xref: /openbmc/qemu/linux-user/elfload.c (revision 228aa992)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4 
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15 
16 #include "qemu.h"
17 #include "disas/disas.h"
18 
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_HWCAP2
24 #undef ELF_CLASS
25 #undef ELF_DATA
26 #undef ELF_ARCH
27 #endif
28 
29 #define ELF_OSABI   ELFOSABI_SYSV
30 
31 /* from personality.h */
32 
33 /*
34  * Flags for bug emulation.
35  *
36  * These occupy the top three bytes.
37  */
38 enum {
39     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
40     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
41                                            descriptors (signal handling) */
42     MMAP_PAGE_ZERO =    0x0100000,
43     ADDR_COMPAT_LAYOUT = 0x0200000,
44     READ_IMPLIES_EXEC = 0x0400000,
45     ADDR_LIMIT_32BIT =  0x0800000,
46     SHORT_INODE =       0x1000000,
47     WHOLE_SECONDS =     0x2000000,
48     STICKY_TIMEOUTS =   0x4000000,
49     ADDR_LIMIT_3GB =    0x8000000,
50 };
51 
52 /*
53  * Personality types.
54  *
55  * These go in the low byte.  Avoid using the top bit, it will
56  * conflict with error returns.
57  */
58 enum {
59     PER_LINUX =         0x0000,
60     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
61     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
62     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
68     PER_BSD =           0x0006,
69     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
70     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_LINUX32 =       0x0008,
72     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
73     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76     PER_RISCOS =        0x000c,
77     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
78     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
80     PER_HPUX =          0x0010,
81     PER_MASK =          0x00ff,
82 };
83 
84 /*
85  * Return the base personality without flags.
86  */
87 #define personality(pers)       (pers & PER_MASK)
88 
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93 
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98 
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA        ELFDATA2MSB
101 #else
102 #define ELF_DATA        ELFDATA2LSB
103 #endif
104 
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong      target_elf_greg_t;
107 #define tswapreg(ptr)   tswap64(ptr)
108 #else
109 typedef abi_ulong       target_elf_greg_t;
110 #define tswapreg(ptr)   tswapal(ptr)
111 #endif
112 
113 #ifdef USE_UID16
114 typedef abi_ushort      target_uid_t;
115 typedef abi_ushort      target_gid_t;
116 #else
117 typedef abi_uint        target_uid_t;
118 typedef abi_uint        target_gid_t;
119 #endif
120 typedef abi_int         target_pid_t;
121 
122 #ifdef TARGET_I386
123 
124 #define ELF_PLATFORM get_elf_platform()
125 
126 static const char *get_elf_platform(void)
127 {
128     static char elf_platform[] = "i386";
129     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130     if (family > 6)
131         family = 6;
132     if (family >= 3)
133         elf_platform[1] = '0' + family;
134     return elf_platform;
135 }
136 
137 #define ELF_HWCAP get_elf_hwcap()
138 
139 static uint32_t get_elf_hwcap(void)
140 {
141     X86CPU *cpu = X86_CPU(thread_cpu);
142 
143     return cpu->env.features[FEAT_1_EDX];
144 }
145 
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
149 
150 #define ELF_CLASS      ELFCLASS64
151 #define ELF_ARCH       EM_X86_64
152 
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155     regs->rax = 0;
156     regs->rsp = infop->start_stack;
157     regs->rip = infop->entry;
158 }
159 
160 #define ELF_NREG    27
161 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
162 
163 /*
164  * Note that ELF_NREG should be 29 as there should be place for
165  * TRAPNO and ERR "registers" as well but linux doesn't dump
166  * those.
167  *
168  * See linux kernel: arch/x86/include/asm/elf.h
169  */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172     (*regs)[0] = env->regs[15];
173     (*regs)[1] = env->regs[14];
174     (*regs)[2] = env->regs[13];
175     (*regs)[3] = env->regs[12];
176     (*regs)[4] = env->regs[R_EBP];
177     (*regs)[5] = env->regs[R_EBX];
178     (*regs)[6] = env->regs[11];
179     (*regs)[7] = env->regs[10];
180     (*regs)[8] = env->regs[9];
181     (*regs)[9] = env->regs[8];
182     (*regs)[10] = env->regs[R_EAX];
183     (*regs)[11] = env->regs[R_ECX];
184     (*regs)[12] = env->regs[R_EDX];
185     (*regs)[13] = env->regs[R_ESI];
186     (*regs)[14] = env->regs[R_EDI];
187     (*regs)[15] = env->regs[R_EAX]; /* XXX */
188     (*regs)[16] = env->eip;
189     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190     (*regs)[18] = env->eflags;
191     (*regs)[19] = env->regs[R_ESP];
192     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199 }
200 
201 #else
202 
203 #define ELF_START_MMAP 0x80000000
204 
205 /*
206  * This is used to ensure we don't load something for the wrong architecture.
207  */
208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209 
210 /*
211  * These are used to set parameters in the core dumps.
212  */
213 #define ELF_CLASS       ELFCLASS32
214 #define ELF_ARCH        EM_386
215 
216 static inline void init_thread(struct target_pt_regs *regs,
217                                struct image_info *infop)
218 {
219     regs->esp = infop->start_stack;
220     regs->eip = infop->entry;
221 
222     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223        starts %edx contains a pointer to a function which might be
224        registered using `atexit'.  This provides a mean for the
225        dynamic linker to call DT_FINI functions for shared libraries
226        that have been loaded before the code runs.
227 
228        A value of 0 tells we have no such handler.  */
229     regs->edx = 0;
230 }
231 
232 #define ELF_NREG    17
233 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
234 
235 /*
236  * Note that ELF_NREG should be 19 as there should be place for
237  * TRAPNO and ERR "registers" as well but linux doesn't dump
238  * those.
239  *
240  * See linux kernel: arch/x86/include/asm/elf.h
241  */
242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
243 {
244     (*regs)[0] = env->regs[R_EBX];
245     (*regs)[1] = env->regs[R_ECX];
246     (*regs)[2] = env->regs[R_EDX];
247     (*regs)[3] = env->regs[R_ESI];
248     (*regs)[4] = env->regs[R_EDI];
249     (*regs)[5] = env->regs[R_EBP];
250     (*regs)[6] = env->regs[R_EAX];
251     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255     (*regs)[11] = env->regs[R_EAX]; /* XXX */
256     (*regs)[12] = env->eip;
257     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258     (*regs)[14] = env->eflags;
259     (*regs)[15] = env->regs[R_ESP];
260     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261 }
262 #endif
263 
264 #define USE_ELF_CORE_DUMP
265 #define ELF_EXEC_PAGESIZE       4096
266 
267 #endif
268 
269 #ifdef TARGET_ARM
270 
271 #ifndef TARGET_AARCH64
272 /* 32 bit ARM definitions */
273 
274 #define ELF_START_MMAP 0x80000000
275 
276 #define elf_check_arch(x) ((x) == ELF_MACHINE)
277 
278 #define ELF_ARCH        ELF_MACHINE
279 #define ELF_CLASS       ELFCLASS32
280 
281 static inline void init_thread(struct target_pt_regs *regs,
282                                struct image_info *infop)
283 {
284     abi_long stack = infop->start_stack;
285     memset(regs, 0, sizeof(*regs));
286 
287     regs->ARM_cpsr = 0x10;
288     if (infop->entry & 1)
289         regs->ARM_cpsr |= CPSR_T;
290     regs->ARM_pc = infop->entry & 0xfffffffe;
291     regs->ARM_sp = infop->start_stack;
292     /* FIXME - what to for failure of get_user()? */
293     get_user_ual(regs->ARM_r2, stack + 8); /* envp */
294     get_user_ual(regs->ARM_r1, stack + 4); /* envp */
295     /* XXX: it seems that r0 is zeroed after ! */
296     regs->ARM_r0 = 0;
297     /* For uClinux PIC binaries.  */
298     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299     regs->ARM_r10 = infop->start_data;
300 }
301 
302 #define ELF_NREG    18
303 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
304 
305 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
306 {
307     (*regs)[0] = tswapreg(env->regs[0]);
308     (*regs)[1] = tswapreg(env->regs[1]);
309     (*regs)[2] = tswapreg(env->regs[2]);
310     (*regs)[3] = tswapreg(env->regs[3]);
311     (*regs)[4] = tswapreg(env->regs[4]);
312     (*regs)[5] = tswapreg(env->regs[5]);
313     (*regs)[6] = tswapreg(env->regs[6]);
314     (*regs)[7] = tswapreg(env->regs[7]);
315     (*regs)[8] = tswapreg(env->regs[8]);
316     (*regs)[9] = tswapreg(env->regs[9]);
317     (*regs)[10] = tswapreg(env->regs[10]);
318     (*regs)[11] = tswapreg(env->regs[11]);
319     (*regs)[12] = tswapreg(env->regs[12]);
320     (*regs)[13] = tswapreg(env->regs[13]);
321     (*regs)[14] = tswapreg(env->regs[14]);
322     (*regs)[15] = tswapreg(env->regs[15]);
323 
324     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
325     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
326 }
327 
328 #define USE_ELF_CORE_DUMP
329 #define ELF_EXEC_PAGESIZE       4096
330 
331 enum
332 {
333     ARM_HWCAP_ARM_SWP       = 1 << 0,
334     ARM_HWCAP_ARM_HALF      = 1 << 1,
335     ARM_HWCAP_ARM_THUMB     = 1 << 2,
336     ARM_HWCAP_ARM_26BIT     = 1 << 3,
337     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
338     ARM_HWCAP_ARM_FPA       = 1 << 5,
339     ARM_HWCAP_ARM_VFP       = 1 << 6,
340     ARM_HWCAP_ARM_EDSP      = 1 << 7,
341     ARM_HWCAP_ARM_JAVA      = 1 << 8,
342     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
343     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
344     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
345     ARM_HWCAP_ARM_NEON      = 1 << 12,
346     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
347     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
348     ARM_HWCAP_ARM_TLS       = 1 << 15,
349     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
350     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
351     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
352     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
353     ARM_HWCAP_ARM_LPAE      = 1 << 20,
354     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
355 };
356 
357 enum {
358     ARM_HWCAP2_ARM_AES      = 1 << 0,
359     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
360     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
361     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
362     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
363 };
364 
365 /* The commpage only exists for 32 bit kernels */
366 
367 #define TARGET_HAS_VALIDATE_GUEST_SPACE
368 /* Return 1 if the proposed guest space is suitable for the guest.
369  * Return 0 if the proposed guest space isn't suitable, but another
370  * address space should be tried.
371  * Return -1 if there is no way the proposed guest space can be
372  * valid regardless of the base.
373  * The guest code may leave a page mapped and populate it if the
374  * address is suitable.
375  */
376 static int validate_guest_space(unsigned long guest_base,
377                                 unsigned long guest_size)
378 {
379     unsigned long real_start, test_page_addr;
380 
381     /* We need to check that we can force a fault on access to the
382      * commpage at 0xffff0fxx
383      */
384     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
385 
386     /* If the commpage lies within the already allocated guest space,
387      * then there is no way we can allocate it.
