xref: /openbmc/qemu/linux-user/elfload.c (revision 2f23eec6bd9e25d6d66a819a2bd7432f84dc101c)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
17 
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27 
28 #define ELF_OSABI   ELFOSABI_SYSV
29 
30 /* from personality.h */
31 
32 /*
33  * Flags for bug emulation.
34  *
35  * These occupy the top three bytes.
36  */
37 enum {
38     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
39     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
40                                            descriptors (signal handling) */
41     MMAP_PAGE_ZERO =    0x0100000,
42     ADDR_COMPAT_LAYOUT = 0x0200000,
43     READ_IMPLIES_EXEC = 0x0400000,
44     ADDR_LIMIT_32BIT =  0x0800000,
45     SHORT_INODE =       0x1000000,
46     WHOLE_SECONDS =     0x2000000,
47     STICKY_TIMEOUTS =   0x4000000,
48     ADDR_LIMIT_3GB =    0x8000000,
49 };
50 
51 /*
52  * Personality types.
53  *
54  * These go in the low byte.  Avoid using the top bit, it will
55  * conflict with error returns.
56  */
57 enum {
58     PER_LINUX =         0x0000,
59     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
60     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
61     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
67     PER_BSD =           0x0006,
68     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
69     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_LINUX32 =       0x0008,
71     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
72     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75     PER_RISCOS =        0x000c,
76     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
77     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
79     PER_HPUX =          0x0010,
80     PER_MASK =          0x00ff,
81 };
82 
83 /*
84  * Return the base personality without flags.
85  */
86 #define personality(pers)       (pers & PER_MASK)
87 
88 int info_is_fdpic(struct image_info *info)
89 {
90     return info->personality == PER_LINUX_FDPIC;
91 }
92 
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
97 
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
102 
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA        ELFDATA2MSB
105 #else
106 #define ELF_DATA        ELFDATA2LSB
107 #endif
108 
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong      target_elf_greg_t;
111 #define tswapreg(ptr)   tswap64(ptr)
112 #else
113 typedef abi_ulong       target_elf_greg_t;
114 #define tswapreg(ptr)   tswapal(ptr)
115 #endif
116 
117 #ifdef USE_UID16
118 typedef abi_ushort      target_uid_t;
119 typedef abi_ushort      target_gid_t;
120 #else
121 typedef abi_uint        target_uid_t;
122 typedef abi_uint        target_gid_t;
123 #endif
124 typedef abi_int         target_pid_t;
125 
126 #ifdef TARGET_I386
127 
128 #define ELF_PLATFORM get_elf_platform()
129 
130 static const char *get_elf_platform(void)
131 {
132     static char elf_platform[] = "i386";
133     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134     if (family > 6)
135         family = 6;
136     if (family >= 3)
137         elf_platform[1] = '0' + family;
138     return elf_platform;
139 }
140 
141 #define ELF_HWCAP get_elf_hwcap()
142 
143 static uint32_t get_elf_hwcap(void)
144 {
145     X86CPU *cpu = X86_CPU(thread_cpu);
146 
147     return cpu->env.features[FEAT_1_EDX];
148 }
149 
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
152 
153 #define ELF_CLASS      ELFCLASS64
154 #define ELF_ARCH       EM_X86_64
155 
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157 {
158     regs->rax = 0;
159     regs->rsp = infop->start_stack;
160     regs->rip = infop->entry;
161 }
162 
163 #define ELF_NREG    27
164 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
165 
166 /*
167  * Note that ELF_NREG should be 29 as there should be place for
168  * TRAPNO and ERR "registers" as well but linux doesn't dump
169  * those.
170  *
171  * See linux kernel: arch/x86/include/asm/elf.h
172  */
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
174 {
175     (*regs)[0] = env->regs[15];
176     (*regs)[1] = env->regs[14];
177     (*regs)[2] = env->regs[13];
178     (*regs)[3] = env->regs[12];
179     (*regs)[4] = env->regs[R_EBP];
180     (*regs)[5] = env->regs[R_EBX];
181     (*regs)[6] = env->regs[11];
182     (*regs)[7] = env->regs[10];
183     (*regs)[8] = env->regs[9];
184     (*regs)[9] = env->regs[8];
185     (*regs)[10] = env->regs[R_EAX];
186     (*regs)[11] = env->regs[R_ECX];
187     (*regs)[12] = env->regs[R_EDX];
188     (*regs)[13] = env->regs[R_ESI];
189     (*regs)[14] = env->regs[R_EDI];
190     (*regs)[15] = env->regs[R_EAX]; /* XXX */
191     (*regs)[16] = env->eip;
192     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193     (*regs)[18] = env->eflags;
194     (*regs)[19] = env->regs[R_ESP];
195     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202 }
203 
204 #else
205 
206 #define ELF_START_MMAP 0x80000000
207 
208 /*
209  * This is used to ensure we don't load something for the wrong architecture.
210  */
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212 
213 /*
214  * These are used to set parameters in the core dumps.
215  */
216 #define ELF_CLASS       ELFCLASS32
217 #define ELF_ARCH        EM_386
218 
219 static inline void init_thread(struct target_pt_regs *regs,
220                                struct image_info *infop)
221 {
222     regs->esp = infop->start_stack;
223     regs->eip = infop->entry;
224 
225     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226        starts %edx contains a pointer to a function which might be
227        registered using `atexit'.  This provides a mean for the
228        dynamic linker to call DT_FINI functions for shared libraries
229        that have been loaded before the code runs.
230 
231        A value of 0 tells we have no such handler.  */
232     regs->edx = 0;
233 }
234 
235 #define ELF_NREG    17
236 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
237 
238 /*
239  * Note that ELF_NREG should be 19 as there should be place for
240  * TRAPNO and ERR "registers" as well but linux doesn't dump
241  * those.
242  *
243  * See linux kernel: arch/x86/include/asm/elf.h
244  */
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
246 {
247     (*regs)[0] = env->regs[R_EBX];
248     (*regs)[1] = env->regs[R_ECX];
249     (*regs)[2] = env->regs[R_EDX];
250     (*regs)[3] = env->regs[R_ESI];
251     (*regs)[4] = env->regs[R_EDI];
252     (*regs)[5] = env->regs[R_EBP];
253     (*regs)[6] = env->regs[R_EAX];
254     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258     (*regs)[11] = env->regs[R_EAX]; /* XXX */
259     (*regs)[12] = env->eip;
260     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261     (*regs)[14] = env->eflags;
262     (*regs)[15] = env->regs[R_ESP];
263     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264 }
265 #endif
266 
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE       4096
269 
270 #endif
271 
272 #ifdef TARGET_ARM
273 
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
276 
277 #define ELF_START_MMAP 0x80000000
278 
279 #define ELF_ARCH        EM_ARM
280 #define ELF_CLASS       ELFCLASS32
281 
282 static inline void init_thread(struct target_pt_regs *regs,
283                                struct image_info *infop)
284 {
285     abi_long stack = infop->start_stack;
286     memset(regs, 0, sizeof(*regs));
287 
288     regs->uregs[16] = ARM_CPU_MODE_USR;
289     if (infop->entry & 1) {
290         regs->uregs[16] |= CPSR_T;
291     }
292     regs->uregs[15] = infop->entry & 0xfffffffe;
293     regs->uregs[13] = infop->start_stack;
294     /* FIXME - what to for failure of get_user()? */
295     get_user_ual(regs->uregs[2], stack + 8); /* envp */
296     get_user_ual(regs->uregs[1], stack + 4); /* envp */
297     /* XXX: it seems that r0 is zeroed after ! */
298     regs->uregs[0] = 0;
299     /* For uClinux PIC binaries.  */
300     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301     regs->uregs[10] = infop->start_data;
302 
303     /* Support ARM FDPIC.  */
304     if (info_is_fdpic(infop)) {
305         /* As described in the ABI document, r7 points to the loadmap info
306          * prepared by the kernel. If an interpreter is needed, r8 points
307          * to the interpreter loadmap and r9 points to the interpreter
308          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309          * r9 points to the main program PT_DYNAMIC info.
310          */
311         regs->uregs[7] = infop->loadmap_addr;
312         if (infop->interpreter_loadmap_addr) {
313             /* Executable is dynamically loaded.  */
314             regs->uregs[8] = infop->interpreter_loadmap_addr;
315             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316         } else {
317             regs->uregs[8] = 0;
318             regs->uregs[9] = infop->pt_dynamic_addr;
319         }
320     }
321 }
322 
323 #define ELF_NREG    18
324 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
325 
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
327 {
328     (*regs)[0] = tswapreg(env->regs[0]);
329     (*regs)[1] = tswapreg(env->regs[1]);
330     (*regs)[2] = tswapreg(env->regs[2]);
331     (*regs)[3] = tswapreg(env->regs[3]);
332     (*regs)[4] = tswapreg(env->regs[4]);
333     (*regs)[5] = tswapreg(env->regs[5]);
334     (*regs)[6] = tswapreg(env->regs[6]);
335     (*regs)[7] = tswapreg(env->regs[7]);
336     (*regs)[8] = tswapreg(env->regs[8]);
337     (*regs)[9] = tswapreg(env->regs[9]);
338     (*regs)[10] = tswapreg(env->regs[10]);
339     (*regs)[11] = tswapreg(env->regs[11]);
340     (*regs)[12] = tswapreg(env->regs[12]);
341     (*regs)[13] = tswapreg(env->regs[13]);
342     (*regs)[14] = tswapreg(env->regs[14]);
343     (*regs)[15] = tswapreg(env->regs[15]);
344 
345     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
347 }
348 
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE       4096
351 
352 enum
353 {
354     ARM_HWCAP_ARM_SWP       = 1 << 0,
355     ARM_HWCAP_ARM_HALF      = 1 << 1,
356     ARM_HWCAP_ARM_THUMB     = 1 << 2,
357     ARM_HWCAP_ARM_26BIT     = 1 << 3,
358     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359     ARM_HWCAP_ARM_FPA       = 1 << 5,
360     ARM_HWCAP_ARM_VFP       = 1 << 6,
361     ARM_HWCAP_ARM_EDSP      = 1 << 7,
362     ARM_HWCAP_ARM_JAVA      = 1 << 8,
363     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
364     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
365     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
366     ARM_HWCAP_ARM_NEON      = 1 << 12,
367     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
368     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
369     ARM_HWCAP_ARM_TLS       = 1 << 15,
370     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
371     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
372     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
373     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
374     ARM_HWCAP_ARM_LPAE      = 1 << 20,
375     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
376 };
377 
378 enum {
379     ARM_HWCAP2_ARM_AES      = 1 << 0,
380     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
381     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
382     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
383     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
384 };
385 
386 /* The commpage only exists for 32 bit kernels */
387 
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
389 
390 static bool init_guest_commpage(void)
391 {
392     void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
393     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
395 
396     if (addr == MAP_FAILED) {
397         perror("Allocating guest commpage");
398         exit(EXIT_FAILURE);
399     }
400     if (addr != want) {
401         return false;
402     }
403 
404     /* Set kernel helper versions; rest of page is 0.  */
405     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
406 
407     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408         perror("Protecting guest commpage");
409         exit(EXIT_FAILURE);
410     }
411     return true;
412 }
413 
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
416 
417 static uint32_t get_elf_hwcap(void)
418 {
419     ARMCPU *cpu = ARM_CPU(thread_cpu);
420     uint32_t hwcaps = 0;
421 
422     hwcaps |= ARM_HWCAP_ARM_SWP;
423     hwcaps |= ARM_HWCAP_ARM_HALF;
424     hwcaps |= ARM_HWCAP_ARM_THUMB;
425     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
426 
427     /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
430 
431 #define GET_FEATURE_ID(feat, hwcap) \
432     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433 
434     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444 
445     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447         hwcaps |= ARM_HWCAP_ARM_VFPv3;
448         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449             hwcaps |= ARM_HWCAP_ARM_VFPD32;
450         } else {
451             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452         }
453     }
454     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
455 
456     return hwcaps;
457 }
458 
459 static uint32_t get_elf_hwcap2(void)
460 {
461     ARMCPU *cpu = ARM_CPU(thread_cpu);
462     uint32_t hwcaps = 0;
463 
464     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469     return hwcaps;
470 }
471 
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
474 
475 #define ELF_PLATFORM get_elf_platform()
476 
477 static const char *get_elf_platform(void)
478 {
479     CPUARMState *env = thread_cpu->env_ptr;
480 
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END  "b"
483 #else
484 # define END  "l"
485 #endif
486 
487     if (arm_feature(env, ARM_FEATURE_V8)) {
488         return "v8" END;
489     } else if (arm_feature(env, ARM_FEATURE_V7)) {
490         if (arm_feature(env, ARM_FEATURE_M)) {
491             return "v7m" END;
492         } else {
493             return "v7" END;
494         }
495     } else if (arm_feature(env, ARM_FEATURE_V6)) {
496         return "v6" END;
497     } else if (arm_feature(env, ARM_FEATURE_V5)) {
498         return "v5" END;
499     } else {
500         return "v4" END;
501     }
502 
503 #undef END
504 }
505 
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
509 
510 #define ELF_ARCH        EM_AARCH64
511 #define ELF_CLASS       ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM    "aarch64_be"
514 #else
515 # define ELF_PLATFORM    "aarch64"
516 #endif
517 
518 static inline void init_thread(struct target_pt_regs *regs,
519                                struct image_info *infop)
520 {
521     abi_long stack = infop->start_stack;
522     memset(regs, 0, sizeof(*regs));
523 
524     regs->pc = infop->entry & ~0x3ULL;
525     regs->sp = stack;
526 }
527 
528 #define ELF_NREG    34
529 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
530 
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532                                const CPUARMState *env)
533 {
534     int i;
535 
536     for (i = 0; i < 32; i++) {
537         (*regs)[i] = tswapreg(env->xregs[i]);
538     }
539     (*regs)[32] = tswapreg(env->pc);
540     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541 }
542 
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE       4096
545 
546 enum {
547     ARM_HWCAP_A64_FP            = 1 << 0,
548     ARM_HWCAP_A64_ASIMD         = 1 << 1,
549     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
550     ARM_HWCAP_A64_AES           = 1 << 3,
551     ARM_HWCAP_A64_PMULL         = 1 << 4,
552     ARM_HWCAP_A64_SHA1          = 1 << 5,
553     ARM_HWCAP_A64_SHA2          = 1 << 6,
554     ARM_HWCAP_A64_CRC32         = 1 << 7,
555     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
556     ARM_HWCAP_A64_FPHP          = 1 << 9,
557     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
558     ARM_HWCAP_A64_CPUID         = 1 << 11,
559     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
560     ARM_HWCAP_A64_JSCVT         = 1 << 13,
561     ARM_HWCAP_A64_FCMA          = 1 << 14,
562     ARM_HWCAP_A64_LRCPC         = 1 << 15,
563     ARM_HWCAP_A64_DCPOP         = 1 << 16,
564     ARM_HWCAP_A64_SHA3          = 1 << 17,
565     ARM_HWCAP_A64_SM3           = 1 << 18,
566     ARM_HWCAP_A64_SM4           = 1 << 19,
567     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
568     ARM_HWCAP_A64_SHA512        = 1 << 21,
569     ARM_HWCAP_A64_SVE           = 1 << 22,
570     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
571     ARM_HWCAP_A64_DIT           = 1 << 24,
572     ARM_HWCAP_A64_USCAT         = 1 << 25,
573     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
574     ARM_HWCAP_A64_FLAGM         = 1 << 27,
575     ARM_HWCAP_A64_SSBS          = 1 << 28,
576     ARM_HWCAP_A64_SB            = 1 << 29,
577     ARM_HWCAP_A64_PACA          = 1 << 30,
578     ARM_HWCAP_A64_PACG          = 1UL << 31,
579 
580     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
581     ARM_HWCAP2_A64_SVE2         = 1 << 1,
582     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
583     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
584     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
585     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
586     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
587     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
588     ARM_HWCAP2_A64_FRINT        = 1 << 8,
589     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
590     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
591     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
592     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
593     ARM_HWCAP2_A64_I8MM         = 1 << 13,
594     ARM_HWCAP2_A64_BF16         = 1 << 14,
595     ARM_HWCAP2_A64_DGH          = 1 << 15,
596     ARM_HWCAP2_A64_RNG          = 1 << 16,
597     ARM_HWCAP2_A64_BTI          = 1 << 17,
598     ARM_HWCAP2_A64_MTE          = 1 << 18,
599 };
600 
601 #define ELF_HWCAP   get_elf_hwcap()
602 #define ELF_HWCAP2  get_elf_hwcap2()
603 
604 #define GET_FEATURE_ID(feat, hwcap) \
605     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
606 
607 static uint32_t get_elf_hwcap(void)
608 {
609     ARMCPU *cpu = ARM_CPU(thread_cpu);
610     uint32_t hwcaps = 0;
611 
612     hwcaps |= ARM_HWCAP_A64_FP;
