1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qemu/lockable.h" 21 #include "qapi/error.h" 22 #include "qemu/error-report.h" 23 #include "target_signal.h" 24 #include "accel/tcg/debuginfo.h" 25 26 #ifdef TARGET_ARM 27 #include "target/arm/cpu-features.h" 28 #endif 29 30 #ifdef _ARCH_PPC64 31 #undef ARCH_DLINFO 32 #undef ELF_PLATFORM 33 #undef ELF_HWCAP 34 #undef ELF_HWCAP2 35 #undef ELF_CLASS 36 #undef ELF_DATA 37 #undef ELF_ARCH 38 #endif 39 40 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE 41 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0 42 #endif 43 44 typedef struct { 45 const uint8_t *image; 46 const uint32_t *relocs; 47 unsigned image_size; 48 unsigned reloc_count; 49 unsigned sigreturn_ofs; 50 unsigned rt_sigreturn_ofs; 51 } VdsoImageInfo; 52 53 #define ELF_OSABI ELFOSABI_SYSV 54 55 /* from personality.h */ 56 57 /* 58 * Flags for bug emulation. 59 * 60 * These occupy the top three bytes. 61 */ 62 enum { 63 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 64 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 65 descriptors (signal handling) */ 66 MMAP_PAGE_ZERO = 0x0100000, 67 ADDR_COMPAT_LAYOUT = 0x0200000, 68 READ_IMPLIES_EXEC = 0x0400000, 69 ADDR_LIMIT_32BIT = 0x0800000, 70 SHORT_INODE = 0x1000000, 71 WHOLE_SECONDS = 0x2000000, 72 STICKY_TIMEOUTS = 0x4000000, 73 ADDR_LIMIT_3GB = 0x8000000, 74 }; 75 76 /* 77 * Personality types. 78 * 79 * These go in the low byte. Avoid using the top bit, it will 80 * conflict with error returns. 81 */ 82 enum { 83 PER_LINUX = 0x0000, 84 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 85 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 86 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 87 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 88 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 89 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 90 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 91 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 92 PER_BSD = 0x0006, 93 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 94 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 95 PER_LINUX32 = 0x0008, 96 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 97 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 98 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 99 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 100 PER_RISCOS = 0x000c, 101 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 102 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 103 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 104 PER_HPUX = 0x0010, 105 PER_MASK = 0x00ff, 106 }; 107 108 /* 109 * Return the base personality without flags. 110 */ 111 #define personality(pers) (pers & PER_MASK) 112 113 int info_is_fdpic(struct image_info *info) 114 { 115 return info->personality == PER_LINUX_FDPIC; 116 } 117 118 /* this flag is uneffective under linux too, should be deleted */ 119 #ifndef MAP_DENYWRITE 120 #define MAP_DENYWRITE 0 121 #endif 122 123 /* should probably go in elf.h */ 124 #ifndef ELIBBAD 125 #define ELIBBAD 80 126 #endif 127 128 #if TARGET_BIG_ENDIAN 129 #define ELF_DATA ELFDATA2MSB 130 #else 131 #define ELF_DATA ELFDATA2LSB 132 #endif 133 134 #ifdef TARGET_ABI_MIPSN32 135 typedef abi_ullong target_elf_greg_t; 136 #define tswapreg(ptr) tswap64(ptr) 137 #else 138 typedef abi_ulong target_elf_greg_t; 139 #define tswapreg(ptr) tswapal(ptr) 140 #endif 141 142 #ifdef USE_UID16 143 typedef abi_ushort target_uid_t; 144 typedef abi_ushort target_gid_t; 145 #else 146 typedef abi_uint target_uid_t; 147 typedef abi_uint target_gid_t; 148 #endif 149 typedef abi_int target_pid_t; 150 151 #ifdef TARGET_I386 152 153 #define ELF_HWCAP get_elf_hwcap() 154 155 static uint32_t get_elf_hwcap(void) 156 { 157 X86CPU *cpu = X86_CPU(thread_cpu); 158 159 return cpu->env.features[FEAT_1_EDX]; 160 } 161 162 #ifdef TARGET_X86_64 163 #define ELF_CLASS ELFCLASS64 164 #define ELF_ARCH EM_X86_64 165 166 #define ELF_PLATFORM "x86_64" 167 168 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 169 { 170 regs->rax = 0; 171 regs->rsp = infop->start_stack; 172 regs->rip = infop->entry; 173 } 174 175 #define ELF_NREG 27 176 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 177 178 /* 179 * Note that ELF_NREG should be 29 as there should be place for 180 * TRAPNO and ERR "registers" as well but linux doesn't dump 181 * those. 182 * 183 * See linux kernel: arch/x86/include/asm/elf.h 184 */ 185 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 186 { 187 (*regs)[0] = tswapreg(env->regs[15]); 188 (*regs)[1] = tswapreg(env->regs[14]); 189 (*regs)[2] = tswapreg(env->regs[13]); 190 (*regs)[3] = tswapreg(env->regs[12]); 191 (*regs)[4] = tswapreg(env->regs[R_EBP]); 192 (*regs)[5] = tswapreg(env->regs[R_EBX]); 193 (*regs)[6] = tswapreg(env->regs[11]); 194 (*regs)[7] = tswapreg(env->regs[10]); 195 (*regs)[8] = tswapreg(env->regs[9]); 196 (*regs)[9] = tswapreg(env->regs[8]); 197 (*regs)[10] = tswapreg(env->regs[R_EAX]); 198 (*regs)[11] = tswapreg(env->regs[R_ECX]); 199 (*regs)[12] = tswapreg(env->regs[R_EDX]); 200 (*regs)[13] = tswapreg(env->regs[R_ESI]); 201 (*regs)[14] = tswapreg(env->regs[R_EDI]); 202 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 203 (*regs)[16] = tswapreg(env->eip); 204 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 205 (*regs)[18] = tswapreg(env->eflags); 206 (*regs)[19] = tswapreg(env->regs[R_ESP]); 207 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 208 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 209 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 210 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 211 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 212 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 213 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 214 } 215 216 #if ULONG_MAX > UINT32_MAX 217 #define INIT_GUEST_COMMPAGE 218 static bool init_guest_commpage(void) 219 { 220 /* 221 * The vsyscall page is at a high negative address aka kernel space, 222 * which means that we cannot actually allocate it with target_mmap. 223 * We still should be able to use page_set_flags, unless the user 224 * has specified -R reserved_va, which would trigger an assert(). 225 */ 226 if (reserved_va != 0 && 227 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) { 228 error_report("Cannot allocate vsyscall page"); 229 exit(EXIT_FAILURE); 230 } 231 page_set_flags(TARGET_VSYSCALL_PAGE, 232 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK, 233 PAGE_EXEC | PAGE_VALID); 234 return true; 235 } 236 #endif 237 #else 238 239 /* 240 * This is used to ensure we don't load something for the wrong architecture. 241 */ 242 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 243 244 /* 245 * These are used to set parameters in the core dumps. 246 */ 247 #define ELF_CLASS ELFCLASS32 248 #define ELF_ARCH EM_386 249 250 #define ELF_PLATFORM get_elf_platform() 251 #define EXSTACK_DEFAULT true 252 253 static const char *get_elf_platform(void) 254 { 255 static char elf_platform[] = "i386"; 256 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 257 if (family > 6) { 258 family = 6; 259 } 260 if (family >= 3) { 261 elf_platform[1] = '0' + family; 262 } 263 return elf_platform; 264 } 265 266 static inline void init_thread(struct target_pt_regs *regs, 267 struct image_info *infop) 268 { 269 regs->esp = infop->start_stack; 270 regs->eip = infop->entry; 271 272 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 273 starts %edx contains a pointer to a function which might be 274 registered using `atexit'. This provides a mean for the 275 dynamic linker to call DT_FINI functions for shared libraries 276 that have been loaded before the code runs. 277 278 A value of 0 tells we have no such handler. */ 279 regs->edx = 0; 280 } 281 282 #define ELF_NREG 17 283 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 284 285 /* 286 * Note that ELF_NREG should be 19 as there should be place for 287 * TRAPNO and ERR "registers" as well but linux doesn't dump 288 * those. 289 * 290 * See linux kernel: arch/x86/include/asm/elf.h 291 */ 292 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 293 { 294 (*regs)[0] = tswapreg(env->regs[R_EBX]); 295 (*regs)[1] = tswapreg(env->regs[R_ECX]); 296 (*regs)[2] = tswapreg(env->regs[R_EDX]); 297 (*regs)[3] = tswapreg(env->regs[R_ESI]); 298 (*regs)[4] = tswapreg(env->regs[R_EDI]); 299 (*regs)[5] = tswapreg(env->regs[R_EBP]); 300 (*regs)[6] = tswapreg(env->regs[R_EAX]); 301 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 302 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 303 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 304 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 305 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 306 (*regs)[12] = tswapreg(env->eip); 307 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 308 (*regs)[14] = tswapreg(env->eflags); 309 (*regs)[15] = tswapreg(env->regs[R_ESP]); 310 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 311 } 312 313 /* 314 * i386 is the only target which supplies AT_SYSINFO for the vdso. 315 * All others only supply AT_SYSINFO_EHDR. 316 */ 317 #define DLINFO_ARCH_ITEMS (vdso_info != NULL) 318 #define ARCH_DLINFO \ 319 do { \ 320 if (vdso_info) { \ 321 NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \ 322 } \ 323 } while (0) 324 325 #endif /* TARGET_X86_64 */ 326 327 #define VDSO_HEADER "vdso.c.inc" 328 329 #define USE_ELF_CORE_DUMP 330 #define ELF_EXEC_PAGESIZE 4096 331 332 #endif /* TARGET_I386 */ 333 334 #ifdef TARGET_ARM 335 336 #ifndef TARGET_AARCH64 337 /* 32 bit ARM definitions */ 338 339 #define ELF_ARCH EM_ARM 340 #define ELF_CLASS ELFCLASS32 341 #define EXSTACK_DEFAULT true 342 343 static inline void init_thread(struct target_pt_regs *regs, 344 struct image_info *infop) 345 { 346 abi_long stack = infop->start_stack; 347 memset(regs, 0, sizeof(*regs)); 348 349 regs->uregs[16] = ARM_CPU_MODE_USR; 350 if (infop->entry & 1) { 351 regs->uregs[16] |= CPSR_T; 352 } 353 regs->uregs[15] = infop->entry & 0xfffffffe; 354 regs->uregs[13] = infop->start_stack; 355 /* FIXME - what to for failure of get_user()? */ 356 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 357 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 358 /* XXX: it seems that r0 is zeroed after ! */ 359 regs->uregs[0] = 0; 360 /* For uClinux PIC binaries. */ 361 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 362 regs->uregs[10] = infop->start_data; 363 364 /* Support ARM FDPIC. */ 365 if (info_is_fdpic(infop)) { 366 /* As described in the ABI document, r7 points to the loadmap info 367 * prepared by the kernel. If an interpreter is needed, r8 points 368 * to the interpreter loadmap and r9 points to the interpreter 369 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 370 * r9 points to the main program PT_DYNAMIC info. 371 */ 372 regs->uregs[7] = infop->loadmap_addr; 373 if (infop->interpreter_loadmap_addr) { 374 /* Executable is dynamically loaded. */ 375 regs->uregs[8] = infop->interpreter_loadmap_addr; 376 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 377 } else { 378 regs->uregs[8] = 0; 379 regs->uregs[9] = infop->pt_dynamic_addr; 380 } 381 } 382 } 383 384 #define ELF_NREG 18 385 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 386 387 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 388 { 389 (*regs)[0] = tswapreg(env->regs[0]); 390 (*regs)[1] = tswapreg(env->regs[1]); 391 (*regs)[2] = tswapreg(env->regs[2]); 392 (*regs)[3] = tswapreg(env->regs[3]); 393 (*regs)[4] = tswapreg(env->regs[4]); 394 (*regs)[5] = tswapreg(env->regs[5]); 395 (*regs)[6] = tswapreg(env->regs[6]); 396 (*regs)[7] = tswapreg(env->regs[7]); 397 (*regs)[8] = tswapreg(env->regs[8]); 398 (*regs)[9] = tswapreg(env->regs[9]); 399 (*regs)[10] = tswapreg(env->regs[10]); 400 (*regs)[11] = tswapreg(env->regs[11]); 401 (*regs)[12] = tswapreg(env->regs[12]); 402 (*regs)[13] = tswapreg(env->regs[13]); 403 (*regs)[14] = tswapreg(env->regs[14]); 404 (*regs)[15] = tswapreg(env->regs[15]); 405 406 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 407 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 408 } 409 410 #define USE_ELF_CORE_DUMP 411 #define ELF_EXEC_PAGESIZE 4096 412 413 enum 414 { 415 ARM_HWCAP_ARM_SWP = 1 << 0, 416 ARM_HWCAP_ARM_HALF = 1 << 1, 417 ARM_HWCAP_ARM_THUMB = 1 << 2, 418 ARM_HWCAP_ARM_26BIT = 1 << 3, 419 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 420 ARM_HWCAP_ARM_FPA = 1 << 5, 421 ARM_HWCAP_ARM_VFP = 1 << 6, 422 ARM_HWCAP_ARM_EDSP = 1 << 7, 423 ARM_HWCAP_ARM_JAVA = 1 << 8, 424 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 425 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 426 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 427 ARM_HWCAP_ARM_NEON = 1 << 12, 428 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 429 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 430 ARM_HWCAP_ARM_TLS = 1 << 15, 431 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 432 ARM_HWCAP_ARM_IDIVA = 1 << 17, 433 ARM_HWCAP_ARM_IDIVT = 1 << 18, 434 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 435 ARM_HWCAP_ARM_LPAE = 1 << 20, 436 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 437 ARM_HWCAP_ARM_FPHP = 1 << 22, 438 ARM_HWCAP_ARM_ASIMDHP = 1 << 23, 439 ARM_HWCAP_ARM_ASIMDDP = 1 << 24, 440 ARM_HWCAP_ARM_ASIMDFHM = 1 << 25, 441 ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26, 442 ARM_HWCAP_ARM_I8MM = 1 << 27, 443 }; 444 445 enum { 446 ARM_HWCAP2_ARM_AES = 1 << 0, 447 ARM_HWCAP2_ARM_PMULL = 1 << 1, 448 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 449 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 450 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 451 ARM_HWCAP2_ARM_SB = 1 << 5, 452 ARM_HWCAP2_ARM_SSBS = 1 << 6, 453 }; 454 455 /* The commpage only exists for 32 bit kernels */ 456 457 #define HI_COMMPAGE (intptr_t)0xffff0f00u 458 459 static bool init_guest_commpage(void) 460 { 461 ARMCPU *cpu = ARM_CPU(thread_cpu); 462 abi_ptr commpage; 463 void *want; 464 void *addr; 465 466 /* 467 * M-profile allocates maximum of 2GB address space, so can never 468 * allocate the commpage. Skip it. 469 */ 470 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 471 return true; 472 } 473 474 commpage = HI_COMMPAGE & -qemu_host_page_size; 475 want = g2h_untagged(commpage); 476 addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 477 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 478 479 if (addr == MAP_FAILED) { 480 perror("Allocating guest commpage"); 481 exit(EXIT_FAILURE); 482 } 483 if (addr != want) { 484 return false; 485 } 486 487 /* Set kernel helper versions; rest of page is 0. */ 488 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 489 490 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 491 perror("Protecting guest commpage"); 492 exit(EXIT_FAILURE); 493 } 494 495 page_set_flags(commpage, commpage | ~qemu_host_page_mask, 496 PAGE_READ | PAGE_EXEC | PAGE_VALID); 497 return true; 498 } 499 500 #define ELF_HWCAP get_elf_hwcap() 501 #define ELF_HWCAP2 get_elf_hwcap2() 502 503 uint32_t get_elf_hwcap(void) 504 { 505 ARMCPU *cpu = ARM_CPU(thread_cpu); 506 uint32_t hwcaps = 0; 507 508 hwcaps |= ARM_HWCAP_ARM_SWP; 509 hwcaps |= ARM_HWCAP_ARM_HALF; 510 hwcaps |= ARM_HWCAP_ARM_THUMB; 511 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 512 513 /* probe for the extra features */ 514 #define GET_FEATURE(feat, hwcap) \ 515 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 516 517 #define GET_FEATURE_ID(feat, hwcap) \ 518 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 519 520 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 521 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 522 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 523 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 524 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 525 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 526 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 527 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 528 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 529 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 530 531 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 532 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 533 hwcaps |= ARM_HWCAP_ARM_VFPv3; 534 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 535 hwcaps |= ARM_HWCAP_ARM_VFPD32; 536 } else { 537 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 538 } 539 } 540 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 541 /* 542 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same 543 * isar_feature function for both. The kernel reports them as two hwcaps. 