xref: /openbmc/qemu/linux-user/elfload.c (revision 235069a380147e31236b94c31528fc5170c3a421)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4 
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15 
16 #include "qemu.h"
17 #include "disas/disas.h"
18 
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_HWCAP2
24 #undef ELF_CLASS
25 #undef ELF_DATA
26 #undef ELF_ARCH
27 #endif
28 
29 #define ELF_OSABI   ELFOSABI_SYSV
30 
31 /* from personality.h */
32 
33 /*
34  * Flags for bug emulation.
35  *
36  * These occupy the top three bytes.
37  */
38 enum {
39     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
40     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
41                                            descriptors (signal handling) */
42     MMAP_PAGE_ZERO =    0x0100000,
43     ADDR_COMPAT_LAYOUT = 0x0200000,
44     READ_IMPLIES_EXEC = 0x0400000,
45     ADDR_LIMIT_32BIT =  0x0800000,
46     SHORT_INODE =       0x1000000,
47     WHOLE_SECONDS =     0x2000000,
48     STICKY_TIMEOUTS =   0x4000000,
49     ADDR_LIMIT_3GB =    0x8000000,
50 };
51 
52 /*
53  * Personality types.
54  *
55  * These go in the low byte.  Avoid using the top bit, it will
56  * conflict with error returns.
57  */
58 enum {
59     PER_LINUX =         0x0000,
60     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
61     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
62     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
68     PER_BSD =           0x0006,
69     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
70     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_LINUX32 =       0x0008,
72     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
73     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76     PER_RISCOS =        0x000c,
77     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
78     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
80     PER_HPUX =          0x0010,
81     PER_MASK =          0x00ff,
82 };
83 
84 /*
85  * Return the base personality without flags.
86  */
87 #define personality(pers)       (pers & PER_MASK)
88 
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93 
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98 
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA        ELFDATA2MSB
101 #else
102 #define ELF_DATA        ELFDATA2LSB
103 #endif
104 
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong      target_elf_greg_t;
107 #define tswapreg(ptr)   tswap64(ptr)
108 #else
109 typedef abi_ulong       target_elf_greg_t;
110 #define tswapreg(ptr)   tswapal(ptr)
111 #endif
112 
113 #ifdef USE_UID16
114 typedef abi_ushort      target_uid_t;
115 typedef abi_ushort      target_gid_t;
116 #else
117 typedef abi_uint        target_uid_t;
118 typedef abi_uint        target_gid_t;
119 #endif
120 typedef abi_int         target_pid_t;
121 
122 #ifdef TARGET_I386
123 
124 #define ELF_PLATFORM get_elf_platform()
125 
126 static const char *get_elf_platform(void)
127 {
128     static char elf_platform[] = "i386";
129     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130     if (family > 6)
131         family = 6;
132     if (family >= 3)
133         elf_platform[1] = '0' + family;
134     return elf_platform;
135 }
136 
137 #define ELF_HWCAP get_elf_hwcap()
138 
139 static uint32_t get_elf_hwcap(void)
140 {
141     X86CPU *cpu = X86_CPU(thread_cpu);
142 
143     return cpu->env.features[FEAT_1_EDX];
144 }
145 
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
149 
150 #define ELF_CLASS      ELFCLASS64
151 #define ELF_ARCH       EM_X86_64
152 
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155     regs->rax = 0;
156     regs->rsp = infop->start_stack;
157     regs->rip = infop->entry;
158 }
159 
160 #define ELF_NREG    27
161 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
162 
163 /*
164  * Note that ELF_NREG should be 29 as there should be place for
165  * TRAPNO and ERR "registers" as well but linux doesn't dump
166  * those.
167  *
168  * See linux kernel: arch/x86/include/asm/elf.h
169  */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172     (*regs)[0] = env->regs[15];
173     (*regs)[1] = env->regs[14];
174     (*regs)[2] = env->regs[13];
175     (*regs)[3] = env->regs[12];
176     (*regs)[4] = env->regs[R_EBP];
177     (*regs)[5] = env->regs[R_EBX];
178     (*regs)[6] = env->regs[11];
179     (*regs)[7] = env->regs[10];
180     (*regs)[8] = env->regs[9];
181     (*regs)[9] = env->regs[8];
182     (*regs)[10] = env->regs[R_EAX];
183     (*regs)[11] = env->regs[R_ECX];
184     (*regs)[12] = env->regs[R_EDX];
185     (*regs)[13] = env->regs[R_ESI];
186     (*regs)[14] = env->regs[R_EDI];
187     (*regs)[15] = env->regs[R_EAX]; /* XXX */
188     (*regs)[16] = env->eip;
189     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190     (*regs)[18] = env->eflags;
191     (*regs)[19] = env->regs[R_ESP];
192     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199 }
200 
201 #else
202 
203 #define ELF_START_MMAP 0x80000000
204 
205 /*
206  * This is used to ensure we don't load something for the wrong architecture.
207  */
208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209 
210 /*
211  * These are used to set parameters in the core dumps.
212  */
213 #define ELF_CLASS       ELFCLASS32
214 #define ELF_ARCH        EM_386
215 
216 static inline void init_thread(struct target_pt_regs *regs,
217                                struct image_info *infop)
218 {
219     regs->esp = infop->start_stack;
220     regs->eip = infop->entry;
221 
222     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223        starts %edx contains a pointer to a function which might be
224        registered using `atexit'.  This provides a mean for the
225        dynamic linker to call DT_FINI functions for shared libraries
226        that have been loaded before the code runs.
227 
228        A value of 0 tells we have no such handler.  */
229     regs->edx = 0;
230 }
231 
232 #define ELF_NREG    17
233 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
234 
235 /*
236  * Note that ELF_NREG should be 19 as there should be place for
237  * TRAPNO and ERR "registers" as well but linux doesn't dump
238  * those.
239  *
240  * See linux kernel: arch/x86/include/asm/elf.h
241  */
242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
243 {
244     (*regs)[0] = env->regs[R_EBX];
245     (*regs)[1] = env->regs[R_ECX];
246     (*regs)[2] = env->regs[R_EDX];
247     (*regs)[3] = env->regs[R_ESI];
248     (*regs)[4] = env->regs[R_EDI];
249     (*regs)[5] = env->regs[R_EBP];
250     (*regs)[6] = env->regs[R_EAX];
251     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255     (*regs)[11] = env->regs[R_EAX]; /* XXX */
256     (*regs)[12] = env->eip;
257     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258     (*regs)[14] = env->eflags;
259     (*regs)[15] = env->regs[R_ESP];
260     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261 }
262 #endif
263 
264 #define USE_ELF_CORE_DUMP
265 #define ELF_EXEC_PAGESIZE       4096
266 
267 #endif
268 
269 #ifdef TARGET_ARM
270 
271 #ifndef TARGET_AARCH64
272 /* 32 bit ARM definitions */
273 
274 #define ELF_START_MMAP 0x80000000
275 
276 #define elf_check_arch(x) ((x) == ELF_MACHINE)
277 
278 #define ELF_ARCH        ELF_MACHINE
279 #define ELF_CLASS       ELFCLASS32
280 
281 static inline void init_thread(struct target_pt_regs *regs,
282                                struct image_info *infop)
283 {
284     abi_long stack = infop->start_stack;
285     memset(regs, 0, sizeof(*regs));
286 
287     regs->ARM_cpsr = 0x10;
288     if (infop->entry & 1)
289         regs->ARM_cpsr |= CPSR_T;
290     regs->ARM_pc = infop->entry & 0xfffffffe;
291     regs->ARM_sp = infop->start_stack;
292     /* FIXME - what to for failure of get_user()? */
293     get_user_ual(regs->ARM_r2, stack + 8); /* envp */
294     get_user_ual(regs->ARM_r1, stack + 4); /* envp */
295     /* XXX: it seems that r0 is zeroed after ! */
296     regs->ARM_r0 = 0;
297     /* For uClinux PIC binaries.  */
298     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299     regs->ARM_r10 = infop->start_data;
300 }
301 
302 #define ELF_NREG    18
303 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
304 
305 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
306 {
307     (*regs)[0] = tswapreg(env->regs[0]);
308     (*regs)[1] = tswapreg(env->regs[1]);
309     (*regs)[2] = tswapreg(env->regs[2]);
310     (*regs)[3] = tswapreg(env->regs[3]);
311     (*regs)[4] = tswapreg(env->regs[4]);
312     (*regs)[5] = tswapreg(env->regs[5]);
313     (*regs)[6] = tswapreg(env->regs[6]);
314     (*regs)[7] = tswapreg(env->regs[7]);
315     (*regs)[8] = tswapreg(env->regs[8]);
316     (*regs)[9] = tswapreg(env->regs[9]);
317     (*regs)[10] = tswapreg(env->regs[10]);
318     (*regs)[11] = tswapreg(env->regs[11]);
319     (*regs)[12] = tswapreg(env->regs[12]);
320     (*regs)[13] = tswapreg(env->regs[13]);
321     (*regs)[14] = tswapreg(env->regs[14]);
322     (*regs)[15] = tswapreg(env->regs[15]);
323 
324     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
325     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
326 }
327 
328 #define USE_ELF_CORE_DUMP
329 #define ELF_EXEC_PAGESIZE       4096
330 
331 enum
332 {
333     ARM_HWCAP_ARM_SWP       = 1 << 0,
334     ARM_HWCAP_ARM_HALF      = 1 << 1,
335     ARM_HWCAP_ARM_THUMB     = 1 << 2,
336     ARM_HWCAP_ARM_26BIT     = 1 << 3,
337     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
338     ARM_HWCAP_ARM_FPA       = 1 << 5,
339     ARM_HWCAP_ARM_VFP       = 1 << 6,
340     ARM_HWCAP_ARM_EDSP      = 1 << 7,
341     ARM_HWCAP_ARM_JAVA      = 1 << 8,
342     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
343     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
344     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
345     ARM_HWCAP_ARM_NEON      = 1 << 12,
346     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
347     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
348     ARM_HWCAP_ARM_TLS       = 1 << 15,
349     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
350     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
351     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
352     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
353     ARM_HWCAP_ARM_LPAE      = 1 << 20,
354     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
355 };
356 
357 enum {
358     ARM_HWCAP2_ARM_AES      = 1 << 0,
359     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
360     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
361     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
362     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
363 };
364 
365 /* The commpage only exists for 32 bit kernels */
366 
367 #define TARGET_HAS_VALIDATE_GUEST_SPACE
368 /* Return 1 if the proposed guest space is suitable for the guest.
369  * Return 0 if the proposed guest space isn't suitable, but another
370  * address space should be tried.
371  * Return -1 if there is no way the proposed guest space can be
372  * valid regardless of the base.
373  * The guest code may leave a page mapped and populate it if the
374  * address is suitable.
375  */
376 static int validate_guest_space(unsigned long guest_base,
377                                 unsigned long guest_size)
378 {
379     unsigned long real_start, test_page_addr;
380 
381     /* We need to check that we can force a fault on access to the
382      * commpage at 0xffff0fxx
383      */
384     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
385 
386     /* If the commpage lies within the already allocated guest space,
387      * then there is no way we can allocate it.
