xref: /openbmc/qemu/linux-user/elfload.c (revision 3399bca4514b5c8d513a88fa3e472756468cb4c6)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
17 
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27 
28 #define ELF_OSABI   ELFOSABI_SYSV
29 
30 /* from personality.h */
31 
32 /*
33  * Flags for bug emulation.
34  *
35  * These occupy the top three bytes.
36  */
37 enum {
38     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
39     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
40                                            descriptors (signal handling) */
41     MMAP_PAGE_ZERO =    0x0100000,
42     ADDR_COMPAT_LAYOUT = 0x0200000,
43     READ_IMPLIES_EXEC = 0x0400000,
44     ADDR_LIMIT_32BIT =  0x0800000,
45     SHORT_INODE =       0x1000000,
46     WHOLE_SECONDS =     0x2000000,
47     STICKY_TIMEOUTS =   0x4000000,
48     ADDR_LIMIT_3GB =    0x8000000,
49 };
50 
51 /*
52  * Personality types.
53  *
54  * These go in the low byte.  Avoid using the top bit, it will
55  * conflict with error returns.
56  */
57 enum {
58     PER_LINUX =         0x0000,
59     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
60     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
61     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
67     PER_BSD =           0x0006,
68     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
69     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_LINUX32 =       0x0008,
71     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
72     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75     PER_RISCOS =        0x000c,
76     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
77     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
79     PER_HPUX =          0x0010,
80     PER_MASK =          0x00ff,
81 };
82 
83 /*
84  * Return the base personality without flags.
85  */
86 #define personality(pers)       (pers & PER_MASK)
87 
88 int info_is_fdpic(struct image_info *info)
89 {
90     return info->personality == PER_LINUX_FDPIC;
91 }
92 
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
97 
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
102 
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA        ELFDATA2MSB
105 #else
106 #define ELF_DATA        ELFDATA2LSB
107 #endif
108 
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong      target_elf_greg_t;
111 #define tswapreg(ptr)   tswap64(ptr)
112 #else
113 typedef abi_ulong       target_elf_greg_t;
114 #define tswapreg(ptr)   tswapal(ptr)
115 #endif
116 
117 #ifdef USE_UID16
118 typedef abi_ushort      target_uid_t;
119 typedef abi_ushort      target_gid_t;
120 #else
121 typedef abi_uint        target_uid_t;
122 typedef abi_uint        target_gid_t;
123 #endif
124 typedef abi_int         target_pid_t;
125 
126 #ifdef TARGET_I386
127 
128 #define ELF_PLATFORM get_elf_platform()
129 
130 static const char *get_elf_platform(void)
131 {
132     static char elf_platform[] = "i386";
133     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134     if (family > 6)
135         family = 6;
136     if (family >= 3)
137         elf_platform[1] = '0' + family;
138     return elf_platform;
139 }
140 
141 #define ELF_HWCAP get_elf_hwcap()
142 
143 static uint32_t get_elf_hwcap(void)
144 {
145     X86CPU *cpu = X86_CPU(thread_cpu);
146 
147     return cpu->env.features[FEAT_1_EDX];
148 }
149 
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
152 
153 #define ELF_CLASS      ELFCLASS64
154 #define ELF_ARCH       EM_X86_64
155 
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157 {
158     regs->rax = 0;
159     regs->rsp = infop->start_stack;
160     regs->rip = infop->entry;
161 }
162 
163 #define ELF_NREG    27
164 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
165 
166 /*
167  * Note that ELF_NREG should be 29 as there should be place for
168  * TRAPNO and ERR "registers" as well but linux doesn't dump
169  * those.
170  *
171  * See linux kernel: arch/x86/include/asm/elf.h
172  */
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
174 {
175     (*regs)[0] = env->regs[15];
176     (*regs)[1] = env->regs[14];
177     (*regs)[2] = env->regs[13];
178     (*regs)[3] = env->regs[12];
179     (*regs)[4] = env->regs[R_EBP];
180     (*regs)[5] = env->regs[R_EBX];
181     (*regs)[6] = env->regs[11];
182     (*regs)[7] = env->regs[10];
183     (*regs)[8] = env->regs[9];
184     (*regs)[9] = env->regs[8];
185     (*regs)[10] = env->regs[R_EAX];
186     (*regs)[11] = env->regs[R_ECX];
187     (*regs)[12] = env->regs[R_EDX];
188     (*regs)[13] = env->regs[R_ESI];
189     (*regs)[14] = env->regs[R_EDI];
190     (*regs)[15] = env->regs[R_EAX]; /* XXX */
191     (*regs)[16] = env->eip;
192     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193     (*regs)[18] = env->eflags;
194     (*regs)[19] = env->regs[R_ESP];
195     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202 }
203 
204 #else
205 
206 #define ELF_START_MMAP 0x80000000
207 
208 /*
209  * This is used to ensure we don't load something for the wrong architecture.
210  */
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212 
213 /*
214  * These are used to set parameters in the core dumps.
215  */
216 #define ELF_CLASS       ELFCLASS32
217 #define ELF_ARCH        EM_386
218 
219 static inline void init_thread(struct target_pt_regs *regs,
220                                struct image_info *infop)
221 {
222     regs->esp = infop->start_stack;
223     regs->eip = infop->entry;
224 
225     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226        starts %edx contains a pointer to a function which might be
227        registered using `atexit'.  This provides a mean for the
228        dynamic linker to call DT_FINI functions for shared libraries
229        that have been loaded before the code runs.
230 
231        A value of 0 tells we have no such handler.  */
232     regs->edx = 0;
233 }
234 
235 #define ELF_NREG    17
236 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
237 
238 /*
239  * Note that ELF_NREG should be 19 as there should be place for
240  * TRAPNO and ERR "registers" as well but linux doesn't dump
241  * those.
242  *
243  * See linux kernel: arch/x86/include/asm/elf.h
244  */
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
246 {
247     (*regs)[0] = env->regs[R_EBX];
248     (*regs)[1] = env->regs[R_ECX];
249     (*regs)[2] = env->regs[R_EDX];
250     (*regs)[3] = env->regs[R_ESI];
251     (*regs)[4] = env->regs[R_EDI];
252     (*regs)[5] = env->regs[R_EBP];
253     (*regs)[6] = env->regs[R_EAX];
254     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258     (*regs)[11] = env->regs[R_EAX]; /* XXX */
259     (*regs)[12] = env->eip;
260     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261     (*regs)[14] = env->eflags;
262     (*regs)[15] = env->regs[R_ESP];
263     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264 }
265 #endif
266 
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE       4096
269 
270 #endif
271 
272 #ifdef TARGET_ARM
273 
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
276 
277 #define ELF_START_MMAP 0x80000000
278 
279 #define ELF_ARCH        EM_ARM
280 #define ELF_CLASS       ELFCLASS32
281 
282 static inline void init_thread(struct target_pt_regs *regs,
283                                struct image_info *infop)
284 {
285     abi_long stack = infop->start_stack;
286     memset(regs, 0, sizeof(*regs));
287 
288     regs->uregs[16] = ARM_CPU_MODE_USR;
289     if (infop->entry & 1) {
290         regs->uregs[16] |= CPSR_T;
291     }
292     regs->uregs[15] = infop->entry & 0xfffffffe;
293     regs->uregs[13] = infop->start_stack;
294     /* FIXME - what to for failure of get_user()? */
295     get_user_ual(regs->uregs[2], stack + 8); /* envp */
296     get_user_ual(regs->uregs[1], stack + 4); /* envp */
297     /* XXX: it seems that r0 is zeroed after ! */
298     regs->uregs[0] = 0;
299     /* For uClinux PIC binaries.  */
300     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301     regs->uregs[10] = infop->start_data;
302 
303     /* Support ARM FDPIC.  */
304     if (info_is_fdpic(infop)) {
305         /* As described in the ABI document, r7 points to the loadmap info
306          * prepared by the kernel. If an interpreter is needed, r8 points
307          * to the interpreter loadmap and r9 points to the interpreter
308          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309          * r9 points to the main program PT_DYNAMIC info.
310          */
311         regs->uregs[7] = infop->loadmap_addr;
312         if (infop->interpreter_loadmap_addr) {
313             /* Executable is dynamically loaded.  */
314             regs->uregs[8] = infop->interpreter_loadmap_addr;
315             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316         } else {
317             regs->uregs[8] = 0;
318             regs->uregs[9] = infop->pt_dynamic_addr;
319         }
320     }
321 }
322 
323 #define ELF_NREG    18
324 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
325 
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
327 {
328     (*regs)[0] = tswapreg(env->regs[0]);
329     (*regs)[1] = tswapreg(env->regs[1]);
330     (*regs)[2] = tswapreg(env->regs[2]);
331     (*regs)[3] = tswapreg(env->regs[3]);
332     (*regs)[4] = tswapreg(env->regs[4]);
333     (*regs)[5] = tswapreg(env->regs[5]);
334     (*regs)[6] = tswapreg(env->regs[6]);
335     (*regs)[7] = tswapreg(env->regs[7]);
336     (*regs)[8] = tswapreg(env->regs[8]);
337     (*regs)[9] = tswapreg(env->regs[9]);
338     (*regs)[10] = tswapreg(env->regs[10]);
339     (*regs)[11] = tswapreg(env->regs[11]);
340     (*regs)[12] = tswapreg(env->regs[12]);
341     (*regs)[13] = tswapreg(env->regs[13]);
342     (*regs)[14] = tswapreg(env->regs[14]);
343     (*regs)[15] = tswapreg(env->regs[15]);
344 
345     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
347 }
348 
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE       4096
351 
352 enum
353 {
354     ARM_HWCAP_ARM_SWP       = 1 << 0,
355     ARM_HWCAP_ARM_HALF      = 1 << 1,
356     ARM_HWCAP_ARM_THUMB     = 1 << 2,
357     ARM_HWCAP_ARM_26BIT     = 1 << 3,
358     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359     ARM_HWCAP_ARM_FPA       = 1 << 5,
360     ARM_HWCAP_ARM_VFP       = 1 << 6,
361     ARM_HWCAP_ARM_EDSP      = 1 << 7,
362     ARM_HWCAP_ARM_JAVA      = 1 << 8,
363     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
364     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
365     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
366     ARM_HWCAP_ARM_NEON      = 1 << 12,
367     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
368     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
369     ARM_HWCAP_ARM_TLS       = 1 << 15,
370     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
371     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
372     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
373     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
374     ARM_HWCAP_ARM_LPAE      = 1 << 20,
375     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
376 };
377 
378 enum {
379     ARM_HWCAP2_ARM_AES      = 1 << 0,
380     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
381     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
382     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
383     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
384 };
385 
386 /* The commpage only exists for 32 bit kernels */
387 
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
389 
390 static bool init_guest_commpage(void)
391 {
392     void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
393     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
395 
396     if (addr == MAP_FAILED) {
397         perror("Allocating guest commpage");
398         exit(EXIT_FAILURE);
399     }
400     if (addr != want) {
401         return false;
402     }
403 
404     /* Set kernel helper versions; rest of page is 0.  */
405     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
406 
407     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408         perror("Protecting guest commpage");
409         exit(EXIT_FAILURE);
410     }
411     return true;
412 }
413 
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
416 
417 static uint32_t get_elf_hwcap(void)
418 {
419     ARMCPU *cpu = ARM_CPU(thread_cpu);
420     uint32_t hwcaps = 0;
421 
422     hwcaps |= ARM_HWCAP_ARM_SWP;
423     hwcaps |= ARM_HWCAP_ARM_HALF;
424     hwcaps |= ARM_HWCAP_ARM_THUMB;
425     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
426 
427     /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
430 
431 #define GET_FEATURE_ID(feat, hwcap) \
432     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433 
434     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444 
445     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447         hwcaps |= ARM_HWCAP_ARM_VFPv3;
448         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449             hwcaps |= ARM_HWCAP_ARM_VFPD32;
450         } else {
451             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452         }
453     }
454     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
455 
456     return hwcaps;
457 }
458 
459 static uint32_t get_elf_hwcap2(void)
460 {
461     ARMCPU *cpu = ARM_CPU(thread_cpu);
462     uint32_t hwcaps = 0;
463 
464     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469     return hwcaps;
470 }
471 
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
474 
475 #define ELF_PLATFORM get_elf_platform()
476 
477 static const char *get_elf_platform(void)
478 {
479     CPUARMState *env = thread_cpu->env_ptr;
480 
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END  "b"
483 #else
484 # define END  "l"
485 #endif
486 
487     if (arm_feature(env, ARM_FEATURE_V8)) {
488         return "v8" END;
489     } else if (arm_feature(env, ARM_FEATURE_V7)) {
490         if (arm_feature(env, ARM_FEATURE_M)) {
491             return "v7m" END;
492         } else {
493             return "v7" END;
494         }
495     } else if (arm_feature(env, ARM_FEATURE_V6)) {
496         return "v6" END;
497     } else if (arm_feature(env, ARM_FEATURE_V5)) {
498         return "v5" END;
499     } else {
500         return "v4" END;
501     }
502 
503 #undef END
504 }
505 
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
509 
510 #define ELF_ARCH        EM_AARCH64
511 #define ELF_CLASS       ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM    "aarch64_be"
514 #else
515 # define ELF_PLATFORM    "aarch64"
516 #endif
517 
518 static inline void init_thread(struct target_pt_regs *regs,
519                                struct image_info *infop)
520 {
521     abi_long stack = infop->start_stack;
522     memset(regs, 0, sizeof(*regs));
523 
524     regs->pc = infop->entry & ~0x3ULL;
525     regs->sp = stack;
526 }
527 
528 #define ELF_NREG    34
529 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
530 
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532                                const CPUARMState *env)
533 {
534     int i;
535 
536     for (i = 0; i < 32; i++) {
537         (*regs)[i] = tswapreg(env->xregs[i]);
538     }
539     (*regs)[32] = tswapreg(env->pc);
540     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541 }
542 
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE       4096
545 
546 enum {
547     ARM_HWCAP_A64_FP            = 1 << 0,
548     ARM_HWCAP_A64_ASIMD         = 1 << 1,
549     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
550     ARM_HWCAP_A64_AES           = 1 << 3,
551     ARM_HWCAP_A64_PMULL         = 1 << 4,
552     ARM_HWCAP_A64_SHA1          = 1 << 5,
553     ARM_HWCAP_A64_SHA2          = 1 << 6,
554     ARM_HWCAP_A64_CRC32         = 1 << 7,
555     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
556     ARM_HWCAP_A64_FPHP          = 1 << 9,
557     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
558     ARM_HWCAP_A64_CPUID         = 1 << 11,
559     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
560     ARM_HWCAP_A64_JSCVT         = 1 << 13,
561     ARM_HWCAP_A64_FCMA          = 1 << 14,
562     ARM_HWCAP_A64_LRCPC         = 1 << 15,
563     ARM_HWCAP_A64_DCPOP         = 1 << 16,
564     ARM_HWCAP_A64_SHA3          = 1 << 17,
565     ARM_HWCAP_A64_SM3           = 1 << 18,
566     ARM_HWCAP_A64_SM4           = 1 << 19,
567     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
568     ARM_HWCAP_A64_SHA512        = 1 << 21,
569     ARM_HWCAP_A64_SVE           = 1 << 22,
570     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
571     ARM_HWCAP_A64_DIT           = 1 << 24,
572     ARM_HWCAP_A64_USCAT         = 1 << 25,
573     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
574     ARM_HWCAP_A64_FLAGM         = 1 << 27,
575     ARM_HWCAP_A64_SSBS          = 1 << 28,
576     ARM_HWCAP_A64_SB            = 1 << 29,
577     ARM_HWCAP_A64_PACA          = 1 << 30,
578     ARM_HWCAP_A64_PACG          = 1UL << 31,
579 
580     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
581     ARM_HWCAP2_A64_SVE2         = 1 << 1,
582     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
583     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
584     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
585     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
586     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
587     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
588     ARM_HWCAP2_A64_FRINT        = 1 << 8,
589     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
590     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
591     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
592     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
593     ARM_HWCAP2_A64_I8MM         = 1 << 13,
594     ARM_HWCAP2_A64_BF16         = 1 << 14,
595     ARM_HWCAP2_A64_DGH          = 1 << 15,
596     ARM_HWCAP2_A64_RNG          = 1 << 16,
597     ARM_HWCAP2_A64_BTI          = 1 << 17,
598     ARM_HWCAP2_A64_MTE          = 1 << 18,
599 };
600 
601 #define ELF_HWCAP   get_elf_hwcap()
602 #define ELF_HWCAP2  get_elf_hwcap2()
603 
604 #define GET_FEATURE_ID(feat, hwcap) \
605     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
606 
607 static uint32_t get_elf_hwcap(void)
608 {
609     ARMCPU *cpu = ARM_CPU(thread_cpu);
610     uint32_t hwcaps = 0;
611 
612     hwcaps |= ARM_HWCAP_A64_FP;
613     hwcaps |= ARM_HWCAP_A64_ASIMD;
614     hwcaps |= ARM_HWCAP_A64_CPUID;
615 
616     /* probe for the extra features */
617 
618     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
619     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
620     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
621     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
622     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
623     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
624     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
625     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
626     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
627     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
628     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
629     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
630     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
631     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
632     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
633     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
634     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
635     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
636     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
637     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
638     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
639     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
640     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
641 
642     return hwcaps;
643 }
644 
645 static uint32_t get_elf_hwcap2(void)
646 {
647     ARMCPU *cpu = ARM_CPU(thread_cpu);
648     uint32_t hwcaps = 0;
649 
650     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
651     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
652     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
653     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
654     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
655     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
656     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
657     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
658     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
659     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
660     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
661     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
662     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
663     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
664     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
665     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
666     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
667     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
