xref: /openbmc/qemu/linux-user/elfload.c (revision 31cf4b97)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 int info_is_fdpic(struct image_info *info)
82 {
83     return info->personality == PER_LINUX_FDPIC;
84 }
85 
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90 
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95 
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA        ELFDATA2MSB
98 #else
99 #define ELF_DATA        ELFDATA2LSB
100 #endif
101 
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong      target_elf_greg_t;
104 #define tswapreg(ptr)   tswap64(ptr)
105 #else
106 typedef abi_ulong       target_elf_greg_t;
107 #define tswapreg(ptr)   tswapal(ptr)
108 #endif
109 
110 #ifdef USE_UID16
111 typedef abi_ushort      target_uid_t;
112 typedef abi_ushort      target_gid_t;
113 #else
114 typedef abi_uint        target_uid_t;
115 typedef abi_uint        target_gid_t;
116 #endif
117 typedef abi_int         target_pid_t;
118 
119 #ifdef TARGET_I386
120 
121 #define ELF_PLATFORM get_elf_platform()
122 
123 static const char *get_elf_platform(void)
124 {
125     static char elf_platform[] = "i386";
126     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127     if (family > 6)
128         family = 6;
129     if (family >= 3)
130         elf_platform[1] = '0' + family;
131     return elf_platform;
132 }
133 
134 #define ELF_HWCAP get_elf_hwcap()
135 
136 static uint32_t get_elf_hwcap(void)
137 {
138     X86CPU *cpu = X86_CPU(thread_cpu);
139 
140     return cpu->env.features[FEAT_1_EDX];
141 }
142 
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145 
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151     regs->rax = 0;
152     regs->rsp = infop->start_stack;
153     regs->rip = infop->entry;
154 }
155 
156 #define ELF_NREG    27
157 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
158 
159 /*
160  * Note that ELF_NREG should be 29 as there should be place for
161  * TRAPNO and ERR "registers" as well but linux doesn't dump
162  * those.
163  *
164  * See linux kernel: arch/x86/include/asm/elf.h
165  */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168     (*regs)[0] = env->regs[15];
169     (*regs)[1] = env->regs[14];
170     (*regs)[2] = env->regs[13];
171     (*regs)[3] = env->regs[12];
172     (*regs)[4] = env->regs[R_EBP];
173     (*regs)[5] = env->regs[R_EBX];
174     (*regs)[6] = env->regs[11];
175     (*regs)[7] = env->regs[10];
176     (*regs)[8] = env->regs[9];
177     (*regs)[9] = env->regs[8];
178     (*regs)[10] = env->regs[R_EAX];
179     (*regs)[11] = env->regs[R_ECX];
180     (*regs)[12] = env->regs[R_EDX];
181     (*regs)[13] = env->regs[R_ESI];
182     (*regs)[14] = env->regs[R_EDI];
183     (*regs)[15] = env->regs[R_EAX]; /* XXX */
184     (*regs)[16] = env->eip;
185     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186     (*regs)[18] = env->eflags;
187     (*regs)[19] = env->regs[R_ESP];
188     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196 
197 #else
198 
199 #define ELF_START_MMAP 0x80000000
200 
201 /*
202  * This is used to ensure we don't load something for the wrong architecture.
203  */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205 
206 /*
207  * These are used to set parameters in the core dumps.
208  */
209 #define ELF_CLASS       ELFCLASS32
210 #define ELF_ARCH        EM_386
211 
212 static inline void init_thread(struct target_pt_regs *regs,
213                                struct image_info *infop)
214 {
215     regs->esp = infop->start_stack;
216     regs->eip = infop->entry;
217 
218     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219        starts %edx contains a pointer to a function which might be
220        registered using `atexit'.  This provides a mean for the
221        dynamic linker to call DT_FINI functions for shared libraries
222        that have been loaded before the code runs.
223 
224        A value of 0 tells we have no such handler.  */
225     regs->edx = 0;
226 }
227 
228 #define ELF_NREG    17
229 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
230 
231 /*
232  * Note that ELF_NREG should be 19 as there should be place for
233  * TRAPNO and ERR "registers" as well but linux doesn't dump
234  * those.
235  *
236  * See linux kernel: arch/x86/include/asm/elf.h
237  */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240     (*regs)[0] = env->regs[R_EBX];
241     (*regs)[1] = env->regs[R_ECX];
242     (*regs)[2] = env->regs[R_EDX];
243     (*regs)[3] = env->regs[R_ESI];
244     (*regs)[4] = env->regs[R_EDI];
245     (*regs)[5] = env->regs[R_EBP];
246     (*regs)[6] = env->regs[R_EAX];
247     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251     (*regs)[11] = env->regs[R_EAX]; /* XXX */
252     (*regs)[12] = env->eip;
253     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254     (*regs)[14] = env->eflags;
255     (*regs)[15] = env->regs[R_ESP];
256     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259 
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE       4096
262 
263 #endif
264 
265 #ifdef TARGET_ARM
266 
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269 
270 #define ELF_START_MMAP 0x80000000
271 
272 #define ELF_ARCH        EM_ARM
273 #define ELF_CLASS       ELFCLASS32
274 
275 static inline void init_thread(struct target_pt_regs *regs,
276                                struct image_info *infop)
277 {
278     abi_long stack = infop->start_stack;
279     memset(regs, 0, sizeof(*regs));
280 
281     regs->uregs[16] = ARM_CPU_MODE_USR;
282     if (infop->entry & 1) {
283         regs->uregs[16] |= CPSR_T;
284     }
285     regs->uregs[15] = infop->entry & 0xfffffffe;
286     regs->uregs[13] = infop->start_stack;
287     /* FIXME - what to for failure of get_user()? */
288     get_user_ual(regs->uregs[2], stack + 8); /* envp */
289     get_user_ual(regs->uregs[1], stack + 4); /* envp */
290     /* XXX: it seems that r0 is zeroed after ! */
291     regs->uregs[0] = 0;
292     /* For uClinux PIC binaries.  */
293     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294     regs->uregs[10] = infop->start_data;
295 
296     /* Support ARM FDPIC.  */
297     if (info_is_fdpic(infop)) {
298         /* As described in the ABI document, r7 points to the loadmap info
299          * prepared by the kernel. If an interpreter is needed, r8 points
300          * to the interpreter loadmap and r9 points to the interpreter
301          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302          * r9 points to the main program PT_DYNAMIC info.
303          */
304         regs->uregs[7] = infop->loadmap_addr;
305         if (infop->interpreter_loadmap_addr) {
306             /* Executable is dynamically loaded.  */
307             regs->uregs[8] = infop->interpreter_loadmap_addr;
308             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309         } else {
310             regs->uregs[8] = 0;
311             regs->uregs[9] = infop->pt_dynamic_addr;
312         }
313     }
314 }
315 
316 #define ELF_NREG    18
317 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
318 
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321     (*regs)[0] = tswapreg(env->regs[0]);
322     (*regs)[1] = tswapreg(env->regs[1]);
323     (*regs)[2] = tswapreg(env->regs[2]);
324     (*regs)[3] = tswapreg(env->regs[3]);
325     (*regs)[4] = tswapreg(env->regs[4]);
326     (*regs)[5] = tswapreg(env->regs[5]);
327     (*regs)[6] = tswapreg(env->regs[6]);
328     (*regs)[7] = tswapreg(env->regs[7]);
329     (*regs)[8] = tswapreg(env->regs[8]);
330     (*regs)[9] = tswapreg(env->regs[9]);
331     (*regs)[10] = tswapreg(env->regs[10]);
332     (*regs)[11] = tswapreg(env->regs[11]);
333     (*regs)[12] = tswapreg(env->regs[12]);
334     (*regs)[13] = tswapreg(env->regs[13]);
335     (*regs)[14] = tswapreg(env->regs[14]);
336     (*regs)[15] = tswapreg(env->regs[15]);
337 
338     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341 
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE       4096
344 
345 enum
346 {
347     ARM_HWCAP_ARM_SWP       = 1 << 0,
348     ARM_HWCAP_ARM_HALF      = 1 << 1,
349     ARM_HWCAP_ARM_THUMB     = 1 << 2,
350     ARM_HWCAP_ARM_26BIT     = 1 << 3,
351     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352     ARM_HWCAP_ARM_FPA       = 1 << 5,
353     ARM_HWCAP_ARM_VFP       = 1 << 6,
354     ARM_HWCAP_ARM_EDSP      = 1 << 7,
355     ARM_HWCAP_ARM_JAVA      = 1 << 8,
356     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
357     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
358     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
359     ARM_HWCAP_ARM_NEON      = 1 << 12,
360     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
361     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
362     ARM_HWCAP_ARM_TLS       = 1 << 15,
363     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
364     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
365     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
366     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
367     ARM_HWCAP_ARM_LPAE      = 1 << 20,
368     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
369 };
370 
371 enum {
372     ARM_HWCAP2_ARM_AES      = 1 << 0,
373     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
374     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
375     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
376     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
377 };
378 
379 /* The commpage only exists for 32 bit kernels */
380 
381 /* Return 1 if the proposed guest space is suitable for the guest.
382  * Return 0 if the proposed guest space isn't suitable, but another
383  * address space should be tried.
384  * Return -1 if there is no way the proposed guest space can be
385  * valid regardless of the base.
386  * The guest code may leave a page mapped and populate it if the
387  * address is suitable.
388  */
389 static int init_guest_commpage(unsigned long guest_base,
390                                unsigned long guest_size)
391 {
392     unsigned long real_start, test_page_addr;
393 
394     /* We need to check that we can force a fault on access to the
395      * commpage at 0xffff0fxx
396      */
397     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398 
399     /* If the commpage lies within the already allocated guest space,
400      * then there is no way we can allocate it.
401      *
402      * You may be thinking that that this check is redundant because
403      * we already validated the guest size against MAX_RESERVED_VA;
404      * but if qemu_host_page_mask is unusually large, then
405      * test_page_addr may be lower.
406      */
407     if (test_page_addr >= guest_base
408         && test_page_addr < (guest_base + guest_size)) {
409         return -1;
410     }
411 
412     /* Note it needs to be writeable to let us initialise it */
413     real_start = (unsigned long)
414                  mmap((void *)test_page_addr, qemu_host_page_size,
415                      PROT_READ | PROT_WRITE,
416                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417 
418     /* If we can't map it then try another address */
419     if (real_start == -1ul) {
420         return 0;
421     }
422 
423     if (real_start != test_page_addr) {
424         /* OS didn't put the page where we asked - unmap and reject */
425         munmap((void *)real_start, qemu_host_page_size);
426         return 0;
427     }
428 
429     /* Leave the page mapped
430      * Populate it (mmap should have left it all 0'd)
431      */
432 
433     /* Kernel helper versions */
434     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435 
436     /* Now it's populated make it RO */
437     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438         perror("Protecting guest commpage");
439         exit(-1);
440     }
441 
442     return 1; /* All good */
443 }
444 
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447 
448 static uint32_t get_elf_hwcap(void)
449 {
450     ARMCPU *cpu = ARM_CPU(thread_cpu);
451     uint32_t hwcaps = 0;
452 
453     hwcaps |= ARM_HWCAP_ARM_SWP;
454     hwcaps |= ARM_HWCAP_ARM_HALF;
455     hwcaps |= ARM_HWCAP_ARM_THUMB;
456     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457 
458     /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461 
462 #define GET_FEATURE_ID(feat, hwcap) \
463     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464 
465     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
467     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
472     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
474     GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
475     GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
476     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479      * to our VFP_FP16 feature bit.