388      */
389     if (test_page_addr >= guest_base
390         && test_page_addr <= (guest_base + guest_size)) {
391         return -1;
392     }
393 
394     /* Note it needs to be writeable to let us initialise it */
395     real_start = (unsigned long)
396                  mmap((void *)test_page_addr, qemu_host_page_size,
397                      PROT_READ | PROT_WRITE,
398                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
399 
400     /* If we can't map it then try another address */
401     if (real_start == -1ul) {
402         return 0;
403     }
404 
405     if (real_start != test_page_addr) {
406         /* OS didn't put the page where we asked - unmap and reject */
407         munmap((void *)real_start, qemu_host_page_size);
408         return 0;
409     }
410 
411     /* Leave the page mapped
412      * Populate it (mmap should have left it all 0'd)
413      */
414 
415     /* Kernel helper versions */
416     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
417 
418     /* Now it's populated make it RO */
419     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
420         perror("Protecting guest commpage");
421         exit(-1);
422     }
423 
424     return 1; /* All good */
425 }
426 
427 #define ELF_HWCAP get_elf_hwcap()
428 #define ELF_HWCAP2 get_elf_hwcap2()
429 
430 static uint32_t get_elf_hwcap(void)
431 {
432     ARMCPU *cpu = ARM_CPU(thread_cpu);
433     uint32_t hwcaps = 0;
434 
435     hwcaps |= ARM_HWCAP_ARM_SWP;
436     hwcaps |= ARM_HWCAP_ARM_HALF;
437     hwcaps |= ARM_HWCAP_ARM_THUMB;
438     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
439 
440     /* probe for the extra features */
441 #define GET_FEATURE(feat, hwcap) \
442     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
443     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
445     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
446     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
447     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
448     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
449     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
450     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
451     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
452     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
453     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
454     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457      * to our VFP_FP16 feature bit.
458      */
459     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
460     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
461 
462     return hwcaps;
463 }
464 
465 static uint32_t get_elf_hwcap2(void)
466 {
467     ARMCPU *cpu = ARM_CPU(thread_cpu);
468     uint32_t hwcaps = 0;
469 
470     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
471     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
472     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
473     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
474     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
475     return hwcaps;
476 }
477 
478 #undef GET_FEATURE
479 
480 #else
481 /* 64 bit ARM definitions */
482 #define ELF_START_MMAP 0x80000000
483 
484 #define elf_check_arch(x) ((x) == ELF_MACHINE)
485 
486 #define ELF_ARCH        ELF_MACHINE
487 #define ELF_CLASS       ELFCLASS64
488 #define ELF_PLATFORM    "aarch64"
489 
490 static inline void init_thread(struct target_pt_regs *regs,
491                                struct image_info *infop)
492 {
493     abi_long stack = infop->start_stack;
494     memset(regs, 0, sizeof(*regs));
495 
496     regs->pc = infop->entry & ~0x3ULL;
497     regs->sp = stack;
498 }
499 
500 #define ELF_NREG    34
501 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
502 
503 static void elf_core_copy_regs(target_elf_gregset_t *regs,
504                                const CPUARMState *env)
505 {
506     int i;
507 
508     for (i = 0; i < 32; i++) {
509         (*regs)[i] = tswapreg(env->xregs[i]);
510     }
511     (*regs)[32] = tswapreg(env->pc);
512     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
513 }
514 
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE       4096
517 
518 enum {
519     ARM_HWCAP_A64_FP            = 1 << 0,
520     ARM_HWCAP_A64_ASIMD         = 1 << 1,
521     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
522     ARM_HWCAP_A64_AES           = 1 << 3,
523     ARM_HWCAP_A64_PMULL         = 1 << 4,
524     ARM_HWCAP_A64_SHA1          = 1 << 5,
525     ARM_HWCAP_A64_SHA2          = 1 << 6,
526     ARM_HWCAP_A64_CRC32         = 1 << 7,
527 };
528 
529 #define ELF_HWCAP get_elf_hwcap()
530 
531 static uint32_t get_elf_hwcap(void)
532 {
533     ARMCPU *cpu = ARM_CPU(thread_cpu);
534     uint32_t hwcaps = 0;
535 
536     hwcaps |= ARM_HWCAP_A64_FP;
537     hwcaps |= ARM_HWCAP_A64_ASIMD;
538 
539     /* probe for the extra features */
540 #define GET_FEATURE(feat, hwcap) \
541     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
542     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
543     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
544     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
545     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
546     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
547 #undef GET_FEATURE
548 
549     return hwcaps;
550 }
551 
552 #endif /* not TARGET_AARCH64 */
553 #endif /* TARGET_ARM */
554 
555 #ifdef TARGET_UNICORE32
556 
557 #define ELF_START_MMAP          0x80000000
558 
559 #define elf_check_arch(x)       ((x) == EM_UNICORE32)
560 
561 #define ELF_CLASS               ELFCLASS32
562 #define ELF_DATA                ELFDATA2LSB
563 #define ELF_ARCH                EM_UNICORE32
564 
565 static inline void init_thread(struct target_pt_regs *regs,
566         struct image_info *infop)
567 {
568     abi_long stack = infop->start_stack;
569     memset(regs, 0, sizeof(*regs));
570     regs->UC32_REG_asr = 0x10;
571     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
572     regs->UC32_REG_sp = infop->start_stack;
573     /* FIXME - what to for failure of get_user()? */
574     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
575     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
576     /* XXX: it seems that r0 is zeroed after ! */
577     regs->UC32_REG_00 = 0;
578 }
579 
580 #define ELF_NREG    34
581 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
582 
583 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
584 {
585     (*regs)[0] = env->regs[0];
586     (*regs)[1] = env->regs[1];
587     (*regs)[2] = env->regs[2];
588     (*regs)[3] = env->regs[3];
589     (*regs)[4] = env->regs[4];
590     (*regs)[5] = env->regs[5];
591     (*regs)[6] = env->regs[6];
592     (*regs)[7] = env->regs[7];
593     (*regs)[8] = env->regs[8];
594     (*regs)[9] = env->regs[9];
595     (*regs)[10] = env->regs[10];
596     (*regs)[11] = env->regs[11];
597     (*regs)[12] = env->regs[12];
598     (*regs)[13] = env->regs[13];
599     (*regs)[14] = env->regs[14];
600     (*regs)[15] = env->regs[15];
601     (*regs)[16] = env->regs[16];
602     (*regs)[17] = env->regs[17];
603     (*regs)[18] = env->regs[18];
604     (*regs)[19] = env->regs[19];
605     (*regs)[20] = env->regs[20];
606     (*regs)[21] = env->regs[21];
607     (*regs)[22] = env->regs[22];
608     (*regs)[23] = env->regs[23];
609     (*regs)[24] = env->regs[24];
610     (*regs)[25] = env->regs[25];
611     (*regs)[26] = env->regs[26];
612     (*regs)[27] = env->regs[27];
613     (*regs)[28] = env->regs[28];
614     (*regs)[29] = env->regs[29];
615     (*regs)[30] = env->regs[30];
616     (*regs)[31] = env->regs[31];
617 
618     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
619     (*regs)[33] = env->regs[0]; /* XXX */
620 }
621 
622 #define USE_ELF_CORE_DUMP
623 #define ELF_EXEC_PAGESIZE               4096
624 
625 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
626 
627 #endif
628 
629 #ifdef TARGET_SPARC
630 #ifdef TARGET_SPARC64
631 
632 #define ELF_START_MMAP 0x80000000
633 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
635 #ifndef TARGET_ABI32
636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
637 #else
638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
639 #endif
640 
641 #define ELF_CLASS   ELFCLASS64
642 #define ELF_ARCH    EM_SPARCV9
643 
644 #define STACK_BIAS              2047
645 
646 static inline void init_thread(struct target_pt_regs *regs,
647                                struct image_info *infop)
648 {
649 #ifndef TARGET_ABI32
650     regs->tstate = 0;
651 #endif
652     regs->pc = infop->entry;
653     regs->npc = regs->pc + 4;
654     regs->y = 0;
655 #ifdef TARGET_ABI32
656     regs->u_regs[14] = infop->start_stack - 16 * 4;
657 #else
658     if (personality(infop->personality) == PER_LINUX32)
659         regs->u_regs[14] = infop->start_stack - 16 * 4;
660     else
661         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
662 #endif
663 }
664 
665 #else
666 #define ELF_START_MMAP 0x80000000
667 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668                     | HWCAP_SPARC_MULDIV)
669 #define elf_check_arch(x) ( (x) == EM_SPARC )
670 
671 #define ELF_CLASS   ELFCLASS32
672 #define ELF_ARCH    EM_SPARC
673 
674 static inline void init_thread(struct target_pt_regs *regs,
675                                struct image_info *infop)
676 {
677     regs->psr = 0;
678     regs->pc = infop->entry;
679     regs->npc = regs->pc + 4;
680     regs->y = 0;
681     regs->u_regs[14] = infop->start_stack - 16 * 4;
682 }
683 
684 #endif
685 #endif
686 
687 #ifdef TARGET_PPC
688 
689 #define ELF_START_MMAP 0x80000000
690 
691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
692 
693 #define elf_check_arch(x) ( (x) == EM_PPC64 )
694 
695 #define ELF_CLASS       ELFCLASS64
696 
697 #else
698 
699 #define elf_check_arch(x) ( (x) == EM_PPC )
700 
701 #define ELF_CLASS       ELFCLASS32
702 
703 #endif
704 
705 #define ELF_ARCH        EM_PPC
706 
707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708    See arch/powerpc/include/asm/cputable.h.  */
709 enum {
710     QEMU_PPC_FEATURE_32 = 0x80000000,
711     QEMU_PPC_FEATURE_64 = 0x40000000,
712     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
713     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
714     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
715     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
716     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
717     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
718     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
719     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
720     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
721     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
722     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
723     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
724     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
725     QEMU_PPC_FEATURE_CELL = 0x00010000,
726     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
727     QEMU_PPC_FEATURE_SMT = 0x00004000,
728     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
729     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
730     QEMU_PPC_FEATURE_PA6T = 0x00000800,
731     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
732     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
733     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
734     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
735     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
736 
737     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
738     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
739 
740     /* Feature definitions in AT_HWCAP2.  */
741     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
742     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
743     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
744     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
745     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
746     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
747 };
748 
749 #define ELF_HWCAP get_elf_hwcap()
750 
751 static uint32_t get_elf_hwcap(void)
752 {
753     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
754     uint32_t features = 0;
755 
756     /* We don't have to be terribly complete here; the high points are
757        Altivec/FP/SPE support.  Anything else is just a bonus.  */
758 #define GET_FEATURE(flag, feature)                                      \
759     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature)                                      \
761     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
763     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
764     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
765     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
766     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
767     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
768     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
769     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
770     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
771     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
772     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
773                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
774                   QEMU_PPC_FEATURE_ARCH_2_06);
775 #undef GET_FEATURE
776 #undef GET_FEATURE2
777 
778     return features;
779 }
780 
781 #define ELF_HWCAP2 get_elf_hwcap2()
782 
783 static uint32_t get_elf_hwcap2(void)
784 {
785     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
786     uint32_t features = 0;
787 
788 #define GET_FEATURE(flag, feature)                                      \
789     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790 #define GET_FEATURE2(flag, feature)                                      \
791     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
792 
793     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
794     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
795     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
796                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
797 
798 #undef GET_FEATURE
799 #undef GET_FEATURE2
800 
801     return features;
802 }
803 
804 /*
805  * The requirements here are:
806  * - keep the final alignment of sp (sp & 0xf)
807  * - make sure the 32-bit value at the first 16 byte aligned position of
808  *   AUXV is greater than 16 for glibc compatibility.
809  *   AT_IGNOREPPC is used for that.