388      */
389     if (test_page_addr >= guest_base
390         && test_page_addr <= (guest_base + guest_size)) {
391         return -1;
392     }
393 
394     /* Note it needs to be writeable to let us initialise it */
395     real_start = (unsigned long)
396                  mmap((void *)test_page_addr, qemu_host_page_size,
397                      PROT_READ | PROT_WRITE,
398                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
399 
400     /* If we can't map it then try another address */
401     if (real_start == -1ul) {
402         return 0;
403     }
404 
405     if (real_start != test_page_addr) {
406         /* OS didn't put the page where we asked - unmap and reject */
407         munmap((void *)real_start, qemu_host_page_size);
408         return 0;
409     }
410 
411     /* Leave the page mapped
412      * Populate it (mmap should have left it all 0'd)
413      */
414 
415     /* Kernel helper versions */
416     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
417 
418     /* Now it's populated make it RO */
419     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
420         perror("Protecting guest commpage");
421         exit(-1);
422     }
423 
424     return 1; /* All good */
425 }
426 
427 #define ELF_HWCAP get_elf_hwcap()
428 #define ELF_HWCAP2 get_elf_hwcap2()
429 
430 static uint32_t get_elf_hwcap(void)
431 {
432     ARMCPU *cpu = ARM_CPU(thread_cpu);
433     uint32_t hwcaps = 0;
434 
435     hwcaps |= ARM_HWCAP_ARM_SWP;
436     hwcaps |= ARM_HWCAP_ARM_HALF;
437     hwcaps |= ARM_HWCAP_ARM_THUMB;
438     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
439 
440     /* probe for the extra features */
441 #define GET_FEATURE(feat, hwcap) \
442     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
443     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
445     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
446     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
447     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
448     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
449     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
450     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
451     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
452     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
453     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
454     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457      * to our VFP_FP16 feature bit.
458      */
459     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
460     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
461 
462     return hwcaps;
463 }
464 
465 static uint32_t get_elf_hwcap2(void)
466 {
467     ARMCPU *cpu = ARM_CPU(thread_cpu);
468     uint32_t hwcaps = 0;
469 
470     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
471     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
472     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
473     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
474     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
475     return hwcaps;
476 }
477 
478 #undef GET_FEATURE
479 
480 #else
481 /* 64 bit ARM definitions */
482 #define ELF_START_MMAP 0x80000000
483 
484 #define elf_check_arch(x) ((x) == ELF_MACHINE)
485 
486 #define ELF_ARCH        ELF_MACHINE
487 #define ELF_CLASS       ELFCLASS64
488 #define ELF_PLATFORM    "aarch64"
489 
490 static inline void init_thread(struct target_pt_regs *regs,
491                                struct image_info *infop)
492 {
493     abi_long stack = infop->start_stack;
494     memset(regs, 0, sizeof(*regs));
495 
496     regs->pc = infop->entry & ~0x3ULL;
497     regs->sp = stack;
498 }
499 
500 #define ELF_NREG    34
501 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
502 
503 static void elf_core_copy_regs(target_elf_gregset_t *regs,
504                                const CPUARMState *env)
505 {
506     int i;
507 
508     for (i = 0; i < 32; i++) {
509         (*regs)[i] = tswapreg(env->xregs[i]);
510     }
511     (*regs)[32] = tswapreg(env->pc);
512     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
513 }
514 
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE       4096
517 
518 enum {
519     ARM_HWCAP_A64_FP            = 1 << 0,
520     ARM_HWCAP_A64_ASIMD         = 1 << 1,
521     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
522     ARM_HWCAP_A64_AES           = 1 << 3,
523     ARM_HWCAP_A64_PMULL         = 1 << 4,
524     ARM_HWCAP_A64_SHA1          = 1 << 5,
525     ARM_HWCAP_A64_SHA2          = 1 << 6,
526     ARM_HWCAP_A64_CRC32         = 1 << 7,
527 };
528 
529 #define ELF_HWCAP get_elf_hwcap()
530 
531 static uint32_t get_elf_hwcap(void)
532 {
533     ARMCPU *cpu = ARM_CPU(thread_cpu);
534     uint32_t hwcaps = 0;
535 
536     hwcaps |= ARM_HWCAP_A64_FP;
537     hwcaps |= ARM_HWCAP_A64_ASIMD;
538 
539     /* probe for the extra features */
540 #define GET_FEATURE(feat, hwcap) \
541     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
542     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
543     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
544     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
545     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
546     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
547 #undef GET_FEATURE
548 
549     return hwcaps;
550 }
551 
552 #endif /* not TARGET_AARCH64 */
553 #endif /* TARGET_ARM */
554 
555 #ifdef TARGET_UNICORE32
556 
557 #define ELF_START_MMAP          0x80000000
558 
559 #define elf_check_arch(x)       ((x) == EM_UNICORE32)
560 
561 #define ELF_CLASS               ELFCLASS32
562 #define ELF_DATA                ELFDATA2LSB
563 #define ELF_ARCH                EM_UNICORE32
564 
565 static inline void init_thread(struct target_pt_regs *regs,
566         struct image_info *infop)
567 {
568     abi_long stack = infop->start_stack;
569     memset(regs, 0, sizeof(*regs));
570     regs->UC32_REG_asr = 0x10;
571     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
572     regs->UC32_REG_sp = infop->start_stack;
573     /* FIXME - what to for failure of get_user()? */
574     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
575     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
576     /* XXX: it seems that r0 is zeroed after ! */
577     regs->UC32_REG_00 = 0;
578 }
579 
580 #define ELF_NREG    34
581 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
582 
583 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
584 {
585     (*regs)[0] = env->regs[0];
586     (*regs)[1] = env->regs[1];
587     (*regs)[2] = env->regs[2];
588     (*regs)[3] = env->regs[3];
589     (*regs)[4] = env->regs[4];
590     (*regs)[5] = env->regs[5];
591     (*regs)[6] = env->regs[6];
592     (*regs)[7] = env->regs[7];
593     (*regs)[8] = env->regs[8];
594     (*regs)[9] = env->regs[9];
595     (*regs)[10] = env->regs[10];
596     (*regs)[11] = env->regs[11];
597     (*regs)[12] = env->regs[12];
598     (*regs)[13] = env->regs[13];
599     (*regs)[14] = env->regs[14];
600     (*regs)[15] = env->regs[15];
601     (*regs)[16] = env->regs[16];
602     (*regs)[17] = env->regs[17];
603     (*regs)[18] = env->regs[18];
604     (*regs)[19] = env->regs[19];
605     (*regs)[20] = env->regs[20];
606     (*regs)[21] = env->regs[21];
607     (*regs)[22] = env->regs[22];
608     (*regs)[23] = env->regs[23];
609     (*regs)[24] = env->regs[24];
610     (*regs)[25] = env->regs[25];
611     (*regs)[26] = env->regs[26];
612     (*regs)[27] = env->regs[27];
613     (*regs)[28] = env->regs[28];
614     (*regs)[29] = env->regs[29];
615     (*regs)[30] = env->regs[30];
616     (*regs)[31] = env->regs[31];
617 
618     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
619     (*regs)[33] = env->regs[0]; /* XXX */
620 }
621 
622 #define USE_ELF_CORE_DUMP
623 #define ELF_EXEC_PAGESIZE               4096
624 
625 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
626 
627 #endif
628 
629 #ifdef TARGET_SPARC
630 #ifdef TARGET_SPARC64
631 
632 #define ELF_START_MMAP 0x80000000
633 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
635 #ifndef TARGET_ABI32
636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
637 #else
638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
639 #endif
640 
641 #define ELF_CLASS   ELFCLASS64
642 #define ELF_ARCH    EM_SPARCV9
643 
644 #define STACK_BIAS              2047
645 
646 static inline void init_thread(struct target_pt_regs *regs,
647                                struct image_info *infop)
648 {
649 #ifndef TARGET_ABI32
650     regs->tstate = 0;
651 #endif
652     regs->pc = infop->entry;
653     regs->npc = regs->pc + 4;
654     regs->y = 0;
655 #ifdef TARGET_ABI32
656     regs->u_regs[14] = infop->start_stack - 16 * 4;
657 #else
658     if (personality(infop->personality) == PER_LINUX32)
659         regs->u_regs[14] = infop->start_stack - 16 * 4;
660     else
661         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
662 #endif
663 }
664 
665 #else
666 #define ELF_START_MMAP 0x80000000
667 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668                     | HWCAP_SPARC_MULDIV)
669 #define elf_check_arch(x) ( (x) == EM_SPARC )
670 
671 #define ELF_CLASS   ELFCLASS32
672 #define ELF_ARCH    EM_SPARC
673 
674 static inline void init_thread(struct target_pt_regs *regs,
675                                struct image_info *infop)
676 {
677     regs->psr = 0;
678     regs->pc = infop->entry;
679     regs->npc = regs->pc + 4;
680     regs->y = 0;
681     regs->u_regs[14] = infop->start_stack - 16 * 4;
682 }
683 
684 #endif
685 #endif
686 
687 #ifdef TARGET_PPC
688 
689 #define ELF_START_MMAP 0x80000000
690 
691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
692 
693 #define elf_check_arch(x) ( (x) == EM_PPC64 )
694 
695 #define ELF_CLASS       ELFCLASS64
696 
697 #else
698 
699 #define elf_check_arch(x) ( (x) == EM_PPC )
700 
701 #define ELF_CLASS       ELFCLASS32
702 
703 #endif
704 
705 #define ELF_ARCH        EM_PPC
706 
707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708    See arch/powerpc/include/asm/cputable.h.  */
709 enum {
710     QEMU_PPC_FEATURE_32 = 0x80000000,
711     QEMU_PPC_FEATURE_64 = 0x40000000,
712     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
713     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
714     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
715     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
716     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
717     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
718     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
719     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
720     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
721     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
722     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
723     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
724     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
725     QEMU_PPC_FEATURE_CELL = 0x00010000,
726     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
727     QEMU_PPC_FEATURE_SMT = 0x00004000,
728     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
729     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
730     QEMU_PPC_FEATURE_PA6T = 0x00000800,
731     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
732     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
733     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
734     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
735     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
736 
737     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
738     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
739 
740     /* Feature definitions in AT_HWCAP2.  */
741     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
742     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
743     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
744     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
745     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
746     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
747 };
748 
749 #define ELF_HWCAP get_elf_hwcap()
750 
751 static uint32_t get_elf_hwcap(void)
752 {
753     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
754     uint32_t features = 0;
755 
756     /* We don't have to be terribly complete here; the high points are
757        Altivec/FP/SPE support.  Anything else is just a bonus.  */
758 #define GET_FEATURE(flag, feature)                                      \
759     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature)                                      \
761     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
763     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
764     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
765     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
766     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
767     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
768     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
769     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
770     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
771     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
772     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
773                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
774                   QEMU_PPC_FEATURE_ARCH_2_06);
775 #undef GET_FEATURE
776 #undef GET_FEATURE2
777 
778     return features;
779 }
780 
781 #define ELF_HWCAP2 get_elf_hwcap2()
782 
783 static uint32_t get_elf_hwcap2(void)
784 {
785     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
786     uint32_t features = 0;
787 
788 #define GET_FEATURE(flag, feature)                                      \
789     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790 #define GET_FEATURE2(flag, feature)                                      \
791     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
792 
793     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
794     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
795     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
796                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
797 
798 #undef GET_FEATURE
799 #undef GET_FEATURE2
800 
801     return features;
802 }
803 
804 /*
805  * The requirements here are:
806  * - keep the final alignment of sp (sp & 0xf)
807  * - make sure the 32-bit value at the first 16 byte aligned position of
808  *   AUXV is greater than 16 for glibc compatibility.
809  *   AT_IGNOREPPC is used for that.