544 */ 545 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP); 546 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP); 547 GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP); 548 GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM); 549 GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16); 550 GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM); 551 552 return hwcaps; 553 } 554 555 uint64_t get_elf_hwcap2(void) 556 { 557 ARMCPU *cpu = ARM_CPU(thread_cpu); 558 uint64_t hwcaps = 0; 559 560 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 561 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 562 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 563 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 564 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 565 GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB); 566 GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS); 567 return hwcaps; 568 } 569 570 const char *elf_hwcap_str(uint32_t bit) 571 { 572 static const char *hwcap_str[] = { 573 [__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp", 574 [__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half", 575 [__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb", 576 [__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit", 577 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult", 578 [__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa", 579 [__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp", 580 [__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp", 581 [__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java", 582 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt", 583 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch", 584 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee", 585 [__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon", 586 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3", 587 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16", 588 [__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls", 589 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4", 590 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva", 591 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt", 592 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32", 593 [__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae", 594 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm", 595 [__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp", 596 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp", 597 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp", 598 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm", 599 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16", 600 [__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm", 601 }; 602 603 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 604 } 605 606 const char *elf_hwcap2_str(uint32_t bit) 607 { 608 static const char *hwcap_str[] = { 609 [__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes", 610 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull", 611 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1", 612 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2", 613 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32", 614 [__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb", 615 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs", 616 }; 617 618 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 619 } 620 621 #undef GET_FEATURE 622 #undef GET_FEATURE_ID 623 624 #define ELF_PLATFORM get_elf_platform() 625 626 static const char *get_elf_platform(void) 627 { 628 CPUARMState *env = cpu_env(thread_cpu); 629 630 #if TARGET_BIG_ENDIAN 631 # define END "b" 632 #else 633 # define END "l" 634 #endif 635 636 if (arm_feature(env, ARM_FEATURE_V8)) { 637 return "v8" END; 638 } else if (arm_feature(env, ARM_FEATURE_V7)) { 639 if (arm_feature(env, ARM_FEATURE_M)) { 640 return "v7m" END; 641 } else { 642 return "v7" END; 643 } 644 } else if (arm_feature(env, ARM_FEATURE_V6)) { 645 return "v6" END; 646 } else if (arm_feature(env, ARM_FEATURE_V5)) { 647 return "v5" END; 648 } else { 649 return "v4" END; 650 } 651 652 #undef END 653 } 654 655 #else 656 /* 64 bit ARM definitions */ 657 658 #define ELF_ARCH EM_AARCH64 659 #define ELF_CLASS ELFCLASS64 660 #if TARGET_BIG_ENDIAN 661 # define ELF_PLATFORM "aarch64_be" 662 #else 663 # define ELF_PLATFORM "aarch64" 664 #endif 665 666 static inline void init_thread(struct target_pt_regs *regs, 667 struct image_info *infop) 668 { 669 abi_long stack = infop->start_stack; 670 memset(regs, 0, sizeof(*regs)); 671 672 regs->pc = infop->entry & ~0x3ULL; 673 regs->sp = stack; 674 } 675 676 #define ELF_NREG 34 677 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 678 679 static void elf_core_copy_regs(target_elf_gregset_t *regs, 680 const CPUARMState *env) 681 { 682 int i; 683 684 for (i = 0; i < 32; i++) { 685 (*regs)[i] = tswapreg(env->xregs[i]); 686 } 687 (*regs)[32] = tswapreg(env->pc); 688 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 689 } 690 691 #define USE_ELF_CORE_DUMP 692 #define ELF_EXEC_PAGESIZE 4096 693 694 enum { 695 ARM_HWCAP_A64_FP = 1 << 0, 696 ARM_HWCAP_A64_ASIMD = 1 << 1, 697 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 698 ARM_HWCAP_A64_AES = 1 << 3, 699 ARM_HWCAP_A64_PMULL = 1 << 4, 700 ARM_HWCAP_A64_SHA1 = 1 << 5, 701 ARM_HWCAP_A64_SHA2 = 1 << 6, 702 ARM_HWCAP_A64_CRC32 = 1 << 7, 703 ARM_HWCAP_A64_ATOMICS = 1 << 8, 704 ARM_HWCAP_A64_FPHP = 1 << 9, 705 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 706 ARM_HWCAP_A64_CPUID = 1 << 11, 707 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 708 ARM_HWCAP_A64_JSCVT = 1 << 13, 709 ARM_HWCAP_A64_FCMA = 1 << 14, 710 ARM_HWCAP_A64_LRCPC = 1 << 15, 711 ARM_HWCAP_A64_DCPOP = 1 << 16, 712 ARM_HWCAP_A64_SHA3 = 1 << 17, 713 ARM_HWCAP_A64_SM3 = 1 << 18, 714 ARM_HWCAP_A64_SM4 = 1 << 19, 715 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 716 ARM_HWCAP_A64_SHA512 = 1 << 21, 717 ARM_HWCAP_A64_SVE = 1 << 22, 718 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 719 ARM_HWCAP_A64_DIT = 1 << 24, 720 ARM_HWCAP_A64_USCAT = 1 << 25, 721 ARM_HWCAP_A64_ILRCPC = 1 << 26, 722 ARM_HWCAP_A64_FLAGM = 1 << 27, 723 ARM_HWCAP_A64_SSBS = 1 << 28, 724 ARM_HWCAP_A64_SB = 1 << 29, 725 ARM_HWCAP_A64_PACA = 1 << 30, 726 ARM_HWCAP_A64_PACG = 1UL << 31, 727 728 ARM_HWCAP2_A64_DCPODP = 1 << 0, 729 ARM_HWCAP2_A64_SVE2 = 1 << 1, 730 ARM_HWCAP2_A64_SVEAES = 1 << 2, 731 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 732 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 733 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 734 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 735 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 736 ARM_HWCAP2_A64_FRINT = 1 << 8, 737 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 738 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 739 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 740 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 741 ARM_HWCAP2_A64_I8MM = 1 << 13, 742 ARM_HWCAP2_A64_BF16 = 1 << 14, 743 ARM_HWCAP2_A64_DGH = 1 << 15, 744 ARM_HWCAP2_A64_RNG = 1 << 16, 745 ARM_HWCAP2_A64_BTI = 1 << 17, 746 ARM_HWCAP2_A64_MTE = 1 << 18, 747 ARM_HWCAP2_A64_ECV = 1 << 19, 748 ARM_HWCAP2_A64_AFP = 1 << 20, 749 ARM_HWCAP2_A64_RPRES = 1 << 21, 750 ARM_HWCAP2_A64_MTE3 = 1 << 22, 751 ARM_HWCAP2_A64_SME = 1 << 23, 752 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 753 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 754 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 755 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 756 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 757 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 758 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 759 ARM_HWCAP2_A64_WFXT = 1ULL << 31, 760 ARM_HWCAP2_A64_EBF16 = 1ULL << 32, 761 ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33, 762 ARM_HWCAP2_A64_CSSC = 1ULL << 34, 763 ARM_HWCAP2_A64_RPRFM = 1ULL << 35, 764 ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36, 765 ARM_HWCAP2_A64_SME2 = 1ULL << 37, 766 ARM_HWCAP2_A64_SME2P1 = 1ULL << 38, 767 ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39, 768 ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40, 769 ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41, 770 ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42, 771 ARM_HWCAP2_A64_MOPS = 1ULL << 43, 772 ARM_HWCAP2_A64_HBC = 1ULL << 44, 773 }; 774 775 #define ELF_HWCAP get_elf_hwcap() 776 #define ELF_HWCAP2 get_elf_hwcap2() 777 778 #define GET_FEATURE_ID(feat, hwcap) \ 779 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 780 781 uint32_t get_elf_hwcap(void) 782 { 783 ARMCPU *cpu = ARM_CPU(thread_cpu); 784 uint32_t hwcaps = 0; 785 786 hwcaps |= ARM_HWCAP_A64_FP; 787 hwcaps |= ARM_HWCAP_A64_ASIMD; 788 hwcaps |= ARM_HWCAP_A64_CPUID; 789 790 /* probe for the extra features */ 791 792 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 793 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 794 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 795 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 796 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 797 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 798 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 799 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 800 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 801 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 802 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 803 GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT); 804 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 805 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 806 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 807 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 808 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 809 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 810 GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT); 811 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 812 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 813 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 814 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 815 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 816 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 817 818 return hwcaps; 819 } 820 821 uint64_t get_elf_hwcap2(void) 822 { 823 ARMCPU *cpu = ARM_CPU(thread_cpu); 824 uint64_t hwcaps = 0; 825 826 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 827 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 828 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 829 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 830 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 831 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 832 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 833 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 834 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 835 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 836 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 837 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 838 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 839 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 840 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 841 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 842 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 843 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 844 GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3); 845 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 846 ARM_HWCAP2_A64_SME_F32F32 | 847 ARM_HWCAP2_A64_SME_B16F32 | 848 ARM_HWCAP2_A64_SME_F16F32 | 849 ARM_HWCAP2_A64_SME_I8I32)); 850 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 851 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 852 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 853 GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC); 854 GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS); 855 856 return hwcaps; 857 } 858 859 const char *elf_hwcap_str(uint32_t bit) 860 { 861 static const char *hwcap_str[] = { 862 [__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp", 863 [__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd", 864 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm", 865 [__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes", 866 [__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull", 867 [__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1", 868 [__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2", 869 [__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32", 870 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics", 871 [__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp", 872 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp", 873 [__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid", 874 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm", 875 [__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt", 876 [__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma", 877 [__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc", 878 [__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop", 879 [__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3", 880 [__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3", 881 [__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4", 882 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp", 883 [__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512", 884 [__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve", 885 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm", 886 [__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit", 887 [__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat", 888 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc", 889 [__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm", 890 [__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs", 891 [__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb", 892 [__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca", 893 [__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg", 894 }; 895 896 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 897 } 898 899 const char *elf_hwcap2_str(uint32_t bit) 900 { 901 static const char *hwcap_str[] = { 902 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp", 903 [__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2", 904 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes", 905 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull", 906 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm", 907 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3", 908 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4", 909 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2", 910 [__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint", 911 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm", 912 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm", 913 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm", 914 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16", 915 [__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm", 916 [__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16", 917 [__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh", 918 [__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng", 919 [__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti", 920 [__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte", 921 [__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv", 922 [__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp", 923 [__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres", 924 [__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3", 925 [__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme", 926 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64", 927 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64", 928 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32", 929 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32", 930 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32", 931 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32", 932 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64", 933 [__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt", 934 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16", 935 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16", 936 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc", 937 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm", 938 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1", 939 [__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2", 940 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1", 941 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32", 942 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32", 943 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16", 944 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16", 945 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops", 946 [__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc", 947 }; 948 949 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 950 } 951 952 #undef GET_FEATURE_ID 953 954 #endif /* not TARGET_AARCH64 */ 955 956 #if TARGET_BIG_ENDIAN 957 # define VDSO_HEADER "vdso-be.c.inc" 958 #else 959 # define VDSO_HEADER "vdso-le.c.inc" 960 #endif 961 962 #endif /* TARGET_ARM */ 963 964 #ifdef TARGET_SPARC 965 #ifdef TARGET_SPARC64 966 967 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 968 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 969 #ifndef TARGET_ABI32 970 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 971 #else 972 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 973 #endif 974 975 #define ELF_CLASS ELFCLASS64 976 #define ELF_ARCH EM_SPARCV9 977 #else 978 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 979 | HWCAP_SPARC_MULDIV) 980 #define ELF_CLASS ELFCLASS32 981 #define ELF_ARCH EM_SPARC 982 #endif /* TARGET_SPARC64 */ 983 984 static inline void init_thread(struct target_pt_regs *regs, 985 struct image_info *infop) 986 { 987 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 988 regs->pc = infop->entry; 989 regs->npc = regs->pc + 4; 990 regs->y = 0; 991 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 992 - TARGET_STACK_BIAS); 993 } 994 #endif /* TARGET_SPARC */ 995 996 #ifdef TARGET_PPC 997 998 #define ELF_MACHINE PPC_ELF_MACHINE 999 1000 #if defined(TARGET_PPC64) 1001 1002 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 1003 1004 #define ELF_CLASS ELFCLASS64 1005 1006 #else 1007 1008 #define ELF_CLASS ELFCLASS32 1009 #define EXSTACK_DEFAULT true 1010 1011 #endif 1012 1013 #define ELF_ARCH EM_PPC 1014 1015 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 1016 See arch/powerpc/include/asm/cputable.h. */ 1017 enum { 1018 QEMU_PPC_FEATURE_32 = 0x80000000, 1019 QEMU_PPC_FEATURE_64 = 0x40000000, 1020 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 1021 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 1022 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 1023 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 1024 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 1025 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 1026 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 1027 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 1028 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 1029 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 1030 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 1031 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 1032 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 1033 QEMU_PPC_FEATURE_CELL = 0x00010000, 1034 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 1035 QEMU_PPC_FEATURE_SMT = 0x00004000, 1036 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 1037 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 1038 QEMU_PPC_FEATURE_PA6T = 0x00000800, 1039 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 1040 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 1041 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 1042 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 1043 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 1044 1045 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 1046 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 1047 1048 /* Feature definitions in AT_HWCAP2. */ 1049 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 