3805 } 3806 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3807 goto out; 3808 } 3809 } 3810 3811 out: 3812 free_note_info(&info); 3813 if (mm != NULL) 3814 vma_delete(mm); 3815 (void) close(fd); 3816 3817 if (errno != 0) 3818 return (-errno); 3819 return (0); 3820 } 3821 #endif /* USE_ELF_CORE_DUMP */ 3822 3823 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3824 { 3825 init_thread(regs, infop); 3826 } 3827