613     hwcaps |= ARM_HWCAP_A64_ASIMD;
614     hwcaps |= ARM_HWCAP_A64_CPUID;
615 
616     /* probe for the extra features */
617 
618     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
619     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
620     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
621     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
622     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
623     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
624     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
625     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
626     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
627     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
628     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
629     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
630     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
631     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
632     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
633     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
634     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
635     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
636     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
637     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
638     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
639     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
640     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
641 
642     return hwcaps;
643 }
644 
645 static uint32_t get_elf_hwcap2(void)
646 {
647     ARMCPU *cpu = ARM_CPU(thread_cpu);
648     uint32_t hwcaps = 0;
649 
650     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
651     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
652     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
653     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
654     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
655     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
656 
657     return hwcaps;
658 }
659 
660 #undef GET_FEATURE_ID
661 
662 #endif /* not TARGET_AARCH64 */
663 #endif /* TARGET_ARM */
664 
665 #ifdef TARGET_SPARC
666 #ifdef TARGET_SPARC64
667 
668 #define ELF_START_MMAP 0x80000000
669 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
670                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
671 #ifndef TARGET_ABI32
672 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
673 #else
674 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
675 #endif
676 
677 #define ELF_CLASS   ELFCLASS64
678 #define ELF_ARCH    EM_SPARCV9
679 #else
680 #define ELF_START_MMAP 0x80000000
681 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
682                     | HWCAP_SPARC_MULDIV)
683 #define ELF_CLASS   ELFCLASS32
684 #define ELF_ARCH    EM_SPARC
685 #endif /* TARGET_SPARC64 */
686 
687 static inline void init_thread(struct target_pt_regs *regs,
688                                struct image_info *infop)
689 {
690     /* Note that target_cpu_copy_regs does not read psr/tstate. */
691     regs->pc = infop->entry;
692     regs->npc = regs->pc + 4;
693     regs->y = 0;
694     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
695                         - TARGET_STACK_BIAS);
696 }
697 #endif /* TARGET_SPARC */
698 
699 #ifdef TARGET_PPC
700 
701 #define ELF_MACHINE    PPC_ELF_MACHINE
702 #define ELF_START_MMAP 0x80000000
703 
704 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
705 
706 #define elf_check_arch(x) ( (x) == EM_PPC64 )
707 
708 #define ELF_CLASS       ELFCLASS64
709 
710 #else
711 
712 #define ELF_CLASS       ELFCLASS32
713 
714 #endif
715 
716 #define ELF_ARCH        EM_PPC
717 
718 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
719    See arch/powerpc/include/asm/cputable.h.  */
720 enum {
721     QEMU_PPC_FEATURE_32 = 0x80000000,
722     QEMU_PPC_FEATURE_64 = 0x40000000,
723     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
724     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
725     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
726     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
727     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
728     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
729     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
730     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
731     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
732     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
733     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
734     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
735     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
736     QEMU_PPC_FEATURE_CELL = 0x00010000,
737     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
738     QEMU_PPC_FEATURE_SMT = 0x00004000,
739     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
740     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
741     QEMU_PPC_FEATURE_PA6T = 0x00000800,
742     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
743     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
744     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
745     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
746     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
747 
748     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
749     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
750 
751     /* Feature definitions in AT_HWCAP2.  */
752     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
753     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
754     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
755     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
756     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
757     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
758     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
759     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
760     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
761     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
762     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
763     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
764     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
765 };
766 
767 #define ELF_HWCAP get_elf_hwcap()
768 
769 static uint32_t get_elf_hwcap(void)
770 {
771     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
772     uint32_t features = 0;
773 
774     /* We don't have to be terribly complete here; the high points are
775        Altivec/FP/SPE support.  Anything else is just a bonus.  */
776 #define GET_FEATURE(flag, feature)                                      \
777     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778 #define GET_FEATURE2(flags, feature) \
779     do { \
780         if ((cpu->env.insns_flags2 & flags) == flags) { \
781             features |= feature; \
782         } \
783     } while (0)
784     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
785     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
786     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
787     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
788     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
789     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
790     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
791     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
792     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
793     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
794     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
795                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
796                   QEMU_PPC_FEATURE_ARCH_2_06);
797 #undef GET_FEATURE
798 #undef GET_FEATURE2
799 
800     return features;
801 }
802 
803 #define ELF_HWCAP2 get_elf_hwcap2()
804 
805 static uint32_t get_elf_hwcap2(void)
806 {
807     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
808     uint32_t features = 0;
809 
810 #define GET_FEATURE(flag, feature)                                      \
811     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
812 #define GET_FEATURE2(flag, feature)                                      \
813     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
814 
815     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
816     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
817     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
818                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
819                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
820     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
821                  QEMU_PPC_FEATURE2_DARN);
822 
823 #undef GET_FEATURE
824 #undef GET_FEATURE2
825 
826     return features;
827 }
828 
829 /*
830  * The requirements here are:
831  * - keep the final alignment of sp (sp & 0xf)
832  * - make sure the 32-bit value at the first 16 byte aligned position of
833  *   AUXV is greater than 16 for glibc compatibility.
834  *   AT_IGNOREPPC is used for that.
835  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
836  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
837  */
838 #define DLINFO_ARCH_ITEMS       5
839 #define ARCH_DLINFO                                     \
840     do {                                                \
841         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
842         /*                                              \
843          * Handle glibc compatibility: these magic entries must \
844          * be at the lowest addresses in the final auxv.        \
845          */                                             \
846         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
847         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
848         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
849         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
850         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
851     } while (0)
852 
853 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
854 {
855     _regs->gpr[1] = infop->start_stack;
856 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
857     if (get_ppc64_abi(infop) < 2) {
858         uint64_t val;
859         get_user_u64(val, infop->entry + 8);
860         _regs->gpr[2] = val + infop->load_bias;
861         get_user_u64(val, infop->entry);
862         infop->entry = val + infop->load_bias;
863     } else {
864         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
865     }
866 #endif
867     _regs->nip = infop->entry;
868 }
869 
870 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
871 #define ELF_NREG 48
872 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
873 
874 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
875 {
876     int i;
877     target_ulong ccr = 0;
878 
879     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
880         (*regs)[i] = tswapreg(env->gpr[i]);
881     }
882 
883     (*regs)[32] = tswapreg(env->nip);
884     (*regs)[33] = tswapreg(env->msr);
885     (*regs)[35] = tswapreg(env->ctr);
886     (*regs)[36] = tswapreg(env->lr);
887     (*regs)[37] = tswapreg(env->xer);
888 
889     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
890         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
891     }
892     (*regs)[38] = tswapreg(ccr);
893 }
894 
895 #define USE_ELF_CORE_DUMP
896 #define ELF_EXEC_PAGESIZE       4096
897 
898 #endif
899 
900 #ifdef TARGET_MIPS
901 
902 #define ELF_START_MMAP 0x80000000
903 
904 #ifdef TARGET_MIPS64
905 #define ELF_CLASS   ELFCLASS64
906 #else
907 #define ELF_CLASS   ELFCLASS32
908 #endif
909 #define ELF_ARCH    EM_MIPS
910 
911 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
912 
913 #ifdef TARGET_ABI_MIPSN32
914 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
915 #else
916 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
917 #endif
918 
919 static inline void init_thread(struct target_pt_regs *regs,
920                                struct image_info *infop)
921 {
922     regs->cp0_status = 2 << CP0St_KSU;
923     regs->cp0_epc = infop->entry;
924     regs->regs[29] = infop->start_stack;
925 }
926 
927 /* See linux kernel: arch/mips/include/asm/elf.h.  */
928 #define ELF_NREG 45
929 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
930 
931 /* See linux kernel: arch/mips/include/asm/reg.h.  */
932 enum {
933 #ifdef TARGET_MIPS64
934     TARGET_EF_R0 = 0,
935 #else
936     TARGET_EF_R0 = 6,
937 #endif
938     TARGET_EF_R26 = TARGET_EF_R0 + 26,
939     TARGET_EF_R27 = TARGET_EF_R0 + 27,
940     TARGET_EF_LO = TARGET_EF_R0 + 32,
941     TARGET_EF_HI = TARGET_EF_R0 + 33,
942     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
943     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
944     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
945     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
946 };
947 
948 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
949 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
950 {
951     int i;
952 
953     for (i = 0; i < TARGET_EF_R0; i++) {
954         (*regs)[i] = 0;
955     }
956     (*regs)[TARGET_EF_R0] = 0;
957 
958     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
959         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
960     }
961 
962     (*regs)[TARGET_EF_R26] = 0;
963     (*regs)[TARGET_EF_R27] = 0;
964     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
965     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
966     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
967     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
968     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
969     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
970 }
971 
972 #define USE_ELF_CORE_DUMP
973 #define ELF_EXEC_PAGESIZE        4096
974 
975 /* See arch/mips/include/uapi/asm/hwcap.h.  */
976 enum {
977     HWCAP_MIPS_R6           = (1 << 0),
978     HWCAP_MIPS_MSA          = (1 << 1),
979     HWCAP_MIPS_CRC32        = (1 << 2),
980     HWCAP_MIPS_MIPS16       = (1 << 3),
981     HWCAP_MIPS_MDMX         = (1 << 4),
982     HWCAP_MIPS_MIPS3D       = (1 << 5),
983     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
984     HWCAP_MIPS_DSP          = (1 << 7),
985     HWCAP_MIPS_DSP2         = (1 << 8),
986     HWCAP_MIPS_DSP3         = (1 << 9),
987     HWCAP_MIPS_MIPS16E2     = (1 << 10),
988     HWCAP_LOONGSON_MMI      = (1 << 11),
989     HWCAP_LOONGSON_EXT      = (1 << 12),
990     HWCAP_LOONGSON_EXT2     = (1 << 13),
991     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
992 };
993 
994 #define ELF_HWCAP get_elf_hwcap()
995 
996 #define GET_FEATURE_INSN(_flag, _hwcap) \
997     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
998 
999 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1000     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1001 
1002 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1003     do { \
1004         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1005             hwcaps |= _hwcap; \
1006         } \
1007     } while (0)
1008 
1009 static uint32_t get_elf_hwcap(void)
1010 {
1011     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1012     uint32_t hwcaps = 0;
1013 
1014     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1015                         2, HWCAP_MIPS_R6);
1016     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1017     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1018     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1019 
1020     return hwcaps;
1021 }
1022 
1023 #undef GET_FEATURE_REG_EQU
1024 #undef GET_FEATURE_REG_SET
1025 #undef GET_FEATURE_INSN
1026 
1027 #endif /* TARGET_MIPS */
1028 
1029 #ifdef TARGET_MICROBLAZE
1030 
1031 #define ELF_START_MMAP 0x80000000
1032 
1033 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1034 
1035 #define ELF_CLASS   ELFCLASS32
1036 #define ELF_ARCH    EM_MICROBLAZE
1037 
1038 static inline void init_thread(struct target_pt_regs *regs,
1039                                struct image_info *infop)
1040 {
1041     regs->pc = infop->entry;
1042     regs->r1 = infop->start_stack;
1043 
1044 }
1045 
1046 #define ELF_EXEC_PAGESIZE        4096
1047 
1048 #define USE_ELF_CORE_DUMP
1049 #define ELF_NREG 38
1050 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1051 
1052 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1053 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1054 {
1055     int i, pos = 0;
1056 
1057     for (i = 0; i < 32; i++) {
1058         (*regs)[pos++] = tswapreg(env->regs[i]);
1059     }
1060 
1061     (*regs)[pos++] = tswapreg(env->pc);
1062     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1063     (*regs)[pos++] = 0;
1064     (*regs)[pos++] = tswapreg(env->ear);
1065     (*regs)[pos++] = 0;
1066     (*regs)[pos++] = tswapreg(env->esr);
1067 }
1068 
1069 #endif /* TARGET_MICROBLAZE */
1070 
1071 #ifdef TARGET_NIOS2
1072 
1073 #define ELF_START_MMAP 0x80000000
1074 
1075 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1076 
1077 #define ELF_CLASS   ELFCLASS32
1078 #define ELF_ARCH    EM_ALTERA_NIOS2
1079 
1080 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1081 {
1082     regs->ea = infop->entry;
1083     regs->sp = infop->start_stack;
1084     regs->estatus = 0x3;
1085 }
1086 
1087 #define ELF_EXEC_PAGESIZE        4096
1088 
1089 #define USE_ELF_CORE_DUMP
1090 #define ELF_NREG 49
1091 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1092 
1093 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1094 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1095                                const CPUNios2State *env)
1096 {
1097     int i;
1098 
1099     (*regs)[0] = -1;
1100     for (i = 1; i < 8; i++)    /* r0-r7 */
1101         (*regs)[i] = tswapreg(env->regs[i + 7]);
1102 
1103     for (i = 8; i < 16; i++)   /* r8-r15 */
1104         (*regs)[i] = tswapreg(env->regs[i - 8]);
1105 
1106     for (i = 16; i < 24; i++)  /* r16-r23 */
1107         (*regs)[i] = tswapreg(env->regs[i + 7]);
1108     (*regs)[24] = -1;    /* R_ET */
1109     (*regs)[25] = -1;    /* R_BT */
1110     (*regs)[26] = tswapreg(env->regs[R_GP]);
1111     (*regs)[27] = tswapreg(env->regs[R_SP]);
1112     (*regs)[28] = tswapreg(env->regs[R_FP]);