810  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
811  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
812  */
813 #define DLINFO_ARCH_ITEMS       5
814 #define ARCH_DLINFO                                     \
815     do {                                                \
816         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
817         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
818         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
819         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
820         /*                                              \
821          * Now handle glibc compatibility.              \
822          */                                             \
823         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
824         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
825     } while (0)
826 
827 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
828 {
829     _regs->gpr[1] = infop->start_stack;
830 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
831     if (get_ppc64_abi(infop) < 2) {
832         _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
833         infop->entry = ldq_raw(infop->entry) + infop->load_bias;
834     } else {
835         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
836     }
837 #endif
838     _regs->nip = infop->entry;
839 }
840 
841 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
842 #define ELF_NREG 48
843 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
844 
845 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
846 {
847     int i;
848     target_ulong ccr = 0;
849 
850     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
851         (*regs)[i] = tswapreg(env->gpr[i]);
852     }
853 
854     (*regs)[32] = tswapreg(env->nip);
855     (*regs)[33] = tswapreg(env->msr);
856     (*regs)[35] = tswapreg(env->ctr);
857     (*regs)[36] = tswapreg(env->lr);
858     (*regs)[37] = tswapreg(env->xer);
859 
860     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
861         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
862     }
863     (*regs)[38] = tswapreg(ccr);
864 }
865 
866 #define USE_ELF_CORE_DUMP
867 #define ELF_EXEC_PAGESIZE       4096
868 
869 #endif
870 
871 #ifdef TARGET_MIPS
872 
873 #define ELF_START_MMAP 0x80000000
874 
875 #define elf_check_arch(x) ( (x) == EM_MIPS )
876 
877 #ifdef TARGET_MIPS64
878 #define ELF_CLASS   ELFCLASS64
879 #else
880 #define ELF_CLASS   ELFCLASS32
881 #endif
882 #define ELF_ARCH    EM_MIPS
883 
884 static inline void init_thread(struct target_pt_regs *regs,
885                                struct image_info *infop)
886 {
887     regs->cp0_status = 2 << CP0St_KSU;
888     regs->cp0_epc = infop->entry;
889     regs->regs[29] = infop->start_stack;
890 }
891 
892 /* See linux kernel: arch/mips/include/asm/elf.h.  */
893 #define ELF_NREG 45
894 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
895 
896 /* See linux kernel: arch/mips/include/asm/reg.h.  */
897 enum {
898 #ifdef TARGET_MIPS64
899     TARGET_EF_R0 = 0,
900 #else
901     TARGET_EF_R0 = 6,
902 #endif
903     TARGET_EF_R26 = TARGET_EF_R0 + 26,
904     TARGET_EF_R27 = TARGET_EF_R0 + 27,
905     TARGET_EF_LO = TARGET_EF_R0 + 32,
906     TARGET_EF_HI = TARGET_EF_R0 + 33,
907     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
908     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
909     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
910     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
911 };
912 
913 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
914 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
915 {
916     int i;
917 
918     for (i = 0; i < TARGET_EF_R0; i++) {
919         (*regs)[i] = 0;
920     }
921     (*regs)[TARGET_EF_R0] = 0;
922 
923     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
924         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
925     }
926 
927     (*regs)[TARGET_EF_R26] = 0;
928     (*regs)[TARGET_EF_R27] = 0;
929     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
930     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
931     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
932     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
933     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
934     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
935 }
936 
937 #define USE_ELF_CORE_DUMP
938 #define ELF_EXEC_PAGESIZE        4096
939 
940 #endif /* TARGET_MIPS */
941 
942 #ifdef TARGET_MICROBLAZE
943 
944 #define ELF_START_MMAP 0x80000000
945 
946 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
947 
948 #define ELF_CLASS   ELFCLASS32
949 #define ELF_ARCH    EM_MICROBLAZE
950 
951 static inline void init_thread(struct target_pt_regs *regs,
952                                struct image_info *infop)
953 {
954     regs->pc = infop->entry;
955     regs->r1 = infop->start_stack;
956 
957 }
958 
959 #define ELF_EXEC_PAGESIZE        4096
960 
961 #define USE_ELF_CORE_DUMP
962 #define ELF_NREG 38
963 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
964 
965 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
966 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
967 {
968     int i, pos = 0;
969 
970     for (i = 0; i < 32; i++) {
971         (*regs)[pos++] = tswapreg(env->regs[i]);
972     }
973 
974     for (i = 0; i < 6; i++) {
975         (*regs)[pos++] = tswapreg(env->sregs[i]);
976     }
977 }
978 
979 #endif /* TARGET_MICROBLAZE */
980 
981 #ifdef TARGET_OPENRISC
982 
983 #define ELF_START_MMAP 0x08000000
984 
985 #define elf_check_arch(x) ((x) == EM_OPENRISC)
986 
987 #define ELF_ARCH EM_OPENRISC
988 #define ELF_CLASS ELFCLASS32
989 #define ELF_DATA  ELFDATA2MSB
990 
991 static inline void init_thread(struct target_pt_regs *regs,
992                                struct image_info *infop)
993 {
994     regs->pc = infop->entry;
995     regs->gpr[1] = infop->start_stack;
996 }
997 
998 #define USE_ELF_CORE_DUMP
999 #define ELF_EXEC_PAGESIZE 8192
1000 
1001 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1002 #define ELF_NREG 34 /* gprs and pc, sr */
1003 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1004 
1005 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1006                                const CPUOpenRISCState *env)
1007 {
1008     int i;
1009 
1010     for (i = 0; i < 32; i++) {
1011         (*regs)[i] = tswapreg(env->gpr[i]);
1012     }
1013 
1014     (*regs)[32] = tswapreg(env->pc);
1015     (*regs)[33] = tswapreg(env->sr);
1016 }
1017 #define ELF_HWCAP 0
1018 #define ELF_PLATFORM NULL
1019 
1020 #endif /* TARGET_OPENRISC */
1021 
1022 #ifdef TARGET_SH4
1023 
1024 #define ELF_START_MMAP 0x80000000
1025 
1026 #define elf_check_arch(x) ( (x) == EM_SH )
1027 
1028 #define ELF_CLASS ELFCLASS32
1029 #define ELF_ARCH  EM_SH
1030 
1031 static inline void init_thread(struct target_pt_regs *regs,
1032                                struct image_info *infop)
1033 {
1034     /* Check other registers XXXXX */
1035     regs->pc = infop->entry;
1036     regs->regs[15] = infop->start_stack;
1037 }
1038 
1039 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1040 #define ELF_NREG 23
1041 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1042 
1043 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1044 enum {
1045     TARGET_REG_PC = 16,
1046     TARGET_REG_PR = 17,
1047     TARGET_REG_SR = 18,
1048     TARGET_REG_GBR = 19,
1049     TARGET_REG_MACH = 20,
1050     TARGET_REG_MACL = 21,
1051     TARGET_REG_SYSCALL = 22
1052 };
1053 
1054 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1055                                       const CPUSH4State *env)
1056 {
1057     int i;
1058 
1059     for (i = 0; i < 16; i++) {
1060         (*regs[i]) = tswapreg(env->gregs[i]);
1061     }
1062 
1063     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1064     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1065     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1066     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1067     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1068     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1069     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1070 }
1071 
1072 #define USE_ELF_CORE_DUMP
1073 #define ELF_EXEC_PAGESIZE        4096
1074 
1075 #endif
1076 
1077 #ifdef TARGET_CRIS
1078 
1079 #define ELF_START_MMAP 0x80000000
1080 
1081 #define elf_check_arch(x) ( (x) == EM_CRIS )
1082 
1083 #define ELF_CLASS ELFCLASS32
1084 #define ELF_ARCH  EM_CRIS
1085 
1086 static inline void init_thread(struct target_pt_regs *regs,
1087                                struct image_info *infop)
1088 {
1089     regs->erp = infop->entry;
1090 }
1091 
1092 #define ELF_EXEC_PAGESIZE        8192
1093 
1094 #endif
1095 
1096 #ifdef TARGET_M68K
1097 
1098 #define ELF_START_MMAP 0x80000000
1099 
1100 #define elf_check_arch(x) ( (x) == EM_68K )
1101 
1102 #define ELF_CLASS       ELFCLASS32
1103 #define ELF_ARCH        EM_68K
1104 
1105 /* ??? Does this need to do anything?
1106    #define ELF_PLAT_INIT(_r) */
1107 
1108 static inline void init_thread(struct target_pt_regs *regs,
1109                                struct image_info *infop)
1110 {
1111     regs->usp = infop->start_stack;
1112     regs->sr = 0;
1113     regs->pc = infop->entry;
1114 }
1115 
1116 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1117 #define ELF_NREG 20
1118 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1119 
1120 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1121 {
1122     (*regs)[0] = tswapreg(env->dregs[1]);
1123     (*regs)[1] = tswapreg(env->dregs[2]);
1124     (*regs)[2] = tswapreg(env->dregs[3]);
1125     (*regs)[3] = tswapreg(env->dregs[4]);
1126     (*regs)[4] = tswapreg(env->dregs[5]);
1127     (*regs)[5] = tswapreg(env->dregs[6]);
1128     (*regs)[6] = tswapreg(env->dregs[7]);
1129     (*regs)[7] = tswapreg(env->aregs[0]);
1130     (*regs)[8] = tswapreg(env->aregs[1]);
1131     (*regs)[9] = tswapreg(env->aregs[2]);
1132     (*regs)[10] = tswapreg(env->aregs[3]);
1133     (*regs)[11] = tswapreg(env->aregs[4]);
1134     (*regs)[12] = tswapreg(env->aregs[5]);
1135     (*regs)[13] = tswapreg(env->aregs[6]);
1136     (*regs)[14] = tswapreg(env->dregs[0]);
1137     (*regs)[15] = tswapreg(env->aregs[7]);
1138     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1139     (*regs)[17] = tswapreg(env->sr);
1140     (*regs)[18] = tswapreg(env->pc);
1141     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1142 }
1143 
1144 #define USE_ELF_CORE_DUMP
1145 #define ELF_EXEC_PAGESIZE       8192
1146 
1147 #endif
1148 
1149 #ifdef TARGET_ALPHA
1150 
1151 #define ELF_START_MMAP (0x30000000000ULL)
1152 
1153 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1154 
1155 #define ELF_CLASS      ELFCLASS64
1156 #define ELF_ARCH       EM_ALPHA
1157 
1158 static inline void init_thread(struct target_pt_regs *regs,
1159                                struct image_info *infop)
1160 {
1161     regs->pc = infop->entry;
1162     regs->ps = 8;
1163     regs->usp = infop->start_stack;
1164 }
1165 
1166 #define ELF_EXEC_PAGESIZE        8192
1167 
1168 #endif /* TARGET_ALPHA */
1169 
1170 #ifdef TARGET_S390X
1171 
1172 #define ELF_START_MMAP (0x20000000000ULL)
1173 
1174 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1175 
1176 #define ELF_CLASS	ELFCLASS64
1177 #define ELF_DATA	ELFDATA2MSB
1178 #define ELF_ARCH	EM_S390
1179 
1180 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1181 {
1182     regs->psw.addr = infop->entry;
1183     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1184     regs->gprs[15] = infop->start_stack;
1185 }
1186 
1187 #endif /* TARGET_S390X */
1188 
1189 #ifndef ELF_PLATFORM
1190 #define ELF_PLATFORM (NULL)
1191 #endif
1192 
1193 #ifndef ELF_HWCAP
1194 #define ELF_HWCAP 0
1195 #endif
1196 
1197 #ifdef TARGET_ABI32
1198 #undef ELF_CLASS
1199 #define ELF_CLASS ELFCLASS32
1200 #undef bswaptls
1201 #define bswaptls(ptr) bswap32s(ptr)
1202 #endif
1203 
1204 #include "elf.h"
1205 
1206 struct exec
1207 {
1208     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1209     unsigned int a_text;   /* length of text, in bytes */
1210     unsigned int a_data;   /* length of data, in bytes */
1211     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1212     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1213     unsigned int a_entry;  /* start address */
1214     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1215     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1216 };
1217 
1218 
1219 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1220 #define OMAGIC 0407
1221 #define NMAGIC 0410
1222 #define ZMAGIC 0413
1223 #define QMAGIC 0314
1224 
1225 /* Necessary parameters */
1226 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1227 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1228 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1229 
1230 #define DLINFO_ITEMS 14
1231 
1232 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1233 {
1234     memcpy(to, from, n);
1235 }
1236 
1237 #ifdef BSWAP_NEEDED
1238 static void bswap_ehdr(struct elfhdr *ehdr)
1239 {
1240     bswap16s(&ehdr->e_type);            /* Object file type */
1241     bswap16s(&ehdr->e_machine);         /* Architecture */
1242     bswap32s(&ehdr->e_version);         /* Object file version */
1243     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1244     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1245     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1246     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1247     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1248     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1249     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1250     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1251     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1252     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1253 }
1254 
1255 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1256 {
1257     int i;
1258     for (i = 0; i < phnum; ++i, ++phdr) {
1259         bswap32s(&phdr->p_type);        /* Segment type */
1260         bswap32s(&phdr->p_flags);       /* Segment flags */
1261         bswaptls(&phdr->p_offset);      /* Segment file offset */
1262         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1263         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1264         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1265         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1266         bswaptls(&phdr->p_align);       /* Segment alignment */
1267     }
1268 }
1269 
1270 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1271 {
1272     int i;
1273     for (i = 0; i < shnum; ++i, ++shdr) {
1274         bswap32s(&shdr->sh_name);
1275         bswap32s(&shdr->sh_type);
1276         bswaptls(&shdr->sh_flags);
1277         bswaptls(&shdr->sh_addr);
1278         bswaptls(&shdr->sh_offset);
1279         bswaptls(&shdr->sh_size);
1280         bswap32s(&shdr->sh_link);
1281         bswap32s(&shdr->sh_info);
1282         bswaptls(&shdr->sh_addralign);
1283         bswaptls(&shdr->sh_entsize);
1284     }
1285 }
1286 
1287 static void bswap_sym(struct elf_sym *sym)
1288 {
1289     bswap32s(&sym->st_name);
1290     bswaptls(&sym->st_value);
1291     bswaptls(&sym->st_size);
1292     bswap16s(&sym->st_shndx);
1293 }
1294 #else
1295 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1296 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1297 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1298 static inline void bswap_sym(struct elf_sym *sym) { }
1299 #endif
1300 
1301 #ifdef USE_ELF_CORE_DUMP
1302 static int elf_core_dump(int, const CPUArchState *);
1303 #endif /* USE_ELF_CORE_DUMP */
1304 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1305 
1306 /* Verify the portions of EHDR within E_IDENT for the target.
