1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/bitops.h" 11 #include "qemu/path.h" 12 #include "qemu/queue.h" 13 #include "qemu/guest-random.h" 14 #include "qemu/units.h" 15 #include "qemu/selfmap.h" 16 #include "qapi/error.h" 17 18 #ifdef _ARCH_PPC64 19 #undef ARCH_DLINFO 20 #undef ELF_PLATFORM 21 #undef ELF_HWCAP 22 #undef ELF_HWCAP2 23 #undef ELF_CLASS 24 #undef ELF_DATA 25 #undef ELF_ARCH 26 #endif 27 28 #define ELF_OSABI ELFOSABI_SYSV 29 30 /* from personality.h */ 31 32 /* 33 * Flags for bug emulation. 34 * 35 * These occupy the top three bytes. 36 */ 37 enum { 38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 40 descriptors (signal handling) */ 41 MMAP_PAGE_ZERO = 0x0100000, 42 ADDR_COMPAT_LAYOUT = 0x0200000, 43 READ_IMPLIES_EXEC = 0x0400000, 44 ADDR_LIMIT_32BIT = 0x0800000, 45 SHORT_INODE = 0x1000000, 46 WHOLE_SECONDS = 0x2000000, 47 STICKY_TIMEOUTS = 0x4000000, 48 ADDR_LIMIT_3GB = 0x8000000, 49 }; 50 51 /* 52 * Personality types. 53 * 54 * These go in the low byte. Avoid using the top bit, it will 55 * conflict with error returns. 56 */ 57 enum { 58 PER_LINUX = 0x0000, 59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 67 PER_BSD = 0x0006, 68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 70 PER_LINUX32 = 0x0008, 71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 75 PER_RISCOS = 0x000c, 76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 78 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 79 PER_HPUX = 0x0010, 80 PER_MASK = 0x00ff, 81 }; 82 83 /* 84 * Return the base personality without flags. 85 */ 86 #define personality(pers) (pers & PER_MASK) 87 88 int info_is_fdpic(struct image_info *info) 89 { 90 return info->personality == PER_LINUX_FDPIC; 91 } 92 93 /* this flag is uneffective under linux too, should be deleted */ 94 #ifndef MAP_DENYWRITE 95 #define MAP_DENYWRITE 0 96 #endif 97 98 /* should probably go in elf.h */ 99 #ifndef ELIBBAD 100 #define ELIBBAD 80 101 #endif 102 103 #ifdef TARGET_WORDS_BIGENDIAN 104 #define ELF_DATA ELFDATA2MSB 105 #else 106 #define ELF_DATA ELFDATA2LSB 107 #endif 108 109 #ifdef TARGET_ABI_MIPSN32 110 typedef abi_ullong target_elf_greg_t; 111 #define tswapreg(ptr) tswap64(ptr) 112 #else 113 typedef abi_ulong target_elf_greg_t; 114 #define tswapreg(ptr) tswapal(ptr) 115 #endif 116 117 #ifdef USE_UID16 118 typedef abi_ushort target_uid_t; 119 typedef abi_ushort target_gid_t; 120 #else 121 typedef abi_uint target_uid_t; 122 typedef abi_uint target_gid_t; 123 #endif 124 typedef abi_int target_pid_t; 125 126 #ifdef TARGET_I386 127 128 #define ELF_PLATFORM get_elf_platform() 129 130 static const char *get_elf_platform(void) 131 { 132 static char elf_platform[] = "i386"; 133 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 134 if (family > 6) 135 family = 6; 136 if (family >= 3) 137 elf_platform[1] = '0' + family; 138 return elf_platform; 139 } 140 141 #define ELF_HWCAP get_elf_hwcap() 142 143 static uint32_t get_elf_hwcap(void) 144 { 145 X86CPU *cpu = X86_CPU(thread_cpu); 146 147 return cpu->env.features[FEAT_1_EDX]; 148 } 149 150 #ifdef TARGET_X86_64 151 #define ELF_START_MMAP 0x2aaaaab000ULL 152 153 #define ELF_CLASS ELFCLASS64 154 #define ELF_ARCH EM_X86_64 155 156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 157 { 158 regs->rax = 0; 159 regs->rsp = infop->start_stack; 160 regs->rip = infop->entry; 161 } 162 163 #define ELF_NREG 27 164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 165 166 /* 167 * Note that ELF_NREG should be 29 as there should be place for 168 * TRAPNO and ERR "registers" as well but linux doesn't dump 169 * those. 170 * 171 * See linux kernel: arch/x86/include/asm/elf.h 172 */ 173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 174 { 175 (*regs)[0] = env->regs[15]; 176 (*regs)[1] = env->regs[14]; 177 (*regs)[2] = env->regs[13]; 178 (*regs)[3] = env->regs[12]; 179 (*regs)[4] = env->regs[R_EBP]; 180 (*regs)[5] = env->regs[R_EBX]; 181 (*regs)[6] = env->regs[11]; 182 (*regs)[7] = env->regs[10]; 183 (*regs)[8] = env->regs[9]; 184 (*regs)[9] = env->regs[8]; 185 (*regs)[10] = env->regs[R_EAX]; 186 (*regs)[11] = env->regs[R_ECX]; 187 (*regs)[12] = env->regs[R_EDX]; 188 (*regs)[13] = env->regs[R_ESI]; 189 (*regs)[14] = env->regs[R_EDI]; 190 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 191 (*regs)[16] = env->eip; 192 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 193 (*regs)[18] = env->eflags; 194 (*regs)[19] = env->regs[R_ESP]; 195 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 196 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 197 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 198 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 199 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 200 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 201 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 202 } 203 204 #else 205 206 #define ELF_START_MMAP 0x80000000 207 208 /* 209 * This is used to ensure we don't load something for the wrong architecture. 210 */ 211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 212 213 /* 214 * These are used to set parameters in the core dumps. 215 */ 216 #define ELF_CLASS ELFCLASS32 217 #define ELF_ARCH EM_386 218 219 static inline void init_thread(struct target_pt_regs *regs, 220 struct image_info *infop) 221 { 222 regs->esp = infop->start_stack; 223 regs->eip = infop->entry; 224 225 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 226 starts %edx contains a pointer to a function which might be 227 registered using `atexit'. This provides a mean for the 228 dynamic linker to call DT_FINI functions for shared libraries 229 that have been loaded before the code runs. 230 231 A value of 0 tells we have no such handler. */ 232 regs->edx = 0; 233 } 234 235 #define ELF_NREG 17 236 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 237 238 /* 239 * Note that ELF_NREG should be 19 as there should be place for 240 * TRAPNO and ERR "registers" as well but linux doesn't dump 241 * those. 242 * 243 * See linux kernel: arch/x86/include/asm/elf.h 244 */ 245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 246 { 247 (*regs)[0] = env->regs[R_EBX]; 248 (*regs)[1] = env->regs[R_ECX]; 249 (*regs)[2] = env->regs[R_EDX]; 250 (*regs)[3] = env->regs[R_ESI]; 251 (*regs)[4] = env->regs[R_EDI]; 252 (*regs)[5] = env->regs[R_EBP]; 253 (*regs)[6] = env->regs[R_EAX]; 254 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 255 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 256 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 257 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 258 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 259 (*regs)[12] = env->eip; 260 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 261 (*regs)[14] = env->eflags; 262 (*regs)[15] = env->regs[R_ESP]; 263 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 264 } 265 #endif 266 267 #define USE_ELF_CORE_DUMP 268 #define ELF_EXEC_PAGESIZE 4096 269 270 #endif 271 272 #ifdef TARGET_ARM 273 274 #ifndef TARGET_AARCH64 275 /* 32 bit ARM definitions */ 276 277 #define ELF_START_MMAP 0x80000000 278 279 #define ELF_ARCH EM_ARM 280 #define ELF_CLASS ELFCLASS32 281 282 static inline void init_thread(struct target_pt_regs *regs, 283 struct image_info *infop) 284 { 285 abi_long stack = infop->start_stack; 286 memset(regs, 0, sizeof(*regs)); 287 288 regs->uregs[16] = ARM_CPU_MODE_USR; 289 if (infop->entry & 1) { 290 regs->uregs[16] |= CPSR_T; 291 } 292 regs->uregs[15] = infop->entry & 0xfffffffe; 293 regs->uregs[13] = infop->start_stack; 294 /* FIXME - what to for failure of get_user()? */ 295 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 296 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 297 /* XXX: it seems that r0 is zeroed after ! */ 298 regs->uregs[0] = 0; 299 /* For uClinux PIC binaries. */ 300 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 301 regs->uregs[10] = infop->start_data; 302 303 /* Support ARM FDPIC. */ 304 if (info_is_fdpic(infop)) { 305 /* As described in the ABI document, r7 points to the loadmap info 306 * prepared by the kernel. If an interpreter is needed, r8 points 307 * to the interpreter loadmap and r9 points to the interpreter 308 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 309 * r9 points to the main program PT_DYNAMIC info. 310 */ 311 regs->uregs[7] = infop->loadmap_addr; 312 if (infop->interpreter_loadmap_addr) { 313 /* Executable is dynamically loaded. */ 314 regs->uregs[8] = infop->interpreter_loadmap_addr; 315 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 316 } else { 317 regs->uregs[8] = 0; 318 regs->uregs[9] = infop->pt_dynamic_addr; 319 } 320 } 321 } 322 323 #define ELF_NREG 18 324 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 325 326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 327 { 328 (*regs)[0] = tswapreg(env->regs[0]); 329 (*regs)[1] = tswapreg(env->regs[1]); 330 (*regs)[2] = tswapreg(env->regs[2]); 331 (*regs)[3] = tswapreg(env->regs[3]); 332 (*regs)[4] = tswapreg(env->regs[4]); 333 (*regs)[5] = tswapreg(env->regs[5]); 334 (*regs)[6] = tswapreg(env->regs[6]); 335 (*regs)[7] = tswapreg(env->regs[7]); 336 (*regs)[8] = tswapreg(env->regs[8]); 337 (*regs)[9] = tswapreg(env->regs[9]); 338 (*regs)[10] = tswapreg(env->regs[10]); 339 (*regs)[11] = tswapreg(env->regs[11]); 340 (*regs)[12] = tswapreg(env->regs[12]); 341 (*regs)[13] = tswapreg(env->regs[13]); 342 (*regs)[14] = tswapreg(env->regs[14]); 343 (*regs)[15] = tswapreg(env->regs[15]); 344 345 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 346 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 347 } 348 349 #define USE_ELF_CORE_DUMP 350 #define ELF_EXEC_PAGESIZE 4096 351 352 enum 353 { 354 ARM_HWCAP_ARM_SWP = 1 << 0, 355 ARM_HWCAP_ARM_HALF = 1 << 1, 356 ARM_HWCAP_ARM_THUMB = 1 << 2, 357 ARM_HWCAP_ARM_26BIT = 1 << 3, 358 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 359 ARM_HWCAP_ARM_FPA = 1 << 5, 360 ARM_HWCAP_ARM_VFP = 1 << 6, 361 ARM_HWCAP_ARM_EDSP = 1 << 7, 362 ARM_HWCAP_ARM_JAVA = 1 << 8, 363 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 364 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 365 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 366 ARM_HWCAP_ARM_NEON = 1 << 12, 367 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 368 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 369 ARM_HWCAP_ARM_TLS = 1 << 15, 370 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 371 ARM_HWCAP_ARM_IDIVA = 1 << 17, 372 ARM_HWCAP_ARM_IDIVT = 1 << 18, 373 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 374 ARM_HWCAP_ARM_LPAE = 1 << 20, 375 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 376 }; 377 378 enum { 379 ARM_HWCAP2_ARM_AES = 1 << 0, 380 ARM_HWCAP2_ARM_PMULL = 1 << 1, 381 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 382 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 383 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 384 }; 385 386 /* The commpage only exists for 32 bit kernels */ 387 388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u 389 390 static bool init_guest_commpage(void) 391 { 392 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size); 393 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 394 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 395 396 if (addr == MAP_FAILED) { 397 perror("Allocating guest commpage"); 398 exit(EXIT_FAILURE); 399 } 400 if (addr != want) { 401 return false; 402 } 403 404 /* Set kernel helper versions; rest of page is 0. */ 405 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 406 407 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 408 perror("Protecting guest commpage"); 409 exit(EXIT_FAILURE); 410 } 411 return true; 412 } 413 414 #define ELF_HWCAP get_elf_hwcap() 415 #define ELF_HWCAP2 get_elf_hwcap2() 416 417 static uint32_t get_elf_hwcap(void) 418 { 419 ARMCPU *cpu = ARM_CPU(thread_cpu); 420 uint32_t hwcaps = 0; 421 422 hwcaps |= ARM_HWCAP_ARM_SWP; 423 hwcaps |= ARM_HWCAP_ARM_HALF; 424 hwcaps |= ARM_HWCAP_ARM_THUMB; 425 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 426 427 /* probe for the extra features */ 428 #define GET_FEATURE(feat, hwcap) \ 429 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 430 431 #define GET_FEATURE_ID(feat, hwcap) \ 432 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 433 434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 440 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 441 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 442 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 443 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 444 445 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 446 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 447 hwcaps |= ARM_HWCAP_ARM_VFPv3; 448 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 449 hwcaps |= ARM_HWCAP_ARM_VFPD32; 450 } else { 451 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 452 } 453 } 454 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 455 456 return hwcaps; 457 } 458 459 static uint32_t get_elf_hwcap2(void) 460 { 461 ARMCPU *cpu = ARM_CPU(thread_cpu); 462 uint32_t hwcaps = 0; 463 464 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 465 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 466 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 467 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 468 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 469 return hwcaps; 470 } 471 472 #undef GET_FEATURE 473 #undef GET_FEATURE_ID 474 475 #define ELF_PLATFORM get_elf_platform() 476 477 static const char *get_elf_platform(void) 478 { 479 CPUARMState *env = thread_cpu->env_ptr; 480 481 #ifdef TARGET_WORDS_BIGENDIAN 482 # define END "b" 483 #else 484 # define END "l" 485 #endif 486 487 if (arm_feature(env, ARM_FEATURE_V8)) { 488 return "v8" END; 489 } else if (arm_feature(env, ARM_FEATURE_V7)) { 490 if (arm_feature(env, ARM_FEATURE_M)) { 491 return "v7m" END; 492 } else { 493 return "v7" END; 494 } 495 } else if (arm_feature(env, ARM_FEATURE_V6)) { 496 return "v6" END; 497 } else if (arm_feature(env, ARM_FEATURE_V5)) { 498 return "v5" END; 499 } else { 500 return "v4" END; 501 } 502 503 #undef END 504 } 505 506 #else 507 /* 64 bit ARM definitions */ 508 #define ELF_START_MMAP 0x80000000 509 510 #define ELF_ARCH EM_AARCH64 511 #define ELF_CLASS ELFCLASS64 512 #ifdef TARGET_WORDS_BIGENDIAN 513 # define ELF_PLATFORM "aarch64_be" 514 #else 515 # define ELF_PLATFORM "aarch64" 516 #endif 517 518 static inline void init_thread(struct target_pt_regs *regs, 519 struct image_info *infop) 520 { 521 abi_long stack = infop->start_stack; 522 memset(regs, 0, sizeof(*regs)); 523 524 regs->pc = infop->entry & ~0x3ULL; 525 regs->sp = stack; 526 } 527 528 #define ELF_NREG 34 529 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 530 531 static void elf_core_copy_regs(target_elf_gregset_t *regs, 532 const CPUARMState *env) 533 { 534 int i; 535 536 for (i = 0; i < 32; i++) { 537 (*regs)[i] = tswapreg(env->xregs[i]); 538 } 539 (*regs)[32] = tswapreg(env->pc); 540 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 541 } 542 543 #define USE_ELF_CORE_DUMP 544 #define ELF_EXEC_PAGESIZE 4096 545 546 enum { 547 ARM_HWCAP_A64_FP = 1 << 0, 548 ARM_HWCAP_A64_ASIMD = 1 << 1, 549 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 550 ARM_HWCAP_A64_AES = 1 << 3, 551 ARM_HWCAP_A64_PMULL = 1 << 4, 552 ARM_HWCAP_A64_SHA1 = 1 << 5, 553 ARM_HWCAP_A64_SHA2 = 1 << 6, 554 ARM_HWCAP_A64_CRC32 = 1 << 7, 555 ARM_HWCAP_A64_ATOMICS = 1 << 8, 556 ARM_HWCAP_A64_FPHP = 1 << 9, 557 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 558 ARM_HWCAP_A64_CPUID = 1 << 11, 559 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 560 ARM_HWCAP_A64_JSCVT = 1 << 13, 561 ARM_HWCAP_A64_FCMA = 1 << 14, 562 ARM_HWCAP_A64_LRCPC = 1 << 15, 563 ARM_HWCAP_A64_DCPOP = 1 << 16, 564 ARM_HWCAP_A64_SHA3 = 1 << 17, 565 ARM_HWCAP_A64_SM3 = 1 << 18, 566 ARM_HWCAP_A64_SM4 = 1 << 19, 567 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 568 ARM_HWCAP_A64_SHA512 = 1 << 21, 569 ARM_HWCAP_A64_SVE = 1 << 22, 570 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 571 ARM_HWCAP_A64_DIT = 1 << 24, 572 ARM_HWCAP_A64_USCAT = 1 << 25, 573 ARM_HWCAP_A64_ILRCPC = 1 << 26, 574 ARM_HWCAP_A64_FLAGM = 1 << 27, 575 ARM_HWCAP_A64_SSBS = 1 << 28, 576 ARM_HWCAP_A64_SB = 1 << 29, 577 ARM_HWCAP_A64_PACA = 1 << 30, 578 ARM_HWCAP_A64_PACG = 1UL << 31, 579 580 ARM_HWCAP2_A64_DCPODP = 1 << 0, 581 ARM_HWCAP2_A64_SVE2 = 1 << 1, 582 ARM_HWCAP2_A64_SVEAES = 1 << 2, 583 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 584 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 585 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 586 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 587 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 588 ARM_HWCAP2_A64_FRINT = 1 << 8, 589 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 590 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 591 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 592 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 593 ARM_HWCAP2_A64_I8MM = 1 << 13, 594 ARM_HWCAP2_A64_BF16 = 1 << 14, 595 ARM_HWCAP2_A64_DGH = 1 << 15, 596 ARM_HWCAP2_A64_RNG = 1 << 16, 597 ARM_HWCAP2_A64_BTI = 1 << 17, 598 ARM_HWCAP2_A64_MTE = 1 << 18, 599 }; 600 601 #define ELF_HWCAP get_elf_hwcap() 602 #define ELF_HWCAP2 get_elf_hwcap2() 603 604 #define GET_FEATURE_ID(feat, hwcap) \ 605 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 606 607 static uint32_t get_elf_hwcap(void) 608 { 609 ARMCPU *cpu = ARM_CPU(thread_cpu); 610 uint32_t hwcaps = 0; 611 612 hwcaps |= ARM_HWCAP_A64_FP; 613 hwcaps |= ARM_HWCAP_A64_ASIMD; 614 hwcaps |= ARM_HWCAP_A64_CPUID; 615 616 /* probe for the extra features */ 617 618 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 619 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 620 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 621 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 622 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 623 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 624 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 625 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 626 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 627 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 628 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 629 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 630 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 631 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 632 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 633 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 634 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 635 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 636 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 637 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 638 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 639 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 640 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 641 642 return hwcaps; 643 } 644 645 static uint32_t get_elf_hwcap2(void) 646 { 647 ARMCPU *cpu = ARM_CPU(thread_cpu); 648 uint32_t hwcaps = 0; 649 650 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 651 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 652 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 653 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 654 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 655 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 656 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 657 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 658 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 659 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 660 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 661 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 662 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 663 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 664 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 665 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 666 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 667 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 668 669 return hwcaps; 670 } 671 672 #undef GET_FEATURE_ID 673 674 #endif /* not TARGET_AARCH64 */ 675 #endif /* TARGET_ARM */ 676 677 #ifdef TARGET_SPARC 678 #ifdef TARGET_SPARC64 679 680 #define ELF_START_MMAP 0x80000000 681 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 682 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 683 #ifndef TARGET_ABI32 684 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 685 #else 686 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 687 #endif 688 689 #define ELF_CLASS ELFCLASS64 690 #define ELF_ARCH EM_SPARCV9 691 #else 692 #define ELF_START_MMAP 0x80000000 693 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 694 | HWCAP_SPARC_MULDIV) 695 #define ELF_CLASS ELFCLASS32 696 #define ELF_ARCH EM_SPARC 697 #endif /* TARGET_SPARC64 */ 698 699 static inline void init_thread(struct target_pt_regs *regs, 700 struct image_info *infop) 701 { 702 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 703 regs->pc = infop->entry; 704 regs->npc = regs->pc + 4; 705 regs->y = 0; 706 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 707 - TARGET_STACK_BIAS); 708 } 709 #endif /* TARGET_SPARC */ 710 711 #ifdef TARGET_PPC 712 713 #define ELF_MACHINE PPC_ELF_MACHINE 714 #define ELF_START_MMAP 0x80000000 715 716 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 717 718 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 719 720 #define ELF_CLASS ELFCLASS64 721 722 #else 723 724 #define ELF_CLASS ELFCLASS32 725 726 #endif 727 728 #define ELF_ARCH EM_PPC 729 730 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 731 See arch/powerpc/include/asm/cputable.h. */ 732 enum { 733 QEMU_PPC_FEATURE_32 = 0x80000000, 734 QEMU_PPC_FEATURE_64 = 0x40000000, 735 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 736 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 737 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 738 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 739 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 740 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 741 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 742 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 743 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 744 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 745 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 746 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 747 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 748 QEMU_PPC_FEATURE_CELL = 0x00010000, 749 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 750 QEMU_PPC_FEATURE_SMT = 0x00004000, 751 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 752 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 753 QEMU_PPC_FEATURE_PA6T = 0x00000800, 754 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 755 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 756 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 757 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 758 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 759 760 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 761 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 762 763 /* Feature definitions in AT_HWCAP2. */ 764 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 765 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 766 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 767 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 768 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 769 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 770 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 771 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 772 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 773 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 774 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 775 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 776 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 777 }; 778 779 #define ELF_HWCAP get_elf_hwcap() 780 781 static uint32_t get_elf_hwcap(void) 782 { 783 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 784 uint32_t features = 0; 785 786 /* We don't have to be terribly complete here; the high points are 787 Altivec/FP/SPE support. Anything else is just a bonus. */ 788 #define GET_FEATURE(flag, feature) \ 789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 790 #define GET_FEATURE2(flags, feature) \ 791 do { \ 792 if ((cpu->env.insns_flags2 & flags) == flags) { \ 793 features |= feature; \ 794 } \ 795 } while (0) 796 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 797 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 798 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 799 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 800 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 801 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 802 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 803 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 804 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 805 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 806 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 807 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 808 QEMU_PPC_FEATURE_ARCH_2_06); 809 #undef GET_FEATURE 810 #undef GET_FEATURE2 811 812 return features; 813 } 814 815 #define ELF_HWCAP2 get_elf_hwcap2() 816 817 static uint32_t get_elf_hwcap2(void) 818 { 819 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 820 uint32_t features = 0; 821 822 #define GET_FEATURE(flag, feature) \ 823 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 824 #define GET_FEATURE2(flag, feature) \ 825 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 826 827 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 828 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 829 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 830 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 831 QEMU_PPC_FEATURE2_VEC_CRYPTO); 832 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 833 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 834 835 #undef GET_FEATURE 836 #undef GET_FEATURE2 837 838 return features; 839 } 840 841 /* 842 * The requirements here are: 843 * - keep the final alignment of sp (sp & 0xf) 844 * - make sure the 32-bit value at the first 16 byte aligned position of 845 * AUXV is greater than 16 for glibc compatibility. 846 * AT_IGNOREPPC is used for that. 847 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 848 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 849 */ 850 #define DLINFO_ARCH_ITEMS 5 851 #define ARCH_DLINFO \ 852 do { \ 853 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 854 /* \ 855 * Handle glibc compatibility: these magic entries must \ 856 * be at the lowest addresses in the final auxv. \ 857 */ \ 858 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 859 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 860 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 861 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 862 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 863 } while (0) 864 865 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 866 { 867 _regs->gpr[1] = infop->start_stack; 868 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 869 if (get_ppc64_abi(infop) < 2) { 870 uint64_t val; 871 get_user_u64(val, infop->entry + 8); 872 _regs->gpr[2] = val + infop->load_bias; 873 get_user_u64(val, infop->entry); 874 infop->entry = val + infop->load_bias; 875 } else { 876 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 877 } 878 #endif 879 _regs->nip = infop->entry; 880 } 881 882 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 883 #define ELF_NREG 48 884 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 885 886 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 887 { 888 int i; 889 target_ulong ccr = 0; 890 891 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 892 (*regs)[i] = tswapreg(env->gpr[i]); 893 } 894 895 (*regs)[32] = tswapreg(env->nip); 896 (*regs)[33] = tswapreg(env->msr); 897 (*regs)[35] = tswapreg(env->ctr); 898 (*regs)[36] = tswapreg(env->lr); 899 (*regs)[37] = tswapreg(env->xer); 900 901 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 902 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 903 } 904 (*regs)[38] = tswapreg(ccr); 905 } 906 907 #define USE_ELF_CORE_DUMP 908 #define ELF_EXEC_PAGESIZE 4096 909 910 #endif 911 912 #ifdef TARGET_MIPS 913 914 #define ELF_START_MMAP 0x80000000 915 916 #ifdef TARGET_MIPS64 917 #define ELF_CLASS ELFCLASS64 918 #else 919 #define ELF_CLASS ELFCLASS32 920 #endif 921 #define ELF_ARCH EM_MIPS 922 923 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 924 925 #ifdef TARGET_ABI_MIPSN32 926 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 927 #else 928 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 929 #endif 930 931 static inline void init_thread(struct target_pt_regs *regs, 932 struct image_info *infop) 933 { 934 regs->cp0_status = 2 << CP0St_KSU; 935 regs->cp0_epc = infop->entry; 936 regs->regs[29] = infop->start_stack; 937 } 938 939 /* See linux kernel: arch/mips/include/asm/elf.h. */ 940 #define ELF_NREG 45 941 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 942 943 /* See linux kernel: arch/mips/include/asm/reg.h. */ 944 enum { 945 #ifdef TARGET_MIPS64 946 TARGET_EF_R0 = 0, 947 #else 948 TARGET_EF_R0 = 6, 949 #endif 950 TARGET_EF_R26 = TARGET_EF_R0 + 26, 951 TARGET_EF_R27 = TARGET_EF_R0 + 27, 952 TARGET_EF_LO = TARGET_EF_R0 + 32, 953 TARGET_EF_HI = TARGET_EF_R0 + 33, 954 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 955 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 956 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 957 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 958 }; 959 960 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 961 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 962 { 963 int i; 964 965 for (i = 0; i < TARGET_EF_R0; i++) { 966 (*regs)[i] = 0; 967 } 968 (*regs)[TARGET_EF_R0] = 0; 969 970 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 971 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 972 } 973 974 (*regs)[TARGET_EF_R26] = 0; 975 (*regs)[TARGET_EF_R27] = 0; 976 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 977 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 978 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 979 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 980 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 981 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 982 } 983 984 #define USE_ELF_CORE_DUMP 985 #define ELF_EXEC_PAGESIZE 4096 986 987 /* See arch/mips/include/uapi/asm/hwcap.h. */ 988 enum { 989 HWCAP_MIPS_R6 = (1 << 0), 990 