1050 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 1051 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 1052 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 1053 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 1054 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 1055 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 1056 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 1057 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 1058 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 1059 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 1060 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 1061 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 1062 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 1063 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 1064 }; 1065 1066 #define ELF_HWCAP get_elf_hwcap() 1067 1068 static uint32_t get_elf_hwcap(void) 1069 { 1070 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 1071 uint32_t features = 0; 1072 1073 /* We don't have to be terribly complete here; the high points are 1074 Altivec/FP/SPE support. Anything else is just a bonus. */ 1075 #define GET_FEATURE(flag, feature) \ 1076 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 1077 #define GET_FEATURE2(flags, feature) \ 1078 do { \ 1079 if ((cpu->env.insns_flags2 & flags) == flags) { \ 1080 features |= feature; \ 1081 } \ 1082 } while (0) 1083 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 1084 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 1085 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 1086 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 1087 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 1088 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 1089 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 1090 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 1091 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 1092 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 1093 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 1094 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 1095 QEMU_PPC_FEATURE_ARCH_2_06); 1096 #undef GET_FEATURE 1097 #undef GET_FEATURE2 1098 1099 return features; 1100 } 1101 1102 #define ELF_HWCAP2 get_elf_hwcap2() 1103 1104 static uint32_t get_elf_hwcap2(void) 1105 { 1106 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 1107 uint32_t features = 0; 1108 1109 #define GET_FEATURE(flag, feature) \ 1110 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 1111 #define GET_FEATURE2(flag, feature) \ 1112 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 1113 1114 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 1115 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 1116 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 1117 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 1118 QEMU_PPC_FEATURE2_VEC_CRYPTO); 1119 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 1120 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 1121 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 1122 QEMU_PPC_FEATURE2_MMA); 1123 1124 #undef GET_FEATURE 1125 #undef GET_FEATURE2 1126 1127 return features; 1128 } 1129 1130 /* 1131 * The requirements here are: 1132 * - keep the final alignment of sp (sp & 0xf) 1133 * - make sure the 32-bit value at the first 16 byte aligned position of 1134 * AUXV is greater than 16 for glibc compatibility. 1135 * AT_IGNOREPPC is used for that. 1136 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 1137 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 1138 */ 1139 #define DLINFO_ARCH_ITEMS 5 1140 #define ARCH_DLINFO \ 1141 do { \ 1142 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 1143 /* \ 1144 * Handle glibc compatibility: these magic entries must \ 1145 * be at the lowest addresses in the final auxv. \ 1146 */ \ 1147 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 1148 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 1149 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 1150 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 1151 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 1152 } while (0) 1153 1154 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 1155 { 1156 _regs->gpr[1] = infop->start_stack; 1157 #if defined(TARGET_PPC64) 1158 if (get_ppc64_abi(infop) < 2) { 1159 uint64_t val; 1160 get_user_u64(val, infop->entry + 8); 1161 _regs->gpr[2] = val + infop->load_bias; 1162 get_user_u64(val, infop->entry); 1163 infop->entry = val + infop->load_bias; 1164 } else { 1165 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 1166 } 1167 #endif 1168 _regs->nip = infop->entry; 1169 } 1170 1171 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 1172 #define ELF_NREG 48 1173 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1174 1175 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 1176 { 1177 int i; 1178 target_ulong ccr = 0; 1179 1180 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 1181 (*regs)[i] = tswapreg(env->gpr[i]); 1182 } 1183 1184 (*regs)[32] = tswapreg(env->nip); 1185 (*regs)[33] = tswapreg(env->msr); 1186 (*regs)[35] = tswapreg(env->ctr); 1187 (*regs)[36] = tswapreg(env->lr); 1188 (*regs)[37] = tswapreg(cpu_read_xer(env)); 1189 1190 ccr = ppc_get_cr(env); 1191 (*regs)[38] = tswapreg(ccr); 1192 } 1193 1194 #define USE_ELF_CORE_DUMP 1195 #define ELF_EXEC_PAGESIZE 4096 1196 1197 #ifndef TARGET_PPC64 1198 # define VDSO_HEADER "vdso-32.c.inc" 1199 #elif TARGET_BIG_ENDIAN 1200 # define VDSO_HEADER "vdso-64.c.inc" 1201 #else 1202 # define VDSO_HEADER "vdso-64le.c.inc" 1203 #endif 1204 1205 #endif 1206 1207 #ifdef TARGET_LOONGARCH64 1208 1209 #define ELF_CLASS ELFCLASS64 1210 #define ELF_ARCH EM_LOONGARCH 1211 #define EXSTACK_DEFAULT true 1212 1213 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 1214 1215 #define VDSO_HEADER "vdso.c.inc" 1216 1217 static inline void init_thread(struct target_pt_regs *regs, 1218 struct image_info *infop) 1219 { 1220 /*Set crmd PG,DA = 1,0 */ 1221 regs->csr.crmd = 2 << 3; 1222 regs->csr.era = infop->entry; 1223 regs->regs[3] = infop->start_stack; 1224 } 1225 1226 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 1227 #define ELF_NREG 45 1228 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1229 1230 enum { 1231 TARGET_EF_R0 = 0, 1232 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 1233 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1234 }; 1235 1236 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1237 const CPULoongArchState *env) 1238 { 1239 int i; 1240 1241 (*regs)[TARGET_EF_R0] = 0; 1242 1243 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1244 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1245 } 1246 1247 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1248 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1249 } 1250 1251 #define USE_ELF_CORE_DUMP 1252 #define ELF_EXEC_PAGESIZE 4096 1253 1254 #define ELF_HWCAP get_elf_hwcap() 1255 1256 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1257 enum { 1258 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1259 HWCAP_LOONGARCH_LAM = (1 << 1), 1260 HWCAP_LOONGARCH_UAL = (1 << 2), 1261 HWCAP_LOONGARCH_FPU = (1 << 3), 1262 HWCAP_LOONGARCH_LSX = (1 << 4), 1263 HWCAP_LOONGARCH_LASX = (1 << 5), 1264 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1265 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1266 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1267 HWCAP_LOONGARCH_LVZ = (1 << 9), 1268 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1269 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1270 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1271 }; 1272 1273 static uint32_t get_elf_hwcap(void) 1274 { 1275 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1276 uint32_t hwcaps = 0; 1277 1278 hwcaps |= HWCAP_LOONGARCH_CRC32; 1279 1280 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1281 hwcaps |= HWCAP_LOONGARCH_UAL; 1282 } 1283 1284 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1285 hwcaps |= HWCAP_LOONGARCH_FPU; 1286 } 1287 1288 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1289 hwcaps |= HWCAP_LOONGARCH_LAM; 1290 } 1291 1292 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) { 1293 hwcaps |= HWCAP_LOONGARCH_LSX; 1294 } 1295 1296 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) { 1297 hwcaps |= HWCAP_LOONGARCH_LASX; 1298 } 1299 1300 return hwcaps; 1301 } 1302 1303 #define ELF_PLATFORM "loongarch" 1304 1305 #endif /* TARGET_LOONGARCH64 */ 1306 1307 #ifdef TARGET_MIPS 1308 1309 #ifdef TARGET_MIPS64 1310 #define ELF_CLASS ELFCLASS64 1311 #else 1312 #define ELF_CLASS ELFCLASS32 1313 #endif 1314 #define ELF_ARCH EM_MIPS 1315 #define EXSTACK_DEFAULT true 1316 1317 #ifdef TARGET_ABI_MIPSN32 1318 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1319 #else 1320 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1321 #endif 1322 1323 #define ELF_BASE_PLATFORM get_elf_base_platform() 1324 1325 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ 1326 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ 1327 { return _base_platform; } } while (0) 1328 1329 static const char *get_elf_base_platform(void) 1330 { 1331 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1332 1333 /* 64 bit ISAs goes first */ 1334 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); 1335 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); 1336 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); 1337 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); 1338 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); 1339 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); 1340 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); 1341 1342 /* 32 bit ISAs */ 1343 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); 1344 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); 1345 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); 1346 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); 1347 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); 1348 1349 /* Fallback */ 1350 return "mips"; 1351 } 1352 #undef MATCH_PLATFORM_INSN 1353 1354 static inline void init_thread(struct target_pt_regs *regs, 1355 struct image_info *infop) 1356 { 1357 regs->cp0_status = 2 << CP0St_KSU; 1358 regs->cp0_epc = infop->entry; 1359 regs->regs[29] = infop->start_stack; 1360 } 1361 1362 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1363 #define ELF_NREG 45 1364 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1365 1366 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1367 enum { 1368 #ifdef TARGET_MIPS64 1369 TARGET_EF_R0 = 0, 1370 #else 1371 TARGET_EF_R0 = 6, 1372 #endif 1373 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1374 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1375 TARGET_EF_LO = TARGET_EF_R0 + 32, 1376 TARGET_EF_HI = TARGET_EF_R0 + 33, 1377 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1378 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1379 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1380 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1381 }; 1382 1383 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1384 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1385 { 1386 int i; 1387 1388 for (i = 0; i < TARGET_EF_R0; i++) { 1389 (*regs)[i] = 0; 1390 } 1391 (*regs)[TARGET_EF_R0] = 0; 1392 1393 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1394 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1395 } 1396 1397 (*regs)[TARGET_EF_R26] = 0; 1398 (*regs)[TARGET_EF_R27] = 0; 1399 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1400 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1401 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1402 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1403 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1404 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1405 } 1406 1407 #define USE_ELF_CORE_DUMP 1408 #define ELF_EXEC_PAGESIZE 4096 1409 1410 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1411 enum { 1412 HWCAP_MIPS_R6 = (1 << 0), 1413 HWCAP_MIPS_MSA = (1 << 1), 1414 HWCAP_MIPS_CRC32 = (1 << 2), 1415 HWCAP_MIPS_MIPS16 = (1 << 3), 1416 HWCAP_MIPS_MDMX = (1 << 4), 1417 HWCAP_MIPS_MIPS3D = (1 << 5), 1418 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1419 HWCAP_MIPS_DSP = (1 << 7), 1420 HWCAP_MIPS_DSP2 = (1 << 8), 1421 HWCAP_MIPS_DSP3 = (1 << 9), 1422 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1423 HWCAP_LOONGSON_MMI = (1 << 11), 1424 HWCAP_LOONGSON_EXT = (1 << 12), 1425 HWCAP_LOONGSON_EXT2 = (1 << 13), 1426 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1427 }; 1428 1429 #define ELF_HWCAP get_elf_hwcap() 1430 1431 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1432 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1433 1434 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1435 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1436 1437 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1438 do { \ 1439 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1440 hwcaps |= _hwcap; \ 1441 } \ 1442 } while (0) 1443 1444 static uint32_t get_elf_hwcap(void) 1445 { 1446 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1447 uint32_t hwcaps = 0; 1448 1449 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1450 2, HWCAP_MIPS_R6); 1451 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1452 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1453 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1454 1455 return hwcaps; 1456 } 1457 1458 #undef GET_FEATURE_REG_EQU 1459 #undef GET_FEATURE_REG_SET 1460 #undef GET_FEATURE_INSN 1461 1462 #endif /* TARGET_MIPS */ 1463 1464 #ifdef TARGET_MICROBLAZE 1465 1466 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1467 1468 #define ELF_CLASS ELFCLASS32 1469 #define ELF_ARCH EM_MICROBLAZE 1470 1471 static inline void init_thread(struct target_pt_regs *regs, 1472 struct image_info *infop) 1473 { 1474 regs->pc = infop->entry; 1475 regs->r1 = infop->start_stack; 1476 1477 } 1478 1479 #define ELF_EXEC_PAGESIZE 4096 1480 1481 #define USE_ELF_CORE_DUMP 1482 #define ELF_NREG 38 1483 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1484 1485 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1486 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1487 { 1488 int i, pos = 0; 1489 1490 for (i = 0; i < 32; i++) { 1491 (*regs)[pos++] = tswapreg(env->regs[i]); 1492 } 1493 1494 (*regs)[pos++] = tswapreg(env->pc); 1495 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1496 (*regs)[pos++] = 0; 1497 (*regs)[pos++] = tswapreg(env->ear); 1498 (*regs)[pos++] = 0; 1499 (*regs)[pos++] = tswapreg(env->esr); 1500 } 1501 1502 #endif /* TARGET_MICROBLAZE */ 1503 1504 #ifdef TARGET_NIOS2 1505 1506 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1507 1508 #define ELF_CLASS ELFCLASS32 1509 #define ELF_ARCH EM_ALTERA_NIOS2 1510 1511 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1512 { 1513 regs->ea = infop->entry; 1514 regs->sp = infop->start_stack; 1515 } 1516 1517 #define LO_COMMPAGE TARGET_PAGE_SIZE 1518 1519 static bool init_guest_commpage(void) 1520 { 1521 static const uint8_t kuser_page[4 + 2 * 64] = { 1522 /* __kuser_helper_version */ 1523 [0x00] = 0x02, 0x00, 0x00, 0x00, 1524 1525 /* __kuser_cmpxchg */ 1526 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1527 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1528 1529 /* __kuser_sigtramp */ 1530 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1531 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1532 }; 1533 1534 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1535 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1536 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1537 1538 if (addr == MAP_FAILED) { 1539 perror("Allocating guest commpage"); 1540 exit(EXIT_FAILURE); 1541 } 1542 if (addr != want) { 1543 return false; 1544 } 1545 1546 memcpy(addr, kuser_page, sizeof(kuser_page)); 1547 1548 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1549 perror("Protecting guest commpage"); 1550 exit(EXIT_FAILURE); 1551 } 1552 1553 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1554 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1555 return true; 1556 } 1557 1558 #define ELF_EXEC_PAGESIZE 4096 1559 1560 #define USE_ELF_CORE_DUMP 1561 #define ELF_NREG 49 1562 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1563 1564 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1565 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1566 const CPUNios2State *env) 1567 { 1568 int i; 1569 1570 (*regs)[0] = -1; 1571 for (i = 1; i < 8; i++) /* r0-r7 */ 1572 (*regs)[i] = tswapreg(env->regs[i + 7]); 1573 1574 for (i = 8; i < 16; i++) /* r8-r15 */ 1575 (*regs)[i] = tswapreg(env->regs[i - 8]); 1576 1577 for (i = 16; i < 24; i++) /* r16-r23 */ 1578 (*regs)[i] = tswapreg(env->regs[i + 7]); 1579 (*regs)[24] = -1; /* R_ET */ 1580 (*regs)[25] = -1; /* R_BT */ 1581 (*regs)[26] = tswapreg(env->regs[R_GP]); 1582 (*regs)[27] = tswapreg(env->regs[R_SP]); 1583 (*regs)[28] = tswapreg(env->regs[R_FP]); 1584 (*regs)[29] = tswapreg(env->regs[R_EA]); 1585 (*regs)[30] = -1; /* R_SSTATUS */ 1586 (*regs)[31] = tswapreg(env->regs[R_RA]); 1587 1588 (*regs)[32] = tswapreg(env->pc); 1589 1590 (*regs)[33] = -1; /* R_STATUS */ 1591 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1592 1593 for (i = 35; i < 49; i++) /* ... */ 1594 (*regs)[i] = -1; 1595 } 1596 1597 #endif /* TARGET_NIOS2 */ 1598 1599 #ifdef TARGET_OPENRISC 1600 1601 #define ELF_ARCH EM_OPENRISC 1602 #define ELF_CLASS ELFCLASS32 1603 #define ELF_DATA ELFDATA2MSB 1604 1605 static inline void init_thread(struct target_pt_regs *regs, 1606 struct image_info *infop) 1607 { 1608 regs->pc = infop->entry; 1609 regs->gpr[1] = infop->start_stack; 1610 } 1611 1612 #define USE_ELF_CORE_DUMP 1613 #define ELF_EXEC_PAGESIZE 8192 1614 1615 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1616 #define ELF_NREG 34 /* gprs and pc, sr */ 1617 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1618 1619 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1620 const CPUOpenRISCState *env) 1621 { 1622 int i; 1623 1624 for (i = 0; i < 32; i++) { 1625 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1626 } 1627 (*regs)[32] = tswapreg(env->pc); 1628 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1629 } 1630 #define ELF_HWCAP 0 1631 #define ELF_PLATFORM NULL 1632 1633 #endif /* TARGET_OPENRISC */ 1634 1635 #ifdef TARGET_SH4 1636 1637 #define ELF_CLASS ELFCLASS32 1638 #define ELF_ARCH EM_SH 1639 1640 static inline void init_thread(struct target_pt_regs *regs, 1641 struct image_info *infop) 1642 { 1643 /* Check other registers XXXXX */ 1644 regs->pc = infop->entry; 1645 regs->regs[15] = infop->start_stack; 1646 } 1647 1648 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1649 #define ELF_NREG 23 1650 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1651 1652 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1653 enum { 1654 TARGET_REG_PC = 16, 1655 TARGET_REG_PR = 17, 1656 TARGET_REG_SR = 18, 1657 TARGET_REG_GBR = 19, 1658 TARGET_REG_MACH = 20, 1659 TARGET_REG_MACL = 21, 1660 TARGET_REG_SYSCALL = 22 1661 }; 1662 1663 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1664 const CPUSH4State *env) 1665 { 1666 int i; 1667 1668 for (i = 0; i < 16; i++) { 1669 (*regs)[i] = tswapreg(env->gregs[i]); 1670 } 1671 1672 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1673 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1674 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1675 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1676 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1677 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1678 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1679 } 1680 1681 #define USE_ELF_CORE_DUMP 1682 #define ELF_EXEC_PAGESIZE 4096 1683 1684 enum { 1685 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1686 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1687 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1688 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1689 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1690 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1691 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1692 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1693 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1694 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1695 }; 1696 1697 #define ELF_HWCAP get_elf_hwcap() 1698 1699 static uint32_t get_elf_hwcap(void) 1700 { 1701 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1702 uint32_t hwcap = 0; 1703 1704 hwcap |= SH_CPU_HAS_FPU; 1705 1706 if (cpu->env.features & SH_FEATURE_SH4A) { 1707 hwcap |= SH_CPU_HAS_LLSC; 1708 } 1709 1710 return hwcap; 1711 } 1712 1713 #endif 1714 1715 #ifdef TARGET_CRIS 1716 1717 #define ELF_CLASS ELFCLASS32 1718 #define ELF_ARCH EM_CRIS 1719 1720 static inline void init_thread(struct target_pt_regs *regs, 1721 struct image_info *infop) 1722 { 1723 regs->erp = infop->entry; 1724 } 1725 1726 #define ELF_EXEC_PAGESIZE 8192 1727 1728 #endif 1729 1730 #ifdef TARGET_M68K 1731 1732 #define ELF_CLASS ELFCLASS32 1733 #define ELF_ARCH EM_68K 1734 1735 /* ??? Does this need to do anything? 