1113     (*regs)[29] = tswapreg(env->regs[R_EA]);
1114     (*regs)[30] = -1;    /* R_SSTATUS */
1115     (*regs)[31] = tswapreg(env->regs[R_RA]);
1116 
1117     (*regs)[32] = tswapreg(env->regs[R_PC]);
1118 
1119     (*regs)[33] = -1; /* R_STATUS */
1120     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1121 
1122     for (i = 35; i < 49; i++)    /* ... */
1123         (*regs)[i] = -1;
1124 }
1125 
1126 #endif /* TARGET_NIOS2 */
1127 
1128 #ifdef TARGET_OPENRISC
1129 
1130 #define ELF_START_MMAP 0x08000000
1131 
1132 #define ELF_ARCH EM_OPENRISC
1133 #define ELF_CLASS ELFCLASS32
1134 #define ELF_DATA  ELFDATA2MSB
1135 
1136 static inline void init_thread(struct target_pt_regs *regs,
1137                                struct image_info *infop)
1138 {
1139     regs->pc = infop->entry;
1140     regs->gpr[1] = infop->start_stack;
1141 }
1142 
1143 #define USE_ELF_CORE_DUMP
1144 #define ELF_EXEC_PAGESIZE 8192
1145 
1146 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1147 #define ELF_NREG 34 /* gprs and pc, sr */
1148 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1149 
1150 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1151                                const CPUOpenRISCState *env)
1152 {
1153     int i;
1154 
1155     for (i = 0; i < 32; i++) {
1156         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1157     }
1158     (*regs)[32] = tswapreg(env->pc);
1159     (*regs)[33] = tswapreg(cpu_get_sr(env));
1160 }
1161 #define ELF_HWCAP 0
1162 #define ELF_PLATFORM NULL
1163 
1164 #endif /* TARGET_OPENRISC */
1165 
1166 #ifdef TARGET_SH4
1167 
1168 #define ELF_START_MMAP 0x80000000
1169 
1170 #define ELF_CLASS ELFCLASS32
1171 #define ELF_ARCH  EM_SH
1172 
1173 static inline void init_thread(struct target_pt_regs *regs,
1174                                struct image_info *infop)
1175 {
1176     /* Check other registers XXXXX */
1177     regs->pc = infop->entry;
1178     regs->regs[15] = infop->start_stack;
1179 }
1180 
1181 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1182 #define ELF_NREG 23
1183 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1184 
1185 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1186 enum {
1187     TARGET_REG_PC = 16,
1188     TARGET_REG_PR = 17,
1189     TARGET_REG_SR = 18,
1190     TARGET_REG_GBR = 19,
1191     TARGET_REG_MACH = 20,
1192     TARGET_REG_MACL = 21,
1193     TARGET_REG_SYSCALL = 22
1194 };
1195 
1196 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1197                                       const CPUSH4State *env)
1198 {
1199     int i;
1200 
1201     for (i = 0; i < 16; i++) {
1202         (*regs)[i] = tswapreg(env->gregs[i]);
1203     }
1204 
1205     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1206     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1207     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1208     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1209     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1210     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1211     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1212 }
1213 
1214 #define USE_ELF_CORE_DUMP
1215 #define ELF_EXEC_PAGESIZE        4096
1216 
1217 enum {
1218     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1219     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1220     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1221     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1222     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1223     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1224     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1225     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1226     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1227     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1228 };
1229 
1230 #define ELF_HWCAP get_elf_hwcap()
1231 
1232 static uint32_t get_elf_hwcap(void)
1233 {
1234     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1235     uint32_t hwcap = 0;
1236 
1237     hwcap |= SH_CPU_HAS_FPU;
1238 
1239     if (cpu->env.features & SH_FEATURE_SH4A) {
1240         hwcap |= SH_CPU_HAS_LLSC;
1241     }
1242 
1243     return hwcap;
1244 }
1245 
1246 #endif
1247 
1248 #ifdef TARGET_CRIS
1249 
1250 #define ELF_START_MMAP 0x80000000
1251 
1252 #define ELF_CLASS ELFCLASS32
1253 #define ELF_ARCH  EM_CRIS
1254 
1255 static inline void init_thread(struct target_pt_regs *regs,
1256                                struct image_info *infop)
1257 {
1258     regs->erp = infop->entry;
1259 }
1260 
1261 #define ELF_EXEC_PAGESIZE        8192
1262 
1263 #endif
1264 
1265 #ifdef TARGET_M68K
1266 
1267 #define ELF_START_MMAP 0x80000000
1268 
1269 #define ELF_CLASS       ELFCLASS32
1270 #define ELF_ARCH        EM_68K
1271 
1272 /* ??? Does this need to do anything?
1273    #define ELF_PLAT_INIT(_r) */
1274 
1275 static inline void init_thread(struct target_pt_regs *regs,
1276                                struct image_info *infop)
1277 {
1278     regs->usp = infop->start_stack;
1279     regs->sr = 0;
1280     regs->pc = infop->entry;
1281 }
1282 
1283 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1284 #define ELF_NREG 20
1285 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1286 
1287 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1288 {
1289     (*regs)[0] = tswapreg(env->dregs[1]);
1290     (*regs)[1] = tswapreg(env->dregs[2]);
1291     (*regs)[2] = tswapreg(env->dregs[3]);
1292     (*regs)[3] = tswapreg(env->dregs[4]);
1293     (*regs)[4] = tswapreg(env->dregs[5]);
1294     (*regs)[5] = tswapreg(env->dregs[6]);
1295     (*regs)[6] = tswapreg(env->dregs[7]);
1296     (*regs)[7] = tswapreg(env->aregs[0]);
1297     (*regs)[8] = tswapreg(env->aregs[1]);
1298     (*regs)[9] = tswapreg(env->aregs[2]);
1299     (*regs)[10] = tswapreg(env->aregs[3]);
1300     (*regs)[11] = tswapreg(env->aregs[4]);
1301     (*regs)[12] = tswapreg(env->aregs[5]);
1302     (*regs)[13] = tswapreg(env->aregs[6]);
1303     (*regs)[14] = tswapreg(env->dregs[0]);
1304     (*regs)[15] = tswapreg(env->aregs[7]);
1305     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1306     (*regs)[17] = tswapreg(env->sr);
1307     (*regs)[18] = tswapreg(env->pc);
1308     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1309 }
1310 
1311 #define USE_ELF_CORE_DUMP
1312 #define ELF_EXEC_PAGESIZE       8192
1313 
1314 #endif
1315 
1316 #ifdef TARGET_ALPHA
1317 
1318 #define ELF_START_MMAP (0x30000000000ULL)
1319 
1320 #define ELF_CLASS      ELFCLASS64
1321 #define ELF_ARCH       EM_ALPHA
1322 
1323 static inline void init_thread(struct target_pt_regs *regs,
1324                                struct image_info *infop)
1325 {
1326     regs->pc = infop->entry;
1327     regs->ps = 8;
1328     regs->usp = infop->start_stack;
1329 }
1330 
1331 #define ELF_EXEC_PAGESIZE        8192
1332 
1333 #endif /* TARGET_ALPHA */
1334 
1335 #ifdef TARGET_S390X
1336 
1337 #define ELF_START_MMAP (0x20000000000ULL)
1338 
1339 #define ELF_CLASS	ELFCLASS64
1340 #define ELF_DATA	ELFDATA2MSB
1341 #define ELF_ARCH	EM_S390
1342 
1343 #include "elf.h"
1344 
1345 #define ELF_HWCAP get_elf_hwcap()
1346 
1347 #define GET_FEATURE(_feat, _hwcap) \
1348     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1349 
1350 static uint32_t get_elf_hwcap(void)
1351 {
1352     /*
1353      * Let's assume we always have esan3 and zarch.
1354      * 31-bit processes can use 64-bit registers (high gprs).
1355      */
1356     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1357 
1358     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1359     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1360     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1361     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1362     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1363         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1364         hwcap |= HWCAP_S390_ETF3EH;
1365     }
1366     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1367 
1368     return hwcap;
1369 }
1370 
1371 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1372 {
1373     regs->psw.addr = infop->entry;
1374     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1375     regs->gprs[15] = infop->start_stack;
1376 }
1377 
1378 #endif /* TARGET_S390X */
1379 
1380 #ifdef TARGET_RISCV
1381 
1382 #define ELF_START_MMAP 0x80000000
1383 #define ELF_ARCH  EM_RISCV
1384 
1385 #ifdef TARGET_RISCV32
1386 #define ELF_CLASS ELFCLASS32
1387 #else
1388 #define ELF_CLASS ELFCLASS64
1389 #endif
1390 
1391 static inline void init_thread(struct target_pt_regs *regs,
1392                                struct image_info *infop)
1393 {
1394     regs->sepc = infop->entry;
1395     regs->sp = infop->start_stack;
1396 }
1397 
1398 #define ELF_EXEC_PAGESIZE 4096
1399 
1400 #endif /* TARGET_RISCV */
1401 
1402 #ifdef TARGET_HPPA
1403 
1404 #define ELF_START_MMAP  0x80000000
1405 #define ELF_CLASS       ELFCLASS32
1406 #define ELF_ARCH        EM_PARISC
1407 #define ELF_PLATFORM    "PARISC"
1408 #define STACK_GROWS_DOWN 0
1409 #define STACK_ALIGNMENT  64
1410 
1411 static inline void init_thread(struct target_pt_regs *regs,
1412                                struct image_info *infop)
1413 {
1414     regs->iaoq[0] = infop->entry;
1415     regs->iaoq[1] = infop->entry + 4;
1416     regs->gr[23] = 0;
1417     regs->gr[24] = infop->arg_start;
1418     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1419     /* The top-of-stack contains a linkage buffer.  */
1420     regs->gr[30] = infop->start_stack + 64;
1421     regs->gr[31] = infop->entry;
1422 }
1423 
1424 #endif /* TARGET_HPPA */
1425 
1426 #ifdef TARGET_XTENSA
1427 
1428 #define ELF_START_MMAP 0x20000000
1429 
1430 #define ELF_CLASS       ELFCLASS32
1431 #define ELF_ARCH        EM_XTENSA
1432 
1433 static inline void init_thread(struct target_pt_regs *regs,
1434                                struct image_info *infop)
1435 {
1436     regs->windowbase = 0;
1437     regs->windowstart = 1;
1438     regs->areg[1] = infop->start_stack;
1439     regs->pc = infop->entry;
1440 }
1441 
1442 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1443 #define ELF_NREG 128
1444 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1445 
1446 enum {
1447     TARGET_REG_PC,
1448     TARGET_REG_PS,
1449     TARGET_REG_LBEG,
1450     TARGET_REG_LEND,
1451     TARGET_REG_LCOUNT,
1452     TARGET_REG_SAR,
1453     TARGET_REG_WINDOWSTART,
1454     TARGET_REG_WINDOWBASE,
1455     TARGET_REG_THREADPTR,
1456     TARGET_REG_AR0 = 64,
1457 };
1458 
1459 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1460                                const CPUXtensaState *env)
1461 {
1462     unsigned i;
1463 
1464     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1465     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1466     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1467     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1468     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1469     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1470     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1471     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1472     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1473     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1474     for (i = 0; i < env->config->nareg; ++i) {
1475         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1476     }
1477 }
1478 
1479 #define USE_ELF_CORE_DUMP
1480 #define ELF_EXEC_PAGESIZE       4096
1481 
1482 #endif /* TARGET_XTENSA */
1483 
1484 #ifdef TARGET_HEXAGON
1485 
1486 #define ELF_START_MMAP 0x20000000
1487 
1488 #define ELF_CLASS       ELFCLASS32
1489 #define ELF_ARCH        EM_HEXAGON
1490 
1491 static inline void init_thread(struct target_pt_regs *regs,
1492                                struct image_info *infop)
1493 {
1494     regs->sepc = infop->entry;
1495     regs->sp = infop->start_stack;
1496 }
1497 
1498 #endif /* TARGET_HEXAGON */
1499 
1500 #ifndef ELF_PLATFORM
1501 #define ELF_PLATFORM (NULL)
1502 #endif
1503 
1504 #ifndef ELF_MACHINE
1505 #define ELF_MACHINE ELF_ARCH
1506 #endif
1507 
1508 #ifndef elf_check_arch
1509 #define elf_check_arch(x) ((x) == ELF_ARCH)
1510 #endif
1511 
1512 #ifndef elf_check_abi
1513 #define elf_check_abi(x) (1)
1514 #endif
1515 
1516 #ifndef ELF_HWCAP
1517 #define ELF_HWCAP 0
1518 #endif
1519 
1520 #ifndef STACK_GROWS_DOWN
1521 #define STACK_GROWS_DOWN 1
1522 #endif
1523 
1524 #ifndef STACK_ALIGNMENT
1525 #define STACK_ALIGNMENT 16
1526 #endif
1527 
1528 #ifdef TARGET_ABI32
1529 #undef ELF_CLASS
1530 #define ELF_CLASS ELFCLASS32
1531 #undef bswaptls
1532 #define bswaptls(ptr) bswap32s(ptr)
1533 #endif
1534 
1535 #include "elf.h"
1536 
1537 /* We must delay the following stanzas until after "elf.h". */
1538 #if defined(TARGET_AARCH64)
1539 
1540 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1541                                     const uint32_t *data,
1542                                     struct image_info *info,
1543                                     Error **errp)
1544 {
1545     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1546         if (pr_datasz != sizeof(uint32_t)) {
1547             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1548             return false;
1549         }
1550         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1551         info->note_flags = *data;
1552     }
1553     return true;
1554 }
1555 #define ARCH_USE_GNU_PROPERTY 1
1556 
1557 #else
1558 
1559 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1560                                     const uint32_t *data,
1561                                     struct image_info *info,
1562                                     Error **errp)
1563 {
1564     g_assert_not_reached();
1565 }
1566 #define ARCH_USE_GNU_PROPERTY 0
1567 
1568 #endif
1569 
1570 struct exec
1571 {
1572     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1573     unsigned int a_text;   /* length of text, in bytes */
1574     unsigned int a_data;   /* length of data, in bytes */
1575     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1576     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1577     unsigned int a_entry;  /* start address */
1578     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1579     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1580 };
1581 
1582 
1583 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1584 #define OMAGIC 0407
1585 #define NMAGIC 0410
1586 #define ZMAGIC 0413
1587 #define QMAGIC 0314
1588 
1589 /* Necessary parameters */
1590 #define TARGET_ELF_EXEC_PAGESIZE \
1591         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1592          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1593 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1594 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1595                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1596 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1597 
1598 #define DLINFO_ITEMS 16
1599 
1600 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1601 {
1602     memcpy(to, from, n);
1603 }
1604 
1605 #ifdef BSWAP_NEEDED
1606 static void bswap_ehdr(struct elfhdr *ehdr)
1607 {
1608     bswap16s(&ehdr->e_type);            /* Object file type */
1609     bswap16s(&ehdr->e_machine);         /* Architecture */
1610     bswap32s(&ehdr->e_version);         /* Object file version */
1611     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1612     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1613     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1614     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1615     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1616     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1617     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1618     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1619     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1620     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1621 }
1622 
1623 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1624 {
1625     int i;
1626     for (i = 0; i < phnum; ++i, ++phdr) {
1627         bswap32s(&phdr->p_type);        /* Segment type */
1628         bswap32s(&phdr->p_flags);       /* Segment flags */
1629         bswaptls(&phdr->p_offset);      /* Segment file offset */
1630         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1631         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1632         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1633         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1634         bswaptls(&phdr->p_align);       /* Segment alignment */
1635     }
1636 }
1637 
1638 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1639 {
1640     int i;
1641     for (i = 0; i < shnum; ++i, ++shdr) {
1642         bswap32s(&shdr->sh_name);
1643         bswap32s(&shdr->sh_type);
1644         bswaptls(&shdr->sh_flags);
1645         bswaptls(&shdr->sh_addr);
1646         bswaptls(&shdr->sh_offset);
1647         bswaptls(&shdr->sh_size);
1648         bswap32s(&shdr->sh_link);
1649         bswap32s(&shdr->sh_info);
1650         bswaptls(&shdr->sh_addralign);
1651         bswaptls(&shdr->sh_entsize);
1652     }
1653 }
1654 
1655 static void bswap_sym(struct elf_sym *sym)
1656 {
1657     bswap32s(&sym->st_name);
1658     bswaptls(&sym->st_value);
1659     bswaptls(&sym->st_size);
1660     bswap16s(&sym->st_shndx);
1661 }
1662 
1663 #ifdef TARGET_MIPS
1664 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1665 {
1666     bswap16s(&abiflags->version);
1667     bswap32s(&abiflags->ases);
1668     bswap32s(&abiflags->isa_ext);
1669     bswap32s(&abiflags->flags1);
1670     bswap32s(&abiflags->flags2);
1671 }
1672 #endif
1673 #else
1674 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1675 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1676 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1677 static inline void bswap_sym(struct elf_sym *sym) { }
1678 #ifdef TARGET_MIPS
1679 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1680 #endif
1681 #endif
1682 
1683 #ifdef USE_ELF_CORE_DUMP
1684 static int elf_core_dump(int, const CPUArchState *);
1685 #endif /* USE_ELF_CORE_DUMP */
1686 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1687 
1688 /* Verify the portions of EHDR within E_IDENT for the target.