1307    This can be performed before bswapping the entire header.  */
1308 static bool elf_check_ident(struct elfhdr *ehdr)
1309 {
1310     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1311             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1312             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1313             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1314             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1315             && ehdr->e_ident[EI_DATA] == ELF_DATA
1316             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1317 }
1318 
1319 /* Verify the portions of EHDR outside of E_IDENT for the target.
1320    This has to wait until after bswapping the header.  */
1321 static bool elf_check_ehdr(struct elfhdr *ehdr)
1322 {
1323     return (elf_check_arch(ehdr->e_machine)
1324             && ehdr->e_ehsize == sizeof(struct elfhdr)
1325             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1326             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1327 }
1328 
1329 /*
1330  * 'copy_elf_strings()' copies argument/envelope strings from user
1331  * memory to free pages in kernel mem. These are in a format ready
1332  * to be put directly into the top of new user memory.
1333  *
1334  */
1335 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1336                                   abi_ulong p)
1337 {
1338     char *tmp, *tmp1, *pag = NULL;
1339     int len, offset = 0;
1340 
1341     if (!p) {
1342         return 0;       /* bullet-proofing */
1343     }
1344     while (argc-- > 0) {
1345         tmp = argv[argc];
1346         if (!tmp) {
1347             fprintf(stderr, "VFS: argc is wrong");
1348             exit(-1);
1349         }
1350         tmp1 = tmp;
1351         while (*tmp++);
1352         len = tmp - tmp1;
1353         if (p < len) {  /* this shouldn't happen - 128kB */
1354             return 0;
1355         }
1356         while (len) {
1357             --p; --tmp; --len;
1358             if (--offset < 0) {
1359                 offset = p % TARGET_PAGE_SIZE;
1360                 pag = (char *)page[p/TARGET_PAGE_SIZE];
1361                 if (!pag) {
1362                     pag = g_try_malloc0(TARGET_PAGE_SIZE);
1363                     page[p/TARGET_PAGE_SIZE] = pag;
1364                     if (!pag)
1365                         return 0;
1366                 }
1367             }
1368             if (len == 0 || offset == 0) {
1369                 *(pag + offset) = *tmp;
1370             }
1371             else {
1372                 int bytes_to_copy = (len > offset) ? offset : len;
1373                 tmp -= bytes_to_copy;
1374                 p -= bytes_to_copy;
1375                 offset -= bytes_to_copy;
1376                 len -= bytes_to_copy;
1377                 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1378             }
1379         }
1380     }
1381     return p;
1382 }
1383 
1384 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1385                                  struct image_info *info)
1386 {
1387     abi_ulong stack_base, size, error, guard;
1388     int i;
1389 
1390     /* Create enough stack to hold everything.  If we don't use
1391        it for args, we'll use it for something else.  */
1392     size = guest_stack_size;
1393     if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1394         size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1395     }
1396     guard = TARGET_PAGE_SIZE;
1397     if (guard < qemu_real_host_page_size) {
1398         guard = qemu_real_host_page_size;
1399     }
1400 
1401     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1402                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1403     if (error == -1) {
1404         perror("mmap stack");
1405         exit(-1);
1406     }
1407 
1408     /* We reserve one extra page at the top of the stack as guard.  */
1409     target_mprotect(error, guard, PROT_NONE);
1410 
1411     info->stack_limit = error + guard;
1412     stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1413     p += stack_base;
1414 
1415     for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1416         if (bprm->page[i]) {
1417             info->rss++;
1418             /* FIXME - check return value of memcpy_to_target() for failure */
1419             memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1420             g_free(bprm->page[i]);
1421         }
1422         stack_base += TARGET_PAGE_SIZE;
1423     }
1424     return p;
1425 }
1426 
1427 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1428    after the data section (i.e. bss).  */
1429 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1430 {
1431     uintptr_t host_start, host_map_start, host_end;
1432 
1433     last_bss = TARGET_PAGE_ALIGN(last_bss);
1434 
1435     /* ??? There is confusion between qemu_real_host_page_size and
1436        qemu_host_page_size here and elsewhere in target_mmap, which
1437        may lead to the end of the data section mapping from the file
1438        not being mapped.  At least there was an explicit test and
1439        comment for that here, suggesting that "the file size must
1440        be known".  The comment probably pre-dates the introduction
1441        of the fstat system call in target_mmap which does in fact
1442        find out the size.  What isn't clear is if the workaround
1443        here is still actually needed.  For now, continue with it,
1444        but merge it with the "normal" mmap that would allocate the bss.  */
1445 
1446     host_start = (uintptr_t) g2h(elf_bss);
1447     host_end = (uintptr_t) g2h(last_bss);
1448     host_map_start = (host_start + qemu_real_host_page_size - 1);
1449     host_map_start &= -qemu_real_host_page_size;
1450 
1451     if (host_map_start < host_end) {
1452         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1453                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1454         if (p == MAP_FAILED) {
1455             perror("cannot mmap brk");
1456             exit(-1);
1457         }
1458     }
1459 
1460     /* Ensure that the bss page(s) are valid */
1461     if ((page_get_flags(last_bss-1) & prot) != prot) {
1462         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1463     }
1464 
1465     if (host_start < host_map_start) {
1466         memset((void *)host_start, 0, host_map_start - host_start);
1467     }
1468 }
1469 
1470 #ifdef CONFIG_USE_FDPIC
1471 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1472 {
1473     uint16_t n;
1474     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1475 
1476     /* elf32_fdpic_loadseg */
1477     n = info->nsegs;
1478     while (n--) {
1479         sp -= 12;
1480         put_user_u32(loadsegs[n].addr, sp+0);
1481         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1482         put_user_u32(loadsegs[n].p_memsz, sp+8);
1483     }
1484 
1485     /* elf32_fdpic_loadmap */
1486     sp -= 4;
1487     put_user_u16(0, sp+0); /* version */
1488     put_user_u16(info->nsegs, sp+2); /* nsegs */
1489 
1490     info->personality = PER_LINUX_FDPIC;
1491     info->loadmap_addr = sp;
1492 
1493     return sp;
1494 }
1495 #endif
1496 
1497 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1498                                    struct elfhdr *exec,
1499                                    struct image_info *info,
1500                                    struct image_info *interp_info)
1501 {
1502     abi_ulong sp;
1503     abi_ulong sp_auxv;
1504     int size;
1505     int i;
1506     abi_ulong u_rand_bytes;
1507     uint8_t k_rand_bytes[16];
1508     abi_ulong u_platform;
1509     const char *k_platform;
1510     const int n = sizeof(elf_addr_t);
1511 
1512     sp = p;
1513 
1514 #ifdef CONFIG_USE_FDPIC
1515     /* Needs to be before we load the env/argc/... */
1516     if (elf_is_fdpic(exec)) {
1517         /* Need 4 byte alignment for these structs */
1518         sp &= ~3;
1519         sp = loader_build_fdpic_loadmap(info, sp);
1520         info->other_info = interp_info;
1521         if (interp_info) {
1522             interp_info->other_info = info;
1523             sp = loader_build_fdpic_loadmap(interp_info, sp);
1524         }
1525     }
1526 #endif
1527 
1528     u_platform = 0;
1529     k_platform = ELF_PLATFORM;
1530     if (k_platform) {
1531         size_t len = strlen(k_platform) + 1;
1532         sp -= (len + n - 1) & ~(n - 1);
1533         u_platform = sp;
1534         /* FIXME - check return value of memcpy_to_target() for failure */
1535         memcpy_to_target(sp, k_platform, len);
1536     }
1537 
1538     /*
1539      * Generate 16 random bytes for userspace PRNG seeding (not
1540      * cryptically secure but it's not the aim of QEMU).
1541      */
1542     for (i = 0; i < 16; i++) {
1543         k_rand_bytes[i] = rand();
1544     }
1545     sp -= 16;
1546     u_rand_bytes = sp;
1547     /* FIXME - check return value of memcpy_to_target() for failure */
1548     memcpy_to_target(sp, k_rand_bytes, 16);
1549 
1550     /*
1551      * Force 16 byte _final_ alignment here for generality.
1552      */
1553     sp = sp &~ (abi_ulong)15;
1554     size = (DLINFO_ITEMS + 1) * 2;
1555     if (k_platform)
1556         size += 2;
1557 #ifdef DLINFO_ARCH_ITEMS
1558     size += DLINFO_ARCH_ITEMS * 2;
1559 #endif
1560 #ifdef ELF_HWCAP2
1561     size += 2;
1562 #endif
1563     size += envc + argc + 2;
1564     size += 1;  /* argc itself */
1565     size *= n;
1566     if (size & 15)
1567         sp -= 16 - (size & 15);
1568 
1569     /* This is correct because Linux defines
1570      * elf_addr_t as Elf32_Off / Elf64_Off
1571      */
1572 #define NEW_AUX_ENT(id, val) do {               \
1573         sp -= n; put_user_ual(val, sp);         \
1574         sp -= n; put_user_ual(id, sp);          \
1575     } while(0)
1576 
1577     sp_auxv = sp;
1578     NEW_AUX_ENT (AT_NULL, 0);
1579 
1580     /* There must be exactly DLINFO_ITEMS entries here.  */
1581     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1582     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1583     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1584     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1585     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1586     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1587     NEW_AUX_ENT(AT_ENTRY, info->entry);
1588     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1589     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1590     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1591     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1592     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1593     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1594     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1595 
1596 #ifdef ELF_HWCAP2
1597     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1598 #endif
1599 
1600     if (k_platform)
1601         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1602 #ifdef ARCH_DLINFO
1603     /*
1604      * ARCH_DLINFO must come last so platform specific code can enforce
1605      * special alignment requirements on the AUXV if necessary (eg. PPC).