668 
669     return hwcaps;
670 }
671 
672 #undef GET_FEATURE_ID
673 
674 #endif /* not TARGET_AARCH64 */
675 #endif /* TARGET_ARM */
676 
677 #ifdef TARGET_SPARC
678 #ifdef TARGET_SPARC64
679 
680 #define ELF_START_MMAP 0x80000000
681 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
682                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
683 #ifndef TARGET_ABI32
684 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
685 #else
686 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
687 #endif
688 
689 #define ELF_CLASS   ELFCLASS64
690 #define ELF_ARCH    EM_SPARCV9
691 #else
692 #define ELF_START_MMAP 0x80000000
693 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
694                     | HWCAP_SPARC_MULDIV)
695 #define ELF_CLASS   ELFCLASS32
696 #define ELF_ARCH    EM_SPARC
697 #endif /* TARGET_SPARC64 */
698 
699 static inline void init_thread(struct target_pt_regs *regs,
700                                struct image_info *infop)
701 {
702     /* Note that target_cpu_copy_regs does not read psr/tstate. */
703     regs->pc = infop->entry;
704     regs->npc = regs->pc + 4;
705     regs->y = 0;
706     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
707                         - TARGET_STACK_BIAS);
708 }
709 #endif /* TARGET_SPARC */
710 
711 #ifdef TARGET_PPC
712 
713 #define ELF_MACHINE    PPC_ELF_MACHINE
714 #define ELF_START_MMAP 0x80000000
715 
716 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
717 
718 #define elf_check_arch(x) ( (x) == EM_PPC64 )
719 
720 #define ELF_CLASS       ELFCLASS64
721 
722 #else
723 
724 #define ELF_CLASS       ELFCLASS32
725 
726 #endif
727 
728 #define ELF_ARCH        EM_PPC
729 
730 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
731    See arch/powerpc/include/asm/cputable.h.  */
732 enum {
733     QEMU_PPC_FEATURE_32 = 0x80000000,
734     QEMU_PPC_FEATURE_64 = 0x40000000,
735     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
736     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
737     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
738     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
739     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
740     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
741     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
742     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
743     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
744     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
745     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
746     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
747     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
748     QEMU_PPC_FEATURE_CELL = 0x00010000,
749     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
750     QEMU_PPC_FEATURE_SMT = 0x00004000,
751     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
752     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
753     QEMU_PPC_FEATURE_PA6T = 0x00000800,
754     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
755     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
756     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
757     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
758     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
759 
760     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
761     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
762 
763     /* Feature definitions in AT_HWCAP2.  */
764     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
765     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
766     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
767     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
768     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
769     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
770     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
771     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
772     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
773     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
774     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
775     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
776     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
777 };
778 
779 #define ELF_HWCAP get_elf_hwcap()
780 
781 static uint32_t get_elf_hwcap(void)
782 {
783     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
784     uint32_t features = 0;
785 
786     /* We don't have to be terribly complete here; the high points are
787        Altivec/FP/SPE support.  Anything else is just a bonus.  */
788 #define GET_FEATURE(flag, feature)                                      \
789     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790 #define GET_FEATURE2(flags, feature) \
791     do { \
792         if ((cpu->env.insns_flags2 & flags) == flags) { \
793             features |= feature; \
794         } \
795     } while (0)
796     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
797     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
798     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
799     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
800     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
801     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
802     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
803     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
804     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
805     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
806     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
807                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
808                   QEMU_PPC_FEATURE_ARCH_2_06);
809 #undef GET_FEATURE
810 #undef GET_FEATURE2
811 
812     return features;
813 }
814 
815 #define ELF_HWCAP2 get_elf_hwcap2()
816 
817 static uint32_t get_elf_hwcap2(void)
818 {
819     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
820     uint32_t features = 0;
821 
822 #define GET_FEATURE(flag, feature)                                      \
823     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
824 #define GET_FEATURE2(flag, feature)                                      \
825     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
826 
827     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
828     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
829     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
830                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
831                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
832     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
833                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
834 
835 #undef GET_FEATURE
836 #undef GET_FEATURE2
837 
838     return features;
839 }
840 
841 /*
842  * The requirements here are:
843  * - keep the final alignment of sp (sp & 0xf)
844  * - make sure the 32-bit value at the first 16 byte aligned position of
845  *   AUXV is greater than 16 for glibc compatibility.
846  *   AT_IGNOREPPC is used for that.
847  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
848  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
849  */
850 #define DLINFO_ARCH_ITEMS       5
851 #define ARCH_DLINFO                                     \
852     do {                                                \
853         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
854         /*                                              \
855          * Handle glibc compatibility: these magic entries must \
856          * be at the lowest addresses in the final auxv.        \
857          */                                             \
858         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
859         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
860         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
861         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
862         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
863     } while (0)
864 
865 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
866 {
867     _regs->gpr[1] = infop->start_stack;
868 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
869     if (get_ppc64_abi(infop) < 2) {
870         uint64_t val;
871         get_user_u64(val, infop->entry + 8);
872         _regs->gpr[2] = val + infop->load_bias;
873         get_user_u64(val, infop->entry);
874         infop->entry = val + infop->load_bias;
875     } else {
876         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
877     }
878 #endif
879     _regs->nip = infop->entry;
880 }
881 
882 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
883 #define ELF_NREG 48
884 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
885 
886 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
887 {
888     int i;
889     target_ulong ccr = 0;
890 
891     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
892         (*regs)[i] = tswapreg(env->gpr[i]);
893     }
894 
895     (*regs)[32] = tswapreg(env->nip);
896     (*regs)[33] = tswapreg(env->msr);
897     (*regs)[35] = tswapreg(env->ctr);
898     (*regs)[36] = tswapreg(env->lr);
899     (*regs)[37] = tswapreg(env->xer);
900 
901     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
902         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
903     }
904     (*regs)[38] = tswapreg(ccr);
905 }
906 
907 #define USE_ELF_CORE_DUMP
908 #define ELF_EXEC_PAGESIZE       4096
909 
910 #endif
911 
912 #ifdef TARGET_MIPS
913 
914 #define ELF_START_MMAP 0x80000000
915 
916 #ifdef TARGET_MIPS64
917 #define ELF_CLASS   ELFCLASS64
918 #else
919 #define ELF_CLASS   ELFCLASS32
920 #endif
921 #define ELF_ARCH    EM_MIPS
922 
923 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
924 
925 #ifdef TARGET_ABI_MIPSN32
926 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
927 #else
928 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
929 #endif
930 
931 static inline void init_thread(struct target_pt_regs *regs,
932                                struct image_info *infop)
933 {
934     regs->cp0_status = 2 << CP0St_KSU;
935     regs->cp0_epc = infop->entry;
936     regs->regs[29] = infop->start_stack;
937 }
938 
939 /* See linux kernel: arch/mips/include/asm/elf.h.  */
940 #define ELF_NREG 45
941 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
942 
943 /* See linux kernel: arch/mips/include/asm/reg.h.  */
944 enum {
945 #ifdef TARGET_MIPS64
946     TARGET_EF_R0 = 0,
947 #else
948     TARGET_EF_R0 = 6,
949 #endif
950     TARGET_EF_R26 = TARGET_EF_R0 + 26,
951     TARGET_EF_R27 = TARGET_EF_R0 + 27,
952     TARGET_EF_LO = TARGET_EF_R0 + 32,
953     TARGET_EF_HI = TARGET_EF_R0 + 33,
954     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
955     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
956     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
957     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
958 };
959 
960 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
961 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
962 {
963     int i;
964 
965     for (i = 0; i < TARGET_EF_R0; i++) {
966         (*regs)[i] = 0;
967     }
968     (*regs)[TARGET_EF_R0] = 0;
969 
970     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
971         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
972     }
973 
974     (*regs)[TARGET_EF_R26] = 0;
975     (*regs)[TARGET_EF_R27] = 0;
976     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
977     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
978     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
979     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
980     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
981     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
982 }
983 
984 #define USE_ELF_CORE_DUMP
985 #define ELF_EXEC_PAGESIZE        4096
986 
987 /* See arch/mips/include/uapi/asm/hwcap.h.  */
988 enum {
989     HWCAP_MIPS_R6           = (1 << 0),
990     HWCAP_MIPS_MSA          = (1 << 1),
991     HWCAP_MIPS_CRC32        = (1 << 2),
992     HWCAP_MIPS_MIPS16       = (1 << 3),
993     HWCAP_MIPS_MDMX         = (1 << 4),
994     HWCAP_MIPS_MIPS3D       = (1 << 5),
995     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
996     HWCAP_MIPS_DSP          = (1 << 7),
997     HWCAP_MIPS_DSP2         = (1 << 8),
998     HWCAP_MIPS_DSP3         = (1 << 9),
999     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1000     HWCAP_LOONGSON_MMI      = (1 << 11),
1001     HWCAP_LOONGSON_EXT      = (1 << 12),
1002     HWCAP_LOONGSON_EXT2     = (1 << 13),
1003     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1004 };
1005 
1006 #define ELF_HWCAP get_elf_hwcap()
1007 
1008 #define GET_FEATURE_INSN(_flag, _hwcap) \
1009     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1010 
1011 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1012     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1013 
1014 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1015     do { \
1016         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1017             hwcaps |= _hwcap; \
1018         } \
1019     } while (0)
1020 
1021 static uint32_t get_elf_hwcap(void)
1022 {
1023     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1024     uint32_t hwcaps = 0;
1025 
1026     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1027                         2, HWCAP_MIPS_R6);
1028     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1029     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1030     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1031 
1032     return hwcaps;
1033 }
1034 
1035 #undef GET_FEATURE_REG_EQU
1036 #undef GET_FEATURE_REG_SET
1037 #undef GET_FEATURE_INSN
1038 
1039 #endif /* TARGET_MIPS */
1040 
1041 #ifdef TARGET_MICROBLAZE
1042 
1043 #define ELF_START_MMAP 0x80000000
1044 
1045 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1046 
1047 #define ELF_CLASS   ELFCLASS32
1048 #define ELF_ARCH    EM_MICROBLAZE
1049 
1050 static inline void init_thread(struct target_pt_regs *regs,
1051                                struct image_info *infop)
1052 {
1053     regs->pc = infop->entry;
1054     regs->r1 = infop->start_stack;
1055 
1056 }
1057 
1058 #define ELF_EXEC_PAGESIZE        4096
1059 
1060 #define USE_ELF_CORE_DUMP
1061 #define ELF_NREG 38
1062 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1063 
1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1065 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1066 {
1067     int i, pos = 0;
1068 
1069     for (i = 0; i < 32; i++) {
1070         (*regs)[pos++] = tswapreg(env->regs[i]);
1071     }
1072 
1073     (*regs)[pos++] = tswapreg(env->pc);
1074     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1075     (*regs)[pos++] = 0;
1076     (*regs)[pos++] = tswapreg(env->ear);
1077     (*regs)[pos++] = 0;
1078     (*regs)[pos++] = tswapreg(env->esr);
1079 }
1080 
1081 #endif /* TARGET_MICROBLAZE */
1082 
1083 #ifdef TARGET_NIOS2
1084 
1085 #define ELF_START_MMAP 0x80000000
1086 
1087 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1088 
1089 #define ELF_CLASS   ELFCLASS32
1090 #define ELF_ARCH    EM_ALTERA_NIOS2
1091 
1092 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1093 {
1094     regs->ea = infop->entry;
1095     regs->sp = infop->start_stack;
1096     regs->estatus = 0x3;
1097 }
1098 
1099 #define ELF_EXEC_PAGESIZE        4096
1100 
1101 #define USE_ELF_CORE_DUMP
1102 #define ELF_NREG 49
1103 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1104 
1105 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1106 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1107                                const CPUNios2State *env)
1108 {
1109     int i;
1110 
1111     (*regs)[0] = -1;
1112     for (i = 1; i < 8; i++)    /* r0-r7 */
1113         (*regs)[i] = tswapreg(env->regs[i + 7]);
1114 
1115     for (i = 8; i < 16; i++)   /* r8-r15 */
1116         (*regs)[i] = tswapreg(env->regs[i - 8]);
1117 
1118     for (i = 16; i < 24; i++)  /* r16-r23 */
1119         (*regs)[i] = tswapreg(env->regs[i + 7]);
1120     (*regs)[24] = -1;    /* R_ET */
1121     (*regs)[25] = -1;    /* R_BT */
1122     (*regs)[26] = tswapreg(env->regs[R_GP]);
1123     (*regs)[27] = tswapreg(env->regs[R_SP]);
1124     (*regs)[28] = tswapreg(env->regs[R_FP]);
1125     (*regs)[29] = tswapreg(env->regs[R_EA]);
1126     (*regs)[30] = -1;    /* R_SSTATUS */
1127     (*regs)[31] = tswapreg(env->regs[R_RA]);
1128 
1129     (*regs)[32] = tswapreg(env->regs[R_PC]);
1130 
1131     (*regs)[33] = -1; /* R_STATUS */
1132     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1133 
1134     for (i = 35; i < 49; i++)    /* ... */
1135         (*regs)[i] = -1;
1136 }
1137 
1138 #endif /* TARGET_NIOS2 */
1139 
1140 #ifdef TARGET_OPENRISC
1141 
1142 #define ELF_START_MMAP 0x08000000
1143 
1144 #define ELF_ARCH EM_OPENRISC
1145 #define ELF_CLASS ELFCLASS32
1146 #define ELF_DATA  ELFDATA2MSB
1147 
1148 static inline void init_thread(struct target_pt_regs *regs,
1149                                struct image_info *infop)
1150 {
1151     regs->pc = infop->entry;
1152     regs->gpr[1] = infop->start_stack;
1153 }
1154 
1155 #define USE_ELF_CORE_DUMP
1156 #define ELF_EXEC_PAGESIZE 8192
1157 
1158 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1159 #define ELF_NREG 34 /* gprs and pc, sr */
1160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1161 
1162 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1163                                const CPUOpenRISCState *env)
1164 {
1165     int i;
1166 
1167     for (i = 0; i < 32; i++) {
1168         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1169     }
1170     (*regs)[32] = tswapreg(env->pc);
1171     (*regs)[33] = tswapreg(cpu_get_sr(env));
1172 }
1173 #define ELF_HWCAP 0
1174 #define ELF_PLATFORM NULL
1175 
1176 #endif /* TARGET_OPENRISC */
1177 
1178 #ifdef TARGET_SH4
1179 
1180 #define ELF_START_MMAP 0x80000000
1181 
1182 #define ELF_CLASS ELFCLASS32
1183 #define ELF_ARCH  EM_SH
1184 
1185 static inline void init_thread(struct target_pt_regs *regs,
1186                                struct image_info *infop)
1187 {
1188     /* Check other registers XXXXX */
1189     regs->pc = infop->entry;
1190     regs->regs[15] = infop->start_stack;
1191 }
1192 
1193 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1194 #define ELF_NREG 23
1195 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1196 
1197 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1198 enum {
1199     TARGET_REG_PC = 16,
1200     TARGET_REG_PR = 17,
1201     TARGET_REG_SR = 18,
1202     TARGET_REG_GBR = 19,
1203     TARGET_REG_MACH = 20,
1204     TARGET_REG_MACL = 21,
1205     TARGET_REG_SYSCALL = 22
1206 };
1207 
1208 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1209                                       const CPUSH4State *env)
1210 {
1211     int i;
1212 
1213     for (i = 0; i < 16; i++) {
1214         (*regs)[i] = tswapreg(env->gregs[i]);
1215     }
1216 
1217     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1218     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1219     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1220     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1221     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1222     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1223     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1224 }
1225 
1226 #define USE_ELF_CORE_DUMP
1227 #define ELF_EXEC_PAGESIZE        4096
1228 
1229 enum {
1230     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1231     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1232     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1233     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1234     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1235     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1236     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1237     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1238     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1239     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1240 };
1241 
1242 #define ELF_HWCAP get_elf_hwcap()
1243 
1244 static uint32_t get_elf_hwcap(void)
1245 {
1246     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1247     uint32_t hwcap = 0;
1248 
1249     hwcap |= SH_CPU_HAS_FPU;
1250 
1251     if (cpu->env.features & SH_FEATURE_SH4A) {
1252         hwcap |= SH_CPU_HAS_LLSC;
1253     }
1254 
1255     return hwcap;
1256 }
1257 
1258 #endif
1259 
1260 #ifdef TARGET_CRIS
1261 
1262 #define ELF_START_MMAP 0x80000000
1263 
1264 #define ELF_CLASS ELFCLASS32
1265 #define ELF_ARCH  EM_CRIS
1266 
1267 static inline void init_thread(struct target_pt_regs *regs,
1268                                struct image_info *infop)
1269 {
1270     regs->erp = infop->entry;
1271 }
1272 
1273 #define ELF_EXEC_PAGESIZE        8192
1274 
1275 #endif
1276 
1277 #ifdef TARGET_M68K
1278 
1279 #define ELF_START_MMAP 0x80000000
1280 
1281 #define ELF_CLASS       ELFCLASS32
1282 #define ELF_ARCH        EM_68K
1283 
1284 /* ??? Does this need to do anything?
