1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include <sys/time.h> 3 #include <sys/param.h> 4 5 #include <stdio.h> 6 #include <sys/types.h> 7 #include <fcntl.h> 8 #include <errno.h> 9 #include <unistd.h> 10 #include <sys/mman.h> 11 #include <sys/resource.h> 12 #include <stdlib.h> 13 #include <string.h> 14 #include <time.h> 15 16 #include "qemu.h" 17 #include "disas/disas.h" 18 19 #ifdef _ARCH_PPC64 20 #undef ARCH_DLINFO 21 #undef ELF_PLATFORM 22 #undef ELF_HWCAP 23 #undef ELF_HWCAP2 24 #undef ELF_CLASS 25 #undef ELF_DATA 26 #undef ELF_ARCH 27 #endif 28 29 #define ELF_OSABI ELFOSABI_SYSV 30 31 /* from personality.h */ 32 33 /* 34 * Flags for bug emulation. 35 * 36 * These occupy the top three bytes. 37 */ 38 enum { 39 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 40 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 41 descriptors (signal handling) */ 42 MMAP_PAGE_ZERO = 0x0100000, 43 ADDR_COMPAT_LAYOUT = 0x0200000, 44 READ_IMPLIES_EXEC = 0x0400000, 45 ADDR_LIMIT_32BIT = 0x0800000, 46 SHORT_INODE = 0x1000000, 47 WHOLE_SECONDS = 0x2000000, 48 STICKY_TIMEOUTS = 0x4000000, 49 ADDR_LIMIT_3GB = 0x8000000, 50 }; 51 52 /* 53 * Personality types. 54 * 55 * These go in the low byte. Avoid using the top bit, it will 56 * conflict with error returns. 57 */ 58 enum { 59 PER_LINUX = 0x0000, 60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 65 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 66 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 67 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 68 PER_BSD = 0x0006, 69 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 70 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_LINUX32 = 0x0008, 72 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 73 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 74 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 75 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 76 PER_RISCOS = 0x000c, 77 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 78 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 79 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 80 PER_HPUX = 0x0010, 81 PER_MASK = 0x00ff, 82 }; 83 84 /* 85 * Return the base personality without flags. 86 */ 87 #define personality(pers) (pers & PER_MASK) 88 89 /* this flag is uneffective under linux too, should be deleted */ 90 #ifndef MAP_DENYWRITE 91 #define MAP_DENYWRITE 0 92 #endif 93 94 /* should probably go in elf.h */ 95 #ifndef ELIBBAD 96 #define ELIBBAD 80 97 #endif 98 99 #ifdef TARGET_WORDS_BIGENDIAN 100 #define ELF_DATA ELFDATA2MSB 101 #else 102 #define ELF_DATA ELFDATA2LSB 103 #endif 104 105 #ifdef TARGET_ABI_MIPSN32 106 typedef abi_ullong target_elf_greg_t; 107 #define tswapreg(ptr) tswap64(ptr) 108 #else 109 typedef abi_ulong target_elf_greg_t; 110 #define tswapreg(ptr) tswapal(ptr) 111 #endif 112 113 #ifdef USE_UID16 114 typedef abi_ushort target_uid_t; 115 typedef abi_ushort target_gid_t; 116 #else 117 typedef abi_uint target_uid_t; 118 typedef abi_uint target_gid_t; 119 #endif 120 typedef abi_int target_pid_t; 121 122 #ifdef TARGET_I386 123 124 #define ELF_PLATFORM get_elf_platform() 125 126 static const char *get_elf_platform(void) 127 { 128 static char elf_platform[] = "i386"; 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 130 if (family > 6) 131 family = 6; 132 if (family >= 3) 133 elf_platform[1] = '0' + family; 134 return elf_platform; 135 } 136 137 #define ELF_HWCAP get_elf_hwcap() 138 139 static uint32_t get_elf_hwcap(void) 140 { 141 X86CPU *cpu = X86_CPU(thread_cpu); 142 143 return cpu->env.features[FEAT_1_EDX]; 144 } 145 146 #ifdef TARGET_X86_64 147 #define ELF_START_MMAP 0x2aaaaab000ULL 148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) 149 150 #define ELF_CLASS ELFCLASS64 151 #define ELF_ARCH EM_X86_64 152 153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 154 { 155 regs->rax = 0; 156 regs->rsp = infop->start_stack; 157 regs->rip = infop->entry; 158 } 159 160 #define ELF_NREG 27 161 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 162 163 /* 164 * Note that ELF_NREG should be 29 as there should be place for 165 * TRAPNO and ERR "registers" as well but linux doesn't dump 166 * those. 167 * 168 * See linux kernel: arch/x86/include/asm/elf.h 169 */ 170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 171 { 172 (*regs)[0] = env->regs[15]; 173 (*regs)[1] = env->regs[14]; 174 (*regs)[2] = env->regs[13]; 175 (*regs)[3] = env->regs[12]; 176 (*regs)[4] = env->regs[R_EBP]; 177 (*regs)[5] = env->regs[R_EBX]; 178 (*regs)[6] = env->regs[11]; 179 (*regs)[7] = env->regs[10]; 180 (*regs)[8] = env->regs[9]; 181 (*regs)[9] = env->regs[8]; 182 (*regs)[10] = env->regs[R_EAX]; 183 (*regs)[11] = env->regs[R_ECX]; 184 (*regs)[12] = env->regs[R_EDX]; 185 (*regs)[13] = env->regs[R_ESI]; 186 (*regs)[14] = env->regs[R_EDI]; 187 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 188 (*regs)[16] = env->eip; 189 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 190 (*regs)[18] = env->eflags; 191 (*regs)[19] = env->regs[R_ESP]; 192 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 193 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 194 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 195 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 196 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 197 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 198 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 199 } 200 201 #else 202 203 #define ELF_START_MMAP 0x80000000 204 205 /* 206 * This is used to ensure we don't load something for the wrong architecture. 207 */ 208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 209 210 /* 211 * These are used to set parameters in the core dumps. 212 */ 213 #define ELF_CLASS ELFCLASS32 214 #define ELF_ARCH EM_386 215 216 static inline void init_thread(struct target_pt_regs *regs, 217 struct image_info *infop) 218 { 219 regs->esp = infop->start_stack; 220 regs->eip = infop->entry; 221 222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 223 starts %edx contains a pointer to a function which might be 224 registered using `atexit'. This provides a mean for the 225 dynamic linker to call DT_FINI functions for shared libraries 226 that have been loaded before the code runs. 227 228 A value of 0 tells we have no such handler. */ 229 regs->edx = 0; 230 } 231 232 #define ELF_NREG 17 233 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 234 235 /* 236 * Note that ELF_NREG should be 19 as there should be place for 237 * TRAPNO and ERR "registers" as well but linux doesn't dump 238 * those. 239 * 240 * See linux kernel: arch/x86/include/asm/elf.h 241 */ 242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 243 { 244 (*regs)[0] = env->regs[R_EBX]; 245 (*regs)[1] = env->regs[R_ECX]; 246 (*regs)[2] = env->regs[R_EDX]; 247 (*regs)[3] = env->regs[R_ESI]; 248 (*regs)[4] = env->regs[R_EDI]; 249 (*regs)[5] = env->regs[R_EBP]; 250 (*regs)[6] = env->regs[R_EAX]; 251 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 252 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 253 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 254 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 255 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 256 (*regs)[12] = env->eip; 257 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 258 (*regs)[14] = env->eflags; 259 (*regs)[15] = env->regs[R_ESP]; 260 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 261 } 262 #endif 263 264 #define USE_ELF_CORE_DUMP 265 #define ELF_EXEC_PAGESIZE 4096 266 267 #endif 268 269 #ifdef TARGET_ARM 270 271 #ifndef TARGET_AARCH64 272 /* 32 bit ARM definitions */ 273 274 #define ELF_START_MMAP 0x80000000 275 276 #define elf_check_arch(x) ((x) == ELF_MACHINE) 277 278 #define ELF_ARCH ELF_MACHINE 279 #define ELF_CLASS ELFCLASS32 280 281 static inline void init_thread(struct target_pt_regs *regs, 282 struct image_info *infop) 283 { 284 abi_long stack = infop->start_stack; 285 memset(regs, 0, sizeof(*regs)); 286 287 regs->ARM_cpsr = 0x10; 288 if (infop->entry & 1) 289 regs->ARM_cpsr |= CPSR_T; 290 regs->ARM_pc = infop->entry & 0xfffffffe; 291 regs->ARM_sp = infop->start_stack; 292 /* FIXME - what to for failure of get_user()? */ 293 get_user_ual(regs->ARM_r2, stack + 8); /* envp */ 294 get_user_ual(regs->ARM_r1, stack + 4); /* envp */ 295 /* XXX: it seems that r0 is zeroed after ! */ 296 regs->ARM_r0 = 0; 297 /* For uClinux PIC binaries. */ 298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 299 regs->ARM_r10 = infop->start_data; 300 } 301 302 #define ELF_NREG 18 303 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 304 305 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 306 { 307 (*regs)[0] = tswapreg(env->regs[0]); 308 (*regs)[1] = tswapreg(env->regs[1]); 309 (*regs)[2] = tswapreg(env->regs[2]); 310 (*regs)[3] = tswapreg(env->regs[3]); 311 (*regs)[4] = tswapreg(env->regs[4]); 312 (*regs)[5] = tswapreg(env->regs[5]); 313 (*regs)[6] = tswapreg(env->regs[6]); 314 (*regs)[7] = tswapreg(env->regs[7]); 315 (*regs)[8] = tswapreg(env->regs[8]); 316 (*regs)[9] = tswapreg(env->regs[9]); 317 (*regs)[10] = tswapreg(env->regs[10]); 318 (*regs)[11] = tswapreg(env->regs[11]); 319 (*regs)[12] = tswapreg(env->regs[12]); 320 (*regs)[13] = tswapreg(env->regs[13]); 321 (*regs)[14] = tswapreg(env->regs[14]); 322 (*regs)[15] = tswapreg(env->regs[15]); 323 324 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 325 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 326 } 327 328 #define USE_ELF_CORE_DUMP 329 #define ELF_EXEC_PAGESIZE 4096 330 331 enum 332 { 333 ARM_HWCAP_ARM_SWP = 1 << 0, 334 ARM_HWCAP_ARM_HALF = 1 << 1, 335 ARM_HWCAP_ARM_THUMB = 1 << 2, 336 ARM_HWCAP_ARM_26BIT = 1 << 3, 337 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 338 ARM_HWCAP_ARM_FPA = 1 << 5, 339 ARM_HWCAP_ARM_VFP = 1 << 6, 340 ARM_HWCAP_ARM_EDSP = 1 << 7, 341 ARM_HWCAP_ARM_JAVA = 1 << 8, 342 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 343 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 344 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 345 ARM_HWCAP_ARM_NEON = 1 << 12, 346 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 347 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 348 ARM_HWCAP_ARM_TLS = 1 << 15, 349 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 350 ARM_HWCAP_ARM_IDIVA = 1 << 17, 351 ARM_HWCAP_ARM_IDIVT = 1 << 18, 352 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 353 ARM_HWCAP_ARM_LPAE = 1 << 20, 354 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 355 }; 356 357 enum { 358 ARM_HWCAP2_ARM_AES = 1 << 0, 359 ARM_HWCAP2_ARM_PMULL = 1 << 1, 360 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 361 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 362 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 363 }; 364 365 /* The commpage only exists for 32 bit kernels */ 366 367 #define TARGET_HAS_VALIDATE_GUEST_SPACE 368 /* Return 1 if the proposed guest space is suitable for the guest. 369 * Return 0 if the proposed guest space isn't suitable, but another 370 * address space should be tried. 371 * Return -1 if there is no way the proposed guest space can be 372 * valid regardless of the base. 373 * The guest code may leave a page mapped and populate it if the 374 * address is suitable. 