1736 #define ELF_PLAT_INIT(_r) */ 1737 1738 static inline void init_thread(struct target_pt_regs *regs, 1739 struct image_info *infop) 1740 { 1741 regs->usp = infop->start_stack; 1742 regs->sr = 0; 1743 regs->pc = infop->entry; 1744 } 1745 1746 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1747 #define ELF_NREG 20 1748 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1749 1750 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1751 { 1752 (*regs)[0] = tswapreg(env->dregs[1]); 1753 (*regs)[1] = tswapreg(env->dregs[2]); 1754 (*regs)[2] = tswapreg(env->dregs[3]); 1755 (*regs)[3] = tswapreg(env->dregs[4]); 1756 (*regs)[4] = tswapreg(env->dregs[5]); 1757 (*regs)[5] = tswapreg(env->dregs[6]); 1758 (*regs)[6] = tswapreg(env->dregs[7]); 1759 (*regs)[7] = tswapreg(env->aregs[0]); 1760 (*regs)[8] = tswapreg(env->aregs[1]); 1761 (*regs)[9] = tswapreg(env->aregs[2]); 1762 (*regs)[10] = tswapreg(env->aregs[3]); 1763 (*regs)[11] = tswapreg(env->aregs[4]); 1764 (*regs)[12] = tswapreg(env->aregs[5]); 1765 (*regs)[13] = tswapreg(env->aregs[6]); 1766 (*regs)[14] = tswapreg(env->dregs[0]); 1767 (*regs)[15] = tswapreg(env->aregs[7]); 1768 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1769 (*regs)[17] = tswapreg(env->sr); 1770 (*regs)[18] = tswapreg(env->pc); 1771 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1772 } 1773 1774 #define USE_ELF_CORE_DUMP 1775 #define ELF_EXEC_PAGESIZE 8192 1776 1777 #endif 1778 1779 #ifdef TARGET_ALPHA 1780 1781 #define ELF_CLASS ELFCLASS64 1782 #define ELF_ARCH EM_ALPHA 1783 1784 static inline void init_thread(struct target_pt_regs *regs, 1785 struct image_info *infop) 1786 { 1787 regs->pc = infop->entry; 1788 regs->ps = 8; 1789 regs->usp = infop->start_stack; 1790 } 1791 1792 #define ELF_EXEC_PAGESIZE 8192 1793 1794 #endif /* TARGET_ALPHA */ 1795 1796 #ifdef TARGET_S390X 1797 1798 #define ELF_CLASS ELFCLASS64 1799 #define ELF_DATA ELFDATA2MSB 1800 #define ELF_ARCH EM_S390 1801 1802 #include "elf.h" 1803 1804 #define ELF_HWCAP get_elf_hwcap() 1805 1806 #define GET_FEATURE(_feat, _hwcap) \ 1807 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1808 1809 uint32_t get_elf_hwcap(void) 1810 { 1811 /* 1812 * Let's assume we always have esan3 and zarch. 1813 * 31-bit processes can use 64-bit registers (high gprs). 1814 */ 1815 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1816 1817 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1818 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1819 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1820 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1821 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1822 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1823 hwcap |= HWCAP_S390_ETF3EH; 1824 } 1825 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1826 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1827 GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2); 1828 1829 return hwcap; 1830 } 1831 1832 const char *elf_hwcap_str(uint32_t bit) 1833 { 1834 static const char *hwcap_str[] = { 1835 [HWCAP_S390_NR_ESAN3] = "esan3", 1836 [HWCAP_S390_NR_ZARCH] = "zarch", 1837 [HWCAP_S390_NR_STFLE] = "stfle", 1838 [HWCAP_S390_NR_MSA] = "msa", 1839 [HWCAP_S390_NR_LDISP] = "ldisp", 1840 [HWCAP_S390_NR_EIMM] = "eimm", 1841 [HWCAP_S390_NR_DFP] = "dfp", 1842 [HWCAP_S390_NR_HPAGE] = "edat", 1843 [HWCAP_S390_NR_ETF3EH] = "etf3eh", 1844 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs", 1845 [HWCAP_S390_NR_TE] = "te", 1846 [HWCAP_S390_NR_VXRS] = "vx", 1847 [HWCAP_S390_NR_VXRS_BCD] = "vxd", 1848 [HWCAP_S390_NR_VXRS_EXT] = "vxe", 1849 [HWCAP_S390_NR_GS] = "gs", 1850 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2", 1851 [HWCAP_S390_NR_VXRS_PDE] = "vxp", 1852 [HWCAP_S390_NR_SORT] = "sort", 1853 [HWCAP_S390_NR_DFLT] = "dflt", 1854 [HWCAP_S390_NR_NNPA] = "nnpa", 1855 [HWCAP_S390_NR_PCI_MIO] = "pcimio", 1856 [HWCAP_S390_NR_SIE] = "sie", 1857 }; 1858 1859 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 1860 } 1861 1862 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1863 { 1864 regs->psw.addr = infop->entry; 1865 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \ 1866 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \ 1867 PSW_MASK_32; 1868 regs->gprs[15] = infop->start_stack; 1869 } 1870 1871 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1872 #define ELF_NREG 27 1873 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1874 1875 enum { 1876 TARGET_REG_PSWM = 0, 1877 TARGET_REG_PSWA = 1, 1878 TARGET_REG_GPRS = 2, 1879 TARGET_REG_ARS = 18, 1880 TARGET_REG_ORIG_R2 = 26, 1881 }; 1882 1883 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1884 const CPUS390XState *env) 1885 { 1886 int i; 1887 uint32_t *aregs; 1888 1889 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1890 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1891 for (i = 0; i < 16; i++) { 1892 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1893 } 1894 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1895 for (i = 0; i < 16; i++) { 1896 aregs[i] = tswap32(env->aregs[i]); 1897 } 1898 (*regs)[TARGET_REG_ORIG_R2] = 0; 1899 } 1900 1901 #define USE_ELF_CORE_DUMP 1902 #define ELF_EXEC_PAGESIZE 4096 1903 1904 #define VDSO_HEADER "vdso.c.inc" 1905 1906 #endif /* TARGET_S390X */ 1907 1908 #ifdef TARGET_RISCV 1909 1910 #define ELF_ARCH EM_RISCV 1911 1912 #ifdef TARGET_RISCV32 1913 #define ELF_CLASS ELFCLASS32 1914 #define VDSO_HEADER "vdso-32.c.inc" 1915 #else 1916 #define ELF_CLASS ELFCLASS64 1917 #define VDSO_HEADER "vdso-64.c.inc" 1918 #endif 1919 1920 #define ELF_HWCAP get_elf_hwcap() 1921 1922 static uint32_t get_elf_hwcap(void) 1923 { 1924 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1925 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1926 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1927 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C') 1928 | MISA_BIT('V'); 1929 1930 return cpu->env.misa_ext & mask; 1931 #undef MISA_BIT 1932 } 1933 1934 static inline void init_thread(struct target_pt_regs *regs, 1935 struct image_info *infop) 1936 { 1937 regs->sepc = infop->entry; 1938 regs->sp = infop->start_stack; 1939 } 1940 1941 #define ELF_EXEC_PAGESIZE 4096 1942 1943 #endif /* TARGET_RISCV */ 1944 1945 #ifdef TARGET_HPPA 1946 1947 #define ELF_CLASS ELFCLASS32 1948 #define ELF_ARCH EM_PARISC 1949 #define ELF_PLATFORM "PARISC" 1950 #define STACK_GROWS_DOWN 0 1951 #define STACK_ALIGNMENT 64 1952 1953 #define VDSO_HEADER "vdso.c.inc" 1954 1955 static inline void init_thread(struct target_pt_regs *regs, 1956 struct image_info *infop) 1957 { 1958 regs->iaoq[0] = infop->entry; 1959 regs->iaoq[1] = infop->entry + 4; 1960 regs->gr[23] = 0; 1961 regs->gr[24] = infop->argv; 1962 regs->gr[25] = infop->argc; 1963 /* The top-of-stack contains a linkage buffer. */ 1964 regs->gr[30] = infop->start_stack + 64; 1965 regs->gr[31] = infop->entry; 1966 } 1967 1968 #define LO_COMMPAGE 0 1969 1970 static bool init_guest_commpage(void) 1971 { 1972 void *want = g2h_untagged(LO_COMMPAGE); 1973 void *addr = mmap(want, qemu_host_page_size, PROT_NONE, 1974 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1975 1976 if (addr == MAP_FAILED) { 1977 perror("Allocating guest commpage"); 1978 exit(EXIT_FAILURE); 1979 } 1980 if (addr != want) { 1981 return false; 1982 } 1983 1984 /* 1985 * On Linux, page zero is normally marked execute only + gateway. 1986 * Normal read or write is supposed to fail (thus PROT_NONE above), 1987 * but specific offsets have kernel code mapped to raise permissions 1988 * and implement syscalls. Here, simply mark the page executable. 1989 * Special case the entry points during translation (see do_page_zero). 1990 */ 1991 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1992 PAGE_EXEC | PAGE_VALID); 1993 return true; 1994 } 1995 1996 #endif /* TARGET_HPPA */ 1997 1998 #ifdef TARGET_XTENSA 1999 2000 #define ELF_CLASS ELFCLASS32 2001 #define ELF_ARCH EM_XTENSA 2002 2003 static inline void init_thread(struct target_pt_regs *regs, 2004 struct image_info *infop) 2005 { 2006 regs->windowbase = 0; 2007 regs->windowstart = 1; 2008 regs->areg[1] = infop->start_stack; 2009 regs->pc = infop->entry; 2010 if (info_is_fdpic(infop)) { 2011 regs->areg[4] = infop->loadmap_addr; 2012 regs->areg[5] = infop->interpreter_loadmap_addr; 2013 if (infop->interpreter_loadmap_addr) { 2014 regs->areg[6] = infop->interpreter_pt_dynamic_addr; 2015 } else { 2016 regs->areg[6] = infop->pt_dynamic_addr; 2017 } 2018 } 2019 } 2020 2021 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 2022 #define ELF_NREG 128 2023 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2024 2025 enum { 2026 TARGET_REG_PC, 2027 TARGET_REG_PS, 2028 TARGET_REG_LBEG, 2029 TARGET_REG_LEND, 2030 TARGET_REG_LCOUNT, 2031 TARGET_REG_SAR, 2032 TARGET_REG_WINDOWSTART, 2033 TARGET_REG_WINDOWBASE, 2034 TARGET_REG_THREADPTR, 2035 TARGET_REG_AR0 = 64, 2036 }; 2037 2038 static void elf_core_copy_regs(target_elf_gregset_t *regs, 2039 const CPUXtensaState *env) 2040 { 2041 unsigned i; 2042 2043 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 2044 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 2045 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 2046 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 2047 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 2048 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 2049 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 2050 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 2051 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 2052 xtensa_sync_phys_from_window((CPUXtensaState *)env); 2053 for (i = 0; i < env->config->nareg; ++i) { 2054 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 2055 } 2056 } 2057 2058 #define USE_ELF_CORE_DUMP 2059 #define ELF_EXEC_PAGESIZE 4096 2060 2061 #endif /* TARGET_XTENSA */ 2062 2063 #ifdef TARGET_HEXAGON 2064 2065 #define ELF_CLASS ELFCLASS32 2066 #define ELF_ARCH EM_HEXAGON 2067 2068 static inline void init_thread(struct target_pt_regs *regs, 2069 struct image_info *infop) 2070 { 2071 regs->sepc = infop->entry; 2072 regs->sp = infop->start_stack; 2073 } 2074 2075 #endif /* TARGET_HEXAGON */ 2076 2077 #ifndef ELF_BASE_PLATFORM 2078 #define ELF_BASE_PLATFORM (NULL) 2079 #endif 2080 2081 #ifndef ELF_PLATFORM 2082 #define ELF_PLATFORM (NULL) 2083 #endif 2084 2085 #ifndef ELF_MACHINE 2086 #define ELF_MACHINE ELF_ARCH 2087 #endif 2088 2089 #ifndef elf_check_arch 2090 #define elf_check_arch(x) ((x) == ELF_ARCH) 2091 #endif 2092 2093 #ifndef elf_check_abi 2094 #define elf_check_abi(x) (1) 2095 #endif 2096 2097 #ifndef ELF_HWCAP 2098 #define ELF_HWCAP 0 2099 #endif 2100 2101 #ifndef STACK_GROWS_DOWN 2102 #define STACK_GROWS_DOWN 1 2103 #endif 2104 2105 #ifndef STACK_ALIGNMENT 2106 #define STACK_ALIGNMENT 16 2107 #endif 2108 2109 #ifdef TARGET_ABI32 2110 #undef ELF_CLASS 2111 #define ELF_CLASS ELFCLASS32 2112 #undef bswaptls 2113 #define bswaptls(ptr) bswap32s(ptr) 2114 #endif 2115 2116 #ifndef EXSTACK_DEFAULT 2117 #define EXSTACK_DEFAULT false 2118 #endif 2119 2120 #include "elf.h" 2121 2122 /* We must delay the following stanzas until after "elf.h". */ 2123 #if defined(TARGET_AARCH64) 2124 2125 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 2126 const uint32_t *data, 2127 struct image_info *info, 2128 Error **errp) 2129 { 2130 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 2131 if (pr_datasz != sizeof(uint32_t)) { 2132 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 2133 return false; 2134 } 2135 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 2136 info->note_flags = *data; 2137 } 2138 return true; 2139 } 2140 #define ARCH_USE_GNU_PROPERTY 1 2141 2142 #else 2143 2144 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 2145 const uint32_t *data, 2146 struct image_info *info, 2147 Error **errp) 2148 { 2149 g_assert_not_reached(); 2150 } 2151 #define ARCH_USE_GNU_PROPERTY 0 2152 2153 #endif 2154 2155 struct exec 2156 { 2157 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 2158 unsigned int a_text; /* length of text, in bytes */ 2159 unsigned int a_data; /* length of data, in bytes */ 2160 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 2161 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 2162 unsigned int a_entry; /* start address */ 2163 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 2164 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 2165 }; 2166 2167 2168 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 2169 #define OMAGIC 0407 2170 #define NMAGIC 0410 2171 #define ZMAGIC 0413 2172 #define QMAGIC 0314 2173 2174 #define DLINFO_ITEMS 16 2175 2176 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 2177 { 2178 memcpy(to, from, n); 2179 } 2180 2181 #ifdef BSWAP_NEEDED 2182 static void bswap_ehdr(struct elfhdr *ehdr) 2183 { 2184 bswap16s(&ehdr->e_type); /* Object file type */ 2185 bswap16s(&ehdr->e_machine); /* Architecture */ 2186 bswap32s(&ehdr->e_version); /* Object file version */ 2187 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 2188 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 2189 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 2190 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 2191 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 2192 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 2193 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 2194 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 2195 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 2196 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 2197 } 2198 2199 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 2200 { 2201 int i; 2202 for (i = 0; i < phnum; ++i, ++phdr) { 2203 bswap32s(&phdr->p_type); /* Segment type */ 2204 bswap32s(&phdr->p_flags); /* Segment flags */ 2205 bswaptls(&phdr->p_offset); /* Segment file offset */ 2206 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 2207 bswaptls(&phdr->p_paddr); /* Segment physical address */ 2208 bswaptls(&phdr->p_filesz); /* Segment size in file */ 2209 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 2210 bswaptls(&phdr->p_align); /* Segment alignment */ 2211 } 2212 } 2213 2214 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 2215 { 2216 int i; 2217 for (i = 0; i < shnum; ++i, ++shdr) { 2218 bswap32s(&shdr->sh_name); 2219 bswap32s(&shdr->sh_type); 2220 bswaptls(&shdr->sh_flags); 2221 bswaptls(&shdr->sh_addr); 2222 bswaptls(&shdr->sh_offset); 2223 bswaptls(&shdr->sh_size); 2224 bswap32s(&shdr->sh_link); 2225 bswap32s(&shdr->sh_info); 2226 bswaptls(&shdr->sh_addralign); 2227 bswaptls(&shdr->sh_entsize); 2228 } 2229 } 2230 2231 static void bswap_sym(struct elf_sym *sym) 2232 { 2233 bswap32s(&sym->st_name); 2234 bswaptls(&sym->st_value); 2235 bswaptls(&sym->st_size); 2236 bswap16s(&sym->st_shndx); 2237 } 2238 2239 #ifdef TARGET_MIPS 2240 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 2241 { 2242 bswap16s(&abiflags->version); 2243 bswap32s(&abiflags->ases); 2244 bswap32s(&abiflags->isa_ext); 2245 bswap32s(&abiflags->flags1); 2246 bswap32s(&abiflags->flags2); 2247 } 2248 #endif 2249 #else 2250 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 2251 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 2252 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 2253 static inline void bswap_sym(struct elf_sym *sym) { } 2254 #ifdef TARGET_MIPS 2255 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 2256 #endif 2257 #endif 2258 2259 #ifdef USE_ELF_CORE_DUMP 2260 static int elf_core_dump(int, const CPUArchState *); 2261 #endif /* USE_ELF_CORE_DUMP */ 2262 static void load_symbols(struct elfhdr *hdr, const ImageSource *src, 2263 abi_ulong load_bias); 2264 2265 /* Verify the portions of EHDR within E_IDENT for the target. 2266 This can be performed before bswapping the entire header. */ 2267 static bool elf_check_ident(struct elfhdr *ehdr) 2268 { 2269 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 2270 && ehdr->e_ident[EI_MAG1] == ELFMAG1 2271 && ehdr->e_ident[EI_MAG2] == ELFMAG2 2272 && ehdr->e_ident[EI_MAG3] == ELFMAG3 2273 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 2274 && ehdr->e_ident[EI_DATA] == ELF_DATA 2275 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 2276 } 2277 2278 /* Verify the portions of EHDR outside of E_IDENT for the target. 