1285    #define ELF_PLAT_INIT(_r) */
1286 
1287 static inline void init_thread(struct target_pt_regs *regs,
1288                                struct image_info *infop)
1289 {
1290     regs->usp = infop->start_stack;
1291     regs->sr = 0;
1292     regs->pc = infop->entry;
1293 }
1294 
1295 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1296 #define ELF_NREG 20
1297 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1298 
1299 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1300 {
1301     (*regs)[0] = tswapreg(env->dregs[1]);
1302     (*regs)[1] = tswapreg(env->dregs[2]);
1303     (*regs)[2] = tswapreg(env->dregs[3]);
1304     (*regs)[3] = tswapreg(env->dregs[4]);
1305     (*regs)[4] = tswapreg(env->dregs[5]);
1306     (*regs)[5] = tswapreg(env->dregs[6]);
1307     (*regs)[6] = tswapreg(env->dregs[7]);
1308     (*regs)[7] = tswapreg(env->aregs[0]);
1309     (*regs)[8] = tswapreg(env->aregs[1]);
1310     (*regs)[9] = tswapreg(env->aregs[2]);
1311     (*regs)[10] = tswapreg(env->aregs[3]);
1312     (*regs)[11] = tswapreg(env->aregs[4]);
1313     (*regs)[12] = tswapreg(env->aregs[5]);
1314     (*regs)[13] = tswapreg(env->aregs[6]);
1315     (*regs)[14] = tswapreg(env->dregs[0]);
1316     (*regs)[15] = tswapreg(env->aregs[7]);
1317     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1318     (*regs)[17] = tswapreg(env->sr);
1319     (*regs)[18] = tswapreg(env->pc);
1320     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1321 }
1322 
1323 #define USE_ELF_CORE_DUMP
1324 #define ELF_EXEC_PAGESIZE       8192
1325 
1326 #endif
1327 
1328 #ifdef TARGET_ALPHA
1329 
1330 #define ELF_START_MMAP (0x30000000000ULL)
1331 
1332 #define ELF_CLASS      ELFCLASS64
1333 #define ELF_ARCH       EM_ALPHA
1334 
1335 static inline void init_thread(struct target_pt_regs *regs,
1336                                struct image_info *infop)
1337 {
1338     regs->pc = infop->entry;
1339     regs->ps = 8;
1340     regs->usp = infop->start_stack;
1341 }
1342 
1343 #define ELF_EXEC_PAGESIZE        8192
1344 
1345 #endif /* TARGET_ALPHA */
1346 
1347 #ifdef TARGET_S390X
1348 
1349 #define ELF_START_MMAP (0x20000000000ULL)
1350 
1351 #define ELF_CLASS	ELFCLASS64
1352 #define ELF_DATA	ELFDATA2MSB
1353 #define ELF_ARCH	EM_S390
1354 
1355 #include "elf.h"
1356 
1357 #define ELF_HWCAP get_elf_hwcap()
1358 
1359 #define GET_FEATURE(_feat, _hwcap) \
1360     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1361 
1362 static uint32_t get_elf_hwcap(void)
1363 {
1364     /*
1365      * Let's assume we always have esan3 and zarch.
1366      * 31-bit processes can use 64-bit registers (high gprs).
1367      */
1368     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1369 
1370     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1371     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1372     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1373     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1374     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1375         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1376         hwcap |= HWCAP_S390_ETF3EH;
1377     }
1378     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1379     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1380 
1381     return hwcap;
1382 }
1383 
1384 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1385 {
1386     regs->psw.addr = infop->entry;
1387     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1388     regs->gprs[15] = infop->start_stack;
1389 }
1390 
1391 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1392 #define ELF_NREG 27
1393 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1394 
1395 enum {
1396     TARGET_REG_PSWM = 0,
1397     TARGET_REG_PSWA = 1,
1398     TARGET_REG_GPRS = 2,
1399     TARGET_REG_ARS = 18,
1400     TARGET_REG_ORIG_R2 = 26,
1401 };
1402 
1403 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1404                                const CPUS390XState *env)
1405 {
1406     int i;
1407     uint32_t *aregs;
1408 
1409     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1410     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1411     for (i = 0; i < 16; i++) {
1412         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1413     }
1414     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1415     for (i = 0; i < 16; i++) {
1416         aregs[i] = tswap32(env->aregs[i]);
1417     }
1418     (*regs)[TARGET_REG_ORIG_R2] = 0;
1419 }
1420 
1421 #define USE_ELF_CORE_DUMP
1422 #define ELF_EXEC_PAGESIZE 4096
1423 
1424 #endif /* TARGET_S390X */
1425 
1426 #ifdef TARGET_RISCV
1427 
1428 #define ELF_START_MMAP 0x80000000
1429 #define ELF_ARCH  EM_RISCV
1430 
1431 #ifdef TARGET_RISCV32
1432 #define ELF_CLASS ELFCLASS32
1433 #else
1434 #define ELF_CLASS ELFCLASS64
1435 #endif
1436 
1437 static inline void init_thread(struct target_pt_regs *regs,
1438                                struct image_info *infop)
1439 {
1440     regs->sepc = infop->entry;
1441     regs->sp = infop->start_stack;
1442 }
1443 
1444 #define ELF_EXEC_PAGESIZE 4096
1445 
1446 #endif /* TARGET_RISCV */
1447 
1448 #ifdef TARGET_HPPA
1449 
1450 #define ELF_START_MMAP  0x80000000
1451 #define ELF_CLASS       ELFCLASS32
1452 #define ELF_ARCH        EM_PARISC
1453 #define ELF_PLATFORM    "PARISC"
1454 #define STACK_GROWS_DOWN 0
1455 #define STACK_ALIGNMENT  64
1456 
1457 static inline void init_thread(struct target_pt_regs *regs,
1458                                struct image_info *infop)
1459 {
1460     regs->iaoq[0] = infop->entry;
1461     regs->iaoq[1] = infop->entry + 4;
1462     regs->gr[23] = 0;
1463     regs->gr[24] = infop->arg_start;
1464     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1465     /* The top-of-stack contains a linkage buffer.  */
1466     regs->gr[30] = infop->start_stack + 64;
1467     regs->gr[31] = infop->entry;
1468 }
1469 
1470 #endif /* TARGET_HPPA */
1471 
1472 #ifdef TARGET_XTENSA
1473 
1474 #define ELF_START_MMAP 0x20000000
1475 
1476 #define ELF_CLASS       ELFCLASS32
1477 #define ELF_ARCH        EM_XTENSA
1478 
1479 static inline void init_thread(struct target_pt_regs *regs,
1480                                struct image_info *infop)
1481 {
1482     regs->windowbase = 0;
1483     regs->windowstart = 1;
1484     regs->areg[1] = infop->start_stack;
1485     regs->pc = infop->entry;
1486 }
1487 
1488 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1489 #define ELF_NREG 128
1490 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1491 
1492 enum {
1493     TARGET_REG_PC,
1494     TARGET_REG_PS,
1495     TARGET_REG_LBEG,
1496     TARGET_REG_LEND,
1497     TARGET_REG_LCOUNT,
1498     TARGET_REG_SAR,
1499     TARGET_REG_WINDOWSTART,
1500     TARGET_REG_WINDOWBASE,
1501     TARGET_REG_THREADPTR,
1502     TARGET_REG_AR0 = 64,
1503 };
1504 
1505 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1506                                const CPUXtensaState *env)
1507 {
1508     unsigned i;
1509 
1510     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1511     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1512     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1513     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1514     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1515     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1516     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1517     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1518     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1519     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1520     for (i = 0; i < env->config->nareg; ++i) {
1521         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1522     }
1523 }
1524 
1525 #define USE_ELF_CORE_DUMP
1526 #define ELF_EXEC_PAGESIZE       4096
1527 
1528 #endif /* TARGET_XTENSA */
1529 
1530 #ifdef TARGET_HEXAGON
1531 
1532 #define ELF_START_MMAP 0x20000000
1533 
1534 #define ELF_CLASS       ELFCLASS32
1535 #define ELF_ARCH        EM_HEXAGON
1536 
1537 static inline void init_thread(struct target_pt_regs *regs,
1538                                struct image_info *infop)
1539 {
1540     regs->sepc = infop->entry;
1541     regs->sp = infop->start_stack;
1542 }
1543 
1544 #endif /* TARGET_HEXAGON */
1545 
1546 #ifndef ELF_PLATFORM
1547 #define ELF_PLATFORM (NULL)
1548 #endif
1549 
1550 #ifndef ELF_MACHINE
1551 #define ELF_MACHINE ELF_ARCH
1552 #endif
1553 
1554 #ifndef elf_check_arch
1555 #define elf_check_arch(x) ((x) == ELF_ARCH)
1556 #endif
1557 
1558 #ifndef elf_check_abi
1559 #define elf_check_abi(x) (1)
1560 #endif
1561 
1562 #ifndef ELF_HWCAP
1563 #define ELF_HWCAP 0
1564 #endif
1565 
1566 #ifndef STACK_GROWS_DOWN
1567 #define STACK_GROWS_DOWN 1
1568 #endif
1569 
1570 #ifndef STACK_ALIGNMENT
1571 #define STACK_ALIGNMENT 16
1572 #endif
1573 
1574 #ifdef TARGET_ABI32
1575 #undef ELF_CLASS
1576 #define ELF_CLASS ELFCLASS32
1577 #undef bswaptls
1578 #define bswaptls(ptr) bswap32s(ptr)
1579 #endif
1580 
1581 #include "elf.h"
1582 
1583 /* We must delay the following stanzas until after "elf.h". */
1584 #if defined(TARGET_AARCH64)
1585 
1586 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1587                                     const uint32_t *data,
1588                                     struct image_info *info,
1589                                     Error **errp)
1590 {
1591     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1592         if (pr_datasz != sizeof(uint32_t)) {
1593             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1594             return false;
1595         }
1596         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1597         info->note_flags = *data;
1598     }
1599     return true;
1600 }
1601 #define ARCH_USE_GNU_PROPERTY 1
1602 
1603 #else
1604 
1605 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1606                                     const uint32_t *data,
1607                                     struct image_info *info,
1608                                     Error **errp)
1609 {
1610     g_assert_not_reached();
1611 }
1612 #define ARCH_USE_GNU_PROPERTY 0
1613 
1614 #endif
1615 
1616 struct exec
1617 {
1618     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1619     unsigned int a_text;   /* length of text, in bytes */
1620     unsigned int a_data;   /* length of data, in bytes */
1621     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1622     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1623     unsigned int a_entry;  /* start address */
1624     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1625     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1626 };
1627 
1628 
1629 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1630 #define OMAGIC 0407
1631 #define NMAGIC 0410
1632 #define ZMAGIC 0413
1633 #define QMAGIC 0314
1634 
1635 /* Necessary parameters */
1636 #define TARGET_ELF_EXEC_PAGESIZE \
1637         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1638          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1639 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1640 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1641                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1642 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1643 
1644 #define DLINFO_ITEMS 16
1645 
1646 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1647 {
1648     memcpy(to, from, n);
1649 }
1650 
1651 #ifdef BSWAP_NEEDED
1652 static void bswap_ehdr(struct elfhdr *ehdr)
1653 {
1654     bswap16s(&ehdr->e_type);            /* Object file type */
1655     bswap16s(&ehdr->e_machine);         /* Architecture */
1656     bswap32s(&ehdr->e_version);         /* Object file version */
1657     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1658     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1659     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1660     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1661     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1662     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1663     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1664     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1665     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1666     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1667 }
1668 
1669 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1670 {
1671     int i;
1672     for (i = 0; i < phnum; ++i, ++phdr) {
1673         bswap32s(&phdr->p_type);        /* Segment type */
1674         bswap32s(&phdr->p_flags);       /* Segment flags */
1675         bswaptls(&phdr->p_offset);      /* Segment file offset */
1676         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1677         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1678         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1679         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1680         bswaptls(&phdr->p_align);       /* Segment alignment */
1681     }
1682 }
1683 
1684 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1685 {
1686     int i;
1687     for (i = 0; i < shnum; ++i, ++shdr) {
1688         bswap32s(&shdr->sh_name);
1689         bswap32s(&shdr->sh_type);
1690         bswaptls(&shdr->sh_flags);
1691         bswaptls(&shdr->sh_addr);
1692         bswaptls(&shdr->sh_offset);
1693         bswaptls(&shdr->sh_size);
1694         bswap32s(&shdr->sh_link);
1695         bswap32s(&shdr->sh_info);
1696         bswaptls(&shdr->sh_addralign);
1697         bswaptls(&shdr->sh_entsize);
1698     }
1699 }
1700 
1701 static void bswap_sym(struct elf_sym *sym)
1702 {
1703     bswap32s(&sym->st_name);
1704     bswaptls(&sym->st_value);
1705     bswaptls(&sym->st_size);
1706     bswap16s(&sym->st_shndx);
1707 }
1708 
1709 #ifdef TARGET_MIPS
1710 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1711 {
1712     bswap16s(&abiflags->version);
1713     bswap32s(&abiflags->ases);
1714     bswap32s(&abiflags->isa_ext);
1715     bswap32s(&abiflags->flags1);
1716     bswap32s(&abiflags->flags2);
1717 }
1718 #endif
1719 #else
1720 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1721 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1722 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1723 static inline void bswap_sym(struct elf_sym *sym) { }
1724 #ifdef TARGET_MIPS
1725 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1726 #endif
1727 #endif
1728 
1729 #ifdef USE_ELF_CORE_DUMP
1730 static int elf_core_dump(int, const CPUArchState *);
1731 #endif /* USE_ELF_CORE_DUMP */
1732 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1733 
1734 /* Verify the portions of EHDR within E_IDENT for the target.