375 */ 376 static int validate_guest_space(unsigned long guest_base, 377 unsigned long guest_size) 378 { 379 unsigned long real_start, test_page_addr; 380 381 /* We need to check that we can force a fault on access to the 382 * commpage at 0xffff0fxx 383 */ 384 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 385 386 /* If the commpage lies within the already allocated guest space, 387 * then there is no way we can allocate it. 388 */ 389 if (test_page_addr >= guest_base 390 && test_page_addr <= (guest_base + guest_size)) { 391 return -1; 392 } 393 394 /* Note it needs to be writeable to let us initialise it */ 395 real_start = (unsigned long) 396 mmap((void *)test_page_addr, qemu_host_page_size, 397 PROT_READ | PROT_WRITE, 398 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 399 400 /* If we can't map it then try another address */ 401 if (real_start == -1ul) { 402 return 0; 403 } 404 405 if (real_start != test_page_addr) { 406 /* OS didn't put the page where we asked - unmap and reject */ 407 munmap((void *)real_start, qemu_host_page_size); 408 return 0; 409 } 410 411 /* Leave the page mapped 412 * Populate it (mmap should have left it all 0'd) 413 */ 414 415 /* Kernel helper versions */ 416 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 417 418 /* Now it's populated make it RO */ 419 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 420 perror("Protecting guest commpage"); 421 exit(-1); 422 } 423 424 return 1; /* All good */ 425 } 426 427 #define ELF_HWCAP get_elf_hwcap() 428 #define ELF_HWCAP2 get_elf_hwcap2() 429 430 static uint32_t get_elf_hwcap(void) 431 { 432 ARMCPU *cpu = ARM_CPU(thread_cpu); 433 uint32_t hwcaps = 0; 434 435 hwcaps |= ARM_HWCAP_ARM_SWP; 436 hwcaps |= ARM_HWCAP_ARM_HALF; 437 hwcaps |= ARM_HWCAP_ARM_THUMB; 438 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 439 440 /* probe for the extra features */ 441 #define GET_FEATURE(feat, hwcap) \ 442 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 444 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 445 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 446 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 447 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 448 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 450 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 451 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 452 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 453 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 454 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 455 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 456 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 457 * to our VFP_FP16 feature bit. 458 */ 459 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 460 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 461 462 return hwcaps; 463 } 464 465 static uint32_t get_elf_hwcap2(void) 466 { 467 ARMCPU *cpu = ARM_CPU(thread_cpu); 468 uint32_t hwcaps = 0; 469 470 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 471 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 472 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 473 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 474 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 475 return hwcaps; 476 } 477 478 #undef GET_FEATURE 479 480 #else 481 /* 64 bit ARM definitions */ 482 #define ELF_START_MMAP 0x80000000 483 484 #define elf_check_arch(x) ((x) == ELF_MACHINE) 485 486 #define ELF_ARCH ELF_MACHINE 487 #define ELF_CLASS ELFCLASS64 488 #define ELF_PLATFORM "aarch64" 489 490 static inline void init_thread(struct target_pt_regs *regs, 491 struct image_info *infop) 492 { 493 abi_long stack = infop->start_stack; 494 memset(regs, 0, sizeof(*regs)); 495 496 regs->pc = infop->entry & ~0x3ULL; 497 regs->sp = stack; 498 } 499 500 #define ELF_NREG 34 501 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 502 503 static void elf_core_copy_regs(target_elf_gregset_t *regs, 504 const CPUARMState *env) 505 { 506 int i; 507 508 for (i = 0; i < 32; i++) { 509 (*regs)[i] = tswapreg(env->xregs[i]); 510 } 511 (*regs)[32] = tswapreg(env->pc); 512 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 513 } 514 515 #define USE_ELF_CORE_DUMP 516 #define ELF_EXEC_PAGESIZE 4096 517 518 enum { 519 ARM_HWCAP_A64_FP = 1 << 0, 520 ARM_HWCAP_A64_ASIMD = 1 << 1, 521 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 522 ARM_HWCAP_A64_AES = 1 << 3, 523 ARM_HWCAP_A64_PMULL = 1 << 4, 524 ARM_HWCAP_A64_SHA1 = 1 << 5, 525 ARM_HWCAP_A64_SHA2 = 1 << 6, 526 ARM_HWCAP_A64_CRC32 = 1 << 7, 527 }; 528 529 #define ELF_HWCAP get_elf_hwcap() 530 531 static uint32_t get_elf_hwcap(void) 532 { 533 ARMCPU *cpu = ARM_CPU(thread_cpu); 534 uint32_t hwcaps = 0; 535 536 hwcaps |= ARM_HWCAP_A64_FP; 537 hwcaps |= ARM_HWCAP_A64_ASIMD; 538 539 /* probe for the extra features */ 540 #define GET_FEATURE(feat, hwcap) \ 541 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 542 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 543 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 544 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 545 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 546 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 547 #undef GET_FEATURE 548 549 return hwcaps; 550 } 551 552 #endif /* not TARGET_AARCH64 */ 553 #endif /* TARGET_ARM */ 554 555 #ifdef TARGET_UNICORE32 556 557 #define ELF_START_MMAP 0x80000000 558 559 #define elf_check_arch(x) ((x) == EM_UNICORE32) 560 561 #define ELF_CLASS ELFCLASS32 562 #define ELF_DATA ELFDATA2LSB 563 #define ELF_ARCH EM_UNICORE32 564 565 static inline void init_thread(struct target_pt_regs *regs, 566 struct image_info *infop) 567 { 568 abi_long stack = infop->start_stack; 569 memset(regs, 0, sizeof(*regs)); 570 regs->UC32_REG_asr = 0x10; 571 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 572 regs->UC32_REG_sp = infop->start_stack; 573 /* FIXME - what to for failure of get_user()? */ 574 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 575 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 576 /* XXX: it seems that r0 is zeroed after ! */ 577 regs->UC32_REG_00 = 0; 578 } 579 580 #define ELF_NREG 34 581 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 582 583 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 584 { 585 (*regs)[0] = env->regs[0]; 586 (*regs)[1] = env->regs[1]; 587 (*regs)[2] = env->regs[2]; 588 (*regs)[3] = env->regs[3]; 589 (*regs)[4] = env->regs[4]; 590 (*regs)[5] = env->regs[5]; 591 (*regs)[6] = env->regs[6]; 592 (*regs)[7] = env->regs[7]; 593 (*regs)[8] = env->regs[8]; 594 (*regs)[9] = env->regs[9]; 595 (*regs)[10] = env->regs[10]; 596 (*regs)[11] = env->regs[11]; 597 (*regs)[12] = env->regs[12]; 598 (*regs)[13] = env->regs[13]; 599 (*regs)[14] = env->regs[14]; 600 (*regs)[15] = env->regs[15]; 601 (*regs)[16] = env->regs[16]; 602 (*regs)[17] = env->regs[17]; 603 (*regs)[18] = env->regs[18]; 604 (*regs)[19] = env->regs[19]; 605 (*regs)[20] = env->regs[20]; 606 (*regs)[21] = env->regs[21]; 607 (*regs)[22] = env->regs[22]; 608 (*regs)[23] = env->regs[23]; 609 (*regs)[24] = env->regs[24]; 610 (*regs)[25] = env->regs[25]; 611 (*regs)[26] = env->regs[26]; 612 (*regs)[27] = env->regs[27]; 613 (*regs)[28] = env->regs[28]; 614 (*regs)[29] = env->regs[29]; 615 (*regs)[30] = env->regs[30]; 616 (*regs)[31] = env->regs[31]; 617 618 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 619 (*regs)[33] = env->regs[0]; /* XXX */ 620 } 621 622 #define USE_ELF_CORE_DUMP 623 #define ELF_EXEC_PAGESIZE 4096 624 625 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 626 627 #endif 628 629 #ifdef TARGET_SPARC 630 #ifdef TARGET_SPARC64 631 632 #define ELF_START_MMAP 0x80000000 633 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 634 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 635 #ifndef TARGET_ABI32 636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 637 #else 638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 639 #endif 640 641 #define ELF_CLASS ELFCLASS64 642 #define ELF_ARCH EM_SPARCV9 643 644 #define STACK_BIAS 2047 645 646 static inline void init_thread(struct target_pt_regs *regs, 647 struct image_info *infop) 648 { 649 #ifndef TARGET_ABI32 650 regs->tstate = 0; 651 #endif 652 regs->pc = infop->entry; 653 regs->npc = regs->pc + 4; 654 regs->y = 0; 655 #ifdef TARGET_ABI32 656 regs->u_regs[14] = infop->start_stack - 16 * 4; 657 #else 658 if (personality(infop->personality) == PER_LINUX32) 659 regs->u_regs[14] = infop->start_stack - 16 * 4; 660 else 661 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 662 #endif 663 } 664 665 #else 666 #define ELF_START_MMAP 0x80000000 667 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 668 | HWCAP_SPARC_MULDIV) 669 #define elf_check_arch(x) ( (x) == EM_SPARC ) 670 671 #define ELF_CLASS ELFCLASS32 672 #define ELF_ARCH EM_SPARC 673 674 static inline void init_thread(struct target_pt_regs *regs, 675 struct image_info *infop) 676 { 677 regs->psr = 0; 678 regs->pc = infop->entry; 679 regs->npc = regs->pc + 4; 680 regs->y = 0; 681 regs->u_regs[14] = infop->start_stack - 16 * 4; 682 } 683 684 #endif 685 #endif 686 687 #ifdef TARGET_PPC 688 689 #define ELF_START_MMAP 0x80000000 690 691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 692 693 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 694 695 #define ELF_CLASS ELFCLASS64 696 697 #else 698 699 #define elf_check_arch(x) ( (x) == EM_PPC ) 700 701 #define ELF_CLASS ELFCLASS32 702 703 #endif 704 705 #define ELF_ARCH EM_PPC 706 707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 708 See arch/powerpc/include/asm/cputable.h. */ 709 enum { 710 QEMU_PPC_FEATURE_32 = 0x80000000, 711 QEMU_PPC_FEATURE_64 = 0x40000000, 712 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 713 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 714 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 715 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 716 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 717 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 718 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 719 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 720 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 721 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 722 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 723 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 724 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 725 QEMU_PPC_FEATURE_CELL = 0x00010000, 726 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 727 QEMU_PPC_FEATURE_SMT = 0x00004000, 728 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 729 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 730 QEMU_PPC_FEATURE_PA6T = 0x00000800, 731 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 732 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 733 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 734 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 735 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 736 737 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 738 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 739 740 /* Feature definitions in AT_HWCAP2. */ 741 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 742 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 743 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 744 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 745 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 746 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 747 }; 748 749 #define ELF_HWCAP get_elf_hwcap() 750 751 static uint32_t get_elf_hwcap(void) 752 { 753 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 754 uint32_t features = 0; 755 756 /* We don't have to be terribly complete here; the high points are 757 Altivec/FP/SPE support. Anything else is just a bonus. */ 758 #define GET_FEATURE(flag, feature) \ 759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 760 #define GET_FEATURE2(flag, feature) \ 761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 762 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 763 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 764 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 765 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 766 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 767 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 768 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 769 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 770 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 771 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 772 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 773 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 774 QEMU_PPC_FEATURE_ARCH_2_06); 775 #undef GET_FEATURE 776 #undef GET_FEATURE2 777 778 return features; 779 } 780 781 #define ELF_HWCAP2 get_elf_hwcap2() 782 783 static uint32_t get_elf_hwcap2(void) 784 { 785 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 786 uint32_t features = 0; 787 788 #define GET_FEATURE(flag, feature) \ 789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 790 #define GET_FEATURE2(flag, feature) \ 791 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 792 793 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 794 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 795 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 796 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 797 798 #undef GET_FEATURE 799 #undef GET_FEATURE2 800 801 return features; 802 } 803 804 /* 805 * The requirements here are: 806 * - keep the final alignment of sp (sp & 0xf) 807 * - make sure the 32-bit value at the first 16 byte aligned position of 808 * AUXV is greater than 16 for glibc compatibility. 