HWCAP_MIPS_MSA = (1 << 1), 991 HWCAP_MIPS_CRC32 = (1 << 2), 992 HWCAP_MIPS_MIPS16 = (1 << 3), 993 HWCAP_MIPS_MDMX = (1 << 4), 994 HWCAP_MIPS_MIPS3D = (1 << 5), 995 HWCAP_MIPS_SMARTMIPS = (1 << 6), 996 HWCAP_MIPS_DSP = (1 << 7), 997 HWCAP_MIPS_DSP2 = (1 << 8), 998 HWCAP_MIPS_DSP3 = (1 << 9), 999 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1000 HWCAP_LOONGSON_MMI = (1 << 11), 1001 HWCAP_LOONGSON_EXT = (1 << 12), 1002 HWCAP_LOONGSON_EXT2 = (1 << 13), 1003 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1004 }; 1005 1006 #define ELF_HWCAP get_elf_hwcap() 1007 1008 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1009 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1010 1011 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1012 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1013 1014 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1015 do { \ 1016 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1017 hwcaps |= _hwcap; \ 1018 } \ 1019 } while (0) 1020 1021 static uint32_t get_elf_hwcap(void) 1022 { 1023 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1024 uint32_t hwcaps = 0; 1025 1026 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1027 2, HWCAP_MIPS_R6); 1028 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1029 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1030 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1031 1032 return hwcaps; 1033 } 1034 1035 #undef GET_FEATURE_REG_EQU 1036 #undef GET_FEATURE_REG_SET 1037 #undef GET_FEATURE_INSN 1038 1039 #endif /* TARGET_MIPS */ 1040 1041 #ifdef TARGET_MICROBLAZE 1042 1043 #define ELF_START_MMAP 0x80000000 1044 1045 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1046 1047 #define ELF_CLASS ELFCLASS32 1048 #define ELF_ARCH EM_MICROBLAZE 1049 1050 static inline void init_thread(struct target_pt_regs *regs, 1051 struct image_info *infop) 1052 { 1053 regs->pc = infop->entry; 1054 regs->r1 = infop->start_stack; 1055 1056 } 1057 1058 #define ELF_EXEC_PAGESIZE 4096 1059 1060 #define USE_ELF_CORE_DUMP 1061 #define ELF_NREG 38 1062 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1063 1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1065 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1066 { 1067 int i, pos = 0; 1068 1069 for (i = 0; i < 32; i++) { 1070 (*regs)[pos++] = tswapreg(env->regs[i]); 1071 } 1072 1073 (*regs)[pos++] = tswapreg(env->pc); 1074 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1075 (*regs)[pos++] = 0; 1076 (*regs)[pos++] = tswapreg(env->ear); 1077 (*regs)[pos++] = 0; 1078 (*regs)[pos++] = tswapreg(env->esr); 1079 } 1080 1081 #endif /* TARGET_MICROBLAZE */ 1082 1083 #ifdef TARGET_NIOS2 1084 1085 #define ELF_START_MMAP 0x80000000 1086 1087 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1088 1089 #define ELF_CLASS ELFCLASS32 1090 #define ELF_ARCH EM_ALTERA_NIOS2 1091 1092 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1093 { 1094 regs->ea = infop->entry; 1095 regs->sp = infop->start_stack; 1096 regs->estatus = 0x3; 1097 } 1098 1099 #define ELF_EXEC_PAGESIZE 4096 1100 1101 #define USE_ELF_CORE_DUMP 1102 #define ELF_NREG 49 1103 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1104 1105 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1106 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1107 const CPUNios2State *env) 1108 { 1109 int i; 1110 1111 (*regs)[0] = -1; 1112 for (i = 1; i < 8; i++) /* r0-r7 */ 1113 (*regs)[i] = tswapreg(env->regs[i + 7]); 1114 1115 for (i = 8; i < 16; i++) /* r8-r15 */ 1116 (*regs)[i] = tswapreg(env->regs[i - 8]); 1117 1118 for (i = 16; i < 24; i++) /* r16-r23 */ 1119 (*regs)[i] = tswapreg(env->regs[i + 7]); 1120 (*regs)[24] = -1; /* R_ET */ 1121 (*regs)[25] = -1; /* R_BT */ 1122 (*regs)[26] = tswapreg(env->regs[R_GP]); 1123 (*regs)[27] = tswapreg(env->regs[R_SP]); 1124 (*regs)[28] = tswapreg(env->regs[R_FP]); 1125 (*regs)[29] = tswapreg(env->regs[R_EA]); 1126 (*regs)[30] = -1; /* R_SSTATUS */ 1127 (*regs)[31] = tswapreg(env->regs[R_RA]); 1128 1129 (*regs)[32] = tswapreg(env->regs[R_PC]); 1130 1131 (*regs)[33] = -1; /* R_STATUS */ 1132 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1133 1134 for (i = 35; i < 49; i++) /* ... */ 1135 (*regs)[i] = -1; 1136 } 1137 1138 #endif /* TARGET_NIOS2 */ 1139 1140 #ifdef TARGET_OPENRISC 1141 1142 #define ELF_START_MMAP 0x08000000 1143 1144 #define ELF_ARCH EM_OPENRISC 1145 #define ELF_CLASS ELFCLASS32 1146 #define ELF_DATA ELFDATA2MSB 1147 1148 static inline void init_thread(struct target_pt_regs *regs, 1149 struct image_info *infop) 1150 { 1151 regs->pc = infop->entry; 1152 regs->gpr[1] = infop->start_stack; 1153 } 1154 1155 #define USE_ELF_CORE_DUMP 1156 #define ELF_EXEC_PAGESIZE 8192 1157 1158 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1159 #define ELF_NREG 34 /* gprs and pc, sr */ 1160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1161 1162 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1163 const CPUOpenRISCState *env) 1164 { 1165 int i; 1166 1167 for (i = 0; i < 32; i++) { 1168 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1169 } 1170 (*regs)[32] = tswapreg(env->pc); 1171 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1172 } 1173 #define ELF_HWCAP 0 1174 #define ELF_PLATFORM NULL 1175 1176 #endif /* TARGET_OPENRISC */ 1177 1178 #ifdef TARGET_SH4 1179 1180 #define ELF_START_MMAP 0x80000000 1181 1182 #define ELF_CLASS ELFCLASS32 1183 #define ELF_ARCH EM_SH 1184 1185 static inline void init_thread(struct target_pt_regs *regs, 1186 struct image_info *infop) 1187 { 1188 /* Check other registers XXXXX */ 1189 regs->pc = infop->entry; 1190 regs->regs[15] = infop->start_stack; 1191 } 1192 1193 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1194 #define ELF_NREG 23 1195 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1196 1197 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1198 enum { 1199 TARGET_REG_PC = 16, 1200 TARGET_REG_PR = 17, 1201 TARGET_REG_SR = 18, 1202 TARGET_REG_GBR = 19, 1203 TARGET_REG_MACH = 20, 1204 TARGET_REG_MACL = 21, 1205 TARGET_REG_SYSCALL = 22 1206 }; 1207 1208 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1209 const CPUSH4State *env) 1210 { 1211 int i; 1212 1213 for (i = 0; i < 16; i++) { 1214 (*regs)[i] = tswapreg(env->gregs[i]); 1215 } 1216 1217 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1218 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1219 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1220 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1221 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1222 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1223 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1224 } 1225 1226 #define USE_ELF_CORE_DUMP 1227 #define ELF_EXEC_PAGESIZE 4096 1228 1229 enum { 1230 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1231 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1232 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1233 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1234 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1235 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1236 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1237 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1238 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1239 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1240 }; 1241 1242 #define ELF_HWCAP get_elf_hwcap() 1243 1244 static uint32_t get_elf_hwcap(void) 1245 { 1246 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1247 uint32_t hwcap = 0; 1248 1249 hwcap |= SH_CPU_HAS_FPU; 1250 1251 if (cpu->env.features & SH_FEATURE_SH4A) { 1252 hwcap |= SH_CPU_HAS_LLSC; 1253 } 1254 1255 return hwcap; 1256 } 1257 1258 #endif 1259 1260 #ifdef TARGET_CRIS 1261 1262 #define ELF_START_MMAP 0x80000000 1263 1264 #define ELF_CLASS ELFCLASS32 1265 #define ELF_ARCH EM_CRIS 1266 1267 static inline void init_thread(struct target_pt_regs *regs, 1268 struct image_info *infop) 1269 { 1270 regs->erp = infop->entry; 1271 } 1272 1273 #define ELF_EXEC_PAGESIZE 8192 1274 1275 #endif 1276 1277 #ifdef TARGET_M68K 1278 1279 #define ELF_START_MMAP 0x80000000 1280 1281 #define ELF_CLASS ELFCLASS32 1282 #define ELF_ARCH EM_68K 1283 1284 /* ??? Does this need to do anything? 1285 #define ELF_PLAT_INIT(_r) */ 1286 1287 static inline void init_thread(struct target_pt_regs *regs, 1288 struct image_info *infop) 1289 { 1290 regs->usp = infop->start_stack; 1291 regs->sr = 0; 1292 regs->pc = infop->entry; 1293 } 1294 1295 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1296 #define ELF_NREG 20 1297 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1298 1299 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1300 { 1301 (*regs)[0] = tswapreg(env->dregs[1]); 1302 (*regs)[1] = tswapreg(env->dregs[2]); 1303 (*regs)[2] = tswapreg(env->dregs[3]); 1304 (*regs)[3] = tswapreg(env->dregs[4]); 1305 (*regs)[4] = tswapreg(env->dregs[5]); 1306 (*regs)[5] = tswapreg(env->dregs[6]); 1307 (*regs)[6] = tswapreg(env->dregs[7]); 1308 (*regs)[7] = tswapreg(env->aregs[0]); 1309 (*regs)[8] = tswapreg(env->aregs[1]); 1310 (*regs)[9] = tswapreg(env->aregs[2]); 1311 (*regs)[10] = tswapreg(env->aregs[3]); 1312 (*regs)[11] = tswapreg(env->aregs[4]); 1313 (*regs)[12] = tswapreg(env->aregs[5]); 1314 (*regs)[13] = tswapreg(env->aregs[6]); 1315 (*regs)[14] = tswapreg(env->dregs[0]); 1316 (*regs)[15] = tswapreg(env->aregs[7]); 1317 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1318 (*regs)[17] = tswapreg(env->sr); 1319 (*regs)[18] = tswapreg(env->pc); 1320 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1321 } 1322 1323 #define USE_ELF_CORE_DUMP 1324 #define ELF_EXEC_PAGESIZE 8192 1325 1326 #endif 1327 1328 #ifdef TARGET_ALPHA 1329 1330 #define ELF_START_MMAP (0x30000000000ULL) 1331 1332 #define ELF_CLASS ELFCLASS64 1333 #define ELF_ARCH EM_ALPHA 1334 1335 static inline void init_thread(struct target_pt_regs *regs, 1336 struct image_info *infop) 1337 { 1338 regs->pc = infop->entry; 1339 regs->ps = 8; 1340 regs->usp = infop->start_stack; 1341 } 1342 1343 #define ELF_EXEC_PAGESIZE 8192 1344 1345 #endif /* TARGET_ALPHA */ 1346 1347 #ifdef TARGET_S390X 1348 1349 #define ELF_START_MMAP (0x20000000000ULL) 1350 1351 #define ELF_CLASS ELFCLASS64 1352 #define ELF_DATA ELFDATA2MSB 1353 #define ELF_ARCH EM_S390 1354 1355 #include "elf.h" 1356 1357 #define ELF_HWCAP get_elf_hwcap() 1358 1359 #define GET_FEATURE(_feat, _hwcap) \ 1360 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1361 1362 static uint32_t get_elf_hwcap(void) 1363 { 1364 /* 1365 * Let's assume we always have esan3 and zarch. 1366 * 31-bit processes can use 64-bit registers (high gprs). 1367 */ 1368 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1369 1370 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1371 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1372 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1373 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1374 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1375 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1376 hwcap |= HWCAP_S390_ETF3EH; 1377 } 1378 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1379 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1380 1381 return hwcap; 1382 } 1383 1384 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1385 { 1386 regs->psw.addr = infop->entry; 1387 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1388 regs->gprs[15] = infop->start_stack; 1389 } 1390 1391 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1392 #define ELF_NREG 27 1393 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1394 1395 enum { 1396 TARGET_REG_PSWM = 0, 1397 TARGET_REG_PSWA = 1, 1398 TARGET_REG_GPRS = 2, 1399 TARGET_REG_ARS = 18, 1400 TARGET_REG_ORIG_R2 = 26, 1401 }; 1402 1403 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1404 const CPUS390XState *env) 1405 { 1406 int i; 1407 uint32_t *aregs; 1408 1409 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1410 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1411 for (i = 0; i < 16; i++) { 1412 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1413 } 1414 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1415 for (i = 0; i < 16; i++) { 1416 aregs[i] = tswap32(env->aregs[i]); 1417 } 1418 (*regs)[TARGET_REG_ORIG_R2] = 0; 1419 } 1420 1421 #define USE_ELF_CORE_DUMP 1422 #define ELF_EXEC_PAGESIZE 4096 1423 1424 #endif /* TARGET_S390X */ 1425 1426 #ifdef TARGET_RISCV 1427 1428 #define ELF_START_MMAP 0x80000000 1429 #define ELF_ARCH EM_RISCV 1430 1431 #ifdef TARGET_RISCV32 1432 #define ELF_CLASS ELFCLASS32 1433 #else 1434 #define ELF_CLASS ELFCLASS64 1435 #endif 1436 1437 static inline void init_thread(struct target_pt_regs *regs, 1438 struct image_info *infop) 1439 { 1440 regs->sepc = infop->entry; 1441 regs->sp = infop->start_stack; 1442 } 1443 1444 #define ELF_EXEC_PAGESIZE 4096 1445 1446 #endif /* TARGET_RISCV */ 1447 1448 #ifdef TARGET_HPPA 1449 1450 #define ELF_START_MMAP 0x80000000 1451 #define ELF_CLASS ELFCLASS32 1452 #define ELF_ARCH EM_PARISC 1453 #define ELF_PLATFORM "PARISC" 1454 #define STACK_GROWS_DOWN 0 1455 #define STACK_ALIGNMENT 64 1456 1457 static inline void init_thread(struct target_pt_regs *regs, 1458 struct image_info *infop) 1459 { 1460 regs->iaoq[0] = infop->entry; 1461 regs->iaoq[1] = infop->entry + 4; 1462 regs->gr[23] = 0; 1463 regs->gr[24] = infop->arg_start; 1464 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1465 /* The top-of-stack contains a linkage buffer. */ 1466 regs->gr[30] = infop->start_stack + 64; 1467 regs->gr[31] = infop->entry; 1468 } 1469 1470 #endif /* TARGET_HPPA */ 1471 1472 #ifdef TARGET_XTENSA 1473 1474 #define ELF_START_MMAP 0x20000000 1475 1476 #define ELF_CLASS ELFCLASS32 1477 #define ELF_ARCH EM_XTENSA 1478 1479 static inline void init_thread(struct target_pt_regs *regs, 1480 struct image_info *infop) 1481 { 1482 regs->windowbase = 0; 1483 regs->windowstart = 1; 1484 regs->areg[1] = infop->start_stack; 1485 regs->pc = infop->entry; 1486 } 1487 1488 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1489 #define ELF_NREG 128 1490 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1491 1492 enum { 1493 TARGET_REG_PC, 1494 TARGET_REG_PS, 1495 TARGET_REG_LBEG, 1496 TARGET_REG_LEND, 1497 TARGET_REG_LCOUNT, 1498 TARGET_REG_SAR, 1499 TARGET_REG_WINDOWSTART, 1500 TARGET_REG_WINDOWBASE, 1501 TARGET_REG_THREADPTR, 1502 TARGET_REG_AR0 = 64, 1503 }; 1504 1505 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1506 const CPUXtensaState *env) 1507 { 1508 unsigned i; 1509 1510 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1511 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1512 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1513 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1514 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1515 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1516 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1517 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1518 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1519 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1520 for (i = 0; i < env->config->nareg; ++i) { 1521 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1522 } 1523 } 1524 1525 #define USE_ELF_CORE_DUMP 1526 #define ELF_EXEC_PAGESIZE 4096 1527 1528 #endif /* TARGET_XTENSA */ 1529 1530 #ifdef TARGET_HEXAGON 1531 1532 #define ELF_START_MMAP 0x20000000 1533 1534 #define ELF_CLASS ELFCLASS32 1535 #define ELF_ARCH EM_HEXAGON 1536 1537 static inline void