1735    This can be performed before bswapping the entire header.  */
1736 static bool elf_check_ident(struct elfhdr *ehdr)
1737 {
1738     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1739             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1740             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1741             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1742             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1743             && ehdr->e_ident[EI_DATA] == ELF_DATA
1744             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1745 }
1746 
1747 /* Verify the portions of EHDR outside of E_IDENT for the target.
1748    This has to wait until after bswapping the header.  */
1749 static bool elf_check_ehdr(struct elfhdr *ehdr)
1750 {
1751     return (elf_check_arch(ehdr->e_machine)
1752             && elf_check_abi(ehdr->e_flags)
1753             && ehdr->e_ehsize == sizeof(struct elfhdr)
1754             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1755             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1756 }
1757 
1758 /*
1759  * 'copy_elf_strings()' copies argument/envelope strings from user
1760  * memory to free pages in kernel mem. These are in a format ready
1761  * to be put directly into the top of new user memory.
1762  *
1763  */
1764 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1765                                   abi_ulong p, abi_ulong stack_limit)
1766 {
1767     char *tmp;
1768     int len, i;
1769     abi_ulong top = p;
1770 
1771     if (!p) {
1772         return 0;       /* bullet-proofing */
1773     }
1774 
1775     if (STACK_GROWS_DOWN) {
1776         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1777         for (i = argc - 1; i >= 0; --i) {
1778             tmp = argv[i];
1779             if (!tmp) {
1780                 fprintf(stderr, "VFS: argc is wrong");
1781                 exit(-1);
1782             }
1783             len = strlen(tmp) + 1;
1784             tmp += len;
1785 
1786             if (len > (p - stack_limit)) {
1787                 return 0;
1788             }
1789             while (len) {
1790                 int bytes_to_copy = (len > offset) ? offset : len;
1791                 tmp -= bytes_to_copy;
1792                 p -= bytes_to_copy;
1793                 offset -= bytes_to_copy;
1794                 len -= bytes_to_copy;
1795 
1796                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1797 
1798                 if (offset == 0) {
1799                     memcpy_to_target(p, scratch, top - p);
1800                     top = p;
1801                     offset = TARGET_PAGE_SIZE;
1802                 }
1803             }
1804         }
1805         if (p != top) {
1806             memcpy_to_target(p, scratch + offset, top - p);
1807         }
1808     } else {
1809         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1810         for (i = 0; i < argc; ++i) {
1811             tmp = argv[i];
1812             if (!tmp) {
1813                 fprintf(stderr, "VFS: argc is wrong");
1814                 exit(-1);
1815             }
1816             len = strlen(tmp) + 1;
1817             if (len > (stack_limit - p)) {
1818                 return 0;
1819             }
1820             while (len) {
1821                 int bytes_to_copy = (len > remaining) ? remaining : len;
1822 
1823                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1824 
1825                 tmp += bytes_to_copy;
1826                 remaining -= bytes_to_copy;
1827                 p += bytes_to_copy;
1828                 len -= bytes_to_copy;
1829 
1830                 if (remaining == 0) {
1831                     memcpy_to_target(top, scratch, p - top);
1832                     top = p;
1833                     remaining = TARGET_PAGE_SIZE;
1834                 }
1835             }
1836         }
1837         if (p != top) {
1838             memcpy_to_target(top, scratch, p - top);
1839         }
1840     }
1841 
1842     return p;
1843 }
1844 
1845 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1846  * argument/environment space. Newer kernels (>2.6.33) allow more,
1847  * dependent on stack size, but guarantee at least 32 pages for
1848  * backwards compatibility.
1849  */
1850 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1851 
1852 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1853                                  struct image_info *info)
1854 {
1855     abi_ulong size, error, guard;
1856 
1857     size = guest_stack_size;
1858     if (size < STACK_LOWER_LIMIT) {
1859         size = STACK_LOWER_LIMIT;
1860     }
1861     guard = TARGET_PAGE_SIZE;
1862     if (guard < qemu_real_host_page_size) {
1863         guard = qemu_real_host_page_size;
1864     }
1865 
1866     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1867                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1868     if (error == -1) {
1869         perror("mmap stack");
1870         exit(-1);
1871     }
1872 
1873     /* We reserve one extra page at the top of the stack as guard.  */
1874     if (STACK_GROWS_DOWN) {
1875         target_mprotect(error, guard, PROT_NONE);
1876         info->stack_limit = error + guard;
1877         return info->stack_limit + size - sizeof(void *);
1878     } else {
1879         target_mprotect(error + size, guard, PROT_NONE);
1880         info->stack_limit = error + size;
1881         return error;
1882     }
1883 }
1884 
1885 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1886    after the data section (i.e. bss).  */
1887 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1888 {
1889     uintptr_t host_start, host_map_start, host_end;
1890 
1891     last_bss = TARGET_PAGE_ALIGN(last_bss);
1892 
1893     /* ??? There is confusion between qemu_real_host_page_size and
1894        qemu_host_page_size here and elsewhere in target_mmap, which
1895        may lead to the end of the data section mapping from the file
1896        not being mapped.  At least there was an explicit test and
1897        comment for that here, suggesting that "the file size must
1898        be known".  The comment probably pre-dates the introduction
1899        of the fstat system call in target_mmap which does in fact
1900        find out the size.  What isn't clear is if the workaround
1901        here is still actually needed.  For now, continue with it,
1902        but merge it with the "normal" mmap that would allocate the bss.  */
1903 
1904     host_start = (uintptr_t) g2h_untagged(elf_bss);
1905     host_end = (uintptr_t) g2h_untagged(last_bss);
1906     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1907 
1908     if (host_map_start < host_end) {
1909         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1910                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1911         if (p == MAP_FAILED) {
1912             perror("cannot mmap brk");
1913             exit(-1);
1914         }
1915     }
1916 
1917     /* Ensure that the bss page(s) are valid */
1918     if ((page_get_flags(last_bss-1) & prot) != prot) {
1919         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1920     }
1921 
1922     if (host_start < host_map_start) {
1923         memset((void *)host_start, 0, host_map_start - host_start);
1924     }
1925 }
1926 
1927 #ifdef TARGET_ARM
1928 static int elf_is_fdpic(struct elfhdr *exec)
1929 {
1930     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1931 }
1932 #else
1933 /* Default implementation, always false.  */
1934 static int elf_is_fdpic(struct elfhdr *exec)
1935 {
1936     return 0;
1937 }
1938 #endif
1939 
1940 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1941 {
1942     uint16_t n;
1943     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1944 
1945     /* elf32_fdpic_loadseg */
1946     n = info->nsegs;
1947     while (n--) {
1948         sp -= 12;
1949         put_user_u32(loadsegs[n].addr, sp+0);
1950         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1951         put_user_u32(loadsegs[n].p_memsz, sp+8);
1952     }
1953 
1954     /* elf32_fdpic_loadmap */
1955     sp -= 4;
1956     put_user_u16(0, sp+0); /* version */
1957     put_user_u16(info->nsegs, sp+2); /* nsegs */
1958 
1959     info->personality = PER_LINUX_FDPIC;
1960     info->loadmap_addr = sp;
1961 
1962     return sp;
1963 }
1964 
1965 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1966                                    struct elfhdr *exec,
1967                                    struct image_info *info,
1968                                    struct image_info *interp_info)
1969 {
1970     abi_ulong sp;
1971     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1972     int size;
1973     int i;
1974     abi_ulong u_rand_bytes;
1975     uint8_t k_rand_bytes[16];
1976     abi_ulong u_platform;
1977     const char *k_platform;
1978     const int n = sizeof(elf_addr_t);
1979 
1980     sp = p;
1981 
1982     /* Needs to be before we load the env/argc/... */
1983     if (elf_is_fdpic(exec)) {
1984         /* Need 4 byte alignment for these structs */
1985         sp &= ~3;
1986         sp = loader_build_fdpic_loadmap(info, sp);
1987         info->other_info = interp_info;
1988         if (interp_info) {
1989             interp_info->other_info = info;
1990             sp = loader_build_fdpic_loadmap(interp_info, sp);
1991             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1992             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1993         } else {
1994             info->interpreter_loadmap_addr = 0;
1995             info->interpreter_pt_dynamic_addr = 0;
1996         }
1997     }
1998 
1999     u_platform = 0;
2000     k_platform = ELF_PLATFORM;
2001     if (k_platform) {
2002         size_t len = strlen(k_platform) + 1;
2003         if (STACK_GROWS_DOWN) {
2004             sp -= (len + n - 1) & ~(n - 1);
2005             u_platform = sp;
2006             /* FIXME - check return value of memcpy_to_target() for failure */
2007             memcpy_to_target(sp, k_platform, len);
2008         } else {
2009             memcpy_to_target(sp, k_platform, len);
2010             u_platform = sp;
2011             sp += len + 1;
2012         }
2013     }
2014 
2015     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2016      * the argv and envp pointers.
2017      */
2018     if (STACK_GROWS_DOWN) {
2019         sp = QEMU_ALIGN_DOWN(sp, 16);
2020     } else {
2021         sp = QEMU_ALIGN_UP(sp, 16);
2022     }
2023 
2024     /*
2025      * Generate 16 random bytes for userspace PRNG seeding.
2026      */
2027     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2028     if (STACK_GROWS_DOWN) {
2029         sp -= 16;
2030         u_rand_bytes = sp;
2031         /* FIXME - check return value of memcpy_to_target() for failure */
2032         memcpy_to_target(sp, k_rand_bytes, 16);
2033     } else {
2034         memcpy_to_target(sp, k_rand_bytes, 16);
2035         u_rand_bytes = sp;
2036         sp += 16;
2037     }
2038 
2039     size = (DLINFO_ITEMS + 1) * 2;
2040     if (k_platform)
2041         size += 2;
2042 #ifdef DLINFO_ARCH_ITEMS
2043     size += DLINFO_ARCH_ITEMS * 2;
2044 #endif
2045 #ifdef ELF_HWCAP2
2046     size += 2;
2047 #endif
2048     info->auxv_len = size * n;
2049 
2050     size += envc + argc + 2;
2051     size += 1;  /* argc itself */
2052     size *= n;
2053 
2054     /* Allocate space and finalize stack alignment for entry now.  */
2055     if (STACK_GROWS_DOWN) {
2056         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2057         sp = u_argc;
2058     } else {
2059         u_argc = sp;
2060         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2061     }
2062 
2063     u_argv = u_argc + n;
2064     u_envp = u_argv + (argc + 1) * n;
2065     u_auxv = u_envp + (envc + 1) * n;
2066     info->saved_auxv = u_auxv;
2067     info->arg_start = u_argv;
2068     info->arg_end = u_argv + argc * n;
2069 
2070     /* This is correct because Linux defines
2071      * elf_addr_t as Elf32_Off / Elf64_Off
2072      */
2073 #define NEW_AUX_ENT(id, val) do {               \
2074         put_user_ual(id, u_auxv);  u_auxv += n; \
2075         put_user_ual(val, u_auxv); u_auxv += n; \
2076     } while(0)
2077 
2078 #ifdef ARCH_DLINFO
2079     /*
2080      * ARCH_DLINFO must come first so platform specific code can enforce
2081      * special alignment requirements on the AUXV if necessary (eg. PPC).
2082      */
2083     ARCH_DLINFO;
2084 #endif
2085     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2086      * on info->auxv_len will trigger.
2087      */
2088     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2089     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2090     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2091     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2092         /* Target doesn't support host page size alignment */
2093         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2094     } else {
2095         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2096                                                qemu_host_page_size)));
2097     }
2098     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2099     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2100     NEW_AUX_ENT(AT_ENTRY, info->entry);
2101     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2102     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2103     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2104     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2105     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2106     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2107     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2108     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2109     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2110 
2111 #ifdef ELF_HWCAP2
2112     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2113 #endif
2114 
2115     if (u_platform) {
2116         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2117     }
2118     NEW_AUX_ENT (AT_NULL, 0);
2119 #undef NEW_AUX_ENT
2120 
2121     /* Check that our initial calculation of the auxv length matches how much
2122      * we actually put into it.