809 * AT_IGNOREPPC is used for that. 810 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 811 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 812 */ 813 #define DLINFO_ARCH_ITEMS 5 814 #define ARCH_DLINFO \ 815 do { \ 816 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 817 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 818 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 819 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 820 /* \ 821 * Now handle glibc compatibility. \ 822 */ \ 823 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 824 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 825 } while (0) 826 827 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 828 { 829 _regs->gpr[1] = infop->start_stack; 830 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 831 if (get_ppc64_abi(infop) < 2) { 832 uint64_t val; 833 get_user_u64(val, infop->entry + 8); 834 _regs->gpr[2] = val + infop->load_bias; 835 get_user_u64(val, infop->entry); 836 infop->entry = val + infop->load_bias; 837 } else { 838 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 839 } 840 #endif 841 _regs->nip = infop->entry; 842 } 843 844 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 845 #define ELF_NREG 48 846 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 847 848 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 849 { 850 int i; 851 target_ulong ccr = 0; 852 853 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 854 (*regs)[i] = tswapreg(env->gpr[i]); 855 } 856 857 (*regs)[32] = tswapreg(env->nip); 858 (*regs)[33] = tswapreg(env->msr); 859 (*regs)[35] = tswapreg(env->ctr); 860 (*regs)[36] = tswapreg(env->lr); 861 (*regs)[37] = tswapreg(env->xer); 862 863 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 864 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 865 } 866 (*regs)[38] = tswapreg(ccr); 867 } 868 869 #define USE_ELF_CORE_DUMP 870 #define ELF_EXEC_PAGESIZE 4096 871 872 #endif 873 874 #ifdef TARGET_MIPS 875 876 #define ELF_START_MMAP 0x80000000 877 878 #define elf_check_arch(x) ( (x) == EM_MIPS ) 879 880 #ifdef TARGET_MIPS64 881 #define ELF_CLASS ELFCLASS64 882 #else 883 #define ELF_CLASS ELFCLASS32 884 #endif 885 #define ELF_ARCH EM_MIPS 886 887 static inline void init_thread(struct target_pt_regs *regs, 888 struct image_info *infop) 889 { 890 regs->cp0_status = 2 << CP0St_KSU; 891 regs->cp0_epc = infop->entry; 892 regs->regs[29] = infop->start_stack; 893 } 894 895 /* See linux kernel: arch/mips/include/asm/elf.h. */ 896 #define ELF_NREG 45 897 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 898 899 /* See linux kernel: arch/mips/include/asm/reg.h. */ 900 enum { 901 #ifdef TARGET_MIPS64 902 TARGET_EF_R0 = 0, 903 #else 904 TARGET_EF_R0 = 6, 905 #endif 906 TARGET_EF_R26 = TARGET_EF_R0 + 26, 907 TARGET_EF_R27 = TARGET_EF_R0 + 27, 908 TARGET_EF_LO = TARGET_EF_R0 + 32, 909 TARGET_EF_HI = TARGET_EF_R0 + 33, 910 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 911 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 912 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 913 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 914 }; 915 916 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 917 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 918 { 919 int i; 920 921 for (i = 0; i < TARGET_EF_R0; i++) { 922 (*regs)[i] = 0; 923 } 924 (*regs)[TARGET_EF_R0] = 0; 925 926 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 927 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 928 } 929 930 (*regs)[TARGET_EF_R26] = 0; 931 (*regs)[TARGET_EF_R27] = 0; 932 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 933 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 934 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 935 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 936 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 937 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 938 } 939 940 #define USE_ELF_CORE_DUMP 941 #define ELF_EXEC_PAGESIZE 4096 942 943 #endif /* TARGET_MIPS */ 944 945 #ifdef TARGET_MICROBLAZE 946 947 #define ELF_START_MMAP 0x80000000 948 949 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 950 951 #define ELF_CLASS ELFCLASS32 952 #define ELF_ARCH EM_MICROBLAZE 953 954 static inline void init_thread(struct target_pt_regs *regs, 955 struct image_info *infop) 956 { 957 regs->pc = infop->entry; 958 regs->r1 = infop->start_stack; 959 960 } 961 962 #define ELF_EXEC_PAGESIZE 4096 963 964 #define USE_ELF_CORE_DUMP 965 #define ELF_NREG 38 966 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 967 968 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 969 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 970 { 971 int i, pos = 0; 972 973 for (i = 0; i < 32; i++) { 974 (*regs)[pos++] = tswapreg(env->regs[i]); 975 } 976 977 for (i = 0; i < 6; i++) { 978 (*regs)[pos++] = tswapreg(env->sregs[i]); 979 } 980 } 981 982 #endif /* TARGET_MICROBLAZE */ 983 984 #ifdef TARGET_OPENRISC 985 986 #define ELF_START_MMAP 0x08000000 987 988 #define elf_check_arch(x) ((x) == EM_OPENRISC) 989 990 #define ELF_ARCH EM_OPENRISC 991 #define ELF_CLASS ELFCLASS32 992 #define ELF_DATA ELFDATA2MSB 993 994 static inline void init_thread(struct target_pt_regs *regs, 995 struct image_info *infop) 996 { 997 regs->pc = infop->entry; 998 regs->gpr[1] = infop->start_stack; 999 } 1000 1001 #define USE_ELF_CORE_DUMP 1002 #define ELF_EXEC_PAGESIZE 8192 1003 1004 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1005 #define ELF_NREG 34 /* gprs and pc, sr */ 1006 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1007 1008 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1009 const CPUOpenRISCState *env) 1010 { 1011 int i; 1012 1013 for (i = 0; i < 32; i++) { 1014 (*regs)[i] = tswapreg(env->gpr[i]); 1015 } 1016 1017 (*regs)[32] = tswapreg(env->pc); 1018 (*regs)[33] = tswapreg(env->sr); 1019 } 1020 #define ELF_HWCAP 0 1021 #define ELF_PLATFORM NULL 1022 1023 #endif /* TARGET_OPENRISC */ 1024 1025 #ifdef TARGET_SH4 1026 1027 #define ELF_START_MMAP 0x80000000 1028 1029 #define elf_check_arch(x) ( (x) == EM_SH ) 1030 1031 #define ELF_CLASS ELFCLASS32 1032 #define ELF_ARCH EM_SH 1033 1034 static inline void init_thread(struct target_pt_regs *regs, 1035 struct image_info *infop) 1036 { 1037 /* Check other registers XXXXX */ 1038 regs->pc = infop->entry; 1039 regs->regs[15] = infop->start_stack; 1040 } 1041 1042 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1043 #define ELF_NREG 23 1044 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1045 1046 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1047 enum { 1048 TARGET_REG_PC = 16, 1049 TARGET_REG_PR = 17, 1050 TARGET_REG_SR = 18, 1051 TARGET_REG_GBR = 19, 1052 TARGET_REG_MACH = 20, 1053 TARGET_REG_MACL = 21, 1054 TARGET_REG_SYSCALL = 22 1055 }; 1056 1057 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1058 const CPUSH4State *env) 1059 { 1060 int i; 1061 1062 for (i = 0; i < 16; i++) { 1063 (*regs[i]) = tswapreg(env->gregs[i]); 1064 } 1065 1066 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1067 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1068 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1069 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1070 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1071 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1072 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1073 } 1074 1075 #define USE_ELF_CORE_DUMP 1076 #define ELF_EXEC_PAGESIZE 4096 1077 1078 enum { 1079 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1080 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1081 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1082 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1083 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1084 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1085 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1086 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1087 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1088 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1089 }; 1090 1091 #define ELF_HWCAP get_elf_hwcap() 1092 1093 static uint32_t get_elf_hwcap(void) 1094 { 1095 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1096 uint32_t hwcap = 0; 1097 1098 hwcap |= SH_CPU_HAS_FPU; 1099 1100 if (cpu->env.features & SH_FEATURE_SH4A) { 1101 hwcap |= SH_CPU_HAS_LLSC; 1102 } 1103 1104 return hwcap; 1105 } 1106 1107 #endif 1108 1109 #ifdef TARGET_CRIS 1110 1111 #define ELF_START_MMAP 0x80000000 1112 1113 #define elf_check_arch(x) ( (x) == EM_CRIS ) 1114 1115 #define ELF_CLASS ELFCLASS32 1116 #define ELF_ARCH EM_CRIS 1117 1118 static inline void init_thread(struct target_pt_regs *regs, 1119 struct image_info *infop) 1120 { 1121 regs->erp = infop->entry; 1122 } 1123 1124 #define ELF_EXEC_PAGESIZE 8192 1125 1126 #endif 1127 1128 #ifdef TARGET_M68K 1129 1130 #define ELF_START_MMAP 0x80000000 1131 1132 #define elf_check_arch(x) ( (x) == EM_68K ) 1133 1134 #define ELF_CLASS ELFCLASS32 1135 #define ELF_ARCH EM_68K 1136 1137 /* ??? Does this need to do anything? 