810  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
811  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
812  */
813 #define DLINFO_ARCH_ITEMS       5
814 #define ARCH_DLINFO                                     \
815     do {                                                \
816         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
817         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
818         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
819         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
820         /*                                              \
821          * Now handle glibc compatibility.              \
822          */                                             \
823         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
824         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
825     } while (0)
826 
827 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
828 {
829     _regs->gpr[1] = infop->start_stack;
830 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
831     if (get_ppc64_abi(infop) < 2) {
832         uint64_t val;
833         get_user_u64(val, infop->entry + 8);
834         _regs->gpr[2] = val + infop->load_bias;
835         get_user_u64(val, infop->entry);
836         infop->entry = val + infop->load_bias;
837     } else {
838         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
839     }
840 #endif
841     _regs->nip = infop->entry;
842 }
843 
844 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
845 #define ELF_NREG 48
846 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
847 
848 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
849 {
850     int i;
851     target_ulong ccr = 0;
852 
853     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
854         (*regs)[i] = tswapreg(env->gpr[i]);
855     }
856 
857     (*regs)[32] = tswapreg(env->nip);
858     (*regs)[33] = tswapreg(env->msr);
859     (*regs)[35] = tswapreg(env->ctr);
860     (*regs)[36] = tswapreg(env->lr);
861     (*regs)[37] = tswapreg(env->xer);
862 
863     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
864         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
865     }
866     (*regs)[38] = tswapreg(ccr);
867 }
868 
869 #define USE_ELF_CORE_DUMP
870 #define ELF_EXEC_PAGESIZE       4096
871 
872 #endif
873 
874 #ifdef TARGET_MIPS
875 
876 #define ELF_START_MMAP 0x80000000
877 
878 #define elf_check_arch(x) ( (x) == EM_MIPS )
879 
880 #ifdef TARGET_MIPS64
881 #define ELF_CLASS   ELFCLASS64
882 #else
883 #define ELF_CLASS   ELFCLASS32
884 #endif
885 #define ELF_ARCH    EM_MIPS
886 
887 static inline void init_thread(struct target_pt_regs *regs,
888                                struct image_info *infop)
889 {
890     regs->cp0_status = 2 << CP0St_KSU;
891     regs->cp0_epc = infop->entry;
892     regs->regs[29] = infop->start_stack;
893 }
894 
895 /* See linux kernel: arch/mips/include/asm/elf.h.  */
896 #define ELF_NREG 45
897 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
898 
899 /* See linux kernel: arch/mips/include/asm/reg.h.  */
900 enum {
901 #ifdef TARGET_MIPS64
902     TARGET_EF_R0 = 0,
903 #else
904     TARGET_EF_R0 = 6,
905 #endif
906     TARGET_EF_R26 = TARGET_EF_R0 + 26,
907     TARGET_EF_R27 = TARGET_EF_R0 + 27,
908     TARGET_EF_LO = TARGET_EF_R0 + 32,
909     TARGET_EF_HI = TARGET_EF_R0 + 33,
910     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
911     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
912     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
913     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
914 };
915 
916 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
917 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
918 {
919     int i;
920 
921     for (i = 0; i < TARGET_EF_R0; i++) {
922         (*regs)[i] = 0;
923     }
924     (*regs)[TARGET_EF_R0] = 0;
925 
926     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
927         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
928     }
929 
930     (*regs)[TARGET_EF_R26] = 0;
931     (*regs)[TARGET_EF_R27] = 0;
932     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
933     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
934     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
935     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
936     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
937     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
938 }
939 
940 #define USE_ELF_CORE_DUMP
941 #define ELF_EXEC_PAGESIZE        4096
942 
943 #endif /* TARGET_MIPS */
944 
945 #ifdef TARGET_MICROBLAZE
946 
947 #define ELF_START_MMAP 0x80000000
948 
949 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
950 
951 #define ELF_CLASS   ELFCLASS32
952 #define ELF_ARCH    EM_MICROBLAZE
953 
954 static inline void init_thread(struct target_pt_regs *regs,
955                                struct image_info *infop)
956 {
957     regs->pc = infop->entry;
958     regs->r1 = infop->start_stack;
959 
960 }
961 
962 #define ELF_EXEC_PAGESIZE        4096
963 
964 #define USE_ELF_CORE_DUMP
965 #define ELF_NREG 38
966 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
967 
968 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
969 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
970 {
971     int i, pos = 0;
972 
973     for (i = 0; i < 32; i++) {
974         (*regs)[pos++] = tswapreg(env->regs[i]);
975     }
976 
977     for (i = 0; i < 6; i++) {
978         (*regs)[pos++] = tswapreg(env->sregs[i]);
979     }
980 }
981 
982 #endif /* TARGET_MICROBLAZE */
983 
984 #ifdef TARGET_OPENRISC
985 
986 #define ELF_START_MMAP 0x08000000
987 
988 #define elf_check_arch(x) ((x) == EM_OPENRISC)
989 
990 #define ELF_ARCH EM_OPENRISC
991 #define ELF_CLASS ELFCLASS32
992 #define ELF_DATA  ELFDATA2MSB
993 
994 static inline void init_thread(struct target_pt_regs *regs,
995                                struct image_info *infop)
996 {
997     regs->pc = infop->entry;
998     regs->gpr[1] = infop->start_stack;
999 }
1000 
1001 #define USE_ELF_CORE_DUMP
1002 #define ELF_EXEC_PAGESIZE 8192
1003 
1004 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1005 #define ELF_NREG 34 /* gprs and pc, sr */
1006 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1007 
1008 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1009                                const CPUOpenRISCState *env)
1010 {
1011     int i;
1012 
1013     for (i = 0; i < 32; i++) {
1014         (*regs)[i] = tswapreg(env->gpr[i]);
1015     }
1016 
1017     (*regs)[32] = tswapreg(env->pc);
1018     (*regs)[33] = tswapreg(env->sr);
1019 }
1020 #define ELF_HWCAP 0
1021 #define ELF_PLATFORM NULL
1022 
1023 #endif /* TARGET_OPENRISC */
1024 
1025 #ifdef TARGET_SH4
1026 
1027 #define ELF_START_MMAP 0x80000000
1028 
1029 #define elf_check_arch(x) ( (x) == EM_SH )
1030 
1031 #define ELF_CLASS ELFCLASS32
1032 #define ELF_ARCH  EM_SH
1033 
1034 static inline void init_thread(struct target_pt_regs *regs,
1035                                struct image_info *infop)
1036 {
1037     /* Check other registers XXXXX */
1038     regs->pc = infop->entry;
1039     regs->regs[15] = infop->start_stack;
1040 }
1041 
1042 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1043 #define ELF_NREG 23
1044 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1045 
1046 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1047 enum {
1048     TARGET_REG_PC = 16,
1049     TARGET_REG_PR = 17,
1050     TARGET_REG_SR = 18,
1051     TARGET_REG_GBR = 19,
1052     TARGET_REG_MACH = 20,
1053     TARGET_REG_MACL = 21,
1054     TARGET_REG_SYSCALL = 22
1055 };
1056 
1057 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1058                                       const CPUSH4State *env)
1059 {
1060     int i;
1061 
1062     for (i = 0; i < 16; i++) {
1063         (*regs[i]) = tswapreg(env->gregs[i]);
1064     }
1065 
1066     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1067     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1068     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1069     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1070     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1071     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1072     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1073 }
1074 
1075 #define USE_ELF_CORE_DUMP
1076 #define ELF_EXEC_PAGESIZE        4096
1077 
1078 enum {
1079     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1080     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1081     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1082     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1083     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1084     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1085     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1086     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1087     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1088     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1089 };
1090 
1091 #define ELF_HWCAP get_elf_hwcap()
1092 
1093 static uint32_t get_elf_hwcap(void)
1094 {
1095     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1096     uint32_t hwcap = 0;
1097 
1098     hwcap |= SH_CPU_HAS_FPU;
1099 
1100     if (cpu->env.features & SH_FEATURE_SH4A) {
1101         hwcap |= SH_CPU_HAS_LLSC;
1102     }
1103 
1104     return hwcap;
1105 }
1106 
1107 #endif
1108 
1109 #ifdef TARGET_CRIS
1110 
1111 #define ELF_START_MMAP 0x80000000
1112 
1113 #define elf_check_arch(x) ( (x) == EM_CRIS )
1114 
1115 #define ELF_CLASS ELFCLASS32
1116 #define ELF_ARCH  EM_CRIS
1117 
1118 static inline void init_thread(struct target_pt_regs *regs,
1119                                struct image_info *infop)
1120 {
1121     regs->erp = infop->entry;
1122 }
1123 
1124 #define ELF_EXEC_PAGESIZE        8192
1125 
1126 #endif
1127 
1128 #ifdef TARGET_M68K
1129 
1130 #define ELF_START_MMAP 0x80000000
1131 
1132 #define elf_check_arch(x) ( (x) == EM_68K )
1133 
1134 #define ELF_CLASS       ELFCLASS32
1135 #define ELF_ARCH        EM_68K
1136 
1137 /* ??? Does this need to do anything?
1138    #define ELF_PLAT_INIT(_r) */
1139 
1140 static inline void init_thread(struct target_pt_regs *regs,
1141                                struct image_info *infop)
1142 {
1143     regs->usp = infop->start_stack;
1144     regs->sr = 0;
1145     regs->pc = infop->entry;
1146 }
1147 
1148 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1149 #define ELF_NREG 20
1150 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1151 
1152 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1153 {
1154     (*regs)[0] = tswapreg(env->dregs[1]);
1155     (*regs)[1] = tswapreg(env->dregs[2]);
1156     (*regs)[2] = tswapreg(env->dregs[3]);
1157     (*regs)[3] = tswapreg(env->dregs[4]);
1158     (*regs)[4] = tswapreg(env->dregs[5]);
1159     (*regs)[5] = tswapreg(env->dregs[6]);
1160     (*regs)[6] = tswapreg(env->dregs[7]);
1161     (*regs)[7] = tswapreg(env->aregs[0]);
1162     (*regs)[8] = tswapreg(env->aregs[1]);
1163     (*regs)[9] = tswapreg(env->aregs[2]);
1164     (*regs)[10] = tswapreg(env->aregs[3]);
1165     (*regs)[11] = tswapreg(env->aregs[4]);
1166     (*regs)[12] = tswapreg(env->aregs[5]);
1167     (*regs)[13] = tswapreg(env->aregs[6]);
1168     (*regs)[14] = tswapreg(env->dregs[0]);
1169     (*regs)[15] = tswapreg(env->aregs[7]);
1170     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1171     (*regs)[17] = tswapreg(env->sr);
1172     (*regs)[18] = tswapreg(env->pc);
1173     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1174 }
1175 
1176 #define USE_ELF_CORE_DUMP
1177 #define ELF_EXEC_PAGESIZE       8192
1178 
1179 #endif
1180 
1181 #ifdef TARGET_ALPHA
1182 
1183 #define ELF_START_MMAP (0x30000000000ULL)
1184 
1185 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1186 
1187 #define ELF_CLASS      ELFCLASS64
1188 #define ELF_ARCH       EM_ALPHA
1189 
1190 static inline void init_thread(struct target_pt_regs *regs,
1191                                struct image_info *infop)
1192 {
1193     regs->pc = infop->entry;
1194     regs->ps = 8;
1195     regs->usp = infop->start_stack;
1196 }
1197 
1198 #define ELF_EXEC_PAGESIZE        8192
1199 
1200 #endif /* TARGET_ALPHA */
1201 
1202 #ifdef TARGET_S390X
1203 
1204 #define ELF_START_MMAP (0x20000000000ULL)
1205 
1206 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1207 
1208 #define ELF_CLASS	ELFCLASS64
1209 #define ELF_DATA	ELFDATA2MSB
1210 #define ELF_ARCH	EM_S390
1211 
1212 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1213 {
1214     regs->psw.addr = infop->entry;
1215     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1216     regs->gprs[15] = infop->start_stack;
1217 }
1218 
1219 #endif /* TARGET_S390X */
1220 
1221 #ifndef ELF_PLATFORM
1222 #define ELF_PLATFORM (NULL)
1223 #endif
1224 
1225 #ifndef ELF_HWCAP
1226 #define ELF_HWCAP 0
1227 #endif
1228 
1229 #ifdef TARGET_ABI32
1230 #undef ELF_CLASS
1231 #define ELF_CLASS ELFCLASS32
1232 #undef bswaptls
1233 #define bswaptls(ptr) bswap32s(ptr)
1234 #endif
1235 
1236 #include "elf.h"
1237 
1238 struct exec
1239 {
1240     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1241     unsigned int a_text;   /* length of text, in bytes */
1242     unsigned int a_data;   /* length of data, in bytes */
1243     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1244     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1245     unsigned int a_entry;  /* start address */
1246     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1247     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1248 };
1249 
1250 
1251 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1252 #define OMAGIC 0407
1253 #define NMAGIC 0410
1254 #define ZMAGIC 0413
1255 #define QMAGIC 0314
1256 
1257 /* Necessary parameters */
1258 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1259 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1260 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1261 
1262 #define DLINFO_ITEMS 14
1263 
1264 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1265 {
1266     memcpy(to, from, n);
1267 }
1268 
1269 #ifdef BSWAP_NEEDED
1270 static void bswap_ehdr(struct elfhdr *ehdr)
1271 {
1272     bswap16s(&ehdr->e_type);            /* Object file type */
1273     bswap16s(&ehdr->e_machine);         /* Architecture */
1274     bswap32s(&ehdr->e_version);         /* Object file version */
1275     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1276     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1277     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1278     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1279     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1280     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1281     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1282     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1283     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1284     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1285 }
1286 
1287 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1288 {
1289     int i;
1290     for (i = 0; i < phnum; ++i, ++phdr) {
1291         bswap32s(&phdr->p_type);        /* Segment type */
1292         bswap32s(&phdr->p_flags);       /* Segment flags */
1293         bswaptls(&phdr->p_offset);      /* Segment file offset */
1294         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1295         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1296         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1297         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1298         bswaptls(&phdr->p_align);       /* Segment alignment */
1299     }
1300 }
1301 
1302 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1303 {
1304     int i;
1305     for (i = 0; i < shnum; ++i, ++shdr) {
1306         bswap32s(&shdr->sh_name);
1307         bswap32s(&shdr->sh_type);
1308         bswaptls(&shdr->sh_flags);
1309         bswaptls(&shdr->sh_addr);
1310         bswaptls(&shdr->sh_offset);
1311         bswaptls(&shdr->sh_size);
1312         bswap32s(&shdr->sh_link);
1313         bswap32s(&shdr->sh_info);
1314         bswaptls(&shdr->sh_addralign);
1315         bswaptls(&shdr->sh_entsize);
1316     }
1317 }
1318 
1319 static void bswap_sym(struct elf_sym *sym)
1320 {
1321     bswap32s(&sym->st_name);
1322     bswaptls(&sym->st_value);
1323     bswaptls(&sym->st_size);
1324     bswap16s(&sym->st_shndx);
1325 }
1326 #else
1327 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1328 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1329 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1330 static inline void bswap_sym(struct elf_sym *sym) { }
1331 #endif
1332 
1333 #ifdef USE_ELF_CORE_DUMP
1334 static int elf_core_dump(int, const CPUArchState *);
1335 #endif /* USE_ELF_CORE_DUMP */
1336 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1337 
1338 /* Verify the portions of EHDR within E_IDENT for the target.