init_thread(struct target_pt_regs *regs, 1538 struct image_info *infop) 1539 { 1540 regs->sepc = infop->entry; 1541 regs->sp = infop->start_stack; 1542 } 1543 1544 #endif /* TARGET_HEXAGON */ 1545 1546 #ifndef ELF_PLATFORM 1547 #define ELF_PLATFORM (NULL) 1548 #endif 1549 1550 #ifndef ELF_MACHINE 1551 #define ELF_MACHINE ELF_ARCH 1552 #endif 1553 1554 #ifndef elf_check_arch 1555 #define elf_check_arch(x) ((x) == ELF_ARCH) 1556 #endif 1557 1558 #ifndef elf_check_abi 1559 #define elf_check_abi(x) (1) 1560 #endif 1561 1562 #ifndef ELF_HWCAP 1563 #define ELF_HWCAP 0 1564 #endif 1565 1566 #ifndef STACK_GROWS_DOWN 1567 #define STACK_GROWS_DOWN 1 1568 #endif 1569 1570 #ifndef STACK_ALIGNMENT 1571 #define STACK_ALIGNMENT 16 1572 #endif 1573 1574 #ifdef TARGET_ABI32 1575 #undef ELF_CLASS 1576 #define ELF_CLASS ELFCLASS32 1577 #undef bswaptls 1578 #define bswaptls(ptr) bswap32s(ptr) 1579 #endif 1580 1581 #include "elf.h" 1582 1583 /* We must delay the following stanzas until after "elf.h". */ 1584 #if defined(TARGET_AARCH64) 1585 1586 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1587 const uint32_t *data, 1588 struct image_info *info, 1589 Error **errp) 1590 { 1591 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1592 if (pr_datasz != sizeof(uint32_t)) { 1593 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1594 return false; 1595 } 1596 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1597 info->note_flags = *data; 1598 } 1599 return true; 1600 } 1601 #define ARCH_USE_GNU_PROPERTY 1 1602 1603 #else 1604 1605 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1606 const uint32_t *data, 1607 struct image_info *info, 1608 Error **errp) 1609 { 1610 g_assert_not_reached(); 1611 } 1612 #define ARCH_USE_GNU_PROPERTY 0 1613 1614 #endif 1615 1616 struct exec 1617 { 1618 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1619 unsigned int a_text; /* length of text, in bytes */ 1620 unsigned int a_data; /* length of data, in bytes */ 1621 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1622 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1623 unsigned int a_entry; /* start address */ 1624 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1625 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1626 }; 1627 1628 1629 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1630 #define OMAGIC 0407 1631 #define NMAGIC 0410 1632 #define ZMAGIC 0413 1633 #define QMAGIC 0314 1634 1635 /* Necessary parameters */ 1636 #define TARGET_ELF_EXEC_PAGESIZE \ 1637 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1638 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1639 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1640 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1641 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1642 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1643 1644 #define DLINFO_ITEMS 16 1645 1646 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1647 { 1648 memcpy(to, from, n); 1649 } 1650 1651 #ifdef BSWAP_NEEDED 1652 static void bswap_ehdr(struct elfhdr *ehdr) 1653 { 1654 bswap16s(&ehdr->e_type); /* Object file type */ 1655 bswap16s(&ehdr->e_machine); /* Architecture */ 1656 bswap32s(&ehdr->e_version); /* Object file version */ 1657 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1658 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1659 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1660 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1661 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1662 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1663 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1664 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1665 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1666 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1667 } 1668 1669 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1670 { 1671 int i; 1672 for (i = 0; i < phnum; ++i, ++phdr) { 1673 bswap32s(&phdr->p_type); /* Segment type */ 1674 bswap32s(&phdr->p_flags); /* Segment flags */ 1675 bswaptls(&phdr->p_offset); /* Segment file offset */ 1676 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1677 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1678 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1679 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1680 bswaptls(&phdr->p_align); /* Segment alignment */ 1681 } 1682 } 1683 1684 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1685 { 1686 int i; 1687 for (i = 0; i < shnum; ++i, ++shdr) { 1688 bswap32s(&shdr->sh_name); 1689 bswap32s(&shdr->sh_type); 1690 bswaptls(&shdr->sh_flags); 1691 bswaptls(&shdr->sh_addr); 1692 bswaptls(&shdr->sh_offset); 1693 bswaptls(&shdr->sh_size); 1694 bswap32s(&shdr->sh_link); 1695 bswap32s(&shdr->sh_info); 1696 bswaptls(&shdr->sh_addralign); 1697 bswaptls(&shdr->sh_entsize); 1698 } 1699 } 1700 1701 static void bswap_sym(struct elf_sym *sym) 1702 { 1703 bswap32s(&sym->st_name); 1704 bswaptls(&sym->st_value); 1705 bswaptls(&sym->st_size); 1706 bswap16s(&sym->st_shndx); 1707 } 1708 1709 #ifdef TARGET_MIPS 1710 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1711 { 1712 bswap16s(&abiflags->version); 1713 bswap32s(&abiflags->ases); 1714 bswap32s(&abiflags->isa_ext); 1715 bswap32s(&abiflags->flags1); 1716 bswap32s(&abiflags->flags2); 1717 } 1718 #endif 1719 #else 1720 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1721 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1722 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1723 static inline void bswap_sym(struct elf_sym *sym) { } 1724 #ifdef TARGET_MIPS 1725 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1726 #endif 1727 #endif 1728 1729 #ifdef USE_ELF_CORE_DUMP 1730 static int elf_core_dump(int, const CPUArchState *); 1731 #endif /* USE_ELF_CORE_DUMP */ 1732 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1733 1734 /* Verify the portions of EHDR within E_IDENT for the target. 1735 This can be performed before bswapping the entire header. */ 1736 static bool elf_check_ident(struct elfhdr *ehdr) 1737 { 1738 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1739 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1740 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1741 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1742 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1743 && ehdr->e_ident[EI_DATA] == ELF_DATA 1744 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1745 } 1746 1747 /* Verify the portions of EHDR outside of E_IDENT for the target. 1748 This has to wait until after bswapping the header. */ 1749 static bool elf_check_ehdr(struct elfhdr *ehdr) 1750 { 1751 return (elf_check_arch(ehdr->e_machine) 1752 && elf_check_abi(ehdr->e_flags) 1753 && ehdr->e_ehsize == sizeof(struct elfhdr) 1754 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1755 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1756 } 1757 1758 /* 1759 * 'copy_elf_strings()' copies argument/envelope strings from user 1760 * memory to free pages in kernel mem. These are in a format ready 1761 * to be put directly into the top of new user memory. 1762 * 1763 */ 1764 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1765 abi_ulong p, abi_ulong stack_limit) 1766 { 1767 char *tmp; 1768 int len, i; 1769 abi_ulong top = p; 1770 1771 if (!p) { 1772 return 0; /* bullet-proofing */ 1773 } 1774 1775 if (STACK_GROWS_DOWN) { 1776 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1777 for (i = argc - 1; i >= 0; --i) { 1778 tmp = argv[i]; 1779 if (!tmp) { 1780 fprintf(stderr, "VFS: argc is wrong"); 1781 exit(-1); 1782 } 1783 len = strlen(tmp) + 1; 1784 tmp += len; 1785 1786 if (len > (p - stack_limit)) { 1787 return 0; 1788 } 1789 while (len) { 1790 int bytes_to_copy = (len > offset) ? offset : len; 1791 tmp -= bytes_to_copy; 1792 p -= bytes_to_copy; 1793 offset -= bytes_to_copy; 1794 len -= bytes_to_copy; 1795 1796 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1797 1798 if (offset == 0) { 1799 memcpy_to_target(p, scratch, top - p); 1800 top = p; 1801 offset = TARGET_PAGE_SIZE; 1802 } 1803 } 1804 } 1805 if (p != top) { 1806 memcpy_to_target(p, scratch + offset, top - p); 1807 } 1808 } else { 1809 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1810 for (i = 0; i < argc; ++i) { 1811 tmp = argv[i]; 1812 if (!tmp) { 1813 fprintf(stderr, "VFS: argc is wrong"); 1814 exit(-1); 1815 } 1816 len = strlen(tmp) + 1; 1817 if (len > (stack_limit - p)) { 1818 return 0; 1819 } 1820 while (len) { 1821 int bytes_to_copy = (len > remaining) ? remaining : len; 1822 1823 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1824 1825 tmp += bytes_to_copy; 1826 remaining -= bytes_to_copy; 1827 p += bytes_to_copy; 1828 len -= bytes_to_copy; 1829 1830 if (remaining == 0) { 1831 memcpy_to_target(top, scratch, p - top); 1832 top = p; 1833 remaining = TARGET_PAGE_SIZE; 1834 } 1835 } 1836 } 1837 if (p != top) { 1838 memcpy_to_target(top, scratch, p - top); 1839 } 1840 } 1841 1842 return p; 1843 } 1844 1845 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1846 * argument/environment space. Newer kernels (>2.6.33) allow more, 1847 * dependent on stack size, but guarantee at least 32 pages for 1848 * backwards compatibility. 1849 */ 1850 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1851 1852 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1853 struct image_info *info) 1854 { 1855 abi_ulong size, error, guard; 1856 1857 size = guest_stack_size; 1858 if (size < STACK_LOWER_LIMIT) { 1859 size = STACK_LOWER_LIMIT; 1860 } 1861 guard = TARGET_PAGE_SIZE; 1862 if (guard < qemu_real_host_page_size) { 1863 guard = qemu_real_host_page_size; 1864 } 1865 1866 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1867 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1868 if (error == -1) { 1869 perror("mmap stack"); 1870 exit(-1); 1871 } 1872 1873 /* We reserve one extra page at the top of the stack as guard. */ 1874 if (STACK_GROWS_DOWN) { 1875 target_mprotect(error, guard, PROT_NONE); 1876 info->stack_limit = error + guard; 1877 return info->stack_limit + size - sizeof(void *); 1878 } else { 1879 target_mprotect(error + size, guard, PROT_NONE); 1880 info->stack_limit = error + size; 1881 return error; 1882 } 1883 } 1884 1885 /* Map and zero the bss. We need to explicitly zero any fractional pages 1886 after the data section (i.e. bss). */ 1887 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1888 { 1889 uintptr_t host_start, host_map_start, host_end; 1890 1891 last_bss = TARGET_PAGE_ALIGN(last_bss); 1892 1893 /* ??? There is confusion between qemu_real_host_page_size and 1894 qemu_host_page_size here and elsewhere in target_mmap, which 1895 may lead to the end of the data section mapping from the file 1896 not being mapped. At least there was an explicit test and 1897 comment for that here, suggesting that "the file size must 1898 be known". The comment probably pre-dates the introduction 1899 of the fstat system call in target_mmap which does in fact 1900 find out the size. What isn't clear is if the workaround 1901 here is still actually needed. For now, continue with it, 1902 but merge it with the "normal" mmap that would allocate the bss. */ 1903 1904 host_start = (uintptr_t) g2h_untagged(elf_bss); 1905 host_end = (uintptr_t) g2h_untagged(last_bss); 1906 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1907 1908 if (host_map_start < host_end) { 1909 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1910 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1911 if (p == MAP_FAILED) { 1912 perror("cannot mmap brk"); 1913 exit(-1); 1914 } 1915 } 1916 1917 /* Ensure that the bss page(s) are valid */ 1918 if ((page_get_flags(last_bss-1) & prot) != prot) { 1919 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1920 } 1921 1922 if (host_start < host_map_start) { 1923 memset((void *)host_start, 0, host_map_start - host_start); 1924 } 1925 } 1926 1927 #ifdef TARGET_ARM 1928 static int elf_is_fdpic(struct elfhdr *exec) 1929 { 1930 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1931 } 1932 #else 1933 /* Default implementation, always false. */ 1934 static int elf_is_fdpic(struct elfhdr *exec) 1935 { 1936 return 0; 1937 } 1938 #endif 1939 1940 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1941 { 1942 uint16_t n; 1943 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1944 1945 /* elf32_fdpic_loadseg */ 1946 n = info->nsegs; 1947 while (n--) { 1948 sp -= 12; 1949 put_user_u32(loadsegs[n].addr, sp+0); 1950 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1951 put_user_u32(loadsegs[n].p_memsz, sp+8); 1952 } 1953 1954 /* elf32_fdpic_loadmap */ 1955 sp -= 4; 1956 put_user_u16(0, sp+0); /* version */ 1957 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1958 1959 info->personality = PER_LINUX_FDPIC; 1960 info->loadmap_addr = sp; 1961 1962 return sp; 1963 } 1964 1965 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1966 struct elfhdr *exec, 1967 struct image_info *info, 1968 struct image_info *interp_info) 1969 { 1970 abi_ulong sp; 1971 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1972 int size; 1973 int i; 1974 abi_ulong u_rand_bytes; 1975 uint8_t k_rand_bytes[16]; 1976 abi_ulong u_platform; 1977 const char *k_platform; 1978 const int n = sizeof(elf_addr_t); 1979 1980 sp = p; 1981 1982 /* Needs to be before we load the env/argc/... */ 1983 if (elf_is_fdpic(exec)) { 1984 /* Need 4 byte alignment for these structs */ 1985 sp &= ~3; 1986 sp = loader_build_fdpic_loadmap(info, sp); 1987 info->other_info = interp_info; 1988 if (interp_info) { 1989 interp_info->other_info = info; 1990 sp = loader_build_fdpic_loadmap(interp_info, sp); 1991 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1992 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1993 } else { 1994 info->interpreter_loadmap_addr = 0; 1995 info->interpreter_pt_dynamic_addr = 0; 1996 } 1997 } 1998 1999 u_platform = 0; 2000 k_platform = ELF_PLATFORM; 2001 if (k_platform) { 2002 size_t len = strlen(k_platform) + 1; 2003 if (STACK_GROWS_DOWN) { 2004 sp -= (len + n - 1) & ~(n - 1); 2005 u_platform = sp; 2006 /* FIXME - check return value of memcpy_to_target() for failure */ 2007 memcpy_to_target(sp, k_platform, len); 2008 } else { 2009 memcpy_to_target(sp, k_platform, len); 2010 u_platform = sp; 2011 sp += len + 1; 2012 } 2013 } 2014 2015 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2016 * the argv and envp pointers. 2017 */ 2018 if (STACK_GROWS_DOWN) { 2019 sp = QEMU_ALIGN_DOWN(sp, 16); 2020 } else { 2021 sp = QEMU_ALIGN_UP(sp, 16); 2022 } 2023 2024 /* 2025 * Generate 16 random bytes for userspace PRNG seeding. 2026 */ 2027 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2028 if (STACK_GROWS_DOWN) { 2029 sp -= 16; 2030 u_rand_bytes = sp; 2031 /* FIXME - check return value of memcpy_to_target() for failure */ 2032 memcpy_to_target(sp, k_rand_bytes, 16); 2033 } else { 2034 memcpy_to_target(sp, k_rand_bytes, 16); 2035 u_rand_bytes = sp; 2036 sp += 16; 2037 } 2038 2039 size = (DLINFO_ITEMS + 1) * 2; 2040 if (k_platform) 2041 size += 2; 2042 #ifdef DLINFO_ARCH_ITEMS 2043 size += DLINFO_ARCH_ITEMS * 2; 2044 #endif 2045 #ifdef ELF_HWCAP2 2046 size += 2; 2047 #endif 2048 info->auxv_len = size * n; 2049 2050 size += envc + argc + 2; 2051 size += 1; /* argc itself */ 2052 size *= n; 2053 2054 /* Allocate space and finalize stack alignment for entry now. */ 2055 if (STACK_GROWS_DOWN) { 2056 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2057 sp = u_argc; 2058 } else { 2059 u_argc = sp; 2060 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2061 } 2062 2063 u_argv = u_argc + n; 2064 u_envp = u_argv + (argc + 1) * n; 2065 u_auxv = u_envp + (envc + 1) * n; 2066 info->saved_auxv = u_auxv; 2067 info->arg_start = u_argv; 2068 info->arg_end = u_argv + argc * n; 2069 2070 /* This is correct because Linux defines 2071 * elf_addr_t as Elf32_Off / Elf64_Off 2072 */ 2073 #define NEW_AUX_ENT(id, val) do { \ 2074 put_user_ual(id, u_auxv); u_auxv += n; \ 2075 put_user_ual(val, u_auxv); u_auxv += n; \ 2076 } while(0) 2077 2078 #ifdef ARCH_DLINFO 2079 /* 2080 * ARCH_DLINFO must come first so platform specific code can enforce 2081 * special alignment requirements on the AUXV if necessary (eg. PPC). 