480      */
481     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
483 
484     return hwcaps;
485 }
486 
487 static uint32_t get_elf_hwcap2(void)
488 {
489     ARMCPU *cpu = ARM_CPU(thread_cpu);
490     uint32_t hwcaps = 0;
491 
492     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
497     return hwcaps;
498 }
499 
500 #undef GET_FEATURE
501 #undef GET_FEATURE_ID
502 
503 #else
504 /* 64 bit ARM definitions */
505 #define ELF_START_MMAP 0x80000000
506 
507 #define ELF_ARCH        EM_AARCH64
508 #define ELF_CLASS       ELFCLASS64
509 #define ELF_PLATFORM    "aarch64"
510 
511 static inline void init_thread(struct target_pt_regs *regs,
512                                struct image_info *infop)
513 {
514     abi_long stack = infop->start_stack;
515     memset(regs, 0, sizeof(*regs));
516 
517     regs->pc = infop->entry & ~0x3ULL;
518     regs->sp = stack;
519 }
520 
521 #define ELF_NREG    34
522 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
523 
524 static void elf_core_copy_regs(target_elf_gregset_t *regs,
525                                const CPUARMState *env)
526 {
527     int i;
528 
529     for (i = 0; i < 32; i++) {
530         (*regs)[i] = tswapreg(env->xregs[i]);
531     }
532     (*regs)[32] = tswapreg(env->pc);
533     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
534 }
535 
536 #define USE_ELF_CORE_DUMP
537 #define ELF_EXEC_PAGESIZE       4096
538 
539 enum {
540     ARM_HWCAP_A64_FP            = 1 << 0,
541     ARM_HWCAP_A64_ASIMD         = 1 << 1,
542     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
543     ARM_HWCAP_A64_AES           = 1 << 3,
544     ARM_HWCAP_A64_PMULL         = 1 << 4,
545     ARM_HWCAP_A64_SHA1          = 1 << 5,
546     ARM_HWCAP_A64_SHA2          = 1 << 6,
547     ARM_HWCAP_A64_CRC32         = 1 << 7,
548     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
549     ARM_HWCAP_A64_FPHP          = 1 << 9,
550     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
551     ARM_HWCAP_A64_CPUID         = 1 << 11,
552     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
553     ARM_HWCAP_A64_JSCVT         = 1 << 13,
554     ARM_HWCAP_A64_FCMA          = 1 << 14,
555     ARM_HWCAP_A64_LRCPC         = 1 << 15,
556     ARM_HWCAP_A64_DCPOP         = 1 << 16,
557     ARM_HWCAP_A64_SHA3          = 1 << 17,
558     ARM_HWCAP_A64_SM3           = 1 << 18,
559     ARM_HWCAP_A64_SM4           = 1 << 19,
560     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
561     ARM_HWCAP_A64_SHA512        = 1 << 21,
562     ARM_HWCAP_A64_SVE           = 1 << 22,
563 };
564 
565 #define ELF_HWCAP get_elf_hwcap()
566 
567 static uint32_t get_elf_hwcap(void)
568 {
569     ARMCPU *cpu = ARM_CPU(thread_cpu);
570     uint32_t hwcaps = 0;
571 
572     hwcaps |= ARM_HWCAP_A64_FP;
573     hwcaps |= ARM_HWCAP_A64_ASIMD;
574 
575     /* probe for the extra features */
576 #define GET_FEATURE_ID(feat, hwcap) \
577     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
578 
579     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
580     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
581     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
582     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
583     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
584     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
585     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
586     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
587     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
588     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
589     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
590     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
591     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
592     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
593     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
594 
595 #undef GET_FEATURE_ID
596 
597     return hwcaps;
598 }
599 
600 #endif /* not TARGET_AARCH64 */
601 #endif /* TARGET_ARM */
602 
603 #ifdef TARGET_SPARC
604 #ifdef TARGET_SPARC64
605 
606 #define ELF_START_MMAP 0x80000000
607 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
608                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
609 #ifndef TARGET_ABI32
610 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
611 #else
612 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
613 #endif
614 
615 #define ELF_CLASS   ELFCLASS64
616 #define ELF_ARCH    EM_SPARCV9
617 
618 #define STACK_BIAS              2047
619 
620 static inline void init_thread(struct target_pt_regs *regs,
621                                struct image_info *infop)
622 {
623 #ifndef TARGET_ABI32
624     regs->tstate = 0;
625 #endif
626     regs->pc = infop->entry;
627     regs->npc = regs->pc + 4;
628     regs->y = 0;
629 #ifdef TARGET_ABI32
630     regs->u_regs[14] = infop->start_stack - 16 * 4;
631 #else
632     if (personality(infop->personality) == PER_LINUX32)
633         regs->u_regs[14] = infop->start_stack - 16 * 4;
634     else
635         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
636 #endif
637 }
638 
639 #else
640 #define ELF_START_MMAP 0x80000000
641 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
642                     | HWCAP_SPARC_MULDIV)
643 
644 #define ELF_CLASS   ELFCLASS32
645 #define ELF_ARCH    EM_SPARC
646 
647 static inline void init_thread(struct target_pt_regs *regs,
648                                struct image_info *infop)
649 {
650     regs->psr = 0;
651     regs->pc = infop->entry;
652     regs->npc = regs->pc + 4;
653     regs->y = 0;
654     regs->u_regs[14] = infop->start_stack - 16 * 4;
655 }
656 
657 #endif
658 #endif
659 
660 #ifdef TARGET_PPC
661 
662 #define ELF_MACHINE    PPC_ELF_MACHINE
663 #define ELF_START_MMAP 0x80000000
664 
665 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
666 
667 #define elf_check_arch(x) ( (x) == EM_PPC64 )
668 
669 #define ELF_CLASS       ELFCLASS64
670 
671 #else
672 
673 #define ELF_CLASS       ELFCLASS32
674 
675 #endif
676 
677 #define ELF_ARCH        EM_PPC
678 
679 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
680    See arch/powerpc/include/asm/cputable.h.  */
681 enum {
682     QEMU_PPC_FEATURE_32 = 0x80000000,
683     QEMU_PPC_FEATURE_64 = 0x40000000,
684     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
685     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
686     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
687     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
688     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
689     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
690     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
691     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
692     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
693     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
694     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
695     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
696     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
697     QEMU_PPC_FEATURE_CELL = 0x00010000,
698     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
699     QEMU_PPC_FEATURE_SMT = 0x00004000,
700     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
701     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
702     QEMU_PPC_FEATURE_PA6T = 0x00000800,
703     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
704     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
705     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
706     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
707     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
708 
709     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
710     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
711 
712     /* Feature definitions in AT_HWCAP2.  */
713     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
714     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
715     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
716     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
717     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
718     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
719     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
720 };
721 
722 #define ELF_HWCAP get_elf_hwcap()
723 
724 static uint32_t get_elf_hwcap(void)
725 {
726     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
727     uint32_t features = 0;
728 
729     /* We don't have to be terribly complete here; the high points are
730        Altivec/FP/SPE support.  Anything else is just a bonus.  */
731 #define GET_FEATURE(flag, feature)                                      \
732     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
733 #define GET_FEATURE2(flags, feature) \
734     do { \
735         if ((cpu->env.insns_flags2 & flags) == flags) { \
736             features |= feature; \
737         } \
738     } while (0)
739     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
740     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
741     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
742     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
743     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
744     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
745     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
746     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
747     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
748     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
749     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
750                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
751                   QEMU_PPC_FEATURE_ARCH_2_06);
752 #undef GET_FEATURE
753 #undef GET_FEATURE2
754 
755     return features;
756 }
757 
758 #define ELF_HWCAP2 get_elf_hwcap2()
759 
760 static uint32_t get_elf_hwcap2(void)
761 {
762     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
763     uint32_t features = 0;
764 
765 #define GET_FEATURE(flag, feature)                                      \
766     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
767 #define GET_FEATURE2(flag, feature)                                      \
768     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
769 
770     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
771     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
772     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
773                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
774     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
775 
776 #undef GET_FEATURE
777 #undef GET_FEATURE2
778 
779     return features;
780 }
781 
782 /*
783  * The requirements here are:
784  * - keep the final alignment of sp (sp & 0xf)
785  * - make sure the 32-bit value at the first 16 byte aligned position of
786  *   AUXV is greater than 16 for glibc compatibility.
787  *   AT_IGNOREPPC is used for that.
788  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
789  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
790  */
791 #define DLINFO_ARCH_ITEMS       5
792 #define ARCH_DLINFO                                     \
793     do {                                                \
794         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
795         /*                                              \
796          * Handle glibc compatibility: these magic entries must \
797          * be at the lowest addresses in the final auxv.        \
798          */                                             \
799         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
800         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
801         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
802         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
803         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
804     } while (0)
805 
806 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
807 {
808     _regs->gpr[1] = infop->start_stack;
809 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
810     if (get_ppc64_abi(infop) < 2) {
811         uint64_t val;
812         get_user_u64(val, infop->entry + 8);
813         _regs->gpr[2] = val + infop->load_bias;
814         get_user_u64(val, infop->entry);
815         infop->entry = val + infop->load_bias;
816     } else {
817         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
818     }
819 #endif
820     _regs->nip = infop->entry;
821 }
822 
823 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
824 #define ELF_NREG 48
825 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
826 
827 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
828 {
829     int i;
830     target_ulong ccr = 0;
831 
832     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
833         (*regs)[i] = tswapreg(env->gpr[i]);
834     }
835 
836     (*regs)[32] = tswapreg(env->nip);
837     (*regs)[33] = tswapreg(env->msr);
838     (*regs)[35] = tswapreg(env->ctr);
839     (*regs)[36] = tswapreg(env->lr);
840     (*regs)[37] = tswapreg(env->xer);
841 
842     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
843         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
844     }
845     (*regs)[38] = tswapreg(ccr);
846 }
847 
848 #define USE_ELF_CORE_DUMP
849 #define ELF_EXEC_PAGESIZE       4096
850 
851 #endif
852 
853 #ifdef TARGET_MIPS
854 
855 #define ELF_START_MMAP 0x80000000
856 
857 #ifdef TARGET_MIPS64
858 #define ELF_CLASS   ELFCLASS64
859 #else
860 #define ELF_CLASS   ELFCLASS32
861 #endif
862 #define ELF_ARCH    EM_MIPS
863 
864 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
865 
866 static inline void init_thread(struct target_pt_regs *regs,
867                                struct image_info *infop)
868 {
869     regs->cp0_status = 2 << CP0St_KSU;
870     regs->cp0_epc = infop->entry;
871     regs->regs[29] = infop->start_stack;
872 }
873 
874 /* See linux kernel: arch/mips/include/asm/elf.h.  */
875 #define ELF_NREG 45
876 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
877 
878 /* See linux kernel: arch/mips/include/asm/reg.h.  */
879 enum {
880 #ifdef TARGET_MIPS64
881     TARGET_EF_R0 = 0,
882 #else
883     TARGET_EF_R0 = 6,
884 #endif
885     TARGET_EF_R26 = TARGET_EF_R0 + 26,
886     TARGET_EF_R27 = TARGET_EF_R0 + 27,
887     TARGET_EF_LO = TARGET_EF_R0 + 32,
888     TARGET_EF_HI = TARGET_EF_R0 + 33,
889     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
890     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
891     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
892     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
893 };
894 
895 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
896 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
897 {
898     int i;
899 
900     for (i = 0; i < TARGET_EF_R0; i++) {
901         (*regs)[i] = 0;
902     }
903     (*regs)[TARGET_EF_R0] = 0;
904 
905     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
906         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
907     }
908 
909     (*regs)[TARGET_EF_R26] = 0;
910     (*regs)[TARGET_EF_R27] = 0;
911     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
912     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
913     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
914     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
915     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
916     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
917 }
918 
919 #define USE_ELF_CORE_DUMP
920 #define ELF_EXEC_PAGESIZE        4096
921 
922 /* See arch/mips/include/uapi/asm/hwcap.h.  */
923 enum {
924     HWCAP_MIPS_R6           = (1 << 0),
925     HWCAP_MIPS_MSA          = (1 << 1),
926 };
927 
928 #define ELF_HWCAP get_elf_hwcap()
929 
930 static uint32_t get_elf_hwcap(void)
931 {
932     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
933     uint32_t hwcaps = 0;
934 
935 #define GET_FEATURE(flag, hwcap) \
936     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
937 
938     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
939     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
940 
941 #undef GET_FEATURE
942 
943     return hwcaps;
944 }
945 
946 #endif /* TARGET_MIPS */
947 
948 #ifdef TARGET_MICROBLAZE
949 
950 #define ELF_START_MMAP 0x80000000
951 
952 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
953 
954 #define ELF_CLASS   ELFCLASS32
955 #define ELF_ARCH    EM_MICROBLAZE
956 
957 static inline void init_thread(struct target_pt_regs *regs,
958                                struct image_info *infop)
959 {
960     regs->pc = infop->entry;
961     regs->r1 = infop->start_stack;
962 
963 }
964 
965 #define ELF_EXEC_PAGESIZE        4096
966 
967 #define USE_ELF_CORE_DUMP
968 #define ELF_NREG 38
969 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
970 
971 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
972 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
973 {
974     int i, pos = 0;
975 
976     for (i = 0; i < 32; i++) {
977         (*regs)[pos++] = tswapreg(env->regs[i]);
978     }
979 
980     for (i = 0; i < 6; i++) {
981         (*regs)[pos++] = tswapreg(env->sregs[i]);
982     }
983 }
984 
985 #endif /* TARGET_MICROBLAZE */
986 
987 #ifdef TARGET_NIOS2
988 
989 #define ELF_START_MMAP 0x80000000
990 
991 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
992 
993 #define ELF_CLASS   ELFCLASS32
994 #define ELF_ARCH    EM_ALTERA_NIOS2