1339    This can be performed before bswapping the entire header.  */
1340 static bool elf_check_ident(struct elfhdr *ehdr)
1341 {
1342     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1343             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1344             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1345             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1346             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1347             && ehdr->e_ident[EI_DATA] == ELF_DATA
1348             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1349 }
1350 
1351 /* Verify the portions of EHDR outside of E_IDENT for the target.
1352    This has to wait until after bswapping the header.  */
1353 static bool elf_check_ehdr(struct elfhdr *ehdr)
1354 {
1355     return (elf_check_arch(ehdr->e_machine)
1356             && ehdr->e_ehsize == sizeof(struct elfhdr)
1357             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1358             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1359 }
1360 
1361 /*
1362  * 'copy_elf_strings()' copies argument/envelope strings from user
1363  * memory to free pages in kernel mem. These are in a format ready
1364  * to be put directly into the top of new user memory.
1365  *
1366  */
1367 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1368                                   abi_ulong p)
1369 {
1370     char *tmp, *tmp1, *pag = NULL;
1371     int len, offset = 0;
1372 
1373     if (!p) {
1374         return 0;       /* bullet-proofing */
1375     }
1376     while (argc-- > 0) {
1377         tmp = argv[argc];
1378         if (!tmp) {
1379             fprintf(stderr, "VFS: argc is wrong");
1380             exit(-1);
1381         }
1382         tmp1 = tmp;
1383         while (*tmp++);
1384         len = tmp - tmp1;
1385         if (p < len) {  /* this shouldn't happen - 128kB */
1386             return 0;
1387         }
1388         while (len) {
1389             --p; --tmp; --len;
1390             if (--offset < 0) {
1391                 offset = p % TARGET_PAGE_SIZE;
1392                 pag = (char *)page[p/TARGET_PAGE_SIZE];
1393                 if (!pag) {
1394                     pag = g_try_malloc0(TARGET_PAGE_SIZE);
1395                     page[p/TARGET_PAGE_SIZE] = pag;
1396                     if (!pag)
1397                         return 0;
1398                 }
1399             }
1400             if (len == 0 || offset == 0) {
1401                 *(pag + offset) = *tmp;
1402             }
1403             else {
1404                 int bytes_to_copy = (len > offset) ? offset : len;
1405                 tmp -= bytes_to_copy;
1406                 p -= bytes_to_copy;
1407                 offset -= bytes_to_copy;
1408                 len -= bytes_to_copy;
1409                 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1410             }
1411         }
1412     }
1413     return p;
1414 }
1415 
1416 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1417                                  struct image_info *info)
1418 {
1419     abi_ulong stack_base, size, error, guard;
1420     int i;
1421 
1422     /* Create enough stack to hold everything.  If we don't use
1423        it for args, we'll use it for something else.  */
1424     size = guest_stack_size;
1425     if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1426         size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1427     }
1428     guard = TARGET_PAGE_SIZE;
1429     if (guard < qemu_real_host_page_size) {
1430         guard = qemu_real_host_page_size;
1431     }
1432 
1433     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1434                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1435     if (error == -1) {
1436         perror("mmap stack");
1437         exit(-1);
1438     }
1439 
1440     /* We reserve one extra page at the top of the stack as guard.  */
1441     target_mprotect(error, guard, PROT_NONE);
1442 
1443     info->stack_limit = error + guard;
1444     stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1445     p += stack_base;
1446 
1447     for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1448         if (bprm->page[i]) {
1449             info->rss++;
1450             /* FIXME - check return value of memcpy_to_target() for failure */
1451             memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1452             g_free(bprm->page[i]);
1453         }
1454         stack_base += TARGET_PAGE_SIZE;
1455     }
1456     return p;
1457 }
1458 
1459 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1460    after the data section (i.e. bss).  */
1461 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1462 {
1463     uintptr_t host_start, host_map_start, host_end;
1464 
1465     last_bss = TARGET_PAGE_ALIGN(last_bss);
1466 
1467     /* ??? There is confusion between qemu_real_host_page_size and
1468        qemu_host_page_size here and elsewhere in target_mmap, which
1469        may lead to the end of the data section mapping from the file
1470        not being mapped.  At least there was an explicit test and
1471        comment for that here, suggesting that "the file size must
1472        be known".  The comment probably pre-dates the introduction
1473        of the fstat system call in target_mmap which does in fact
1474        find out the size.  What isn't clear is if the workaround
1475        here is still actually needed.  For now, continue with it,
1476        but merge it with the "normal" mmap that would allocate the bss.  */
1477 
1478     host_start = (uintptr_t) g2h(elf_bss);
1479     host_end = (uintptr_t) g2h(last_bss);
1480     host_map_start = (host_start + qemu_real_host_page_size - 1);
1481     host_map_start &= -qemu_real_host_page_size;
1482 
1483     if (host_map_start < host_end) {
1484         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1485                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1486         if (p == MAP_FAILED) {
1487             perror("cannot mmap brk");
1488             exit(-1);
1489         }
1490     }
1491 
1492     /* Ensure that the bss page(s) are valid */
1493     if ((page_get_flags(last_bss-1) & prot) != prot) {
1494         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1495     }
1496 
1497     if (host_start < host_map_start) {
1498         memset((void *)host_start, 0, host_map_start - host_start);
1499     }
1500 }
1501 
1502 #ifdef CONFIG_USE_FDPIC
1503 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1504 {
1505     uint16_t n;
1506     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1507 
1508     /* elf32_fdpic_loadseg */
1509     n = info->nsegs;
1510     while (n--) {
1511         sp -= 12;
1512         put_user_u32(loadsegs[n].addr, sp+0);
1513         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1514         put_user_u32(loadsegs[n].p_memsz, sp+8);
1515     }
1516 
1517     /* elf32_fdpic_loadmap */
1518     sp -= 4;
1519     put_user_u16(0, sp+0); /* version */
1520     put_user_u16(info->nsegs, sp+2); /* nsegs */
1521 
1522     info->personality = PER_LINUX_FDPIC;
1523     info->loadmap_addr = sp;
1524 
1525     return sp;
1526 }
1527 #endif
1528 
1529 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1530                                    struct elfhdr *exec,
1531                                    struct image_info *info,
1532                                    struct image_info *interp_info)
1533 {
1534     abi_ulong sp;
1535     abi_ulong sp_auxv;
1536     int size;
1537     int i;
1538     abi_ulong u_rand_bytes;
1539     uint8_t k_rand_bytes[16];
1540     abi_ulong u_platform;
1541     const char *k_platform;
1542     const int n = sizeof(elf_addr_t);
1543 
1544     sp = p;
1545 
1546 #ifdef CONFIG_USE_FDPIC
1547     /* Needs to be before we load the env/argc/... */
1548     if (elf_is_fdpic(exec)) {
1549         /* Need 4 byte alignment for these structs */
1550         sp &= ~3;
1551         sp = loader_build_fdpic_loadmap(info, sp);
1552         info->other_info = interp_info;
1553         if (interp_info) {
1554             interp_info->other_info = info;
1555             sp = loader_build_fdpic_loadmap(interp_info, sp);
1556         }
1557     }
1558 #endif
1559 
1560     u_platform = 0;
1561     k_platform = ELF_PLATFORM;
1562     if (k_platform) {
1563         size_t len = strlen(k_platform) + 1;
1564         sp -= (len + n - 1) & ~(n - 1);
1565         u_platform = sp;
1566         /* FIXME - check return value of memcpy_to_target() for failure */
1567         memcpy_to_target(sp, k_platform, len);
1568     }
1569 
1570     /*
1571      * Generate 16 random bytes for userspace PRNG seeding (not
1572      * cryptically secure but it's not the aim of QEMU).
1573      */
1574     for (i = 0; i < 16; i++) {
1575         k_rand_bytes[i] = rand();
1576     }
1577     sp -= 16;
1578     u_rand_bytes = sp;
1579     /* FIXME - check return value of memcpy_to_target() for failure */
1580     memcpy_to_target(sp, k_rand_bytes, 16);
1581 
1582     /*
1583      * Force 16 byte _final_ alignment here for generality.