2123      */
2124     assert(info->auxv_len == u_auxv - info->saved_auxv);
2125 
2126     put_user_ual(argc, u_argc);
2127 
2128     p = info->arg_strings;
2129     for (i = 0; i < argc; ++i) {
2130         put_user_ual(p, u_argv);
2131         u_argv += n;
2132         p += target_strlen(p) + 1;
2133     }
2134     put_user_ual(0, u_argv);
2135 
2136     p = info->env_strings;
2137     for (i = 0; i < envc; ++i) {
2138         put_user_ual(p, u_envp);
2139         u_envp += n;
2140         p += target_strlen(p) + 1;
2141     }
2142     put_user_ual(0, u_envp);
2143 
2144     return sp;
2145 }
2146 
2147 #ifndef ARM_COMMPAGE
2148 #define ARM_COMMPAGE 0
2149 #define init_guest_commpage() true
2150 #endif
2151 
2152 static void pgb_fail_in_use(const char *image_name)
2153 {
2154     error_report("%s: requires virtual address space that is in use "
2155                  "(omit the -B option or choose a different value)",
2156                  image_name);
2157     exit(EXIT_FAILURE);
2158 }
2159 
2160 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2161                                 abi_ulong guest_hiaddr, long align)
2162 {
2163     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2164     void *addr, *test;
2165 
2166     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2167         fprintf(stderr, "Requested guest base %p does not satisfy "
2168                 "host minimum alignment (0x%lx)\n",
2169                 (void *)guest_base, align);
2170         exit(EXIT_FAILURE);
2171     }
2172 
2173     /* Sanity check the guest binary. */
2174     if (reserved_va) {
2175         if (guest_hiaddr > reserved_va) {
2176             error_report("%s: requires more than reserved virtual "
2177                          "address space (0x%" PRIx64 " > 0x%lx)",
2178                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2179             exit(EXIT_FAILURE);
2180         }
2181     } else {
2182 #if HOST_LONG_BITS < TARGET_ABI_BITS
2183         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2184             error_report("%s: requires more virtual address space "
2185                          "than the host can provide (0x%" PRIx64 ")",
2186                          image_name, (uint64_t)guest_hiaddr - guest_base);
2187             exit(EXIT_FAILURE);
2188         }
2189 #endif
2190     }
2191 
2192     /*
2193      * Expand the allocation to the entire reserved_va.
2194      * Exclude the mmap_min_addr hole.
2195      */
2196     if (reserved_va) {
2197         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2198                         : mmap_min_addr - guest_base);
2199         guest_hiaddr = reserved_va;
2200     }
2201 
2202     /* Reserve the address space for the binary, or reserved_va. */
2203     test = g2h_untagged(guest_loaddr);
2204     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2205     if (test != addr) {
2206         pgb_fail_in_use(image_name);
2207     }
2208 }
2209 
2210 /**
2211  * pgd_find_hole_fallback: potential mmap address
2212  * @guest_size: size of available space
2213  * @brk: location of break
2214  * @align: memory alignment
2215  *
2216  * This is a fallback method for finding a hole in the host address
2217  * space if we don't have the benefit of being able to access
2218  * /proc/self/map. It can potentially take a very long time as we can
2219  * only dumbly iterate up the host address space seeing if the
2220  * allocation would work.
2221  */
2222 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2223                                         long align, uintptr_t offset)
2224 {
2225     uintptr_t base;
2226 
2227     /* Start (aligned) at the bottom and work our way up */
2228     base = ROUND_UP(mmap_min_addr, align);
2229 
2230     while (true) {
2231         uintptr_t align_start, end;
2232         align_start = ROUND_UP(base, align);
2233         end = align_start + guest_size + offset;
2234 
2235         /* if brk is anywhere in the range give ourselves some room to grow. */
2236         if (align_start <= brk && brk < end) {
2237             base = brk + (16 * MiB);
2238             continue;
2239         } else if (align_start + guest_size < align_start) {
2240             /* we have run out of space */
2241             return -1;
2242         } else {
2243             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2244                 MAP_FIXED_NOREPLACE;
2245             void * mmap_start = mmap((void *) align_start, guest_size,
2246                                      PROT_NONE, flags, -1, 0);
2247             if (mmap_start != MAP_FAILED) {
2248                 munmap(mmap_start, guest_size);
2249                 if (mmap_start == (void *) align_start) {
2250                     return (uintptr_t) mmap_start + offset;
2251                 }
2252             }
2253             base += qemu_host_page_size;
2254         }
2255     }
2256 }
2257 
2258 /* Return value for guest_base, or -1 if no hole found. */
2259 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2260                                long align, uintptr_t offset)
2261 {
2262     GSList *maps, *iter;
2263     uintptr_t this_start, this_end, next_start, brk;
2264     intptr_t ret = -1;
2265 
2266     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2267 
2268     maps = read_self_maps();
2269 
2270     /* Read brk after we've read the maps, which will malloc. */
2271     brk = (uintptr_t)sbrk(0);
2272 
2273     if (!maps) {
2274         ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2275         return ret == -1 ? -1 : ret - guest_loaddr;
2276     }
2277 
2278     /* The first hole is before the first map entry. */
2279     this_start = mmap_min_addr;
2280 
2281     for (iter = maps; iter;
2282          this_start = next_start, iter = g_slist_next(iter)) {
2283         uintptr_t align_start, hole_size;
2284 
2285         this_end = ((MapInfo *)iter->data)->start;
2286         next_start = ((MapInfo *)iter->data)->end;
2287         align_start = ROUND_UP(this_start + offset, align);
2288 
2289         /* Skip holes that are too small. */
2290         if (align_start >= this_end) {
2291             continue;
2292         }
2293         hole_size = this_end - align_start;
2294         if (hole_size < guest_size) {
2295             continue;
2296         }
2297 
2298         /* If this hole contains brk, give ourselves some room to grow. */
2299         if (this_start <= brk && brk < this_end) {
2300             hole_size -= guest_size;
2301             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2302                 align_start += 1 * GiB;
2303             } else if (hole_size >= 16 * MiB) {
2304                 align_start += 16 * MiB;
2305             } else {
2306                 align_start = (this_end - guest_size) & -align;
2307                 if (align_start < this_start) {
2308                     continue;
2309                 }
2310             }
2311         }
2312 
2313         /* Record the lowest successful match. */
2314         if (ret < 0) {
2315             ret = align_start - guest_loaddr;
2316         }
2317         /* If this hole contains the identity map, select it. */
2318         if (align_start <= guest_loaddr &&
2319             guest_loaddr + guest_size <= this_end) {
2320             ret = 0;
2321         }
2322         /* If this hole ends above the identity map, stop looking. */
2323         if (this_end >= guest_loaddr) {
2324             break;
2325         }
2326     }
2327     free_self_maps(maps);
2328 
2329     return ret;
2330 }
2331 
2332 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2333                        abi_ulong orig_hiaddr, long align)
2334 {
2335     uintptr_t loaddr = orig_loaddr;
2336     uintptr_t hiaddr = orig_hiaddr;
2337     uintptr_t offset = 0;
2338     uintptr_t addr;
2339 
2340     if (hiaddr != orig_hiaddr) {
2341         error_report("%s: requires virtual address space that the "
2342                      "host cannot provide (0x%" PRIx64 ")",
2343                      image_name, (uint64_t)orig_hiaddr);
2344         exit(EXIT_FAILURE);
2345     }
2346 
2347     loaddr &= -align;
2348     if (ARM_COMMPAGE) {
2349         /*
2350          * Extend the allocation to include the commpage.
2351          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2352          * need to ensure there is space bellow the guest_base so we
2353          * can map the commpage in the place needed when the address
2354          * arithmetic wraps around.
2355          */
2356         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2357             hiaddr = (uintptr_t) 4 << 30;
2358         } else {
2359             offset = -(ARM_COMMPAGE & -align);
2360         }
2361     }
2362 
2363     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2364     if (addr == -1) {
2365         /*
2366          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2367          * that can satisfy both.  But as the normal arm32 link base address
2368          * is ~32k, and we extend down to include the commpage, making the
2369          * overhead only ~96k, this is unlikely.
2370          */
2371         error_report("%s: Unable to allocate %#zx bytes of "
2372                      "virtual address space", image_name,
2373                      (size_t)(hiaddr - loaddr));
2374         exit(EXIT_FAILURE);
2375     }
2376 
2377     guest_base = addr;
2378 }
2379 
2380 static void pgb_dynamic(const char *image_name, long align)
2381 {
2382     /*
2383      * The executable is dynamic and does not require a fixed address.
2384      * All we need is a commpage that satisfies align.
2385      * If we do not need a commpage, leave guest_base == 0.
2386      */
2387     if (ARM_COMMPAGE) {
2388         uintptr_t addr, commpage;
2389 
2390         /* 64-bit hosts should have used reserved_va. */
2391         assert(sizeof(uintptr_t) == 4);
2392 
2393         /*
2394          * By putting the commpage at the first hole, that puts guest_base
2395          * just above that, and maximises the positive guest addresses.
2396          */
2397         commpage = ARM_COMMPAGE & -align;
2398         addr = pgb_find_hole(commpage, -commpage, align, 0);
2399         assert(addr != -1);
2400         guest_base = addr;
2401     }
2402 }
2403 
2404 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2405                             abi_ulong guest_hiaddr, long align)
2406 {
2407     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2408     void *addr, *test;
2409 
2410     if (guest_hiaddr > reserved_va) {
2411         error_report("%s: requires more than reserved virtual "
2412                      "address space (0x%" PRIx64 " > 0x%lx)",
2413                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2414         exit(EXIT_FAILURE);
2415     }
2416 
2417     /* Widen the "image" to the entire reserved address space. */
2418     pgb_static(image_name, 0, reserved_va, align);
2419 
2420     /* osdep.h defines this as 0 if it's missing */
2421     flags |= MAP_FIXED_NOREPLACE;
2422 
2423     /* Reserve the memory on the host. */
2424     assert(guest_base != 0);
2425     test = g2h_untagged(0);
2426     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2427     if (addr == MAP_FAILED || addr != test) {
2428         error_report("Unable to reserve 0x%lx bytes of virtual address "
2429                      "space at %p (%s) for use as guest address space (check your"
2430                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2431                      "using -R option)", reserved_va, test, strerror(errno));
2432         exit(EXIT_FAILURE);
2433     }
2434 }
2435 
2436 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2437                       abi_ulong guest_hiaddr)
2438 {
2439     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2440     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2441 
2442     if (have_guest_base) {
2443         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2444     } else if (reserved_va) {
2445         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2446     } else if (guest_loaddr) {
2447         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2448     } else {
2449         pgb_dynamic(image_name, align);
2450     }
2451 
2452     /* Reserve and initialize the commpage. */
2453     if (!init_guest_commpage()) {
2454         /*
2455          * With have_guest_base, the user has selected the address and
2456          * we are trying to work with that.  Otherwise, we have selected
2457          * free space and init_guest_commpage must succeeded.
2458          */
2459         assert(have_guest_base);
2460         pgb_fail_in_use(image_name);
2461     }
2462 
2463     assert(QEMU_IS_ALIGNED(guest_base, align));
2464     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2465                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2466 }
2467 
2468 enum {
2469     /* The string "GNU\0" as a magic number. */
2470     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2471     NOTE_DATA_SZ = 1 * KiB,
2472     NOTE_NAME_SZ = 4,
2473     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2474 };
2475 
2476 /*
2477  * Process a single gnu_property entry.
2478  * Return false for error.
2479  */
2480 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2481                                struct image_info *info, bool have_prev_type,
2482                                uint32_t *prev_type, Error **errp)
2483 {
2484     uint32_t pr_type, pr_datasz, step;
2485 
2486     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2487         goto error_data;
2488     }
2489     datasz -= *off;
2490     data += *off / sizeof(uint32_t);
2491 
2492     if (datasz < 2 * sizeof(uint32_t)) {
2493         goto error_data;
2494     }
2495     pr_type = data[0];
2496     pr_datasz = data[1];
2497     data += 2;
2498     datasz -= 2 * sizeof(uint32_t);
2499     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2500     if (step > datasz) {
2501         goto error_data;
2502     }
2503 
2504     /* Properties are supposed to be unique and sorted on pr_type. */
2505     if (have_prev_type && pr_type <= *prev_type) {
2506         if (pr_type == *prev_type) {
2507             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2508         } else {
2509             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2510         }
2511         return false;
2512     }
2513     *prev_type = pr_type;
2514 
2515     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2516         return false;
2517     }
2518 
2519     *off += 2 * sizeof(uint32_t) + step;
2520     return true;
2521 
2522  error_data:
2523     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2524     return false;
2525 }
2526 
2527 /* Process NT_GNU_PROPERTY_TYPE_0. */
2528 static bool parse_elf_properties(int image_fd,
2529                                  struct image_info *info,
2530                                  const struct elf_phdr *phdr,
2531                                  char bprm_buf[BPRM_BUF_SIZE],
2532                                  Error **errp)
2533 {
2534     union {
2535         struct elf_note nhdr;
2536         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2537     } note;
2538 
2539     int n, off, datasz;
2540     bool have_prev_type;
2541     uint32_t prev_type;
2542 
2543     /* Unless the arch requires properties, ignore them. */
2544     if (!ARCH_USE_GNU_PROPERTY) {
2545         return true;
2546     }
2547 
2548     /* If the properties are crazy large, that's too bad. */
2549     n = phdr->p_filesz;
2550     if (n > sizeof(note)) {
2551         error_setg(errp, "PT_GNU_PROPERTY too large");
2552         return false;
2553     }
2554     if (n < sizeof(note.nhdr)) {
2555         error_setg(errp, "PT_GNU_PROPERTY too small");
2556         return false;
2557     }
2558 
2559     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2560         memcpy(&note, bprm_buf + phdr->p_offset, n);
2561     } else {
2562         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2563         if (len != n) {
2564             error_setg_errno(errp, errno, "Error reading file header");
2565             return false;
2566         }
2567     }
2568 
2569     /*
2570      * The contents of a valid PT_GNU_PROPERTY is a sequence
2571      * of uint32_t -- swap them all now.
2572      */
2573 #ifdef BSWAP_NEEDED
2574     for (int i = 0; i < n / 4; i++) {
2575         bswap32s(note.data + i);
2576     }
2577 #endif
2578 
2579     /*
2580      * Note that nhdr is 3 words, and that the "name" described by namesz
2581      * immediately follows nhdr and is thus at the 4th word.  Further, all
2582      * of the inputs to the kernel's round_up are multiples of 4.
2583      */
2584     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2585         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2586         note.data[3] != GNU0_MAGIC) {
2587         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2588         return false;
2589     }
2590     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2591 
2592     datasz = note.nhdr.n_descsz + off;
2593     if (datasz > n) {
2594         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2595         return false;
2596     }
2597 
2598     have_prev_type = false;
2599     prev_type = 0;
2600     while (1) {
2601         if (off == datasz) {
2602             return true;  /* end, exit ok */
2603         }
2604         if (!parse_elf_property(note.data, &off, datasz, info,
2605                                 have_prev_type, &prev_type, errp)) {
2606             return false;
2607         }
2608         have_prev_type = true;
2609     }
2610 }
2611 
2612 /* Load an ELF image into the address space.