995 
996 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
997 {
998     regs->ea = infop->entry;
999     regs->sp = infop->start_stack;
1000     regs->estatus = 0x3;
1001 }
1002 
1003 #define ELF_EXEC_PAGESIZE        4096
1004 
1005 #define USE_ELF_CORE_DUMP
1006 #define ELF_NREG 49
1007 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1008 
1009 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1010 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1011                                const CPUNios2State *env)
1012 {
1013     int i;
1014 
1015     (*regs)[0] = -1;
1016     for (i = 1; i < 8; i++)    /* r0-r7 */
1017         (*regs)[i] = tswapreg(env->regs[i + 7]);
1018 
1019     for (i = 8; i < 16; i++)   /* r8-r15 */
1020         (*regs)[i] = tswapreg(env->regs[i - 8]);
1021 
1022     for (i = 16; i < 24; i++)  /* r16-r23 */
1023         (*regs)[i] = tswapreg(env->regs[i + 7]);
1024     (*regs)[24] = -1;    /* R_ET */
1025     (*regs)[25] = -1;    /* R_BT */
1026     (*regs)[26] = tswapreg(env->regs[R_GP]);
1027     (*regs)[27] = tswapreg(env->regs[R_SP]);
1028     (*regs)[28] = tswapreg(env->regs[R_FP]);
1029     (*regs)[29] = tswapreg(env->regs[R_EA]);
1030     (*regs)[30] = -1;    /* R_SSTATUS */
1031     (*regs)[31] = tswapreg(env->regs[R_RA]);
1032 
1033     (*regs)[32] = tswapreg(env->regs[R_PC]);
1034 
1035     (*regs)[33] = -1; /* R_STATUS */
1036     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1037 
1038     for (i = 35; i < 49; i++)    /* ... */
1039         (*regs)[i] = -1;
1040 }
1041 
1042 #endif /* TARGET_NIOS2 */
1043 
1044 #ifdef TARGET_OPENRISC
1045 
1046 #define ELF_START_MMAP 0x08000000
1047 
1048 #define ELF_ARCH EM_OPENRISC
1049 #define ELF_CLASS ELFCLASS32
1050 #define ELF_DATA  ELFDATA2MSB
1051 
1052 static inline void init_thread(struct target_pt_regs *regs,
1053                                struct image_info *infop)
1054 {
1055     regs->pc = infop->entry;
1056     regs->gpr[1] = infop->start_stack;
1057 }
1058 
1059 #define USE_ELF_CORE_DUMP
1060 #define ELF_EXEC_PAGESIZE 8192
1061 
1062 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1063 #define ELF_NREG 34 /* gprs and pc, sr */
1064 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1065 
1066 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1067                                const CPUOpenRISCState *env)
1068 {
1069     int i;
1070 
1071     for (i = 0; i < 32; i++) {
1072         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1073     }
1074     (*regs)[32] = tswapreg(env->pc);
1075     (*regs)[33] = tswapreg(cpu_get_sr(env));
1076 }
1077 #define ELF_HWCAP 0
1078 #define ELF_PLATFORM NULL
1079 
1080 #endif /* TARGET_OPENRISC */
1081 
1082 #ifdef TARGET_SH4
1083 
1084 #define ELF_START_MMAP 0x80000000
1085 
1086 #define ELF_CLASS ELFCLASS32
1087 #define ELF_ARCH  EM_SH
1088 
1089 static inline void init_thread(struct target_pt_regs *regs,
1090                                struct image_info *infop)
1091 {
1092     /* Check other registers XXXXX */
1093     regs->pc = infop->entry;
1094     regs->regs[15] = infop->start_stack;
1095 }
1096 
1097 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1098 #define ELF_NREG 23
1099 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1100 
1101 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1102 enum {
1103     TARGET_REG_PC = 16,
1104     TARGET_REG_PR = 17,
1105     TARGET_REG_SR = 18,
1106     TARGET_REG_GBR = 19,
1107     TARGET_REG_MACH = 20,
1108     TARGET_REG_MACL = 21,
1109     TARGET_REG_SYSCALL = 22
1110 };
1111 
1112 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1113                                       const CPUSH4State *env)
1114 {
1115     int i;
1116 
1117     for (i = 0; i < 16; i++) {
1118         (*regs)[i] = tswapreg(env->gregs[i]);
1119     }
1120 
1121     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1122     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1123     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1124     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1125     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1126     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1127     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1128 }
1129 
1130 #define USE_ELF_CORE_DUMP
1131 #define ELF_EXEC_PAGESIZE        4096
1132 
1133 enum {
1134     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1135     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1136     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1137     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1138     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1139     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1140     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1141     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1142     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1143     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1144 };
1145 
1146 #define ELF_HWCAP get_elf_hwcap()
1147 
1148 static uint32_t get_elf_hwcap(void)
1149 {
1150     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1151     uint32_t hwcap = 0;
1152 
1153     hwcap |= SH_CPU_HAS_FPU;
1154 
1155     if (cpu->env.features & SH_FEATURE_SH4A) {
1156         hwcap |= SH_CPU_HAS_LLSC;
1157     }
1158 
1159     return hwcap;
1160 }
1161 
1162 #endif
1163 
1164 #ifdef TARGET_CRIS
1165 
1166 #define ELF_START_MMAP 0x80000000
1167 
1168 #define ELF_CLASS ELFCLASS32
1169 #define ELF_ARCH  EM_CRIS
1170 
1171 static inline void init_thread(struct target_pt_regs *regs,
1172                                struct image_info *infop)
1173 {
1174     regs->erp = infop->entry;
1175 }
1176 
1177 #define ELF_EXEC_PAGESIZE        8192
1178 
1179 #endif
1180 
1181 #ifdef TARGET_M68K
1182 
1183 #define ELF_START_MMAP 0x80000000
1184 
1185 #define ELF_CLASS       ELFCLASS32
1186 #define ELF_ARCH        EM_68K
1187 
1188 /* ??? Does this need to do anything?
1189    #define ELF_PLAT_INIT(_r) */
1190 
1191 static inline void init_thread(struct target_pt_regs *regs,
1192                                struct image_info *infop)
1193 {
1194     regs->usp = infop->start_stack;
1195     regs->sr = 0;
1196     regs->pc = infop->entry;
1197 }
1198 
1199 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1200 #define ELF_NREG 20
1201 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1202 
1203 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1204 {
1205     (*regs)[0] = tswapreg(env->dregs[1]);
1206     (*regs)[1] = tswapreg(env->dregs[2]);
1207     (*regs)[2] = tswapreg(env->dregs[3]);
1208     (*regs)[3] = tswapreg(env->dregs[4]);
1209     (*regs)[4] = tswapreg(env->dregs[5]);
1210     (*regs)[5] = tswapreg(env->dregs[6]);
1211     (*regs)[6] = tswapreg(env->dregs[7]);
1212     (*regs)[7] = tswapreg(env->aregs[0]);
1213     (*regs)[8] = tswapreg(env->aregs[1]);
1214     (*regs)[9] = tswapreg(env->aregs[2]);
1215     (*regs)[10] = tswapreg(env->aregs[3]);
1216     (*regs)[11] = tswapreg(env->aregs[4]);
1217     (*regs)[12] = tswapreg(env->aregs[5]);
1218     (*regs)[13] = tswapreg(env->aregs[6]);
1219     (*regs)[14] = tswapreg(env->dregs[0]);
1220     (*regs)[15] = tswapreg(env->aregs[7]);
1221     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1222     (*regs)[17] = tswapreg(env->sr);
1223     (*regs)[18] = tswapreg(env->pc);
1224     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1225 }
1226 
1227 #define USE_ELF_CORE_DUMP
1228 #define ELF_EXEC_PAGESIZE       8192
1229 
1230 #endif
1231 
1232 #ifdef TARGET_ALPHA
1233 
1234 #define ELF_START_MMAP (0x30000000000ULL)
1235 
1236 #define ELF_CLASS      ELFCLASS64
1237 #define ELF_ARCH       EM_ALPHA
1238 
1239 static inline void init_thread(struct target_pt_regs *regs,
1240                                struct image_info *infop)
1241 {
1242     regs->pc = infop->entry;
1243     regs->ps = 8;
1244     regs->usp = infop->start_stack;
1245 }
1246 
1247 #define ELF_EXEC_PAGESIZE        8192
1248 
1249 #endif /* TARGET_ALPHA */
1250 
1251 #ifdef TARGET_S390X
1252 
1253 #define ELF_START_MMAP (0x20000000000ULL)
1254 
1255 #define ELF_CLASS	ELFCLASS64
1256 #define ELF_DATA	ELFDATA2MSB
1257 #define ELF_ARCH	EM_S390
1258 
1259 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1260 {
1261     regs->psw.addr = infop->entry;
1262     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1263     regs->gprs[15] = infop->start_stack;
1264 }
1265 
1266 #endif /* TARGET_S390X */
1267 
1268 #ifdef TARGET_TILEGX
1269 
1270 /* 42 bits real used address, a half for user mode */
1271 #define ELF_START_MMAP (0x00000020000000000ULL)
1272 
1273 #define elf_check_arch(x) ((x) == EM_TILEGX)
1274 
1275 #define ELF_CLASS   ELFCLASS64
1276 #define ELF_DATA    ELFDATA2LSB
1277 #define ELF_ARCH    EM_TILEGX
1278 
1279 static inline void init_thread(struct target_pt_regs *regs,
1280                                struct image_info *infop)
1281 {
1282     regs->pc = infop->entry;
1283     regs->sp = infop->start_stack;
1284 
1285 }
1286 
1287 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1288 
1289 #endif /* TARGET_TILEGX */
1290 
1291 #ifdef TARGET_RISCV
1292 
1293 #define ELF_START_MMAP 0x80000000
1294 #define ELF_ARCH  EM_RISCV
1295 
1296 #ifdef TARGET_RISCV32
1297 #define ELF_CLASS ELFCLASS32
1298 #else
1299 #define ELF_CLASS ELFCLASS64
1300 #endif
1301 
1302 static inline void init_thread(struct target_pt_regs *regs,
1303                                struct image_info *infop)
1304 {
1305     regs->sepc = infop->entry;
1306     regs->sp = infop->start_stack;
1307 }
1308 
1309 #define ELF_EXEC_PAGESIZE 4096
1310 
1311 #endif /* TARGET_RISCV */
1312 
1313 #ifdef TARGET_HPPA
1314 
1315 #define ELF_START_MMAP  0x80000000
1316 #define ELF_CLASS       ELFCLASS32
1317 #define ELF_ARCH        EM_PARISC
1318 #define ELF_PLATFORM    "PARISC"
1319 #define STACK_GROWS_DOWN 0
1320 #define STACK_ALIGNMENT  64
1321 
1322 static inline void init_thread(struct target_pt_regs *regs,
1323                                struct image_info *infop)
1324 {
1325     regs->iaoq[0] = infop->entry;
1326     regs->iaoq[1] = infop->entry + 4;
1327     regs->gr[23] = 0;
1328     regs->gr[24] = infop->arg_start;
1329     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1330     /* The top-of-stack contains a linkage buffer.  */
1331     regs->gr[30] = infop->start_stack + 64;
1332     regs->gr[31] = infop->entry;
1333 }
1334 
1335 #endif /* TARGET_HPPA */
1336 
1337 #ifdef TARGET_XTENSA
1338 
1339 #define ELF_START_MMAP 0x20000000
1340 
1341 #define ELF_CLASS       ELFCLASS32
1342 #define ELF_ARCH        EM_XTENSA
1343 
1344 static inline void init_thread(struct target_pt_regs *regs,
1345                                struct image_info *infop)
1346 {
1347     regs->windowbase = 0;
1348     regs->windowstart = 1;
1349     regs->areg[1] = infop->start_stack;
1350     regs->pc = infop->entry;
1351 }
1352 
1353 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1354 #define ELF_NREG 128
1355 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1356 
1357 enum {
1358     TARGET_REG_PC,
1359     TARGET_REG_PS,
1360     TARGET_REG_LBEG,
1361     TARGET_REG_LEND,
1362     TARGET_REG_LCOUNT,
1363     TARGET_REG_SAR,
1364     TARGET_REG_WINDOWSTART,
1365     TARGET_REG_WINDOWBASE,
1366     TARGET_REG_THREADPTR,
1367     TARGET_REG_AR0 = 64,
1368 };
1369 
1370 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1371                                const CPUXtensaState *env)
1372 {
1373     unsigned i;
1374 
1375     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1376     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1377     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1378     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1379     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1380     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1381     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1382     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1383     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1384     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1385     for (i = 0; i < env->config->nareg; ++i) {
1386         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1387     }
1388 }
1389 
1390 #define USE_ELF_CORE_DUMP
1391 #define ELF_EXEC_PAGESIZE       4096
1392 
1393 #endif /* TARGET_XTENSA */
1394 
1395 #ifndef ELF_PLATFORM
1396 #define ELF_PLATFORM (NULL)
1397 #endif
1398 
1399 #ifndef ELF_MACHINE
1400 #define ELF_MACHINE ELF_ARCH
1401 #endif
1402 
1403 #ifndef elf_check_arch
1404 #define elf_check_arch(x) ((x) == ELF_ARCH)
1405 #endif
1406 
1407 #ifndef ELF_HWCAP
1408 #define ELF_HWCAP 0
1409 #endif
1410 
1411 #ifndef STACK_GROWS_DOWN
1412 #define STACK_GROWS_DOWN 1
1413 #endif
1414 
1415 #ifndef STACK_ALIGNMENT
1416 #define STACK_ALIGNMENT 16
1417 #endif
1418 
1419 #ifdef TARGET_ABI32
1420 #undef ELF_CLASS
1421 #define ELF_CLASS ELFCLASS32
1422 #undef bswaptls
1423 #define bswaptls(ptr) bswap32s(ptr)
1424 #endif
1425 
1426 #include "elf.h"
1427 
1428 struct exec
1429 {
1430     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1431     unsigned int a_text;   /* length of text, in bytes */
1432     unsigned int a_data;   /* length of data, in bytes */
1433     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1434     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1435     unsigned int a_entry;  /* start address */
1436     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1437     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1438 };
1439 
1440 
1441 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1442 #define OMAGIC 0407
1443 #define NMAGIC 0410
1444 #define ZMAGIC 0413
1445 #define QMAGIC 0314
1446 
1447 /* Necessary parameters */
1448 #define TARGET_ELF_EXEC_PAGESIZE \
1449         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1450          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1451 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1452 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1453                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1454 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1455 
1456 #define DLINFO_ITEMS 15
1457 
1458 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1459 {
1460     memcpy(to, from, n);
1461 }
1462 
1463 #ifdef BSWAP_NEEDED
1464 static void bswap_ehdr(struct elfhdr *ehdr)
1465 {
1466     bswap16s(&ehdr->e_type);            /* Object file type */
1467     bswap16s(&ehdr->e_machine);         /* Architecture */
1468     bswap32s(&ehdr->e_version);         /* Object file version */
1469     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1470     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1471     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1472     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1473     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1474     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1475     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1476     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1477     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1478     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1479 }
1480 
1481 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1482 {
1483     int i;
1484     for (i = 0; i < phnum; ++i, ++phdr) {
1485         bswap32s(&phdr->p_type);        /* Segment type */
1486         bswap32s(&phdr->p_flags);       /* Segment flags */
1487         bswaptls(&phdr->p_offset);      /* Segment file offset */
1488         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1489         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1490         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1491         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1492         bswaptls(&phdr->p_align);       /* Segment alignment */
1493     }
1494 }
1495 
1496 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1497 {
1498     int i;
1499     for (i = 0; i < shnum; ++i, ++shdr) {
1500         bswap32s(&shdr->sh_name);
1501         bswap32s(&shdr->sh_type);
1502         bswaptls(&shdr->sh_flags);
1503         bswaptls(&shdr->sh_addr);
1504         bswaptls(&shdr->sh_offset);
1505         bswaptls(&shdr->sh_size);
1506         bswap32s(&shdr->sh_link);
1507         bswap32s(&shdr->sh_info);
1508         bswaptls(&shdr->sh_addralign);
1509         bswaptls(&shdr->sh_entsize);
1510     }
1511 }
1512 
1513 static void bswap_sym(struct elf_sym *sym)
1514 {
1515     bswap32s(&sym->st_name);
1516     bswaptls(&sym->st_value);
1517     bswaptls(&sym->st_size);
1518     bswap16s(&sym->st_shndx);
1519 }
1520 
1521 #ifdef TARGET_MIPS
1522 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1523 {
1524     bswap16s(&abiflags->version);
1525     bswap32s(&abiflags->ases);
1526     bswap32s(&abiflags->isa_ext);
1527     bswap32s(&abiflags->flags1);
1528     bswap32s(&abiflags->flags2);
1529 }
1530 #endif
1531 #else
1532 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1533 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1534 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1535 static inline void bswap_sym(struct elf_sym *sym) { }
1536 #ifdef TARGET_MIPS
1537 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1538 #endif
1539 #endif
1540 
1541 #ifdef USE_ELF_CORE_DUMP
1542 static int elf_core_dump(int, const CPUArchState *);
1543 #endif /* USE_ELF_CORE_DUMP */
1544 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1545 
1546 /* Verify the portions of EHDR within E_IDENT for the target.