1584      */
1585     sp = sp &~ (abi_ulong)15;
1586     size = (DLINFO_ITEMS + 1) * 2;
1587     if (k_platform)
1588         size += 2;
1589 #ifdef DLINFO_ARCH_ITEMS
1590     size += DLINFO_ARCH_ITEMS * 2;
1591 #endif
1592 #ifdef ELF_HWCAP2
1593     size += 2;
1594 #endif
1595     size += envc + argc + 2;
1596     size += 1;  /* argc itself */
1597     size *= n;
1598     if (size & 15)
1599         sp -= 16 - (size & 15);
1600 
1601     /* This is correct because Linux defines
1602      * elf_addr_t as Elf32_Off / Elf64_Off
1603      */
1604 #define NEW_AUX_ENT(id, val) do {               \
1605         sp -= n; put_user_ual(val, sp);         \
1606         sp -= n; put_user_ual(id, sp);          \
1607     } while(0)
1608 
1609     sp_auxv = sp;
1610     NEW_AUX_ENT (AT_NULL, 0);
1611 
1612     /* There must be exactly DLINFO_ITEMS entries here.  */
1613     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1614     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1615     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1616     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1617     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1618     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1619     NEW_AUX_ENT(AT_ENTRY, info->entry);
1620     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1621     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1622     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1623     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1624     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1625     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1626     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1627 
1628 #ifdef ELF_HWCAP2
1629     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1630 #endif
1631 
1632     if (k_platform)
1633         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1634 #ifdef ARCH_DLINFO
1635     /*
1636      * ARCH_DLINFO must come last so platform specific code can enforce
1637      * special alignment requirements on the AUXV if necessary (eg. PPC).
1638      */
1639     ARCH_DLINFO;
1640 #endif
1641 #undef NEW_AUX_ENT
1642 
1643     info->saved_auxv = sp;
1644     info->auxv_len = sp_auxv - sp;
1645 
1646     sp = loader_build_argptr(envc, argc, sp, p, 0);
1647     /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1648     assert(sp_auxv - sp == size);
1649     return sp;
1650 }
1651 
1652 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1653 /* If the guest doesn't have a validation function just agree */
1654 static int validate_guest_space(unsigned long guest_base,
1655                                 unsigned long guest_size)
1656 {
1657     return 1;
1658 }
1659 #endif
1660 
1661 unsigned long init_guest_space(unsigned long host_start,
1662                                unsigned long host_size,
1663                                unsigned long guest_start,
1664                                bool fixed)
1665 {
1666     unsigned long current_start, real_start;
1667     int flags;
1668 
1669     assert(host_start || host_size);
1670 
1671     /* If just a starting address is given, then just verify that
1672      * address.  */
1673     if (host_start && !host_size) {
1674         if (validate_guest_space(host_start, host_size) == 1) {
1675             return host_start;
1676         } else {
1677             return (unsigned long)-1;
1678         }
1679     }
1680 
1681     /* Setup the initial flags and start address.  */
1682     current_start = host_start & qemu_host_page_mask;
1683     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1684     if (fixed) {
1685         flags |= MAP_FIXED;
1686     }
1687 
1688     /* Otherwise, a non-zero size region of memory needs to be mapped
1689      * and validated.  */
1690     while (1) {
1691         unsigned long real_size = host_size;
1692 
1693         /* Do not use mmap_find_vma here because that is limited to the
1694          * guest address space.  We are going to make the
1695          * guest address space fit whatever we're given.
1696          */
1697         real_start = (unsigned long)
1698             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1699         if (real_start == (unsigned long)-1) {
1700             return (unsigned long)-1;
1701         }
1702 
1703         /* Ensure the address is properly aligned.  */
1704         if (real_start & ~qemu_host_page_mask) {
1705             munmap((void *)real_start, host_size);
1706             real_size = host_size + qemu_host_page_size;
1707             real_start = (unsigned long)
1708                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1709             if (real_start == (unsigned long)-1) {
1710                 return (unsigned long)-1;
1711             }
1712             real_start = HOST_PAGE_ALIGN(real_start);
1713         }
1714 
1715         /* Check to see if the address is valid.  */
1716         if (!host_start || real_start == current_start) {
1717             int valid = validate_guest_space(real_start - guest_start,
1718                                              real_size);
1719             if (valid == 1) {
1720                 break;
1721             } else if (valid == -1) {
1722                 return (unsigned long)-1;
1723             }
1724             /* valid == 0, so try again. */
1725         }
1726 
1727         /* That address didn't work.  Unmap and try a different one.
1728          * The address the host picked because is typically right at
1729          * the top of the host address space and leaves the guest with
1730          * no usable address space.  Resort to a linear search.  We
1731          * already compensated for mmap_min_addr, so this should not
1732          * happen often.  Probably means we got unlucky and host
1733          * address space randomization put a shared library somewhere
1734          * inconvenient.
1735          */
1736         munmap((void *)real_start, host_size);
1737         current_start += qemu_host_page_size;
1738         if (host_start == current_start) {
1739             /* Theoretically possible if host doesn't have any suitably
1740              * aligned areas.  Normally the first mmap will fail.
1741              */
1742             return (unsigned long)-1;
1743         }
1744     }
1745 
1746     qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1747 
1748     return real_start;
1749 }
1750 
1751 static void probe_guest_base(const char *image_name,
1752                              abi_ulong loaddr, abi_ulong hiaddr)
1753 {
1754     /* Probe for a suitable guest base address, if the user has not set
1755      * it explicitly, and set guest_base appropriately.
1756      * In case of error we will print a suitable message and exit.
1757      */
1758 #if defined(CONFIG_USE_GUEST_BASE)
1759     const char *errmsg;
1760     if (!have_guest_base && !reserved_va) {
1761         unsigned long host_start, real_start, host_size;
1762 
1763         /* Round addresses to page boundaries.  */
1764         loaddr &= qemu_host_page_mask;
1765         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1766 
1767         if (loaddr < mmap_min_addr) {
1768             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1769         } else {
1770             host_start = loaddr;
1771             if (host_start != loaddr) {
1772                 errmsg = "Address overflow loading ELF binary";
1773                 goto exit_errmsg;
1774             }
1775         }
1776         host_size = hiaddr - loaddr;
1777 
1778         /* Setup the initial guest memory space with ranges gleaned from
1779          * the ELF image that is being loaded.
1780          */
1781         real_start = init_guest_space(host_start, host_size, loaddr, false);
1782         if (real_start == (unsigned long)-1) {
1783             errmsg = "Unable to find space for application";
1784             goto exit_errmsg;
1785         }
1786         guest_base = real_start - loaddr;
1787 
1788         qemu_log("Relocating guest address space from 0x"
1789                  TARGET_ABI_FMT_lx " to 0x%lx\n",
1790                  loaddr, real_start);
1791     }
1792     return;
1793 
1794 exit_errmsg:
1795     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1796     exit(-1);
1797 #endif
1798 }
1799 
1800 
1801 /* Load an ELF image into the address space.
1802 
1803    IMAGE_NAME is the filename of the image, to use in error messages.
1804    IMAGE_FD is the open file descriptor for the image.
1805 
1806    BPRM_BUF is a copy of the beginning of the file; this of course
1807    contains the elf file header at offset 0.  It is assumed that this
1808    buffer is sufficiently aligned to present no problems to the host
1809    in accessing data at aligned offsets within the buffer.
1810 
1811    On return: INFO values will be filled in, as necessary or available.  */
1812 
1813 static void load_elf_image(const char *image_name, int image_fd,
1814                            struct image_info *info, char **pinterp_name,
1815                            char bprm_buf[BPRM_BUF_SIZE])
1816 {
1817     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1818     struct elf_phdr *phdr;
1819     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1820     int i, retval;
1821     const char *errmsg;
1822 
1823     /* First of all, some simple consistency checks */
1824     errmsg = "Invalid ELF image for this architecture";
1825     if (!elf_check_ident(ehdr)) {
1826         goto exit_errmsg;
1827     }
1828     bswap_ehdr(ehdr);
1829     if (!elf_check_ehdr(ehdr)) {
1830         goto exit_errmsg;
1831     }
1832 
1833     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1834     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1835         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1836     } else {
1837         phdr = (struct elf_phdr *) alloca(i);
1838         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1839         if (retval != i) {
1840             goto exit_read;
1841         }
1842     }
1843     bswap_phdr(phdr, ehdr->e_phnum);
1844 
1845 #ifdef CONFIG_USE_FDPIC
1846     info->nsegs = 0;
1847     info->pt_dynamic_addr = 0;
1848 #endif
1849 
1850     /* Find the maximum size of the image and allocate an appropriate
1851        amount of memory to handle that.  */
1852     loaddr = -1, hiaddr = 0;
1853     for (i = 0; i < ehdr->e_phnum; ++i) {
1854         if (phdr[i].p_type == PT_LOAD) {
1855             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1856             if (a < loaddr) {
1857                 loaddr = a;
1858             }
1859             a = phdr[i].p_vaddr + phdr[i].p_memsz;
1860             if (a > hiaddr) {
1861                 hiaddr = a;
1862             }
1863 #ifdef CONFIG_USE_FDPIC
1864             ++info->nsegs;
1865 #endif
1866         }
1867     }
1868 
1869     load_addr = loaddr;
1870     if (ehdr->e_type == ET_DYN) {
1871         /* The image indicates that it can be loaded anywhere.  Find a
1872            location that can hold the memory space required.  If the
1873            image is pre-linked, LOADDR will be non-zero.  Since we do
1874            not supply MAP_FIXED here we'll use that address if and
1875            only if it remains available.  */
1876         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1877                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1878                                 -1, 0);
1879         if (load_addr == -1) {
1880             goto exit_perror;
1881         }
1882     } else if (pinterp_name != NULL) {
1883         /* This is the main executable.  Make sure that the low
1884            address does not conflict with MMAP_MIN_ADDR or the
1885            QEMU application itself.  */
1886         probe_guest_base(image_name, loaddr, hiaddr);
1887     }
1888     load_bias = load_addr - loaddr;
1889 
1890 #ifdef CONFIG_USE_FDPIC
1891     {
1892         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1893             g_malloc(sizeof(*loadsegs) * info->nsegs);
1894 
1895         for (i = 0; i < ehdr->e_phnum; ++i) {
1896             switch (phdr[i].p_type) {
1897             case PT_DYNAMIC:
1898                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1899                 break;
1900             case PT_LOAD:
1901                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1902                 loadsegs->p_vaddr = phdr[i].p_vaddr;
1903                 loadsegs->p_memsz = phdr[i].p_memsz;
1904                 ++loadsegs;
1905                 break;
1906             }
1907         }
1908     }
1909 #endif
1910 
1911     info->load_bias = load_bias;
1912     info->load_addr = load_addr;
1913     info->entry = ehdr->e_entry + load_bias;
1914     info->start_code = -1;
1915     info->end_code = 0;
1916     info->start_data = -1;
1917     info->end_data = 0;
1918     info->brk = 0;
1919     info->elf_flags = ehdr->e_flags;
1920 
1921     for (i = 0; i < ehdr->e_phnum; i++) {
1922         struct elf_phdr *eppnt = phdr + i;
1923         if (eppnt->p_type == PT_LOAD) {
1924             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1925             int elf_prot = 0;
1926 
1927             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1928             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1929             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1930 
1931             vaddr = load_bias + eppnt->p_vaddr;
1932             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1933             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1934 
1935             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1936                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
1937                                 image_fd, eppnt->p_offset - vaddr_po);
1938             if (error == -1) {
1939                 goto exit_perror;
1940             }
1941 
1942             vaddr_ef = vaddr + eppnt->p_filesz;
1943             vaddr_em = vaddr + eppnt->p_memsz;
1944 
1945             /* If the load segment requests extra zeros (e.g. bss), map it.  */
1946             if (vaddr_ef < vaddr_em) {
1947                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1948             }
1949 
1950             /* Find the full program boundaries.  */
1951             if (elf_prot & PROT_EXEC) {
1952                 if (vaddr < info->start_code) {
1953                     info->start_code = vaddr;
1954                 }
1955                 if (vaddr_ef > info->end_code) {
1956                     info->end_code = vaddr_ef;
1957                 }
1958             }
1959             if (elf_prot & PROT_WRITE) {