1138 #define ELF_PLAT_INIT(_r) */ 1139 1140 static inline void init_thread(struct target_pt_regs *regs, 1141 struct image_info *infop) 1142 { 1143 regs->usp = infop->start_stack; 1144 regs->sr = 0; 1145 regs->pc = infop->entry; 1146 } 1147 1148 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1149 #define ELF_NREG 20 1150 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1151 1152 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1153 { 1154 (*regs)[0] = tswapreg(env->dregs[1]); 1155 (*regs)[1] = tswapreg(env->dregs[2]); 1156 (*regs)[2] = tswapreg(env->dregs[3]); 1157 (*regs)[3] = tswapreg(env->dregs[4]); 1158 (*regs)[4] = tswapreg(env->dregs[5]); 1159 (*regs)[5] = tswapreg(env->dregs[6]); 1160 (*regs)[6] = tswapreg(env->dregs[7]); 1161 (*regs)[7] = tswapreg(env->aregs[0]); 1162 (*regs)[8] = tswapreg(env->aregs[1]); 1163 (*regs)[9] = tswapreg(env->aregs[2]); 1164 (*regs)[10] = tswapreg(env->aregs[3]); 1165 (*regs)[11] = tswapreg(env->aregs[4]); 1166 (*regs)[12] = tswapreg(env->aregs[5]); 1167 (*regs)[13] = tswapreg(env->aregs[6]); 1168 (*regs)[14] = tswapreg(env->dregs[0]); 1169 (*regs)[15] = tswapreg(env->aregs[7]); 1170 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1171 (*regs)[17] = tswapreg(env->sr); 1172 (*regs)[18] = tswapreg(env->pc); 1173 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1174 } 1175 1176 #define USE_ELF_CORE_DUMP 1177 #define ELF_EXEC_PAGESIZE 8192 1178 1179 #endif 1180 1181 #ifdef TARGET_ALPHA 1182 1183 #define ELF_START_MMAP (0x30000000000ULL) 1184 1185 #define elf_check_arch(x) ( (x) == ELF_ARCH ) 1186 1187 #define ELF_CLASS ELFCLASS64 1188 #define ELF_ARCH EM_ALPHA 1189 1190 static inline void init_thread(struct target_pt_regs *regs, 1191 struct image_info *infop) 1192 { 1193 regs->pc = infop->entry; 1194 regs->ps = 8; 1195 regs->usp = infop->start_stack; 1196 } 1197 1198 #define ELF_EXEC_PAGESIZE 8192 1199 1200 #endif /* TARGET_ALPHA */ 1201 1202 #ifdef TARGET_S390X 1203 1204 #define ELF_START_MMAP (0x20000000000ULL) 1205 1206 #define elf_check_arch(x) ( (x) == ELF_ARCH ) 1207 1208 #define ELF_CLASS ELFCLASS64 1209 #define ELF_DATA ELFDATA2MSB 1210 #define ELF_ARCH EM_S390 1211 1212 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1213 { 1214 regs->psw.addr = infop->entry; 1215 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1216 regs->gprs[15] = infop->start_stack; 1217 } 1218 1219 #endif /* TARGET_S390X */ 1220 1221 #ifndef ELF_PLATFORM 1222 #define ELF_PLATFORM (NULL) 1223 #endif 1224 1225 #ifndef ELF_HWCAP 1226 #define ELF_HWCAP 0 1227 #endif 1228 1229 #ifdef TARGET_ABI32 1230 #undef ELF_CLASS 1231 #define ELF_CLASS ELFCLASS32 1232 #undef bswaptls 1233 #define bswaptls(ptr) bswap32s(ptr) 1234 #endif 1235 1236 #include "elf.h" 1237 1238 struct exec 1239 { 1240 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1241 unsigned int a_text; /* length of text, in bytes */ 1242 unsigned int a_data; /* length of data, in bytes */ 1243 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1244 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1245 unsigned int a_entry; /* start address */ 1246 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1247 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1248 }; 1249 1250 1251 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1252 #define OMAGIC 0407 1253 #define NMAGIC 0410 1254 #define ZMAGIC 0413 1255 #define QMAGIC 0314 1256 1257 /* Necessary parameters */ 1258 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1259 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) 1260 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1261 1262 #define DLINFO_ITEMS 14 1263 1264 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1265 { 1266 memcpy(to, from, n); 1267 } 1268 1269 #ifdef BSWAP_NEEDED 1270 static void bswap_ehdr(struct elfhdr *ehdr) 1271 { 1272 bswap16s(&ehdr->e_type); /* Object file type */ 1273 bswap16s(&ehdr->e_machine); /* Architecture */ 1274 bswap32s(&ehdr->e_version); /* Object file version */ 1275 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1276 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1277 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1278 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1279 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1280 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1281 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1282 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1283 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1284 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1285 } 1286 1287 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1288 { 1289 int i; 1290 for (i = 0; i < phnum; ++i, ++phdr) { 1291 bswap32s(&phdr->p_type); /* Segment type */ 1292 bswap32s(&phdr->p_flags); /* Segment flags */ 1293 bswaptls(&phdr->p_offset); /* Segment file offset */ 1294 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1295 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1296 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1297 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1298 bswaptls(&phdr->p_align); /* Segment alignment */ 1299 } 1300 } 1301 1302 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1303 { 1304 int i; 1305 for (i = 0; i < shnum; ++i, ++shdr) { 1306 bswap32s(&shdr->sh_name); 1307 bswap32s(&shdr->sh_type); 1308 bswaptls(&shdr->sh_flags); 1309 bswaptls(&shdr->sh_addr); 1310 bswaptls(&shdr->sh_offset); 1311 bswaptls(&shdr->sh_size); 1312 bswap32s(&shdr->sh_link); 1313 bswap32s(&shdr->sh_info); 1314 bswaptls(&shdr->sh_addralign); 1315 bswaptls(&shdr->sh_entsize); 1316 } 1317 } 1318 1319 static void bswap_sym(struct elf_sym *sym) 1320 { 1321 bswap32s(&sym->st_name); 1322 bswaptls(&sym->st_value); 1323 bswaptls(&sym->st_size); 1324 bswap16s(&sym->st_shndx); 1325 } 1326 #else 1327 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1328 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1329 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1330 static inline void bswap_sym(struct elf_sym *sym) { } 1331 #endif 1332 1333 #ifdef USE_ELF_CORE_DUMP 1334 static int elf_core_dump(int, const CPUArchState *); 1335 #endif /* USE_ELF_CORE_DUMP */ 1336 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1337 1338 /* Verify the portions of EHDR within E_IDENT for the target. 1339 This can be performed before bswapping the entire header. */ 1340 static bool elf_check_ident(struct elfhdr *ehdr) 1341 { 1342 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1343 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1344 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1345 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1346 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1347 && ehdr->e_ident[EI_DATA] == ELF_DATA 1348 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1349 } 1350 1351 /* Verify the portions of EHDR outside of E_IDENT for the target. 1352 This has to wait until after bswapping the header. */ 1353 static bool elf_check_ehdr(struct elfhdr *ehdr) 1354 { 1355 return (elf_check_arch(ehdr->e_machine) 1356 && ehdr->e_ehsize == sizeof(struct elfhdr) 1357 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1358 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1359 } 1360 1361 /* 1362 * 'copy_elf_strings()' copies argument/envelope strings from user 1363 * memory to free pages in kernel mem. These are in a format ready 1364 * to be put directly into the top of new user memory. 1365 * 1366 */ 1367 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, 1368 abi_ulong p) 1369 { 1370 char *tmp, *tmp1, *pag = NULL; 1371 int len, offset = 0; 1372 1373 if (!p) { 1374 return 0; /* bullet-proofing */ 1375 } 1376 while (argc-- > 0) { 1377 tmp = argv[argc]; 1378 if (!tmp) { 1379 fprintf(stderr, "VFS: argc is wrong"); 1380 exit(-1); 1381 } 1382 tmp1 = tmp; 1383 while (*tmp++); 1384 len = tmp - tmp1; 1385 if (p < len) { /* this shouldn't happen - 128kB */ 1386 return 0; 1387 } 1388 while (len) { 1389 --p; --tmp; --len; 1390 if (--offset < 0) { 1391 offset = p % TARGET_PAGE_SIZE; 1392 pag = (char *)page[p/TARGET_PAGE_SIZE]; 1393 if (!pag) { 1394 pag = g_try_malloc0(TARGET_PAGE_SIZE); 1395 page[p/TARGET_PAGE_SIZE] = pag; 1396 if (!pag) 1397 return 0; 1398 } 1399 } 1400 if (len == 0 || offset == 0) { 1401 *(pag + offset) = *tmp; 1402 } 1403 else { 1404 int bytes_to_copy = (len > offset) ? offset : len; 1405 tmp -= bytes_to_copy; 1406 p -= bytes_to_copy; 1407 offset -= bytes_to_copy; 1408 len -= bytes_to_copy; 1409 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); 1410 } 1411 } 1412 } 1413 return p; 1414 } 1415 1416 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, 1417 struct image_info *info) 1418 { 1419 abi_ulong stack_base, size, error, guard; 1420 int i; 1421 1422 /* Create enough stack to hold everything. If we don't use 1423 it for args, we'll use it for something else. */ 1424 size = guest_stack_size; 1425 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) { 1426 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; 1427 } 1428 guard = TARGET_PAGE_SIZE; 1429 if (guard < qemu_real_host_page_size) { 1430 guard = qemu_real_host_page_size; 1431 } 1432 1433 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1434 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1435 if (error == -1) { 1436 perror("mmap stack"); 1437 exit(-1); 1438 } 1439 1440 /* We reserve one extra page at the top of the stack as guard. */ 1441 target_mprotect(error, guard, PROT_NONE); 1442 1443 info->stack_limit = error + guard; 1444 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; 1445 p += stack_base; 1446 1447 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 1448 if (bprm->page[i]) { 1449 info->rss++; 1450 /* FIXME - check return value of memcpy_to_target() for failure */ 1451 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); 1452 g_free(bprm->page[i]); 1453 } 1454 stack_base += TARGET_PAGE_SIZE; 1455 } 1456 return p; 1457 } 1458 1459 /* Map and zero the bss. We need to explicitly zero any fractional pages 1460 after the data section (i.e. bss). */ 1461 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1462 { 1463 uintptr_t host_start, host_map_start, host_end; 1464 1465 last_bss = TARGET_PAGE_ALIGN(last_bss); 1466 1467 /* ??? There is confusion between qemu_real_host_page_size and 1468 qemu_host_page_size here and elsewhere in target_mmap, which 1469 may lead to the end of the data section mapping from the file 1470 not being mapped. At least there was an explicit test and 1471 comment for that here, suggesting that "the file size must 1472 be known". The comment probably pre-dates the introduction 1473 of the fstat system call in target_mmap which does in fact 1474 find out the size. What isn't clear is if the workaround 1475 here is still actually needed. For now, continue with it, 1476 but merge it with the "normal" mmap that would allocate the bss. */ 1477 1478 host_start = (uintptr_t) g2h(elf_bss); 1479 host_end = (uintptr_t) g2h(last_bss); 1480 host_map_start = (host_start + qemu_real_host_page_size - 1); 1481 host_map_start &= -qemu_real_host_page_size; 1482 1483 if (host_map_start < host_end) { 1484 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1485 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1486 if (p == MAP_FAILED) { 1487 perror("cannot mmap brk"); 1488 exit(-1); 1489 } 1490 } 1491 1492 /* Ensure that the bss page(s) are valid */ 1493 if ((page_get_flags(last_bss-1) & prot) != prot) { 1494 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1495 } 1496 1497 if (host_start < host_map_start) { 1498 memset((void *)host_start, 0, host_map_start - host_start); 1499 } 1500 } 1501 1502 #ifdef CONFIG_USE_FDPIC 1503 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1504 { 1505 uint16_t n; 1506 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1507 1508 /* elf32_fdpic_loadseg */ 1509 n = info->nsegs; 1510 while (n--) { 1511 sp -= 12; 1512 put_user_u32(loadsegs[n].addr, sp+0); 1513 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1514 put_user_u32(loadsegs[n].p_memsz, sp+8); 1515 } 1516 1517 /* elf32_fdpic_loadmap */ 1518 sp -= 4; 1519 put_user_u16(0, sp+0); /* version */ 1520 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1521 1522 info->personality = PER_LINUX_FDPIC; 1523 info->loadmap_addr = sp; 1524 1525 return sp; 1526 } 1527 #endif 1528 1529 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1530 struct elfhdr *exec, 1531 struct image_info *info, 1532 struct image_info *interp_info) 1533 { 1534 abi_ulong sp; 1535 abi_ulong sp_auxv; 1536 int size; 1537 int i; 1538 abi_ulong u_rand_bytes; 1539 uint8_t k_rand_bytes[16]; 1540 abi_ulong u_platform; 1541 const char *k_platform; 1542 const int n = sizeof(elf_addr_t); 1543 1544 sp = p; 1545 1546 #ifdef CONFIG_USE_FDPIC 1547 /* Needs to be before we load the env/argc/... */ 1548 if (elf_is_fdpic(exec)) { 1549 /* Need 4 byte alignment for these structs */ 1550 sp &= ~3; 1551 sp = loader_build_fdpic_loadmap(info, sp); 1552 info->other_info = interp_info; 1553 if (interp_info) { 1554 interp_info->other_info = info; 1555 sp = loader_build_fdpic_loadmap(interp_info, sp); 1556 } 1557 } 1558 #endif 1559 1560 u_platform = 0; 1561 k_platform = ELF_PLATFORM; 1562 if (k_platform) { 1563 size_t len = strlen(k_platform) + 1; 1564 sp -= (len + n - 1) & ~(n - 1); 1565 u_platform = sp; 1566 /* FIXME - check return value of memcpy_to_target() for failure */ 1567 memcpy_to_target(sp, k_platform, len); 1568 } 1569 1570 /* 1571 * Generate 16 random bytes for userspace PRNG seeding (not 1572 * cryptically secure but it's not the aim of QEMU). 