1547    This can be performed before bswapping the entire header.  */
1548 static bool elf_check_ident(struct elfhdr *ehdr)
1549 {
1550     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1551             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1552             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1553             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1554             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1555             && ehdr->e_ident[EI_DATA] == ELF_DATA
1556             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1557 }
1558 
1559 /* Verify the portions of EHDR outside of E_IDENT for the target.
1560    This has to wait until after bswapping the header.  */
1561 static bool elf_check_ehdr(struct elfhdr *ehdr)
1562 {
1563     return (elf_check_arch(ehdr->e_machine)
1564             && ehdr->e_ehsize == sizeof(struct elfhdr)
1565             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1566             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1567 }
1568 
1569 /*
1570  * 'copy_elf_strings()' copies argument/envelope strings from user
1571  * memory to free pages in kernel mem. These are in a format ready
1572  * to be put directly into the top of new user memory.
1573  *
1574  */
1575 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1576                                   abi_ulong p, abi_ulong stack_limit)
1577 {
1578     char *tmp;
1579     int len, i;
1580     abi_ulong top = p;
1581 
1582     if (!p) {
1583         return 0;       /* bullet-proofing */
1584     }
1585 
1586     if (STACK_GROWS_DOWN) {
1587         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1588         for (i = argc - 1; i >= 0; --i) {
1589             tmp = argv[i];
1590             if (!tmp) {
1591                 fprintf(stderr, "VFS: argc is wrong");
1592                 exit(-1);
1593             }
1594             len = strlen(tmp) + 1;
1595             tmp += len;
1596 
1597             if (len > (p - stack_limit)) {
1598                 return 0;
1599             }
1600             while (len) {
1601                 int bytes_to_copy = (len > offset) ? offset : len;
1602                 tmp -= bytes_to_copy;
1603                 p -= bytes_to_copy;
1604                 offset -= bytes_to_copy;
1605                 len -= bytes_to_copy;
1606 
1607                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1608 
1609                 if (offset == 0) {
1610                     memcpy_to_target(p, scratch, top - p);
1611                     top = p;
1612                     offset = TARGET_PAGE_SIZE;
1613                 }
1614             }
1615         }
1616         if (p != top) {
1617             memcpy_to_target(p, scratch + offset, top - p);
1618         }
1619     } else {
1620         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1621         for (i = 0; i < argc; ++i) {
1622             tmp = argv[i];
1623             if (!tmp) {
1624                 fprintf(stderr, "VFS: argc is wrong");
1625                 exit(-1);
1626             }
1627             len = strlen(tmp) + 1;
1628             if (len > (stack_limit - p)) {
1629                 return 0;
1630             }
1631             while (len) {
1632                 int bytes_to_copy = (len > remaining) ? remaining : len;
1633 
1634                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1635 
1636                 tmp += bytes_to_copy;
1637                 remaining -= bytes_to_copy;
1638                 p += bytes_to_copy;
1639                 len -= bytes_to_copy;
1640 
1641                 if (remaining == 0) {
1642                     memcpy_to_target(top, scratch, p - top);
1643                     top = p;
1644                     remaining = TARGET_PAGE_SIZE;
1645                 }
1646             }
1647         }
1648         if (p != top) {
1649             memcpy_to_target(top, scratch, p - top);
1650         }
1651     }
1652 
1653     return p;
1654 }
1655 
1656 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1657  * argument/environment space. Newer kernels (>2.6.33) allow more,
1658  * dependent on stack size, but guarantee at least 32 pages for
1659  * backwards compatibility.
1660  */
1661 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1662 
1663 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1664                                  struct image_info *info)
1665 {
1666     abi_ulong size, error, guard;
1667 
1668     size = guest_stack_size;
1669     if (size < STACK_LOWER_LIMIT) {
1670         size = STACK_LOWER_LIMIT;
1671     }
1672     guard = TARGET_PAGE_SIZE;
1673     if (guard < qemu_real_host_page_size) {
1674         guard = qemu_real_host_page_size;
1675     }
1676 
1677     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1678                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1679     if (error == -1) {
1680         perror("mmap stack");
1681         exit(-1);
1682     }
1683 
1684     /* We reserve one extra page at the top of the stack as guard.  */
1685     if (STACK_GROWS_DOWN) {
1686         target_mprotect(error, guard, PROT_NONE);
1687         info->stack_limit = error + guard;
1688         return info->stack_limit + size - sizeof(void *);
1689     } else {
1690         target_mprotect(error + size, guard, PROT_NONE);
1691         info->stack_limit = error + size;
1692         return error;
1693     }
1694 }
1695 
1696 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1697    after the data section (i.e. bss).  */
1698 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1699 {
1700     uintptr_t host_start, host_map_start, host_end;
1701 
1702     last_bss = TARGET_PAGE_ALIGN(last_bss);
1703 
1704     /* ??? There is confusion between qemu_real_host_page_size and
1705        qemu_host_page_size here and elsewhere in target_mmap, which
1706        may lead to the end of the data section mapping from the file
1707        not being mapped.  At least there was an explicit test and
1708        comment for that here, suggesting that "the file size must
1709        be known".  The comment probably pre-dates the introduction
1710        of the fstat system call in target_mmap which does in fact
1711        find out the size.  What isn't clear is if the workaround
1712        here is still actually needed.  For now, continue with it,
1713        but merge it with the "normal" mmap that would allocate the bss.  */
1714 
1715     host_start = (uintptr_t) g2h(elf_bss);
1716     host_end = (uintptr_t) g2h(last_bss);
1717     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1718 
1719     if (host_map_start < host_end) {
1720         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1721                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1722         if (p == MAP_FAILED) {
1723             perror("cannot mmap brk");
1724             exit(-1);
1725         }
1726     }
1727 
1728     /* Ensure that the bss page(s) are valid */
1729     if ((page_get_flags(last_bss-1) & prot) != prot) {
1730         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1731     }
1732 
1733     if (host_start < host_map_start) {
1734         memset((void *)host_start, 0, host_map_start - host_start);
1735     }
1736 }
1737 
1738 #ifdef TARGET_ARM
1739 static int elf_is_fdpic(struct elfhdr *exec)
1740 {
1741     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1742 }
1743 #else
1744 /* Default implementation, always false.  */
1745 static int elf_is_fdpic(struct elfhdr *exec)
1746 {
1747     return 0;
1748 }
1749 #endif
1750 
1751 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1752 {
1753     uint16_t n;
1754     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1755 
1756     /* elf32_fdpic_loadseg */
1757     n = info->nsegs;
1758     while (n--) {
1759         sp -= 12;
1760         put_user_u32(loadsegs[n].addr, sp+0);
1761         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1762         put_user_u32(loadsegs[n].p_memsz, sp+8);
1763     }
1764 
1765     /* elf32_fdpic_loadmap */
1766     sp -= 4;
1767     put_user_u16(0, sp+0); /* version */
1768     put_user_u16(info->nsegs, sp+2); /* nsegs */
1769 
1770     info->personality = PER_LINUX_FDPIC;
1771     info->loadmap_addr = sp;
1772 
1773     return sp;
1774 }
1775 
1776 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1777                                    struct elfhdr *exec,
1778                                    struct image_info *info,
1779                                    struct image_info *interp_info)
1780 {
1781     abi_ulong sp;
1782     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1783     int size;
1784     int i;
1785     abi_ulong u_rand_bytes;
1786     uint8_t k_rand_bytes[16];
1787     abi_ulong u_platform;
1788     const char *k_platform;
1789     const int n = sizeof(elf_addr_t);
1790 
1791     sp = p;
1792 
1793     /* Needs to be before we load the env/argc/... */
1794     if (elf_is_fdpic(exec)) {
1795         /* Need 4 byte alignment for these structs */
1796         sp &= ~3;
1797         sp = loader_build_fdpic_loadmap(info, sp);
1798         info->other_info = interp_info;
1799         if (interp_info) {
1800             interp_info->other_info = info;
1801             sp = loader_build_fdpic_loadmap(interp_info, sp);
1802             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1803             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1804         } else {
1805             info->interpreter_loadmap_addr = 0;
1806             info->interpreter_pt_dynamic_addr = 0;
1807         }
1808     }
1809 
1810     u_platform = 0;
1811     k_platform = ELF_PLATFORM;
1812     if (k_platform) {
1813         size_t len = strlen(k_platform) + 1;
1814         if (STACK_GROWS_DOWN) {
1815             sp -= (len + n - 1) & ~(n - 1);
1816             u_platform = sp;
1817             /* FIXME - check return value of memcpy_to_target() for failure */
1818             memcpy_to_target(sp, k_platform, len);
1819         } else {
1820             memcpy_to_target(sp, k_platform, len);
1821             u_platform = sp;
1822             sp += len + 1;
1823         }
1824     }
1825 
1826     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1827      * the argv and envp pointers.
1828      */
1829     if (STACK_GROWS_DOWN) {
1830         sp = QEMU_ALIGN_DOWN(sp, 16);
1831     } else {
1832         sp = QEMU_ALIGN_UP(sp, 16);
1833     }
1834 
1835     /*
1836      * Generate 16 random bytes for userspace PRNG seeding (not
1837      * cryptically secure but it's not the aim of QEMU).