2082 */ 2083 ARCH_DLINFO; 2084 #endif 2085 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2086 * on info->auxv_len will trigger. 2087 */ 2088 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2089 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2090 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2091 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2092 /* Target doesn't support host page size alignment */ 2093 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2094 } else { 2095 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2096 qemu_host_page_size))); 2097 } 2098 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2099 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2100 NEW_AUX_ENT(AT_ENTRY, info->entry); 2101 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2102 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2103 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2104 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2105 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2106 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2107 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2108 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2109 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2110 2111 #ifdef ELF_HWCAP2 2112 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2113 #endif 2114 2115 if (u_platform) { 2116 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2117 } 2118 NEW_AUX_ENT (AT_NULL, 0); 2119 #undef NEW_AUX_ENT 2120 2121 /* Check that our initial calculation of the auxv length matches how much 2122 * we actually put into it. 2123 */ 2124 assert(info->auxv_len == u_auxv - info->saved_auxv); 2125 2126 put_user_ual(argc, u_argc); 2127 2128 p = info->arg_strings; 2129 for (i = 0; i < argc; ++i) { 2130 put_user_ual(p, u_argv); 2131 u_argv += n; 2132 p += target_strlen(p) + 1; 2133 } 2134 put_user_ual(0, u_argv); 2135 2136 p = info->env_strings; 2137 for (i = 0; i < envc; ++i) { 2138 put_user_ual(p, u_envp); 2139 u_envp += n; 2140 p += target_strlen(p) + 1; 2141 } 2142 put_user_ual(0, u_envp); 2143 2144 return sp; 2145 } 2146 2147 #ifndef ARM_COMMPAGE 2148 #define ARM_COMMPAGE 0 2149 #define init_guest_commpage() true 2150 #endif 2151 2152 static void pgb_fail_in_use(const char *image_name) 2153 { 2154 error_report("%s: requires virtual address space that is in use " 2155 "(omit the -B option or choose a different value)", 2156 image_name); 2157 exit(EXIT_FAILURE); 2158 } 2159 2160 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2161 abi_ulong guest_hiaddr, long align) 2162 { 2163 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2164 void *addr, *test; 2165 2166 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2167 fprintf(stderr, "Requested guest base %p does not satisfy " 2168 "host minimum alignment (0x%lx)\n", 2169 (void *)guest_base, align); 2170 exit(EXIT_FAILURE); 2171 } 2172 2173 /* Sanity check the guest binary. */ 2174 if (reserved_va) { 2175 if (guest_hiaddr > reserved_va) { 2176 error_report("%s: requires more than reserved virtual " 2177 "address space (0x%" PRIx64 " > 0x%lx)", 2178 image_name, (uint64_t)guest_hiaddr, reserved_va); 2179 exit(EXIT_FAILURE); 2180 } 2181 } else { 2182 #if HOST_LONG_BITS < TARGET_ABI_BITS 2183 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2184 error_report("%s: requires more virtual address space " 2185 "than the host can provide (0x%" PRIx64 ")", 2186 image_name, (uint64_t)guest_hiaddr - guest_base); 2187 exit(EXIT_FAILURE); 2188 } 2189 #endif 2190 } 2191 2192 /* 2193 * Expand the allocation to the entire reserved_va. 2194 * Exclude the mmap_min_addr hole. 2195 */ 2196 if (reserved_va) { 2197 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2198 : mmap_min_addr - guest_base); 2199 guest_hiaddr = reserved_va; 2200 } 2201 2202 /* Reserve the address space for the binary, or reserved_va. */ 2203 test = g2h_untagged(guest_loaddr); 2204 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2205 if (test != addr) { 2206 pgb_fail_in_use(image_name); 2207 } 2208 } 2209 2210 /** 2211 * pgd_find_hole_fallback: potential mmap address 2212 * @guest_size: size of available space 2213 * @brk: location of break 2214 * @align: memory alignment 2215 * 2216 * This is a fallback method for finding a hole in the host address 2217 * space if we don't have the benefit of being able to access 2218 * /proc/self/map. It can potentially take a very long time as we can 2219 * only dumbly iterate up the host address space seeing if the 2220 * allocation would work. 2221 */ 2222 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2223 long align, uintptr_t offset) 2224 { 2225 uintptr_t base; 2226 2227 /* Start (aligned) at the bottom and work our way up */ 2228 base = ROUND_UP(mmap_min_addr, align); 2229 2230 while (true) { 2231 uintptr_t align_start, end; 2232 align_start = ROUND_UP(base, align); 2233 end = align_start + guest_size + offset; 2234 2235 /* if brk is anywhere in the range give ourselves some room to grow. */ 2236 if (align_start <= brk && brk < end) { 2237 base = brk + (16 * MiB); 2238 continue; 2239 } else if (align_start + guest_size < align_start) { 2240 /* we have run out of space */ 2241 return -1; 2242 } else { 2243 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2244 MAP_FIXED_NOREPLACE; 2245 void * mmap_start = mmap((void *) align_start, guest_size, 2246 PROT_NONE, flags, -1, 0); 2247 if (mmap_start != MAP_FAILED) { 2248 munmap(mmap_start, guest_size); 2249 if (mmap_start == (void *) align_start) { 2250 return (uintptr_t) mmap_start + offset; 2251 } 2252 } 2253 base += qemu_host_page_size; 2254 } 2255 } 2256 } 2257 2258 /* Return value for guest_base, or -1 if no hole found. */ 2259 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2260 long align, uintptr_t offset) 2261 { 2262 GSList *maps, *iter; 2263 uintptr_t this_start, this_end, next_start, brk; 2264 intptr_t ret = -1; 2265 2266 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2267 2268 maps = read_self_maps(); 2269 2270 /* Read brk after we've read the maps, which will malloc. */ 2271 brk = (uintptr_t)sbrk(0); 2272 2273 if (!maps) { 2274 ret = pgd_find_hole_fallback(guest_size, brk, align, offset); 2275 return ret == -1 ? -1 : ret - guest_loaddr; 2276 } 2277 2278 /* The first hole is before the first map entry. */ 2279 this_start = mmap_min_addr; 2280 2281 for (iter = maps; iter; 2282 this_start = next_start, iter = g_slist_next(iter)) { 2283 uintptr_t align_start, hole_size; 2284 2285 this_end = ((MapInfo *)iter->data)->start; 2286 next_start = ((MapInfo *)iter->data)->end; 2287 align_start = ROUND_UP(this_start + offset, align); 2288 2289 /* Skip holes that are too small. */ 2290 if (align_start >= this_end) { 2291 continue; 2292 } 2293 hole_size = this_end - align_start; 2294 if (hole_size < guest_size) { 2295 continue; 2296 } 2297 2298 /* If this hole contains brk, give ourselves some room to grow. */ 2299 if (this_start <= brk && brk < this_end) { 2300 hole_size -= guest_size; 2301 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2302 align_start += 1 * GiB; 2303 } else if (hole_size >= 16 * MiB) { 2304 align_start += 16 * MiB; 2305 } else { 2306 align_start = (this_end - guest_size) & -align; 2307 if (align_start < this_start) { 2308 continue; 2309 } 2310 } 2311 } 2312 2313 /* Record the lowest successful match. */ 2314 if (ret < 0) { 2315 ret = align_start - guest_loaddr; 2316 } 2317 /* If this hole contains the identity map, select it. */ 2318 if (align_start <= guest_loaddr && 2319 guest_loaddr + guest_size <= this_end) { 2320 ret = 0; 2321 } 2322 /* If this hole ends above the identity map, stop looking. */ 2323 if (this_end >= guest_loaddr) { 2324 break; 2325 } 2326 } 2327 free_self_maps(maps); 2328 2329 return ret; 2330 } 2331 2332 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2333 abi_ulong orig_hiaddr, long align) 2334 { 2335 uintptr_t loaddr = orig_loaddr; 2336 uintptr_t hiaddr = orig_hiaddr; 2337 uintptr_t offset = 0; 2338 uintptr_t addr; 2339 2340 if (hiaddr != orig_hiaddr) { 2341 error_report("%s: requires virtual address space that the " 2342 "host cannot provide (0x%" PRIx64 ")", 2343 image_name, (uint64_t)orig_hiaddr); 2344 exit(EXIT_FAILURE); 2345 } 2346 2347 loaddr &= -align; 2348 if (ARM_COMMPAGE) { 2349 /* 2350 * Extend the allocation to include the commpage. 2351 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2352 * need to ensure there is space bellow the guest_base so we 2353 * can map the commpage in the place needed when the address 2354 * arithmetic wraps around. 2355 */ 2356 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2357 hiaddr = (uintptr_t) 4 << 30; 2358 } else { 2359 offset = -(ARM_COMMPAGE & -align); 2360 } 2361 } 2362 2363 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2364 if (addr == -1) { 2365 /* 2366 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation 2367 * that can satisfy both. But as the normal arm32 link base address 2368 * is ~32k, and we extend down to include the commpage, making the 2369 * overhead only ~96k, this is unlikely. 2370 */ 2371 error_report("%s: Unable to allocate %#zx bytes of " 2372 "virtual address space", image_name, 2373 (size_t)(hiaddr - loaddr)); 2374 exit(EXIT_FAILURE); 2375 } 2376 2377 guest_base = addr; 2378 } 2379 2380 static void pgb_dynamic(const char *image_name, long align) 2381 { 2382 /* 2383 * The executable is dynamic and does not require a fixed address. 2384 * All we need is a commpage that satisfies align. 2385 * If we do not need a commpage, leave guest_base == 0. 2386 */ 2387 if (ARM_COMMPAGE) { 2388 uintptr_t addr, commpage; 2389 2390 /* 64-bit hosts should have used reserved_va. */ 2391 assert(sizeof(uintptr_t) == 4); 2392 2393 /* 2394 * By putting the commpage at the first hole, that puts guest_base 2395 * just above that, and maximises the positive guest addresses. 2396 */ 2397 commpage = ARM_COMMPAGE & -align; 2398 addr = pgb_find_hole(commpage, -commpage, align, 0); 2399 assert(addr != -1); 2400 guest_base = addr; 2401 } 2402 } 2403 2404 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2405 abi_ulong guest_hiaddr, long align) 2406 { 2407 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2408 void *addr, *test; 2409 2410 if (guest_hiaddr > reserved_va) { 2411 error_report("%s: requires more than reserved virtual " 2412 "address space (0x%" PRIx64 " > 0x%lx)", 2413 image_name, (uint64_t)guest_hiaddr, reserved_va); 2414 exit(EXIT_FAILURE); 2415 } 2416 2417 /* Widen the "image" to the entire reserved address space. */ 2418 pgb_static(image_name, 0, reserved_va, align); 2419 2420 /* osdep.h defines this as 0 if it's missing */ 2421 flags |= MAP_FIXED_NOREPLACE; 2422 2423 /* Reserve the memory on the host. */ 2424 assert(guest_base != 0); 2425 test = g2h_untagged(0); 2426 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2427 if (addr == MAP_FAILED || addr != test) { 2428 error_report("Unable to reserve 0x%lx bytes of virtual address " 2429 "space at %p (%s) for use as guest address space (check your" 2430 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2431 "using -R option)", reserved_va, test, strerror(errno)); 2432 exit(EXIT_FAILURE); 2433 } 2434 } 2435 2436 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2437 abi_ulong guest_hiaddr) 2438 { 2439 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2440 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2441 2442 if (have_guest_base) { 2443 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2444 } else if (reserved_va) { 2445 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2446 } else if (guest_loaddr) { 2447 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2448 } else { 2449 pgb_dynamic(image_name, align); 2450 } 2451 2452 /* Reserve and initialize the commpage. */ 2453 if (!init_guest_commpage()) { 2454 /* 2455 * With have_guest_base, the user has selected the address and 2456 * we are trying to work with that. Otherwise, we have selected 2457 * free space and init_guest_commpage must succeeded. 2458 */ 2459 assert(have_guest_base); 2460 pgb_fail_in_use(image_name); 2461 } 2462 2463 assert(QEMU_IS_ALIGNED(guest_base, align)); 2464 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2465 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2466 } 2467 2468 enum { 2469 /* The string "GNU\0" as a magic number. */ 2470 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2471 NOTE_DATA_SZ = 1 * KiB, 2472 NOTE_NAME_SZ = 4, 2473 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2474 }; 2475 2476 /* 2477 * Process a single gnu_property entry. 2478 * Return false for error. 2479 */ 2480 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2481 struct image_info *info, bool have_prev_type, 2482 uint32_t *prev_type, Error **errp) 2483 { 2484 uint32_t pr_type, pr_datasz, step; 2485 2486 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2487 goto error_data; 2488 } 2489 datasz -= *off; 2490 data += *off / sizeof(uint32_t); 2491 2492 if (datasz < 2 * sizeof(uint32_t)) { 2493 goto error_data; 2494 } 2495 pr_type = data[0]; 2496 pr_datasz = data[1]; 2497 data += 2; 2498 datasz -= 2 * sizeof(uint32_t); 2499 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2500 if (step > datasz) { 2501 goto error_data; 2502 } 2503 2504 /* Properties are supposed to be unique and sorted on pr_type. */ 2505 if (have_prev_type && pr_type <= *prev_type) { 2506 if (pr_type == *prev_type) { 2507 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2508 } else { 2509 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2510 } 2511 return false; 2512 } 2513 *prev_type = pr_type; 2514 2515 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2516 return false; 2517 } 2518 2519 *off += 2 * sizeof(uint32_t) + step; 2520 return true; 2521 2522 error_data: 2523 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2524 return false; 2525 } 2526 2527 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2528 static bool parse_elf_properties(int image_fd, 2529 struct image_info *info, 2530 const struct elf_phdr *phdr, 2531 char bprm_buf[BPRM_BUF_SIZE], 2532 Error **errp) 2533 { 2534 union { 2535 struct elf_note nhdr; 2536 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2537 } note; 2538 2539 int n, off, datasz; 2540 bool have_prev_type; 2541 uint32_t prev_type; 2542 2543 /* Unless the arch requires properties, ignore them. */ 2544 if (!ARCH_USE_GNU_PROPERTY) { 2545 return true; 2546 } 2547 2548 /* If the properties are crazy large, that's too bad. */ 2549 n = phdr->p_filesz; 2550 if (n > sizeof(note)) { 2551 error_setg(errp, "PT_GNU_PROPERTY too large"); 2552 return false; 2553 } 2554 if (n < sizeof(note.nhdr)) { 2555 error_setg(errp, "PT_GNU_PROPERTY too small"); 2556 return false; 2557 } 2558 2559 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2560 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2561 } else { 2562 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2563 if (len != n) { 2564 error_setg_errno(errp, errno, "Error reading file header"); 2565 return false; 2566 } 2567 } 2568 2569 /* 2570 * The contents of a valid PT_GNU_PROPERTY is a sequence 2571 * of uint32_t -- swap them all now. 2572 */ 2573 #ifdef BSWAP_NEEDED 2574 for (int i = 0; i < n / 4; i++) { 2575 bswap32s(note.data + i); 2576 } 2577 #endif 2578 2579 /* 2580 * Note that nhdr is 3 words, and that the "name" described by namesz 2581 * immediately follows nhdr and is thus at the 4th word. Further, all 2582 * of the inputs to the kernel's round_up are multiples of 4. 