1606      */
1607     ARCH_DLINFO;
1608 #endif
1609 #undef NEW_AUX_ENT
1610 
1611     info->saved_auxv = sp;
1612     info->auxv_len = sp_auxv - sp;
1613 
1614     sp = loader_build_argptr(envc, argc, sp, p, 0);
1615     /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1616     assert(sp_auxv - sp == size);
1617     return sp;
1618 }
1619 
1620 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1621 /* If the guest doesn't have a validation function just agree */
1622 static int validate_guest_space(unsigned long guest_base,
1623                                 unsigned long guest_size)
1624 {
1625     return 1;
1626 }
1627 #endif
1628 
1629 unsigned long init_guest_space(unsigned long host_start,
1630                                unsigned long host_size,
1631                                unsigned long guest_start,
1632                                bool fixed)
1633 {
1634     unsigned long current_start, real_start;
1635     int flags;
1636 
1637     assert(host_start || host_size);
1638 
1639     /* If just a starting address is given, then just verify that
1640      * address.  */
1641     if (host_start && !host_size) {
1642         if (validate_guest_space(host_start, host_size) == 1) {
1643             return host_start;
1644         } else {
1645             return (unsigned long)-1;
1646         }
1647     }
1648 
1649     /* Setup the initial flags and start address.  */
1650     current_start = host_start & qemu_host_page_mask;
1651     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1652     if (fixed) {
1653         flags |= MAP_FIXED;
1654     }
1655 
1656     /* Otherwise, a non-zero size region of memory needs to be mapped
1657      * and validated.  */
1658     while (1) {
1659         unsigned long real_size = host_size;
1660 
1661         /* Do not use mmap_find_vma here because that is limited to the
1662          * guest address space.  We are going to make the
1663          * guest address space fit whatever we're given.
1664          */
1665         real_start = (unsigned long)
1666             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1667         if (real_start == (unsigned long)-1) {
1668             return (unsigned long)-1;
1669         }
1670 
1671         /* Ensure the address is properly aligned.  */
1672         if (real_start & ~qemu_host_page_mask) {
1673             munmap((void *)real_start, host_size);
1674             real_size = host_size + qemu_host_page_size;
1675             real_start = (unsigned long)
1676                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1677             if (real_start == (unsigned long)-1) {
1678                 return (unsigned long)-1;
1679             }
1680             real_start = HOST_PAGE_ALIGN(real_start);
1681         }
1682 
1683         /* Check to see if the address is valid.  */
1684         if (!host_start || real_start == current_start) {
1685             int valid = validate_guest_space(real_start - guest_start,
1686                                              real_size);
1687             if (valid == 1) {
1688                 break;
1689             } else if (valid == -1) {
1690                 return (unsigned long)-1;
1691             }
1692             /* valid == 0, so try again. */
1693         }
1694 
1695         /* That address didn't work.  Unmap and try a different one.
1696          * The address the host picked because is typically right at
1697          * the top of the host address space and leaves the guest with
1698          * no usable address space.  Resort to a linear search.  We
1699          * already compensated for mmap_min_addr, so this should not
1700          * happen often.  Probably means we got unlucky and host
1701          * address space randomization put a shared library somewhere
1702          * inconvenient.
1703          */
1704         munmap((void *)real_start, host_size);
1705         current_start += qemu_host_page_size;
1706         if (host_start == current_start) {
1707             /* Theoretically possible if host doesn't have any suitably
1708              * aligned areas.  Normally the first mmap will fail.
1709              */
1710             return (unsigned long)-1;
1711         }
1712     }
1713 
1714     qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1715 
1716     return real_start;
1717 }
1718 
1719 static void probe_guest_base(const char *image_name,
1720                              abi_ulong loaddr, abi_ulong hiaddr)
1721 {
1722     /* Probe for a suitable guest base address, if the user has not set
1723      * it explicitly, and set guest_base appropriately.
1724      * In case of error we will print a suitable message and exit.
1725      */
1726 #if defined(CONFIG_USE_GUEST_BASE)
1727     const char *errmsg;
1728     if (!have_guest_base && !reserved_va) {
1729         unsigned long host_start, real_start, host_size;
1730 
1731         /* Round addresses to page boundaries.  */
1732         loaddr &= qemu_host_page_mask;
1733         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1734 
1735         if (loaddr < mmap_min_addr) {
1736             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1737         } else {
1738             host_start = loaddr;
1739             if (host_start != loaddr) {
1740                 errmsg = "Address overflow loading ELF binary";
1741                 goto exit_errmsg;
1742             }
1743         }
1744         host_size = hiaddr - loaddr;
1745 
1746         /* Setup the initial guest memory space with ranges gleaned from
1747          * the ELF image that is being loaded.
1748          */
1749         real_start = init_guest_space(host_start, host_size, loaddr, false);
1750         if (real_start == (unsigned long)-1) {
1751             errmsg = "Unable to find space for application";
1752             goto exit_errmsg;
1753         }
1754         guest_base = real_start - loaddr;
1755 
1756         qemu_log("Relocating guest address space from 0x"
1757                  TARGET_ABI_FMT_lx " to 0x%lx\n",
1758                  loaddr, real_start);
1759     }
1760     return;
1761 
1762 exit_errmsg:
1763     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1764     exit(-1);
1765 #endif
1766 }
1767 
1768 
1769 /* Load an ELF image into the address space.
1770 
1771    IMAGE_NAME is the filename of the image, to use in error messages.
1772    IMAGE_FD is the open file descriptor for the image.
1773 
1774    BPRM_BUF is a copy of the beginning of the file; this of course
1775    contains the elf file header at offset 0.  It is assumed that this
1776    buffer is sufficiently aligned to present no problems to the host
1777    in accessing data at aligned offsets within the buffer.
1778 
1779    On return: INFO values will be filled in, as necessary or available.  */
1780 
1781 static void load_elf_image(const char *image_name, int image_fd,
1782                            struct image_info *info, char **pinterp_name,
1783                            char bprm_buf[BPRM_BUF_SIZE])
1784 {
1785     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1786     struct elf_phdr *phdr;
1787     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1788     int i, retval;
1789     const char *errmsg;
1790 
1791     /* First of all, some simple consistency checks */
1792     errmsg = "Invalid ELF image for this architecture";
1793     if (!elf_check_ident(ehdr)) {
1794         goto exit_errmsg;
1795     }
1796     bswap_ehdr(ehdr);
1797     if (!elf_check_ehdr(ehdr)) {
1798         goto exit_errmsg;
1799     }
1800 
1801     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1802     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1803         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1804     } else {
1805         phdr = (struct elf_phdr *) alloca(i);
1806         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1807         if (retval != i) {
1808             goto exit_read;
1809         }
1810     }
1811     bswap_phdr(phdr, ehdr->e_phnum);
1812 
1813 #ifdef CONFIG_USE_FDPIC
1814     info->nsegs = 0;
1815     info->pt_dynamic_addr = 0;
1816 #endif
1817 
1818     /* Find the maximum size of the image and allocate an appropriate
1819        amount of memory to handle that.  */
1820     loaddr = -1, hiaddr = 0;
1821     for (i = 0; i < ehdr->e_phnum; ++i) {
1822         if (phdr[i].p_type == PT_LOAD) {
1823             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1824             if (a < loaddr) {
1825                 loaddr = a;
1826             }
1827             a += phdr[i].p_memsz;
1828             if (a > hiaddr) {
1829                 hiaddr = a;
1830             }
1831 #ifdef CONFIG_USE_FDPIC
1832             ++info->nsegs;
1833 #endif
1834         }
1835     }
1836 
1837     load_addr = loaddr;
1838     if (ehdr->e_type == ET_DYN) {
1839         /* The image indicates that it can be loaded anywhere.  Find a
1840            location that can hold the memory space required.  If the
1841            image is pre-linked, LOADDR will be non-zero.  Since we do
1842            not supply MAP_FIXED here we'll use that address if and
1843            only if it remains available.  */
1844         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1845                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1846                                 -1, 0);
1847         if (load_addr == -1) {
1848             goto exit_perror;
1849         }
1850     } else if (pinterp_name != NULL) {
1851         /* This is the main executable.  Make sure that the low
1852            address does not conflict with MMAP_MIN_ADDR or the
1853            QEMU application itself.  */
1854         probe_guest_base(image_name, loaddr, hiaddr);
1855     }
1856     load_bias = load_addr - loaddr;
1857 
1858 #ifdef CONFIG_USE_FDPIC
1859     {
1860         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1861             g_malloc(sizeof(*loadsegs) * info->nsegs);
1862 
1863         for (i = 0; i < ehdr->e_phnum; ++i) {
1864             switch (phdr[i].p_type) {
1865             case PT_DYNAMIC:
1866                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1867                 break;
1868             case PT_LOAD:
1869                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1870                 loadsegs->p_vaddr = phdr[i].p_vaddr;
1871                 loadsegs->p_memsz = phdr[i].p_memsz;
1872                 ++loadsegs;
1873                 break;
1874             }
1875         }
1876     }
1877 #endif
1878 
1879     info->load_bias = load_bias;
1880     info->load_addr = load_addr;
1881     info->entry = ehdr->e_entry + load_bias;
1882     info->start_code = -1;
1883     info->end_code = 0;
1884     info->start_data = -1;
1885     info->end_data = 0;
1886     info->brk = 0;
1887     info->elf_flags = ehdr->e_flags;
1888 
1889     for (i = 0; i < ehdr->e_phnum; i++) {
1890         struct elf_phdr *eppnt = phdr + i;
1891         if (eppnt->p_type == PT_LOAD) {
1892             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1893             int elf_prot = 0;
1894 
1895             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1896             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1897             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1898 
1899             vaddr = load_bias + eppnt->p_vaddr;
1900             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1901             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1902 
1903             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1904                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
1905                                 image_fd, eppnt->p_offset - vaddr_po);
1906             if (error == -1) {
1907                 goto exit_perror;
1908             }
1909 
1910             vaddr_ef = vaddr + eppnt->p_filesz;
1911             vaddr_em = vaddr + eppnt->p_memsz;
1912 
1913             /* If the load segment requests extra zeros (e.g. bss), map it.  */
1914             if (vaddr_ef < vaddr_em) {
1915                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1916             }
1917 
1918             /* Find the full program boundaries.  */
1919             if (elf_prot & PROT_EXEC) {
1920                 if (vaddr < info->start_code) {
1921                     info->start_code = vaddr;
1922                 }
1923                 if (vaddr_ef > info->end_code) {
1924                     info->end_code = vaddr_ef;
1925                 }
1926             }
1927             if (elf_prot & PROT_WRITE) {
1928                 if (vaddr < info->start_data) {
1929                     info->start_data = vaddr;
1930                 }
1931                 if (vaddr_ef > info->end_data) {
1932                     info->end_data = vaddr_ef;
1933                 }
1934                 if (vaddr_em > info->brk) {
1935                     info->brk = vaddr_em;
1936                 }
1937             }
1938         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1939             char *interp_name;
1940 
1941             if (*pinterp_name) {
1942                 errmsg = "Multiple PT_INTERP entries";
1943                 goto exit_errmsg;
1944             }
1945             interp_name = malloc(eppnt->p_filesz);
1946             if (!interp_name) {
1947                 goto exit_perror;
1948             }
1949 
1950             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1951                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1952                        eppnt->p_filesz);
1953             } else {