1960                 if (vaddr < info->start_data) {
1961                     info->start_data = vaddr;
1962                 }
1963                 if (vaddr_ef > info->end_data) {
1964                     info->end_data = vaddr_ef;
1965                 }
1966                 if (vaddr_em > info->brk) {
1967                     info->brk = vaddr_em;
1968                 }
1969             }
1970         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1971             char *interp_name;
1972 
1973             if (*pinterp_name) {
1974                 errmsg = "Multiple PT_INTERP entries";
1975                 goto exit_errmsg;
1976             }
1977             interp_name = malloc(eppnt->p_filesz);
1978             if (!interp_name) {
1979                 goto exit_perror;
1980             }
1981 
1982             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1983                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1984                        eppnt->p_filesz);
1985             } else {
1986                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1987                                eppnt->p_offset);
1988                 if (retval != eppnt->p_filesz) {
1989                     goto exit_perror;
1990                 }
1991             }
1992             if (interp_name[eppnt->p_filesz - 1] != 0) {
1993                 errmsg = "Invalid PT_INTERP entry";
1994                 goto exit_errmsg;
1995             }
1996             *pinterp_name = interp_name;
1997         }
1998     }
1999 
2000     if (info->end_data == 0) {
2001         info->start_data = info->end_code;
2002         info->end_data = info->end_code;
2003         info->brk = info->end_code;
2004     }
2005 
2006     if (qemu_log_enabled()) {
2007         load_symbols(ehdr, image_fd, load_bias);
2008     }
2009 
2010     close(image_fd);
2011     return;
2012 
2013  exit_read:
2014     if (retval >= 0) {
2015         errmsg = "Incomplete read of file header";
2016         goto exit_errmsg;
2017     }
2018  exit_perror:
2019     errmsg = strerror(errno);
2020  exit_errmsg:
2021     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2022     exit(-1);
2023 }
2024 
2025 static void load_elf_interp(const char *filename, struct image_info *info,
2026                             char bprm_buf[BPRM_BUF_SIZE])
2027 {
2028     int fd, retval;
2029 
2030     fd = open(path(filename), O_RDONLY);
2031     if (fd < 0) {
2032         goto exit_perror;
2033     }
2034 
2035     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2036     if (retval < 0) {
2037         goto exit_perror;
2038     }
2039     if (retval < BPRM_BUF_SIZE) {
2040         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2041     }
2042 
2043     load_elf_image(filename, fd, info, NULL, bprm_buf);
2044     return;
2045 
2046  exit_perror:
2047     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2048     exit(-1);
2049 }
2050 
2051 static int symfind(const void *s0, const void *s1)
2052 {
2053     target_ulong addr = *(target_ulong *)s0;
2054     struct elf_sym *sym = (struct elf_sym *)s1;
2055     int result = 0;
2056     if (addr < sym->st_value) {
2057         result = -1;
2058     } else if (addr >= sym->st_value + sym->st_size) {
2059         result = 1;
2060     }
2061     return result;
2062 }
2063 
2064 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2065 {
2066 #if ELF_CLASS == ELFCLASS32
2067     struct elf_sym *syms = s->disas_symtab.elf32;
2068 #else
2069     struct elf_sym *syms = s->disas_symtab.elf64;
2070 #endif
2071 
2072     // binary search
2073     struct elf_sym *sym;
2074 
2075     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2076     if (sym != NULL) {
2077         return s->disas_strtab + sym->st_name;
2078     }
2079 
2080     return "";
2081 }
2082 
2083 /* FIXME: This should use elf_ops.h  */
2084 static int symcmp(const void *s0, const void *s1)
2085 {
2086     struct elf_sym *sym0 = (struct elf_sym *)s0;
2087     struct elf_sym *sym1 = (struct elf_sym *)s1;
2088     return (sym0->st_value < sym1->st_value)
2089         ? -1
2090         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2091 }
2092 
2093 /* Best attempt to load symbols from this ELF object. */
2094 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2095 {
2096     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2097     struct elf_shdr *shdr;
2098     char *strings = NULL;
2099     struct syminfo *s = NULL;
2100     struct elf_sym *new_syms, *syms = NULL;
2101 
2102     shnum = hdr->e_shnum;
2103     i = shnum * sizeof(struct elf_shdr);
2104     shdr = (struct elf_shdr *)alloca(i);
2105     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2106         return;
2107     }
2108 
2109     bswap_shdr(shdr, shnum);
2110     for (i = 0; i < shnum; ++i) {
2111         if (shdr[i].sh_type == SHT_SYMTAB) {
2112             sym_idx = i;
2113             str_idx = shdr[i].sh_link;
2114             goto found;
2115         }
2116     }
2117 
2118     /* There will be no symbol table if the file was stripped.  */
2119     return;
2120 
2121  found:
2122     /* Now know where the strtab and symtab are.  Snarf them.  */
2123     s = malloc(sizeof(*s));
2124     if (!s) {
2125         goto give_up;
2126     }
2127 
2128     i = shdr[str_idx].sh_size;
2129     s->disas_strtab = strings = malloc(i);
2130     if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2131         goto give_up;
2132     }
2133 
2134     i = shdr[sym_idx].sh_size;
2135     syms = malloc(i);
2136     if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2137         goto give_up;
2138     }
2139 
2140     nsyms = i / sizeof(struct elf_sym);
2141     for (i = 0; i < nsyms; ) {
2142         bswap_sym(syms + i);
2143         /* Throw away entries which we do not need.  */
2144         if (syms[i].st_shndx == SHN_UNDEF
2145             || syms[i].st_shndx >= SHN_LORESERVE
2146             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2147             if (i < --nsyms) {
2148                 syms[i] = syms[nsyms];
2149             }
2150         } else {
2151 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2152             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2153             syms[i].st_value &= ~(target_ulong)1;
2154 #endif
2155             syms[i].st_value += load_bias;
2156             i++;
2157         }
2158     }
2159 
2160     /* No "useful" symbol.  */
2161     if (nsyms == 0) {
2162         goto give_up;
2163     }
2164 
2165     /* Attempt to free the storage associated with the local symbols
2166        that we threw away.  Whether or not this has any effect on the
2167        memory allocation depends on the malloc implementation and how
2168        many symbols we managed to discard.  */
2169     new_syms = realloc(syms, nsyms * sizeof(*syms));
2170     if (new_syms == NULL) {
2171         goto give_up;
2172     }
2173     syms = new_syms;
2174 
2175     qsort(syms, nsyms, sizeof(*syms), symcmp);
2176 
2177     s->disas_num_syms = nsyms;
2178 #if ELF_CLASS == ELFCLASS32
2179     s->disas_symtab.elf32 = syms;
2180 #else
2181     s->disas_symtab.elf64 = syms;
2182 #endif
2183     s->lookup_symbol = lookup_symbolxx;
2184     s->next = syminfos;
2185     syminfos = s;
2186 
2187     return;
2188 
2189 give_up:
2190     free(s);
2191     free(strings);
2192     free(syms);
2193 }
2194 
2195 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2196 {
2197     struct image_info interp_info;
2198     struct elfhdr elf_ex;
2199     char *elf_interpreter = NULL;
2200 
2201     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2202     info->mmap = 0;
2203     info->rss = 0;
2204 
2205     load_elf_image(bprm->filename, bprm->fd, info,
2206                    &elf_interpreter, bprm->buf);
2207 
2208     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2209        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2210        when we load the interpreter.  */
2211     elf_ex = *(struct elfhdr *)bprm->buf;
2212 
2213     bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2214     bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2215     bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2216     if (!bprm->p) {
2217         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2218         exit(-1);
2219     }
2220 
2221     /* Do this so that we can load the interpreter, if need be.  We will
2222        change some of these later */
2223     bprm->p = setup_arg_pages(bprm->p, bprm, info);
2224 
2225     if (elf_interpreter) {
2226         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2227 
2228         /* If the program interpreter is one of these two, then assume
2229            an iBCS2 image.  Otherwise assume a native linux image.  */
2230 
2231         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2232             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2233             info->personality = PER_SVR4;
2234 
2235             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2236                and some applications "depend" upon this behavior.  Since
2237                we do not have the power to recompile these, we emulate
2238                the SVr4 behavior.  Sigh.  */
2239             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2240                         MAP_FIXED | MAP_PRIVATE, -1, 0);
2241         }
2242     }
2243 
2244     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2245                                 info, (elf_interpreter ? &interp_info : NULL));
2246     info->start_stack = bprm->p;
2247 
2248     /* If we have an interpreter, set that as the program's entry point.
2249        Copy the load_bias as well, to help PPC64 interpret the entry
2250        point as a function descriptor.  Do this after creating elf tables
2251        so that we copy the original program entry point into the AUXV.  */
2252     if (elf_interpreter) {
2253         info->load_bias = interp_info.load_bias;
2254         info->entry = interp_info.entry;
2255         free(elf_interpreter);
2256     }
2257 
2258 #ifdef USE_ELF_CORE_DUMP
2259     bprm->core_dump = &elf_core_dump;
2260 #endif
2261 
2262     return 0;
2263 }
2264 
2265 #ifdef USE_ELF_CORE_DUMP
2266 /*
2267  * Definitions to generate Intel SVR4-like core files.
2268  * These mostly have the same names as the SVR4 types with "target_elf_"
2269  * tacked on the front to prevent clashes with linux definitions,
2270  * and the typedef forms have been avoided.  This is mostly like
2271  * the SVR4 structure, but more Linuxy, with things that Linux does
2272  * not support and which gdb doesn't really use excluded.
2273  *
2274  * Fields we don't dump (their contents is zero) in linux-user qemu
2275  * are marked with XXX.
2276  *
2277  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2278  *
2279  * Porting ELF coredump for target is (quite) simple process.  First you
2280  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2281  * the target resides):
2282  *
2283  * #define USE_ELF_CORE_DUMP
2284  *
2285  * Next you define type of register set used for dumping.  ELF specification
2286  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2287  *
2288  * typedef <target_regtype> target_elf_greg_t;
2289  * #define ELF_NREG <number of registers>
2290  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2291  *
2292  * Last step is to implement target specific function that copies registers
2293  * from given cpu into just specified register set.  Prototype is:
2294  *
2295  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2296  *                                const CPUArchState *env);
2297  *
2298  * Parameters:
2299  *     regs - copy register values into here (allocated and zeroed by caller)
2300  *     env - copy registers from here
2301  *
2302  * Example for ARM target is provided in this file.
2303  */
2304 
2305 /* An ELF note in memory */
2306 struct memelfnote {
2307     const char *name;
2308     size_t     namesz;
2309     size_t     namesz_rounded;
2310     int        type;
2311     size_t     datasz;
2312     size_t     datasz_rounded;
2313     void       *data;
2314     size_t     notesz;
2315 };
2316 
2317 struct target_elf_siginfo {
2318     abi_int    si_signo; /* signal number */
2319     abi_int    si_code;  /* extra code */
2320     abi_int    si_errno; /* errno */
2321 };
2322 
2323 struct target_elf_prstatus {
2324     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2325     abi_short          pr_cursig;    /* Current signal */
2326     abi_ulong          pr_sigpend;   /* XXX */
2327     abi_ulong          pr_sighold;   /* XXX */
2328     target_pid_t       pr_pid;
2329     target_pid_t       pr_ppid;
2330     target_pid_t       pr_pgrp;
2331     target_pid_t       pr_sid;
2332     struct target_timeval pr_utime;  /* XXX User time */
2333     struct target_timeval pr_stime;  /* XXX System time */
2334     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2335     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2336     target_elf_gregset_t      pr_reg;       /* GP registers */
2337     abi_int            pr_fpvalid;   /* XXX */
2338 };
2339 
2340 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2341 
2342 struct target_elf_prpsinfo {
2343     char         pr_state;       /* numeric process state */
2344     char         pr_sname;       /* char for pr_state */
2345     char         pr_zomb;        /* zombie */
2346     char         pr_nice;        /* nice val */
2347     abi_ulong    pr_flag;        /* flags */
2348     target_uid_t pr_uid;
2349     target_gid_t pr_gid;
2350     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2351     /* Lots missing */
2352     char    pr_fname[16];           /* filename of executable */
2353     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2354 };
2355 
2356 /* Here is the structure in which status of each thread is captured. */
2357 struct elf_thread_status {
2358     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2359     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2360 #if 0
2361     elf_fpregset_t fpu;             /* NT_PRFPREG */
2362     struct task_struct *thread;
2363     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2364 #endif
2365     struct memelfnote notes[1];
2366     int num_notes;
2367 };
2368 
2369 struct elf_note_info {
2370     struct memelfnote   *notes;
2371     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2372     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2373 
2374     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2375 #if 0
2376     /*
2377      * Current version of ELF coredump doesn't support
2378      * dumping fp regs etc.