1573 */ 1574 for (i = 0; i < 16; i++) { 1575 k_rand_bytes[i] = rand(); 1576 } 1577 sp -= 16; 1578 u_rand_bytes = sp; 1579 /* FIXME - check return value of memcpy_to_target() for failure */ 1580 memcpy_to_target(sp, k_rand_bytes, 16); 1581 1582 /* 1583 * Force 16 byte _final_ alignment here for generality. 1584 */ 1585 sp = sp &~ (abi_ulong)15; 1586 size = (DLINFO_ITEMS + 1) * 2; 1587 if (k_platform) 1588 size += 2; 1589 #ifdef DLINFO_ARCH_ITEMS 1590 size += DLINFO_ARCH_ITEMS * 2; 1591 #endif 1592 #ifdef ELF_HWCAP2 1593 size += 2; 1594 #endif 1595 size += envc + argc + 2; 1596 size += 1; /* argc itself */ 1597 size *= n; 1598 if (size & 15) 1599 sp -= 16 - (size & 15); 1600 1601 /* This is correct because Linux defines 1602 * elf_addr_t as Elf32_Off / Elf64_Off 1603 */ 1604 #define NEW_AUX_ENT(id, val) do { \ 1605 sp -= n; put_user_ual(val, sp); \ 1606 sp -= n; put_user_ual(id, sp); \ 1607 } while(0) 1608 1609 sp_auxv = sp; 1610 NEW_AUX_ENT (AT_NULL, 0); 1611 1612 /* There must be exactly DLINFO_ITEMS entries here. */ 1613 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1614 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1615 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1616 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1617 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1618 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1619 NEW_AUX_ENT(AT_ENTRY, info->entry); 1620 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1621 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1622 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1623 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1624 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1625 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1626 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1627 1628 #ifdef ELF_HWCAP2 1629 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1630 #endif 1631 1632 if (k_platform) 1633 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1634 #ifdef ARCH_DLINFO 1635 /* 1636 * ARCH_DLINFO must come last so platform specific code can enforce 1637 * special alignment requirements on the AUXV if necessary (eg. PPC). 1638 */ 1639 ARCH_DLINFO; 1640 #endif 1641 #undef NEW_AUX_ENT 1642 1643 info->saved_auxv = sp; 1644 info->auxv_len = sp_auxv - sp; 1645 1646 sp = loader_build_argptr(envc, argc, sp, p, 0); 1647 /* Check the right amount of stack was allocated for auxvec, envp & argv. */ 1648 assert(sp_auxv - sp == size); 1649 return sp; 1650 } 1651 1652 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1653 /* If the guest doesn't have a validation function just agree */ 1654 static int validate_guest_space(unsigned long guest_base, 1655 unsigned long guest_size) 1656 { 1657 return 1; 1658 } 1659 #endif 1660 1661 unsigned long init_guest_space(unsigned long host_start, 1662 unsigned long host_size, 1663 unsigned long guest_start, 1664 bool fixed) 1665 { 1666 unsigned long current_start, real_start; 1667 int flags; 1668 1669 assert(host_start || host_size); 1670 1671 /* If just a starting address is given, then just verify that 1672 * address. */ 1673 if (host_start && !host_size) { 1674 if (validate_guest_space(host_start, host_size) == 1) { 1675 return host_start; 1676 } else { 1677 return (unsigned long)-1; 1678 } 1679 } 1680 1681 /* Setup the initial flags and start address. */ 1682 current_start = host_start & qemu_host_page_mask; 1683 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1684 if (fixed) { 1685 flags |= MAP_FIXED; 1686 } 1687 1688 /* Otherwise, a non-zero size region of memory needs to be mapped 1689 * and validated. */ 1690 while (1) { 1691 unsigned long real_size = host_size; 1692 1693 /* Do not use mmap_find_vma here because that is limited to the 1694 * guest address space. We are going to make the 1695 * guest address space fit whatever we're given. 1696 */ 1697 real_start = (unsigned long) 1698 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1699 if (real_start == (unsigned long)-1) { 1700 return (unsigned long)-1; 1701 } 1702 1703 /* Ensure the address is properly aligned. */ 1704 if (real_start & ~qemu_host_page_mask) { 1705 munmap((void *)real_start, host_size); 1706 real_size = host_size + qemu_host_page_size; 1707 real_start = (unsigned long) 1708 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1709 if (real_start == (unsigned long)-1) { 1710 return (unsigned long)-1; 1711 } 1712 real_start = HOST_PAGE_ALIGN(real_start); 1713 } 1714 1715 /* Check to see if the address is valid. */ 1716 if (!host_start || real_start == current_start) { 1717 int valid = validate_guest_space(real_start - guest_start, 1718 real_size); 1719 if (valid == 1) { 1720 break; 1721 } else if (valid == -1) { 1722 return (unsigned long)-1; 1723 } 1724 /* valid == 0, so try again. */ 1725 } 1726 1727 /* That address didn't work. Unmap and try a different one. 1728 * The address the host picked because is typically right at 1729 * the top of the host address space and leaves the guest with 1730 * no usable address space. Resort to a linear search. We 1731 * already compensated for mmap_min_addr, so this should not 1732 * happen often. Probably means we got unlucky and host 1733 * address space randomization put a shared library somewhere 1734 * inconvenient. 1735 */ 1736 munmap((void *)real_start, host_size); 1737 current_start += qemu_host_page_size; 1738 if (host_start == current_start) { 1739 /* Theoretically possible if host doesn't have any suitably 1740 * aligned areas. Normally the first mmap will fail. 1741 */ 1742 return (unsigned long)-1; 1743 } 1744 } 1745 1746 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size); 1747 1748 return real_start; 1749 } 1750 1751 static void probe_guest_base(const char *image_name, 1752 abi_ulong loaddr, abi_ulong hiaddr) 1753 { 1754 /* Probe for a suitable guest base address, if the user has not set 1755 * it explicitly, and set guest_base appropriately. 1756 * In case of error we will print a suitable message and exit. 1757 */ 1758 #if defined(CONFIG_USE_GUEST_BASE) 1759 const char *errmsg; 1760 if (!have_guest_base && !reserved_va) { 1761 unsigned long host_start, real_start, host_size; 1762 1763 /* Round addresses to page boundaries. */ 1764 loaddr &= qemu_host_page_mask; 1765 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1766 1767 if (loaddr < mmap_min_addr) { 1768 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1769 } else { 1770 host_start = loaddr; 1771 if (host_start != loaddr) { 1772 errmsg = "Address overflow loading ELF binary"; 1773 goto exit_errmsg; 1774 } 1775 } 1776 host_size = hiaddr - loaddr; 1777 1778 /* Setup the initial guest memory space with ranges gleaned from 1779 * the ELF image that is being loaded. 1780 */ 1781 real_start = init_guest_space(host_start, host_size, loaddr, false); 1782 if (real_start == (unsigned long)-1) { 1783 errmsg = "Unable to find space for application"; 1784 goto exit_errmsg; 1785 } 1786 guest_base = real_start - loaddr; 1787 1788 qemu_log("Relocating guest address space from 0x" 1789 TARGET_ABI_FMT_lx " to 0x%lx\n", 1790 loaddr, real_start); 1791 } 1792 return; 1793 1794 exit_errmsg: 1795 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1796 exit(-1); 1797 #endif 1798 } 1799 1800 1801 /* Load an ELF image into the address space. 1802 1803 IMAGE_NAME is the filename of the image, to use in error messages. 1804 IMAGE_FD is the open file descriptor for the image. 1805 1806 BPRM_BUF is a copy of the beginning of the file; this of course 1807 contains the elf file header at offset 0. It is assumed that this 1808 buffer is sufficiently aligned to present no problems to the host 1809 in accessing data at aligned offsets within the buffer. 1810 1811 On return: INFO values will be filled in, as necessary or available. */ 1812 1813 static void load_elf_image(const char *image_name, int image_fd, 1814 struct image_info *info, char **pinterp_name, 1815 char bprm_buf[BPRM_BUF_SIZE]) 1816 { 1817 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1818 struct elf_phdr *phdr; 1819 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1820 int i, retval; 1821 const char *errmsg; 1822 1823 /* First of all, some simple consistency checks */ 1824 errmsg = "Invalid ELF image for this architecture"; 1825 if (!elf_check_ident(ehdr)) { 1826 goto exit_errmsg; 1827 } 1828 bswap_ehdr(ehdr); 1829 if (!elf_check_ehdr(ehdr)) { 1830 goto exit_errmsg; 1831 } 1832 1833 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1834 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 1835 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 1836 } else { 1837 phdr = (struct elf_phdr *) alloca(i); 1838 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 1839 if (retval != i) { 1840 goto exit_read; 1841 } 1842 } 1843 bswap_phdr(phdr, ehdr->e_phnum); 1844 1845 #ifdef CONFIG_USE_FDPIC 1846 info->nsegs = 0; 1847 info->pt_dynamic_addr = 0; 1848 #endif 1849 1850 /* Find the maximum size of the image and allocate an appropriate 1851 amount of memory to handle that. */ 1852 loaddr = -1, hiaddr = 0; 1853 for (i = 0; i < ehdr->e_phnum; ++i) { 1854 if (phdr[i].p_type == PT_LOAD) { 1855 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 1856 if (a < loaddr) { 1857 loaddr = a; 1858 } 1859 a = phdr[i].p_vaddr + phdr[i].p_memsz; 1860 if (a > hiaddr) { 1861 hiaddr = a; 1862 } 1863 #ifdef CONFIG_USE_FDPIC 1864 ++info->nsegs; 1865 #endif 1866 } 1867 } 1868 1869 load_addr = loaddr; 1870 if (ehdr->e_type == ET_DYN) { 1871 /* The image indicates that it can be loaded anywhere. Find a 1872 location that can hold the memory space required. If the 1873 image is pre-linked, LOADDR will be non-zero. Since we do 1874 not supply MAP_FIXED here we'll use that address if and 1875 only if it remains available. */ 1876 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 1877 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 1878 -1, 0); 1879 if (load_addr == -1) { 1880 goto exit_perror; 1881 } 1882 } else if (pinterp_name != NULL) { 1883 /* This is the main executable. Make sure that the low 1884 address does not conflict with MMAP_MIN_ADDR or the 1885 QEMU application itself. */ 1886 probe_guest_base(image_name, loaddr, hiaddr); 1887 } 1888 load_bias = load_addr - loaddr; 1889 1890 #ifdef CONFIG_USE_FDPIC 1891 { 1892 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 1893 g_malloc(sizeof(*loadsegs) * info->nsegs); 1894 1895 for (i = 0; i < ehdr->e_phnum; ++i) { 1896 switch (phdr[i].p_type) { 1897 case PT_DYNAMIC: 1898 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 1899 break; 1900 case PT_LOAD: 1901 loadsegs->addr = phdr[i].p_vaddr + load_bias; 1902 loadsegs->p_vaddr = phdr[i].p_vaddr; 1903 loadsegs->p_memsz = phdr[i].p_memsz; 1904 ++loadsegs; 1905 break; 1906 } 1907 } 1908 } 1909 #endif 1910 1911 info->load_bias = load_bias; 1912 info->load_addr = load_addr; 1913 info->entry = ehdr->e_entry + load_bias; 1914 info->start_code = -1; 1915 info->end_code = 0; 1916 info->start_data = -1; 1917 info->end_data = 0; 1918 info->brk = 0; 1919 info->elf_flags = ehdr->e_flags; 1920 1921 for (i = 0; i < ehdr->e_phnum; i++) { 1922 struct elf_phdr *eppnt = phdr + i; 1923 if (eppnt->p_type == PT_LOAD) { 1924 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 1925 int elf_prot = 0; 1926 1927 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 1928 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 1929 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 