1954                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1955                                eppnt->p_offset);
1956                 if (retval != eppnt->p_filesz) {
1957                     goto exit_perror;
1958                 }
1959             }
1960             if (interp_name[eppnt->p_filesz - 1] != 0) {
1961                 errmsg = "Invalid PT_INTERP entry";
1962                 goto exit_errmsg;
1963             }
1964             *pinterp_name = interp_name;
1965         }
1966     }
1967 
1968     if (info->end_data == 0) {
1969         info->start_data = info->end_code;
1970         info->end_data = info->end_code;
1971         info->brk = info->end_code;
1972     }
1973 
1974     if (qemu_log_enabled()) {
1975         load_symbols(ehdr, image_fd, load_bias);
1976     }
1977 
1978     close(image_fd);
1979     return;
1980 
1981  exit_read:
1982     if (retval >= 0) {
1983         errmsg = "Incomplete read of file header";
1984         goto exit_errmsg;
1985     }
1986  exit_perror:
1987     errmsg = strerror(errno);
1988  exit_errmsg:
1989     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1990     exit(-1);
1991 }
1992 
1993 static void load_elf_interp(const char *filename, struct image_info *info,
1994                             char bprm_buf[BPRM_BUF_SIZE])
1995 {
1996     int fd, retval;
1997 
1998     fd = open(path(filename), O_RDONLY);
1999     if (fd < 0) {
2000         goto exit_perror;
2001     }
2002 
2003     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2004     if (retval < 0) {
2005         goto exit_perror;
2006     }
2007     if (retval < BPRM_BUF_SIZE) {
2008         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2009     }
2010 
2011     load_elf_image(filename, fd, info, NULL, bprm_buf);
2012     return;
2013 
2014  exit_perror:
2015     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2016     exit(-1);
2017 }
2018 
2019 static int symfind(const void *s0, const void *s1)
2020 {
2021     target_ulong addr = *(target_ulong *)s0;
2022     struct elf_sym *sym = (struct elf_sym *)s1;
2023     int result = 0;
2024     if (addr < sym->st_value) {
2025         result = -1;
2026     } else if (addr >= sym->st_value + sym->st_size) {
2027         result = 1;
2028     }
2029     return result;
2030 }
2031 
2032 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2033 {
2034 #if ELF_CLASS == ELFCLASS32
2035     struct elf_sym *syms = s->disas_symtab.elf32;
2036 #else
2037     struct elf_sym *syms = s->disas_symtab.elf64;
2038 #endif
2039 
2040     // binary search
2041     struct elf_sym *sym;
2042 
2043     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2044     if (sym != NULL) {
2045         return s->disas_strtab + sym->st_name;
2046     }
2047 
2048     return "";
2049 }
2050 
2051 /* FIXME: This should use elf_ops.h  */
2052 static int symcmp(const void *s0, const void *s1)
2053 {
2054     struct elf_sym *sym0 = (struct elf_sym *)s0;
2055     struct elf_sym *sym1 = (struct elf_sym *)s1;
2056     return (sym0->st_value < sym1->st_value)
2057         ? -1
2058         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2059 }
2060 
2061 /* Best attempt to load symbols from this ELF object. */
2062 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2063 {
2064     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2065     struct elf_shdr *shdr;
2066     char *strings = NULL;
2067     struct syminfo *s = NULL;
2068     struct elf_sym *new_syms, *syms = NULL;
2069 
2070     shnum = hdr->e_shnum;
2071     i = shnum * sizeof(struct elf_shdr);
2072     shdr = (struct elf_shdr *)alloca(i);
2073     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2074         return;
2075     }
2076 
2077     bswap_shdr(shdr, shnum);
2078     for (i = 0; i < shnum; ++i) {
2079         if (shdr[i].sh_type == SHT_SYMTAB) {
2080             sym_idx = i;
2081             str_idx = shdr[i].sh_link;
2082             goto found;
2083         }
2084     }
2085 
2086     /* There will be no symbol table if the file was stripped.  */
2087     return;
2088 
2089  found:
2090     /* Now know where the strtab and symtab are.  Snarf them.  */
2091     s = malloc(sizeof(*s));
2092     if (!s) {
2093         goto give_up;
2094     }
2095 
2096     i = shdr[str_idx].sh_size;
2097     s->disas_strtab = strings = malloc(i);
2098     if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2099         goto give_up;
2100     }
2101 
2102     i = shdr[sym_idx].sh_size;
2103     syms = malloc(i);
2104     if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2105         goto give_up;
2106     }
2107 
2108     nsyms = i / sizeof(struct elf_sym);
2109     for (i = 0; i < nsyms; ) {
2110         bswap_sym(syms + i);
2111         /* Throw away entries which we do not need.  */
2112         if (syms[i].st_shndx == SHN_UNDEF
2113             || syms[i].st_shndx >= SHN_LORESERVE
2114             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2115             if (i < --nsyms) {
2116                 syms[i] = syms[nsyms];
2117             }
2118         } else {
2119 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2120             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2121             syms[i].st_value &= ~(target_ulong)1;
2122 #endif
2123             syms[i].st_value += load_bias;
2124             i++;
2125         }
2126     }
2127 
2128     /* No "useful" symbol.  */
2129     if (nsyms == 0) {
2130         goto give_up;
2131     }
2132 
2133     /* Attempt to free the storage associated with the local symbols
2134        that we threw away.  Whether or not this has any effect on the
2135        memory allocation depends on the malloc implementation and how
2136        many symbols we managed to discard.  */
2137     new_syms = realloc(syms, nsyms * sizeof(*syms));
2138     if (new_syms == NULL) {
2139         goto give_up;
2140     }
2141     syms = new_syms;
2142 
2143     qsort(syms, nsyms, sizeof(*syms), symcmp);
2144 
2145     s->disas_num_syms = nsyms;
2146 #if ELF_CLASS == ELFCLASS32
2147     s->disas_symtab.elf32 = syms;
2148 #else
2149     s->disas_symtab.elf64 = syms;
2150 #endif
2151     s->lookup_symbol = lookup_symbolxx;
2152     s->next = syminfos;
2153     syminfos = s;
2154 
2155     return;
2156 
2157 give_up:
2158     free(s);
2159     free(strings);
2160     free(syms);
2161 }
2162 
2163 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2164 {
2165     struct image_info interp_info;
2166     struct elfhdr elf_ex;
2167     char *elf_interpreter = NULL;
2168 
2169     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2170     info->mmap = 0;
2171     info->rss = 0;
2172 
2173     load_elf_image(bprm->filename, bprm->fd, info,
2174                    &elf_interpreter, bprm->buf);
2175 
2176     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2177        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2178        when we load the interpreter.  */
2179     elf_ex = *(struct elfhdr *)bprm->buf;
2180 
2181     bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2182     bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2183     bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2184     if (!bprm->p) {
2185         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2186         exit(-1);
2187     }
2188 
2189     /* Do this so that we can load the interpreter, if need be.  We will
2190        change some of these later */
2191     bprm->p = setup_arg_pages(bprm->p, bprm, info);
2192 
2193     if (elf_interpreter) {
2194         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2195 
2196         /* If the program interpreter is one of these two, then assume
2197            an iBCS2 image.  Otherwise assume a native linux image.  */
2198 
2199         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2200             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2201             info->personality = PER_SVR4;
2202 
2203             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2204                and some applications "depend" upon this behavior.  Since
2205                we do not have the power to recompile these, we emulate
2206                the SVr4 behavior.  Sigh.  */
2207             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2208                         MAP_FIXED | MAP_PRIVATE, -1, 0);
2209         }
2210     }
2211 
2212     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2213                                 info, (elf_interpreter ? &interp_info : NULL));
2214     info->start_stack = bprm->p;
2215 
2216     /* If we have an interpreter, set that as the program's entry point.
2217        Copy the load_bias as well, to help PPC64 interpret the entry
2218        point as a function descriptor.  Do this after creating elf tables
2219        so that we copy the original program entry point into the AUXV.  */
2220     if (elf_interpreter) {
2221         info->load_bias = interp_info.load_bias;
2222         info->entry = interp_info.entry;
2223         free(elf_interpreter);
2224     }
2225 
2226 #ifdef USE_ELF_CORE_DUMP
2227     bprm->core_dump = &elf_core_dump;
2228 #endif
2229 
2230     return 0;
2231 }
2232 
2233 #ifdef USE_ELF_CORE_DUMP
2234 /*
2235  * Definitions to generate Intel SVR4-like core files.
2236  * These mostly have the same names as the SVR4 types with "target_elf_"
2237  * tacked on the front to prevent clashes with linux definitions,
2238  * and the typedef forms have been avoided.  This is mostly like
2239  * the SVR4 structure, but more Linuxy, with things that Linux does
2240  * not support and which gdb doesn't really use excluded.
2241  *
2242  * Fields we don't dump (their contents is zero) in linux-user qemu
2243  * are marked with XXX.
2244  *
2245  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2246  *
2247  * Porting ELF coredump for target is (quite) simple process.  First you
2248  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2249  * the target resides):
2250  *
2251  * #define USE_ELF_CORE_DUMP
2252  *
2253  * Next you define type of register set used for dumping.  ELF specification
2254  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2255  *
2256  * typedef <target_regtype> target_elf_greg_t;
2257  * #define ELF_NREG <number of registers>
2258  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2259  *
2260  * Last step is to implement target specific function that copies registers
2261  * from given cpu into just specified register set.  Prototype is:
2262  *
2263  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2264  *                                const CPUArchState *env);
2265  *
2266  * Parameters:
2267  *     regs - copy register values into here (allocated and zeroed by caller)
2268  *     env - copy registers from here
2269  *
2270  * Example for ARM target is provided in this file.
2271  */
2272 
2273 /* An ELF note in memory */
2274 struct memelfnote {
2275     const char *name;
2276     size_t     namesz;
2277     size_t     namesz_rounded;
2278     int        type;
2279     size_t     datasz;
2280     size_t     datasz_rounded;
2281     void       *data;
2282     size_t     notesz;
2283 };
2284 
2285 struct target_elf_siginfo {
2286     abi_int    si_signo; /* signal number */
2287     abi_int    si_code;  /* extra code */
2288     abi_int    si_errno; /* errno */
2289 };
2290 
2291 struct target_elf_prstatus {
2292     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2293     abi_short          pr_cursig;    /* Current signal */
2294     abi_ulong          pr_sigpend;   /* XXX */
2295     abi_ulong          pr_sighold;   /* XXX */
2296     target_pid_t       pr_pid;
2297     target_pid_t       pr_ppid;
2298     target_pid_t       pr_pgrp;
2299     target_pid_t       pr_sid;
2300     struct target_timeval pr_utime;  /* XXX User time */
2301     struct target_timeval pr_stime;  /* XXX System time */
2302     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2303     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2304     target_elf_gregset_t      pr_reg;       /* GP registers */
2305     abi_int            pr_fpvalid;   /* XXX */
2306 };
2307 
2308 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2309 
2310 struct target_elf_prpsinfo {
2311     char         pr_state;       /* numeric process state */
2312     char         pr_sname;       /* char for pr_state */
2313     char         pr_zomb;        /* zombie */
2314     char         pr_nice;        /* nice val */
2315     abi_ulong    pr_flag;        /* flags */
2316     target_uid_t pr_uid;
2317     target_gid_t pr_gid;
2318     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2319     /* Lots missing */
2320     char    pr_fname[16];           /* filename of executable */
2321     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2322 };
2323 
2324 /* Here is the structure in which status of each thread is captured. */
2325 struct elf_thread_status {
2326     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2327     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2328 #if 0
2329     elf_fpregset_t fpu;             /* NT_PRFPREG */
2330     struct task_struct *thread;
2331     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2332 #endif
2333     struct memelfnote notes[1];
2334     int num_notes;
2335 };
2336 
2337 struct elf_note_info {
2338     struct memelfnote   *notes;
2339     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2340     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2341 
2342     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2343 #if 0
2344     /*
2345      * Current version of ELF coredump doesn't support
2346      * dumping fp regs etc.