2583 */ 2584 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2585 note.nhdr.n_namesz != NOTE_NAME_SZ || 2586 note.data[3] != GNU0_MAGIC) { 2587 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2588 return false; 2589 } 2590 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2591 2592 datasz = note.nhdr.n_descsz + off; 2593 if (datasz > n) { 2594 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2595 return false; 2596 } 2597 2598 have_prev_type = false; 2599 prev_type = 0; 2600 while (1) { 2601 if (off == datasz) { 2602 return true; /* end, exit ok */ 2603 } 2604 if (!parse_elf_property(note.data, &off, datasz, info, 2605 have_prev_type, &prev_type, errp)) { 2606 return false; 2607 } 2608 have_prev_type = true; 2609 } 2610 } 2611 2612 /* Load an ELF image into the address space. 2613 2614 IMAGE_NAME is the filename of the image, to use in error messages. 2615 IMAGE_FD is the open file descriptor for the image. 2616 2617 BPRM_BUF is a copy of the beginning of the file; this of course 2618 contains the elf file header at offset 0. It is assumed that this 2619 buffer is sufficiently aligned to present no problems to the host 2620 in accessing data at aligned offsets within the buffer. 2621 2622 On return: INFO values will be filled in, as necessary or available. */ 2623 2624 static void load_elf_image(const char *image_name, int image_fd, 2625 struct image_info *info, char **pinterp_name, 2626 char bprm_buf[BPRM_BUF_SIZE]) 2627 { 2628 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2629 struct elf_phdr *phdr; 2630 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2631 int i, retval, prot_exec; 2632 Error *err = NULL; 2633 2634 /* First of all, some simple consistency checks */ 2635 if (!elf_check_ident(ehdr)) { 2636 error_setg(&err, "Invalid ELF image for this architecture"); 2637 goto exit_errmsg; 2638 } 2639 bswap_ehdr(ehdr); 2640 if (!elf_check_ehdr(ehdr)) { 2641 error_setg(&err, "Invalid ELF image for this architecture"); 2642 goto exit_errmsg; 2643 } 2644 2645 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2646 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2647 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2648 } else { 2649 phdr = (struct elf_phdr *) alloca(i); 2650 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2651 if (retval != i) { 2652 goto exit_read; 2653 } 2654 } 2655 bswap_phdr(phdr, ehdr->e_phnum); 2656 2657 info->nsegs = 0; 2658 info->pt_dynamic_addr = 0; 2659 2660 mmap_lock(); 2661 2662 /* 2663 * Find the maximum size of the image and allocate an appropriate 2664 * amount of memory to handle that. Locate the interpreter, if any. 2665 */ 2666 loaddr = -1, hiaddr = 0; 2667 info->alignment = 0; 2668 for (i = 0; i < ehdr->e_phnum; ++i) { 2669 struct elf_phdr *eppnt = phdr + i; 2670 if (eppnt->p_type == PT_LOAD) { 2671 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 2672 if (a < loaddr) { 2673 loaddr = a; 2674 } 2675 a = eppnt->p_vaddr + eppnt->p_memsz; 2676 if (a > hiaddr) { 2677 hiaddr = a; 2678 } 2679 ++info->nsegs; 2680 info->alignment |= eppnt->p_align; 2681 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2682 g_autofree char *interp_name = NULL; 2683 2684 if (*pinterp_name) { 2685 error_setg(&err, "Multiple PT_INTERP entries"); 2686 goto exit_errmsg; 2687 } 2688 2689 interp_name = g_malloc(eppnt->p_filesz); 2690 2691 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2692 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2693 eppnt->p_filesz); 2694 } else { 2695 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2696 eppnt->p_offset); 2697 if (retval != eppnt->p_filesz) { 2698 goto exit_read; 2699 } 2700 } 2701 if (interp_name[eppnt->p_filesz - 1] != 0) { 2702 error_setg(&err, "Invalid PT_INTERP entry"); 2703 goto exit_errmsg; 2704 } 2705 *pinterp_name = g_steal_pointer(&interp_name); 2706 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 2707 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 2708 goto exit_errmsg; 2709 } 2710 } 2711 } 2712 2713 if (pinterp_name != NULL) { 2714 /* 2715 * This is the main executable. 2716 * 2717 * Reserve extra space for brk. 2718 * We hold on to this space while placing the interpreter 2719 * and the stack, lest they be placed immediately after 2720 * the data segment and block allocation from the brk. 2721 * 2722 * 16MB is chosen as "large enough" without being so large 2723 * as to allow the result to not fit with a 32-bit guest on 2724 * a 32-bit host. 2725 */ 2726 info->reserve_brk = 16 * MiB; 2727 hiaddr += info->reserve_brk; 2728 2729 if (ehdr->e_type == ET_EXEC) { 2730 /* 2731 * Make sure that the low address does not conflict with 2732 * MMAP_MIN_ADDR or the QEMU application itself. 2733 */ 2734 probe_guest_base(image_name, loaddr, hiaddr); 2735 } else { 2736 /* 2737 * The binary is dynamic, but we still need to 2738 * select guest_base. In this case we pass a size. 2739 */ 2740 probe_guest_base(image_name, 0, hiaddr - loaddr); 2741 } 2742 } 2743 2744 /* 2745 * Reserve address space for all of this. 2746 * 2747 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2748 * exactly the address range that is required. 2749 * 2750 * Otherwise this is ET_DYN, and we are searching for a location 2751 * that can hold the memory space required. If the image is 2752 * pre-linked, LOADDR will be non-zero, and the kernel should 2753 * honor that address if it happens to be free. 2754 * 2755 * In both cases, we will overwrite pages in this range with mappings 2756 * from the executable. 2757 */ 2758 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2759 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2760 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2761 -1, 0); 2762 if (load_addr == -1) { 2763 goto exit_mmap; 2764 } 2765 load_bias = load_addr - loaddr; 2766 2767 if (elf_is_fdpic(ehdr)) { 2768 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2769 g_malloc(sizeof(*loadsegs) * info->nsegs); 2770 2771 for (i = 0; i < ehdr->e_phnum; ++i) { 2772 switch (phdr[i].p_type) { 2773 case PT_DYNAMIC: 2774 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2775 break; 2776 case PT_LOAD: 2777 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2778 loadsegs->p_vaddr = phdr[i].p_vaddr; 2779 loadsegs->p_memsz = phdr[i].p_memsz; 2780 ++loadsegs; 2781 break; 2782 } 2783 } 2784 } 2785 2786 info->load_bias = load_bias; 2787 info->code_offset = load_bias; 2788 info->data_offset = load_bias; 2789 info->load_addr = load_addr; 2790 info->entry = ehdr->e_entry + load_bias; 2791 info->start_code = -1; 2792 info->end_code = 0; 2793 info->start_data = -1; 2794 info->end_data = 0; 2795 info->brk = 0; 2796 info->elf_flags = ehdr->e_flags; 2797 2798 prot_exec = PROT_EXEC; 2799 #ifdef TARGET_AARCH64 2800 /* 2801 * If the BTI feature is present, this indicates that the executable 2802 * pages of the startup binary should be mapped with PROT_BTI, so that 2803 * branch targets are enforced. 2804 * 2805 * The startup binary is either the interpreter or the static executable. 2806 * The interpreter is responsible for all pages of a dynamic executable. 2807 * 2808 * Elf notes are backward compatible to older cpus. 2809 * Do not enable BTI unless it is supported. 2810 */ 2811 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 2812 && (pinterp_name == NULL || *pinterp_name == 0) 2813 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 2814 prot_exec |= TARGET_PROT_BTI; 2815 } 2816 #endif 2817 2818 for (i = 0; i < ehdr->e_phnum; i++) { 2819 struct elf_phdr *eppnt = phdr + i; 2820 if (eppnt->p_type == PT_LOAD) { 2821 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2822 int elf_prot = 0; 2823 2824 if (eppnt->p_flags & PF_R) { 2825 elf_prot |= PROT_READ; 2826 } 2827 if (eppnt->p_flags & PF_W) { 2828 elf_prot |= PROT_WRITE; 2829 } 2830 if (eppnt->p_flags & PF_X) { 2831 elf_prot |= prot_exec; 2832 } 2833 2834 vaddr = load_bias + eppnt->p_vaddr; 2835 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2836 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2837 2838 vaddr_ef = vaddr + eppnt->p_filesz; 2839 vaddr_em = vaddr + eppnt->p_memsz; 2840 2841 /* 2842 * Some segments may be completely empty, with a non-zero p_memsz 2843 * but no backing file segment. 2844 */ 2845 if (eppnt->p_filesz != 0) { 2846 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2847 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2848 MAP_PRIVATE | MAP_FIXED, 2849 image_fd, eppnt->p_offset - vaddr_po); 2850 2851 if (error == -1) { 2852 goto exit_mmap; 2853 } 2854 2855 /* 2856 * If the load segment requests extra zeros (e.g. bss), map it. 2857 */ 2858 if (eppnt->p_filesz < eppnt->p_memsz) { 2859 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2860 } 2861 } else if (eppnt->p_memsz != 0) { 2862 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 2863 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2864 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 2865 -1, 0); 2866 2867 if (error == -1) { 2868 goto exit_mmap; 2869 } 2870 } 2871 2872 /* Find the full program boundaries. */ 2873 if (elf_prot & PROT_EXEC) { 2874 if (vaddr < info->start_code) { 2875 info->start_code = vaddr; 2876 } 2877 if (vaddr_ef > info->end_code) { 2878 info->end_code = vaddr_ef; 2879 } 2880 } 2881 if (elf_prot & PROT_WRITE) { 2882 if (vaddr < info->start_data) { 2883 info->start_data = vaddr; 2884 } 2885 if (vaddr_ef > info->end_data) { 2886 info->end_data = vaddr_ef; 2887 } 2888 } 2889 if (vaddr_em > info->brk) { 2890 info->brk = vaddr_em; 2891 } 2892 #ifdef TARGET_MIPS 2893 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2894 Mips_elf_abiflags_v0 abiflags; 2895 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2896 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 2897 goto exit_errmsg; 2898 } 2899 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2900 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2901 sizeof(Mips_elf_abiflags_v0)); 2902 } else { 2903 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2904 eppnt->p_offset); 2905 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2906 goto exit_read; 2907 } 2908 } 2909 bswap_mips_abiflags(&abiflags); 2910 info->fp_abi = abiflags.fp_abi; 2911 #endif 2912 } 2913 } 2914 2915 if (info->end_data == 0) { 2916 info->start_data = info->end_code; 2917 info->end_data = info->end_code; 2918 } 2919 2920 if (qemu_log_enabled()) { 2921 load_symbols(ehdr, image_fd, load_bias); 2922 } 2923 2924 mmap_unlock(); 2925 2926 close(image_fd); 2927 return; 2928 2929 exit_read: 2930 if (retval >= 0) { 2931 error_setg(&err, "Incomplete read of file header"); 2932 } else { 2933 error_setg_errno(&err, errno, "Error reading file header"); 2934 } 2935 goto exit_errmsg; 2936 exit_mmap: 2937 error_setg_errno(&err, errno, "Error mapping file"); 2938 goto exit_errmsg; 2939 exit_errmsg: 2940 error_reportf_err(err, "%s: ", image_name); 2941 exit(-1); 2942 } 2943 2944 static void load_elf_interp(const char *filename, struct image_info *info, 2945 char bprm_buf[BPRM_BUF_SIZE]) 2946 { 2947 int fd, retval; 2948 Error *err = NULL; 2949 2950 fd = open(path(filename), O_RDONLY); 2951 if (fd < 0) { 2952 error_setg_file_open(&err, errno, filename); 2953 error_report_err(err); 2954 exit(-1); 2955 } 2956 2957 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2958 if (retval < 0) { 2959 error_setg_errno(&err, errno, "Error reading file header"); 2960 error_reportf_err(err, "%s: ", filename); 2961 exit(-1); 2962 } 2963 2964 if (retval < BPRM_BUF_SIZE) { 2965 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2966 } 2967 2968 load_elf_image(filename, fd, info, NULL, bprm_buf); 2969 } 2970 2971 static int symfind(const void *s0, const void *s1) 2972 { 2973 target_ulong addr = *(target_ulong *)s0; 2974 struct elf_sym *sym = (struct elf_sym *)s1; 2975 int result = 0; 2976 if (addr < sym->st_value) { 2977 result = -1; 2978 } else if (addr >= sym->st_value + sym->st_size) { 2979 result = 1; 2980 } 2981 return result; 2982 } 2983 2984 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2985 { 2986 #if ELF_CLASS == ELFCLASS32 2987 struct elf_sym *syms = s->disas_symtab.elf32; 2988 #else 2989 struct elf_sym *syms = s->disas_symtab.elf64; 2990 #endif 2991 2992 // binary search 2993 struct elf_sym *sym; 2994 2995 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2996 if (sym != NULL) { 2997 return s->disas_strtab + sym->st_name; 2998 } 2999 3000 return ""; 3001 } 3002 3003 /* FIXME: This should use elf_ops.h */ 3004 static int symcmp(const void *s0, const void *s1) 3005 { 3006 struct elf_sym *sym0 = (struct elf_sym *)s0; 3007 struct elf_sym *sym1 = (struct elf_sym *)s1; 3008 return (sym0->st_value < sym1->st_value) 3009 ? -1 3010 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3011 } 3012 3013 /* Best attempt to load symbols from this ELF object. */ 3014 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3015 { 3016 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3017 uint64_t segsz; 3018 struct elf_shdr *shdr; 3019 char *strings = NULL; 3020 struct syminfo *s = NULL; 3021 struct elf_sym *new_syms, *syms = NULL; 3022 3023 shnum = hdr->e_shnum; 3024 i = shnum * sizeof(struct elf_shdr); 3025 shdr = (struct elf_shdr *)alloca(i); 3026 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3027 return; 3028 } 3029 3030 bswap_shdr(shdr, shnum); 3031 for (i = 0; i < shnum; ++i) { 3032 if (shdr[i].sh_type == SHT_SYMTAB) { 3033 sym_idx = i; 3034 str_idx = shdr[i].sh_link; 3035 goto found; 3036 } 3037 } 3038 3039 /* There will be no symbol table if the file was stripped. */ 3040 return; 3041 3042 found: 3043 /* Now know where the strtab and symtab are. Snarf them. */ 3044 s = g_try_new(struct syminfo, 1); 3045 if (!s) { 3046 goto give_up; 3047 } 3048 3049 segsz = shdr[str_idx].sh_size; 3050 s->disas_strtab = strings = g_try_malloc(segsz); 3051 if (!strings || 3052 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3053 goto give_up; 3054 } 3055 3056 segsz = shdr[sym_idx].sh_size; 3057 syms = g_try_malloc(segsz); 3058 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3059 goto give_up; 3060 } 3061 3062 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3063 /* Implausibly large symbol table: give up rather than ploughing 3064 * on with the number of symbols calculation overflowing 3065 */ 3066 goto give_up; 3067 } 3068 nsyms = segsz / sizeof(struct elf_sym); 3069 for (i = 0; i < nsyms; ) { 3070 bswap_sym(syms + i); 3071 /* Throw away entries which we do not need. */ 3072 if (syms[i].st_shndx == SHN_UNDEF 3073 || syms[i].st_shndx >= SHN_LORESERVE 3074 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3075 if (i < --nsyms) { 3076 syms[i] = syms[nsyms]; 3077 } 3078 } else { 3079 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3080 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3081 syms[i].st_value &= ~(target_ulong)1; 