2279 This has to wait until after bswapping the header. */ 2280 static bool elf_check_ehdr(struct elfhdr *ehdr) 2281 { 2282 return (elf_check_arch(ehdr->e_machine) 2283 && elf_check_abi(ehdr->e_flags) 2284 && ehdr->e_ehsize == sizeof(struct elfhdr) 2285 && ehdr->e_phentsize == sizeof(struct elf_phdr) 2286 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 2287 } 2288 2289 /* 2290 * 'copy_elf_strings()' copies argument/envelope strings from user 2291 * memory to free pages in kernel mem. These are in a format ready 2292 * to be put directly into the top of new user memory. 2293 * 2294 */ 2295 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2296 abi_ulong p, abi_ulong stack_limit) 2297 { 2298 char *tmp; 2299 int len, i; 2300 abi_ulong top = p; 2301 2302 if (!p) { 2303 return 0; /* bullet-proofing */ 2304 } 2305 2306 if (STACK_GROWS_DOWN) { 2307 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2308 for (i = argc - 1; i >= 0; --i) { 2309 tmp = argv[i]; 2310 if (!tmp) { 2311 fprintf(stderr, "VFS: argc is wrong"); 2312 exit(-1); 2313 } 2314 len = strlen(tmp) + 1; 2315 tmp += len; 2316 2317 if (len > (p - stack_limit)) { 2318 return 0; 2319 } 2320 while (len) { 2321 int bytes_to_copy = (len > offset) ? offset : len; 2322 tmp -= bytes_to_copy; 2323 p -= bytes_to_copy; 2324 offset -= bytes_to_copy; 2325 len -= bytes_to_copy; 2326 2327 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2328 2329 if (offset == 0) { 2330 memcpy_to_target(p, scratch, top - p); 2331 top = p; 2332 offset = TARGET_PAGE_SIZE; 2333 } 2334 } 2335 } 2336 if (p != top) { 2337 memcpy_to_target(p, scratch + offset, top - p); 2338 } 2339 } else { 2340 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2341 for (i = 0; i < argc; ++i) { 2342 tmp = argv[i]; 2343 if (!tmp) { 2344 fprintf(stderr, "VFS: argc is wrong"); 2345 exit(-1); 2346 } 2347 len = strlen(tmp) + 1; 2348 if (len > (stack_limit - p)) { 2349 return 0; 2350 } 2351 while (len) { 2352 int bytes_to_copy = (len > remaining) ? remaining : len; 2353 2354 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2355 2356 tmp += bytes_to_copy; 2357 remaining -= bytes_to_copy; 2358 p += bytes_to_copy; 2359 len -= bytes_to_copy; 2360 2361 if (remaining == 0) { 2362 memcpy_to_target(top, scratch, p - top); 2363 top = p; 2364 remaining = TARGET_PAGE_SIZE; 2365 } 2366 } 2367 } 2368 if (p != top) { 2369 memcpy_to_target(top, scratch, p - top); 2370 } 2371 } 2372 2373 return p; 2374 } 2375 2376 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2377 * argument/environment space. Newer kernels (>2.6.33) allow more, 2378 * dependent on stack size, but guarantee at least 32 pages for 2379 * backwards compatibility. 2380 */ 2381 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2382 2383 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2384 struct image_info *info) 2385 { 2386 abi_ulong size, error, guard; 2387 int prot; 2388 2389 size = guest_stack_size; 2390 if (size < STACK_LOWER_LIMIT) { 2391 size = STACK_LOWER_LIMIT; 2392 } 2393 2394 if (STACK_GROWS_DOWN) { 2395 guard = TARGET_PAGE_SIZE; 2396 if (guard < qemu_real_host_page_size()) { 2397 guard = qemu_real_host_page_size(); 2398 } 2399 } else { 2400 /* no guard page for hppa target where stack grows upwards. */ 2401 guard = 0; 2402 } 2403 2404 prot = PROT_READ | PROT_WRITE; 2405 if (info->exec_stack) { 2406 prot |= PROT_EXEC; 2407 } 2408 error = target_mmap(0, size + guard, prot, 2409 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2410 if (error == -1) { 2411 perror("mmap stack"); 2412 exit(-1); 2413 } 2414 2415 /* We reserve one extra page at the top of the stack as guard. */ 2416 if (STACK_GROWS_DOWN) { 2417 target_mprotect(error, guard, PROT_NONE); 2418 info->stack_limit = error + guard; 2419 return info->stack_limit + size - sizeof(void *); 2420 } else { 2421 info->stack_limit = error + size; 2422 return error; 2423 } 2424 } 2425 2426 /** 2427 * zero_bss: 2428 * 2429 * Map and zero the bss. We need to explicitly zero any fractional pages 2430 * after the data section (i.e. bss). Return false on mapping failure. 2431 */ 2432 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, 2433 int prot, Error **errp) 2434 { 2435 abi_ulong align_bss; 2436 2437 /* We only expect writable bss; the code segment shouldn't need this. */ 2438 if (!(prot & PROT_WRITE)) { 2439 error_setg(errp, "PT_LOAD with non-writable bss"); 2440 return false; 2441 } 2442 2443 align_bss = TARGET_PAGE_ALIGN(start_bss); 2444 end_bss = TARGET_PAGE_ALIGN(end_bss); 2445 2446 if (start_bss < align_bss) { 2447 int flags = page_get_flags(start_bss); 2448 2449 if (!(flags & PAGE_BITS)) { 2450 /* 2451 * The whole address space of the executable was reserved 2452 * at the start, therefore all pages will be VALID. 2453 * But assuming there are no PROT_NONE PT_LOAD segments, 2454 * a PROT_NONE page means no data all bss, and we can 2455 * simply extend the new anon mapping back to the start 2456 * of the page of bss. 2457 */ 2458 align_bss -= TARGET_PAGE_SIZE; 2459 } else { 2460 /* 2461 * The start of the bss shares a page with something. 2462 * The only thing that we expect is the data section, 2463 * which would already be marked writable. 2464 * Overlapping the RX code segment seems malformed. 2465 */ 2466 if (!(flags & PAGE_WRITE)) { 2467 error_setg(errp, "PT_LOAD with bss overlapping " 2468 "non-writable page"); 2469 return false; 2470 } 2471 2472 /* The page is already mapped and writable. */ 2473 memset(g2h_untagged(start_bss), 0, align_bss - start_bss); 2474 } 2475 } 2476 2477 if (align_bss < end_bss && 2478 target_mmap(align_bss, end_bss - align_bss, prot, 2479 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { 2480 error_setg_errno(errp, errno, "Error mapping bss"); 2481 return false; 2482 } 2483 return true; 2484 } 2485 2486 #if defined(TARGET_ARM) 2487 static int elf_is_fdpic(struct elfhdr *exec) 2488 { 2489 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2490 } 2491 #elif defined(TARGET_XTENSA) 2492 static int elf_is_fdpic(struct elfhdr *exec) 2493 { 2494 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; 2495 } 2496 #else 2497 /* Default implementation, always false. */ 2498 static int elf_is_fdpic(struct elfhdr *exec) 2499 { 2500 return 0; 2501 } 2502 #endif 2503 2504 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2505 { 2506 uint16_t n; 2507 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2508 2509 /* elf32_fdpic_loadseg */ 2510 n = info->nsegs; 2511 while (n--) { 2512 sp -= 12; 2513 put_user_u32(loadsegs[n].addr, sp+0); 2514 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2515 put_user_u32(loadsegs[n].p_memsz, sp+8); 2516 } 2517 2518 /* elf32_fdpic_loadmap */ 2519 sp -= 4; 2520 put_user_u16(0, sp+0); /* version */ 2521 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2522 2523 info->personality = PER_LINUX_FDPIC; 2524 info->loadmap_addr = sp; 2525 2526 return sp; 2527 } 2528 2529 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2530 struct elfhdr *exec, 2531 struct image_info *info, 2532 struct image_info *interp_info, 2533 struct image_info *vdso_info) 2534 { 2535 abi_ulong sp; 2536 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2537 int size; 2538 int i; 2539 abi_ulong u_rand_bytes; 2540 uint8_t k_rand_bytes[16]; 2541 abi_ulong u_platform, u_base_platform; 2542 const char *k_platform, *k_base_platform; 2543 const int n = sizeof(elf_addr_t); 2544 2545 sp = p; 2546 2547 /* Needs to be before we load the env/argc/... */ 2548 if (elf_is_fdpic(exec)) { 2549 /* Need 4 byte alignment for these structs */ 2550 sp &= ~3; 2551 sp = loader_build_fdpic_loadmap(info, sp); 2552 info->other_info = interp_info; 2553 if (interp_info) { 2554 interp_info->other_info = info; 2555 sp = loader_build_fdpic_loadmap(interp_info, sp); 2556 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2557 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2558 } else { 2559 info->interpreter_loadmap_addr = 0; 2560 info->interpreter_pt_dynamic_addr = 0; 2561 } 2562 } 2563 2564 u_base_platform = 0; 2565 k_base_platform = ELF_BASE_PLATFORM; 2566 if (k_base_platform) { 2567 size_t len = strlen(k_base_platform) + 1; 2568 if (STACK_GROWS_DOWN) { 2569 sp -= (len + n - 1) & ~(n - 1); 2570 u_base_platform = sp; 2571 /* FIXME - check return value of memcpy_to_target() for failure */ 2572 memcpy_to_target(sp, k_base_platform, len); 2573 } else { 2574 memcpy_to_target(sp, k_base_platform, len); 2575 u_base_platform = sp; 2576 sp += len + 1; 2577 } 2578 } 2579 2580 u_platform = 0; 2581 k_platform = ELF_PLATFORM; 2582 if (k_platform) { 2583 size_t len = strlen(k_platform) + 1; 2584 if (STACK_GROWS_DOWN) { 2585 sp -= (len + n - 1) & ~(n - 1); 2586 u_platform = sp; 2587 /* FIXME - check return value of memcpy_to_target() for failure */ 2588 memcpy_to_target(sp, k_platform, len); 2589 } else { 2590 memcpy_to_target(sp, k_platform, len); 2591 u_platform = sp; 2592 sp += len + 1; 2593 } 2594 } 2595 2596 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2597 * the argv and envp pointers. 2598 */ 2599 if (STACK_GROWS_DOWN) { 2600 sp = QEMU_ALIGN_DOWN(sp, 16); 2601 } else { 2602 sp = QEMU_ALIGN_UP(sp, 16); 2603 } 2604 2605 /* 2606 * Generate 16 random bytes for userspace PRNG seeding. 2607 */ 2608 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2609 if (STACK_GROWS_DOWN) { 2610 sp -= 16; 2611 u_rand_bytes = sp; 2612 /* FIXME - check return value of memcpy_to_target() for failure */ 2613 memcpy_to_target(sp, k_rand_bytes, 16); 2614 } else { 2615 memcpy_to_target(sp, k_rand_bytes, 16); 2616 u_rand_bytes = sp; 2617 sp += 16; 2618 } 2619 2620 size = (DLINFO_ITEMS + 1) * 2; 2621 if (k_base_platform) { 2622 size += 2; 2623 } 2624 if (k_platform) { 2625 size += 2; 2626 } 2627 if (vdso_info) { 2628 size += 2; 2629 } 2630 #ifdef DLINFO_ARCH_ITEMS 2631 size += DLINFO_ARCH_ITEMS * 2; 2632 #endif 2633 #ifdef ELF_HWCAP2 2634 size += 2; 2635 #endif 2636 info->auxv_len = size * n; 2637 2638 size += envc + argc + 2; 2639 size += 1; /* argc itself */ 2640 size *= n; 2641 2642 /* Allocate space and finalize stack alignment for entry now. */ 2643 if (STACK_GROWS_DOWN) { 2644 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2645 sp = u_argc; 2646 } else { 2647 u_argc = sp; 2648 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2649 } 2650 2651 u_argv = u_argc + n; 2652 u_envp = u_argv + (argc + 1) * n; 2653 u_auxv = u_envp + (envc + 1) * n; 2654 info->saved_auxv = u_auxv; 2655 info->argc = argc; 2656 info->envc = envc; 2657 info->argv = u_argv; 2658 info->envp = u_envp; 2659 2660 /* This is correct because Linux defines 2661 * elf_addr_t as Elf32_Off / Elf64_Off 2662 */ 2663 #define NEW_AUX_ENT(id, val) do { \ 2664 put_user_ual(id, u_auxv); u_auxv += n; \ 2665 put_user_ual(val, u_auxv); u_auxv += n; \ 2666 } while(0) 2667 2668 #ifdef ARCH_DLINFO 2669 /* 2670 * ARCH_DLINFO must come first so platform specific code can enforce 2671 * special alignment requirements on the AUXV if necessary (eg. PPC). 2672 */ 2673 ARCH_DLINFO; 2674 #endif 2675 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2676 * on info->auxv_len will trigger. 2677 */ 2678 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2679 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2680 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2681 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2682 /* Target doesn't support host page size alignment */ 2683 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2684 } else { 2685 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2686 qemu_host_page_size))); 2687 } 2688 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2689 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2690 NEW_AUX_ENT(AT_ENTRY, info->entry); 2691 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2692 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2693 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2694 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2695 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2696 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2697 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2698 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2699 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2700 2701 #ifdef ELF_HWCAP2 2702 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2703 #endif 2704 2705 if (u_base_platform) { 2706 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); 2707 } 2708 if (u_platform) { 2709 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2710 } 2711 if (vdso_info) { 2712 NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr); 2713 } 2714 NEW_AUX_ENT (AT_NULL, 0); 2715 #undef NEW_AUX_ENT 2716 2717 /* Check that our initial calculation of the auxv length matches how much 2718 * we actually put into it. 2719 */ 2720 assert(info->auxv_len == u_auxv - info->saved_auxv); 2721 2722 put_user_ual(argc, u_argc); 2723 2724 p = info->arg_strings; 2725 for (i = 0; i < argc; ++i) { 2726 put_user_ual(p, u_argv); 2727 u_argv += n; 2728 p += target_strlen(p) + 1; 2729 } 2730 put_user_ual(0, u_argv); 2731 2732 p = info->env_strings; 2733 for (i = 0; i < envc; ++i) { 2734 put_user_ual(p, u_envp); 2735 u_envp += n; 2736 p += target_strlen(p) + 1; 2737 } 2738 put_user_ual(0, u_envp); 2739 2740 return sp; 2741 } 2742 2743 #if defined(HI_COMMPAGE) 2744 #define LO_COMMPAGE -1 2745 #elif defined(LO_COMMPAGE) 2746 #define HI_COMMPAGE 0 2747 #else 2748 #define HI_COMMPAGE 0 2749 #define LO_COMMPAGE -1 2750 #ifndef INIT_GUEST_COMMPAGE 2751 #define init_guest_commpage() true 2752 #endif 2753 #endif 2754 2755 /** 2756 * pgb_try_mmap: 2757 * @addr: host start address 2758 * @addr_last: host last address 2759 * @keep: do not unmap the probe region 2760 * 2761 * Return 1 if [@addr, @addr_last] is not mapped in the host, 2762 * return 0 if it is not available to map, and -1 on mmap error. 2763 * If @keep, the region is left mapped on success, otherwise unmapped. 2764 */ 2765 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep) 2766 { 2767 size_t size = addr_last - addr + 1; 2768 void *p = mmap((void *)addr, size, PROT_NONE, 2769 MAP_ANONYMOUS | MAP_PRIVATE | 2770 MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0); 2771 int ret; 2772 2773 if (p == MAP_FAILED) { 2774 return errno == EEXIST ? 0 : -1; 2775 } 2776 ret = p == (void *)addr; 2777 if (!keep || !ret) { 2778 munmap(p, size); 2779 } 2780 return ret; 2781 } 2782 2783 /** 2784 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk) 2785 * @addr: host address 2786 * @addr_last: host last address 2787 * @brk: host brk 2788 * 2789 * Like pgb_try_mmap, but additionally reserve some memory following brk. 2790 */ 2791 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last, 2792 uintptr_t brk, bool keep) 2793 { 2794 uintptr_t brk_last = brk + 16 * MiB - 1; 2795 2796 /* Do not map anything close to the host brk. */ 2797 if (addr <= brk_last && brk <= addr_last) { 2798 return 0; 2799 } 2800 return pgb_try_mmap(addr, addr_last, keep); 2801 } 2802 2803 /** 2804 * pgb_try_mmap_set: 2805 * @ga: set of guest addrs 2806 * @base: guest_base 2807 * @brk: host brk 2808 * 2809 * Return true if all @ga can be mapped by the host at @base. 2810 * On success, retain the mapping at index 0 for reserved_va. 2811 */ 2812 2813 typedef struct PGBAddrs { 2814 uintptr_t bounds[3][2]; /* start/last pairs */ 2815 int nbounds; 2816 } PGBAddrs; 2817 2818 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk) 2819 { 2820 for (int i = ga->nbounds - 1; i >= 0; --i) { 2821 if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base, 2822 ga->bounds[i][1] + base, 2823 brk, i == 0 && reserved_va) <= 0) { 2824 return false; 2825 } 2826 } 2827 return true; 2828 } 2829 2830 /** 2831 * pgb_addr_set: 2832 * @ga: output set of guest addrs 2833 * @guest_loaddr: guest image low address 2834 * @guest_loaddr: guest image high address 2835 * @identity: create for identity mapping 2836 * 2837 * Fill in @ga with the image, COMMPAGE and NULL page. 2838 */ 2839 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr, 2840 abi_ulong guest_hiaddr, bool try_identity) 2841 { 2842 int n; 2843 2844 /* 2845 * With a low commpage, or a guest mapped very low, 2846 * we may not be able to use the identity map. 2847 */ 2848 if (try_identity) { 2849 if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) { 2850 return false; 2851 } 2852 if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) { 2853 return false; 2854 } 2855 } 2856 2857 memset(ga, 0, sizeof(*ga)); 2858 n = 0; 2859 2860 if (reserved_va) { 2861 ga->bounds[n][0] = try_identity ? mmap_min_addr : 0; 2862 ga->bounds[n][1] = reserved_va; 2863 n++; 2864 /* LO_COMMPAGE and NULL handled by reserving from 0. */ 2865 } else { 2866 /* Add any LO_COMMPAGE or NULL page. */ 2867 if (LO_COMMPAGE != -1) { 2868 ga->bounds[n][0] = 0; 2869 ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1; 2870 n++; 2871 } else if (!try_identity) { 2872 ga->bounds[n][0] = 0; 2873 ga->bounds[n][1] = TARGET_PAGE_SIZE - 1; 2874 n++; 2875 } 2876 2877 /* Add the guest image for ET_EXEC. */ 2878 if (guest_loaddr) { 2879 ga->bounds[n][0] = guest_loaddr; 2880 ga->bounds[n][1] = guest_hiaddr; 2881 n++; 2882 } 2883 } 2884 2885 /* 2886 * Temporarily disable 2887 * "comparison is always false due to limited range of data type" 2888 * due to comparison between unsigned and (possible) 0. 