2379      */
2380     elf_fpregset_t *fpu;
2381     elf_fpxregset_t *xfpu;
2382     int thread_status_size;
2383 #endif
2384     int notes_size;
2385     int numnote;
2386 };
2387 
2388 struct vm_area_struct {
2389     target_ulong   vma_start;  /* start vaddr of memory region */
2390     target_ulong   vma_end;    /* end vaddr of memory region */
2391     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2392     QTAILQ_ENTRY(vm_area_struct) vma_link;
2393 };
2394 
2395 struct mm_struct {
2396     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2397     int mm_count;           /* number of mappings */
2398 };
2399 
2400 static struct mm_struct *vma_init(void);
2401 static void vma_delete(struct mm_struct *);
2402 static int vma_add_mapping(struct mm_struct *, target_ulong,
2403                            target_ulong, abi_ulong);
2404 static int vma_get_mapping_count(const struct mm_struct *);
2405 static struct vm_area_struct *vma_first(const struct mm_struct *);
2406 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2407 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2408 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2409                       unsigned long flags);
2410 
2411 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2412 static void fill_note(struct memelfnote *, const char *, int,
2413                       unsigned int, void *);
2414 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2415 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2416 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2417 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2418 static size_t note_size(const struct memelfnote *);
2419 static void free_note_info(struct elf_note_info *);
2420 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2421 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2422 static int core_dump_filename(const TaskState *, char *, size_t);
2423 
2424 static int dump_write(int, const void *, size_t);
2425 static int write_note(struct memelfnote *, int);
2426 static int write_note_info(struct elf_note_info *, int);
2427 
2428 #ifdef BSWAP_NEEDED
2429 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2430 {
2431     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2432     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2433     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2434     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2435     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2436     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2437     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2438     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2439     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2440     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2441     /* cpu times are not filled, so we skip them */
2442     /* regs should be in correct format already */
2443     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2444 }
2445 
2446 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2447 {
2448     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2449     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2450     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2451     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2452     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2453     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2454     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2455 }
2456 
2457 static void bswap_note(struct elf_note *en)
2458 {
2459     bswap32s(&en->n_namesz);
2460     bswap32s(&en->n_descsz);
2461     bswap32s(&en->n_type);
2462 }
2463 #else
2464 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2465 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2466 static inline void bswap_note(struct elf_note *en) { }
2467 #endif /* BSWAP_NEEDED */
2468 
2469 /*
2470  * Minimal support for linux memory regions.  These are needed
2471  * when we are finding out what memory exactly belongs to
2472  * emulated process.  No locks needed here, as long as
2473  * thread that received the signal is stopped.
2474  */
2475 
2476 static struct mm_struct *vma_init(void)
2477 {
2478     struct mm_struct *mm;
2479 
2480     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2481         return (NULL);
2482 
2483     mm->mm_count = 0;
2484     QTAILQ_INIT(&mm->mm_mmap);
2485 
2486     return (mm);
2487 }
2488 
2489 static void vma_delete(struct mm_struct *mm)
2490 {
2491     struct vm_area_struct *vma;
2492 
2493     while ((vma = vma_first(mm)) != NULL) {
2494         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2495         g_free(vma);
2496     }
2497     g_free(mm);
2498 }
2499 
2500 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2501                            target_ulong end, abi_ulong flags)
2502 {
2503     struct vm_area_struct *vma;
2504 
2505     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2506         return (-1);
2507 
2508     vma->vma_start = start;
2509     vma->vma_end = end;
2510     vma->vma_flags = flags;
2511 
2512     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2513     mm->mm_count++;
2514 
2515     return (0);
2516 }
2517 
2518 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2519 {
2520     return (QTAILQ_FIRST(&mm->mm_mmap));
2521 }
2522 
2523 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2524 {
2525     return (QTAILQ_NEXT(vma, vma_link));
2526 }
2527 
2528 static int vma_get_mapping_count(const struct mm_struct *mm)
2529 {
2530     return (mm->mm_count);
2531 }
2532 
2533 /*
2534  * Calculate file (dump) size of given memory region.
2535  */
2536 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2537 {
2538     /* if we cannot even read the first page, skip it */
2539     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2540         return (0);
2541 
2542     /*
2543      * Usually we don't dump executable pages as they contain
2544      * non-writable code that debugger can read directly from
2545      * target library etc.  However, thread stacks are marked
2546      * also executable so we read in first page of given region
2547      * and check whether it contains elf header.  If there is
2548      * no elf header, we dump it.
2549      */
2550     if (vma->vma_flags & PROT_EXEC) {
2551         char page[TARGET_PAGE_SIZE];
2552 
2553         copy_from_user(page, vma->vma_start, sizeof (page));
2554         if ((page[EI_MAG0] == ELFMAG0) &&
2555             (page[EI_MAG1] == ELFMAG1) &&
2556             (page[EI_MAG2] == ELFMAG2) &&
2557             (page[EI_MAG3] == ELFMAG3)) {
2558             /*
2559              * Mappings are possibly from ELF binary.  Don't dump
2560              * them.
2561              */
2562             return (0);
2563         }
2564     }
2565 
2566     return (vma->vma_end - vma->vma_start);
2567 }
2568 
2569 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2570                       unsigned long flags)
2571 {
2572     struct mm_struct *mm = (struct mm_struct *)priv;
2573 
2574     vma_add_mapping(mm, start, end, flags);
2575     return (0);
2576 }
2577 
2578 static void fill_note(struct memelfnote *note, const char *name, int type,
2579                       unsigned int sz, void *data)
2580 {
2581     unsigned int namesz;
2582 
2583     namesz = strlen(name) + 1;
2584     note->name = name;
2585     note->namesz = namesz;
2586     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2587     note->type = type;
2588     note->datasz = sz;
2589     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2590 
2591     note->data = data;
2592 
2593     /*
2594      * We calculate rounded up note size here as specified by
2595      * ELF document.
2596      */
2597     note->notesz = sizeof (struct elf_note) +
2598         note->namesz_rounded + note->datasz_rounded;
2599 }
2600 
2601 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2602                             uint32_t flags)
2603 {
2604     (void) memset(elf, 0, sizeof(*elf));
2605 
2606     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2607     elf->e_ident[EI_CLASS] = ELF_CLASS;
2608     elf->e_ident[EI_DATA] = ELF_DATA;
2609     elf->e_ident[EI_VERSION] = EV_CURRENT;
2610     elf->e_ident[EI_OSABI] = ELF_OSABI;
2611 
2612     elf->e_type = ET_CORE;
2613     elf->e_machine = machine;
2614     elf->e_version = EV_CURRENT;
2615     elf->e_phoff = sizeof(struct elfhdr);
2616     elf->e_flags = flags;
2617     elf->e_ehsize = sizeof(struct elfhdr);
2618     elf->e_phentsize = sizeof(struct elf_phdr);
2619     elf->e_phnum = segs;
2620 
2621     bswap_ehdr(elf);
2622 }
2623 
2624 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2625 {
2626     phdr->p_type = PT_NOTE;
2627     phdr->p_offset = offset;
2628     phdr->p_vaddr = 0;
2629     phdr->p_paddr = 0;
2630     phdr->p_filesz = sz;
2631     phdr->p_memsz = 0;
2632     phdr->p_flags = 0;
2633     phdr->p_align = 0;
2634 
2635     bswap_phdr(phdr, 1);
2636 }
2637 
2638 static size_t note_size(const struct memelfnote *note)
2639 {
2640     return (note->notesz);
2641 }
2642 
2643 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2644                           const TaskState *ts, int signr)
2645 {
2646     (void) memset(prstatus, 0, sizeof (*prstatus));
2647     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2648     prstatus->pr_pid = ts->ts_tid;
2649     prstatus->pr_ppid = getppid();
2650     prstatus->pr_pgrp = getpgrp();
2651     prstatus->pr_sid = getsid(0);
2652 
2653     bswap_prstatus(prstatus);
2654 }
2655 
2656 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2657 {
2658     char *base_filename;
2659     unsigned int i, len;
2660 
2661     (void) memset(psinfo, 0, sizeof (*psinfo));
2662 
2663     len = ts->info->arg_end - ts->info->arg_start;
2664     if (len >= ELF_PRARGSZ)
2665         len = ELF_PRARGSZ - 1;
2666     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2667         return -EFAULT;
2668     for (i = 0; i < len; i++)
2669         if (psinfo->pr_psargs[i] == 0)
2670             psinfo->pr_psargs[i] = ' ';
2671     psinfo->pr_psargs[len] = 0;
2672 
2673     psinfo->pr_pid = getpid();
2674     psinfo->pr_ppid = getppid();
2675     psinfo->pr_pgrp = getpgrp();
2676     psinfo->pr_sid = getsid(0);
2677     psinfo->pr_uid = getuid();
2678     psinfo->pr_gid = getgid();
2679 
2680     base_filename = g_path_get_basename(ts->bprm->filename);
2681     /*
2682      * Using strncpy here is fine: at max-length,
2683      * this field is not NUL-terminated.
2684      */
2685     (void) strncpy(psinfo->pr_fname, base_filename,
2686                    sizeof(psinfo->pr_fname));
2687 
2688     g_free(base_filename);
2689     bswap_psinfo(psinfo);
2690     return (0);
2691 }
2692 
2693 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2694 {
2695     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2696     elf_addr_t orig_auxv = auxv;
2697     void *ptr;
2698     int len = ts->info->auxv_len;
2699 
2700     /*
2701      * Auxiliary vector is stored in target process stack.  It contains
2702      * {type, value} pairs that we need to dump into note.  This is not
2703      * strictly necessary but we do it here for sake of completeness.
2704      */
2705 
2706     /* read in whole auxv vector and copy it to memelfnote */
2707     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2708     if (ptr != NULL) {
2709         fill_note(note, "CORE", NT_AUXV, len, ptr);
2710         unlock_user(ptr, auxv, len);
2711     }
2712 }
2713 
2714 /*
2715  * Constructs name of coredump file.  We have following convention
2716  * for the name:
2717  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2718  *
2719  * Returns 0 in case of success, -1 otherwise (errno is set).