2347      */
2348     elf_fpregset_t *fpu;
2349     elf_fpxregset_t *xfpu;
2350     int thread_status_size;
2351 #endif
2352     int notes_size;
2353     int numnote;
2354 };
2355 
2356 struct vm_area_struct {
2357     target_ulong   vma_start;  /* start vaddr of memory region */
2358     target_ulong   vma_end;    /* end vaddr of memory region */
2359     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2360     QTAILQ_ENTRY(vm_area_struct) vma_link;
2361 };
2362 
2363 struct mm_struct {
2364     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2365     int mm_count;           /* number of mappings */
2366 };
2367 
2368 static struct mm_struct *vma_init(void);
2369 static void vma_delete(struct mm_struct *);
2370 static int vma_add_mapping(struct mm_struct *, target_ulong,
2371                            target_ulong, abi_ulong);
2372 static int vma_get_mapping_count(const struct mm_struct *);
2373 static struct vm_area_struct *vma_first(const struct mm_struct *);
2374 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2375 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2376 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2377                       unsigned long flags);
2378 
2379 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2380 static void fill_note(struct memelfnote *, const char *, int,
2381                       unsigned int, void *);
2382 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2383 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2384 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2385 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2386 static size_t note_size(const struct memelfnote *);
2387 static void free_note_info(struct elf_note_info *);
2388 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2389 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2390 static int core_dump_filename(const TaskState *, char *, size_t);
2391 
2392 static int dump_write(int, const void *, size_t);
2393 static int write_note(struct memelfnote *, int);
2394 static int write_note_info(struct elf_note_info *, int);
2395 
2396 #ifdef BSWAP_NEEDED
2397 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2398 {
2399     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2400     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2401     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2402     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2403     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2404     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2405     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2406     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2407     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2408     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2409     /* cpu times are not filled, so we skip them */
2410     /* regs should be in correct format already */
2411     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2412 }
2413 
2414 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2415 {
2416     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2417     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2418     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2419     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2420     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2421     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2422     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2423 }
2424 
2425 static void bswap_note(struct elf_note *en)
2426 {
2427     bswap32s(&en->n_namesz);
2428     bswap32s(&en->n_descsz);
2429     bswap32s(&en->n_type);
2430 }
2431 #else
2432 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2433 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2434 static inline void bswap_note(struct elf_note *en) { }
2435 #endif /* BSWAP_NEEDED */
2436 
2437 /*
2438  * Minimal support for linux memory regions.  These are needed
2439  * when we are finding out what memory exactly belongs to
2440  * emulated process.  No locks needed here, as long as
2441  * thread that received the signal is stopped.
2442  */
2443 
2444 static struct mm_struct *vma_init(void)
2445 {
2446     struct mm_struct *mm;
2447 
2448     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2449         return (NULL);
2450 
2451     mm->mm_count = 0;
2452     QTAILQ_INIT(&mm->mm_mmap);
2453 
2454     return (mm);
2455 }
2456 
2457 static void vma_delete(struct mm_struct *mm)
2458 {
2459     struct vm_area_struct *vma;
2460 
2461     while ((vma = vma_first(mm)) != NULL) {
2462         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2463         g_free(vma);
2464     }
2465     g_free(mm);
2466 }
2467 
2468 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2469                            target_ulong end, abi_ulong flags)
2470 {
2471     struct vm_area_struct *vma;
2472 
2473     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2474         return (-1);
2475 
2476     vma->vma_start = start;
2477     vma->vma_end = end;
2478     vma->vma_flags = flags;
2479 
2480     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2481     mm->mm_count++;
2482 
2483     return (0);
2484 }
2485 
2486 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2487 {
2488     return (QTAILQ_FIRST(&mm->mm_mmap));
2489 }
2490 
2491 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2492 {
2493     return (QTAILQ_NEXT(vma, vma_link));
2494 }
2495 
2496 static int vma_get_mapping_count(const struct mm_struct *mm)
2497 {
2498     return (mm->mm_count);
2499 }
2500 
2501 /*
2502  * Calculate file (dump) size of given memory region.
2503  */
2504 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2505 {
2506     /* if we cannot even read the first page, skip it */
2507     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2508         return (0);
2509 
2510     /*
2511      * Usually we don't dump executable pages as they contain
2512      * non-writable code that debugger can read directly from
2513      * target library etc.  However, thread stacks are marked
2514      * also executable so we read in first page of given region
2515      * and check whether it contains elf header.  If there is
2516      * no elf header, we dump it.
2517      */
2518     if (vma->vma_flags & PROT_EXEC) {
2519         char page[TARGET_PAGE_SIZE];
2520 
2521         copy_from_user(page, vma->vma_start, sizeof (page));
2522         if ((page[EI_MAG0] == ELFMAG0) &&
2523             (page[EI_MAG1] == ELFMAG1) &&
2524             (page[EI_MAG2] == ELFMAG2) &&
2525             (page[EI_MAG3] == ELFMAG3)) {
2526             /*
2527              * Mappings are possibly from ELF binary.  Don't dump
2528              * them.
2529              */
2530             return (0);
2531         }
2532     }
2533 
2534     return (vma->vma_end - vma->vma_start);
2535 }
2536 
2537 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2538                       unsigned long flags)
2539 {
2540     struct mm_struct *mm = (struct mm_struct *)priv;
2541 
2542     vma_add_mapping(mm, start, end, flags);
2543     return (0);
2544 }
2545 
2546 static void fill_note(struct memelfnote *note, const char *name, int type,
2547                       unsigned int sz, void *data)
2548 {
2549     unsigned int namesz;
2550 
2551     namesz = strlen(name) + 1;
2552     note->name = name;
2553     note->namesz = namesz;
2554     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2555     note->type = type;
2556     note->datasz = sz;
2557     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2558 
2559     note->data = data;
2560 
2561     /*
2562      * We calculate rounded up note size here as specified by
2563      * ELF document.
2564      */
2565     note->notesz = sizeof (struct elf_note) +
2566         note->namesz_rounded + note->datasz_rounded;
2567 }
2568 
2569 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2570                             uint32_t flags)
2571 {
2572     (void) memset(elf, 0, sizeof(*elf));
2573 
2574     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2575     elf->e_ident[EI_CLASS] = ELF_CLASS;
2576     elf->e_ident[EI_DATA] = ELF_DATA;
2577     elf->e_ident[EI_VERSION] = EV_CURRENT;
2578     elf->e_ident[EI_OSABI] = ELF_OSABI;
2579 
2580     elf->e_type = ET_CORE;
2581     elf->e_machine = machine;
2582     elf->e_version = EV_CURRENT;
2583     elf->e_phoff = sizeof(struct elfhdr);
2584     elf->e_flags = flags;
2585     elf->e_ehsize = sizeof(struct elfhdr);
2586     elf->e_phentsize = sizeof(struct elf_phdr);
2587     elf->e_phnum = segs;
2588 
2589     bswap_ehdr(elf);
2590 }
2591 
2592 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2593 {
2594     phdr->p_type = PT_NOTE;
2595     phdr->p_offset = offset;
2596     phdr->p_vaddr = 0;
2597     phdr->p_paddr = 0;
2598     phdr->p_filesz = sz;
2599     phdr->p_memsz = 0;
2600     phdr->p_flags = 0;
2601     phdr->p_align = 0;
2602 
2603     bswap_phdr(phdr, 1);
2604 }
2605 
2606 static size_t note_size(const struct memelfnote *note)
2607 {
2608     return (note->notesz);
2609 }
2610 
2611 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2612                           const TaskState *ts, int signr)
2613 {
2614     (void) memset(prstatus, 0, sizeof (*prstatus));
2615     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2616     prstatus->pr_pid = ts->ts_tid;
2617     prstatus->pr_ppid = getppid();
2618     prstatus->pr_pgrp = getpgrp();
2619     prstatus->pr_sid = getsid(0);
2620 
2621     bswap_prstatus(prstatus);
2622 }
2623 
2624 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2625 {
2626     char *base_filename;
2627     unsigned int i, len;
2628 
2629     (void) memset(psinfo, 0, sizeof (*psinfo));
2630 
2631     len = ts->info->arg_end - ts->info->arg_start;
2632     if (len >= ELF_PRARGSZ)
2633         len = ELF_PRARGSZ - 1;
2634     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2635         return -EFAULT;
2636     for (i = 0; i < len; i++)
2637         if (psinfo->pr_psargs[i] == 0)
2638             psinfo->pr_psargs[i] = ' ';
2639     psinfo->pr_psargs[len] = 0;
2640 
2641     psinfo->pr_pid = getpid();
2642     psinfo->pr_ppid = getppid();
2643     psinfo->pr_pgrp = getpgrp();
2644     psinfo->pr_sid = getsid(0);
2645     psinfo->pr_uid = getuid();
2646     psinfo->pr_gid = getgid();
2647 
2648     base_filename = g_path_get_basename(ts->bprm->filename);
2649     /*
2650      * Using strncpy here is fine: at max-length,
2651      * this field is not NUL-terminated.
2652      */
2653     (void) strncpy(psinfo->pr_fname, base_filename,
2654                    sizeof(psinfo->pr_fname));
2655 
2656     g_free(base_filename);
2657     bswap_psinfo(psinfo);
2658     return (0);
2659 }
2660 
2661 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2662 {
2663     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2664     elf_addr_t orig_auxv = auxv;
2665     void *ptr;
2666     int len = ts->info->auxv_len;
2667 
2668     /*
2669      * Auxiliary vector is stored in target process stack.  It contains
2670      * {type, value} pairs that we need to dump into note.  This is not
2671      * strictly necessary but we do it here for sake of completeness.
2672      */
2673 
2674     /* read in whole auxv vector and copy it to memelfnote */
2675     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2676     if (ptr != NULL) {
2677         fill_note(note, "CORE", NT_AUXV, len, ptr);
2678         unlock_user(ptr, auxv, len);
2679     }
2680 }
2681 
2682 /*
2683  * Constructs name of coredump file.  We have following convention
2684  * for the name:
2685  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2686  *
2687  * Returns 0 in case of success, -1 otherwise (errno is set).