1838      */
1839     for (i = 0; i < 16; i++) {
1840         k_rand_bytes[i] = rand();
1841     }
1842     if (STACK_GROWS_DOWN) {
1843         sp -= 16;
1844         u_rand_bytes = sp;
1845         /* FIXME - check return value of memcpy_to_target() for failure */
1846         memcpy_to_target(sp, k_rand_bytes, 16);
1847     } else {
1848         memcpy_to_target(sp, k_rand_bytes, 16);
1849         u_rand_bytes = sp;
1850         sp += 16;
1851     }
1852 
1853     size = (DLINFO_ITEMS + 1) * 2;
1854     if (k_platform)
1855         size += 2;
1856 #ifdef DLINFO_ARCH_ITEMS
1857     size += DLINFO_ARCH_ITEMS * 2;
1858 #endif
1859 #ifdef ELF_HWCAP2
1860     size += 2;
1861 #endif
1862     info->auxv_len = size * n;
1863 
1864     size += envc + argc + 2;
1865     size += 1;  /* argc itself */
1866     size *= n;
1867 
1868     /* Allocate space and finalize stack alignment for entry now.  */
1869     if (STACK_GROWS_DOWN) {
1870         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1871         sp = u_argc;
1872     } else {
1873         u_argc = sp;
1874         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1875     }
1876 
1877     u_argv = u_argc + n;
1878     u_envp = u_argv + (argc + 1) * n;
1879     u_auxv = u_envp + (envc + 1) * n;
1880     info->saved_auxv = u_auxv;
1881     info->arg_start = u_argv;
1882     info->arg_end = u_argv + argc * n;
1883 
1884     /* This is correct because Linux defines
1885      * elf_addr_t as Elf32_Off / Elf64_Off
1886      */
1887 #define NEW_AUX_ENT(id, val) do {               \
1888         put_user_ual(id, u_auxv);  u_auxv += n; \
1889         put_user_ual(val, u_auxv); u_auxv += n; \
1890     } while(0)
1891 
1892 #ifdef ARCH_DLINFO
1893     /*
1894      * ARCH_DLINFO must come first so platform specific code can enforce
1895      * special alignment requirements on the AUXV if necessary (eg. PPC).
1896      */
1897     ARCH_DLINFO;
1898 #endif
1899     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1900      * on info->auxv_len will trigger.
1901      */
1902     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1903     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1904     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1905     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1906         /* Target doesn't support host page size alignment */
1907         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1908     } else {
1909         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1910                                                qemu_host_page_size)));
1911     }
1912     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1913     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1914     NEW_AUX_ENT(AT_ENTRY, info->entry);
1915     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1916     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1917     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1918     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1919     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1920     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1921     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1922     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1923 
1924 #ifdef ELF_HWCAP2
1925     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1926 #endif
1927 
1928     if (u_platform) {
1929         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1930     }
1931     NEW_AUX_ENT (AT_NULL, 0);
1932 #undef NEW_AUX_ENT
1933 
1934     /* Check that our initial calculation of the auxv length matches how much
1935      * we actually put into it.
1936      */
1937     assert(info->auxv_len == u_auxv - info->saved_auxv);
1938 
1939     put_user_ual(argc, u_argc);
1940 
1941     p = info->arg_strings;
1942     for (i = 0; i < argc; ++i) {
1943         put_user_ual(p, u_argv);
1944         u_argv += n;
1945         p += target_strlen(p) + 1;
1946     }
1947     put_user_ual(0, u_argv);
1948 
1949     p = info->env_strings;
1950     for (i = 0; i < envc; ++i) {
1951         put_user_ual(p, u_envp);
1952         u_envp += n;
1953         p += target_strlen(p) + 1;
1954     }
1955     put_user_ual(0, u_envp);
1956 
1957     return sp;
1958 }
1959 
1960 unsigned long init_guest_space(unsigned long host_start,
1961                                unsigned long host_size,
1962                                unsigned long guest_start,
1963                                bool fixed)
1964 {
1965     unsigned long current_start, aligned_start;
1966     int flags;
1967 
1968     assert(host_start || host_size);
1969 
1970     /* If just a starting address is given, then just verify that
1971      * address.  */
1972     if (host_start && !host_size) {
1973 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1974         if (init_guest_commpage(host_start, host_size) != 1) {
1975             return (unsigned long)-1;
1976         }
1977 #endif
1978         return host_start;
1979     }
1980 
1981     /* Setup the initial flags and start address.  */
1982     current_start = host_start & qemu_host_page_mask;
1983     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1984     if (fixed) {
1985         flags |= MAP_FIXED;
1986     }
1987 
1988     /* Otherwise, a non-zero size region of memory needs to be mapped
1989      * and validated.  */
1990 
1991 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1992     /* On 32-bit ARM, we need to map not just the usable memory, but
1993      * also the commpage.  Try to find a suitable place by allocating
1994      * a big chunk for all of it.  If host_start, then the naive
1995      * strategy probably does good enough.
1996      */
1997     if (!host_start) {
1998         unsigned long guest_full_size, host_full_size, real_start;
1999 
2000         guest_full_size =
2001             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2002         host_full_size = guest_full_size - guest_start;
2003         real_start = (unsigned long)
2004             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2005         if (real_start == (unsigned long)-1) {
2006             if (host_size < host_full_size - qemu_host_page_size) {
2007                 /* We failed to map a continous segment, but we're
2008                  * allowed to have a gap between the usable memory and
2009                  * the commpage where other things can be mapped.
2010                  * This sparseness gives us more flexibility to find
2011                  * an address range.
2012                  */
2013                 goto naive;
2014             }
2015             return (unsigned long)-1;
2016         }
2017         munmap((void *)real_start, host_full_size);
2018         if (real_start & ~qemu_host_page_mask) {
2019             /* The same thing again, but with an extra qemu_host_page_size
2020              * so that we can shift around alignment.
2021              */
2022             unsigned long real_size = host_full_size + qemu_host_page_size;
2023             real_start = (unsigned long)
2024                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2025             if (real_start == (unsigned long)-1) {
2026                 if (host_size < host_full_size - qemu_host_page_size) {
2027                     goto naive;
2028                 }
2029                 return (unsigned long)-1;
2030             }
2031             munmap((void *)real_start, real_size);
2032             real_start = HOST_PAGE_ALIGN(real_start);
2033         }
2034         current_start = real_start;
2035     }
2036  naive:
2037 #endif
2038 
2039     while (1) {
2040         unsigned long real_start, real_size, aligned_size;
2041         aligned_size = real_size = host_size;
2042 
2043         /* Do not use mmap_find_vma here because that is limited to the
2044          * guest address space.  We are going to make the
2045          * guest address space fit whatever we're given.
2046          */
2047         real_start = (unsigned long)
2048             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2049         if (real_start == (unsigned long)-1) {
2050             return (unsigned long)-1;
2051         }
2052 
2053         /* Check to see if the address is valid.  */
2054         if (host_start && real_start != current_start) {
2055             goto try_again;
2056         }
2057 
2058         /* Ensure the address is properly aligned.  */
2059         if (real_start & ~qemu_host_page_mask) {
2060             /* Ideally, we adjust like
2061              *
2062              *    pages: [  ][  ][  ][  ][  ]
2063              *      old:   [   real   ]
2064              *             [ aligned  ]
2065              *      new:   [     real     ]
2066              *               [ aligned  ]
2067              *
2068              * But if there is something else mapped right after it,
2069              * then obviously it won't have room to grow, and the
2070              * kernel will put the new larger real someplace else with
2071              * unknown alignment (if we made it to here, then
2072              * fixed=false).  Which is why we grow real by a full page
2073              * size, instead of by part of one; so that even if we get
2074              * moved, we can still guarantee alignment.  But this does
2075              * mean that there is a padding of < 1 page both before
2076              * and after the aligned range; the "after" could could
2077              * cause problems for ARM emulation where it could butt in
2078              * to where we need to put the commpage.
2079              */
2080             munmap((void *)real_start, host_size);
2081             real_size = aligned_size + qemu_host_page_size;
2082             real_start = (unsigned long)
2083                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2084             if (real_start == (unsigned long)-1) {
2085                 return (unsigned long)-1;
2086             }
2087             aligned_start = HOST_PAGE_ALIGN(real_start);
2088         } else {
2089             aligned_start = real_start;
2090         }
2091 
2092 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2093         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2094         int valid = init_guest_commpage(aligned_start - guest_start,
2095                                         aligned_size + guest_start);
2096         if (valid == -1) {
2097             munmap((void *)real_start, real_size);
2098             return (unsigned long)-1;
2099         } else if (valid == 0) {
2100             goto try_again;
2101         }
2102 #endif
2103 
2104         /* If nothing has said `return -1` or `goto try_again` yet,
2105          * then the address we have is good.
2106          */
2107         break;
2108 
2109     try_again:
2110         /* That address didn't work.  Unmap and try a different one.
2111          * The address the host picked because is typically right at
2112          * the top of the host address space and leaves the guest with
2113          * no usable address space.  Resort to a linear search.  We
2114          * already compensated for mmap_min_addr, so this should not
2115          * happen often.  Probably means we got unlucky and host
2116          * address space randomization put a shared library somewhere
2117          * inconvenient.
2118          *
2119          * This is probably a good strategy if host_start, but is
2120          * probably a bad strategy if not, which means we got here
2121          * because of trouble with ARM commpage setup.
2122          */
2123         munmap((void *)real_start, real_size);
2124         current_start += qemu_host_page_size;
2125         if (host_start == current_start) {
2126             /* Theoretically possible if host doesn't have any suitably
2127              * aligned areas.  Normally the first mmap will fail.
2128              */
2129             return (unsigned long)-1;
2130         }
2131     }
2132 
2133     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2134 
2135     return aligned_start;
2136 }
2137 
2138 static void probe_guest_base(const char *image_name,
2139                              abi_ulong loaddr, abi_ulong hiaddr)
2140 {
2141     /* Probe for a suitable guest base address, if the user has not set
2142      * it explicitly, and set guest_base appropriately.
2143      * In case of error we will print a suitable message and exit.
2144      */
2145     const char *errmsg;
2146     if (!have_guest_base && !reserved_va) {
2147         unsigned long host_start, real_start, host_size;
2148 
2149         /* Round addresses to page boundaries.  */
2150         loaddr &= qemu_host_page_mask;
2151         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2152 
2153         if (loaddr < mmap_min_addr) {
2154             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2155         } else {
2156             host_start = loaddr;
2157             if (host_start != loaddr) {
2158                 errmsg = "Address overflow loading ELF binary";
2159                 goto exit_errmsg;
2160             }
2161         }
2162         host_size = hiaddr - loaddr;
2163 
2164         /* Setup the initial guest memory space with ranges gleaned from
2165          * the ELF image that is being loaded.
2166          */
2167         real_start = init_guest_space(host_start, host_size, loaddr, false);
2168         if (real_start == (unsigned long)-1) {
2169             errmsg = "Unable to find space for application";
2170             goto exit_errmsg;
2171         }
2172         guest_base = real_start - loaddr;
2173 
2174         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2175                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2176                       loaddr, real_start);
2177     }
2178     return;
2179 
2180 exit_errmsg:
2181     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2182     exit(-1);
2183 }
2184 
2185 
2186 /* Load an ELF image into the address space.
2187 
2188    IMAGE_NAME is the filename of the image, to use in error messages.
2189    IMAGE_FD is the open file descriptor for the image.
2190 
2191    BPRM_BUF is a copy of the beginning of the file; this of course
2192    contains the elf file header at offset 0.  It is assumed that this
2193    buffer is sufficiently aligned to present no problems to the host
2194    in accessing data at aligned offsets within the buffer.