1689    This can be performed before bswapping the entire header.  */
1690 static bool elf_check_ident(struct elfhdr *ehdr)
1691 {
1692     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1693             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1694             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1695             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1696             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1697             && ehdr->e_ident[EI_DATA] == ELF_DATA
1698             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1699 }
1700 
1701 /* Verify the portions of EHDR outside of E_IDENT for the target.
1702    This has to wait until after bswapping the header.  */
1703 static bool elf_check_ehdr(struct elfhdr *ehdr)
1704 {
1705     return (elf_check_arch(ehdr->e_machine)
1706             && elf_check_abi(ehdr->e_flags)
1707             && ehdr->e_ehsize == sizeof(struct elfhdr)
1708             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1709             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1710 }
1711 
1712 /*
1713  * 'copy_elf_strings()' copies argument/envelope strings from user
1714  * memory to free pages in kernel mem. These are in a format ready
1715  * to be put directly into the top of new user memory.
1716  *
1717  */
1718 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1719                                   abi_ulong p, abi_ulong stack_limit)
1720 {
1721     char *tmp;
1722     int len, i;
1723     abi_ulong top = p;
1724 
1725     if (!p) {
1726         return 0;       /* bullet-proofing */
1727     }
1728 
1729     if (STACK_GROWS_DOWN) {
1730         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1731         for (i = argc - 1; i >= 0; --i) {
1732             tmp = argv[i];
1733             if (!tmp) {
1734                 fprintf(stderr, "VFS: argc is wrong");
1735                 exit(-1);
1736             }
1737             len = strlen(tmp) + 1;
1738             tmp += len;
1739 
1740             if (len > (p - stack_limit)) {
1741                 return 0;
1742             }
1743             while (len) {
1744                 int bytes_to_copy = (len > offset) ? offset : len;
1745                 tmp -= bytes_to_copy;
1746                 p -= bytes_to_copy;
1747                 offset -= bytes_to_copy;
1748                 len -= bytes_to_copy;
1749 
1750                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1751 
1752                 if (offset == 0) {
1753                     memcpy_to_target(p, scratch, top - p);
1754                     top = p;
1755                     offset = TARGET_PAGE_SIZE;
1756                 }
1757             }
1758         }
1759         if (p != top) {
1760             memcpy_to_target(p, scratch + offset, top - p);
1761         }
1762     } else {
1763         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1764         for (i = 0; i < argc; ++i) {
1765             tmp = argv[i];
1766             if (!tmp) {
1767                 fprintf(stderr, "VFS: argc is wrong");
1768                 exit(-1);
1769             }
1770             len = strlen(tmp) + 1;
1771             if (len > (stack_limit - p)) {
1772                 return 0;
1773             }
1774             while (len) {
1775                 int bytes_to_copy = (len > remaining) ? remaining : len;
1776 
1777                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1778 
1779                 tmp += bytes_to_copy;
1780                 remaining -= bytes_to_copy;
1781                 p += bytes_to_copy;
1782                 len -= bytes_to_copy;
1783 
1784                 if (remaining == 0) {
1785                     memcpy_to_target(top, scratch, p - top);
1786                     top = p;
1787                     remaining = TARGET_PAGE_SIZE;
1788                 }
1789             }
1790         }
1791         if (p != top) {
1792             memcpy_to_target(top, scratch, p - top);
1793         }
1794     }
1795 
1796     return p;
1797 }
1798 
1799 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1800  * argument/environment space. Newer kernels (>2.6.33) allow more,
1801  * dependent on stack size, but guarantee at least 32 pages for
1802  * backwards compatibility.
1803  */
1804 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1805 
1806 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1807                                  struct image_info *info)
1808 {
1809     abi_ulong size, error, guard;
1810 
1811     size = guest_stack_size;
1812     if (size < STACK_LOWER_LIMIT) {
1813         size = STACK_LOWER_LIMIT;
1814     }
1815     guard = TARGET_PAGE_SIZE;
1816     if (guard < qemu_real_host_page_size) {
1817         guard = qemu_real_host_page_size;
1818     }
1819 
1820     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1821                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1822     if (error == -1) {
1823         perror("mmap stack");
1824         exit(-1);
1825     }
1826 
1827     /* We reserve one extra page at the top of the stack as guard.  */
1828     if (STACK_GROWS_DOWN) {
1829         target_mprotect(error, guard, PROT_NONE);
1830         info->stack_limit = error + guard;
1831         return info->stack_limit + size - sizeof(void *);
1832     } else {
1833         target_mprotect(error + size, guard, PROT_NONE);
1834         info->stack_limit = error + size;
1835         return error;
1836     }
1837 }
1838 
1839 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1840    after the data section (i.e. bss).  */
1841 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1842 {
1843     uintptr_t host_start, host_map_start, host_end;
1844 
1845     last_bss = TARGET_PAGE_ALIGN(last_bss);
1846 
1847     /* ??? There is confusion between qemu_real_host_page_size and
1848        qemu_host_page_size here and elsewhere in target_mmap, which
1849        may lead to the end of the data section mapping from the file
1850        not being mapped.  At least there was an explicit test and
1851        comment for that here, suggesting that "the file size must
1852        be known".  The comment probably pre-dates the introduction
1853        of the fstat system call in target_mmap which does in fact
1854        find out the size.  What isn't clear is if the workaround
1855        here is still actually needed.  For now, continue with it,
1856        but merge it with the "normal" mmap that would allocate the bss.  */
1857 
1858     host_start = (uintptr_t) g2h_untagged(elf_bss);
1859     host_end = (uintptr_t) g2h_untagged(last_bss);
1860     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1861 
1862     if (host_map_start < host_end) {
1863         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1864                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1865         if (p == MAP_FAILED) {
1866             perror("cannot mmap brk");
1867             exit(-1);
1868         }
1869     }
1870 
1871     /* Ensure that the bss page(s) are valid */
1872     if ((page_get_flags(last_bss-1) & prot) != prot) {
1873         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1874     }
1875 
1876     if (host_start < host_map_start) {
1877         memset((void *)host_start, 0, host_map_start - host_start);
1878     }
1879 }
1880 
1881 #ifdef TARGET_ARM
1882 static int elf_is_fdpic(struct elfhdr *exec)
1883 {
1884     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1885 }
1886 #else
1887 /* Default implementation, always false.  */
1888 static int elf_is_fdpic(struct elfhdr *exec)
1889 {
1890     return 0;
1891 }
1892 #endif
1893 
1894 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1895 {
1896     uint16_t n;
1897     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1898 
1899     /* elf32_fdpic_loadseg */
1900     n = info->nsegs;
1901     while (n--) {
1902         sp -= 12;
1903         put_user_u32(loadsegs[n].addr, sp+0);
1904         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1905         put_user_u32(loadsegs[n].p_memsz, sp+8);
1906     }
1907 
1908     /* elf32_fdpic_loadmap */
1909     sp -= 4;
1910     put_user_u16(0, sp+0); /* version */
1911     put_user_u16(info->nsegs, sp+2); /* nsegs */
1912 
1913     info->personality = PER_LINUX_FDPIC;
1914     info->loadmap_addr = sp;
1915 
1916     return sp;
1917 }
1918 
1919 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1920                                    struct elfhdr *exec,
1921                                    struct image_info *info,
1922                                    struct image_info *interp_info)
1923 {
1924     abi_ulong sp;
1925     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1926     int size;
1927     int i;
1928     abi_ulong u_rand_bytes;
1929     uint8_t k_rand_bytes[16];
1930     abi_ulong u_platform;
1931     const char *k_platform;
1932     const int n = sizeof(elf_addr_t);
1933 
1934     sp = p;
1935 
1936     /* Needs to be before we load the env/argc/... */
1937     if (elf_is_fdpic(exec)) {
1938         /* Need 4 byte alignment for these structs */
1939         sp &= ~3;
1940         sp = loader_build_fdpic_loadmap(info, sp);
1941         info->other_info = interp_info;
1942         if (interp_info) {
1943             interp_info->other_info = info;
1944             sp = loader_build_fdpic_loadmap(interp_info, sp);
1945             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1946             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1947         } else {
1948             info->interpreter_loadmap_addr = 0;
1949             info->interpreter_pt_dynamic_addr = 0;
1950         }
1951     }
1952 
1953     u_platform = 0;
1954     k_platform = ELF_PLATFORM;
1955     if (k_platform) {
1956         size_t len = strlen(k_platform) + 1;
1957         if (STACK_GROWS_DOWN) {
1958             sp -= (len + n - 1) & ~(n - 1);
1959             u_platform = sp;
1960             /* FIXME - check return value of memcpy_to_target() for failure */
1961             memcpy_to_target(sp, k_platform, len);
1962         } else {
1963             memcpy_to_target(sp, k_platform, len);
1964             u_platform = sp;
1965             sp += len + 1;
1966         }
1967     }
1968 
1969     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1970      * the argv and envp pointers.
1971      */
1972     if (STACK_GROWS_DOWN) {
1973         sp = QEMU_ALIGN_DOWN(sp, 16);
1974     } else {
1975         sp = QEMU_ALIGN_UP(sp, 16);
1976     }
1977 
1978     /*
1979      * Generate 16 random bytes for userspace PRNG seeding.
1980      */
1981     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1982     if (STACK_GROWS_DOWN) {
1983         sp -= 16;
1984         u_rand_bytes = sp;
1985         /* FIXME - check return value of memcpy_to_target() for failure */
1986         memcpy_to_target(sp, k_rand_bytes, 16);
1987     } else {
1988         memcpy_to_target(sp, k_rand_bytes, 16);
1989         u_rand_bytes = sp;
1990         sp += 16;
1991     }
1992 
1993     size = (DLINFO_ITEMS + 1) * 2;
1994     if (k_platform)
1995         size += 2;
1996 #ifdef DLINFO_ARCH_ITEMS
1997     size += DLINFO_ARCH_ITEMS * 2;
1998 #endif
1999 #ifdef ELF_HWCAP2
2000     size += 2;
2001 #endif
2002     info->auxv_len = size * n;
2003 
2004     size += envc + argc + 2;
2005     size += 1;  /* argc itself */
2006     size *= n;
2007 
2008     /* Allocate space and finalize stack alignment for entry now.  */
2009     if (STACK_GROWS_DOWN) {
2010         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2011         sp = u_argc;
2012     } else {
2013         u_argc = sp;
2014         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2015     }
2016 
2017     u_argv = u_argc + n;
2018     u_envp = u_argv + (argc + 1) * n;
2019     u_auxv = u_envp + (envc + 1) * n;
2020     info->saved_auxv = u_auxv;
2021     info->arg_start = u_argv;
2022     info->arg_end = u_argv + argc * n;
2023 
2024     /* This is correct because Linux defines
2025      * elf_addr_t as Elf32_Off / Elf64_Off
2026      */
2027 #define NEW_AUX_ENT(id, val) do {               \
2028         put_user_ual(id, u_auxv);  u_auxv += n; \
2029         put_user_ual(val, u_auxv); u_auxv += n; \
2030     } while(0)
2031 
2032 #ifdef ARCH_DLINFO
2033     /*
2034      * ARCH_DLINFO must come first so platform specific code can enforce
2035      * special alignment requirements on the AUXV if necessary (eg. PPC).
2036      */
2037     ARCH_DLINFO;
2038 #endif
2039     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2040      * on info->auxv_len will trigger.
2041      */
2042     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2043     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2044     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2045     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2046         /* Target doesn't support host page size alignment */
2047         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2048     } else {
2049         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2050                                                qemu_host_page_size)));
2051     }
2052     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2053     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2054     NEW_AUX_ENT(AT_ENTRY, info->entry);
2055     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2056     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2057     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2058     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2059     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2060     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2061     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2062     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2063     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2064 
2065 #ifdef ELF_HWCAP2
2066     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2067 #endif
2068 
2069     if (u_platform) {
2070         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2071     }
2072     NEW_AUX_ENT (AT_NULL, 0);
2073 #undef NEW_AUX_ENT
2074 
2075     /* Check that our initial calculation of the auxv length matches how much
2076      * we actually put into it.