2720  */
2721 static int core_dump_filename(const TaskState *ts, char *buf,
2722                               size_t bufsize)
2723 {
2724     char timestamp[64];
2725     char *filename = NULL;
2726     char *base_filename = NULL;
2727     struct timeval tv;
2728     struct tm tm;
2729 
2730     assert(bufsize >= PATH_MAX);
2731 
2732     if (gettimeofday(&tv, NULL) < 0) {
2733         (void) fprintf(stderr, "unable to get current timestamp: %s",
2734                        strerror(errno));
2735         return (-1);
2736     }
2737 
2738     filename = strdup(ts->bprm->filename);
2739     base_filename = strdup(basename(filename));
2740     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2741                     localtime_r(&tv.tv_sec, &tm));
2742     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2743                     base_filename, timestamp, (int)getpid());
2744     free(base_filename);
2745     free(filename);
2746 
2747     return (0);
2748 }
2749 
2750 static int dump_write(int fd, const void *ptr, size_t size)
2751 {
2752     const char *bufp = (const char *)ptr;
2753     ssize_t bytes_written, bytes_left;
2754     struct rlimit dumpsize;
2755     off_t pos;
2756 
2757     bytes_written = 0;
2758     getrlimit(RLIMIT_CORE, &dumpsize);
2759     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2760         if (errno == ESPIPE) { /* not a seekable stream */
2761             bytes_left = size;
2762         } else {
2763             return pos;
2764         }
2765     } else {
2766         if (dumpsize.rlim_cur <= pos) {
2767             return -1;
2768         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2769             bytes_left = size;
2770         } else {
2771             size_t limit_left=dumpsize.rlim_cur - pos;
2772             bytes_left = limit_left >= size ? size : limit_left ;
2773         }
2774     }
2775 
2776     /*
2777      * In normal conditions, single write(2) should do but
2778      * in case of socket etc. this mechanism is more portable.
2779      */
2780     do {
2781         bytes_written = write(fd, bufp, bytes_left);
2782         if (bytes_written < 0) {
2783             if (errno == EINTR)
2784                 continue;
2785             return (-1);
2786         } else if (bytes_written == 0) { /* eof */
2787             return (-1);
2788         }
2789         bufp += bytes_written;
2790         bytes_left -= bytes_written;
2791     } while (bytes_left > 0);
2792 
2793     return (0);
2794 }
2795 
2796 static int write_note(struct memelfnote *men, int fd)
2797 {
2798     struct elf_note en;
2799 
2800     en.n_namesz = men->namesz;
2801     en.n_type = men->type;
2802     en.n_descsz = men->datasz;
2803 
2804     bswap_note(&en);
2805 
2806     if (dump_write(fd, &en, sizeof(en)) != 0)
2807         return (-1);
2808     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2809         return (-1);
2810     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2811         return (-1);
2812 
2813     return (0);
2814 }
2815 
2816 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2817 {
2818     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2819     TaskState *ts = (TaskState *)cpu->opaque;
2820     struct elf_thread_status *ets;
2821 
2822     ets = g_malloc0(sizeof (*ets));
2823     ets->num_notes = 1; /* only prstatus is dumped */
2824     fill_prstatus(&ets->prstatus, ts, 0);
2825     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2826     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2827               &ets->prstatus);
2828 
2829     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2830 
2831     info->notes_size += note_size(&ets->notes[0]);
2832 }
2833 
2834 static void init_note_info(struct elf_note_info *info)
2835 {
2836     /* Initialize the elf_note_info structure so that it is at
2837      * least safe to call free_note_info() on it. Must be
2838      * called before calling fill_note_info().
2839      */
2840     memset(info, 0, sizeof (*info));
2841     QTAILQ_INIT(&info->thread_list);
2842 }
2843 
2844 static int fill_note_info(struct elf_note_info *info,
2845                           long signr, const CPUArchState *env)
2846 {
2847 #define NUMNOTES 3
2848     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2849     TaskState *ts = (TaskState *)cpu->opaque;
2850     int i;
2851 
2852     info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2853     if (info->notes == NULL)
2854         return (-ENOMEM);
2855     info->prstatus = g_malloc0(sizeof (*info->prstatus));
2856     if (info->prstatus == NULL)
2857         return (-ENOMEM);
2858     info->psinfo = g_malloc0(sizeof (*info->psinfo));
2859     if (info->prstatus == NULL)
2860         return (-ENOMEM);
2861 
2862     /*
2863      * First fill in status (and registers) of current thread
2864      * including process info & aux vector.
2865      */
2866     fill_prstatus(info->prstatus, ts, signr);
2867     elf_core_copy_regs(&info->prstatus->pr_reg, env);
2868     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2869               sizeof (*info->prstatus), info->prstatus);
2870     fill_psinfo(info->psinfo, ts);
2871     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2872               sizeof (*info->psinfo), info->psinfo);
2873     fill_auxv_note(&info->notes[2], ts);
2874     info->numnote = 3;
2875 
2876     info->notes_size = 0;
2877     for (i = 0; i < info->numnote; i++)
2878         info->notes_size += note_size(&info->notes[i]);
2879 
2880     /* read and fill status of all threads */
2881     cpu_list_lock();
2882     CPU_FOREACH(cpu) {
2883         if (cpu == thread_cpu) {
2884             continue;
2885         }
2886         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2887     }
2888     cpu_list_unlock();
2889 
2890     return (0);
2891 }
2892 
2893 static void free_note_info(struct elf_note_info *info)
2894 {
2895     struct elf_thread_status *ets;
2896 
2897     while (!QTAILQ_EMPTY(&info->thread_list)) {
2898         ets = QTAILQ_FIRST(&info->thread_list);
2899         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2900         g_free(ets);
2901     }
2902 
2903     g_free(info->prstatus);
2904     g_free(info->psinfo);
2905     g_free(info->notes);
2906 }
2907 
2908 static int write_note_info(struct elf_note_info *info, int fd)
2909 {
2910     struct elf_thread_status *ets;
2911     int i, error = 0;
2912 
2913     /* write prstatus, psinfo and auxv for current thread */
2914     for (i = 0; i < info->numnote; i++)
2915         if ((error = write_note(&info->notes[i], fd)) != 0)
2916             return (error);
2917 
2918     /* write prstatus for each thread */
2919     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
2920         if ((error = write_note(&ets->notes[0], fd)) != 0)
2921             return (error);
2922     }
2923 
2924     return (0);
2925 }
2926 
2927 /*
2928  * Write out ELF coredump.
2929  *
2930  * See documentation of ELF object file format in:
2931  * http://www.caldera.com/developers/devspecs/gabi41.pdf
2932  *
2933  * Coredump format in linux is following:
2934  *
2935  * 0   +----------------------+         \
2936  *     | ELF header           | ET_CORE  |
2937  *     +----------------------+          |
2938  *     | ELF program headers  |          |--- headers
2939  *     | - NOTE section       |          |
2940  *     | - PT_LOAD sections   |          |
2941  *     +----------------------+         /
2942  *     | NOTEs:               |
2943  *     | - NT_PRSTATUS        |
2944  *     | - NT_PRSINFO         |
2945  *     | - NT_AUXV            |
2946  *     +----------------------+ <-- aligned to target page
2947  *     | Process memory dump  |
2948  *     :                      :
2949  *     .                      .
2950  *     :                      :
2951  *     |                      |
2952  *     +----------------------+
2953  *
2954  * NT_PRSTATUS -> struct elf_prstatus (per thread)
2955  * NT_PRSINFO  -> struct elf_prpsinfo
2956  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2957  *
2958  * Format follows System V format as close as possible.  Current
2959  * version limitations are as follows:
2960  *     - no floating point registers are dumped
2961  *
2962  * Function returns 0 in case of success, negative errno otherwise.
2963  *
2964  * TODO: make this work also during runtime: it should be
2965  * possible to force coredump from running process and then
2966  * continue processing.  For example qemu could set up SIGUSR2
2967  * handler (provided that target process haven't registered
2968  * handler for that) that does the dump when signal is received.
2969  */
2970 static int elf_core_dump(int signr, const CPUArchState *env)
2971 {
2972     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2973     const TaskState *ts = (const TaskState *)cpu->opaque;
2974     struct vm_area_struct *vma = NULL;
2975     char corefile[PATH_MAX];
2976     struct elf_note_info info;
2977     struct elfhdr elf;
2978     struct elf_phdr phdr;
2979     struct rlimit dumpsize;
2980     struct mm_struct *mm = NULL;
2981     off_t offset = 0, data_offset = 0;
2982     int segs = 0;
2983     int fd = -1;
2984 
2985     init_note_info(&info);
2986 
2987     errno = 0;
2988     getrlimit(RLIMIT_CORE, &dumpsize);
2989     if (dumpsize.rlim_cur == 0)
2990         return 0;
2991 
2992     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2993         return (-errno);
2994 
2995     if ((fd = open(corefile, O_WRONLY | O_CREAT,
2996                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2997         return (-errno);
2998 
2999     /*
3000      * Walk through target process memory mappings and
3001      * set up structure containing this information.  After
3002      * this point vma_xxx functions can be used.
3003      */
3004     if ((mm = vma_init()) == NULL)
3005         goto out;
3006 
3007     walk_memory_regions(mm, vma_walker);
3008     segs = vma_get_mapping_count(mm);
3009 
3010     /*
3011      * Construct valid coredump ELF header.  We also
3012      * add one more segment for notes.
3013      */
3014     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3015     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3016         goto out;
3017 
3018     /* fill in in-memory version of notes */
3019     if (fill_note_info(&info, signr, env) < 0)
3020         goto out;
3021 
3022     offset += sizeof (elf);                             /* elf header */
3023     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3024 
3025     /* write out notes program header */
3026     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3027 
3028     offset += info.notes_size;
3029     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3030         goto out;
3031 
3032     /*
3033      * ELF specification wants data to start at page boundary so
3034      * we align it here.
3035      */
3036     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3037 
3038     /*
3039      * Write program headers for memory regions mapped in
3040      * the target process.
3041      */
3042     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3043         (void) memset(&phdr, 0, sizeof (phdr));
3044 
3045         phdr.p_type = PT_LOAD;
3046         phdr.p_offset = offset;
3047         phdr.p_vaddr = vma->vma_start;
3048         phdr.p_paddr = 0;
3049         phdr.p_filesz = vma_dump_size(vma);
3050         offset += phdr.p_filesz;
3051         phdr.p_memsz = vma->vma_end - vma->vma_start;
3052         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3053         if (vma->vma_flags & PROT_WRITE)
3054             phdr.p_flags |= PF_W;
3055         if (vma->vma_flags & PROT_EXEC)
3056             phdr.p_flags |= PF_X;
3057         phdr.p_align = ELF_EXEC_PAGESIZE;
3058 
3059         bswap_phdr(&phdr, 1);
3060         dump_write(fd, &phdr, sizeof (phdr));
3061     }
3062 
3063     /*
3064      * Next we write notes just after program headers.  No
3065      * alignment needed here.
3066      */
3067     if (write_note_info(&info, fd) < 0)
3068         goto out;
3069 
3070     /* align data to page boundary */
3071     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3072         goto out;
3073 
3074     /*
3075      * Finally we can dump process memory into corefile as well.
3076      */
3077     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3078         abi_ulong addr;
3079         abi_ulong end;
3080 
3081         end = vma->vma_start + vma_dump_size(vma);
3082 
3083         for (addr = vma->vma_start; addr < end;
3084              addr += TARGET_PAGE_SIZE) {
3085             char page[TARGET_PAGE_SIZE];
3086             int error;
3087 
3088             /*
3089              *  Read in page from target process memory and
3090              *  write it to coredump file.
3091              */
3092             error = copy_from_user(page, addr, sizeof (page));
3093             if (error != 0) {
3094                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3095                                addr);
3096                 errno = -error;
3097                 goto out;
3098             }
3099             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3100                 goto out;
3101         }
3102     }
3103 
3104  out:
3105     free_note_info(&info);
3106     if (mm != NULL)
3107         vma_delete(mm);
3108     (void) close(fd);
3109 
3110     if (errno != 0)
3111         return (-errno);
3112     return (0);
3113 }
3114 #endif /* USE_ELF_CORE_DUMP */
3115 
3116 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3117 {
3118     init_thread(regs, infop);
3119 }
3120