2195 
2196    On return: INFO values will be filled in, as necessary or available.  */
2197 
2198 static void load_elf_image(const char *image_name, int image_fd,
2199                            struct image_info *info, char **pinterp_name,
2200                            char bprm_buf[BPRM_BUF_SIZE])
2201 {
2202     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2203     struct elf_phdr *phdr;
2204     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2205     int i, retval;
2206     const char *errmsg;
2207 
2208     /* First of all, some simple consistency checks */
2209     errmsg = "Invalid ELF image for this architecture";
2210     if (!elf_check_ident(ehdr)) {
2211         goto exit_errmsg;
2212     }
2213     bswap_ehdr(ehdr);
2214     if (!elf_check_ehdr(ehdr)) {
2215         goto exit_errmsg;
2216     }
2217 
2218     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2219     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2220         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2221     } else {
2222         phdr = (struct elf_phdr *) alloca(i);
2223         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2224         if (retval != i) {
2225             goto exit_read;
2226         }
2227     }
2228     bswap_phdr(phdr, ehdr->e_phnum);
2229 
2230     info->nsegs = 0;
2231     info->pt_dynamic_addr = 0;
2232 
2233     mmap_lock();
2234 
2235     /* Find the maximum size of the image and allocate an appropriate
2236        amount of memory to handle that.  */
2237     loaddr = -1, hiaddr = 0;
2238     info->alignment = 0;
2239     for (i = 0; i < ehdr->e_phnum; ++i) {
2240         if (phdr[i].p_type == PT_LOAD) {
2241             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2242             if (a < loaddr) {
2243                 loaddr = a;
2244             }
2245             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2246             if (a > hiaddr) {
2247                 hiaddr = a;
2248             }
2249             ++info->nsegs;
2250             info->alignment |= phdr[i].p_align;
2251         }
2252     }
2253 
2254     load_addr = loaddr;
2255     if (ehdr->e_type == ET_DYN) {
2256         /* The image indicates that it can be loaded anywhere.  Find a
2257            location that can hold the memory space required.  If the
2258            image is pre-linked, LOADDR will be non-zero.  Since we do
2259            not supply MAP_FIXED here we'll use that address if and
2260            only if it remains available.  */
2261         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2262                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2263                                 -1, 0);
2264         if (load_addr == -1) {
2265             goto exit_perror;
2266         }
2267     } else if (pinterp_name != NULL) {
2268         /* This is the main executable.  Make sure that the low
2269            address does not conflict with MMAP_MIN_ADDR or the
2270            QEMU application itself.  */
2271         probe_guest_base(image_name, loaddr, hiaddr);
2272     }
2273     load_bias = load_addr - loaddr;
2274 
2275     if (elf_is_fdpic(ehdr)) {
2276         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2277             g_malloc(sizeof(*loadsegs) * info->nsegs);
2278 
2279         for (i = 0; i < ehdr->e_phnum; ++i) {
2280             switch (phdr[i].p_type) {
2281             case PT_DYNAMIC:
2282                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2283                 break;
2284             case PT_LOAD:
2285                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2286                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2287                 loadsegs->p_memsz = phdr[i].p_memsz;
2288                 ++loadsegs;
2289                 break;
2290             }
2291         }
2292     }
2293 
2294     info->load_bias = load_bias;
2295     info->load_addr = load_addr;
2296     info->entry = ehdr->e_entry + load_bias;
2297     info->start_code = -1;
2298     info->end_code = 0;
2299     info->start_data = -1;
2300     info->end_data = 0;
2301     info->brk = 0;
2302     info->elf_flags = ehdr->e_flags;
2303 
2304     for (i = 0; i < ehdr->e_phnum; i++) {
2305         struct elf_phdr *eppnt = phdr + i;
2306         if (eppnt->p_type == PT_LOAD) {
2307             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2308             int elf_prot = 0;
2309 
2310             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2311             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2312             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2313 
2314             vaddr = load_bias + eppnt->p_vaddr;
2315             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2316             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2317             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2318 
2319             error = target_mmap(vaddr_ps, vaddr_len,
2320                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2321                                 image_fd, eppnt->p_offset - vaddr_po);
2322             if (error == -1) {
2323                 goto exit_perror;
2324             }
2325 
2326             vaddr_ef = vaddr + eppnt->p_filesz;
2327             vaddr_em = vaddr + eppnt->p_memsz;
2328 
2329             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2330             if (vaddr_ef < vaddr_em) {
2331                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2332             }
2333 
2334             /* Find the full program boundaries.  */
2335             if (elf_prot & PROT_EXEC) {
2336                 if (vaddr < info->start_code) {
2337                     info->start_code = vaddr;
2338                 }
2339                 if (vaddr_ef > info->end_code) {
2340                     info->end_code = vaddr_ef;
2341                 }
2342             }
2343             if (elf_prot & PROT_WRITE) {
2344                 if (vaddr < info->start_data) {
2345                     info->start_data = vaddr;
2346                 }
2347                 if (vaddr_ef > info->end_data) {
2348                     info->end_data = vaddr_ef;
2349                 }
2350                 if (vaddr_em > info->brk) {
2351                     info->brk = vaddr_em;
2352                 }
2353             }
2354         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2355             char *interp_name;
2356 
2357             if (*pinterp_name) {
2358                 errmsg = "Multiple PT_INTERP entries";
2359                 goto exit_errmsg;
2360             }
2361             interp_name = malloc(eppnt->p_filesz);
2362             if (!interp_name) {
2363                 goto exit_perror;
2364             }
2365 
2366             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2367                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2368                        eppnt->p_filesz);
2369             } else {
2370                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2371                                eppnt->p_offset);
2372                 if (retval != eppnt->p_filesz) {
2373                     goto exit_perror;
2374                 }
2375             }
2376             if (interp_name[eppnt->p_filesz - 1] != 0) {
2377                 errmsg = "Invalid PT_INTERP entry";
2378                 goto exit_errmsg;
2379             }
2380             *pinterp_name = interp_name;
2381 #ifdef TARGET_MIPS
2382         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2383             Mips_elf_abiflags_v0 abiflags;
2384             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2385                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2386                 goto exit_errmsg;
2387             }
2388             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2389                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2390                        sizeof(Mips_elf_abiflags_v0));
2391             } else {
2392                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2393                                eppnt->p_offset);
2394                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2395                     goto exit_perror;
2396                 }
2397             }
2398             bswap_mips_abiflags(&abiflags);
2399             info->fp_abi = abiflags.fp_abi;
2400 #endif
2401         }
2402     }
2403 
2404     if (info->end_data == 0) {
2405         info->start_data = info->end_code;
2406         info->end_data = info->end_code;
2407         info->brk = info->end_code;
2408     }
2409 
2410     if (qemu_log_enabled()) {
2411         load_symbols(ehdr, image_fd, load_bias);
2412     }
2413 
2414     mmap_unlock();
2415 
2416     close(image_fd);
2417     return;
2418 
2419  exit_read:
2420     if (retval >= 0) {
2421         errmsg = "Incomplete read of file header";
2422         goto exit_errmsg;
2423     }
2424  exit_perror:
2425     errmsg = strerror(errno);
2426  exit_errmsg:
2427     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2428     exit(-1);
2429 }
2430 
2431 static void load_elf_interp(const char *filename, struct image_info *info,
2432                             char bprm_buf[BPRM_BUF_SIZE])
2433 {
2434     int fd, retval;
2435 
2436     fd = open(path(filename), O_RDONLY);
2437     if (fd < 0) {
2438         goto exit_perror;
2439     }
2440 
2441     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2442     if (retval < 0) {
2443         goto exit_perror;
2444     }
2445     if (retval < BPRM_BUF_SIZE) {
2446         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2447     }
2448 
2449     load_elf_image(filename, fd, info, NULL, bprm_buf);
2450     return;
2451 
2452  exit_perror:
2453     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2454     exit(-1);
2455 }
2456 
2457 static int symfind(const void *s0, const void *s1)
2458 {
2459     target_ulong addr = *(target_ulong *)s0;
2460     struct elf_sym *sym = (struct elf_sym *)s1;
2461     int result = 0;
2462     if (addr < sym->st_value) {
2463         result = -1;
2464     } else if (addr >= sym->st_value + sym->st_size) {
2465         result = 1;
2466     }
2467     return result;
2468 }
2469 
2470 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2471 {
2472 #if ELF_CLASS == ELFCLASS32
2473     struct elf_sym *syms = s->disas_symtab.elf32;
2474 #else
2475     struct elf_sym *syms = s->disas_symtab.elf64;
2476 #endif
2477 
2478     // binary search
2479     struct elf_sym *sym;
2480 
2481     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2482     if (sym != NULL) {
2483         return s->disas_strtab + sym->st_name;
2484     }
2485 
2486     return "";
2487 }
2488 
2489 /* FIXME: This should use elf_ops.h  */
2490 static int symcmp(const void *s0, const void *s1)
2491 {
2492     struct elf_sym *sym0 = (struct elf_sym *)s0;
2493     struct elf_sym *sym1 = (struct elf_sym *)s1;
2494     return (sym0->st_value < sym1->st_value)
2495         ? -1
2496         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2497 }
2498 
2499 /* Best attempt to load symbols from this ELF object. */
2500 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2501 {
2502     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2503     uint64_t segsz;
2504     struct elf_shdr *shdr;
2505     char *strings = NULL;
2506     struct syminfo *s = NULL;
2507     struct elf_sym *new_syms, *syms = NULL;
2508 
2509     shnum = hdr->e_shnum;
2510     i = shnum * sizeof(struct elf_shdr);
2511     shdr = (struct elf_shdr *)alloca(i);
2512     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2513         return;
2514     }
2515 
2516     bswap_shdr(shdr, shnum);
2517     for (i = 0; i < shnum; ++i) {
2518         if (shdr[i].sh_type == SHT_SYMTAB) {
2519             sym_idx = i;
2520             str_idx = shdr[i].sh_link;
2521             goto found;
2522         }
2523     }
2524 
2525     /* There will be no symbol table if the file was stripped.  */
2526     return;
2527 
2528  found:
2529     /* Now know where the strtab and symtab are.  Snarf them.  */
2530     s = g_try_new(struct syminfo, 1);
2531     if (!s) {
2532         goto give_up;
2533     }
2534 
2535     segsz = shdr[str_idx].sh_size;
2536     s->disas_strtab = strings = g_try_malloc(segsz);
2537     if (!strings ||
2538         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2539         goto give_up;
2540     }
2541 
2542     segsz = shdr[sym_idx].sh_size;
2543     syms = g_try_malloc(segsz);
2544     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2545         goto give_up;
2546     }
2547 
2548     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2549         /* Implausibly large symbol table: give up rather than ploughing
2550          * on with the number of symbols calculation overflowing
2551          */
2552         goto give_up;
2553     }
2554     nsyms = segsz / sizeof(struct elf_sym);
2555     for (i = 0; i < nsyms; ) {
2556         bswap_sym(syms + i);
2557         /* Throw away entries which we do not need.  */
2558         if (syms[i].st_shndx == SHN_UNDEF
2559             || syms[i].st_shndx >= SHN_LORESERVE
2560             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2561             if (i < --nsyms) {
2562                 syms[i] = syms[nsyms];
2563             }
2564         } else {
2565 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2566             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2567             syms[i].st_value &= ~(target_ulong)1;
2568 #endif
2569             syms[i].st_value += load_bias;
2570             i++;
2571         }
2572     }
2573 
2574     /* No "useful" symbol.  */
2575     if (nsyms == 0) {
2576         goto give_up;
2577     }
2578 
2579     /* Attempt to free the storage associated with the local symbols
2580        that we threw away.  Whether or not this has any effect on the
2581        memory allocation depends on the malloc implementation and how
2582        many symbols we managed to discard.  */
2583     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2584     if (new_syms == NULL) {
2585         goto give_up;
2586     }
2587     syms = new_syms;
2588 
2589     qsort(syms, nsyms, sizeof(*syms), symcmp);
2590 
2591     s->disas_num_syms = nsyms;
2592 #if ELF_CLASS == ELFCLASS32
2593     s->disas_symtab.elf32 = syms;
2594 #else
2595     s->disas_symtab.elf64 = syms;
2596 #endif
2597     s->lookup_symbol = lookup_symbolxx;
2598     s->next = syminfos;
2599     syminfos = s;
2600 
2601     return;
2602 
2603 give_up:
2604     g_free(s);
2605     g_free(strings);
2606     g_free(syms);
2607 }
2608 
2609 uint32_t get_elf_eflags(int fd)
2610 {
2611     struct elfhdr ehdr;
2612     off_t offset;
2613     int ret;
2614 
2615     /* Read ELF header */
2616     offset = lseek(fd, 0, SEEK_SET);
2617     if (offset == (off_t) -1) {
2618         return 0;
2619     }
2620     ret = read(fd, &ehdr, sizeof(ehdr));
2621     if (ret < sizeof(ehdr)) {
2622         return 0;
2623     }
2624     offset = lseek(fd, offset, SEEK_SET);
2625     if (offset == (off_t) -1) {
2626         return 0;
2627     }
2628 
2629     /* Check ELF signature */
2630     if (!elf_check_ident(&ehdr)) {
2631         return 0;
2632     }
2633 
2634     /* check header */
2635     bswap_ehdr(&ehdr);
2636     if (!elf_check_ehdr(&ehdr)) {
2637         return 0;
2638     }
2639 
2640     /* return architecture id */
2641     return ehdr.e_flags;
2642 }
2643 
2644 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2645 {
2646     struct image_info interp_info;
2647     struct elfhdr elf_ex;
2648     char *elf_interpreter = NULL;
2649     char *scratch;
2650 
2651     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2652 
2653     load_elf_image(bprm->filename, bprm->fd, info,
2654                    &elf_interpreter, bprm->buf);
2655 
2656     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2657        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2658        when we load the interpreter.  */
2659     elf_ex = *(struct elfhdr *)bprm->buf;
2660 
2661     /* Do this so that we can load the interpreter, if need be.  We will
2662        change some of these later */
2663     bprm->p = setup_arg_pages(bprm, info);
2664 
2665     scratch = g_new0(char, TARGET_PAGE_SIZE);
2666     if (STACK_GROWS_DOWN) {
2667         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2668                                    bprm->p, info->stack_limit);
2669         info->file_string = bprm->p;
2670         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2671                                    bprm->p, info->stack_limit);
2672         info->env_strings = bprm->p;
2673         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2674                                    bprm->p, info->stack_limit);
2675         info->arg_strings = bprm->p;
2676     } else {
2677         info->arg_strings = bprm->p;
2678         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2679                                    bprm->p, info->stack_limit);
2680         info->env_strings = bprm->p;
2681         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2682                                    bprm->p, info->stack_limit);
2683         info->file_string = bprm->p;
2684         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2685                                    bprm->p, info->stack_limit);
2686     }
2687 
2688     g_free(scratch);
2689 
2690     if (!bprm->p) {
2691         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2692         exit(-1);
2693     }
2694 
2695     if (elf_interpreter) {
2696         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2697 
2698         /* If the program interpreter is one of these two, then assume
2699            an iBCS2 image.  Otherwise assume a native linux image.  */
2700 
2701         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2702             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2703             info->personality = PER_SVR4;
2704 
2705             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2706                and some applications "depend" upon this behavior.  Since
2707                we do not have the power to recompile these, we emulate
2708                the SVr4 behavior.  Sigh.  */
2709             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2710                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2711         }
2712 #ifdef TARGET_MIPS
2713         info->interp_fp_abi = interp_info.fp_abi;
2714 #endif
2715     }
2716 
2717     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2718                                 info, (elf_interpreter ? &interp_info : NULL));
2719     info->start_stack = bprm->p;
2720 
2721     /* If we have an interpreter, set that as the program's entry point.