2688  */
2689 static int core_dump_filename(const TaskState *ts, char *buf,
2690                               size_t bufsize)
2691 {
2692     char timestamp[64];
2693     char *filename = NULL;
2694     char *base_filename = NULL;
2695     struct timeval tv;
2696     struct tm tm;
2697 
2698     assert(bufsize >= PATH_MAX);
2699 
2700     if (gettimeofday(&tv, NULL) < 0) {
2701         (void) fprintf(stderr, "unable to get current timestamp: %s",
2702                        strerror(errno));
2703         return (-1);
2704     }
2705 
2706     filename = strdup(ts->bprm->filename);
2707     base_filename = strdup(basename(filename));
2708     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2709                     localtime_r(&tv.tv_sec, &tm));
2710     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2711                     base_filename, timestamp, (int)getpid());
2712     free(base_filename);
2713     free(filename);
2714 
2715     return (0);
2716 }
2717 
2718 static int dump_write(int fd, const void *ptr, size_t size)
2719 {
2720     const char *bufp = (const char *)ptr;
2721     ssize_t bytes_written, bytes_left;
2722     struct rlimit dumpsize;
2723     off_t pos;
2724 
2725     bytes_written = 0;
2726     getrlimit(RLIMIT_CORE, &dumpsize);
2727     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2728         if (errno == ESPIPE) { /* not a seekable stream */
2729             bytes_left = size;
2730         } else {
2731             return pos;
2732         }
2733     } else {
2734         if (dumpsize.rlim_cur <= pos) {
2735             return -1;
2736         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2737             bytes_left = size;
2738         } else {
2739             size_t limit_left=dumpsize.rlim_cur - pos;
2740             bytes_left = limit_left >= size ? size : limit_left ;
2741         }
2742     }
2743 
2744     /*
2745      * In normal conditions, single write(2) should do but
2746      * in case of socket etc. this mechanism is more portable.
2747      */
2748     do {
2749         bytes_written = write(fd, bufp, bytes_left);
2750         if (bytes_written < 0) {
2751             if (errno == EINTR)
2752                 continue;
2753             return (-1);
2754         } else if (bytes_written == 0) { /* eof */
2755             return (-1);
2756         }
2757         bufp += bytes_written;
2758         bytes_left -= bytes_written;
2759     } while (bytes_left > 0);
2760 
2761     return (0);
2762 }
2763 
2764 static int write_note(struct memelfnote *men, int fd)
2765 {
2766     struct elf_note en;
2767 
2768     en.n_namesz = men->namesz;
2769     en.n_type = men->type;
2770     en.n_descsz = men->datasz;
2771 
2772     bswap_note(&en);
2773 
2774     if (dump_write(fd, &en, sizeof(en)) != 0)
2775         return (-1);
2776     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2777         return (-1);
2778     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2779         return (-1);
2780 
2781     return (0);
2782 }
2783 
2784 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2785 {
2786     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2787     TaskState *ts = (TaskState *)cpu->opaque;
2788     struct elf_thread_status *ets;
2789 
2790     ets = g_malloc0(sizeof (*ets));
2791     ets->num_notes = 1; /* only prstatus is dumped */
2792     fill_prstatus(&ets->prstatus, ts, 0);
2793     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2794     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2795               &ets->prstatus);
2796 
2797     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2798 
2799     info->notes_size += note_size(&ets->notes[0]);
2800 }
2801 
2802 static void init_note_info(struct elf_note_info *info)
2803 {
2804     /* Initialize the elf_note_info structure so that it is at
2805      * least safe to call free_note_info() on it. Must be
2806      * called before calling fill_note_info().
2807      */
2808     memset(info, 0, sizeof (*info));
2809     QTAILQ_INIT(&info->thread_list);
2810 }
2811 
2812 static int fill_note_info(struct elf_note_info *info,
2813                           long signr, const CPUArchState *env)
2814 {
2815 #define NUMNOTES 3
2816     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2817     TaskState *ts = (TaskState *)cpu->opaque;
2818     int i;
2819 
2820     info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2821     if (info->notes == NULL)
2822         return (-ENOMEM);
2823     info->prstatus = g_malloc0(sizeof (*info->prstatus));
2824     if (info->prstatus == NULL)
2825         return (-ENOMEM);
2826     info->psinfo = g_malloc0(sizeof (*info->psinfo));
2827     if (info->prstatus == NULL)
2828         return (-ENOMEM);
2829 
2830     /*
2831      * First fill in status (and registers) of current thread
2832      * including process info & aux vector.
2833      */
2834     fill_prstatus(info->prstatus, ts, signr);
2835     elf_core_copy_regs(&info->prstatus->pr_reg, env);
2836     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2837               sizeof (*info->prstatus), info->prstatus);
2838     fill_psinfo(info->psinfo, ts);
2839     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2840               sizeof (*info->psinfo), info->psinfo);
2841     fill_auxv_note(&info->notes[2], ts);
2842     info->numnote = 3;
2843 
2844     info->notes_size = 0;
2845     for (i = 0; i < info->numnote; i++)
2846         info->notes_size += note_size(&info->notes[i]);
2847 
2848     /* read and fill status of all threads */
2849     cpu_list_lock();
2850     CPU_FOREACH(cpu) {
2851         if (cpu == thread_cpu) {
2852             continue;
2853         }
2854         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2855     }
2856     cpu_list_unlock();
2857 
2858     return (0);
2859 }
2860 
2861 static void free_note_info(struct elf_note_info *info)
2862 {
2863     struct elf_thread_status *ets;
2864 
2865     while (!QTAILQ_EMPTY(&info->thread_list)) {
2866         ets = QTAILQ_FIRST(&info->thread_list);
2867         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2868         g_free(ets);
2869     }
2870 
2871     g_free(info->prstatus);
2872     g_free(info->psinfo);
2873     g_free(info->notes);
2874 }
2875 
2876 static int write_note_info(struct elf_note_info *info, int fd)
2877 {
2878     struct elf_thread_status *ets;
2879     int i, error = 0;
2880 
2881     /* write prstatus, psinfo and auxv for current thread */
2882     for (i = 0; i < info->numnote; i++)
2883         if ((error = write_note(&info->notes[i], fd)) != 0)
2884             return (error);
2885 
2886     /* write prstatus for each thread */
2887     for (ets = info->thread_list.tqh_first; ets != NULL;
2888          ets = ets->ets_link.tqe_next) {
2889         if ((error = write_note(&ets->notes[0], fd)) != 0)
2890             return (error);
2891     }
2892 
2893     return (0);
2894 }
2895 
2896 /*
2897  * Write out ELF coredump.
2898  *
2899  * See documentation of ELF object file format in:
2900  * http://www.caldera.com/developers/devspecs/gabi41.pdf
2901  *
2902  * Coredump format in linux is following:
2903  *
2904  * 0   +----------------------+         \
2905  *     | ELF header           | ET_CORE  |
2906  *     +----------------------+          |
2907  *     | ELF program headers  |          |--- headers
2908  *     | - NOTE section       |          |
2909  *     | - PT_LOAD sections   |          |
2910  *     +----------------------+         /
2911  *     | NOTEs:               |
2912  *     | - NT_PRSTATUS        |
2913  *     | - NT_PRSINFO         |
2914  *     | - NT_AUXV            |
2915  *     +----------------------+ <-- aligned to target page
2916  *     | Process memory dump  |
2917  *     :                      :
2918  *     .                      .
2919  *     :                      :
2920  *     |                      |
2921  *     +----------------------+
2922  *
2923  * NT_PRSTATUS -> struct elf_prstatus (per thread)
2924  * NT_PRSINFO  -> struct elf_prpsinfo
2925  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2926  *
2927  * Format follows System V format as close as possible.  Current
2928  * version limitations are as follows:
2929  *     - no floating point registers are dumped
2930  *
2931  * Function returns 0 in case of success, negative errno otherwise.
2932  *
2933  * TODO: make this work also during runtime: it should be
2934  * possible to force coredump from running process and then
2935  * continue processing.  For example qemu could set up SIGUSR2
2936  * handler (provided that target process haven't registered
2937  * handler for that) that does the dump when signal is received.
2938  */
2939 static int elf_core_dump(int signr, const CPUArchState *env)
2940 {
2941     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2942     const TaskState *ts = (const TaskState *)cpu->opaque;
2943     struct vm_area_struct *vma = NULL;
2944     char corefile[PATH_MAX];
2945     struct elf_note_info info;
2946     struct elfhdr elf;
2947     struct elf_phdr phdr;
2948     struct rlimit dumpsize;
2949     struct mm_struct *mm = NULL;
2950     off_t offset = 0, data_offset = 0;
2951     int segs = 0;
2952     int fd = -1;
2953 
2954     init_note_info(&info);
2955 
2956     errno = 0;
2957     getrlimit(RLIMIT_CORE, &dumpsize);
2958     if (dumpsize.rlim_cur == 0)
2959         return 0;
2960 
2961     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2962         return (-errno);
2963 
2964     if ((fd = open(corefile, O_WRONLY | O_CREAT,
2965                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2966         return (-errno);
2967 
2968     /*
2969      * Walk through target process memory mappings and
2970      * set up structure containing this information.  After
2971      * this point vma_xxx functions can be used.
2972      */
2973     if ((mm = vma_init()) == NULL)
2974         goto out;
2975 
2976     walk_memory_regions(mm, vma_walker);
2977     segs = vma_get_mapping_count(mm);
2978 
2979     /*
2980      * Construct valid coredump ELF header.  We also
2981      * add one more segment for notes.
2982      */
2983     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2984     if (dump_write(fd, &elf, sizeof (elf)) != 0)
2985         goto out;
2986 
2987     /* fill in in-memory version of notes */
2988     if (fill_note_info(&info, signr, env) < 0)
2989         goto out;
2990 
2991     offset += sizeof (elf);                             /* elf header */
2992     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
2993 
2994     /* write out notes program header */
2995     fill_elf_note_phdr(&phdr, info.notes_size, offset);
2996 
2997     offset += info.notes_size;
2998     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2999         goto out;
3000 
3001     /*
3002      * ELF specification wants data to start at page boundary so
3003      * we align it here.
3004      */
3005     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3006 
3007     /*
3008      * Write program headers for memory regions mapped in
3009      * the target process.
3010      */
3011     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3012         (void) memset(&phdr, 0, sizeof (phdr));
3013 
3014         phdr.p_type = PT_LOAD;
3015         phdr.p_offset = offset;
3016         phdr.p_vaddr = vma->vma_start;
3017         phdr.p_paddr = 0;
3018         phdr.p_filesz = vma_dump_size(vma);
3019         offset += phdr.p_filesz;
3020         phdr.p_memsz = vma->vma_end - vma->vma_start;
3021         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3022         if (vma->vma_flags & PROT_WRITE)
3023             phdr.p_flags |= PF_W;
3024         if (vma->vma_flags & PROT_EXEC)
3025             phdr.p_flags |= PF_X;
3026         phdr.p_align = ELF_EXEC_PAGESIZE;
3027 
3028         bswap_phdr(&phdr, 1);
3029         dump_write(fd, &phdr, sizeof (phdr));
3030     }
3031 
3032     /*
3033      * Next we write notes just after program headers.  No
3034      * alignment needed here.
3035      */
3036     if (write_note_info(&info, fd) < 0)
3037         goto out;
3038 
3039     /* align data to page boundary */
3040     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3041         goto out;
3042 
3043     /*
3044      * Finally we can dump process memory into corefile as well.
3045      */
3046     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3047         abi_ulong addr;
3048         abi_ulong end;
3049 
3050         end = vma->vma_start + vma_dump_size(vma);
3051 
3052         for (addr = vma->vma_start; addr < end;
3053              addr += TARGET_PAGE_SIZE) {
3054             char page[TARGET_PAGE_SIZE];
3055             int error;
3056 
3057             /*
3058              *  Read in page from target process memory and
3059              *  write it to coredump file.
3060              */
3061             error = copy_from_user(page, addr, sizeof (page));
3062             if (error != 0) {
3063                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3064                                addr);
3065                 errno = -error;
3066                 goto out;
3067             }
3068             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3069                 goto out;
3070         }
3071     }
3072 
3073  out:
3074     free_note_info(&info);
3075     if (mm != NULL)
3076         vma_delete(mm);
3077     (void) close(fd);
3078 
3079     if (errno != 0)
3080         return (-errno);
3081     return (0);
3082 }
3083 #endif /* USE_ELF_CORE_DUMP */
3084 
3085 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3086 {
3087     init_thread(regs, infop);
3088 }
3089