2077      */
2078     assert(info->auxv_len == u_auxv - info->saved_auxv);
2079 
2080     put_user_ual(argc, u_argc);
2081 
2082     p = info->arg_strings;
2083     for (i = 0; i < argc; ++i) {
2084         put_user_ual(p, u_argv);
2085         u_argv += n;
2086         p += target_strlen(p) + 1;
2087     }
2088     put_user_ual(0, u_argv);
2089 
2090     p = info->env_strings;
2091     for (i = 0; i < envc; ++i) {
2092         put_user_ual(p, u_envp);
2093         u_envp += n;
2094         p += target_strlen(p) + 1;
2095     }
2096     put_user_ual(0, u_envp);
2097 
2098     return sp;
2099 }
2100 
2101 #ifndef ARM_COMMPAGE
2102 #define ARM_COMMPAGE 0
2103 #define init_guest_commpage() true
2104 #endif
2105 
2106 static void pgb_fail_in_use(const char *image_name)
2107 {
2108     error_report("%s: requires virtual address space that is in use "
2109                  "(omit the -B option or choose a different value)",
2110                  image_name);
2111     exit(EXIT_FAILURE);
2112 }
2113 
2114 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2115                                 abi_ulong guest_hiaddr, long align)
2116 {
2117     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2118     void *addr, *test;
2119 
2120     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2121         fprintf(stderr, "Requested guest base %p does not satisfy "
2122                 "host minimum alignment (0x%lx)\n",
2123                 (void *)guest_base, align);
2124         exit(EXIT_FAILURE);
2125     }
2126 
2127     /* Sanity check the guest binary. */
2128     if (reserved_va) {
2129         if (guest_hiaddr > reserved_va) {
2130             error_report("%s: requires more than reserved virtual "
2131                          "address space (0x%" PRIx64 " > 0x%lx)",
2132                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2133             exit(EXIT_FAILURE);
2134         }
2135     } else {
2136 #if HOST_LONG_BITS < TARGET_ABI_BITS
2137         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2138             error_report("%s: requires more virtual address space "
2139                          "than the host can provide (0x%" PRIx64 ")",
2140                          image_name, (uint64_t)guest_hiaddr - guest_base);
2141             exit(EXIT_FAILURE);
2142         }
2143 #endif
2144     }
2145 
2146     /*
2147      * Expand the allocation to the entire reserved_va.
2148      * Exclude the mmap_min_addr hole.
2149      */
2150     if (reserved_va) {
2151         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2152                         : mmap_min_addr - guest_base);
2153         guest_hiaddr = reserved_va;
2154     }
2155 
2156     /* Reserve the address space for the binary, or reserved_va. */
2157     test = g2h_untagged(guest_loaddr);
2158     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2159     if (test != addr) {
2160         pgb_fail_in_use(image_name);
2161     }
2162 }
2163 
2164 /**
2165  * pgd_find_hole_fallback: potential mmap address
2166  * @guest_size: size of available space
2167  * @brk: location of break
2168  * @align: memory alignment
2169  *
2170  * This is a fallback method for finding a hole in the host address
2171  * space if we don't have the benefit of being able to access
2172  * /proc/self/map. It can potentially take a very long time as we can
2173  * only dumbly iterate up the host address space seeing if the
2174  * allocation would work.
2175  */
2176 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2177                                         long align, uintptr_t offset)
2178 {
2179     uintptr_t base;
2180 
2181     /* Start (aligned) at the bottom and work our way up */
2182     base = ROUND_UP(mmap_min_addr, align);
2183 
2184     while (true) {
2185         uintptr_t align_start, end;
2186         align_start = ROUND_UP(base, align);
2187         end = align_start + guest_size + offset;
2188 
2189         /* if brk is anywhere in the range give ourselves some room to grow. */
2190         if (align_start <= brk && brk < end) {
2191             base = brk + (16 * MiB);
2192             continue;
2193         } else if (align_start + guest_size < align_start) {
2194             /* we have run out of space */
2195             return -1;
2196         } else {
2197             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2198                 MAP_FIXED_NOREPLACE;
2199             void * mmap_start = mmap((void *) align_start, guest_size,
2200                                      PROT_NONE, flags, -1, 0);
2201             if (mmap_start != MAP_FAILED) {
2202                 munmap(mmap_start, guest_size);
2203                 if (mmap_start == (void *) align_start) {
2204                     return (uintptr_t) mmap_start + offset;
2205                 }
2206             }
2207             base += qemu_host_page_size;
2208         }
2209     }
2210 }
2211 
2212 /* Return value for guest_base, or -1 if no hole found. */
2213 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2214                                long align, uintptr_t offset)
2215 {
2216     GSList *maps, *iter;
2217     uintptr_t this_start, this_end, next_start, brk;
2218     intptr_t ret = -1;
2219 
2220     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2221 
2222     maps = read_self_maps();
2223 
2224     /* Read brk after we've read the maps, which will malloc. */
2225     brk = (uintptr_t)sbrk(0);
2226 
2227     if (!maps) {
2228         ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2229         return ret == -1 ? -1 : ret - guest_loaddr;
2230     }
2231 
2232     /* The first hole is before the first map entry. */
2233     this_start = mmap_min_addr;
2234 
2235     for (iter = maps; iter;
2236          this_start = next_start, iter = g_slist_next(iter)) {
2237         uintptr_t align_start, hole_size;
2238 
2239         this_end = ((MapInfo *)iter->data)->start;
2240         next_start = ((MapInfo *)iter->data)->end;
2241         align_start = ROUND_UP(this_start + offset, align);
2242 
2243         /* Skip holes that are too small. */
2244         if (align_start >= this_end) {
2245             continue;
2246         }
2247         hole_size = this_end - align_start;
2248         if (hole_size < guest_size) {
2249             continue;
2250         }
2251 
2252         /* If this hole contains brk, give ourselves some room to grow. */
2253         if (this_start <= brk && brk < this_end) {
2254             hole_size -= guest_size;
2255             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2256                 align_start += 1 * GiB;
2257             } else if (hole_size >= 16 * MiB) {
2258                 align_start += 16 * MiB;
2259             } else {
2260                 align_start = (this_end - guest_size) & -align;
2261                 if (align_start < this_start) {
2262                     continue;
2263                 }
2264             }
2265         }
2266 
2267         /* Record the lowest successful match. */
2268         if (ret < 0) {
2269             ret = align_start - guest_loaddr;
2270         }
2271         /* If this hole contains the identity map, select it. */
2272         if (align_start <= guest_loaddr &&
2273             guest_loaddr + guest_size <= this_end) {
2274             ret = 0;
2275         }
2276         /* If this hole ends above the identity map, stop looking. */
2277         if (this_end >= guest_loaddr) {
2278             break;
2279         }
2280     }
2281     free_self_maps(maps);
2282 
2283     return ret;
2284 }
2285 
2286 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2287                        abi_ulong orig_hiaddr, long align)
2288 {
2289     uintptr_t loaddr = orig_loaddr;
2290     uintptr_t hiaddr = orig_hiaddr;
2291     uintptr_t offset = 0;
2292     uintptr_t addr;
2293 
2294     if (hiaddr != orig_hiaddr) {
2295         error_report("%s: requires virtual address space that the "
2296                      "host cannot provide (0x%" PRIx64 ")",
2297                      image_name, (uint64_t)orig_hiaddr);
2298         exit(EXIT_FAILURE);
2299     }
2300 
2301     loaddr &= -align;
2302     if (ARM_COMMPAGE) {
2303         /*
2304          * Extend the allocation to include the commpage.
2305          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2306          * need to ensure there is space bellow the guest_base so we
2307          * can map the commpage in the place needed when the address
2308          * arithmetic wraps around.
2309          */
2310         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2311             hiaddr = (uintptr_t) 4 << 30;
2312         } else {
2313             offset = -(ARM_COMMPAGE & -align);
2314         }
2315     }
2316 
2317     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2318     if (addr == -1) {
2319         /*
2320          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2321          * that can satisfy both.  But as the normal arm32 link base address
2322          * is ~32k, and we extend down to include the commpage, making the
2323          * overhead only ~96k, this is unlikely.
2324          */
2325         error_report("%s: Unable to allocate %#zx bytes of "
2326                      "virtual address space", image_name,
2327                      (size_t)(hiaddr - loaddr));
2328         exit(EXIT_FAILURE);
2329     }
2330 
2331     guest_base = addr;
2332 }
2333 
2334 static void pgb_dynamic(const char *image_name, long align)
2335 {
2336     /*
2337      * The executable is dynamic and does not require a fixed address.
2338      * All we need is a commpage that satisfies align.
2339      * If we do not need a commpage, leave guest_base == 0.
2340      */
2341     if (ARM_COMMPAGE) {
2342         uintptr_t addr, commpage;
2343 
2344         /* 64-bit hosts should have used reserved_va. */
2345         assert(sizeof(uintptr_t) == 4);
2346 
2347         /*
2348          * By putting the commpage at the first hole, that puts guest_base
2349          * just above that, and maximises the positive guest addresses.
2350          */
2351         commpage = ARM_COMMPAGE & -align;
2352         addr = pgb_find_hole(commpage, -commpage, align, 0);
2353         assert(addr != -1);
2354         guest_base = addr;
2355     }
2356 }
2357 
2358 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2359                             abi_ulong guest_hiaddr, long align)
2360 {
2361     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2362     void *addr, *test;
2363 
2364     if (guest_hiaddr > reserved_va) {
2365         error_report("%s: requires more than reserved virtual "
2366                      "address space (0x%" PRIx64 " > 0x%lx)",
2367                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2368         exit(EXIT_FAILURE);
2369     }
2370 
2371     /* Widen the "image" to the entire reserved address space. */
2372     pgb_static(image_name, 0, reserved_va, align);
2373 
2374     /* osdep.h defines this as 0 if it's missing */
2375     flags |= MAP_FIXED_NOREPLACE;
2376 
2377     /* Reserve the memory on the host. */
2378     assert(guest_base != 0);
2379     test = g2h_untagged(0);
2380     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2381     if (addr == MAP_FAILED || addr != test) {
2382         error_report("Unable to reserve 0x%lx bytes of virtual address "
2383                      "space at %p (%s) for use as guest address space (check your"
2384                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2385                      "using -R option)", reserved_va, test, strerror(errno));
2386         exit(EXIT_FAILURE);
2387     }
2388 }
2389 
2390 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2391                       abi_ulong guest_hiaddr)
2392 {
2393     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2394     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2395 
2396     if (have_guest_base) {
2397         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2398     } else if (reserved_va) {
2399         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2400     } else if (guest_loaddr) {
2401         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2402     } else {
2403         pgb_dynamic(image_name, align);
2404     }
2405 
2406     /* Reserve and initialize the commpage. */
2407     if (!init_guest_commpage()) {
2408         /*
2409          * With have_guest_base, the user has selected the address and
2410          * we are trying to work with that.  Otherwise, we have selected
2411          * free space and init_guest_commpage must succeeded.
2412          */
2413         assert(have_guest_base);
2414         pgb_fail_in_use(image_name);
2415     }
2416 
2417     assert(QEMU_IS_ALIGNED(guest_base, align));
2418     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2419                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2420 }
2421 
2422 enum {
2423     /* The string "GNU\0" as a magic number. */
2424     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2425     NOTE_DATA_SZ = 1 * KiB,
2426     NOTE_NAME_SZ = 4,
2427     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2428 };
2429 
2430 /*
2431  * Process a single gnu_property entry.
2432  * Return false for error.
2433  */
2434 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2435                                struct image_info *info, bool have_prev_type,
2436                                uint32_t *prev_type, Error **errp)
2437 {
2438     uint32_t pr_type, pr_datasz, step;
2439 
2440     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2441         goto error_data;
2442     }
2443     datasz -= *off;
2444     data += *off / sizeof(uint32_t);
2445 
2446     if (datasz < 2 * sizeof(uint32_t)) {
2447         goto error_data;
2448     }
2449     pr_type = data[0];
2450     pr_datasz = data[1];
2451     data += 2;
2452     datasz -= 2 * sizeof(uint32_t);
2453     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2454     if (step > datasz) {
2455         goto error_data;
2456     }
2457 
2458     /* Properties are supposed to be unique and sorted on pr_type. */
2459     if (have_prev_type && pr_type <= *prev_type) {
2460         if (pr_type == *prev_type) {
2461             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2462         } else {
2463             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2464         }
2465         return false;
2466     }
2467     *prev_type = pr_type;
2468 
2469     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2470         return false;
2471     }
2472 
2473     *off += 2 * sizeof(uint32_t) + step;
2474     return true;
2475 
2476  error_data:
2477     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2478     return false;
2479 }
2480 
2481 /* Process NT_GNU_PROPERTY_TYPE_0. */
2482 static bool parse_elf_properties(int image_fd,
2483                                  struct image_info *info,
2484                                  const struct elf_phdr *phdr,
2485                                  char bprm_buf[BPRM_BUF_SIZE],
2486                                  Error **errp)
2487 {
2488     union {
2489         struct elf_note nhdr;
2490         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2491     } note;
2492 
2493     int n, off, datasz;
2494     bool have_prev_type;
2495     uint32_t prev_type;
2496 
2497     /* Unless the arch requires properties, ignore them. */
2498     if (!ARCH_USE_GNU_PROPERTY) {
2499         return true;
2500     }
2501 
2502     /* If the properties are crazy large, that's too bad. */
2503     n = phdr->p_filesz;
2504     if (n > sizeof(note)) {
2505         error_setg(errp, "PT_GNU_PROPERTY too large");
2506         return false;
2507     }
2508     if (n < sizeof(note.nhdr)) {
2509         error_setg(errp, "PT_GNU_PROPERTY too small");
2510         return false;
2511     }
2512 
2513     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2514         memcpy(&note, bprm_buf + phdr->p_offset, n);
2515     } else {
2516         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2517         if (len != n) {
2518             error_setg_errno(errp, errno, "Error reading file header");
2519             return false;
2520         }
2521     }
2522 
2523     /*
2524      * The contents of a valid PT_GNU_PROPERTY is a sequence
2525      * of uint32_t -- swap them all now.
2526      */
2527 #ifdef BSWAP_NEEDED
2528     for (int i = 0; i < n / 4; i++) {
2529         bswap32s(note.data + i);
2530     }
2531 #endif
2532 
2533     /*
2534      * Note that nhdr is 3 words, and that the "name" described by namesz
2535      * immediately follows nhdr and is thus at the 4th word.  Further, all
2536      * of the inputs to the kernel's round_up are multiples of 4.
2537      */
2538     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2539         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2540         note.data[3] != GNU0_MAGIC) {
2541         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2542         return false;
2543     }
2544     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2545 
2546     datasz = note.nhdr.n_descsz + off;
2547     if (datasz > n) {
2548         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2549         return false;
2550     }
2551 
2552     have_prev_type = false;
2553     prev_type = 0;
2554     while (1) {
2555         if (off == datasz) {
2556             return true;  /* end, exit ok */
2557         }
2558         if (!parse_elf_property(note.data, &off, datasz, info,
2559                                 have_prev_type, &prev_type, errp)) {
2560             return false;
2561         }
2562         have_prev_type = true;
2563     }
2564 }
2565 
2566 /* Load an ELF image into the address space.
2567 
2568    IMAGE_NAME is the filename of the image, to use in error messages.
2569    IMAGE_FD is the open file descriptor for the image.
2570 
2571    BPRM_BUF is a copy of the beginning of the file; this of course
2572    contains the elf file header at offset 0.  It is assumed that this
2573    buffer is sufficiently aligned to present no problems to the host
2574    in accessing data at aligned offsets within the buffer.