2722        Copy the load_bias as well, to help PPC64 interpret the entry
2723        point as a function descriptor.  Do this after creating elf tables
2724        so that we copy the original program entry point into the AUXV.  */
2725     if (elf_interpreter) {
2726         info->load_bias = interp_info.load_bias;
2727         info->entry = interp_info.entry;
2728         free(elf_interpreter);
2729     }
2730 
2731 #ifdef USE_ELF_CORE_DUMP
2732     bprm->core_dump = &elf_core_dump;
2733 #endif
2734 
2735     return 0;
2736 }
2737 
2738 #ifdef USE_ELF_CORE_DUMP
2739 /*
2740  * Definitions to generate Intel SVR4-like core files.
2741  * These mostly have the same names as the SVR4 types with "target_elf_"
2742  * tacked on the front to prevent clashes with linux definitions,
2743  * and the typedef forms have been avoided.  This is mostly like
2744  * the SVR4 structure, but more Linuxy, with things that Linux does
2745  * not support and which gdb doesn't really use excluded.
2746  *
2747  * Fields we don't dump (their contents is zero) in linux-user qemu
2748  * are marked with XXX.
2749  *
2750  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2751  *
2752  * Porting ELF coredump for target is (quite) simple process.  First you
2753  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2754  * the target resides):
2755  *
2756  * #define USE_ELF_CORE_DUMP
2757  *
2758  * Next you define type of register set used for dumping.  ELF specification
2759  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2760  *
2761  * typedef <target_regtype> target_elf_greg_t;
2762  * #define ELF_NREG <number of registers>
2763  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2764  *
2765  * Last step is to implement target specific function that copies registers
2766  * from given cpu into just specified register set.  Prototype is:
2767  *
2768  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2769  *                                const CPUArchState *env);
2770  *
2771  * Parameters:
2772  *     regs - copy register values into here (allocated and zeroed by caller)
2773  *     env - copy registers from here
2774  *
2775  * Example for ARM target is provided in this file.
2776  */
2777 
2778 /* An ELF note in memory */
2779 struct memelfnote {
2780     const char *name;
2781     size_t     namesz;
2782     size_t     namesz_rounded;
2783     int        type;
2784     size_t     datasz;
2785     size_t     datasz_rounded;
2786     void       *data;
2787     size_t     notesz;
2788 };
2789 
2790 struct target_elf_siginfo {
2791     abi_int    si_signo; /* signal number */
2792     abi_int    si_code;  /* extra code */
2793     abi_int    si_errno; /* errno */
2794 };
2795 
2796 struct target_elf_prstatus {
2797     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2798     abi_short          pr_cursig;    /* Current signal */
2799     abi_ulong          pr_sigpend;   /* XXX */
2800     abi_ulong          pr_sighold;   /* XXX */
2801     target_pid_t       pr_pid;
2802     target_pid_t       pr_ppid;
2803     target_pid_t       pr_pgrp;
2804     target_pid_t       pr_sid;
2805     struct target_timeval pr_utime;  /* XXX User time */
2806     struct target_timeval pr_stime;  /* XXX System time */
2807     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2808     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2809     target_elf_gregset_t      pr_reg;       /* GP registers */
2810     abi_int            pr_fpvalid;   /* XXX */
2811 };
2812 
2813 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2814 
2815 struct target_elf_prpsinfo {
2816     char         pr_state;       /* numeric process state */
2817     char         pr_sname;       /* char for pr_state */
2818     char         pr_zomb;        /* zombie */
2819     char         pr_nice;        /* nice val */
2820     abi_ulong    pr_flag;        /* flags */
2821     target_uid_t pr_uid;
2822     target_gid_t pr_gid;
2823     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2824     /* Lots missing */
2825     char    pr_fname[16];           /* filename of executable */
2826     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2827 };
2828 
2829 /* Here is the structure in which status of each thread is captured. */
2830 struct elf_thread_status {
2831     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2832     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2833 #if 0
2834     elf_fpregset_t fpu;             /* NT_PRFPREG */
2835     struct task_struct *thread;
2836     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2837 #endif
2838     struct memelfnote notes[1];
2839     int num_notes;
2840 };
2841 
2842 struct elf_note_info {
2843     struct memelfnote   *notes;
2844     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2845     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2846 
2847     QTAILQ_HEAD(, elf_thread_status) thread_list;
2848 #if 0
2849     /*
2850      * Current version of ELF coredump doesn't support
2851      * dumping fp regs etc.
2852      */
2853     elf_fpregset_t *fpu;
2854     elf_fpxregset_t *xfpu;
2855     int thread_status_size;
2856 #endif
2857     int notes_size;
2858     int numnote;
2859 };
2860 
2861 struct vm_area_struct {
2862     target_ulong   vma_start;  /* start vaddr of memory region */
2863     target_ulong   vma_end;    /* end vaddr of memory region */
2864     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2865     QTAILQ_ENTRY(vm_area_struct) vma_link;
2866 };
2867 
2868 struct mm_struct {
2869     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2870     int mm_count;           /* number of mappings */
2871 };
2872 
2873 static struct mm_struct *vma_init(void);
2874 static void vma_delete(struct mm_struct *);
2875 static int vma_add_mapping(struct mm_struct *, target_ulong,
2876                            target_ulong, abi_ulong);
2877 static int vma_get_mapping_count(const struct mm_struct *);
2878 static struct vm_area_struct *vma_first(const struct mm_struct *);
2879 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2880 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2881 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2882                       unsigned long flags);
2883 
2884 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2885 static void fill_note(struct memelfnote *, const char *, int,
2886                       unsigned int, void *);
2887 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2888 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2889 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2890 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2891 static size_t note_size(const struct memelfnote *);
2892 static void free_note_info(struct elf_note_info *);
2893 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2894 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2895 static int core_dump_filename(const TaskState *, char *, size_t);
2896 
2897 static int dump_write(int, const void *, size_t);
2898 static int write_note(struct memelfnote *, int);
2899 static int write_note_info(struct elf_note_info *, int);
2900 
2901 #ifdef BSWAP_NEEDED
2902 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2903 {
2904     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2905     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2906     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2907     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2908     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2909     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2910     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2911     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2912     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2913     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2914     /* cpu times are not filled, so we skip them */
2915     /* regs should be in correct format already */
2916     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2917 }
2918 
2919 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2920 {
2921     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2922     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2923     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2924     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2925     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2926     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2927     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2928 }
2929 
2930 static void bswap_note(struct elf_note *en)
2931 {
2932     bswap32s(&en->n_namesz);
2933     bswap32s(&en->n_descsz);
2934     bswap32s(&en->n_type);
2935 }
2936 #else
2937 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2938 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2939 static inline void bswap_note(struct elf_note *en) { }
2940 #endif /* BSWAP_NEEDED */
2941 
2942 /*
2943  * Minimal support for linux memory regions.  These are needed
2944  * when we are finding out what memory exactly belongs to
2945  * emulated process.  No locks needed here, as long as
2946  * thread that received the signal is stopped.
2947  */
2948 
2949 static struct mm_struct *vma_init(void)
2950 {
2951     struct mm_struct *mm;
2952 
2953     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2954         return (NULL);
2955 
2956     mm->mm_count = 0;
2957     QTAILQ_INIT(&mm->mm_mmap);
2958 
2959     return (mm);
2960 }
2961 
2962 static void vma_delete(struct mm_struct *mm)
2963 {
2964     struct vm_area_struct *vma;
2965 
2966     while ((vma = vma_first(mm)) != NULL) {
2967         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2968         g_free(vma);
2969     }
2970     g_free(mm);
2971 }
2972 
2973 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2974                            target_ulong end, abi_ulong flags)
2975 {
2976     struct vm_area_struct *vma;
2977 
2978     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2979         return (-1);
2980 
2981     vma->vma_start = start;
2982     vma->vma_end = end;
2983     vma->vma_flags = flags;
2984 
2985     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2986     mm->mm_count++;
2987 
2988     return (0);
2989 }
2990 
2991 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2992 {
2993     return (QTAILQ_FIRST(&mm->mm_mmap));
2994 }
2995 
2996 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2997 {
2998     return (QTAILQ_NEXT(vma, vma_link));
2999 }
3000 
3001 static int vma_get_mapping_count(const struct mm_struct *mm)
3002 {
3003     return (mm->mm_count);
3004 }
3005 
3006 /*
3007  * Calculate file (dump) size of given memory region.
3008  */
3009 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3010 {
3011     /* if we cannot even read the first page, skip it */
3012     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3013         return (0);
3014 
3015     /*
3016      * Usually we don't dump executable pages as they contain
3017      * non-writable code that debugger can read directly from
3018      * target library etc.  However, thread stacks are marked
3019      * also executable so we read in first page of given region
3020      * and check whether it contains elf header.  If there is
3021      * no elf header, we dump it.
3022      */
3023     if (vma->vma_flags & PROT_EXEC) {
3024         char page[TARGET_PAGE_SIZE];
3025 
3026         copy_from_user(page, vma->vma_start, sizeof (page));
3027         if ((page[EI_MAG0] == ELFMAG0) &&
3028             (page[EI_MAG1] == ELFMAG1) &&
3029             (page[EI_MAG2] == ELFMAG2) &&
3030             (page[EI_MAG3] == ELFMAG3)) {
3031             /*
3032              * Mappings are possibly from ELF binary.  Don't dump
3033              * them.
3034              */
3035             return (0);
3036         }
3037     }
3038 
3039     return (vma->vma_end - vma->vma_start);
3040 }
3041 
3042 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3043                       unsigned long flags)
3044 {
3045     struct mm_struct *mm = (struct mm_struct *)priv;
3046 
3047     vma_add_mapping(mm, start, end, flags);
3048     return (0);
3049 }
3050 
3051 static void fill_note(struct memelfnote *note, const char *name, int type,
3052                       unsigned int sz, void *data)
3053 {
3054     unsigned int namesz;
3055 
3056     namesz = strlen(name) + 1;
3057     note->name = name;
3058     note->namesz = namesz;
3059     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3060     note->type = type;
3061     note->datasz = sz;
3062     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3063 
3064     note->data = data;
3065 
3066     /*
3067      * We calculate rounded up note size here as specified by
3068      * ELF document.
3069      */
3070     note->notesz = sizeof (struct elf_note) +
3071         note->namesz_rounded + note->datasz_rounded;
3072 }
3073 
3074 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3075                             uint32_t flags)
3076 {
3077     (void) memset(elf, 0, sizeof(*elf));
3078 
3079     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3080     elf->e_ident[EI_CLASS] = ELF_CLASS;
3081     elf->e_ident[EI_DATA] = ELF_DATA;
3082     elf->e_ident[EI_VERSION] = EV_CURRENT;
3083     elf->e_ident[EI_OSABI] = ELF_OSABI;
3084 
3085     elf->e_type = ET_CORE;
3086     elf->e_machine = machine;
3087     elf->e_version = EV_CURRENT;
3088     elf->e_phoff = sizeof(struct elfhdr);
3089     elf->e_flags = flags;
3090     elf->e_ehsize = sizeof(struct elfhdr);
3091     elf->e_phentsize = sizeof(struct elf_phdr);
3092     elf->e_phnum = segs;
3093 
3094     bswap_ehdr(elf);
3095 }
3096 
3097 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3098 {
3099     phdr->p_type = PT_NOTE;
3100     phdr->p_offset = offset;
3101     phdr->p_vaddr = 0;
3102     phdr->p_paddr = 0;
3103     phdr->p_filesz = sz;
3104     phdr->p_memsz = 0;
3105     phdr->p_flags = 0;
3106     phdr->p_align = 0;
3107 
3108     bswap_phdr(phdr, 1);
3109 }
3110 
3111 static size_t note_size(const struct memelfnote *note)
3112 {
3113     return (note->notesz);
3114 }
3115 
3116 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3117                           const TaskState *ts, int signr)
3118 {
3119     (void) memset(prstatus, 0, sizeof (*prstatus));
3120     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3121     prstatus->pr_pid = ts->ts_tid;
3122     prstatus->pr_ppid = getppid();
3123     prstatus->pr_pgrp = getpgrp();
3124     prstatus->pr_sid = getsid(0);
3125 
3126     bswap_prstatus(prstatus);
3127 }
3128 
3129 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3130 {
3131     char *base_filename;
3132     unsigned int i, len;
3133 
3134     (void) memset(psinfo, 0, sizeof (*psinfo));
3135 
3136     len = ts->info->arg_end - ts->info->arg_start;
3137     if (len >= ELF_PRARGSZ)
3138         len = ELF_PRARGSZ - 1;
3139     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3140         return -EFAULT;
3141     for (i = 0; i < len; i++)
3142         if (psinfo->pr_psargs[i] == 0)
3143             psinfo->pr_psargs[i] = ' ';
3144     psinfo->pr_psargs[len] = 0;
3145 
3146     psinfo->pr_pid = getpid();
3147     psinfo->pr_ppid = getppid();
3148     psinfo->pr_pgrp = getpgrp();
3149     psinfo->pr_sid = getsid(0);
3150     psinfo->pr_uid = getuid();
3151     psinfo->pr_gid = getgid();
3152 
3153     base_filename = g_path_get_basename(ts->bprm->filename);
3154     /*
3155      * Using strncpy here is fine: at max-length,
3156      * this field is not NUL-terminated.