2889 */ 2890 #pragma GCC diagnostic push 2891 #pragma GCC diagnostic ignored "-Wtype-limits" 2892 2893 /* Add any HI_COMMPAGE not covered by reserved_va. */ 2894 if (reserved_va < HI_COMMPAGE) { 2895 ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask; 2896 ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1; 2897 n++; 2898 } 2899 2900 #pragma GCC diagnostic pop 2901 2902 ga->nbounds = n; 2903 return true; 2904 } 2905 2906 static void pgb_fail_in_use(const char *image_name) 2907 { 2908 error_report("%s: requires virtual address space that is in use " 2909 "(omit the -B option or choose a different value)", 2910 image_name); 2911 exit(EXIT_FAILURE); 2912 } 2913 2914 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr, 2915 uintptr_t guest_hiaddr, uintptr_t align) 2916 { 2917 PGBAddrs ga; 2918 uintptr_t brk = (uintptr_t)sbrk(0); 2919 2920 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2921 fprintf(stderr, "Requested guest base %p does not satisfy " 2922 "host minimum alignment (0x%" PRIxPTR ")\n", 2923 (void *)guest_base, align); 2924 exit(EXIT_FAILURE); 2925 } 2926 2927 if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base) 2928 || !pgb_try_mmap_set(&ga, guest_base, brk)) { 2929 pgb_fail_in_use(image_name); 2930 } 2931 } 2932 2933 /** 2934 * pgb_find_fallback: 2935 * 2936 * This is a fallback method for finding holes in the host address space 2937 * if we don't have the benefit of being able to access /proc/self/map. 2938 * It can potentially take a very long time as we can only dumbly iterate 2939 * up the host address space seeing if the allocation would work. 2940 */ 2941 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align, 2942 uintptr_t brk) 2943 { 2944 /* TODO: come up with a better estimate of how much to skip. */ 2945 uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB; 2946 2947 for (uintptr_t base = skip; ; base += skip) { 2948 base = ROUND_UP(base, align); 2949 if (pgb_try_mmap_set(ga, base, brk)) { 2950 return base; 2951 } 2952 if (base >= -skip) { 2953 return -1; 2954 } 2955 } 2956 } 2957 2958 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base, 2959 IntervalTreeRoot *root) 2960 { 2961 for (int i = ga->nbounds - 1; i >= 0; --i) { 2962 uintptr_t s = base + ga->bounds[i][0]; 2963 uintptr_t l = base + ga->bounds[i][1]; 2964 IntervalTreeNode *n; 2965 2966 if (l < s) { 2967 /* Wraparound. Skip to advance S to mmap_min_addr. */ 2968 return mmap_min_addr - s; 2969 } 2970 2971 n = interval_tree_iter_first(root, s, l); 2972 if (n != NULL) { 2973 /* Conflict. Skip to advance S to LAST + 1. */ 2974 return n->last - s + 1; 2975 } 2976 } 2977 return 0; /* success */ 2978 } 2979 2980 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root, 2981 uintptr_t align, uintptr_t brk) 2982 { 2983 uintptr_t last = mmap_min_addr; 2984 uintptr_t base, skip; 2985 2986 while (true) { 2987 base = ROUND_UP(last, align); 2988 if (base < last) { 2989 return -1; 2990 } 2991 2992 skip = pgb_try_itree(ga, base, root); 2993 if (skip == 0) { 2994 break; 2995 } 2996 2997 last = base + skip; 2998 if (last < base) { 2999 return -1; 3000 } 3001 } 3002 3003 /* 3004 * We've chosen 'base' based on holes in the interval tree, 3005 * but we don't yet know if it is a valid host address. 3006 * Because it is the first matching hole, if the host addresses 3007 * are invalid we know there are no further matches. 3008 */ 3009 return pgb_try_mmap_set(ga, base, brk) ? base : -1; 3010 } 3011 3012 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr, 3013 uintptr_t guest_hiaddr, uintptr_t align) 3014 { 3015 IntervalTreeRoot *root; 3016 uintptr_t brk, ret; 3017 PGBAddrs ga; 3018 3019 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 3020 3021 /* Try the identity map first. */ 3022 if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) { 3023 brk = (uintptr_t)sbrk(0); 3024 if (pgb_try_mmap_set(&ga, 0, brk)) { 3025 guest_base = 0; 3026 return; 3027 } 3028 } 3029 3030 /* 3031 * Rebuild the address set for non-identity map. 3032 * This differs in the mapping of the guest NULL page. 3033 */ 3034 pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false); 3035 3036 root = read_self_maps(); 3037 3038 /* Read brk after we've read the maps, which will malloc. */ 3039 brk = (uintptr_t)sbrk(0); 3040 3041 if (!root) { 3042 ret = pgb_find_fallback(&ga, align, brk); 3043 } else { 3044 /* 3045 * Reserve the area close to the host brk. 3046 * This will be freed with the rest of the tree. 3047 */ 3048 IntervalTreeNode *b = g_new0(IntervalTreeNode, 1); 3049 b->start = brk; 3050 b->last = brk + 16 * MiB - 1; 3051 interval_tree_insert(b, root); 3052 3053 ret = pgb_find_itree(&ga, root, align, brk); 3054 free_self_maps(root); 3055 } 3056 3057 if (ret == -1) { 3058 int w = TARGET_LONG_BITS / 4; 3059 3060 error_report("%s: Unable to find a guest_base to satisfy all " 3061 "guest address mapping requirements", image_name); 3062 3063 for (int i = 0; i < ga.nbounds; ++i) { 3064 error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n", 3065 w, (uint64_t)ga.bounds[i][0], 3066 w, (uint64_t)ga.bounds[i][1]); 3067 } 3068 exit(EXIT_FAILURE); 3069 } 3070 guest_base = ret; 3071 } 3072 3073 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 3074 abi_ulong guest_hiaddr) 3075 { 3076 /* In order to use host shmat, we must be able to honor SHMLBA. */ 3077 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 3078 3079 /* Sanity check the guest binary. */ 3080 if (reserved_va) { 3081 if (guest_hiaddr > reserved_va) { 3082 error_report("%s: requires more than reserved virtual " 3083 "address space (0x%" PRIx64 " > 0x%lx)", 3084 image_name, (uint64_t)guest_hiaddr, reserved_va); 3085 exit(EXIT_FAILURE); 3086 } 3087 } else { 3088 if (guest_hiaddr != (uintptr_t)guest_hiaddr) { 3089 error_report("%s: requires more virtual address space " 3090 "than the host can provide (0x%" PRIx64 ")", 3091 image_name, (uint64_t)guest_hiaddr + 1); 3092 exit(EXIT_FAILURE); 3093 } 3094 } 3095 3096 if (have_guest_base) { 3097 pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align); 3098 } else { 3099 pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align); 3100 } 3101 3102 /* Reserve and initialize the commpage. */ 3103 if (!init_guest_commpage()) { 3104 /* We have already probed for the commpage being free. */ 3105 g_assert_not_reached(); 3106 } 3107 3108 assert(QEMU_IS_ALIGNED(guest_base, align)); 3109 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 3110 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 3111 } 3112 3113 enum { 3114 /* The string "GNU\0" as a magic number. */ 3115 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 3116 NOTE_DATA_SZ = 1 * KiB, 3117 NOTE_NAME_SZ = 4, 3118 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 3119 }; 3120 3121 /* 3122 * Process a single gnu_property entry. 3123 * Return false for error. 3124 */ 3125 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 3126 struct image_info *info, bool have_prev_type, 3127 uint32_t *prev_type, Error **errp) 3128 { 3129 uint32_t pr_type, pr_datasz, step; 3130 3131 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 3132 goto error_data; 3133 } 3134 datasz -= *off; 3135 data += *off / sizeof(uint32_t); 3136 3137 if (datasz < 2 * sizeof(uint32_t)) { 3138 goto error_data; 3139 } 3140 pr_type = data[0]; 3141 pr_datasz = data[1]; 3142 data += 2; 3143 datasz -= 2 * sizeof(uint32_t); 3144 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 3145 if (step > datasz) { 3146 goto error_data; 3147 } 3148 3149 /* Properties are supposed to be unique and sorted on pr_type. */ 3150 if (have_prev_type && pr_type <= *prev_type) { 3151 if (pr_type == *prev_type) { 3152 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 3153 } else { 3154 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 3155 } 3156 return false; 3157 } 3158 *prev_type = pr_type; 3159 3160 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 3161 return false; 3162 } 3163 3164 *off += 2 * sizeof(uint32_t) + step; 3165 return true; 3166 3167 error_data: 3168 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 3169 return false; 3170 } 3171 3172 /* Process NT_GNU_PROPERTY_TYPE_0. */ 3173 static bool parse_elf_properties(const ImageSource *src, 3174 struct image_info *info, 3175 const struct elf_phdr *phdr, 3176 Error **errp) 3177 { 3178 union { 3179 struct elf_note nhdr; 3180 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 3181 } note; 3182 3183 int n, off, datasz; 3184 bool have_prev_type; 3185 uint32_t prev_type; 3186 3187 /* Unless the arch requires properties, ignore them. */ 3188 if (!ARCH_USE_GNU_PROPERTY) { 3189 return true; 3190 } 3191 3192 /* If the properties are crazy large, that's too bad. */ 3193 n = phdr->p_filesz; 3194 if (n > sizeof(note)) { 3195 error_setg(errp, "PT_GNU_PROPERTY too large"); 3196 return false; 3197 } 3198 if (n < sizeof(note.nhdr)) { 3199 error_setg(errp, "PT_GNU_PROPERTY too small"); 3200 return false; 3201 } 3202 3203 if (!imgsrc_read(¬e, phdr->p_offset, n, src, errp)) { 3204 return false; 3205 } 3206 3207 /* 3208 * The contents of a valid PT_GNU_PROPERTY is a sequence 3209 * of uint32_t -- swap them all now. 3210 */ 3211 #ifdef BSWAP_NEEDED 3212 for (int i = 0; i < n / 4; i++) { 3213 bswap32s(note.data + i); 3214 } 3215 #endif 3216 3217 /* 3218 * Note that nhdr is 3 words, and that the "name" described by namesz 3219 * immediately follows nhdr and is thus at the 4th word. Further, all 3220 * of the inputs to the kernel's round_up are multiples of 4. 3221 */ 3222 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 3223 note.nhdr.n_namesz != NOTE_NAME_SZ || 3224 note.data[3] != GNU0_MAGIC) { 3225 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 3226 return false; 3227 } 3228 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 3229 3230 datasz = note.nhdr.n_descsz + off; 3231 if (datasz > n) { 3232 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 3233 return false; 3234 } 3235 3236 have_prev_type = false; 3237 prev_type = 0; 3238 while (1) { 3239 if (off == datasz) { 3240 return true; /* end, exit ok */ 3241 } 3242 if (!parse_elf_property(note.data, &off, datasz, info, 3243 have_prev_type, &prev_type, errp)) { 3244 return false; 3245 } 3246 have_prev_type = true; 3247 } 3248 } 3249 3250 /** 3251 * load_elf_image: Load an ELF image into the address space. 3252 * @image_name: the filename of the image, to use in error messages. 3253 * @src: the ImageSource from which to read. 3254 * @info: info collected from the loaded image. 3255 * @ehdr: the ELF header, not yet bswapped. 3256 * @pinterp_name: record any PT_INTERP string found. 3257 * 3258 * On return: @info values will be filled in, as necessary or available. 3259 */ 3260 3261 static void load_elf_image(const char *image_name, const ImageSource *src, 3262 struct image_info *info, struct elfhdr *ehdr, 3263 char **pinterp_name) 3264 { 3265 g_autofree struct elf_phdr *phdr = NULL; 3266 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 3267 int i, prot_exec; 3268 Error *err = NULL; 3269 3270 /* 3271 * First of all, some simple consistency checks. 3272 * Note that we rely on the bswapped ehdr staying in bprm_buf, 3273 * for later use by load_elf_binary and create_elf_tables. 3274 */ 3275 if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) { 3276 goto exit_errmsg; 3277 } 3278 if (!elf_check_ident(ehdr)) { 3279 error_setg(&err, "Invalid ELF image for this architecture"); 3280 goto exit_errmsg; 3281 } 3282 bswap_ehdr(ehdr); 3283 if (!elf_check_ehdr(ehdr)) { 3284 error_setg(&err, "Invalid ELF image for this architecture"); 3285 goto exit_errmsg; 3286 } 3287 3288 phdr = imgsrc_read_alloc(ehdr->e_phoff, 3289 ehdr->e_phnum * sizeof(struct elf_phdr), 3290 src, &err); 3291 if (phdr == NULL) { 3292 goto exit_errmsg; 3293 } 3294 bswap_phdr(phdr, ehdr->e_phnum); 3295 3296 info->nsegs = 0; 3297 info->pt_dynamic_addr = 0; 3298 3299 mmap_lock(); 3300 3301 /* 3302 * Find the maximum size of the image and allocate an appropriate 3303 * amount of memory to handle that. Locate the interpreter, if any. 3304 */ 3305 loaddr = -1, hiaddr = 0; 3306 info->alignment = 0; 3307 info->exec_stack = EXSTACK_DEFAULT; 3308 for (i = 0; i < ehdr->e_phnum; ++i) { 3309 struct elf_phdr *eppnt = phdr + i; 3310 if (eppnt->p_type == PT_LOAD) { 3311 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 3312 if (a < loaddr) { 3313 loaddr = a; 3314 } 3315 a = eppnt->p_vaddr + eppnt->p_memsz - 1; 3316 if (a > hiaddr) { 3317 hiaddr = a; 3318 } 3319 ++info->nsegs; 3320 info->alignment |= eppnt->p_align; 3321 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 3322 g_autofree char *interp_name = NULL; 3323 3324 if (*pinterp_name) { 3325 error_setg(&err, "Multiple PT_INTERP entries"); 3326 goto exit_errmsg; 3327 } 3328 3329 interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz, 3330 src, &err); 3331 if (interp_name == NULL) { 3332 goto exit_errmsg; 3333 } 3334 if (interp_name[eppnt->p_filesz - 1] != 0) { 3335 error_setg(&err, "Invalid PT_INTERP entry"); 3336 goto exit_errmsg; 3337 } 3338 *pinterp_name = g_steal_pointer(&interp_name); 3339 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 3340 if (!parse_elf_properties(src, info, eppnt, &err)) { 3341 goto exit_errmsg; 3342 } 3343 } else if (eppnt->p_type == PT_GNU_STACK) { 3344 info->exec_stack = eppnt->p_flags & PF_X; 3345 } 3346 } 3347 3348 load_addr = loaddr; 3349 3350 if (pinterp_name != NULL) { 3351 if (ehdr->e_type == ET_EXEC) { 3352 /* 3353 * Make sure that the low address does not conflict with 3354 * MMAP_MIN_ADDR or the QEMU application itself. 3355 */ 3356 probe_guest_base(image_name, loaddr, hiaddr); 3357 } else { 3358 abi_ulong align; 3359 3360 /* 3361 * The binary is dynamic, but we still need to 3362 * select guest_base. In this case we pass a size. 3363 */ 3364 probe_guest_base(image_name, 0, hiaddr - loaddr); 3365 3366 /* 3367 * Avoid collision with the loader by providing a different 3368 * default load address. 3369 */ 3370 load_addr += elf_et_dyn_base; 3371 3372 /* 3373 * TODO: Better support for mmap alignment is desirable. 3374 * Since we do not have complete control over the guest 3375 * address space, we prefer the kernel to choose some address 3376 * rather than force the use of LOAD_ADDR via MAP_FIXED. 3377 * But without MAP_FIXED we cannot guarantee alignment, 3378 * only suggest it. 3379 */ 3380 align = pow2ceil(info->alignment); 3381 if (align) { 3382 load_addr &= -align; 3383 } 3384 } 3385 } 3386 3387 /* 3388 * Reserve address space for all of this. 3389 * 3390 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get 3391 * exactly the address range that is required. Without reserved_va, 3392 * the guest address space is not isolated. We have attempted to avoid 3393 * conflict with the host program itself via probe_guest_base, but using 3394 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check. 3395 * 3396 * Otherwise this is ET_DYN, and we are searching for a location 3397 * that can hold the memory space required. If the image is 3398 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should 3399 * honor that address if it happens to be free. 3400 * 3401 * In both cases, we will overwrite pages in this range with mappings 3402 * from the executable. 3403 */ 3404 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE, 3405 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3406 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0), 3407 -1, 0); 3408 if (load_addr == -1) { 3409 goto exit_mmap; 3410 } 3411 load_bias = load_addr - loaddr; 3412 3413 if (elf_is_fdpic(ehdr)) { 3414 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3415 g_malloc(sizeof(*loadsegs) * info->nsegs); 3416 3417 for (i = 0; i < ehdr->e_phnum; ++i) { 3418 switch (phdr[i].p_type) { 3419 case PT_DYNAMIC: 3420 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3421 break; 3422 case PT_LOAD: 3423 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3424 loadsegs->p_vaddr = phdr[i].p_vaddr; 3425 loadsegs->p_memsz = phdr[i].p_memsz; 3426 ++loadsegs; 3427 break; 3428 } 3429 } 3430 } 3431 3432 info->load_bias = load_bias; 3433 info->code_offset = load_bias; 3434 info->data_offset = load_bias; 3435 info->load_addr = load_addr; 3436 info->entry = ehdr->e_entry + load_bias; 3437 info->start_code = -1; 3438 info->end_code = 0; 3439 info->start_data = -1; 3440 info->end_data = 0; 3441 /* Usual start for brk is after all sections of the main executable. */ 3442 info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias); 3443 info->elf_flags = ehdr->e_flags; 3444 3445 prot_exec = PROT_EXEC; 3446 #ifdef TARGET_AARCH64 3447 /* 3448 * If the BTI feature is present, this indicates that the executable 3449 * pages of the startup binary should be mapped with PROT_BTI, so that 3450 * branch targets are enforced. 3451 * 3452 * The startup binary is either the interpreter or the static executable. 3453 * The interpreter is responsible for all pages of a dynamic executable. 3454 * 3455 * Elf notes are backward compatible to older cpus. 3456 * Do not enable BTI unless it is supported. 3457 */ 3458 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3459 && (pinterp_name == NULL || *pinterp_name == 0) 3460 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3461 prot_exec |= TARGET_PROT_BTI; 3462 } 3463 #endif 3464 3465 for (i = 0; i < ehdr->e_phnum; i++) { 3466 struct elf_phdr *eppnt = phdr + i; 3467 if (eppnt->p_type == PT_LOAD) { 3468 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 3469 int elf_prot = 0; 3470 3471 if (eppnt->p_flags & PF_R) { 3472 elf_prot |= PROT_READ; 3473 } 3474 if (eppnt->p_flags & PF_W) { 3475 elf_prot |= PROT_WRITE; 3476 } 3477 if (eppnt->p_flags & PF_X) { 3478 elf_prot |= prot_exec; 3479 } 3480 3481 vaddr = load_bias + eppnt->p_vaddr; 3482 vaddr_po = vaddr & ~TARGET_PAGE_MASK; 3483 vaddr_ps = vaddr & TARGET_PAGE_MASK; 3484 3485 vaddr_ef = vaddr + eppnt->p_filesz; 3486 vaddr_em = vaddr + eppnt->p_memsz; 3487 3488 /* 3489 * Some segments may be completely empty, with a non-zero p_memsz 3490 * but no backing file segment. 3491 */ 3492 if (eppnt->p_filesz != 0) { 3493 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 3494 elf_prot, MAP_PRIVATE | MAP_FIXED, 3495 src, eppnt->p_offset - vaddr_po); 3496 if (error == -1) { 3497 goto exit_mmap; 3498 } 3499 } 3500 3501 /* If the load segment requests extra zeros (e.g. bss), map it. */ 3502 if (vaddr_ef < vaddr_em && 3503 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) { 3504 goto exit_errmsg; 3505 } 3506 3507 /* Find the full program boundaries. */ 3508 if (elf_prot & PROT_EXEC) { 3509 if (vaddr < info->start_code) { 3510 info->start_code = vaddr; 3511 } 3512 if (vaddr_ef > info->end_code) { 3513 info->end_code = vaddr_ef; 3514 } 3515 } 3516 if (elf_prot & PROT_WRITE) { 3517 if (vaddr < info->start_data) { 3518 info->start_data = vaddr; 3519 } 3520 if (vaddr_ef > info->end_data) { 3521 info->end_data = vaddr_ef; 3522 } 3523 } 3524 #ifdef TARGET_MIPS 3525 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3526 Mips_elf_abiflags_v0 abiflags; 3527 3528 if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags), 3529 src, &err)) { 3530 goto exit_errmsg; 3531 } 3532 bswap_mips_abiflags(&abiflags); 3533 info->fp_abi = abiflags.fp_abi; 3534 #endif 3535 } 3536 } 3537 3538 if (info->end_data == 0) { 3539 info->start_data = info->end_code; 3540 info->end_data = info->end_code; 3541 } 3542 3543 if (qemu_log_enabled()) { 3544 load_symbols(ehdr, src, load_bias); 3545 } 3546 3547 debuginfo_report_elf(image_name, src->fd, load_bias); 3548 3549 mmap_unlock(); 3550 3551 close(src->fd); 3552 return; 3553 3554 exit_mmap: 3555 error_setg_errno(&err, errno, "Error mapping file"); 3556 goto exit_errmsg; 3557 exit_errmsg: 3558 error_reportf_err(err, "%s: ", image_name); 3559 exit(-1); 3560 } 3561 3562 static void load_elf_interp(const char *filename, struct image_info *info, 3563 char bprm_buf[BPRM_BUF_SIZE]) 3564 { 3565 struct elfhdr ehdr; 3566 ImageSource src; 3567 int fd, retval; 3568 Error *err = NULL; 3569 3570 fd = open(path(filename), O_RDONLY); 3571 if (fd < 0) { 3572 error_setg_file_open(&err, errno, filename); 3573 error_report_err(err); 3574 exit(-1); 3575 } 3576 3577 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3578 if (retval < 0) { 3579 error_setg_errno(&err, errno, "Error reading file header"); 3580 error_reportf_err(err, "%s: ", filename); 3581 exit(-1); 3582 } 3583 3584 src.fd = fd; 3585 src.cache = bprm_buf; 3586 src.cache_size = retval; 3587 3588 load_elf_image(filename, &src, info, &ehdr, NULL); 3589 } 3590 3591 #ifdef VDSO_HEADER 3592 #include VDSO_HEADER 3593 #define vdso_image_info() &vdso_image_info 3594 #else 3595 #define vdso_image_info() NULL 3596 #endif 3597 3598 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso) 3599 { 3600 ImageSource src; 3601 struct elfhdr ehdr; 3602 abi_ulong load_bias, load_addr; 3603 3604 src.fd = -1; 3605 src.cache = vdso->image; 3606 src.cache_size = vdso->image_size; 3607 3608 load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL); 3609 load_addr = info->load_addr; 3610 load_bias = info->load_bias; 3611 3612 /* 3613 * We need to relocate the VDSO image. The one built into the kernel 3614 * is built for a fixed address. The one built for QEMU is not, since 3615 * that requires close control of the guest address space. 