2613 
2614    IMAGE_NAME is the filename of the image, to use in error messages.
2615    IMAGE_FD is the open file descriptor for the image.
2616 
2617    BPRM_BUF is a copy of the beginning of the file; this of course
2618    contains the elf file header at offset 0.  It is assumed that this
2619    buffer is sufficiently aligned to present no problems to the host
2620    in accessing data at aligned offsets within the buffer.
2621 
2622    On return: INFO values will be filled in, as necessary or available.  */
2623 
2624 static void load_elf_image(const char *image_name, int image_fd,
2625                            struct image_info *info, char **pinterp_name,
2626                            char bprm_buf[BPRM_BUF_SIZE])
2627 {
2628     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2629     struct elf_phdr *phdr;
2630     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2631     int i, retval, prot_exec;
2632     Error *err = NULL;
2633 
2634     /* First of all, some simple consistency checks */
2635     if (!elf_check_ident(ehdr)) {
2636         error_setg(&err, "Invalid ELF image for this architecture");
2637         goto exit_errmsg;
2638     }
2639     bswap_ehdr(ehdr);
2640     if (!elf_check_ehdr(ehdr)) {
2641         error_setg(&err, "Invalid ELF image for this architecture");
2642         goto exit_errmsg;
2643     }
2644 
2645     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2646     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2647         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2648     } else {
2649         phdr = (struct elf_phdr *) alloca(i);
2650         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2651         if (retval != i) {
2652             goto exit_read;
2653         }
2654     }
2655     bswap_phdr(phdr, ehdr->e_phnum);
2656 
2657     info->nsegs = 0;
2658     info->pt_dynamic_addr = 0;
2659 
2660     mmap_lock();
2661 
2662     /*
2663      * Find the maximum size of the image and allocate an appropriate
2664      * amount of memory to handle that.  Locate the interpreter, if any.
2665      */
2666     loaddr = -1, hiaddr = 0;
2667     info->alignment = 0;
2668     for (i = 0; i < ehdr->e_phnum; ++i) {
2669         struct elf_phdr *eppnt = phdr + i;
2670         if (eppnt->p_type == PT_LOAD) {
2671             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2672             if (a < loaddr) {
2673                 loaddr = a;
2674             }
2675             a = eppnt->p_vaddr + eppnt->p_memsz;
2676             if (a > hiaddr) {
2677                 hiaddr = a;
2678             }
2679             ++info->nsegs;
2680             info->alignment |= eppnt->p_align;
2681         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2682             g_autofree char *interp_name = NULL;
2683 
2684             if (*pinterp_name) {
2685                 error_setg(&err, "Multiple PT_INTERP entries");
2686                 goto exit_errmsg;
2687             }
2688 
2689             interp_name = g_malloc(eppnt->p_filesz);
2690 
2691             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2692                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2693                        eppnt->p_filesz);
2694             } else {
2695                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2696                                eppnt->p_offset);
2697                 if (retval != eppnt->p_filesz) {
2698                     goto exit_read;
2699                 }
2700             }
2701             if (interp_name[eppnt->p_filesz - 1] != 0) {
2702                 error_setg(&err, "Invalid PT_INTERP entry");
2703                 goto exit_errmsg;
2704             }
2705             *pinterp_name = g_steal_pointer(&interp_name);
2706         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2707             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2708                 goto exit_errmsg;
2709             }
2710         }
2711     }
2712 
2713     if (pinterp_name != NULL) {
2714         /*
2715          * This is the main executable.
2716          *
2717          * Reserve extra space for brk.
2718          * We hold on to this space while placing the interpreter
2719          * and the stack, lest they be placed immediately after
2720          * the data segment and block allocation from the brk.
2721          *
2722          * 16MB is chosen as "large enough" without being so large
2723          * as to allow the result to not fit with a 32-bit guest on
2724          * a 32-bit host.
2725          */
2726         info->reserve_brk = 16 * MiB;
2727         hiaddr += info->reserve_brk;
2728 
2729         if (ehdr->e_type == ET_EXEC) {
2730             /*
2731              * Make sure that the low address does not conflict with
2732              * MMAP_MIN_ADDR or the QEMU application itself.
2733              */
2734             probe_guest_base(image_name, loaddr, hiaddr);
2735         } else {
2736             /*
2737              * The binary is dynamic, but we still need to
2738              * select guest_base.  In this case we pass a size.
2739              */
2740             probe_guest_base(image_name, 0, hiaddr - loaddr);
2741         }
2742     }
2743 
2744     /*
2745      * Reserve address space for all of this.
2746      *
2747      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2748      * exactly the address range that is required.
2749      *
2750      * Otherwise this is ET_DYN, and we are searching for a location
2751      * that can hold the memory space required.  If the image is
2752      * pre-linked, LOADDR will be non-zero, and the kernel should
2753      * honor that address if it happens to be free.
2754      *
2755      * In both cases, we will overwrite pages in this range with mappings
2756      * from the executable.
2757      */
2758     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2759                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2760                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2761                             -1, 0);
2762     if (load_addr == -1) {
2763         goto exit_mmap;
2764     }
2765     load_bias = load_addr - loaddr;
2766 
2767     if (elf_is_fdpic(ehdr)) {
2768         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2769             g_malloc(sizeof(*loadsegs) * info->nsegs);
2770 
2771         for (i = 0; i < ehdr->e_phnum; ++i) {
2772             switch (phdr[i].p_type) {
2773             case PT_DYNAMIC:
2774                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2775                 break;
2776             case PT_LOAD:
2777                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2778                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2779                 loadsegs->p_memsz = phdr[i].p_memsz;
2780                 ++loadsegs;
2781                 break;
2782             }
2783         }
2784     }
2785 
2786     info->load_bias = load_bias;
2787     info->code_offset = load_bias;
2788     info->data_offset = load_bias;
2789     info->load_addr = load_addr;
2790     info->entry = ehdr->e_entry + load_bias;
2791     info->start_code = -1;
2792     info->end_code = 0;
2793     info->start_data = -1;
2794     info->end_data = 0;
2795     info->brk = 0;
2796     info->elf_flags = ehdr->e_flags;
2797 
2798     prot_exec = PROT_EXEC;
2799 #ifdef TARGET_AARCH64
2800     /*
2801      * If the BTI feature is present, this indicates that the executable
2802      * pages of the startup binary should be mapped with PROT_BTI, so that
2803      * branch targets are enforced.
2804      *
2805      * The startup binary is either the interpreter or the static executable.
2806      * The interpreter is responsible for all pages of a dynamic executable.
2807      *
2808      * Elf notes are backward compatible to older cpus.
2809      * Do not enable BTI unless it is supported.
2810      */
2811     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2812         && (pinterp_name == NULL || *pinterp_name == 0)
2813         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2814         prot_exec |= TARGET_PROT_BTI;
2815     }
2816 #endif
2817 
2818     for (i = 0; i < ehdr->e_phnum; i++) {
2819         struct elf_phdr *eppnt = phdr + i;
2820         if (eppnt->p_type == PT_LOAD) {
2821             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2822             int elf_prot = 0;
2823 
2824             if (eppnt->p_flags & PF_R) {
2825                 elf_prot |= PROT_READ;
2826             }
2827             if (eppnt->p_flags & PF_W) {
2828                 elf_prot |= PROT_WRITE;
2829             }
2830             if (eppnt->p_flags & PF_X) {
2831                 elf_prot |= prot_exec;
2832             }
2833 
2834             vaddr = load_bias + eppnt->p_vaddr;
2835             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2836             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2837 
2838             vaddr_ef = vaddr + eppnt->p_filesz;
2839             vaddr_em = vaddr + eppnt->p_memsz;
2840 
2841             /*
2842              * Some segments may be completely empty, with a non-zero p_memsz
2843              * but no backing file segment.
2844              */
2845             if (eppnt->p_filesz != 0) {
2846                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2847                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2848                                     MAP_PRIVATE | MAP_FIXED,
2849                                     image_fd, eppnt->p_offset - vaddr_po);
2850 
2851                 if (error == -1) {
2852                     goto exit_mmap;
2853                 }
2854 
2855                 /*
2856                  * If the load segment requests extra zeros (e.g. bss), map it.
2857                  */
2858                 if (eppnt->p_filesz < eppnt->p_memsz) {
2859                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2860                 }
2861             } else if (eppnt->p_memsz != 0) {
2862                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2863                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2864                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2865                                     -1, 0);
2866 
2867                 if (error == -1) {
2868                     goto exit_mmap;
2869                 }
2870             }
2871 
2872             /* Find the full program boundaries.  */
2873             if (elf_prot & PROT_EXEC) {
2874                 if (vaddr < info->start_code) {
2875                     info->start_code = vaddr;
2876                 }
2877                 if (vaddr_ef > info->end_code) {
2878                     info->end_code = vaddr_ef;
2879                 }
2880             }
2881             if (elf_prot & PROT_WRITE) {
2882                 if (vaddr < info->start_data) {
2883                     info->start_data = vaddr;
2884                 }
2885                 if (vaddr_ef > info->end_data) {
2886                     info->end_data = vaddr_ef;
2887                 }
2888             }
2889             if (vaddr_em > info->brk) {
2890                 info->brk = vaddr_em;
2891             }
2892 #ifdef TARGET_MIPS
2893         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2894             Mips_elf_abiflags_v0 abiflags;
2895             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2896                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2897                 goto exit_errmsg;
2898             }
2899             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2900                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2901                        sizeof(Mips_elf_abiflags_v0));
2902             } else {
2903                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2904                                eppnt->p_offset);
2905                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2906                     goto exit_read;
2907                 }
2908             }
2909             bswap_mips_abiflags(&abiflags);
2910             info->fp_abi = abiflags.fp_abi;
2911 #endif
2912         }
2913     }
2914 
2915     if (info->end_data == 0) {
2916         info->start_data = info->end_code;
2917         info->end_data = info->end_code;
2918     }
2919 
2920     if (qemu_log_enabled()) {
2921         load_symbols(ehdr, image_fd, load_bias);
2922     }
2923 
2924     mmap_unlock();
2925 
2926     close(image_fd);
2927     return;
2928 
2929  exit_read:
2930     if (retval >= 0) {
2931         error_setg(&err, "Incomplete read of file header");
2932     } else {
2933         error_setg_errno(&err, errno, "Error reading file header");
2934     }
2935     goto exit_errmsg;
2936  exit_mmap:
2937     error_setg_errno(&err, errno, "Error mapping file");
2938     goto exit_errmsg;
2939  exit_errmsg:
2940     error_reportf_err(err, "%s: ", image_name);
2941     exit(-1);
2942 }
2943 
2944 static void load_elf_interp(const char *filename, struct image_info *info,
2945                             char bprm_buf[BPRM_BUF_SIZE])
2946 {
2947     int fd, retval;
2948     Error *err = NULL;
2949 
2950     fd = open(path(filename), O_RDONLY);
2951     if (fd < 0) {
2952         error_setg_file_open(&err, errno, filename);
2953         error_report_err(err);
2954         exit(-1);
2955     }
2956 
2957     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2958     if (retval < 0) {
2959         error_setg_errno(&err, errno, "Error reading file header");
2960         error_reportf_err(err, "%s: ", filename);
2961         exit(-1);
2962     }
2963 
2964     if (retval < BPRM_BUF_SIZE) {
2965         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2966     }
2967 
2968     load_elf_image(filename, fd, info, NULL, bprm_buf);
2969 }
2970 
2971 static int symfind(const void *s0, const void *s1)
2972 {
2973     target_ulong addr = *(target_ulong *)s0;
2974     struct elf_sym *sym = (struct elf_sym *)s1;
2975     int result = 0;
2976     if (addr < sym->st_value) {
2977         result = -1;
2978     } else if (addr >= sym->st_value + sym->st_size) {
2979         result = 1;
2980     }
2981     return result;
2982 }
2983 
2984 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2985 {
2986 #if ELF_CLASS == ELFCLASS32
2987     struct elf_sym *syms = s->disas_symtab.elf32;
2988 #else
2989     struct elf_sym *syms = s->disas_symtab.elf64;
2990 #endif
2991 
2992     // binary search
2993     struct elf_sym *sym;
2994 
2995     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2996     if (sym != NULL) {
2997         return s->disas_strtab + sym->st_name;
2998     }
2999 
3000     return "";
3001 }
3002 
3003 /* FIXME: This should use elf_ops.h  */
3004 static int symcmp(const void *s0, const void *s1)
3005 {
3006     struct elf_sym *sym0 = (struct elf_sym *)s0;
3007     struct elf_sym *sym1 = (struct elf_sym *)s1;
3008     return (sym0->st_value < sym1->st_value)
3009         ? -1
3010         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3011 }
3012 
3013 /* Best attempt to load symbols from this ELF object. */
3014 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3015 {
3016     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3017     uint64_t segsz;
3018     struct elf_shdr *shdr;
3019     char *strings = NULL;
3020     struct syminfo *s = NULL;
3021     struct elf_sym *new_syms, *syms = NULL;
3022 
3023     shnum = hdr->e_shnum;
3024     i = shnum * sizeof(struct elf_shdr);
3025     shdr = (struct elf_shdr *)alloca(i);
3026     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3027         return;
3028     }
3029 
3030     bswap_shdr(shdr, shnum);
3031     for (i = 0; i < shnum; ++i) {
3032         if (shdr[i].sh_type == SHT_SYMTAB) {
3033             sym_idx = i;
3034             str_idx = shdr[i].sh_link;
3035             goto found;
3036         }
3037     }
3038 
3039     /* There will be no symbol table if the file was stripped.  */
3040     return;
3041 
3042  found:
3043     /* Now know where the strtab and symtab are.  Snarf them.  */
3044     s = g_try_new(struct syminfo, 1);
3045     if (!s) {
3046         goto give_up;
3047     }
3048 
3049     segsz = shdr[str_idx].sh_size;
3050     s->disas_strtab = strings = g_try_malloc(segsz);
3051     if (!strings ||
3052         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3053         goto give_up;
3054     }
3055 
3056     segsz = shdr[sym_idx].sh_size;
3057     syms = g_try_malloc(segsz);
3058     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3059         goto give_up;
3060     }
3061 
3062     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3063         /* Implausibly large symbol table: give up rather than ploughing
3064          * on with the number of symbols calculation overflowing
3065          */
3066         goto give_up;
3067     }
3068     nsyms = segsz / sizeof(struct elf_sym);
3069     for (i = 0; i < nsyms; ) {
3070         bswap_sym(syms + i);
3071         /* Throw away entries which we do not need.  */
3072         if (syms[i].st_shndx == SHN_UNDEF
3073             || syms[i].st_shndx >= SHN_LORESERVE
3074             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3075             if (i < --nsyms) {
3076                 syms[i] = syms[nsyms];
3077             }
3078         } else {
3079 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3080             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3081             syms[i].st_value &= ~(target_ulong)1;
3082 #endif
3083             syms[i].st_value += load_bias;
3084             i++;
3085         }
3086     }
3087 
3088     /* No "useful" symbol.  */
3089     if (nsyms == 0) {
3090         goto give_up;
3091     }
3092 
3093     /* Attempt to free the storage associated with the local symbols
3094        that we threw away.  Whether or not this has any effect on the
3095        memory allocation depends on the malloc implementation and how
3096        many symbols we managed to discard.  */
3097     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3098     if (new_syms == NULL) {
3099         goto give_up;
3100     }
3101     syms = new_syms;
3102 
3103     qsort(syms, nsyms, sizeof(*syms), symcmp);
3104 
3105     s->disas_num_syms = nsyms;
3106 #if ELF_CLASS == ELFCLASS32
3107     s->disas_symtab.elf32 = syms;
3108 #else
3109     s->disas_symtab.elf64 = syms;
3110 #endif
3111     s->lookup_symbol = lookup_symbolxx;
3112     s->next = syminfos;
3113     syminfos = s;
3114 
3115     return;
3116 
3117 give_up:
3118     g_free(s);
3119     g_free(strings);
3120     g_free(syms);
3121 }
3122 
3123 uint32_t get_elf_eflags(int fd)
3124 {
3125     struct elfhdr ehdr;
3126     off_t offset;
3127     int ret;
3128 
3129     /* Read ELF header */
3130     offset = lseek(fd, 0, SEEK_SET);
3131     if (offset == (off_t) -1) {
3132         return 0;
3133     }
3134     ret = read(fd, &ehdr, sizeof(ehdr));
3135     if (ret < sizeof(ehdr)) {
3136         return 0;
3137     }
3138     offset = lseek(fd, offset, SEEK_SET);
3139     if (offset == (off_t) -1) {
3140         return 0;
3141     }
3142 
3143     /* Check ELF signature */
3144     if (!elf_check_ident(&ehdr)) {
3145         return 0;
3146     }
3147 
3148     /* check header */
3149     bswap_ehdr(&ehdr);
3150     if (!elf_check_ehdr(&ehdr)) {
3151         return 0;
3152     }
3153 
3154     /* return architecture id */
3155     return ehdr.e_flags;
3156 }
3157 
3158 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3159 {
3160     struct image_info interp_info;
3161     struct elfhdr elf_ex;
3162     char *elf_interpreter = NULL;
3163     char *scratch;
3164 
3165     memset(&interp_info, 0, sizeof(interp_info));
3166 #ifdef TARGET_MIPS
3167     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3168 #endif
3169 
3170     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3171 
3172     load_elf_image(bprm->filename, bprm->fd, info,
3173                    &elf_interpreter, bprm->buf);
3174 
3175     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3176        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3177        when we load the interpreter.  */
3178     elf_ex = *(struct elfhdr *)bprm->buf;
3179 
3180     /* Do this so that we can load the interpreter, if need be.  We will
3181        change some of these later */
3182     bprm->p = setup_arg_pages(bprm, info);
3183 
3184     scratch = g_new0(char, TARGET_PAGE_SIZE);
3185     if (STACK_GROWS_DOWN) {
3186         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3187                                    bprm->p, info->stack_limit);
3188         info->file_string = bprm->p;
3189         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3190                                    bprm->p, info->stack_limit);
3191         info->env_strings = bprm->p;
3192         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3193                                    bprm->p, info->stack_limit);
3194         info->arg_strings = bprm->p;
3195     } else {
3196         info->arg_strings = bprm->p;
3197         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3198                                    bprm->p, info->stack_limit);
3199         info->env_strings = bprm->p;
3200         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3201                                    bprm->p, info->stack_limit);
3202         info->file_string = bprm->p;
3203         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3204                                    bprm->p, info->stack_limit);
3205     }
3206 
3207     g_free(scratch);
3208 
3209     if (!bprm->p) {
3210         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3211         exit(-1);
3212     }
3213 
3214     if (elf_interpreter) {
3215         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3216 
3217         /* If the program interpreter is one of these two, then assume
3218            an iBCS2 image.  Otherwise assume a native linux image.  */
3219 
3220         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3221             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3222             info->personality = PER_SVR4;
3223 
3224             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3225                and some applications "depend" upon this behavior.  Since
3226                we do not have the power to recompile these, we emulate
3227                the SVr4 behavior.  Sigh.  */
3228             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3229                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3230         }
3231 #ifdef TARGET_MIPS
3232         info->interp_fp_abi = interp_info.fp_abi;
3233 #endif
3234     }
3235 
3236     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3237                                 info, (elf_interpreter ? &interp_info : NULL));
3238     info->start_stack = bprm->p;
3239 
3240     /* If we have an interpreter, set that as the program's entry point.