2575 
2576    On return: INFO values will be filled in, as necessary or available.  */
2577 
2578 static void load_elf_image(const char *image_name, int image_fd,
2579                            struct image_info *info, char **pinterp_name,
2580                            char bprm_buf[BPRM_BUF_SIZE])
2581 {
2582     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2583     struct elf_phdr *phdr;
2584     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2585     int i, retval, prot_exec;
2586     Error *err = NULL;
2587 
2588     /* First of all, some simple consistency checks */
2589     if (!elf_check_ident(ehdr)) {
2590         error_setg(&err, "Invalid ELF image for this architecture");
2591         goto exit_errmsg;
2592     }
2593     bswap_ehdr(ehdr);
2594     if (!elf_check_ehdr(ehdr)) {
2595         error_setg(&err, "Invalid ELF image for this architecture");
2596         goto exit_errmsg;
2597     }
2598 
2599     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2600     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2601         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2602     } else {
2603         phdr = (struct elf_phdr *) alloca(i);
2604         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2605         if (retval != i) {
2606             goto exit_read;
2607         }
2608     }
2609     bswap_phdr(phdr, ehdr->e_phnum);
2610 
2611     info->nsegs = 0;
2612     info->pt_dynamic_addr = 0;
2613 
2614     mmap_lock();
2615 
2616     /*
2617      * Find the maximum size of the image and allocate an appropriate
2618      * amount of memory to handle that.  Locate the interpreter, if any.
2619      */
2620     loaddr = -1, hiaddr = 0;
2621     info->alignment = 0;
2622     for (i = 0; i < ehdr->e_phnum; ++i) {
2623         struct elf_phdr *eppnt = phdr + i;
2624         if (eppnt->p_type == PT_LOAD) {
2625             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2626             if (a < loaddr) {
2627                 loaddr = a;
2628             }
2629             a = eppnt->p_vaddr + eppnt->p_memsz;
2630             if (a > hiaddr) {
2631                 hiaddr = a;
2632             }
2633             ++info->nsegs;
2634             info->alignment |= eppnt->p_align;
2635         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2636             g_autofree char *interp_name = NULL;
2637 
2638             if (*pinterp_name) {
2639                 error_setg(&err, "Multiple PT_INTERP entries");
2640                 goto exit_errmsg;
2641             }
2642 
2643             interp_name = g_malloc(eppnt->p_filesz);
2644 
2645             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2646                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2647                        eppnt->p_filesz);
2648             } else {
2649                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2650                                eppnt->p_offset);
2651                 if (retval != eppnt->p_filesz) {
2652                     goto exit_read;
2653                 }
2654             }
2655             if (interp_name[eppnt->p_filesz - 1] != 0) {
2656                 error_setg(&err, "Invalid PT_INTERP entry");
2657                 goto exit_errmsg;
2658             }
2659             *pinterp_name = g_steal_pointer(&interp_name);
2660         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2661             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2662                 goto exit_errmsg;
2663             }
2664         }
2665     }
2666 
2667     if (pinterp_name != NULL) {
2668         /*
2669          * This is the main executable.
2670          *
2671          * Reserve extra space for brk.
2672          * We hold on to this space while placing the interpreter
2673          * and the stack, lest they be placed immediately after
2674          * the data segment and block allocation from the brk.
2675          *
2676          * 16MB is chosen as "large enough" without being so large
2677          * as to allow the result to not fit with a 32-bit guest on
2678          * a 32-bit host.
2679          */
2680         info->reserve_brk = 16 * MiB;
2681         hiaddr += info->reserve_brk;
2682 
2683         if (ehdr->e_type == ET_EXEC) {
2684             /*
2685              * Make sure that the low address does not conflict with
2686              * MMAP_MIN_ADDR or the QEMU application itself.
2687              */
2688             probe_guest_base(image_name, loaddr, hiaddr);
2689         } else {
2690             /*
2691              * The binary is dynamic, but we still need to
2692              * select guest_base.  In this case we pass a size.
2693              */
2694             probe_guest_base(image_name, 0, hiaddr - loaddr);
2695         }
2696     }
2697 
2698     /*
2699      * Reserve address space for all of this.
2700      *
2701      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2702      * exactly the address range that is required.
2703      *
2704      * Otherwise this is ET_DYN, and we are searching for a location
2705      * that can hold the memory space required.  If the image is
2706      * pre-linked, LOADDR will be non-zero, and the kernel should
2707      * honor that address if it happens to be free.
2708      *
2709      * In both cases, we will overwrite pages in this range with mappings
2710      * from the executable.
2711      */
2712     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2713                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2714                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2715                             -1, 0);
2716     if (load_addr == -1) {
2717         goto exit_mmap;
2718     }
2719     load_bias = load_addr - loaddr;
2720 
2721     if (elf_is_fdpic(ehdr)) {
2722         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2723             g_malloc(sizeof(*loadsegs) * info->nsegs);
2724 
2725         for (i = 0; i < ehdr->e_phnum; ++i) {
2726             switch (phdr[i].p_type) {
2727             case PT_DYNAMIC:
2728                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2729                 break;
2730             case PT_LOAD:
2731                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2732                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2733                 loadsegs->p_memsz = phdr[i].p_memsz;
2734                 ++loadsegs;
2735                 break;
2736             }
2737         }
2738     }
2739 
2740     info->load_bias = load_bias;
2741     info->code_offset = load_bias;
2742     info->data_offset = load_bias;
2743     info->load_addr = load_addr;
2744     info->entry = ehdr->e_entry + load_bias;
2745     info->start_code = -1;
2746     info->end_code = 0;
2747     info->start_data = -1;
2748     info->end_data = 0;
2749     info->brk = 0;
2750     info->elf_flags = ehdr->e_flags;
2751 
2752     prot_exec = PROT_EXEC;
2753 #ifdef TARGET_AARCH64
2754     /*
2755      * If the BTI feature is present, this indicates that the executable
2756      * pages of the startup binary should be mapped with PROT_BTI, so that
2757      * branch targets are enforced.
2758      *
2759      * The startup binary is either the interpreter or the static executable.
2760      * The interpreter is responsible for all pages of a dynamic executable.
2761      *
2762      * Elf notes are backward compatible to older cpus.
2763      * Do not enable BTI unless it is supported.
2764      */
2765     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2766         && (pinterp_name == NULL || *pinterp_name == 0)
2767         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2768         prot_exec |= TARGET_PROT_BTI;
2769     }
2770 #endif
2771 
2772     for (i = 0; i < ehdr->e_phnum; i++) {
2773         struct elf_phdr *eppnt = phdr + i;
2774         if (eppnt->p_type == PT_LOAD) {
2775             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2776             int elf_prot = 0;
2777 
2778             if (eppnt->p_flags & PF_R) {
2779                 elf_prot |= PROT_READ;
2780             }
2781             if (eppnt->p_flags & PF_W) {
2782                 elf_prot |= PROT_WRITE;
2783             }
2784             if (eppnt->p_flags & PF_X) {
2785                 elf_prot |= prot_exec;
2786             }
2787 
2788             vaddr = load_bias + eppnt->p_vaddr;
2789             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2790             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2791 
2792             vaddr_ef = vaddr + eppnt->p_filesz;
2793             vaddr_em = vaddr + eppnt->p_memsz;
2794 
2795             /*
2796              * Some segments may be completely empty, with a non-zero p_memsz
2797              * but no backing file segment.
2798              */
2799             if (eppnt->p_filesz != 0) {
2800                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2801                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2802                                     MAP_PRIVATE | MAP_FIXED,
2803                                     image_fd, eppnt->p_offset - vaddr_po);
2804 
2805                 if (error == -1) {
2806                     goto exit_mmap;
2807                 }
2808 
2809                 /*
2810                  * If the load segment requests extra zeros (e.g. bss), map it.
2811                  */
2812                 if (eppnt->p_filesz < eppnt->p_memsz) {
2813                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2814                 }
2815             } else if (eppnt->p_memsz != 0) {
2816                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2817                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2818                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2819                                     -1, 0);
2820 
2821                 if (error == -1) {
2822                     goto exit_mmap;
2823                 }
2824             }
2825 
2826             /* Find the full program boundaries.  */
2827             if (elf_prot & PROT_EXEC) {
2828                 if (vaddr < info->start_code) {
2829                     info->start_code = vaddr;
2830                 }
2831                 if (vaddr_ef > info->end_code) {
2832                     info->end_code = vaddr_ef;
2833                 }
2834             }
2835             if (elf_prot & PROT_WRITE) {
2836                 if (vaddr < info->start_data) {
2837                     info->start_data = vaddr;
2838                 }
2839                 if (vaddr_ef > info->end_data) {
2840                     info->end_data = vaddr_ef;
2841                 }
2842             }
2843             if (vaddr_em > info->brk) {
2844                 info->brk = vaddr_em;
2845             }
2846 #ifdef TARGET_MIPS
2847         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2848             Mips_elf_abiflags_v0 abiflags;
2849             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2850                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2851                 goto exit_errmsg;
2852             }
2853             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2854                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2855                        sizeof(Mips_elf_abiflags_v0));
2856             } else {
2857                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2858                                eppnt->p_offset);
2859                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2860                     goto exit_read;
2861                 }
2862             }
2863             bswap_mips_abiflags(&abiflags);
2864             info->fp_abi = abiflags.fp_abi;
2865 #endif
2866         }
2867     }
2868 
2869     if (info->end_data == 0) {
2870         info->start_data = info->end_code;
2871         info->end_data = info->end_code;
2872     }
2873 
2874     if (qemu_log_enabled()) {
2875         load_symbols(ehdr, image_fd, load_bias);
2876     }
2877 
2878     mmap_unlock();
2879 
2880     close(image_fd);
2881     return;
2882 
2883  exit_read:
2884     if (retval >= 0) {
2885         error_setg(&err, "Incomplete read of file header");
2886     } else {
2887         error_setg_errno(&err, errno, "Error reading file header");
2888     }
2889     goto exit_errmsg;
2890  exit_mmap:
2891     error_setg_errno(&err, errno, "Error mapping file");
2892     goto exit_errmsg;
2893  exit_errmsg:
2894     error_reportf_err(err, "%s: ", image_name);
2895     exit(-1);
2896 }
2897 
2898 static void load_elf_interp(const char *filename, struct image_info *info,
2899                             char bprm_buf[BPRM_BUF_SIZE])
2900 {
2901     int fd, retval;
2902     Error *err = NULL;
2903 
2904     fd = open(path(filename), O_RDONLY);
2905     if (fd < 0) {
2906         error_setg_file_open(&err, errno, filename);
2907         error_report_err(err);
2908         exit(-1);
2909     }
2910 
2911     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2912     if (retval < 0) {
2913         error_setg_errno(&err, errno, "Error reading file header");
2914         error_reportf_err(err, "%s: ", filename);
2915         exit(-1);
2916     }
2917 
2918     if (retval < BPRM_BUF_SIZE) {
2919         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2920     }
2921 
2922     load_elf_image(filename, fd, info, NULL, bprm_buf);
2923 }
2924 
2925 static int symfind(const void *s0, const void *s1)
2926 {
2927     target_ulong addr = *(target_ulong *)s0;
2928     struct elf_sym *sym = (struct elf_sym *)s1;
2929     int result = 0;
2930     if (addr < sym->st_value) {
2931         result = -1;
2932     } else if (addr >= sym->st_value + sym->st_size) {
2933         result = 1;
2934     }
2935     return result;
2936 }
2937 
2938 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2939 {
2940 #if ELF_CLASS == ELFCLASS32
2941     struct elf_sym *syms = s->disas_symtab.elf32;
2942 #else
2943     struct elf_sym *syms = s->disas_symtab.elf64;
2944 #endif
2945 
2946     // binary search
2947     struct elf_sym *sym;
2948 
2949     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2950     if (sym != NULL) {
2951         return s->disas_strtab + sym->st_name;
2952     }
2953 
2954     return "";
2955 }
2956 
2957 /* FIXME: This should use elf_ops.h  */
2958 static int symcmp(const void *s0, const void *s1)
2959 {
2960     struct elf_sym *sym0 = (struct elf_sym *)s0;
2961     struct elf_sym *sym1 = (struct elf_sym *)s1;
2962     return (sym0->st_value < sym1->st_value)
2963         ? -1
2964         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2965 }
2966 
2967 /* Best attempt to load symbols from this ELF object. */
2968 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2969 {
2970     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2971     uint64_t segsz;
2972     struct elf_shdr *shdr;
2973     char *strings = NULL;
2974     struct syminfo *s = NULL;
2975     struct elf_sym *new_syms, *syms = NULL;
2976 
2977     shnum = hdr->e_shnum;
2978     i = shnum * sizeof(struct elf_shdr);
2979     shdr = (struct elf_shdr *)alloca(i);
2980     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2981         return;
2982     }
2983 
2984     bswap_shdr(shdr, shnum);
2985     for (i = 0; i < shnum; ++i) {
2986         if (shdr[i].sh_type == SHT_SYMTAB) {
2987             sym_idx = i;
2988             str_idx = shdr[i].sh_link;
2989             goto found;
2990         }
2991     }
2992 
2993     /* There will be no symbol table if the file was stripped.  */
2994     return;
2995 
2996  found:
2997     /* Now know where the strtab and symtab are.  Snarf them.  */
2998     s = g_try_new(struct syminfo, 1);
2999     if (!s) {
3000         goto give_up;
3001     }
3002 
3003     segsz = shdr[str_idx].sh_size;
3004     s->disas_strtab = strings = g_try_malloc(segsz);
3005     if (!strings ||
3006         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3007         goto give_up;
3008     }
3009 
3010     segsz = shdr[sym_idx].sh_size;
3011     syms = g_try_malloc(segsz);
3012     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3013         goto give_up;
3014     }
3015 
3016     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3017         /* Implausibly large symbol table: give up rather than ploughing
3018          * on with the number of symbols calculation overflowing
3019          */
3020         goto give_up;
3021     }
3022     nsyms = segsz / sizeof(struct elf_sym);
3023     for (i = 0; i < nsyms; ) {
3024         bswap_sym(syms + i);
3025         /* Throw away entries which we do not need.  */
3026         if (syms[i].st_shndx == SHN_UNDEF
3027             || syms[i].st_shndx >= SHN_LORESERVE
3028             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3029             if (i < --nsyms) {
3030                 syms[i] = syms[nsyms];
3031             }
3032         } else {
3033 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3034             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3035             syms[i].st_value &= ~(target_ulong)1;
3036 #endif
3037             syms[i].st_value += load_bias;
3038             i++;
3039         }
3040     }
3041 
3042     /* No "useful" symbol.  */
3043     if (nsyms == 0) {
3044         goto give_up;
3045     }
3046 
3047     /* Attempt to free the storage associated with the local symbols
3048        that we threw away.  Whether or not this has any effect on the
3049        memory allocation depends on the malloc implementation and how
3050        many symbols we managed to discard.  */
3051     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3052     if (new_syms == NULL) {
3053         goto give_up;
3054     }
3055     syms = new_syms;
3056 
3057     qsort(syms, nsyms, sizeof(*syms), symcmp);
3058 
3059     s->disas_num_syms = nsyms;
3060 #if ELF_CLASS == ELFCLASS32
3061     s->disas_symtab.elf32 = syms;
3062 #else
3063     s->disas_symtab.elf64 = syms;
3064 #endif
3065     s->lookup_symbol = lookup_symbolxx;
3066     s->next = syminfos;
3067     syminfos = s;
3068 
3069     return;
3070 
3071 give_up:
3072     g_free(s);
3073     g_free(strings);
3074     g_free(syms);
3075 }
3076 
3077 uint32_t get_elf_eflags(int fd)
3078 {
3079     struct elfhdr ehdr;
3080     off_t offset;
3081     int ret;
3082 
3083     /* Read ELF header */
3084     offset = lseek(fd, 0, SEEK_SET);
3085     if (offset == (off_t) -1) {
3086         return 0;
3087     }
3088     ret = read(fd, &ehdr, sizeof(ehdr));
3089     if (ret < sizeof(ehdr)) {
3090         return 0;
3091     }
3092     offset = lseek(fd, offset, SEEK_SET);
3093     if (offset == (off_t) -1) {
3094         return 0;
3095     }
3096 
3097     /* Check ELF signature */
3098     if (!elf_check_ident(&ehdr)) {
3099         return 0;
3100     }
3101 
3102     /* check header */
3103     bswap_ehdr(&ehdr);
3104     if (!elf_check_ehdr(&ehdr)) {
3105         return 0;
3106     }
3107 
3108     /* return architecture id */
3109     return ehdr.e_flags;
3110 }
3111 
3112 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3113 {
3114     struct image_info interp_info;
3115     struct elfhdr elf_ex;
3116     char *elf_interpreter = NULL;
3117     char *scratch;
3118 
3119     memset(&interp_info, 0, sizeof(interp_info));
3120 #ifdef TARGET_MIPS
3121     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3122 #endif
3123 
3124     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3125 
3126     load_elf_image(bprm->filename, bprm->fd, info,
3127                    &elf_interpreter, bprm->buf);
3128 
3129     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3130        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3131        when we load the interpreter.  */
3132     elf_ex = *(struct elfhdr *)bprm->buf;
3133 
3134     /* Do this so that we can load the interpreter, if need be.  We will
3135        change some of these later */
3136     bprm->p = setup_arg_pages(bprm, info);
3137 
3138     scratch = g_new0(char, TARGET_PAGE_SIZE);
3139     if (STACK_GROWS_DOWN) {
3140         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3141                                    bprm->p, info->stack_limit);
3142         info->file_string = bprm->p;
3143         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3144                                    bprm->p, info->stack_limit);
3145         info->env_strings = bprm->p;
3146         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3147                                    bprm->p, info->stack_limit);
3148         info->arg_strings = bprm->p;
3149     } else {
3150         info->arg_strings = bprm->p;
3151         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3152                                    bprm->p, info->stack_limit);
3153         info->env_strings = bprm->p;
3154         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3155                                    bprm->p, info->stack_limit);
3156         info->file_string = bprm->p;
3157         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3158                                    bprm->p, info->stack_limit);
3159     }
3160 
3161     g_free(scratch);
3162 
3163     if (!bprm->p) {
3164         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3165         exit(-1);
3166     }
3167 
3168     if (elf_interpreter) {
3169         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3170 
3171         /* If the program interpreter is one of these two, then assume
3172            an iBCS2 image.  Otherwise assume a native linux image.  */
3173 
3174         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3175             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3176             info->personality = PER_SVR4;
3177 
3178             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3179                and some applications "depend" upon this behavior.  Since
3180                we do not have the power to recompile these, we emulate
3181                the SVr4 behavior.  Sigh.  */
3182             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3183                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3184         }
3185 #ifdef TARGET_MIPS
3186         info->interp_fp_abi = interp_info.fp_abi;
3187 #endif
3188     }
3189 
3190     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3191                                 info, (elf_interpreter ? &interp_info : NULL));
3192     info->start_stack = bprm->p;
3193 
3194     /* If we have an interpreter, set that as the program's entry point.