3616 * We pre-processed the image to locate all of the addresses that need 3617 * to be updated. 3618 */ 3619 for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) { 3620 abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]); 3621 *addr = tswapal(tswapal(*addr) + load_bias); 3622 } 3623 3624 /* Install signal trampolines, if present. */ 3625 if (vdso->sigreturn_ofs) { 3626 default_sigreturn = load_addr + vdso->sigreturn_ofs; 3627 } 3628 if (vdso->rt_sigreturn_ofs) { 3629 default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs; 3630 } 3631 3632 /* Remove write from VDSO segment. */ 3633 target_mprotect(info->start_data, info->end_data - info->start_data, 3634 PROT_READ | PROT_EXEC); 3635 } 3636 3637 static int symfind(const void *s0, const void *s1) 3638 { 3639 struct elf_sym *sym = (struct elf_sym *)s1; 3640 __typeof(sym->st_value) addr = *(uint64_t *)s0; 3641 int result = 0; 3642 3643 if (addr < sym->st_value) { 3644 result = -1; 3645 } else if (addr >= sym->st_value + sym->st_size) { 3646 result = 1; 3647 } 3648 return result; 3649 } 3650 3651 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) 3652 { 3653 #if ELF_CLASS == ELFCLASS32 3654 struct elf_sym *syms = s->disas_symtab.elf32; 3655 #else 3656 struct elf_sym *syms = s->disas_symtab.elf64; 3657 #endif 3658 3659 // binary search 3660 struct elf_sym *sym; 3661 3662 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3663 if (sym != NULL) { 3664 return s->disas_strtab + sym->st_name; 3665 } 3666 3667 return ""; 3668 } 3669 3670 /* FIXME: This should use elf_ops.h */ 3671 static int symcmp(const void *s0, const void *s1) 3672 { 3673 struct elf_sym *sym0 = (struct elf_sym *)s0; 3674 struct elf_sym *sym1 = (struct elf_sym *)s1; 3675 return (sym0->st_value < sym1->st_value) 3676 ? -1 3677 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3678 } 3679 3680 /* Best attempt to load symbols from this ELF object. */ 3681 static void load_symbols(struct elfhdr *hdr, const ImageSource *src, 3682 abi_ulong load_bias) 3683 { 3684 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3685 g_autofree struct elf_shdr *shdr = NULL; 3686 char *strings = NULL; 3687 struct elf_sym *syms = NULL; 3688 struct elf_sym *new_syms; 3689 uint64_t segsz; 3690 3691 shnum = hdr->e_shnum; 3692 shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr), 3693 src, NULL); 3694 if (shdr == NULL) { 3695 return; 3696 } 3697 3698 bswap_shdr(shdr, shnum); 3699 for (i = 0; i < shnum; ++i) { 3700 if (shdr[i].sh_type == SHT_SYMTAB) { 3701 sym_idx = i; 3702 str_idx = shdr[i].sh_link; 3703 goto found; 3704 } 3705 } 3706 3707 /* There will be no symbol table if the file was stripped. */ 3708 return; 3709 3710 found: 3711 /* Now know where the strtab and symtab are. Snarf them. */ 3712 3713 segsz = shdr[str_idx].sh_size; 3714 strings = g_try_malloc(segsz); 3715 if (!strings) { 3716 goto give_up; 3717 } 3718 if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) { 3719 goto give_up; 3720 } 3721 3722 segsz = shdr[sym_idx].sh_size; 3723 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3724 /* 3725 * Implausibly large symbol table: give up rather than ploughing 3726 * on with the number of symbols calculation overflowing. 3727 */ 3728 goto give_up; 3729 } 3730 nsyms = segsz / sizeof(struct elf_sym); 3731 syms = g_try_malloc(segsz); 3732 if (!syms) { 3733 goto give_up; 3734 } 3735 if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) { 3736 goto give_up; 3737 } 3738 3739 for (i = 0; i < nsyms; ) { 3740 bswap_sym(syms + i); 3741 /* Throw away entries which we do not need. */ 3742 if (syms[i].st_shndx == SHN_UNDEF 3743 || syms[i].st_shndx >= SHN_LORESERVE 3744 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3745 if (i < --nsyms) { 3746 syms[i] = syms[nsyms]; 3747 } 3748 } else { 3749 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3750 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3751 syms[i].st_value &= ~(target_ulong)1; 3752 #endif 3753 syms[i].st_value += load_bias; 3754 i++; 3755 } 3756 } 3757 3758 /* No "useful" symbol. */ 3759 if (nsyms == 0) { 3760 goto give_up; 3761 } 3762 3763 /* 3764 * Attempt to free the storage associated with the local symbols 3765 * that we threw away. Whether or not this has any effect on the 3766 * memory allocation depends on the malloc implementation and how 3767 * many symbols we managed to discard. 3768 */ 3769 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3770 if (new_syms == NULL) { 3771 goto give_up; 3772 } 3773 syms = new_syms; 3774 3775 qsort(syms, nsyms, sizeof(*syms), symcmp); 3776 3777 { 3778 struct syminfo *s = g_new(struct syminfo, 1); 3779 3780 s->disas_strtab = strings; 3781 s->disas_num_syms = nsyms; 3782 #if ELF_CLASS == ELFCLASS32 3783 s->disas_symtab.elf32 = syms; 3784 #else 3785 s->disas_symtab.elf64 = syms; 3786 #endif 3787 s->lookup_symbol = lookup_symbolxx; 3788 s->next = syminfos; 3789 syminfos = s; 3790 } 3791 return; 3792 3793 give_up: 3794 g_free(strings); 3795 g_free(syms); 3796 } 3797 3798 uint32_t get_elf_eflags(int fd) 3799 { 3800 struct elfhdr ehdr; 3801 off_t offset; 3802 int ret; 3803 3804 /* Read ELF header */ 3805 offset = lseek(fd, 0, SEEK_SET); 3806 if (offset == (off_t) -1) { 3807 return 0; 3808 } 3809 ret = read(fd, &ehdr, sizeof(ehdr)); 3810 if (ret < sizeof(ehdr)) { 3811 return 0; 3812 } 3813 offset = lseek(fd, offset, SEEK_SET); 3814 if (offset == (off_t) -1) { 3815 return 0; 3816 } 3817 3818 /* Check ELF signature */ 3819 if (!elf_check_ident(&ehdr)) { 3820 return 0; 3821 } 3822 3823 /* check header */ 3824 bswap_ehdr(&ehdr); 3825 if (!elf_check_ehdr(&ehdr)) { 3826 return 0; 3827 } 3828 3829 /* return architecture id */ 3830 return ehdr.e_flags; 3831 } 3832 3833 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3834 { 3835 /* 3836 * We need a copy of the elf header for passing to create_elf_tables. 3837 * We will have overwritten the original when we re-use bprm->buf 3838 * while loading the interpreter. Allocate the storage for this now 3839 * and let elf_load_image do any swapping that may be required. 3840 */ 3841 struct elfhdr ehdr; 3842 struct image_info interp_info, vdso_info; 3843 char *elf_interpreter = NULL; 3844 char *scratch; 3845 3846 memset(&interp_info, 0, sizeof(interp_info)); 3847 #ifdef TARGET_MIPS 3848 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3849 #endif 3850 3851 load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter); 3852 3853 /* Do this so that we can load the interpreter, if need be. We will 3854 change some of these later */ 3855 bprm->p = setup_arg_pages(bprm, info); 3856 3857 scratch = g_new0(char, TARGET_PAGE_SIZE); 3858 if (STACK_GROWS_DOWN) { 3859 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3860 bprm->p, info->stack_limit); 3861 info->file_string = bprm->p; 3862 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3863 bprm->p, info->stack_limit); 3864 info->env_strings = bprm->p; 3865 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3866 bprm->p, info->stack_limit); 3867 info->arg_strings = bprm->p; 3868 } else { 3869 info->arg_strings = bprm->p; 3870 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3871 bprm->p, info->stack_limit); 3872 info->env_strings = bprm->p; 3873 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3874 bprm->p, info->stack_limit); 3875 info->file_string = bprm->p; 3876 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3877 bprm->p, info->stack_limit); 3878 } 3879 3880 g_free(scratch); 3881 3882 if (!bprm->p) { 3883 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3884 exit(-1); 3885 } 3886 3887 if (elf_interpreter) { 3888 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3889 3890 /* 3891 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky 3892 * with the mappings the interpreter can be loaded above but 3893 * near the main executable, which can leave very little room 3894 * for the heap. 3895 * If the current brk has less than 16MB, use the end of the 3896 * interpreter. 3897 */ 3898 if (interp_info.brk > info->brk && 3899 interp_info.load_bias - info->brk < 16 * MiB) { 3900 info->brk = interp_info.brk; 3901 } 3902 3903 /* If the program interpreter is one of these two, then assume 3904 an iBCS2 image. Otherwise assume a native linux image. */ 3905 3906 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3907 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3908 info->personality = PER_SVR4; 3909 3910 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3911 and some applications "depend" upon this behavior. Since 3912 we do not have the power to recompile these, we emulate 3913 the SVr4 behavior. Sigh. */ 3914 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3915 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3916 } 3917 #ifdef TARGET_MIPS 3918 info->interp_fp_abi = interp_info.fp_abi; 3919 #endif 3920 } 3921 3922 /* 3923 * Load a vdso if available, which will amongst other things contain the 3924 * signal trampolines. Otherwise, allocate a separate page for them. 3925 */ 3926 const VdsoImageInfo *vdso = vdso_image_info(); 3927 if (vdso) { 3928 load_elf_vdso(&vdso_info, vdso); 3929 info->vdso = vdso_info.load_bias; 3930 } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3931 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3932 PROT_READ | PROT_WRITE, 3933 MAP_PRIVATE | MAP_ANON, -1, 0); 3934 if (tramp_page == -1) { 3935 return -errno; 3936 } 3937 3938 setup_sigtramp(tramp_page); 3939 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3940 } 3941 3942 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info, 3943 elf_interpreter ? &interp_info : NULL, 3944 vdso ? &vdso_info : NULL); 3945 info->start_stack = bprm->p; 3946 3947 /* If we have an interpreter, set that as the program's entry point. 3948 Copy the load_bias as well, to help PPC64 interpret the entry 3949 point as a function descriptor. Do this after creating elf tables 3950 so that we copy the original program entry point into the AUXV. */ 3951 if (elf_interpreter) { 3952 info->load_bias = interp_info.load_bias; 3953 info->entry = interp_info.entry; 3954 g_free(elf_interpreter); 3955 } 3956 3957 #ifdef USE_ELF_CORE_DUMP 3958 bprm->core_dump = &elf_core_dump; 3959 #endif 3960 3961 return 0; 3962 } 3963 3964 #ifdef USE_ELF_CORE_DUMP 3965 /* 3966 * Definitions to generate Intel SVR4-like core files. 3967 * These mostly have the same names as the SVR4 types with "target_elf_" 3968 * tacked on the front to prevent clashes with linux definitions, 3969 * and the typedef forms have been avoided. This is mostly like 3970 * the SVR4 structure, but more Linuxy, with things that Linux does 3971 * not support and which gdb doesn't really use excluded. 3972 * 3973 * Fields we don't dump (their contents is zero) in linux-user qemu 3974 * are marked with XXX. 3975 * 3976 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3977 * 3978 * Porting ELF coredump for target is (quite) simple process. First you 3979 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3980 * the target resides): 3981 * 3982 * #define USE_ELF_CORE_DUMP 3983 * 3984 * Next you define type of register set used for dumping. ELF specification 3985 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3986 * 3987 * typedef <target_regtype> target_elf_greg_t; 3988 * #define ELF_NREG <number of registers> 3989 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3990 * 3991 * Last step is to implement target specific function that copies registers 3992 * from given cpu into just specified register set. Prototype is: 3993 * 3994 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3995 * const CPUArchState *env); 3996 * 3997 * Parameters: 3998 * regs - copy register values into here (allocated and zeroed by caller) 3999 * env - copy registers from here 4000 * 4001 * Example for ARM target is provided in this file. 4002 */ 4003 4004 /* An ELF note in memory */ 4005 struct memelfnote { 4006 const char *name; 4007 size_t namesz; 4008 size_t namesz_rounded; 4009 int type; 4010 size_t datasz; 4011 size_t datasz_rounded; 4012 void *data; 4013 size_t notesz; 4014 }; 4015 4016 struct target_elf_siginfo { 4017 abi_int si_signo; /* signal number */ 4018 abi_int si_code; /* extra code */ 4019 abi_int si_errno; /* errno */ 4020 }; 4021 4022 struct target_elf_prstatus { 4023 struct target_elf_siginfo pr_info; /* Info associated with signal */ 4024 abi_short pr_cursig; /* Current signal */ 4025 abi_ulong pr_sigpend; /* XXX */ 4026 abi_ulong pr_sighold; /* XXX */ 4027 target_pid_t pr_pid; 4028 target_pid_t pr_ppid; 4029 target_pid_t pr_pgrp; 4030 target_pid_t pr_sid; 4031 struct target_timeval pr_utime; /* XXX User time */ 4032 struct target_timeval pr_stime; /* XXX System time */ 4033 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 4034 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 4035 target_elf_gregset_t pr_reg; /* GP registers */ 4036 abi_int pr_fpvalid; /* XXX */ 4037 }; 4038 4039 #define ELF_PRARGSZ (80) /* Number of chars for args */ 4040 4041 struct target_elf_prpsinfo { 4042 char pr_state; /* numeric process state */ 4043 char pr_sname; /* char for pr_state */ 4044 char pr_zomb; /* zombie */ 4045 char pr_nice; /* nice val */ 4046 abi_ulong pr_flag; /* flags */ 4047 target_uid_t pr_uid; 4048 target_gid_t pr_gid; 4049 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 4050 /* Lots missing */ 4051 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 4052 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 4053 }; 4054 4055 /* Here is the structure in which status of each thread is captured. */ 4056 struct elf_thread_status { 4057 QTAILQ_ENTRY(elf_thread_status) ets_link; 4058 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 4059 #if 0 4060 elf_fpregset_t fpu; /* NT_PRFPREG */ 4061 struct task_struct *thread; 4062 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 4063 #endif 4064 struct memelfnote notes[1]; 4065 int num_notes; 4066 }; 4067 4068 struct elf_note_info { 4069 struct memelfnote *notes; 4070 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 4071 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 4072 4073 QTAILQ_HEAD(, elf_thread_status) thread_list; 4074 #if 0 4075 /* 4076 * Current version of ELF coredump doesn't support 4077 * dumping fp regs etc. 4078 */ 4079 elf_fpregset_t *fpu; 4080 elf_fpxregset_t *xfpu; 4081 int thread_status_size; 4082 #endif 4083 int notes_size; 4084 int numnote; 4085 }; 4086 4087 struct vm_area_struct { 4088 target_ulong vma_start; /* start vaddr of memory region */ 4089 target_ulong vma_end; /* end vaddr of memory region */ 4090 abi_ulong vma_flags; /* protection etc. flags for the region */ 4091 QTAILQ_ENTRY(vm_area_struct) vma_link; 4092 }; 4093 4094 struct mm_struct { 4095 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 4096 int mm_count; /* number of mappings */ 4097 }; 4098 4099 static struct mm_struct *vma_init(void); 4100 static void vma_delete(struct mm_struct *); 4101 static int vma_add_mapping(struct mm_struct *, target_ulong, 4102 target_ulong, abi_ulong); 4103 static int vma_get_mapping_count(const struct mm_struct *); 4104 static struct vm_area_struct *vma_first(const struct mm_struct *); 4105 static struct vm_area_struct *vma_next(struct vm_area_struct *); 4106 static abi_ulong vma_dump_size(const struct vm_area_struct *); 4107 static int vma_walker(void *priv, target_ulong start, target_ulong end, 4108 unsigned long flags); 4109 4110 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 4111 static void fill_note(struct memelfnote *, const char *, int, 4112 unsigned int, void *); 4113 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 4114 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 4115 static void fill_auxv_note(struct memelfnote *, const TaskState *); 4116 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 4117 static size_t note_size(const struct memelfnote *); 4118 static void free_note_info(struct elf_note_info *); 4119 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 4120 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 4121 4122 static int dump_write(int, const void *, size_t); 4123 static int write_note(struct memelfnote *, int); 4124 static int write_note_info(struct elf_note_info *, int); 4125 4126 #ifdef BSWAP_NEEDED 4127 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 4128 { 4129 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 4130 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 4131 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 4132 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 4133 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 4134 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 4135 prstatus->pr_pid = tswap32(prstatus->pr_pid); 4136 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 4137 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 4138 prstatus->pr_sid = tswap32(prstatus->pr_sid); 4139 /* cpu times are not filled, so we skip them */ 4140 /* regs should be in correct format already */ 4141 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 4142 } 4143 4144 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 4145 { 4146 psinfo->pr_flag = tswapal(psinfo->pr_flag); 4147 psinfo->pr_uid = tswap16(psinfo->pr_uid); 4148 psinfo->pr_gid = tswap16(psinfo->pr_gid); 4149 psinfo->pr_pid = tswap32(psinfo->pr_pid); 4150 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 4151 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 4152 psinfo->pr_sid = tswap32(psinfo->pr_sid); 4153 } 4154 4155 static void bswap_note(struct elf_note *en) 4156 { 4157 bswap32s(&en->n_namesz); 4158 bswap32s(&en->n_descsz); 4159 bswap32s(&en->n_type); 4160 } 4161 #else 4162 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 4163 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 4164 static inline void bswap_note(struct elf_note *en) { } 4165 #endif /* BSWAP_NEEDED */ 4166 4167 /* 4168 * Minimal support for linux memory regions. These are needed 4169 * when we are finding out what memory exactly belongs to 4170 * emulated process. No locks needed here, as long as 4171 * thread that received the signal is stopped. 