3082 #endif 3083 syms[i].st_value += load_bias; 3084 i++; 3085 } 3086 } 3087 3088 /* No "useful" symbol. */ 3089 if (nsyms == 0) { 3090 goto give_up; 3091 } 3092 3093 /* Attempt to free the storage associated with the local symbols 3094 that we threw away. Whether or not this has any effect on the 3095 memory allocation depends on the malloc implementation and how 3096 many symbols we managed to discard. */ 3097 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3098 if (new_syms == NULL) { 3099 goto give_up; 3100 } 3101 syms = new_syms; 3102 3103 qsort(syms, nsyms, sizeof(*syms), symcmp); 3104 3105 s->disas_num_syms = nsyms; 3106 #if ELF_CLASS == ELFCLASS32 3107 s->disas_symtab.elf32 = syms; 3108 #else 3109 s->disas_symtab.elf64 = syms; 3110 #endif 3111 s->lookup_symbol = lookup_symbolxx; 3112 s->next = syminfos; 3113 syminfos = s; 3114 3115 return; 3116 3117 give_up: 3118 g_free(s); 3119 g_free(strings); 3120 g_free(syms); 3121 } 3122 3123 uint32_t get_elf_eflags(int fd) 3124 { 3125 struct elfhdr ehdr; 3126 off_t offset; 3127 int ret; 3128 3129 /* Read ELF header */ 3130 offset = lseek(fd, 0, SEEK_SET); 3131 if (offset == (off_t) -1) { 3132 return 0; 3133 } 3134 ret = read(fd, &ehdr, sizeof(ehdr)); 3135 if (ret < sizeof(ehdr)) { 3136 return 0; 3137 } 3138 offset = lseek(fd, offset, SEEK_SET); 3139 if (offset == (off_t) -1) { 3140 return 0; 3141 } 3142 3143 /* Check ELF signature */ 3144 if (!elf_check_ident(&ehdr)) { 3145 return 0; 3146 } 3147 3148 /* check header */ 3149 bswap_ehdr(&ehdr); 3150 if (!elf_check_ehdr(&ehdr)) { 3151 return 0; 3152 } 3153 3154 /* return architecture id */ 3155 return ehdr.e_flags; 3156 } 3157 3158 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3159 { 3160 struct image_info interp_info; 3161 struct elfhdr elf_ex; 3162 char *elf_interpreter = NULL; 3163 char *scratch; 3164 3165 memset(&interp_info, 0, sizeof(interp_info)); 3166 #ifdef TARGET_MIPS 3167 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3168 #endif 3169 3170 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3171 3172 load_elf_image(bprm->filename, bprm->fd, info, 3173 &elf_interpreter, bprm->buf); 3174 3175 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3176 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3177 when we load the interpreter. */ 3178 elf_ex = *(struct elfhdr *)bprm->buf; 3179 3180 /* Do this so that we can load the interpreter, if need be. We will 3181 change some of these later */ 3182 bprm->p = setup_arg_pages(bprm, info); 3183 3184 scratch = g_new0(char, TARGET_PAGE_SIZE); 3185 if (STACK_GROWS_DOWN) { 3186 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3187 bprm->p, info->stack_limit); 3188 info->file_string = bprm->p; 3189 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3190 bprm->p, info->stack_limit); 3191 info->env_strings = bprm->p; 3192 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3193 bprm->p, info->stack_limit); 3194 info->arg_strings = bprm->p; 3195 } else { 3196 info->arg_strings = bprm->p; 3197 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3198 bprm->p, info->stack_limit); 3199 info->env_strings = bprm->p; 3200 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3201 bprm->p, info->stack_limit); 3202 info->file_string = bprm->p; 3203 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3204 bprm->p, info->stack_limit); 3205 } 3206 3207 g_free(scratch); 3208 3209 if (!bprm->p) { 3210 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3211 exit(-1); 3212 } 3213 3214 if (elf_interpreter) { 3215 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3216 3217 /* If the program interpreter is one of these two, then assume 3218 an iBCS2 image. Otherwise assume a native linux image. */ 3219 3220 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3221 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3222 info->personality = PER_SVR4; 3223 3224 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3225 and some applications "depend" upon this behavior. Since 3226 we do not have the power to recompile these, we emulate 3227 the SVr4 behavior. Sigh. */ 3228 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3229 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3230 } 3231 #ifdef TARGET_MIPS 3232 info->interp_fp_abi = interp_info.fp_abi; 3233 #endif 3234 } 3235 3236 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3237 info, (elf_interpreter ? &interp_info : NULL)); 3238 info->start_stack = bprm->p; 3239 3240 /* If we have an interpreter, set that as the program's entry point. 3241 Copy the load_bias as well, to help PPC64 interpret the entry 3242 point as a function descriptor. Do this after creating elf tables 3243 so that we copy the original program entry point into the AUXV. */ 3244 if (elf_interpreter) { 3245 info->load_bias = interp_info.load_bias; 3246 info->entry = interp_info.entry; 3247 g_free(elf_interpreter); 3248 } 3249 3250 #ifdef USE_ELF_CORE_DUMP 3251 bprm->core_dump = &elf_core_dump; 3252 #endif 3253 3254 /* 3255 * If we reserved extra space for brk, release it now. 3256 * The implementation of do_brk in syscalls.c expects to be able 3257 * to mmap pages in this space. 3258 */ 3259 if (info->reserve_brk) { 3260 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3261 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3262 target_munmap(start_brk, end_brk - start_brk); 3263 } 3264 3265 return 0; 3266 } 3267 3268 #ifdef USE_ELF_CORE_DUMP 3269 /* 3270 * Definitions to generate Intel SVR4-like core files. 3271 * These mostly have the same names as the SVR4 types with "target_elf_" 3272 * tacked on the front to prevent clashes with linux definitions, 3273 * and the typedef forms have been avoided. This is mostly like 3274 * the SVR4 structure, but more Linuxy, with things that Linux does 3275 * not support and which gdb doesn't really use excluded. 3276 * 3277 * Fields we don't dump (their contents is zero) in linux-user qemu 3278 * are marked with XXX. 3279 * 3280 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3281 * 3282 * Porting ELF coredump for target is (quite) simple process. First you 3283 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3284 * the target resides): 3285 * 3286 * #define USE_ELF_CORE_DUMP 3287 * 3288 * Next you define type of register set used for dumping. ELF specification 3289 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3290 * 3291 * typedef <target_regtype> target_elf_greg_t; 3292 * #define ELF_NREG <number of registers> 3293 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3294 * 3295 * Last step is to implement target specific function that copies registers 3296 * from given cpu into just specified register set. Prototype is: 3297 * 3298 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3299 * const CPUArchState *env); 3300 * 3301 * Parameters: 3302 * regs - copy register values into here (allocated and zeroed by caller) 3303 * env - copy registers from here 3304 * 3305 * Example for ARM target is provided in this file. 3306 */ 3307 3308 /* An ELF note in memory */ 3309 struct memelfnote { 3310 const char *name; 3311 size_t namesz; 3312 size_t namesz_rounded; 3313 int type; 3314 size_t datasz; 3315 size_t datasz_rounded; 3316 void *data; 3317 size_t notesz; 3318 }; 3319 3320 struct target_elf_siginfo { 3321 abi_int si_signo; /* signal number */ 3322 abi_int si_code; /* extra code */ 3323 abi_int si_errno; /* errno */ 3324 }; 3325 3326 struct target_elf_prstatus { 3327 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3328 abi_short pr_cursig; /* Current signal */ 3329 abi_ulong pr_sigpend; /* XXX */ 3330 abi_ulong pr_sighold; /* XXX */ 3331 target_pid_t pr_pid; 3332 target_pid_t pr_ppid; 3333 target_pid_t pr_pgrp; 3334 target_pid_t pr_sid; 3335 struct target_timeval pr_utime; /* XXX User time */ 3336 struct target_timeval pr_stime; /* XXX System time */ 3337 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3338 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3339 target_elf_gregset_t pr_reg; /* GP registers */ 3340 abi_int pr_fpvalid; /* XXX */ 3341 }; 3342 3343 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3344 3345 struct target_elf_prpsinfo { 3346 char pr_state; /* numeric process state */ 3347 char pr_sname; /* char for pr_state */ 3348 char pr_zomb; /* zombie */ 3349 char pr_nice; /* nice val */ 3350 abi_ulong pr_flag; /* flags */ 3351 target_uid_t pr_uid; 3352 target_gid_t pr_gid; 3353 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3354 /* Lots missing */ 3355 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3356 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3357 }; 3358 3359 /* Here is the structure in which status of each thread is captured. */ 3360 struct elf_thread_status { 3361 QTAILQ_ENTRY(elf_thread_status) ets_link; 3362 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3363 #if 0 3364 elf_fpregset_t fpu; /* NT_PRFPREG */ 3365 struct task_struct *thread; 3366 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3367 #endif 3368 struct memelfnote notes[1]; 3369 int num_notes; 3370 }; 3371 3372 struct elf_note_info { 3373 struct memelfnote *notes; 3374 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3375 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3376 3377 QTAILQ_HEAD(, elf_thread_status) thread_list; 3378 #if 0 3379 /* 3380 * Current version of ELF coredump doesn't support 3381 * dumping fp regs etc. 3382 */ 3383 elf_fpregset_t *fpu; 3384 elf_fpxregset_t *xfpu; 3385 int thread_status_size; 3386 #endif 3387 int notes_size; 3388 int numnote; 3389 }; 3390 3391 struct vm_area_struct { 3392 target_ulong vma_start; /* start vaddr of memory region */ 3393 target_ulong vma_end; /* end vaddr of memory region */ 3394 abi_ulong vma_flags; /* protection etc. flags for the region */ 3395 QTAILQ_ENTRY(vm_area_struct) vma_link; 3396 }; 3397 3398 struct mm_struct { 3399 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3400 int mm_count; /* number of mappings */ 3401 }; 3402 3403 static struct mm_struct *vma_init(void); 3404 static void vma_delete(struct mm_struct *); 3405 static int vma_add_mapping(struct mm_struct *, target_ulong, 3406 target_ulong, abi_ulong); 3407 static int vma_get_mapping_count(const struct mm_struct *); 3408 static struct vm_area_struct *vma_first(const struct mm_struct *); 3409 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3410 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3411 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3412 unsigned long flags); 3413 3414 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3415 static void fill_note(struct memelfnote *, const char *, int, 3416 unsigned int, void *); 3417 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3418 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3419 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3420 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3421 static size_t note_size(const struct memelfnote *); 3422 static void free_note_info(struct elf_note_info *); 3423 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3424 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3425 3426 static int dump_write(int, const void *, size_t); 3427 static int write_note(struct memelfnote *, int); 3428 static int write_note_info(struct elf_note_info *, int); 3429 3430 #ifdef BSWAP_NEEDED 3431 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3432 { 3433 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3434 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3435 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3436 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3437 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3438 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3439 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3440 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3441 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3442 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3443 /* cpu times are not filled, so we skip them */ 3444 /* regs should be in correct format already */ 3445 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3446 } 3447 3448 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3449 { 3450 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3451 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3452 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3453 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3454 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3455 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3456 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3457 } 3458 3459 static void bswap_note(struct elf_note *en) 3460 { 3461 bswap32s(&en->n_namesz); 3462 bswap32s(&en->n_descsz); 3463 bswap32s(&en->n_type); 3464 } 3465 #else 3466 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3467 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3468 static inline void bswap_note(struct elf_note *en) { } 3469 #endif /* BSWAP_NEEDED */ 3470 3471 /* 3472 * Minimal support for linux memory regions. These are needed 3473 * when we are finding out what memory exactly belongs to 3474 * emulated process. No locks needed here, as long as 3475 * thread that received the signal is stopped. 3476 */ 3477 3478 static struct mm_struct *vma_init(void) 3479 { 3480 struct mm_struct *mm; 3481 3482 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3483 return (NULL); 3484 3485 mm->mm_count = 0; 3486 QTAILQ_INIT(&mm->mm_mmap); 3487 3488 return (mm); 3489 } 3490 3491 static void vma_delete(struct mm_struct *mm) 3492 { 3493 struct vm_area_struct *vma; 3494 3495 while ((vma = vma_first(mm)) != NULL) { 3496 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3497 g_free(vma); 3498 } 3499 g_free(mm); 3500 } 3501 3502 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3503 target_ulong end, abi_ulong flags) 3504 { 3505 struct vm_area_struct *vma; 3506 3507 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3508 return (-1); 3509 3510 vma->vma_start = start; 3511 vma->vma_end = end; 3512 vma->vma_flags = flags; 3513 3514 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3515 mm->mm_count++; 3516 3517 return (0); 3518 } 3519 3520 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3521 { 3522 return (QTAILQ_FIRST(&mm->mm_mmap)); 3523 } 3524 3525 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3526 { 3527 return (QTAILQ_NEXT(vma, vma_link)); 3528 } 3529 3530 static int vma_get_mapping_count(const struct mm_struct *mm) 3531 { 3532 return (mm->mm_count); 3533 } 3534 3535 /* 3536 * Calculate file (dump) size of given memory region. 3537 */ 3538 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3539 { 3540 /* if we cannot even read the first page, skip it */ 3541 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3542 return (0); 3543 3544 /* 3545 * Usually we don't dump executable pages as they contain 3546 * non-writable code that debugger can read directly from 3547 * target library etc. However, thread stacks are marked 3548 * also executable so we read in first page of given region 3549 * and check whether it contains elf header. If there is 3550 * no elf header, we dump it. 3551 */ 3552 if (vma->vma_flags & PROT_EXEC) { 3553 char page[TARGET_PAGE_SIZE]; 3554 3555 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3556 return 0; 3557 } 3558 if ((page[EI_MAG0] == ELFMAG0) && 3559 (page[EI_MAG1] == ELFMAG1) && 3560 (page[EI_MAG2] == ELFMAG2) && 3561 (page[EI_MAG3] == ELFMAG3)) { 3562 /* 3563 * Mappings are possibly from ELF binary. Don't dump 3564 * them. 3565 */ 3566 return (0); 3567 } 3568 } 3569 3570 return (vma->vma_end - vma->vma_start); 3571 } 3572 3573 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3574 unsigned long flags) 3575 { 3576 struct mm_struct *mm = (struct mm_struct *)priv; 3577 3578 vma_add_mapping(mm, start, end, flags); 3579 return (0); 3580 } 3581 3582 static void fill_note(struct memelfnote *note, const char *name, int type, 3583 unsigned int sz, void *data) 3584 { 3585 unsigned int namesz; 3586 3587 namesz = strlen(name) + 1; 3588 note->name = name; 3589 note->namesz = namesz; 3590 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3591 note->type = type; 3592 note->datasz = sz; 3593 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3594 3595 note->data = data; 3596 3597 /* 3598 * We calculate rounded up note size here as specified by 3599 * ELF document. 