3195        Copy the load_bias as well, to help PPC64 interpret the entry
3196        point as a function descriptor.  Do this after creating elf tables
3197        so that we copy the original program entry point into the AUXV.  */
3198     if (elf_interpreter) {
3199         info->load_bias = interp_info.load_bias;
3200         info->entry = interp_info.entry;
3201         g_free(elf_interpreter);
3202     }
3203 
3204 #ifdef USE_ELF_CORE_DUMP
3205     bprm->core_dump = &elf_core_dump;
3206 #endif
3207 
3208     /*
3209      * If we reserved extra space for brk, release it now.
3210      * The implementation of do_brk in syscalls.c expects to be able
3211      * to mmap pages in this space.
3212      */
3213     if (info->reserve_brk) {
3214         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3215         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3216         target_munmap(start_brk, end_brk - start_brk);
3217     }
3218 
3219     return 0;
3220 }
3221 
3222 #ifdef USE_ELF_CORE_DUMP
3223 /*
3224  * Definitions to generate Intel SVR4-like core files.
3225  * These mostly have the same names as the SVR4 types with "target_elf_"
3226  * tacked on the front to prevent clashes with linux definitions,
3227  * and the typedef forms have been avoided.  This is mostly like
3228  * the SVR4 structure, but more Linuxy, with things that Linux does
3229  * not support and which gdb doesn't really use excluded.
3230  *
3231  * Fields we don't dump (their contents is zero) in linux-user qemu
3232  * are marked with XXX.
3233  *
3234  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3235  *
3236  * Porting ELF coredump for target is (quite) simple process.  First you
3237  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3238  * the target resides):
3239  *
3240  * #define USE_ELF_CORE_DUMP
3241  *
3242  * Next you define type of register set used for dumping.  ELF specification
3243  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3244  *
3245  * typedef <target_regtype> target_elf_greg_t;
3246  * #define ELF_NREG <number of registers>
3247  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3248  *
3249  * Last step is to implement target specific function that copies registers
3250  * from given cpu into just specified register set.  Prototype is:
3251  *
3252  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3253  *                                const CPUArchState *env);
3254  *
3255  * Parameters:
3256  *     regs - copy register values into here (allocated and zeroed by caller)
3257  *     env - copy registers from here
3258  *
3259  * Example for ARM target is provided in this file.
3260  */
3261 
3262 /* An ELF note in memory */
3263 struct memelfnote {
3264     const char *name;
3265     size_t     namesz;
3266     size_t     namesz_rounded;
3267     int        type;
3268     size_t     datasz;
3269     size_t     datasz_rounded;
3270     void       *data;
3271     size_t     notesz;
3272 };
3273 
3274 struct target_elf_siginfo {
3275     abi_int    si_signo; /* signal number */
3276     abi_int    si_code;  /* extra code */
3277     abi_int    si_errno; /* errno */
3278 };
3279 
3280 struct target_elf_prstatus {
3281     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3282     abi_short          pr_cursig;    /* Current signal */
3283     abi_ulong          pr_sigpend;   /* XXX */
3284     abi_ulong          pr_sighold;   /* XXX */
3285     target_pid_t       pr_pid;
3286     target_pid_t       pr_ppid;
3287     target_pid_t       pr_pgrp;
3288     target_pid_t       pr_sid;
3289     struct target_timeval pr_utime;  /* XXX User time */
3290     struct target_timeval pr_stime;  /* XXX System time */
3291     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3292     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3293     target_elf_gregset_t      pr_reg;       /* GP registers */
3294     abi_int            pr_fpvalid;   /* XXX */
3295 };
3296 
3297 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3298 
3299 struct target_elf_prpsinfo {
3300     char         pr_state;       /* numeric process state */
3301     char         pr_sname;       /* char for pr_state */
3302     char         pr_zomb;        /* zombie */
3303     char         pr_nice;        /* nice val */
3304     abi_ulong    pr_flag;        /* flags */
3305     target_uid_t pr_uid;
3306     target_gid_t pr_gid;
3307     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3308     /* Lots missing */
3309     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3310     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3311 };
3312 
3313 /* Here is the structure in which status of each thread is captured. */
3314 struct elf_thread_status {
3315     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3316     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3317 #if 0
3318     elf_fpregset_t fpu;             /* NT_PRFPREG */
3319     struct task_struct *thread;
3320     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3321 #endif
3322     struct memelfnote notes[1];
3323     int num_notes;
3324 };
3325 
3326 struct elf_note_info {
3327     struct memelfnote   *notes;
3328     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3329     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3330 
3331     QTAILQ_HEAD(, elf_thread_status) thread_list;
3332 #if 0
3333     /*
3334      * Current version of ELF coredump doesn't support
3335      * dumping fp regs etc.
3336      */
3337     elf_fpregset_t *fpu;
3338     elf_fpxregset_t *xfpu;
3339     int thread_status_size;
3340 #endif
3341     int notes_size;
3342     int numnote;
3343 };
3344 
3345 struct vm_area_struct {
3346     target_ulong   vma_start;  /* start vaddr of memory region */
3347     target_ulong   vma_end;    /* end vaddr of memory region */
3348     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3349     QTAILQ_ENTRY(vm_area_struct) vma_link;
3350 };
3351 
3352 struct mm_struct {
3353     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3354     int mm_count;           /* number of mappings */
3355 };
3356 
3357 static struct mm_struct *vma_init(void);
3358 static void vma_delete(struct mm_struct *);
3359 static int vma_add_mapping(struct mm_struct *, target_ulong,
3360                            target_ulong, abi_ulong);
3361 static int vma_get_mapping_count(const struct mm_struct *);
3362 static struct vm_area_struct *vma_first(const struct mm_struct *);
3363 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3364 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3365 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3366                       unsigned long flags);
3367 
3368 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3369 static void fill_note(struct memelfnote *, const char *, int,
3370                       unsigned int, void *);
3371 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3372 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3373 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3374 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3375 static size_t note_size(const struct memelfnote *);
3376 static void free_note_info(struct elf_note_info *);
3377 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3378 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3379 static int core_dump_filename(const TaskState *, char *, size_t);
3380 
3381 static int dump_write(int, const void *, size_t);
3382 static int write_note(struct memelfnote *, int);
3383 static int write_note_info(struct elf_note_info *, int);
3384 
3385 #ifdef BSWAP_NEEDED
3386 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3387 {
3388     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3389     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3390     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3391     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3392     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3393     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3394     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3395     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3396     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3397     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3398     /* cpu times are not filled, so we skip them */
3399     /* regs should be in correct format already */
3400     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3401 }
3402 
3403 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3404 {
3405     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3406     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3407     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3408     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3409     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3410     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3411     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3412 }
3413 
3414 static void bswap_note(struct elf_note *en)
3415 {
3416     bswap32s(&en->n_namesz);
3417     bswap32s(&en->n_descsz);
3418     bswap32s(&en->n_type);
3419 }
3420 #else
3421 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3422 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3423 static inline void bswap_note(struct elf_note *en) { }
3424 #endif /* BSWAP_NEEDED */
3425 
3426 /*
3427  * Minimal support for linux memory regions.  These are needed
3428  * when we are finding out what memory exactly belongs to
3429  * emulated process.  No locks needed here, as long as
3430  * thread that received the signal is stopped.
3431  */
3432 
3433 static struct mm_struct *vma_init(void)
3434 {
3435     struct mm_struct *mm;
3436 
3437     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3438         return (NULL);
3439 
3440     mm->mm_count = 0;
3441     QTAILQ_INIT(&mm->mm_mmap);
3442 
3443     return (mm);
3444 }
3445 
3446 static void vma_delete(struct mm_struct *mm)
3447 {
3448     struct vm_area_struct *vma;
3449 
3450     while ((vma = vma_first(mm)) != NULL) {
3451         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3452         g_free(vma);
3453     }
3454     g_free(mm);
3455 }
3456 
3457 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3458                            target_ulong end, abi_ulong flags)
3459 {
3460     struct vm_area_struct *vma;
3461 
3462     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3463         return (-1);
3464 
3465     vma->vma_start = start;
3466     vma->vma_end = end;
3467     vma->vma_flags = flags;
3468 
3469     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3470     mm->mm_count++;
3471 
3472     return (0);
3473 }
3474 
3475 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3476 {
3477     return (QTAILQ_FIRST(&mm->mm_mmap));
3478 }
3479 
3480 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3481 {
3482     return (QTAILQ_NEXT(vma, vma_link));
3483 }
3484 
3485 static int vma_get_mapping_count(const struct mm_struct *mm)
3486 {
3487     return (mm->mm_count);
3488 }
3489 
3490 /*
3491  * Calculate file (dump) size of given memory region.
3492  */
3493 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3494 {
3495     /* if we cannot even read the first page, skip it */
3496     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3497         return (0);
3498 
3499     /*
3500      * Usually we don't dump executable pages as they contain
3501      * non-writable code that debugger can read directly from
3502      * target library etc.  However, thread stacks are marked
3503      * also executable so we read in first page of given region
3504      * and check whether it contains elf header.  If there is
3505      * no elf header, we dump it.
3506      */
3507     if (vma->vma_flags & PROT_EXEC) {
3508         char page[TARGET_PAGE_SIZE];
3509 
3510         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3511             return 0;
3512         }
3513         if ((page[EI_MAG0] == ELFMAG0) &&
3514             (page[EI_MAG1] == ELFMAG1) &&
3515             (page[EI_MAG2] == ELFMAG2) &&
3516             (page[EI_MAG3] == ELFMAG3)) {
3517             /*
3518              * Mappings are possibly from ELF binary.  Don't dump
3519              * them.
3520              */
3521             return (0);
3522         }
3523     }
3524 
3525     return (vma->vma_end - vma->vma_start);
3526 }
3527 
3528 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3529                       unsigned long flags)
3530 {
3531     struct mm_struct *mm = (struct mm_struct *)priv;
3532 
3533     vma_add_mapping(mm, start, end, flags);
3534     return (0);
3535 }
3536 
3537 static void fill_note(struct memelfnote *note, const char *name, int type,
3538                       unsigned int sz, void *data)
3539 {
3540     unsigned int namesz;
3541 
3542     namesz = strlen(name) + 1;
3543     note->name = name;
3544     note->namesz = namesz;
3545     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3546     note->type = type;
3547     note->datasz = sz;
3548     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3549 
3550     note->data = data;
3551 
3552     /*
3553      * We calculate rounded up note size here as specified by
3554      * ELF document.