3241        Copy the load_bias as well, to help PPC64 interpret the entry
3242        point as a function descriptor.  Do this after creating elf tables
3243        so that we copy the original program entry point into the AUXV.  */
3244     if (elf_interpreter) {
3245         info->load_bias = interp_info.load_bias;
3246         info->entry = interp_info.entry;
3247         g_free(elf_interpreter);
3248     }
3249 
3250 #ifdef USE_ELF_CORE_DUMP
3251     bprm->core_dump = &elf_core_dump;
3252 #endif
3253 
3254     /*
3255      * If we reserved extra space for brk, release it now.
3256      * The implementation of do_brk in syscalls.c expects to be able
3257      * to mmap pages in this space.
3258      */
3259     if (info->reserve_brk) {
3260         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3261         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3262         target_munmap(start_brk, end_brk - start_brk);
3263     }
3264 
3265     return 0;
3266 }
3267 
3268 #ifdef USE_ELF_CORE_DUMP
3269 /*
3270  * Definitions to generate Intel SVR4-like core files.
3271  * These mostly have the same names as the SVR4 types with "target_elf_"
3272  * tacked on the front to prevent clashes with linux definitions,
3273  * and the typedef forms have been avoided.  This is mostly like
3274  * the SVR4 structure, but more Linuxy, with things that Linux does
3275  * not support and which gdb doesn't really use excluded.
3276  *
3277  * Fields we don't dump (their contents is zero) in linux-user qemu
3278  * are marked with XXX.
3279  *
3280  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3281  *
3282  * Porting ELF coredump for target is (quite) simple process.  First you
3283  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3284  * the target resides):
3285  *
3286  * #define USE_ELF_CORE_DUMP
3287  *
3288  * Next you define type of register set used for dumping.  ELF specification
3289  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3290  *
3291  * typedef <target_regtype> target_elf_greg_t;
3292  * #define ELF_NREG <number of registers>
3293  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3294  *
3295  * Last step is to implement target specific function that copies registers
3296  * from given cpu into just specified register set.  Prototype is:
3297  *
3298  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3299  *                                const CPUArchState *env);
3300  *
3301  * Parameters:
3302  *     regs - copy register values into here (allocated and zeroed by caller)
3303  *     env - copy registers from here
3304  *
3305  * Example for ARM target is provided in this file.
3306  */
3307 
3308 /* An ELF note in memory */
3309 struct memelfnote {
3310     const char *name;
3311     size_t     namesz;
3312     size_t     namesz_rounded;
3313     int        type;
3314     size_t     datasz;
3315     size_t     datasz_rounded;
3316     void       *data;
3317     size_t     notesz;
3318 };
3319 
3320 struct target_elf_siginfo {
3321     abi_int    si_signo; /* signal number */
3322     abi_int    si_code;  /* extra code */
3323     abi_int    si_errno; /* errno */
3324 };
3325 
3326 struct target_elf_prstatus {
3327     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3328     abi_short          pr_cursig;    /* Current signal */
3329     abi_ulong          pr_sigpend;   /* XXX */
3330     abi_ulong          pr_sighold;   /* XXX */
3331     target_pid_t       pr_pid;
3332     target_pid_t       pr_ppid;
3333     target_pid_t       pr_pgrp;
3334     target_pid_t       pr_sid;
3335     struct target_timeval pr_utime;  /* XXX User time */
3336     struct target_timeval pr_stime;  /* XXX System time */
3337     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3338     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3339     target_elf_gregset_t      pr_reg;       /* GP registers */
3340     abi_int            pr_fpvalid;   /* XXX */
3341 };
3342 
3343 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3344 
3345 struct target_elf_prpsinfo {
3346     char         pr_state;       /* numeric process state */
3347     char         pr_sname;       /* char for pr_state */
3348     char         pr_zomb;        /* zombie */
3349     char         pr_nice;        /* nice val */
3350     abi_ulong    pr_flag;        /* flags */
3351     target_uid_t pr_uid;
3352     target_gid_t pr_gid;
3353     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3354     /* Lots missing */
3355     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3356     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3357 };
3358 
3359 /* Here is the structure in which status of each thread is captured. */
3360 struct elf_thread_status {
3361     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3362     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3363 #if 0
3364     elf_fpregset_t fpu;             /* NT_PRFPREG */
3365     struct task_struct *thread;
3366     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3367 #endif
3368     struct memelfnote notes[1];
3369     int num_notes;
3370 };
3371 
3372 struct elf_note_info {
3373     struct memelfnote   *notes;
3374     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3375     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3376 
3377     QTAILQ_HEAD(, elf_thread_status) thread_list;
3378 #if 0
3379     /*
3380      * Current version of ELF coredump doesn't support
3381      * dumping fp regs etc.
3382      */
3383     elf_fpregset_t *fpu;
3384     elf_fpxregset_t *xfpu;
3385     int thread_status_size;
3386 #endif
3387     int notes_size;
3388     int numnote;
3389 };
3390 
3391 struct vm_area_struct {
3392     target_ulong   vma_start;  /* start vaddr of memory region */
3393     target_ulong   vma_end;    /* end vaddr of memory region */
3394     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3395     QTAILQ_ENTRY(vm_area_struct) vma_link;
3396 };
3397 
3398 struct mm_struct {
3399     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3400     int mm_count;           /* number of mappings */
3401 };
3402 
3403 static struct mm_struct *vma_init(void);
3404 static void vma_delete(struct mm_struct *);
3405 static int vma_add_mapping(struct mm_struct *, target_ulong,
3406                            target_ulong, abi_ulong);
3407 static int vma_get_mapping_count(const struct mm_struct *);
3408 static struct vm_area_struct *vma_first(const struct mm_struct *);
3409 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3410 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3411 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3412                       unsigned long flags);
3413 
3414 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3415 static void fill_note(struct memelfnote *, const char *, int,
3416                       unsigned int, void *);
3417 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3418 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3419 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3420 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3421 static size_t note_size(const struct memelfnote *);
3422 static void free_note_info(struct elf_note_info *);
3423 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3424 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3425 
3426 static int dump_write(int, const void *, size_t);
3427 static int write_note(struct memelfnote *, int);
3428 static int write_note_info(struct elf_note_info *, int);
3429 
3430 #ifdef BSWAP_NEEDED
3431 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3432 {
3433     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3434     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3435     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3436     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3437     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3438     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3439     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3440     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3441     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3442     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3443     /* cpu times are not filled, so we skip them */
3444     /* regs should be in correct format already */
3445     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3446 }
3447 
3448 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3449 {
3450     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3451     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3452     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3453     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3454     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3455     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3456     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3457 }
3458 
3459 static void bswap_note(struct elf_note *en)
3460 {
3461     bswap32s(&en->n_namesz);
3462     bswap32s(&en->n_descsz);
3463     bswap32s(&en->n_type);
3464 }
3465 #else
3466 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3467 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3468 static inline void bswap_note(struct elf_note *en) { }
3469 #endif /* BSWAP_NEEDED */
3470 
3471 /*
3472  * Minimal support for linux memory regions.  These are needed
3473  * when we are finding out what memory exactly belongs to
3474  * emulated process.  No locks needed here, as long as
3475  * thread that received the signal is stopped.
3476  */
3477 
3478 static struct mm_struct *vma_init(void)
3479 {
3480     struct mm_struct *mm;
3481 
3482     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3483         return (NULL);
3484 
3485     mm->mm_count = 0;
3486     QTAILQ_INIT(&mm->mm_mmap);
3487 
3488     return (mm);
3489 }
3490 
3491 static void vma_delete(struct mm_struct *mm)
3492 {
3493     struct vm_area_struct *vma;
3494 
3495     while ((vma = vma_first(mm)) != NULL) {
3496         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3497         g_free(vma);
3498     }
3499     g_free(mm);
3500 }
3501 
3502 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3503                            target_ulong end, abi_ulong flags)
3504 {
3505     struct vm_area_struct *vma;
3506 
3507     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3508         return (-1);
3509 
3510     vma->vma_start = start;
3511     vma->vma_end = end;
3512     vma->vma_flags = flags;
3513 
3514     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3515     mm->mm_count++;
3516 
3517     return (0);
3518 }
3519 
3520 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3521 {
3522     return (QTAILQ_FIRST(&mm->mm_mmap));
3523 }
3524 
3525 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3526 {
3527     return (QTAILQ_NEXT(vma, vma_link));
3528 }
3529 
3530 static int vma_get_mapping_count(const struct mm_struct *mm)
3531 {
3532     return (mm->mm_count);
3533 }
3534 
3535 /*
3536  * Calculate file (dump) size of given memory region.
3537  */
3538 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3539 {
3540     /* if we cannot even read the first page, skip it */
3541     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3542         return (0);
3543 
3544     /*
3545      * Usually we don't dump executable pages as they contain
3546      * non-writable code that debugger can read directly from
3547      * target library etc.  However, thread stacks are marked
3548      * also executable so we read in first page of given region
3549      * and check whether it contains elf header.  If there is
3550      * no elf header, we dump it.
3551      */
3552     if (vma->vma_flags & PROT_EXEC) {
3553         char page[TARGET_PAGE_SIZE];
3554 
3555         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3556             return 0;
3557         }
3558         if ((page[EI_MAG0] == ELFMAG0) &&
3559             (page[EI_MAG1] == ELFMAG1) &&
3560             (page[EI_MAG2] == ELFMAG2) &&
3561             (page[EI_MAG3] == ELFMAG3)) {
3562             /*
3563              * Mappings are possibly from ELF binary.  Don't dump
3564              * them.
3565              */
3566             return (0);
3567         }
3568     }
3569 
3570     return (vma->vma_end - vma->vma_start);
3571 }
3572 
3573 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3574                       unsigned long flags)
3575 {
3576     struct mm_struct *mm = (struct mm_struct *)priv;
3577 
3578     vma_add_mapping(mm, start, end, flags);
3579     return (0);
3580 }
3581 
3582 static void fill_note(struct memelfnote *note, const char *name, int type,
3583                       unsigned int sz, void *data)
3584 {
3585     unsigned int namesz;
3586 
3587     namesz = strlen(name) + 1;
3588     note->name = name;
3589     note->namesz = namesz;
3590     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3591     note->type = type;
3592     note->datasz = sz;
3593     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3594 
3595     note->data = data;
3596 
3597     /*
3598      * We calculate rounded up note size here as specified by
3599      * ELF document.