3157      */
3158     (void) strncpy(psinfo->pr_fname, base_filename,
3159                    sizeof(psinfo->pr_fname));
3160 
3161     g_free(base_filename);
3162     bswap_psinfo(psinfo);
3163     return (0);
3164 }
3165 
3166 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3167 {
3168     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3169     elf_addr_t orig_auxv = auxv;
3170     void *ptr;
3171     int len = ts->info->auxv_len;
3172 
3173     /*
3174      * Auxiliary vector is stored in target process stack.  It contains
3175      * {type, value} pairs that we need to dump into note.  This is not
3176      * strictly necessary but we do it here for sake of completeness.
3177      */
3178 
3179     /* read in whole auxv vector and copy it to memelfnote */
3180     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3181     if (ptr != NULL) {
3182         fill_note(note, "CORE", NT_AUXV, len, ptr);
3183         unlock_user(ptr, auxv, len);
3184     }
3185 }
3186 
3187 /*
3188  * Constructs name of coredump file.  We have following convention
3189  * for the name:
3190  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3191  *
3192  * Returns 0 in case of success, -1 otherwise (errno is set).
3193  */
3194 static int core_dump_filename(const TaskState *ts, char *buf,
3195                               size_t bufsize)
3196 {
3197     char timestamp[64];
3198     char *base_filename = NULL;
3199     struct timeval tv;
3200     struct tm tm;
3201 
3202     assert(bufsize >= PATH_MAX);
3203 
3204     if (gettimeofday(&tv, NULL) < 0) {
3205         (void) fprintf(stderr, "unable to get current timestamp: %s",
3206                        strerror(errno));
3207         return (-1);
3208     }
3209 
3210     base_filename = g_path_get_basename(ts->bprm->filename);
3211     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3212                     localtime_r(&tv.tv_sec, &tm));
3213     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3214                     base_filename, timestamp, (int)getpid());
3215     g_free(base_filename);
3216 
3217     return (0);
3218 }
3219 
3220 static int dump_write(int fd, const void *ptr, size_t size)
3221 {
3222     const char *bufp = (const char *)ptr;
3223     ssize_t bytes_written, bytes_left;
3224     struct rlimit dumpsize;
3225     off_t pos;
3226 
3227     bytes_written = 0;
3228     getrlimit(RLIMIT_CORE, &dumpsize);
3229     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3230         if (errno == ESPIPE) { /* not a seekable stream */
3231             bytes_left = size;
3232         } else {
3233             return pos;
3234         }
3235     } else {
3236         if (dumpsize.rlim_cur <= pos) {
3237             return -1;
3238         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3239             bytes_left = size;
3240         } else {
3241             size_t limit_left=dumpsize.rlim_cur - pos;
3242             bytes_left = limit_left >= size ? size : limit_left ;
3243         }
3244     }
3245 
3246     /*
3247      * In normal conditions, single write(2) should do but
3248      * in case of socket etc. this mechanism is more portable.
3249      */
3250     do {
3251         bytes_written = write(fd, bufp, bytes_left);
3252         if (bytes_written < 0) {
3253             if (errno == EINTR)
3254                 continue;
3255             return (-1);
3256         } else if (bytes_written == 0) { /* eof */
3257             return (-1);
3258         }
3259         bufp += bytes_written;
3260         bytes_left -= bytes_written;
3261     } while (bytes_left > 0);
3262 
3263     return (0);
3264 }
3265 
3266 static int write_note(struct memelfnote *men, int fd)
3267 {
3268     struct elf_note en;
3269 
3270     en.n_namesz = men->namesz;
3271     en.n_type = men->type;
3272     en.n_descsz = men->datasz;
3273 
3274     bswap_note(&en);
3275 
3276     if (dump_write(fd, &en, sizeof(en)) != 0)
3277         return (-1);
3278     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3279         return (-1);
3280     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3281         return (-1);
3282 
3283     return (0);
3284 }
3285 
3286 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3287 {
3288     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3289     TaskState *ts = (TaskState *)cpu->opaque;
3290     struct elf_thread_status *ets;
3291 
3292     ets = g_malloc0(sizeof (*ets));
3293     ets->num_notes = 1; /* only prstatus is dumped */
3294     fill_prstatus(&ets->prstatus, ts, 0);
3295     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3296     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3297               &ets->prstatus);
3298 
3299     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3300 
3301     info->notes_size += note_size(&ets->notes[0]);
3302 }
3303 
3304 static void init_note_info(struct elf_note_info *info)
3305 {
3306     /* Initialize the elf_note_info structure so that it is at
3307      * least safe to call free_note_info() on it. Must be
3308      * called before calling fill_note_info().
3309      */
3310     memset(info, 0, sizeof (*info));
3311     QTAILQ_INIT(&info->thread_list);
3312 }
3313 
3314 static int fill_note_info(struct elf_note_info *info,
3315                           long signr, const CPUArchState *env)
3316 {
3317 #define NUMNOTES 3
3318     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3319     TaskState *ts = (TaskState *)cpu->opaque;
3320     int i;
3321 
3322     info->notes = g_new0(struct memelfnote, NUMNOTES);
3323     if (info->notes == NULL)
3324         return (-ENOMEM);
3325     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3326     if (info->prstatus == NULL)
3327         return (-ENOMEM);
3328     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3329     if (info->prstatus == NULL)
3330         return (-ENOMEM);
3331 
3332     /*
3333      * First fill in status (and registers) of current thread
3334      * including process info & aux vector.
3335      */
3336     fill_prstatus(info->prstatus, ts, signr);
3337     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3338     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3339               sizeof (*info->prstatus), info->prstatus);
3340     fill_psinfo(info->psinfo, ts);
3341     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3342               sizeof (*info->psinfo), info->psinfo);
3343     fill_auxv_note(&info->notes[2], ts);
3344     info->numnote = 3;
3345 
3346     info->notes_size = 0;
3347     for (i = 0; i < info->numnote; i++)
3348         info->notes_size += note_size(&info->notes[i]);
3349 
3350     /* read and fill status of all threads */
3351     cpu_list_lock();
3352     CPU_FOREACH(cpu) {
3353         if (cpu == thread_cpu) {
3354             continue;
3355         }
3356         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3357     }
3358     cpu_list_unlock();
3359 
3360     return (0);
3361 }
3362 
3363 static void free_note_info(struct elf_note_info *info)
3364 {
3365     struct elf_thread_status *ets;
3366 
3367     while (!QTAILQ_EMPTY(&info->thread_list)) {
3368         ets = QTAILQ_FIRST(&info->thread_list);
3369         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3370         g_free(ets);
3371     }
3372 
3373     g_free(info->prstatus);
3374     g_free(info->psinfo);
3375     g_free(info->notes);
3376 }
3377 
3378 static int write_note_info(struct elf_note_info *info, int fd)
3379 {
3380     struct elf_thread_status *ets;
3381     int i, error = 0;
3382 
3383     /* write prstatus, psinfo and auxv for current thread */
3384     for (i = 0; i < info->numnote; i++)
3385         if ((error = write_note(&info->notes[i], fd)) != 0)
3386             return (error);
3387 
3388     /* write prstatus for each thread */
3389     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3390         if ((error = write_note(&ets->notes[0], fd)) != 0)
3391             return (error);
3392     }
3393 
3394     return (0);
3395 }
3396 
3397 /*
3398  * Write out ELF coredump.
3399  *
3400  * See documentation of ELF object file format in:
3401  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3402  *
3403  * Coredump format in linux is following:
3404  *
3405  * 0   +----------------------+         \
3406  *     | ELF header           | ET_CORE  |
3407  *     +----------------------+          |
3408  *     | ELF program headers  |          |--- headers
3409  *     | - NOTE section       |          |
3410  *     | - PT_LOAD sections   |          |
3411  *     +----------------------+         /
3412  *     | NOTEs:               |
3413  *     | - NT_PRSTATUS        |
3414  *     | - NT_PRSINFO         |
3415  *     | - NT_AUXV            |
3416  *     +----------------------+ <-- aligned to target page
3417  *     | Process memory dump  |
3418  *     :                      :
3419  *     .                      .
3420  *     :                      :
3421  *     |                      |
3422  *     +----------------------+
3423  *
3424  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3425  * NT_PRSINFO  -> struct elf_prpsinfo
3426  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3427  *
3428  * Format follows System V format as close as possible.  Current
3429  * version limitations are as follows:
3430  *     - no floating point registers are dumped
3431  *
3432  * Function returns 0 in case of success, negative errno otherwise.
3433  *
3434  * TODO: make this work also during runtime: it should be
3435  * possible to force coredump from running process and then
3436  * continue processing.  For example qemu could set up SIGUSR2
3437  * handler (provided that target process haven't registered
3438  * handler for that) that does the dump when signal is received.
3439  */
3440 static int elf_core_dump(int signr, const CPUArchState *env)
3441 {
3442     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3443     const TaskState *ts = (const TaskState *)cpu->opaque;
3444     struct vm_area_struct *vma = NULL;
3445     char corefile[PATH_MAX];
3446     struct elf_note_info info;
3447     struct elfhdr elf;
3448     struct elf_phdr phdr;
3449     struct rlimit dumpsize;
3450     struct mm_struct *mm = NULL;
3451     off_t offset = 0, data_offset = 0;
3452     int segs = 0;
3453     int fd = -1;
3454 
3455     init_note_info(&info);
3456 
3457     errno = 0;
3458     getrlimit(RLIMIT_CORE, &dumpsize);
3459     if (dumpsize.rlim_cur == 0)
3460         return 0;
3461 
3462     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3463         return (-errno);
3464 
3465     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3466                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3467         return (-errno);
3468 
3469     /*
3470      * Walk through target process memory mappings and
3471      * set up structure containing this information.  After
3472      * this point vma_xxx functions can be used.
3473      */
3474     if ((mm = vma_init()) == NULL)
3475         goto out;
3476 
3477     walk_memory_regions(mm, vma_walker);
3478     segs = vma_get_mapping_count(mm);
3479 
3480     /*
3481      * Construct valid coredump ELF header.  We also
3482      * add one more segment for notes.
3483      */
3484     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3485     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3486         goto out;
3487 
3488     /* fill in the in-memory version of notes */
3489     if (fill_note_info(&info, signr, env) < 0)
3490         goto out;
3491 
3492     offset += sizeof (elf);                             /* elf header */
3493     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3494 
3495     /* write out notes program header */
3496     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3497 
3498     offset += info.notes_size;
3499     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3500         goto out;
3501 
3502     /*
3503      * ELF specification wants data to start at page boundary so
3504      * we align it here.
3505      */
3506     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3507 
3508     /*
3509      * Write program headers for memory regions mapped in
3510      * the target process.
3511      */
3512     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3513         (void) memset(&phdr, 0, sizeof (phdr));
3514 
3515         phdr.p_type = PT_LOAD;
3516         phdr.p_offset = offset;
3517         phdr.p_vaddr = vma->vma_start;
3518         phdr.p_paddr = 0;
3519         phdr.p_filesz = vma_dump_size(vma);
3520         offset += phdr.p_filesz;
3521         phdr.p_memsz = vma->vma_end - vma->vma_start;
3522         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3523         if (vma->vma_flags & PROT_WRITE)
3524             phdr.p_flags |= PF_W;
3525         if (vma->vma_flags & PROT_EXEC)
3526             phdr.p_flags |= PF_X;
3527         phdr.p_align = ELF_EXEC_PAGESIZE;
3528 
3529         bswap_phdr(&phdr, 1);
3530         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3531             goto out;
3532         }
3533     }
3534 
3535     /*
3536      * Next we write notes just after program headers.  No
3537      * alignment needed here.
3538      */
3539     if (write_note_info(&info, fd) < 0)
3540         goto out;
3541 
3542     /* align data to page boundary */
3543     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3544         goto out;
3545 
3546     /*
3547      * Finally we can dump process memory into corefile as well.
3548      */
3549     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3550         abi_ulong addr;
3551         abi_ulong end;
3552 
3553         end = vma->vma_start + vma_dump_size(vma);
3554 
3555         for (addr = vma->vma_start; addr < end;
3556              addr += TARGET_PAGE_SIZE) {
3557             char page[TARGET_PAGE_SIZE];
3558             int error;
3559 
3560             /*
3561              *  Read in page from target process memory and
3562              *  write it to coredump file.
3563              */
3564             error = copy_from_user(page, addr, sizeof (page));
3565             if (error != 0) {
3566                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3567                                addr);
3568                 errno = -error;
3569                 goto out;
3570             }
3571             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3572                 goto out;
3573         }
3574     }
3575 
3576  out:
3577     free_note_info(&info);
3578     if (mm != NULL)
3579         vma_delete(mm);
3580     (void) close(fd);
3581 
3582     if (errno != 0)
3583         return (-errno);
3584     return (0);
3585 }
3586 #endif /* USE_ELF_CORE_DUMP */
3587 
3588 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3589 {
3590     init_thread(regs, infop);
3591 }
3592