3555      */
3556     note->notesz = sizeof (struct elf_note) +
3557         note->namesz_rounded + note->datasz_rounded;
3558 }
3559 
3560 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3561                             uint32_t flags)
3562 {
3563     (void) memset(elf, 0, sizeof(*elf));
3564 
3565     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3566     elf->e_ident[EI_CLASS] = ELF_CLASS;
3567     elf->e_ident[EI_DATA] = ELF_DATA;
3568     elf->e_ident[EI_VERSION] = EV_CURRENT;
3569     elf->e_ident[EI_OSABI] = ELF_OSABI;
3570 
3571     elf->e_type = ET_CORE;
3572     elf->e_machine = machine;
3573     elf->e_version = EV_CURRENT;
3574     elf->e_phoff = sizeof(struct elfhdr);
3575     elf->e_flags = flags;
3576     elf->e_ehsize = sizeof(struct elfhdr);
3577     elf->e_phentsize = sizeof(struct elf_phdr);
3578     elf->e_phnum = segs;
3579 
3580     bswap_ehdr(elf);
3581 }
3582 
3583 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3584 {
3585     phdr->p_type = PT_NOTE;
3586     phdr->p_offset = offset;
3587     phdr->p_vaddr = 0;
3588     phdr->p_paddr = 0;
3589     phdr->p_filesz = sz;
3590     phdr->p_memsz = 0;
3591     phdr->p_flags = 0;
3592     phdr->p_align = 0;
3593 
3594     bswap_phdr(phdr, 1);
3595 }
3596 
3597 static size_t note_size(const struct memelfnote *note)
3598 {
3599     return (note->notesz);
3600 }
3601 
3602 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3603                           const TaskState *ts, int signr)
3604 {
3605     (void) memset(prstatus, 0, sizeof (*prstatus));
3606     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3607     prstatus->pr_pid = ts->ts_tid;
3608     prstatus->pr_ppid = getppid();
3609     prstatus->pr_pgrp = getpgrp();
3610     prstatus->pr_sid = getsid(0);
3611 
3612     bswap_prstatus(prstatus);
3613 }
3614 
3615 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3616 {
3617     char *base_filename;
3618     unsigned int i, len;
3619 
3620     (void) memset(psinfo, 0, sizeof (*psinfo));
3621 
3622     len = ts->info->arg_end - ts->info->arg_start;
3623     if (len >= ELF_PRARGSZ)
3624         len = ELF_PRARGSZ - 1;
3625     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3626         return -EFAULT;
3627     for (i = 0; i < len; i++)
3628         if (psinfo->pr_psargs[i] == 0)
3629             psinfo->pr_psargs[i] = ' ';
3630     psinfo->pr_psargs[len] = 0;
3631 
3632     psinfo->pr_pid = getpid();
3633     psinfo->pr_ppid = getppid();
3634     psinfo->pr_pgrp = getpgrp();
3635     psinfo->pr_sid = getsid(0);
3636     psinfo->pr_uid = getuid();
3637     psinfo->pr_gid = getgid();
3638 
3639     base_filename = g_path_get_basename(ts->bprm->filename);
3640     /*
3641      * Using strncpy here is fine: at max-length,
3642      * this field is not NUL-terminated.
3643      */
3644     (void) strncpy(psinfo->pr_fname, base_filename,
3645                    sizeof(psinfo->pr_fname));
3646 
3647     g_free(base_filename);
3648     bswap_psinfo(psinfo);
3649     return (0);
3650 }
3651 
3652 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3653 {
3654     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3655     elf_addr_t orig_auxv = auxv;
3656     void *ptr;
3657     int len = ts->info->auxv_len;
3658 
3659     /*
3660      * Auxiliary vector is stored in target process stack.  It contains
3661      * {type, value} pairs that we need to dump into note.  This is not
3662      * strictly necessary but we do it here for sake of completeness.
3663      */
3664 
3665     /* read in whole auxv vector and copy it to memelfnote */
3666     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3667     if (ptr != NULL) {
3668         fill_note(note, "CORE", NT_AUXV, len, ptr);
3669         unlock_user(ptr, auxv, len);
3670     }
3671 }
3672 
3673 /*
3674  * Constructs name of coredump file.  We have following convention
3675  * for the name:
3676  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3677  *
3678  * Returns 0 in case of success, -1 otherwise (errno is set).
3679  */
3680 static int core_dump_filename(const TaskState *ts, char *buf,
3681                               size_t bufsize)
3682 {
3683     char timestamp[64];
3684     char *base_filename = NULL;
3685     struct timeval tv;
3686     struct tm tm;
3687 
3688     assert(bufsize >= PATH_MAX);
3689 
3690     if (gettimeofday(&tv, NULL) < 0) {
3691         (void) fprintf(stderr, "unable to get current timestamp: %s",
3692                        strerror(errno));
3693         return (-1);
3694     }
3695 
3696     base_filename = g_path_get_basename(ts->bprm->filename);
3697     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3698                     localtime_r(&tv.tv_sec, &tm));
3699     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3700                     base_filename, timestamp, (int)getpid());
3701     g_free(base_filename);
3702 
3703     return (0);
3704 }
3705 
3706 static int dump_write(int fd, const void *ptr, size_t size)
3707 {
3708     const char *bufp = (const char *)ptr;
3709     ssize_t bytes_written, bytes_left;
3710     struct rlimit dumpsize;
3711     off_t pos;
3712 
3713     bytes_written = 0;
3714     getrlimit(RLIMIT_CORE, &dumpsize);
3715     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3716         if (errno == ESPIPE) { /* not a seekable stream */
3717             bytes_left = size;
3718         } else {
3719             return pos;
3720         }
3721     } else {
3722         if (dumpsize.rlim_cur <= pos) {
3723             return -1;
3724         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3725             bytes_left = size;
3726         } else {
3727             size_t limit_left=dumpsize.rlim_cur - pos;
3728             bytes_left = limit_left >= size ? size : limit_left ;
3729         }
3730     }
3731 
3732     /*
3733      * In normal conditions, single write(2) should do but
3734      * in case of socket etc. this mechanism is more portable.
3735      */
3736     do {
3737         bytes_written = write(fd, bufp, bytes_left);
3738         if (bytes_written < 0) {
3739             if (errno == EINTR)
3740                 continue;
3741             return (-1);
3742         } else if (bytes_written == 0) { /* eof */
3743             return (-1);
3744         }
3745         bufp += bytes_written;
3746         bytes_left -= bytes_written;
3747     } while (bytes_left > 0);
3748 
3749     return (0);
3750 }
3751 
3752 static int write_note(struct memelfnote *men, int fd)
3753 {
3754     struct elf_note en;
3755 
3756     en.n_namesz = men->namesz;
3757     en.n_type = men->type;
3758     en.n_descsz = men->datasz;
3759 
3760     bswap_note(&en);
3761 
3762     if (dump_write(fd, &en, sizeof(en)) != 0)
3763         return (-1);
3764     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3765         return (-1);
3766     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3767         return (-1);
3768 
3769     return (0);
3770 }
3771 
3772 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3773 {
3774     CPUState *cpu = env_cpu((CPUArchState *)env);
3775     TaskState *ts = (TaskState *)cpu->opaque;
3776     struct elf_thread_status *ets;
3777 
3778     ets = g_malloc0(sizeof (*ets));
3779     ets->num_notes = 1; /* only prstatus is dumped */
3780     fill_prstatus(&ets->prstatus, ts, 0);
3781     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3782     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3783               &ets->prstatus);
3784 
3785     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3786 
3787     info->notes_size += note_size(&ets->notes[0]);
3788 }
3789 
3790 static void init_note_info(struct elf_note_info *info)
3791 {
3792     /* Initialize the elf_note_info structure so that it is at
3793      * least safe to call free_note_info() on it. Must be
3794      * called before calling fill_note_info().
3795      */
3796     memset(info, 0, sizeof (*info));
3797     QTAILQ_INIT(&info->thread_list);
3798 }
3799 
3800 static int fill_note_info(struct elf_note_info *info,
3801                           long signr, const CPUArchState *env)
3802 {
3803 #define NUMNOTES 3
3804     CPUState *cpu = env_cpu((CPUArchState *)env);
3805     TaskState *ts = (TaskState *)cpu->opaque;
3806     int i;
3807 
3808     info->notes = g_new0(struct memelfnote, NUMNOTES);
3809     if (info->notes == NULL)
3810         return (-ENOMEM);
3811     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3812     if (info->prstatus == NULL)
3813         return (-ENOMEM);
3814     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3815     if (info->prstatus == NULL)
3816         return (-ENOMEM);
3817 
3818     /*
3819      * First fill in status (and registers) of current thread
3820      * including process info & aux vector.
3821      */
3822     fill_prstatus(info->prstatus, ts, signr);
3823     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3824     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3825               sizeof (*info->prstatus), info->prstatus);
3826     fill_psinfo(info->psinfo, ts);
3827     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3828               sizeof (*info->psinfo), info->psinfo);
3829     fill_auxv_note(&info->notes[2], ts);
3830     info->numnote = 3;
3831 
3832     info->notes_size = 0;
3833     for (i = 0; i < info->numnote; i++)
3834         info->notes_size += note_size(&info->notes[i]);
3835 
3836     /* read and fill status of all threads */
3837     cpu_list_lock();
3838     CPU_FOREACH(cpu) {
3839         if (cpu == thread_cpu) {
3840             continue;
3841         }
3842         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3843     }
3844     cpu_list_unlock();
3845 
3846     return (0);
3847 }
3848 
3849 static void free_note_info(struct elf_note_info *info)
3850 {
3851     struct elf_thread_status *ets;
3852 
3853     while (!QTAILQ_EMPTY(&info->thread_list)) {
3854         ets = QTAILQ_FIRST(&info->thread_list);
3855         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3856         g_free(ets);
3857     }
3858 
3859     g_free(info->prstatus);
3860     g_free(info->psinfo);
3861     g_free(info->notes);
3862 }
3863 
3864 static int write_note_info(struct elf_note_info *info, int fd)
3865 {
3866     struct elf_thread_status *ets;
3867     int i, error = 0;
3868 
3869     /* write prstatus, psinfo and auxv for current thread */
3870     for (i = 0; i < info->numnote; i++)
3871         if ((error = write_note(&info->notes[i], fd)) != 0)
3872             return (error);
3873 
3874     /* write prstatus for each thread */
3875     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3876         if ((error = write_note(&ets->notes[0], fd)) != 0)
3877             return (error);
3878     }
3879 
3880     return (0);
3881 }
3882 
3883 /*
3884  * Write out ELF coredump.
3885  *
3886  * See documentation of ELF object file format in:
3887  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3888  *
3889  * Coredump format in linux is following:
3890  *
3891  * 0   +----------------------+         \
3892  *     | ELF header           | ET_CORE  |
3893  *     +----------------------+          |
3894  *     | ELF program headers  |          |--- headers
3895  *     | - NOTE section       |          |
3896  *     | - PT_LOAD sections   |          |
3897  *     +----------------------+         /
3898  *     | NOTEs:               |
3899  *     | - NT_PRSTATUS        |
3900  *     | - NT_PRSINFO         |
3901  *     | - NT_AUXV            |
3902  *     +----------------------+ <-- aligned to target page
3903  *     | Process memory dump  |
3904  *     :                      :
3905  *     .                      .
3906  *     :                      :
3907  *     |                      |
3908  *     +----------------------+
3909  *
3910  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3911  * NT_PRSINFO  -> struct elf_prpsinfo
3912  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3913  *
3914  * Format follows System V format as close as possible.  Current
3915  * version limitations are as follows:
3916  *     - no floating point registers are dumped
3917  *
3918  * Function returns 0 in case of success, negative errno otherwise.
3919  *
3920  * TODO: make this work also during runtime: it should be
3921  * possible to force coredump from running process and then
3922  * continue processing.  For example qemu could set up SIGUSR2
3923  * handler (provided that target process haven't registered
3924  * handler for that) that does the dump when signal is received.
3925  */
3926 static int elf_core_dump(int signr, const CPUArchState *env)
3927 {
3928     const CPUState *cpu = env_cpu((CPUArchState *)env);
3929     const TaskState *ts = (const TaskState *)cpu->opaque;
3930     struct vm_area_struct *vma = NULL;
3931     char corefile[PATH_MAX];
3932     struct elf_note_info info;
3933     struct elfhdr elf;
3934     struct elf_phdr phdr;
3935     struct rlimit dumpsize;
3936     struct mm_struct *mm = NULL;
3937     off_t offset = 0, data_offset = 0;
3938     int segs = 0;
3939     int fd = -1;
3940 
3941     init_note_info(&info);
3942 
3943     errno = 0;
3944     getrlimit(RLIMIT_CORE, &dumpsize);
3945     if (dumpsize.rlim_cur == 0)
3946         return 0;
3947 
3948     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3949         return (-errno);
3950 
3951     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3952                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3953         return (-errno);
3954 
3955     /*
3956      * Walk through target process memory mappings and
3957      * set up structure containing this information.  After
3958      * this point vma_xxx functions can be used.
3959      */
3960     if ((mm = vma_init()) == NULL)
3961         goto out;
3962 
3963     walk_memory_regions(mm, vma_walker);
3964     segs = vma_get_mapping_count(mm);
3965 
3966     /*
3967      * Construct valid coredump ELF header.  We also
3968      * add one more segment for notes.
3969      */
3970     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3971     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3972         goto out;
3973 
3974     /* fill in the in-memory version of notes */
3975     if (fill_note_info(&info, signr, env) < 0)
3976         goto out;
3977 
3978     offset += sizeof (elf);                             /* elf header */
3979     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3980 
3981     /* write out notes program header */
3982     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3983 
3984     offset += info.notes_size;
3985     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3986         goto out;
3987 
3988     /*
3989      * ELF specification wants data to start at page boundary so
3990      * we align it here.
3991      */
3992     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3993 
3994     /*
3995      * Write program headers for memory regions mapped in
3996      * the target process.
3997      */
3998     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3999         (void) memset(&phdr, 0, sizeof (phdr));
4000 
4001         phdr.p_type = PT_LOAD;
4002         phdr.p_offset = offset;
4003         phdr.p_vaddr = vma->vma_start;
4004         phdr.p_paddr = 0;
4005         phdr.p_filesz = vma_dump_size(vma);
4006         offset += phdr.p_filesz;
4007         phdr.p_memsz = vma->vma_end - vma->vma_start;
4008         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4009         if (vma->vma_flags & PROT_WRITE)
4010             phdr.p_flags |= PF_W;
4011         if (vma->vma_flags & PROT_EXEC)
4012             phdr.p_flags |= PF_X;
4013         phdr.p_align = ELF_EXEC_PAGESIZE;
4014 
4015         bswap_phdr(&phdr, 1);
4016         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4017             goto out;
4018         }
4019     }
4020 
4021     /*
4022      * Next we write notes just after program headers.  No
4023      * alignment needed here.
4024      */
4025     if (write_note_info(&info, fd) < 0)
4026         goto out;
4027 
4028     /* align data to page boundary */
4029     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4030         goto out;
4031 
4032     /*
4033      * Finally we can dump process memory into corefile as well.
4034      */
4035     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4036         abi_ulong addr;
4037         abi_ulong end;
4038 
4039         end = vma->vma_start + vma_dump_size(vma);
4040 
4041         for (addr = vma->vma_start; addr < end;
4042              addr += TARGET_PAGE_SIZE) {
4043             char page[TARGET_PAGE_SIZE];
4044             int error;
4045 
4046             /*
4047              *  Read in page from target process memory and
4048              *  write it to coredump file.
4049              */
4050             error = copy_from_user(page, addr, sizeof (page));
4051             if (error != 0) {
4052                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4053                                addr);
4054                 errno = -error;
4055                 goto out;
4056             }
4057             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4058                 goto out;
4059         }
4060     }
4061 
4062  out:
4063     free_note_info(&info);
4064     if (mm != NULL)
4065         vma_delete(mm);
4066     (void) close(fd);
4067 
4068     if (errno != 0)
4069         return (-errno);
4070     return (0);
4071 }
4072 #endif /* USE_ELF_CORE_DUMP */
4073 
4074 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4075 {
4076     init_thread(regs, infop);
4077 }
4078