1930 1931 vaddr = load_bias + eppnt->p_vaddr; 1932 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 1933 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 1934 1935 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 1936 elf_prot, MAP_PRIVATE | MAP_FIXED, 1937 image_fd, eppnt->p_offset - vaddr_po); 1938 if (error == -1) { 1939 goto exit_perror; 1940 } 1941 1942 vaddr_ef = vaddr + eppnt->p_filesz; 1943 vaddr_em = vaddr + eppnt->p_memsz; 1944 1945 /* If the load segment requests extra zeros (e.g. bss), map it. */ 1946 if (vaddr_ef < vaddr_em) { 1947 zero_bss(vaddr_ef, vaddr_em, elf_prot); 1948 } 1949 1950 /* Find the full program boundaries. */ 1951 if (elf_prot & PROT_EXEC) { 1952 if (vaddr < info->start_code) { 1953 info->start_code = vaddr; 1954 } 1955 if (vaddr_ef > info->end_code) { 1956 info->end_code = vaddr_ef; 1957 } 1958 } 1959 if (elf_prot & PROT_WRITE) { 1960 if (vaddr < info->start_data) { 1961 info->start_data = vaddr; 1962 } 1963 if (vaddr_ef > info->end_data) { 1964 info->end_data = vaddr_ef; 1965 } 1966 if (vaddr_em > info->brk) { 1967 info->brk = vaddr_em; 1968 } 1969 } 1970 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 1971 char *interp_name; 1972 1973 if (*pinterp_name) { 1974 errmsg = "Multiple PT_INTERP entries"; 1975 goto exit_errmsg; 1976 } 1977 interp_name = malloc(eppnt->p_filesz); 1978 if (!interp_name) { 1979 goto exit_perror; 1980 } 1981 1982 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 1983 memcpy(interp_name, bprm_buf + eppnt->p_offset, 1984 eppnt->p_filesz); 1985 } else { 1986 retval = pread(image_fd, interp_name, eppnt->p_filesz, 1987 eppnt->p_offset); 1988 if (retval != eppnt->p_filesz) { 1989 goto exit_perror; 1990 } 1991 } 1992 if (interp_name[eppnt->p_filesz - 1] != 0) { 1993 errmsg = "Invalid PT_INTERP entry"; 1994 goto exit_errmsg; 1995 } 1996 *pinterp_name = interp_name; 1997 } 1998 } 1999 2000 if (info->end_data == 0) { 2001 info->start_data = info->end_code; 2002 info->end_data = info->end_code; 2003 info->brk = info->end_code; 2004 } 2005 2006 if (qemu_log_enabled()) { 2007 load_symbols(ehdr, image_fd, load_bias); 2008 } 2009 2010 close(image_fd); 2011 return; 2012 2013 exit_read: 2014 if (retval >= 0) { 2015 errmsg = "Incomplete read of file header"; 2016 goto exit_errmsg; 2017 } 2018 exit_perror: 2019 errmsg = strerror(errno); 2020 exit_errmsg: 2021 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2022 exit(-1); 2023 } 2024 2025 static void load_elf_interp(const char *filename, struct image_info *info, 2026 char bprm_buf[BPRM_BUF_SIZE]) 2027 { 2028 int fd, retval; 2029 2030 fd = open(path(filename), O_RDONLY); 2031 if (fd < 0) { 2032 goto exit_perror; 2033 } 2034 2035 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2036 if (retval < 0) { 2037 goto exit_perror; 2038 } 2039 if (retval < BPRM_BUF_SIZE) { 2040 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2041 } 2042 2043 load_elf_image(filename, fd, info, NULL, bprm_buf); 2044 return; 2045 2046 exit_perror: 2047 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2048 exit(-1); 2049 } 2050 2051 static int symfind(const void *s0, const void *s1) 2052 { 2053 target_ulong addr = *(target_ulong *)s0; 2054 struct elf_sym *sym = (struct elf_sym *)s1; 2055 int result = 0; 2056 if (addr < sym->st_value) { 2057 result = -1; 2058 } else if (addr >= sym->st_value + sym->st_size) { 2059 result = 1; 2060 } 2061 return result; 2062 } 2063 2064 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2065 { 2066 #if ELF_CLASS == ELFCLASS32 2067 struct elf_sym *syms = s->disas_symtab.elf32; 2068 #else 2069 struct elf_sym *syms = s->disas_symtab.elf64; 2070 #endif 2071 2072 // binary search 2073 struct elf_sym *sym; 2074 2075 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2076 if (sym != NULL) { 2077 return s->disas_strtab + sym->st_name; 2078 } 2079 2080 return ""; 2081 } 2082 2083 /* FIXME: This should use elf_ops.h */ 2084 static int symcmp(const void *s0, const void *s1) 2085 { 2086 struct elf_sym *sym0 = (struct elf_sym *)s0; 2087 struct elf_sym *sym1 = (struct elf_sym *)s1; 2088 return (sym0->st_value < sym1->st_value) 2089 ? -1 2090 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2091 } 2092 2093 /* Best attempt to load symbols from this ELF object. */ 2094 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2095 { 2096 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2097 struct elf_shdr *shdr; 2098 char *strings = NULL; 2099 struct syminfo *s = NULL; 2100 struct elf_sym *new_syms, *syms = NULL; 2101 2102 shnum = hdr->e_shnum; 2103 i = shnum * sizeof(struct elf_shdr); 2104 shdr = (struct elf_shdr *)alloca(i); 2105 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2106 return; 2107 } 2108 2109 bswap_shdr(shdr, shnum); 2110 for (i = 0; i < shnum; ++i) { 2111 if (shdr[i].sh_type == SHT_SYMTAB) { 2112 sym_idx = i; 2113 str_idx = shdr[i].sh_link; 2114 goto found; 2115 } 2116 } 2117 2118 /* There will be no symbol table if the file was stripped. */ 2119 return; 2120 2121 found: 2122 /* Now know where the strtab and symtab are. Snarf them. */ 2123 s = malloc(sizeof(*s)); 2124 if (!s) { 2125 goto give_up; 2126 } 2127 2128 i = shdr[str_idx].sh_size; 2129 s->disas_strtab = strings = malloc(i); 2130 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { 2131 goto give_up; 2132 } 2133 2134 i = shdr[sym_idx].sh_size; 2135 syms = malloc(i); 2136 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { 2137 goto give_up; 2138 } 2139 2140 nsyms = i / sizeof(struct elf_sym); 2141 for (i = 0; i < nsyms; ) { 2142 bswap_sym(syms + i); 2143 /* Throw away entries which we do not need. */ 2144 if (syms[i].st_shndx == SHN_UNDEF 2145 || syms[i].st_shndx >= SHN_LORESERVE 2146 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2147 if (i < --nsyms) { 2148 syms[i] = syms[nsyms]; 2149 } 2150 } else { 2151 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2152 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2153 syms[i].st_value &= ~(target_ulong)1; 2154 #endif 2155 syms[i].st_value += load_bias; 2156 i++; 2157 } 2158 } 2159 2160 /* No "useful" symbol. */ 2161 if (nsyms == 0) { 2162 goto give_up; 2163 } 2164 2165 /* Attempt to free the storage associated with the local symbols 2166 that we threw away. Whether or not this has any effect on the 2167 memory allocation depends on the malloc implementation and how 2168 many symbols we managed to discard. */ 2169 new_syms = realloc(syms, nsyms * sizeof(*syms)); 2170 if (new_syms == NULL) { 2171 goto give_up; 2172 } 2173 syms = new_syms; 2174 2175 qsort(syms, nsyms, sizeof(*syms), symcmp); 2176 2177 s->disas_num_syms = nsyms; 2178 #if ELF_CLASS == ELFCLASS32 2179 s->disas_symtab.elf32 = syms; 2180 #else 2181 s->disas_symtab.elf64 = syms; 2182 #endif 2183 s->lookup_symbol = lookup_symbolxx; 2184 s->next = syminfos; 2185 syminfos = s; 2186 2187 return; 2188 2189 give_up: 2190 free(s); 2191 free(strings); 2192 free(syms); 2193 } 2194 2195 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2196 { 2197 struct image_info interp_info; 2198 struct elfhdr elf_ex; 2199 char *elf_interpreter = NULL; 2200 2201 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2202 info->mmap = 0; 2203 info->rss = 0; 2204 2205 load_elf_image(bprm->filename, bprm->fd, info, 2206 &elf_interpreter, bprm->buf); 2207 2208 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2209 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2210 when we load the interpreter. */ 2211 elf_ex = *(struct elfhdr *)bprm->buf; 2212 2213 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); 2214 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); 2215 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); 2216 if (!bprm->p) { 2217 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2218 exit(-1); 2219 } 2220 2221 /* Do this so that we can load the interpreter, if need be. We will 2222 change some of these later */ 2223 bprm->p = setup_arg_pages(bprm->p, bprm, info); 2224 2225 if (elf_interpreter) { 2226 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2227 2228 /* If the program interpreter is one of these two, then assume 2229 an iBCS2 image. Otherwise assume a native linux image. */ 2230 2231 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2232 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2233 info->personality = PER_SVR4; 2234 2235 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2236 and some applications "depend" upon this behavior. Since 2237 we do not have the power to recompile these, we emulate 2238 the SVr4 behavior. Sigh. */ 2239 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2240 MAP_FIXED | MAP_PRIVATE, -1, 0); 2241 } 2242 } 2243 2244 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2245 info, (elf_interpreter ? &interp_info : NULL)); 2246 info->start_stack = bprm->p; 2247 2248 /* If we have an interpreter, set that as the program's entry point. 2249 Copy the load_bias as well, to help PPC64 interpret the entry 2250 point as a function descriptor. Do this after creating elf tables 2251 so that we copy the original program entry point into the AUXV. */ 2252 if (elf_interpreter) { 2253 info->load_bias = interp_info.load_bias; 2254 info->entry = interp_info.entry; 2255 free(elf_interpreter); 2256 } 2257 2258 #ifdef USE_ELF_CORE_DUMP 2259 bprm->core_dump = &elf_core_dump; 2260 #endif 2261 2262 return 0; 2263 } 2264 2265 #ifdef USE_ELF_CORE_DUMP 2266 /* 2267 * Definitions to generate Intel SVR4-like core files. 2268 * These mostly have the same names as the SVR4 types with "target_elf_" 2269 * tacked on the front to prevent clashes with linux definitions, 2270 * and the typedef forms have been avoided. This is mostly like 2271 * the SVR4 structure, but more Linuxy, with things that Linux does 2272 * not support and which gdb doesn't really use excluded. 2273 * 2274 * Fields we don't dump (their contents is zero) in linux-user qemu 2275 * are marked with XXX. 2276 * 2277 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2278 * 2279 * Porting ELF coredump for target is (quite) simple process. First you 2280 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2281 * the target resides): 2282 * 2283 * #define USE_ELF_CORE_DUMP 2284 * 2285 * Next you define type of register set used for dumping. ELF specification 2286 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2287 * 2288 * typedef <target_regtype> target_elf_greg_t; 2289 * #define ELF_NREG <number of registers> 2290 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2291 * 2292 * Last step is to implement target specific function that copies registers 2293 * from given cpu into just specified register set. Prototype is: 2294 * 2295 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2296 * const CPUArchState *env); 2297 * 2298 * Parameters: 2299 * regs - copy register values into here (allocated and zeroed by caller) 2300 * env - copy registers from here 2301 * 2302 * Example for ARM target is provided in this file. 2303 */ 2304 2305 /* An ELF note in memory */ 2306 struct memelfnote { 2307 const char *name; 2308 size_t namesz; 2309 size_t namesz_rounded; 2310 int type; 2311 size_t datasz; 2312 size_t datasz_rounded; 2313 void *data; 2314 size_t notesz; 2315 }; 2316 2317 struct target_elf_siginfo { 2318 abi_int si_signo; /* signal number */ 2319 abi_int si_code; /* extra code */ 2320 abi_int si_errno; /* errno */ 2321 }; 2322 2323 struct target_elf_prstatus { 2324 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2325 abi_short pr_cursig; /* Current signal */ 2326 abi_ulong pr_sigpend; /* XXX */ 2327 abi_ulong pr_sighold; /* XXX */ 2328 target_pid_t pr_pid; 2329 target_pid_t pr_ppid; 2330 target_pid_t pr_pgrp; 2331 target_pid_t pr_sid; 2332 struct target_timeval pr_utime; /* XXX User time */ 2333 struct target_timeval pr_stime; /* XXX System time */ 2334 