3600 */ 3601 note->notesz = sizeof (struct elf_note) + 3602 note->namesz_rounded + note->datasz_rounded; 3603 } 3604 3605 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3606 uint32_t flags) 3607 { 3608 (void) memset(elf, 0, sizeof(*elf)); 3609 3610 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3611 elf->e_ident[EI_CLASS] = ELF_CLASS; 3612 elf->e_ident[EI_DATA] = ELF_DATA; 3613 elf->e_ident[EI_VERSION] = EV_CURRENT; 3614 elf->e_ident[EI_OSABI] = ELF_OSABI; 3615 3616 elf->e_type = ET_CORE; 3617 elf->e_machine = machine; 3618 elf->e_version = EV_CURRENT; 3619 elf->e_phoff = sizeof(struct elfhdr); 3620 elf->e_flags = flags; 3621 elf->e_ehsize = sizeof(struct elfhdr); 3622 elf->e_phentsize = sizeof(struct elf_phdr); 3623 elf->e_phnum = segs; 3624 3625 bswap_ehdr(elf); 3626 } 3627 3628 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3629 { 3630 phdr->p_type = PT_NOTE; 3631 phdr->p_offset = offset; 3632 phdr->p_vaddr = 0; 3633 phdr->p_paddr = 0; 3634 phdr->p_filesz = sz; 3635 phdr->p_memsz = 0; 3636 phdr->p_flags = 0; 3637 phdr->p_align = 0; 3638 3639 bswap_phdr(phdr, 1); 3640 } 3641 3642 static size_t note_size(const struct memelfnote *note) 3643 { 3644 return (note->notesz); 3645 } 3646 3647 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3648 const TaskState *ts, int signr) 3649 { 3650 (void) memset(prstatus, 0, sizeof (*prstatus)); 3651 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3652 prstatus->pr_pid = ts->ts_tid; 3653 prstatus->pr_ppid = getppid(); 3654 prstatus->pr_pgrp = getpgrp(); 3655 prstatus->pr_sid = getsid(0); 3656 3657 bswap_prstatus(prstatus); 3658 } 3659 3660 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3661 { 3662 char *base_filename; 3663 unsigned int i, len; 3664 3665 (void) memset(psinfo, 0, sizeof (*psinfo)); 3666 3667 len = ts->info->env_strings - ts->info->arg_strings; 3668 if (len >= ELF_PRARGSZ) 3669 len = ELF_PRARGSZ - 1; 3670 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 3671 return -EFAULT; 3672 } 3673 for (i = 0; i < len; i++) 3674 if (psinfo->pr_psargs[i] == 0) 3675 psinfo->pr_psargs[i] = ' '; 3676 psinfo->pr_psargs[len] = 0; 3677 3678 psinfo->pr_pid = getpid(); 3679 psinfo->pr_ppid = getppid(); 3680 psinfo->pr_pgrp = getpgrp(); 3681 psinfo->pr_sid = getsid(0); 3682 psinfo->pr_uid = getuid(); 3683 psinfo->pr_gid = getgid(); 3684 3685 base_filename = g_path_get_basename(ts->bprm->filename); 3686 /* 3687 * Using strncpy here is fine: at max-length, 3688 * this field is not NUL-terminated. 3689 */ 3690 (void) strncpy(psinfo->pr_fname, base_filename, 3691 sizeof(psinfo->pr_fname)); 3692 3693 g_free(base_filename); 3694 bswap_psinfo(psinfo); 3695 return (0); 3696 } 3697 3698 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3699 { 3700 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3701 elf_addr_t orig_auxv = auxv; 3702 void *ptr; 3703 int len = ts->info->auxv_len; 3704 3705 /* 3706 * Auxiliary vector is stored in target process stack. It contains 3707 * {type, value} pairs that we need to dump into note. This is not 3708 * strictly necessary but we do it here for sake of completeness. 3709 */ 3710 3711 /* read in whole auxv vector and copy it to memelfnote */ 3712 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3713 if (ptr != NULL) { 3714 fill_note(note, "CORE", NT_AUXV, len, ptr); 3715 unlock_user(ptr, auxv, len); 3716 } 3717 } 3718 3719 /* 3720 * Constructs name of coredump file. We have following convention 3721 * for the name: 3722 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3723 * 3724 * Returns the filename 3725 */ 3726 static char *core_dump_filename(const TaskState *ts) 3727 { 3728 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 3729 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 3730 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 3731 3732 return g_strdup_printf("qemu_%s_%s_%d.core", 3733 base_filename, nowstr, (int)getpid()); 3734 } 3735 3736 static int dump_write(int fd, const void *ptr, size_t size) 3737 { 3738 const char *bufp = (const char *)ptr; 3739 ssize_t bytes_written, bytes_left; 3740 struct rlimit dumpsize; 3741 off_t pos; 3742 3743 bytes_written = 0; 3744 getrlimit(RLIMIT_CORE, &dumpsize); 3745 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3746 if (errno == ESPIPE) { /* not a seekable stream */ 3747 bytes_left = size; 3748 } else { 3749 return pos; 3750 } 3751 } else { 3752 if (dumpsize.rlim_cur <= pos) { 3753 return -1; 3754 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3755 bytes_left = size; 3756 } else { 3757 size_t limit_left=dumpsize.rlim_cur - pos; 3758 bytes_left = limit_left >= size ? size : limit_left ; 3759 } 3760 } 3761 3762 /* 3763 * In normal conditions, single write(2) should do but 3764 * in case of socket etc. this mechanism is more portable. 3765 */ 3766 do { 3767 bytes_written = write(fd, bufp, bytes_left); 3768 if (bytes_written < 0) { 3769 if (errno == EINTR) 3770 continue; 3771 return (-1); 3772 } else if (bytes_written == 0) { /* eof */ 3773 return (-1); 3774 } 3775 bufp += bytes_written; 3776 bytes_left -= bytes_written; 3777 } while (bytes_left > 0); 3778 3779 return (0); 3780 } 3781 3782 static int write_note(struct memelfnote *men, int fd) 3783 { 3784 struct elf_note en; 3785 3786 en.n_namesz = men->namesz; 3787 en.n_type = men->type; 3788 en.n_descsz = men->datasz; 3789 3790 bswap_note(&en); 3791 3792 if (dump_write(fd, &en, sizeof(en)) != 0) 3793 return (-1); 3794 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3795 return (-1); 3796 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3797 return (-1); 3798 3799 return (0); 3800 } 3801 3802 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3803 { 3804 CPUState *cpu = env_cpu((CPUArchState *)env); 3805 TaskState *ts = (TaskState *)cpu->opaque; 3806 struct elf_thread_status *ets; 3807 3808 ets = g_malloc0(sizeof (*ets)); 3809 ets->num_notes = 1; /* only prstatus is dumped */ 3810 fill_prstatus(&ets->prstatus, ts, 0); 3811 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3812 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3813 &ets->prstatus); 3814 3815 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3816 3817 info->notes_size += note_size(&ets->notes[0]); 3818 } 3819 3820 static void init_note_info(struct elf_note_info *info) 3821 { 3822 /* Initialize the elf_note_info structure so that it is at 3823 * least safe to call free_note_info() on it. Must be 3824 * called before calling fill_note_info(). 3825 */ 3826 memset(info, 0, sizeof (*info)); 3827 QTAILQ_INIT(&info->thread_list); 3828 } 3829 3830 static int fill_note_info(struct elf_note_info *info, 3831 long signr, const CPUArchState *env) 3832 { 3833 #define NUMNOTES 3 3834 CPUState *cpu = env_cpu((CPUArchState *)env); 3835 TaskState *ts = (TaskState *)cpu->opaque; 3836 int i; 3837 3838 info->notes = g_new0(struct memelfnote, NUMNOTES); 3839 if (info->notes == NULL) 3840 return (-ENOMEM); 3841 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3842 if (info->prstatus == NULL) 3843 return (-ENOMEM); 3844 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3845 if (info->prstatus == NULL) 3846 return (-ENOMEM); 3847 3848 /* 3849 * First fill in status (and registers) of current thread 3850 * including process info & aux vector. 3851 */ 3852 fill_prstatus(info->prstatus, ts, signr); 3853 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3854 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3855 sizeof (*info->prstatus), info->prstatus); 3856 fill_psinfo(info->psinfo, ts); 3857 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3858 sizeof (*info->psinfo), info->psinfo); 3859 fill_auxv_note(&info->notes[2], ts); 3860 info->numnote = 3; 3861 3862 info->notes_size = 0; 3863 for (i = 0; i < info->numnote; i++) 3864 info->notes_size += note_size(&info->notes[i]); 3865 3866 /* read and fill status of all threads */ 3867 cpu_list_lock(); 3868 CPU_FOREACH(cpu) { 3869 if (cpu == thread_cpu) { 3870 continue; 3871 } 3872 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3873 } 3874 cpu_list_unlock(); 3875 3876 return (0); 3877 } 3878 3879 static void free_note_info(struct elf_note_info *info) 3880 { 3881 struct elf_thread_status *ets; 3882 3883 while (!QTAILQ_EMPTY(&info->thread_list)) { 3884 ets = QTAILQ_FIRST(&info->thread_list); 3885 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3886 g_free(ets); 3887 } 3888 3889 g_free(info->prstatus); 3890 g_free(info->psinfo); 3891 g_free(info->notes); 3892 } 3893 3894 static int write_note_info(struct elf_note_info *info, int fd) 3895 { 3896 struct elf_thread_status *ets; 3897 int i, error = 0; 3898 3899 /* write prstatus, psinfo and auxv for current thread */ 3900 for (i = 0; i < info->numnote; i++) 3901 if ((error = write_note(&info->notes[i], fd)) != 0) 3902 return (error); 3903 3904 /* write prstatus for each thread */ 3905 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3906 if ((error = write_note(&ets->notes[0], fd)) != 0) 3907 return (error); 3908 } 3909 3910 return (0); 3911 } 3912 3913 /* 3914 * Write out ELF coredump. 3915 * 3916 * See documentation of ELF object file format in: 3917 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3918 * 3919 * Coredump format in linux is following: 3920 * 3921 * 0 +----------------------+ \ 3922 * | ELF header | ET_CORE | 3923 * +----------------------+ | 3924 * | ELF program headers | |--- headers 3925 * | - NOTE section | | 3926 * | - PT_LOAD sections | | 3927 * +----------------------+ / 3928 * | NOTEs: | 3929 * | - NT_PRSTATUS | 3930 * | - NT_PRSINFO | 3931 * | - NT_AUXV | 3932 * +----------------------+ <-- aligned to target page 3933 * | Process memory dump | 3934 * : : 3935 * . . 3936 * : : 3937 * | | 3938 * +----------------------+ 3939 * 3940 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3941 * NT_PRSINFO -> struct elf_prpsinfo 3942 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3943 * 3944 * Format follows System V format as close as possible. Current 3945 * version limitations are as follows: 3946 * - no floating point registers are dumped 3947 * 3948 * Function returns 0 in case of success, negative errno otherwise. 3949 * 3950 * TODO: make this work also during runtime: it should be 3951 * possible to force coredump from running process and then 3952 * continue processing. For example qemu could set up SIGUSR2 3953 * handler (provided that target process haven't registered 3954 * handler for that) that does the dump when signal is received. 3955 */ 3956 static int elf_core_dump(int signr, const CPUArchState *env) 3957 { 3958 const CPUState *cpu = env_cpu((CPUArchState *)env); 3959 const TaskState *ts = (const TaskState *)cpu->opaque; 3960 struct vm_area_struct *vma = NULL; 3961 g_autofree char *corefile = NULL; 3962 struct elf_note_info info; 3963 struct elfhdr elf; 3964 struct elf_phdr phdr; 3965 struct rlimit dumpsize; 3966 struct mm_struct *mm = NULL; 3967 off_t offset = 0, data_offset = 0; 3968 int segs = 0; 3969 int fd = -1; 3970 3971 init_note_info(&info); 3972 3973 errno = 0; 3974 getrlimit(RLIMIT_CORE, &dumpsize); 3975 if (dumpsize.rlim_cur == 0) 3976 return 0; 3977 3978 corefile = core_dump_filename(ts); 3979 3980 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3981 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3982 return (-errno); 3983 3984 /* 3985 * Walk through target process memory mappings and 3986 * set up structure containing this information. After 3987 * this point vma_xxx functions can be used. 3988 */ 3989 if ((mm = vma_init()) == NULL) 3990 goto out; 3991 3992 walk_memory_regions(mm, vma_walker); 3993 segs = vma_get_mapping_count(mm); 3994 3995 /* 3996 * Construct valid coredump ELF header. We also 3997 * add one more segment for notes. 3998 */ 3999 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4000 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4001 goto out; 4002 4003 /* fill in the in-memory version of notes */ 4004 if (fill_note_info(&info, signr, env) < 0) 4005 goto out; 4006 4007 offset += sizeof (elf); /* elf header */ 4008 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4009 4010 /* write out notes program header */ 4011 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4012 4013 offset += info.notes_size; 4014 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4015 goto out; 4016 4017 /* 4018 * ELF specification wants data to start at page boundary so 4019 * we align it here. 4020 */ 4021 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4022 4023 /* 4024 * Write program headers for memory regions mapped in 4025 * the target process. 4026 */ 4027 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4028 (void) memset(&phdr, 0, sizeof (phdr)); 4029 4030 phdr.p_type = PT_LOAD; 4031 phdr.p_offset = offset; 4032 phdr.p_vaddr = vma->vma_start; 4033 phdr.p_paddr = 0; 4034 phdr.p_filesz = vma_dump_size(vma); 4035 offset += phdr.p_filesz; 4036 phdr.p_memsz = vma->vma_end - vma->vma_start; 4037 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4038 if (vma->vma_flags & PROT_WRITE) 4039 phdr.p_flags |= PF_W; 4040 if (vma->vma_flags & PROT_EXEC) 4041 phdr.p_flags |= PF_X; 4042 phdr.p_align = ELF_EXEC_PAGESIZE; 4043 4044 bswap_phdr(&phdr, 1); 4045 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4046 goto out; 4047 } 4048 } 4049 4050 /* 4051 * Next we write notes just after program headers. No 4052 * alignment needed here. 4053 */ 4054 if (write_note_info(&info, fd) < 0) 4055 goto out; 4056 4057 /* align data to page boundary */ 4058 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4059 goto out; 4060 4061 /* 4062 * Finally we can dump process memory into corefile as well. 4063 */ 4064 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4065 abi_ulong addr; 4066 abi_ulong end; 4067 4068 end = vma->vma_start + vma_dump_size(vma); 4069 4070 for (addr = vma->vma_start; addr < end; 4071 addr += TARGET_PAGE_SIZE) { 4072 char page[TARGET_PAGE_SIZE]; 4073 int error; 4074 4075 /* 4076 * Read in page from target process memory and 4077 * write it to coredump file. 4078 */ 4079 error = copy_from_user(page, addr, sizeof (page)); 4080 if (error != 0) { 4081 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4082 addr); 4083 errno = -error; 4084 goto out; 4085 } 4086 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4087 goto out; 4088 } 4089 } 4090 4091 out: 4092 free_note_info(&info); 4093 if (mm != NULL) 4094 vma_delete(mm); 4095 (void) close(fd); 4096 4097 if (errno != 0) 4098 return (-errno); 4099 return (0); 4100 } 4101 #endif /* USE_ELF_CORE_DUMP */ 4102 4103 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4104 { 4105 init_thread(regs, infop); 4106 } 4107