3600      */
3601     note->notesz = sizeof (struct elf_note) +
3602         note->namesz_rounded + note->datasz_rounded;
3603 }
3604 
3605 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3606                             uint32_t flags)
3607 {
3608     (void) memset(elf, 0, sizeof(*elf));
3609 
3610     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3611     elf->e_ident[EI_CLASS] = ELF_CLASS;
3612     elf->e_ident[EI_DATA] = ELF_DATA;
3613     elf->e_ident[EI_VERSION] = EV_CURRENT;
3614     elf->e_ident[EI_OSABI] = ELF_OSABI;
3615 
3616     elf->e_type = ET_CORE;
3617     elf->e_machine = machine;
3618     elf->e_version = EV_CURRENT;
3619     elf->e_phoff = sizeof(struct elfhdr);
3620     elf->e_flags = flags;
3621     elf->e_ehsize = sizeof(struct elfhdr);
3622     elf->e_phentsize = sizeof(struct elf_phdr);
3623     elf->e_phnum = segs;
3624 
3625     bswap_ehdr(elf);
3626 }
3627 
3628 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3629 {
3630     phdr->p_type = PT_NOTE;
3631     phdr->p_offset = offset;
3632     phdr->p_vaddr = 0;
3633     phdr->p_paddr = 0;
3634     phdr->p_filesz = sz;
3635     phdr->p_memsz = 0;
3636     phdr->p_flags = 0;
3637     phdr->p_align = 0;
3638 
3639     bswap_phdr(phdr, 1);
3640 }
3641 
3642 static size_t note_size(const struct memelfnote *note)
3643 {
3644     return (note->notesz);
3645 }
3646 
3647 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3648                           const TaskState *ts, int signr)
3649 {
3650     (void) memset(prstatus, 0, sizeof (*prstatus));
3651     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3652     prstatus->pr_pid = ts->ts_tid;
3653     prstatus->pr_ppid = getppid();
3654     prstatus->pr_pgrp = getpgrp();
3655     prstatus->pr_sid = getsid(0);
3656 
3657     bswap_prstatus(prstatus);
3658 }
3659 
3660 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3661 {
3662     char *base_filename;
3663     unsigned int i, len;
3664 
3665     (void) memset(psinfo, 0, sizeof (*psinfo));
3666 
3667     len = ts->info->env_strings - ts->info->arg_strings;
3668     if (len >= ELF_PRARGSZ)
3669         len = ELF_PRARGSZ - 1;
3670     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3671         return -EFAULT;
3672     }
3673     for (i = 0; i < len; i++)
3674         if (psinfo->pr_psargs[i] == 0)
3675             psinfo->pr_psargs[i] = ' ';
3676     psinfo->pr_psargs[len] = 0;
3677 
3678     psinfo->pr_pid = getpid();
3679     psinfo->pr_ppid = getppid();
3680     psinfo->pr_pgrp = getpgrp();
3681     psinfo->pr_sid = getsid(0);
3682     psinfo->pr_uid = getuid();
3683     psinfo->pr_gid = getgid();
3684 
3685     base_filename = g_path_get_basename(ts->bprm->filename);
3686     /*
3687      * Using strncpy here is fine: at max-length,
3688      * this field is not NUL-terminated.
3689      */
3690     (void) strncpy(psinfo->pr_fname, base_filename,
3691                    sizeof(psinfo->pr_fname));
3692 
3693     g_free(base_filename);
3694     bswap_psinfo(psinfo);
3695     return (0);
3696 }
3697 
3698 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3699 {
3700     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3701     elf_addr_t orig_auxv = auxv;
3702     void *ptr;
3703     int len = ts->info->auxv_len;
3704 
3705     /*
3706      * Auxiliary vector is stored in target process stack.  It contains
3707      * {type, value} pairs that we need to dump into note.  This is not
3708      * strictly necessary but we do it here for sake of completeness.
3709      */
3710 
3711     /* read in whole auxv vector and copy it to memelfnote */
3712     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3713     if (ptr != NULL) {
3714         fill_note(note, "CORE", NT_AUXV, len, ptr);
3715         unlock_user(ptr, auxv, len);
3716     }
3717 }
3718 
3719 /*
3720  * Constructs name of coredump file.  We have following convention
3721  * for the name:
3722  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3723  *
3724  * Returns the filename
3725  */
3726 static char *core_dump_filename(const TaskState *ts)
3727 {
3728     g_autoptr(GDateTime) now = g_date_time_new_now_local();
3729     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3730     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3731 
3732     return g_strdup_printf("qemu_%s_%s_%d.core",
3733                            base_filename, nowstr, (int)getpid());
3734 }
3735 
3736 static int dump_write(int fd, const void *ptr, size_t size)
3737 {
3738     const char *bufp = (const char *)ptr;
3739     ssize_t bytes_written, bytes_left;
3740     struct rlimit dumpsize;
3741     off_t pos;
3742 
3743     bytes_written = 0;
3744     getrlimit(RLIMIT_CORE, &dumpsize);
3745     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3746         if (errno == ESPIPE) { /* not a seekable stream */
3747             bytes_left = size;
3748         } else {
3749             return pos;
3750         }
3751     } else {
3752         if (dumpsize.rlim_cur <= pos) {
3753             return -1;
3754         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3755             bytes_left = size;
3756         } else {
3757             size_t limit_left=dumpsize.rlim_cur - pos;
3758             bytes_left = limit_left >= size ? size : limit_left ;
3759         }
3760     }
3761 
3762     /*
3763      * In normal conditions, single write(2) should do but
3764      * in case of socket etc. this mechanism is more portable.
3765      */
3766     do {
3767         bytes_written = write(fd, bufp, bytes_left);
3768         if (bytes_written < 0) {
3769             if (errno == EINTR)
3770                 continue;
3771             return (-1);
3772         } else if (bytes_written == 0) { /* eof */
3773             return (-1);
3774         }
3775         bufp += bytes_written;
3776         bytes_left -= bytes_written;
3777     } while (bytes_left > 0);
3778 
3779     return (0);
3780 }
3781 
3782 static int write_note(struct memelfnote *men, int fd)
3783 {
3784     struct elf_note en;
3785 
3786     en.n_namesz = men->namesz;
3787     en.n_type = men->type;
3788     en.n_descsz = men->datasz;
3789 
3790     bswap_note(&en);
3791 
3792     if (dump_write(fd, &en, sizeof(en)) != 0)
3793         return (-1);
3794     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3795         return (-1);
3796     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3797         return (-1);
3798 
3799     return (0);
3800 }
3801 
3802 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3803 {
3804     CPUState *cpu = env_cpu((CPUArchState *)env);
3805     TaskState *ts = (TaskState *)cpu->opaque;
3806     struct elf_thread_status *ets;
3807 
3808     ets = g_malloc0(sizeof (*ets));
3809     ets->num_notes = 1; /* only prstatus is dumped */
3810     fill_prstatus(&ets->prstatus, ts, 0);
3811     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3812     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3813               &ets->prstatus);
3814 
3815     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3816 
3817     info->notes_size += note_size(&ets->notes[0]);
3818 }
3819 
3820 static void init_note_info(struct elf_note_info *info)
3821 {
3822     /* Initialize the elf_note_info structure so that it is at
3823      * least safe to call free_note_info() on it. Must be
3824      * called before calling fill_note_info().
3825      */
3826     memset(info, 0, sizeof (*info));
3827     QTAILQ_INIT(&info->thread_list);
3828 }
3829 
3830 static int fill_note_info(struct elf_note_info *info,
3831                           long signr, const CPUArchState *env)
3832 {
3833 #define NUMNOTES 3
3834     CPUState *cpu = env_cpu((CPUArchState *)env);
3835     TaskState *ts = (TaskState *)cpu->opaque;
3836     int i;
3837 
3838     info->notes = g_new0(struct memelfnote, NUMNOTES);
3839     if (info->notes == NULL)
3840         return (-ENOMEM);
3841     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3842     if (info->prstatus == NULL)
3843         return (-ENOMEM);
3844     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3845     if (info->prstatus == NULL)
3846         return (-ENOMEM);
3847 
3848     /*
3849      * First fill in status (and registers) of current thread
3850      * including process info & aux vector.
3851      */
3852     fill_prstatus(info->prstatus, ts, signr);
3853     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3854     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3855               sizeof (*info->prstatus), info->prstatus);
3856     fill_psinfo(info->psinfo, ts);
3857     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3858               sizeof (*info->psinfo), info->psinfo);
3859     fill_auxv_note(&info->notes[2], ts);
3860     info->numnote = 3;
3861 
3862     info->notes_size = 0;
3863     for (i = 0; i < info->numnote; i++)
3864         info->notes_size += note_size(&info->notes[i]);
3865 
3866     /* read and fill status of all threads */
3867     cpu_list_lock();
3868     CPU_FOREACH(cpu) {
3869         if (cpu == thread_cpu) {
3870             continue;
3871         }
3872         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3873     }
3874     cpu_list_unlock();
3875 
3876     return (0);
3877 }
3878 
3879 static void free_note_info(struct elf_note_info *info)
3880 {
3881     struct elf_thread_status *ets;
3882 
3883     while (!QTAILQ_EMPTY(&info->thread_list)) {
3884         ets = QTAILQ_FIRST(&info->thread_list);
3885         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3886         g_free(ets);
3887     }
3888 
3889     g_free(info->prstatus);
3890     g_free(info->psinfo);
3891     g_free(info->notes);
3892 }
3893 
3894 static int write_note_info(struct elf_note_info *info, int fd)
3895 {
3896     struct elf_thread_status *ets;
3897     int i, error = 0;
3898 
3899     /* write prstatus, psinfo and auxv for current thread */
3900     for (i = 0; i < info->numnote; i++)
3901         if ((error = write_note(&info->notes[i], fd)) != 0)
3902             return (error);
3903 
3904     /* write prstatus for each thread */
3905     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3906         if ((error = write_note(&ets->notes[0], fd)) != 0)
3907             return (error);
3908     }
3909 
3910     return (0);
3911 }
3912 
3913 /*
3914  * Write out ELF coredump.
3915  *
3916  * See documentation of ELF object file format in:
3917  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3918  *
3919  * Coredump format in linux is following:
3920  *
3921  * 0   +----------------------+         \
3922  *     | ELF header           | ET_CORE  |
3923  *     +----------------------+          |
3924  *     | ELF program headers  |          |--- headers
3925  *     | - NOTE section       |          |
3926  *     | - PT_LOAD sections   |          |
3927  *     +----------------------+         /
3928  *     | NOTEs:               |
3929  *     | - NT_PRSTATUS        |
3930  *     | - NT_PRSINFO         |
3931  *     | - NT_AUXV            |
3932  *     +----------------------+ <-- aligned to target page
3933  *     | Process memory dump  |
3934  *     :                      :
3935  *     .                      .
3936  *     :                      :
3937  *     |                      |
3938  *     +----------------------+
3939  *
3940  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3941  * NT_PRSINFO  -> struct elf_prpsinfo
3942  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3943  *
3944  * Format follows System V format as close as possible.  Current
3945  * version limitations are as follows:
3946  *     - no floating point registers are dumped
3947  *
3948  * Function returns 0 in case of success, negative errno otherwise.
3949  *
3950  * TODO: make this work also during runtime: it should be
3951  * possible to force coredump from running process and then
3952  * continue processing.  For example qemu could set up SIGUSR2
3953  * handler (provided that target process haven't registered
3954  * handler for that) that does the dump when signal is received.
3955  */
3956 static int elf_core_dump(int signr, const CPUArchState *env)
3957 {
3958     const CPUState *cpu = env_cpu((CPUArchState *)env);
3959     const TaskState *ts = (const TaskState *)cpu->opaque;
3960     struct vm_area_struct *vma = NULL;
3961     g_autofree char *corefile = NULL;
3962     struct elf_note_info info;
3963     struct elfhdr elf;
3964     struct elf_phdr phdr;
3965     struct rlimit dumpsize;
3966     struct mm_struct *mm = NULL;
3967     off_t offset = 0, data_offset = 0;
3968     int segs = 0;
3969     int fd = -1;
3970 
3971     init_note_info(&info);
3972 
3973     errno = 0;
3974     getrlimit(RLIMIT_CORE, &dumpsize);
3975     if (dumpsize.rlim_cur == 0)
3976         return 0;
3977 
3978     corefile = core_dump_filename(ts);
3979 
3980     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3981                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3982         return (-errno);
3983 
3984     /*
3985      * Walk through target process memory mappings and
3986      * set up structure containing this information.  After
3987      * this point vma_xxx functions can be used.
3988      */
3989     if ((mm = vma_init()) == NULL)
3990         goto out;
3991 
3992     walk_memory_regions(mm, vma_walker);
3993     segs = vma_get_mapping_count(mm);
3994 
3995     /*
3996      * Construct valid coredump ELF header.  We also
3997      * add one more segment for notes.
3998      */
3999     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4000     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4001         goto out;
4002 
4003     /* fill in the in-memory version of notes */
4004     if (fill_note_info(&info, signr, env) < 0)
4005         goto out;
4006 
4007     offset += sizeof (elf);                             /* elf header */
4008     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4009 
4010     /* write out notes program header */
4011     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4012 
4013     offset += info.notes_size;
4014     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4015         goto out;
4016 
4017     /*
4018      * ELF specification wants data to start at page boundary so
4019      * we align it here.
4020      */
4021     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4022 
4023     /*
4024      * Write program headers for memory regions mapped in
4025      * the target process.
4026      */
4027     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4028         (void) memset(&phdr, 0, sizeof (phdr));
4029 
4030         phdr.p_type = PT_LOAD;
4031         phdr.p_offset = offset;
4032         phdr.p_vaddr = vma->vma_start;
4033         phdr.p_paddr = 0;
4034         phdr.p_filesz = vma_dump_size(vma);
4035         offset += phdr.p_filesz;
4036         phdr.p_memsz = vma->vma_end - vma->vma_start;
4037         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4038         if (vma->vma_flags & PROT_WRITE)
4039             phdr.p_flags |= PF_W;
4040         if (vma->vma_flags & PROT_EXEC)
4041             phdr.p_flags |= PF_X;
4042         phdr.p_align = ELF_EXEC_PAGESIZE;
4043 
4044         bswap_phdr(&phdr, 1);
4045         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4046             goto out;
4047         }
4048     }
4049 
4050     /*
4051      * Next we write notes just after program headers.  No
4052      * alignment needed here.
4053      */
4054     if (write_note_info(&info, fd) < 0)
4055         goto out;
4056 
4057     /* align data to page boundary */
4058     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4059         goto out;
4060 
4061     /*
4062      * Finally we can dump process memory into corefile as well.
4063      */
4064     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4065         abi_ulong addr;
4066         abi_ulong end;
4067 
4068         end = vma->vma_start + vma_dump_size(vma);
4069 
4070         for (addr = vma->vma_start; addr < end;
4071              addr += TARGET_PAGE_SIZE) {
4072             char page[TARGET_PAGE_SIZE];
4073             int error;
4074 
4075             /*
4076              *  Read in page from target process memory and
4077              *  write it to coredump file.
4078              */
4079             error = copy_from_user(page, addr, sizeof (page));
4080             if (error != 0) {
4081                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4082                                addr);
4083                 errno = -error;
4084                 goto out;
4085             }
4086             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4087                 goto out;
4088         }
4089     }
4090 
4091  out:
4092     free_note_info(&info);
4093     if (mm != NULL)
4094         vma_delete(mm);
4095     (void) close(fd);
4096 
4097     if (errno != 0)
4098         return (-errno);
4099     return (0);
4100 }
4101 #endif /* USE_ELF_CORE_DUMP */
4102 
4103 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4104 {
4105     init_thread(regs, infop);
4106 }
4107