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2335 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2336 target_elf_gregset_t pr_reg; /* GP registers */ 2337 abi_int pr_fpvalid; /* XXX */ 2338 }; 2339 2340 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2341 2342 struct target_elf_prpsinfo { 2343 char pr_state; /* numeric process state */ 2344 char pr_sname; /* char for pr_state */ 2345 char pr_zomb; /* zombie */ 2346 char pr_nice; /* nice val */ 2347 abi_ulong pr_flag; /* flags */ 2348 target_uid_t pr_uid; 2349 target_gid_t pr_gid; 2350 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2351 /* Lots missing */ 2352 char pr_fname[16]; /* filename of executable */ 2353 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2354 }; 2355 2356 /* Here is the structure in which status of each thread is captured. */ 2357 struct elf_thread_status { 2358 QTAILQ_ENTRY(elf_thread_status) ets_link; 2359 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2360 #if 0 2361 elf_fpregset_t fpu; /* NT_PRFPREG */ 2362 struct task_struct *thread; 2363 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2364 #endif 2365 struct memelfnote notes[1]; 2366 int num_notes; 2367 }; 2368 2369 struct elf_note_info { 2370 struct memelfnote *notes; 2371 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2372 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2373 2374 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2375 #if 0 2376 /* 2377 * Current version of ELF coredump doesn't support 2378 * dumping fp regs etc. 2379 */ 2380 elf_fpregset_t *fpu; 2381 elf_fpxregset_t *xfpu; 2382 int thread_status_size; 2383 #endif 2384 int notes_size; 2385 int numnote; 2386 }; 2387 2388 struct vm_area_struct { 2389 target_ulong vma_start; /* start vaddr of memory region */ 2390 target_ulong vma_end; /* end vaddr of memory region */ 2391 abi_ulong vma_flags; /* protection etc. flags for the region */ 2392 QTAILQ_ENTRY(vm_area_struct) vma_link; 2393 }; 2394 2395 struct mm_struct { 2396 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2397 int mm_count; /* number of mappings */ 2398 }; 2399 2400 static struct mm_struct *vma_init(void); 2401 static void vma_delete(struct mm_struct *); 2402 static int vma_add_mapping(struct mm_struct *, target_ulong, 2403 target_ulong, abi_ulong); 2404 static int vma_get_mapping_count(const struct mm_struct *); 2405 static struct vm_area_struct *vma_first(const struct mm_struct *); 2406 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2407 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2408 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2409 unsigned long flags); 2410 2411 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2412 static void fill_note(struct memelfnote *, const char *, int, 2413 unsigned int, void *); 2414 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2415 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2416 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2417 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2418 static size_t note_size(const struct memelfnote *); 2419 static void free_note_info(struct elf_note_info *); 2420 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2421 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2422 static int core_dump_filename(const TaskState *, char *, size_t); 2423 2424 static int dump_write(int, const void *, size_t); 2425 static int write_note(struct memelfnote *, int); 2426 static int write_note_info(struct elf_note_info *, int); 2427 2428 #ifdef BSWAP_NEEDED 2429 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2430 { 2431 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2432 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2433 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2434 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2435 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2436 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2437 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2438 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2439 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2440 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2441 /* cpu times are not filled, so we skip them */ 2442 /* regs should be in correct format already */ 2443 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2444 } 2445 2446 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2447 { 2448 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2449 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2450 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2451 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2452 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2453 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2454 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2455 } 2456 2457 static void bswap_note(struct elf_note *en) 2458 { 2459 bswap32s(&en->n_namesz); 2460 bswap32s(&en->n_descsz); 2461 bswap32s(&en->n_type); 2462 } 2463 #else 2464 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2465 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2466 static inline void bswap_note(struct elf_note *en) { } 2467 #endif /* BSWAP_NEEDED */ 2468 2469 /* 2470 * Minimal support for linux memory regions. These are needed 2471 * when we are finding out what memory exactly belongs to 2472 * emulated process. No locks needed here, as long as 2473 * thread that received the signal is stopped. 2474 */ 2475 2476 static struct mm_struct *vma_init(void) 2477 { 2478 struct mm_struct *mm; 2479 2480 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2481 return (NULL); 2482 2483 mm->mm_count = 0; 2484 QTAILQ_INIT(&mm->mm_mmap); 2485 2486 return (mm); 2487 } 2488 2489 static void vma_delete(struct mm_struct *mm) 2490 { 2491 struct vm_area_struct *vma; 2492 2493 while ((vma = vma_first(mm)) != NULL) { 2494 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2495 g_free(vma); 2496 } 2497 g_free(mm); 2498 } 2499 2500 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2501 target_ulong end, abi_ulong flags) 2502 { 2503 struct vm_area_struct *vma; 2504 2505 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2506 return (-1); 2507 2508 vma->vma_start = start; 2509 vma->vma_end = end; 2510 vma->vma_flags = flags; 2511 2512 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2513 mm->mm_count++; 2514 2515 return (0); 2516 } 2517 2518 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2519 { 2520 return (QTAILQ_FIRST(&mm->mm_mmap)); 2521 } 2522 2523 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2524 { 2525 return (QTAILQ_NEXT(vma, vma_link)); 2526 } 2527 2528 static int vma_get_mapping_count(const struct mm_struct *mm) 2529 { 2530 return (mm->mm_count); 2531 } 2532 2533 /* 2534 * Calculate file (dump) size of given memory region. 2535 */ 2536 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2537 { 2538 /* if we cannot even read the first page, skip it */ 2539 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2540 return (0); 2541 2542 /* 2543 * Usually we don't dump executable pages as they contain 2544 * non-writable code that debugger can read directly from 2545 * target library etc. However, thread stacks are marked 2546 * also executable so we read in first page of given region 2547 * and check whether it contains elf header. If there is 2548 * no elf header, we dump it. 2549 */ 2550 if (vma->vma_flags & PROT_EXEC) { 2551 char page[TARGET_PAGE_SIZE]; 2552 2553 copy_from_user(page, vma->vma_start, sizeof (page)); 2554 if ((page[EI_MAG0] == ELFMAG0) && 2555 (page[EI_MAG1] == ELFMAG1) && 2556 (page[EI_MAG2] == ELFMAG2) && 2557 (page[EI_MAG3] == ELFMAG3)) { 2558 /* 2559 * Mappings are possibly from ELF binary. Don't dump 2560 * them. 2561 */ 2562 return (0); 2563 } 2564 } 2565 2566 return (vma->vma_end - vma->vma_start); 2567 } 2568 2569 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2570 unsigned long flags) 2571 { 2572 struct mm_struct *mm = (struct mm_struct *)priv; 2573 2574 vma_add_mapping(mm, start, end, flags); 2575 return (0); 2576 } 2577 2578 static void fill_note(struct memelfnote *note, const char *name, int type, 2579 unsigned int sz, void *data) 2580 { 2581 unsigned int namesz; 2582 2583 namesz = strlen(name) + 1; 2584 note->name = name; 2585 note->namesz = namesz; 2586 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2587 note->type = type; 2588 note->datasz = sz; 2589 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2590 2591 note->data = data; 2592 2593 /* 2594 * We calculate rounded up note size here as specified by 2595 * ELF document. 2596 */ 2597 note->notesz = sizeof (struct elf_note) + 2598 note->namesz_rounded + note->datasz_rounded; 2599 } 2600 2601 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2602 uint32_t flags) 2603 { 2604 (void) memset(elf, 0, sizeof(*elf)); 2605 2606 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2607 elf->e_ident[EI_CLASS] = ELF_CLASS; 2608 elf->e_ident[EI_DATA] = ELF_DATA; 2609 elf->e_ident[EI_VERSION] = EV_CURRENT; 2610 elf->e_ident[EI_OSABI] = ELF_OSABI; 2611 2612 elf->e_type = ET_CORE; 2613 elf->e_machine = machine; 2614 elf->e_version = EV_CURRENT; 2615 elf->e_phoff = sizeof(struct elfhdr); 2616 elf->e_flags = flags; 2617 elf->e_ehsize = sizeof(struct elfhdr); 2618 elf->e_phentsize = sizeof(struct elf_phdr); 2619 elf->e_phnum = segs; 2620 2621 bswap_ehdr(elf); 2622 } 2623 2624 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2625 { 2626 phdr->p_type = PT_NOTE; 2627 phdr->p_offset = offset; 2628 phdr->p_vaddr = 0; 2629 phdr->p_paddr = 0; 2630 phdr->p_filesz = sz; 2631 phdr->p_memsz = 0; 2632 phdr->p_flags = 0; 2633 phdr->p_align = 0; 2634 2635 bswap_phdr(phdr, 1); 2636 } 2637 2638 static size_t note_size(const struct memelfnote *note) 2639 { 2640 return (note->notesz); 2641 } 2642 2643 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2644 const TaskState *ts, int signr) 2645 { 2646 (void) memset(prstatus, 0, sizeof (*prstatus)); 2647 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2648 prstatus->pr_pid = ts->ts_tid; 2649 prstatus->pr_ppid = getppid(); 2650 prstatus->pr_pgrp = getpgrp(); 2651 prstatus->pr_sid = getsid(0); 2652 2653 bswap_prstatus(prstatus); 2654 } 2655 2656 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2657 { 2658 char *base_filename; 2659 unsigned int i, len; 2660 2661 (void) memset(psinfo, 0, sizeof (*psinfo)); 2662 2663 len = ts->info->arg_end - ts->info->arg_start; 2664 if (len >= ELF_PRARGSZ) 2665 len = ELF_PRARGSZ - 1; 2666 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2667 return -EFAULT; 2668 for (i = 0; i < len; i++) 2669 if (psinfo->pr_psargs[i] == 0) 2670 psinfo->pr_psargs[i] = ' '; 2671 psinfo->pr_psargs[len] = 0; 2672 2673 psinfo->pr_pid = getpid(); 2674 psinfo->pr_ppid = getppid(); 2675 psinfo->pr_pgrp = getpgrp(); 2676 psinfo->pr_sid = getsid(0); 2677 psinfo->pr_uid = getuid(); 2678 psinfo->pr_gid = getgid(); 2679 2680 base_filename = g_path_get_basename(ts->bprm->filename); 2681 /* 2682 * Using strncpy here is fine: at max-length, 2683 * this field is not NUL-terminated. 2684 */ 2685 (void) strncpy(psinfo->pr_fname, base_filename, 2686 sizeof(psinfo->pr_fname)); 2687 2688 g_free(base_filename); 2689 bswap_psinfo(psinfo); 2690 return (0); 2691 } 2692 2693 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2694 { 2695 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2696 elf_addr_t orig_auxv = auxv; 2697 void *ptr; 2698 int len = ts->info->auxv_len; 2699 2700 /* 2701 * Auxiliary vector is stored in target process stack. It contains 2702 * {type, value} pairs that we need to dump into note. This is not 2703 * strictly necessary but we do it here for sake of completeness. 