4172 */ 4173 4174 static struct mm_struct *vma_init(void) 4175 { 4176 struct mm_struct *mm; 4177 4178 if ((mm = g_malloc(sizeof (*mm))) == NULL) 4179 return (NULL); 4180 4181 mm->mm_count = 0; 4182 QTAILQ_INIT(&mm->mm_mmap); 4183 4184 return (mm); 4185 } 4186 4187 static void vma_delete(struct mm_struct *mm) 4188 { 4189 struct vm_area_struct *vma; 4190 4191 while ((vma = vma_first(mm)) != NULL) { 4192 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 4193 g_free(vma); 4194 } 4195 g_free(mm); 4196 } 4197 4198 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 4199 target_ulong end, abi_ulong flags) 4200 { 4201 struct vm_area_struct *vma; 4202 4203 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 4204 return (-1); 4205 4206 vma->vma_start = start; 4207 vma->vma_end = end; 4208 vma->vma_flags = flags; 4209 4210 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 4211 mm->mm_count++; 4212 4213 return (0); 4214 } 4215 4216 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 4217 { 4218 return (QTAILQ_FIRST(&mm->mm_mmap)); 4219 } 4220 4221 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 4222 { 4223 return (QTAILQ_NEXT(vma, vma_link)); 4224 } 4225 4226 static int vma_get_mapping_count(const struct mm_struct *mm) 4227 { 4228 return (mm->mm_count); 4229 } 4230 4231 /* 4232 * Calculate file (dump) size of given memory region. 4233 */ 4234 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 4235 { 4236 /* if we cannot even read the first page, skip it */ 4237 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 4238 return (0); 4239 4240 /* 4241 * Usually we don't dump executable pages as they contain 4242 * non-writable code that debugger can read directly from 4243 * target library etc. However, thread stacks are marked 4244 * also executable so we read in first page of given region 4245 * and check whether it contains elf header. If there is 4246 * no elf header, we dump it. 4247 */ 4248 if (vma->vma_flags & PROT_EXEC) { 4249 char page[TARGET_PAGE_SIZE]; 4250 4251 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 4252 return 0; 4253 } 4254 if ((page[EI_MAG0] == ELFMAG0) && 4255 (page[EI_MAG1] == ELFMAG1) && 4256 (page[EI_MAG2] == ELFMAG2) && 4257 (page[EI_MAG3] == ELFMAG3)) { 4258 /* 4259 * Mappings are possibly from ELF binary. Don't dump 4260 * them. 4261 */ 4262 return (0); 4263 } 4264 } 4265 4266 return (vma->vma_end - vma->vma_start); 4267 } 4268 4269 static int vma_walker(void *priv, target_ulong start, target_ulong end, 4270 unsigned long flags) 4271 { 4272 struct mm_struct *mm = (struct mm_struct *)priv; 4273 4274 vma_add_mapping(mm, start, end, flags); 4275 return (0); 4276 } 4277 4278 static void fill_note(struct memelfnote *note, const char *name, int type, 4279 unsigned int sz, void *data) 4280 { 4281 unsigned int namesz; 4282 4283 namesz = strlen(name) + 1; 4284 note->name = name; 4285 note->namesz = namesz; 4286 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 4287 note->type = type; 4288 note->datasz = sz; 4289 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 4290 4291 note->data = data; 4292 4293 /* 4294 * We calculate rounded up note size here as specified by 4295 * ELF document. 4296 */ 4297 note->notesz = sizeof (struct elf_note) + 4298 note->namesz_rounded + note->datasz_rounded; 4299 } 4300 4301 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 4302 uint32_t flags) 4303 { 4304 (void) memset(elf, 0, sizeof(*elf)); 4305 4306 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 4307 elf->e_ident[EI_CLASS] = ELF_CLASS; 4308 elf->e_ident[EI_DATA] = ELF_DATA; 4309 elf->e_ident[EI_VERSION] = EV_CURRENT; 4310 elf->e_ident[EI_OSABI] = ELF_OSABI; 4311 4312 elf->e_type = ET_CORE; 4313 elf->e_machine = machine; 4314 elf->e_version = EV_CURRENT; 4315 elf->e_phoff = sizeof(struct elfhdr); 4316 elf->e_flags = flags; 4317 elf->e_ehsize = sizeof(struct elfhdr); 4318 elf->e_phentsize = sizeof(struct elf_phdr); 4319 elf->e_phnum = segs; 4320 4321 bswap_ehdr(elf); 4322 } 4323 4324 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 4325 { 4326 phdr->p_type = PT_NOTE; 4327 phdr->p_offset = offset; 4328 phdr->p_vaddr = 0; 4329 phdr->p_paddr = 0; 4330 phdr->p_filesz = sz; 4331 phdr->p_memsz = 0; 4332 phdr->p_flags = 0; 4333 phdr->p_align = 0; 4334 4335 bswap_phdr(phdr, 1); 4336 } 4337 4338 static size_t note_size(const struct memelfnote *note) 4339 { 4340 return (note->notesz); 4341 } 4342 4343 static void fill_prstatus(struct target_elf_prstatus *prstatus, 4344 const TaskState *ts, int signr) 4345 { 4346 (void) memset(prstatus, 0, sizeof (*prstatus)); 4347 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 4348 prstatus->pr_pid = ts->ts_tid; 4349 prstatus->pr_ppid = getppid(); 4350 prstatus->pr_pgrp = getpgrp(); 4351 prstatus->pr_sid = getsid(0); 4352 4353 bswap_prstatus(prstatus); 4354 } 4355 4356 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 4357 { 4358 char *base_filename; 4359 unsigned int i, len; 4360 4361 (void) memset(psinfo, 0, sizeof (*psinfo)); 4362 4363 len = ts->info->env_strings - ts->info->arg_strings; 4364 if (len >= ELF_PRARGSZ) 4365 len = ELF_PRARGSZ - 1; 4366 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 4367 return -EFAULT; 4368 } 4369 for (i = 0; i < len; i++) 4370 if (psinfo->pr_psargs[i] == 0) 4371 psinfo->pr_psargs[i] = ' '; 4372 psinfo->pr_psargs[len] = 0; 4373 4374 psinfo->pr_pid = getpid(); 4375 psinfo->pr_ppid = getppid(); 4376 psinfo->pr_pgrp = getpgrp(); 4377 psinfo->pr_sid = getsid(0); 4378 psinfo->pr_uid = getuid(); 4379 psinfo->pr_gid = getgid(); 4380 4381 base_filename = g_path_get_basename(ts->bprm->filename); 4382 /* 4383 * Using strncpy here is fine: at max-length, 4384 * this field is not NUL-terminated. 4385 */ 4386 (void) strncpy(psinfo->pr_fname, base_filename, 4387 sizeof(psinfo->pr_fname)); 4388 4389 g_free(base_filename); 4390 bswap_psinfo(psinfo); 4391 return (0); 4392 } 4393 4394 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 4395 { 4396 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 4397 elf_addr_t orig_auxv = auxv; 4398 void *ptr; 4399 int len = ts->info->auxv_len; 4400 4401 /* 4402 * Auxiliary vector is stored in target process stack. It contains 4403 * {type, value} pairs that we need to dump into note. This is not 4404 * strictly necessary but we do it here for sake of completeness. 4405 */ 4406 4407 /* read in whole auxv vector and copy it to memelfnote */ 4408 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 4409 if (ptr != NULL) { 4410 fill_note(note, "CORE", NT_AUXV, len, ptr); 4411 unlock_user(ptr, auxv, len); 4412 } 4413 } 4414 4415 /* 4416 * Constructs name of coredump file. We have following convention 4417 * for the name: 4418 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4419 * 4420 * Returns the filename 4421 */ 4422 static char *core_dump_filename(const TaskState *ts) 4423 { 4424 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4425 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4426 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4427 4428 return g_strdup_printf("qemu_%s_%s_%d.core", 4429 base_filename, nowstr, (int)getpid()); 4430 } 4431 4432 static int dump_write(int fd, const void *ptr, size_t size) 4433 { 4434 const char *bufp = (const char *)ptr; 4435 ssize_t bytes_written, bytes_left; 4436 struct rlimit dumpsize; 4437 off_t pos; 4438 4439 bytes_written = 0; 4440 getrlimit(RLIMIT_CORE, &dumpsize); 4441 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 4442 if (errno == ESPIPE) { /* not a seekable stream */ 4443 bytes_left = size; 4444 } else { 4445 return pos; 4446 } 4447 } else { 4448 if (dumpsize.rlim_cur <= pos) { 4449 return -1; 4450 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 4451 bytes_left = size; 4452 } else { 4453 size_t limit_left=dumpsize.rlim_cur - pos; 4454 bytes_left = limit_left >= size ? size : limit_left ; 4455 } 4456 } 4457 4458 /* 4459 * In normal conditions, single write(2) should do but 4460 * in case of socket etc. this mechanism is more portable. 4461 */ 4462 do { 4463 bytes_written = write(fd, bufp, bytes_left); 4464 if (bytes_written < 0) { 4465 if (errno == EINTR) 4466 continue; 4467 return (-1); 4468 } else if (bytes_written == 0) { /* eof */ 4469 return (-1); 4470 } 4471 bufp += bytes_written; 4472 bytes_left -= bytes_written; 4473 } while (bytes_left > 0); 4474 4475 return (0); 4476 } 4477 4478 static int write_note(struct memelfnote *men, int fd) 4479 { 4480 struct elf_note en; 4481 4482 en.n_namesz = men->namesz; 4483 en.n_type = men->type; 4484 en.n_descsz = men->datasz; 4485 4486 bswap_note(&en); 4487 4488 if (dump_write(fd, &en, sizeof(en)) != 0) 4489 return (-1); 4490 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 4491 return (-1); 4492 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 4493 return (-1); 4494 4495 return (0); 4496 } 4497 4498 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 4499 { 4500 CPUState *cpu = env_cpu((CPUArchState *)env); 4501 TaskState *ts = (TaskState *)cpu->opaque; 4502 struct elf_thread_status *ets; 4503 4504 ets = g_malloc0(sizeof (*ets)); 4505 ets->num_notes = 1; /* only prstatus is dumped */ 4506 fill_prstatus(&ets->prstatus, ts, 0); 4507 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 4508 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 4509 &ets->prstatus); 4510 4511 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 4512 4513 info->notes_size += note_size(&ets->notes[0]); 4514 } 4515 4516 static void init_note_info(struct elf_note_info *info) 4517 { 4518 /* Initialize the elf_note_info structure so that it is at 4519 * least safe to call free_note_info() on it. Must be 4520 * called before calling fill_note_info(). 4521 */ 4522 memset(info, 0, sizeof (*info)); 4523 QTAILQ_INIT(&info->thread_list); 4524 } 4525 4526 static int fill_note_info(struct elf_note_info *info, 4527 long signr, const CPUArchState *env) 4528 { 4529 #define NUMNOTES 3 4530 CPUState *cpu = env_cpu((CPUArchState *)env); 4531 TaskState *ts = (TaskState *)cpu->opaque; 4532 int i; 4533 4534 info->notes = g_new0(struct memelfnote, NUMNOTES); 4535 if (info->notes == NULL) 4536 return (-ENOMEM); 4537 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 4538 if (info->prstatus == NULL) 4539 return (-ENOMEM); 4540 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 4541 if (info->prstatus == NULL) 4542 return (-ENOMEM); 4543 4544 /* 4545 * First fill in status (and registers) of current thread 4546 * including process info & aux vector. 4547 */ 4548 fill_prstatus(info->prstatus, ts, signr); 4549 elf_core_copy_regs(&info->prstatus->pr_reg, env); 4550 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 4551 sizeof (*info->prstatus), info->prstatus); 4552 fill_psinfo(info->psinfo, ts); 4553 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 4554 sizeof (*info->psinfo), info->psinfo); 4555 fill_auxv_note(&info->notes[2], ts); 4556 info->numnote = 3; 4557 4558 info->notes_size = 0; 4559 for (i = 0; i < info->numnote; i++) 4560 info->notes_size += note_size(&info->notes[i]); 4561 4562 /* read and fill status of all threads */ 4563 WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) { 4564 CPU_FOREACH(cpu) { 4565 if (cpu == thread_cpu) { 4566 continue; 4567 } 4568 fill_thread_info(info, cpu_env(cpu)); 4569 } 4570 } 4571 4572 return (0); 4573 } 4574 4575 static void free_note_info(struct elf_note_info *info) 4576 { 4577 struct elf_thread_status *ets; 4578 4579 while (!QTAILQ_EMPTY(&info->thread_list)) { 4580 ets = QTAILQ_FIRST(&info->thread_list); 4581 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 4582 g_free(ets); 4583 } 4584 4585 g_free(info->prstatus); 4586 g_free(info->psinfo); 4587 g_free(info->notes); 4588 } 4589 4590 static int write_note_info(struct elf_note_info *info, int fd) 4591 { 4592 struct elf_thread_status *ets; 4593 int i, error = 0; 4594 4595 /* write prstatus, psinfo and auxv for current thread */ 4596 for (i = 0; i < info->numnote; i++) 4597 if ((error = write_note(&info->notes[i], fd)) != 0) 4598 return (error); 4599 4600 /* write prstatus for each thread */ 4601 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 4602 if ((error = write_note(&ets->notes[0], fd)) != 0) 4603 return (error); 4604 } 4605 4606 return (0); 4607 } 4608 4609 /* 4610 * Write out ELF coredump. 4611 * 4612 * See documentation of ELF object file format in: 4613 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4614 * 4615 * Coredump format in linux is following: 4616 * 4617 * 0 +----------------------+ \ 4618 * | ELF header | ET_CORE | 4619 * +----------------------+ | 4620 * | ELF program headers | |--- headers 4621 * | - NOTE section | | 4622 * | - PT_LOAD sections | | 4623 * +----------------------+ / 4624 * | NOTEs: | 4625 * | - NT_PRSTATUS | 4626 * | - NT_PRSINFO | 4627 * | - NT_AUXV | 4628 * +----------------------+ <-- aligned to target page 4629 * | Process memory dump | 4630 * : : 4631 * . . 4632 * : : 4633 * | | 4634 * +----------------------+ 4635 * 4636 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4637 * NT_PRSINFO -> struct elf_prpsinfo 4638 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4639 * 4640 * Format follows System V format as close as possible. Current 4641 * version limitations are as follows: 4642 * - no floating point registers are dumped 4643 * 4644 * Function returns 0 in case of success, negative errno otherwise. 4645 * 4646 * TODO: make this work also during runtime: it should be 4647 * possible to force coredump from running process and then 4648 * continue processing. For example qemu could set up SIGUSR2 4649 * handler (provided that target process haven't registered 4650 * handler for that) that does the dump when signal is received. 4651 */ 4652 static int elf_core_dump(int signr, const CPUArchState *env) 4653 { 4654 const CPUState *cpu = env_cpu((CPUArchState *)env); 4655 const TaskState *ts = (const TaskState *)cpu->opaque; 4656 struct vm_area_struct *vma = NULL; 4657 g_autofree char *corefile = NULL; 4658 struct elf_note_info info; 4659 struct elfhdr elf; 4660 struct elf_phdr phdr; 4661 struct rlimit dumpsize; 4662 struct mm_struct *mm = NULL; 4663 off_t offset = 0, data_offset = 0; 4664 int segs = 0; 4665 int fd = -1; 4666 4667 init_note_info(&info); 4668 4669 errno = 0; 4670 getrlimit(RLIMIT_CORE, &dumpsize); 4671 if (dumpsize.rlim_cur == 0) 4672 return 0; 4673 4674 corefile = core_dump_filename(ts); 4675 4676 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4677 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4678 return (-errno); 4679 4680 /* 4681 * Walk through target process memory mappings and 4682 * set up structure containing this information. After 4683 * this point vma_xxx functions can be used. 4684 */ 4685 if ((mm = vma_init()) == NULL) 4686 goto out; 4687 4688 walk_memory_regions(mm, vma_walker); 4689 segs = vma_get_mapping_count(mm); 4690 4691 /* 4692 * Construct valid coredump ELF header. We also 4693 * add one more segment for notes. 4694 */ 4695 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4696 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4697 goto out; 4698 4699 /* fill in the in-memory version of notes */ 4700 if (fill_note_info(&info, signr, env) < 0) 4701 goto out; 4702 4703 offset += sizeof (elf); /* elf header */ 4704 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4705 4706 /* write out notes program header */ 4707 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4708 4709 offset += info.notes_size; 4710 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4711 goto out; 4712 4713 /* 4714 * ELF specification wants data to start at page boundary so 4715 * we align it here. 4716 */ 4717 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4718 4719 /* 4720 * Write program headers for memory regions mapped in 4721 * the target process. 4722 */ 4723 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4724 (void) memset(&phdr, 0, sizeof (phdr)); 4725 4726 phdr.p_type = PT_LOAD; 4727 phdr.p_offset = offset; 4728 phdr.p_vaddr = vma->vma_start; 4729 phdr.p_paddr = 0; 4730 phdr.p_filesz = vma_dump_size(vma); 4731 offset += phdr.p_filesz; 4732 phdr.p_memsz = vma->vma_end - vma->vma_start; 4733 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4734 if (vma->vma_flags & PROT_WRITE) 4735 phdr.p_flags |= PF_W; 4736 if (vma->vma_flags & PROT_EXEC) 4737 phdr.p_flags |= PF_X; 4738 phdr.p_align = ELF_EXEC_PAGESIZE; 4739 4740 bswap_phdr(&phdr, 1); 4741 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4742 goto out; 4743 } 4744 } 4745 4746 /* 4747 * Next we write notes just after program headers. No 4748 * alignment needed here. 4749 */ 4750 if (write_note_info(&info, fd) < 0) 4751 goto out; 4752 4753 /* align data to page boundary */ 4754 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4755 goto out; 4756 4757 /* 4758 * Finally we can dump process memory into corefile as well. 4759 */ 4760 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4761 abi_ulong addr; 4762 abi_ulong end; 4763 4764 end = vma->vma_start + vma_dump_size(vma); 4765 4766 for (addr = vma->vma_start; addr < end; 4767 addr += TARGET_PAGE_SIZE) { 4768 char page[TARGET_PAGE_SIZE]; 4769 int error; 4770 4771 /* 4772 * Read in page from target process memory and 4773 * write it to coredump file. 4774 */ 4775 error = copy_from_user(page, addr, sizeof (page)); 4776 if (error != 0) { 4777 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4778 addr); 4779 errno = -error; 4780 goto out; 4781 } 4782 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4783 goto out; 4784 } 4785 } 4786 4787 out: 4788 free_note_info(&info); 4789 if (mm != NULL) 4790 vma_delete(mm); 4791 (void) close(fd); 4792 4793 if (errno != 0) 4794 return (-errno); 4795 return (0); 4796 } 4797 #endif /* USE_ELF_CORE_DUMP */ 4798 4799 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4800 { 4801 init_thread(regs, infop); 4802 } 4803