2704 */ 2705 2706 /* read in whole auxv vector and copy it to memelfnote */ 2707 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2708 if (ptr != NULL) { 2709 fill_note(note, "CORE", NT_AUXV, len, ptr); 2710 unlock_user(ptr, auxv, len); 2711 } 2712 } 2713 2714 /* 2715 * Constructs name of coredump file. We have following convention 2716 * for the name: 2717 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2718 * 2719 * Returns 0 in case of success, -1 otherwise (errno is set). 2720 */ 2721 static int core_dump_filename(const TaskState *ts, char *buf, 2722 size_t bufsize) 2723 { 2724 char timestamp[64]; 2725 char *filename = NULL; 2726 char *base_filename = NULL; 2727 struct timeval tv; 2728 struct tm tm; 2729 2730 assert(bufsize >= PATH_MAX); 2731 2732 if (gettimeofday(&tv, NULL) < 0) { 2733 (void) fprintf(stderr, "unable to get current timestamp: %s", 2734 strerror(errno)); 2735 return (-1); 2736 } 2737 2738 filename = strdup(ts->bprm->filename); 2739 base_filename = strdup(basename(filename)); 2740 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2741 localtime_r(&tv.tv_sec, &tm)); 2742 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2743 base_filename, timestamp, (int)getpid()); 2744 free(base_filename); 2745 free(filename); 2746 2747 return (0); 2748 } 2749 2750 static int dump_write(int fd, const void *ptr, size_t size) 2751 { 2752 const char *bufp = (const char *)ptr; 2753 ssize_t bytes_written, bytes_left; 2754 struct rlimit dumpsize; 2755 off_t pos; 2756 2757 bytes_written = 0; 2758 getrlimit(RLIMIT_CORE, &dumpsize); 2759 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2760 if (errno == ESPIPE) { /* not a seekable stream */ 2761 bytes_left = size; 2762 } else { 2763 return pos; 2764 } 2765 } else { 2766 if (dumpsize.rlim_cur <= pos) { 2767 return -1; 2768 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2769 bytes_left = size; 2770 } else { 2771 size_t limit_left=dumpsize.rlim_cur - pos; 2772 bytes_left = limit_left >= size ? size : limit_left ; 2773 } 2774 } 2775 2776 /* 2777 * In normal conditions, single write(2) should do but 2778 * in case of socket etc. this mechanism is more portable. 2779 */ 2780 do { 2781 bytes_written = write(fd, bufp, bytes_left); 2782 if (bytes_written < 0) { 2783 if (errno == EINTR) 2784 continue; 2785 return (-1); 2786 } else if (bytes_written == 0) { /* eof */ 2787 return (-1); 2788 } 2789 bufp += bytes_written; 2790 bytes_left -= bytes_written; 2791 } while (bytes_left > 0); 2792 2793 return (0); 2794 } 2795 2796 static int write_note(struct memelfnote *men, int fd) 2797 { 2798 struct elf_note en; 2799 2800 en.n_namesz = men->namesz; 2801 en.n_type = men->type; 2802 en.n_descsz = men->datasz; 2803 2804 bswap_note(&en); 2805 2806 if (dump_write(fd, &en, sizeof(en)) != 0) 2807 return (-1); 2808 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2809 return (-1); 2810 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 2811 return (-1); 2812 2813 return (0); 2814 } 2815 2816 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 2817 { 2818 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2819 TaskState *ts = (TaskState *)cpu->opaque; 2820 struct elf_thread_status *ets; 2821 2822 ets = g_malloc0(sizeof (*ets)); 2823 ets->num_notes = 1; /* only prstatus is dumped */ 2824 fill_prstatus(&ets->prstatus, ts, 0); 2825 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 2826 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 2827 &ets->prstatus); 2828 2829 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 2830 2831 info->notes_size += note_size(&ets->notes[0]); 2832 } 2833 2834 static void init_note_info(struct elf_note_info *info) 2835 { 2836 /* Initialize the elf_note_info structure so that it is at 2837 * least safe to call free_note_info() on it. Must be 2838 * called before calling fill_note_info(). 2839 */ 2840 memset(info, 0, sizeof (*info)); 2841 QTAILQ_INIT(&info->thread_list); 2842 } 2843 2844 static int fill_note_info(struct elf_note_info *info, 2845 long signr, const CPUArchState *env) 2846 { 2847 #define NUMNOTES 3 2848 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2849 TaskState *ts = (TaskState *)cpu->opaque; 2850 int i; 2851 2852 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote)); 2853 if (info->notes == NULL) 2854 return (-ENOMEM); 2855 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 2856 if (info->prstatus == NULL) 2857 return (-ENOMEM); 2858 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 2859 if (info->prstatus == NULL) 2860 return (-ENOMEM); 2861 2862 /* 2863 * First fill in status (and registers) of current thread 2864 * including process info & aux vector. 2865 */ 2866 fill_prstatus(info->prstatus, ts, signr); 2867 elf_core_copy_regs(&info->prstatus->pr_reg, env); 2868 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 2869 sizeof (*info->prstatus), info->prstatus); 2870 fill_psinfo(info->psinfo, ts); 2871 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 2872 sizeof (*info->psinfo), info->psinfo); 2873 fill_auxv_note(&info->notes[2], ts); 2874 info->numnote = 3; 2875 2876 info->notes_size = 0; 2877 for (i = 0; i < info->numnote; i++) 2878 info->notes_size += note_size(&info->notes[i]); 2879 2880 /* read and fill status of all threads */ 2881 cpu_list_lock(); 2882 CPU_FOREACH(cpu) { 2883 if (cpu == thread_cpu) { 2884 continue; 2885 } 2886 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 2887 } 2888 cpu_list_unlock(); 2889 2890 return (0); 2891 } 2892 2893 static void free_note_info(struct elf_note_info *info) 2894 { 2895 struct elf_thread_status *ets; 2896 2897 while (!QTAILQ_EMPTY(&info->thread_list)) { 2898 ets = QTAILQ_FIRST(&info->thread_list); 2899 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 2900 g_free(ets); 2901 } 2902 2903 g_free(info->prstatus); 2904 g_free(info->psinfo); 2905 g_free(info->notes); 2906 } 2907 2908 static int write_note_info(struct elf_note_info *info, int fd) 2909 { 2910 struct elf_thread_status *ets; 2911 int i, error = 0; 2912 2913 /* write prstatus, psinfo and auxv for current thread */ 2914 for (i = 0; i < info->numnote; i++) 2915 if ((error = write_note(&info->notes[i], fd)) != 0) 2916 return (error); 2917 2918 /* write prstatus for each thread */ 2919 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 2920 if ((error = write_note(&ets->notes[0], fd)) != 0) 2921 return (error); 2922 } 2923 2924 return (0); 2925 } 2926 2927 /* 2928 * Write out ELF coredump. 2929 * 2930 * See documentation of ELF object file format in: 2931 * http://www.caldera.com/developers/devspecs/gabi41.pdf 2932 * 2933 * Coredump format in linux is following: 2934 * 2935 * 0 +----------------------+ \ 2936 * | ELF header | ET_CORE | 2937 * +----------------------+ | 2938 * | ELF program headers | |--- headers 2939 * | - NOTE section | | 2940 * | - PT_LOAD sections | | 2941 * +----------------------+ / 2942 * | NOTEs: | 2943 * | - NT_PRSTATUS | 2944 * | - NT_PRSINFO | 2945 * | - NT_AUXV | 2946 * +----------------------+ <-- aligned to target page 2947 * | Process memory dump | 2948 * : : 2949 * . . 2950 * : : 2951 * | | 2952 * +----------------------+ 2953 * 2954 * NT_PRSTATUS -> struct elf_prstatus (per thread) 2955 * NT_PRSINFO -> struct elf_prpsinfo 2956 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 2957 * 2958 * Format follows System V format as close as possible. Current 2959 * version limitations are as follows: 2960 * - no floating point registers are dumped 2961 * 2962 * Function returns 0 in case of success, negative errno otherwise. 2963 * 2964 * TODO: make this work also during runtime: it should be 2965 * possible to force coredump from running process and then 2966 * continue processing. For example qemu could set up SIGUSR2 2967 * handler (provided that target process haven't registered 2968 * handler for that) that does the dump when signal is received. 2969 */ 2970 static int elf_core_dump(int signr, const CPUArchState *env) 2971 { 2972 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2973 const TaskState *ts = (const TaskState *)cpu->opaque; 2974 struct vm_area_struct *vma = NULL; 2975 char corefile[PATH_MAX]; 2976 struct elf_note_info info; 2977 struct elfhdr elf; 2978 struct elf_phdr phdr; 2979 struct rlimit dumpsize; 2980 struct mm_struct *mm = NULL; 2981 off_t offset = 0, data_offset = 0; 2982 int segs = 0; 2983 int fd = -1; 2984 2985 init_note_info(&info); 2986 2987 errno = 0; 2988 getrlimit(RLIMIT_CORE, &dumpsize); 2989 if (dumpsize.rlim_cur == 0) 2990 return 0; 2991 2992 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 2993 return (-errno); 2994 2995 if ((fd = open(corefile, O_WRONLY | O_CREAT, 2996 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 2997 return (-errno); 2998 2999 /* 3000 * Walk through target process memory mappings and 3001 * set up structure containing this information. After 3002 * this point vma_xxx functions can be used. 3003 */ 3004 if ((mm = vma_init()) == NULL) 3005 goto out; 3006 3007 walk_memory_regions(mm, vma_walker); 3008 segs = vma_get_mapping_count(mm); 3009 3010 /* 3011 * Construct valid coredump ELF header. We also 3012 * add one more segment for notes. 3013 */ 3014 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3015 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3016 goto out; 3017 3018 /* fill in in-memory version of notes */ 3019 if (fill_note_info(&info, signr, env) < 0) 3020 goto out; 3021 3022 offset += sizeof (elf); /* elf header */ 3023 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3024 3025 /* write out notes program header */ 3026 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3027 3028 offset += info.notes_size; 3029 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3030 goto out; 3031 3032 /* 3033 * ELF specification wants data to start at page boundary so 3034 * we align it here. 3035 */ 3036 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3037 3038 /* 3039 * Write program headers for memory regions mapped in 3040 * the target process. 3041 */ 3042 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3043 (void) memset(&phdr, 0, sizeof (phdr)); 3044 3045 phdr.p_type = PT_LOAD; 3046 phdr.p_offset = offset; 3047 phdr.p_vaddr = vma->vma_start; 3048 phdr.p_paddr = 0; 3049 phdr.p_filesz = vma_dump_size(vma); 3050 offset += phdr.p_filesz; 3051 phdr.p_memsz = vma->vma_end - vma->vma_start; 3052 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3053 if (vma->vma_flags & PROT_WRITE) 3054 phdr.p_flags |= PF_W; 3055 if (vma->vma_flags & PROT_EXEC) 3056 phdr.p_flags |= PF_X; 3057 phdr.p_align = ELF_EXEC_PAGESIZE; 3058 3059 bswap_phdr(&phdr, 1); 3060 dump_write(fd, &phdr, sizeof (phdr)); 3061 } 3062 3063 /* 3064 * Next we write notes just after program headers. No 3065 * alignment needed here. 3066 */ 3067 if (write_note_info(&info, fd) < 0) 3068 goto out; 3069 3070 /* align data to page boundary */ 3071 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3072 goto out; 3073 3074 /* 3075 * Finally we can dump process memory into corefile as well. 3076 */ 3077 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3078 abi_ulong addr; 3079 abi_ulong end; 3080 3081 end = vma->vma_start + vma_dump_size(vma); 3082 3083 for (addr = vma->vma_start; addr < end; 3084 addr += TARGET_PAGE_SIZE) { 3085 char page[TARGET_PAGE_SIZE]; 3086 int error; 3087 3088 /* 3089 * Read in page from target process memory and 3090 * write it to coredump file. 3091 */ 3092 error = copy_from_user(page, addr, sizeof (page)); 3093 if (error != 0) { 3094 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3095 addr); 3096 errno = -error; 3097 goto out; 3098 } 3099 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3100 goto out; 3101 } 3102 } 3103 3104 out: 3105 free_note_info(&info); 3106 if (mm != NULL) 3107 vma_delete(mm); 3108 (void) close(fd); 3109 3110 if (errno != 0) 3111 return (-errno); 3112 return (0); 3113 } 3114 #endif /* USE_ELF_CORE_DUMP */ 3115 3116 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3117 { 3118 init_thread(regs, infop); 3119 } 3120