1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include <sys/time.h> 3 #include <sys/param.h> 4 5 #include <stdio.h> 6 #include <sys/types.h> 7 #include <fcntl.h> 8 #include <errno.h> 9 #include <unistd.h> 10 #include <sys/mman.h> 11 #include <sys/resource.h> 12 #include <stdlib.h> 13 #include <string.h> 14 #include <time.h> 15 16 #include "qemu.h" 17 #include "disas/disas.h" 18 19 #ifdef _ARCH_PPC64 20 #undef ARCH_DLINFO 21 #undef ELF_PLATFORM 22 #undef ELF_HWCAP 23 #undef ELF_HWCAP2 24 #undef ELF_CLASS 25 #undef ELF_DATA 26 #undef ELF_ARCH 27 #endif 28 29 #define ELF_OSABI ELFOSABI_SYSV 30 31 /* from personality.h */ 32 33 /* 34 * Flags for bug emulation. 35 * 36 * These occupy the top three bytes. 37 */ 38 enum { 39 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 40 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 41 descriptors (signal handling) */ 42 MMAP_PAGE_ZERO = 0x0100000, 43 ADDR_COMPAT_LAYOUT = 0x0200000, 44 READ_IMPLIES_EXEC = 0x0400000, 45 ADDR_LIMIT_32BIT = 0x0800000, 46 SHORT_INODE = 0x1000000, 47 WHOLE_SECONDS = 0x2000000, 48 STICKY_TIMEOUTS = 0x4000000, 49 ADDR_LIMIT_3GB = 0x8000000, 50 }; 51 52 /* 53 * Personality types. 54 * 55 * These go in the low byte. Avoid using the top bit, it will 56 * conflict with error returns. 57 */ 58 enum { 59 PER_LINUX = 0x0000, 60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 65 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 66 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 67 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 68 PER_BSD = 0x0006, 69 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 70 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_LINUX32 = 0x0008, 72 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 73 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 74 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 75 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 76 PER_RISCOS = 0x000c, 77 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 78 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 79 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 80 PER_HPUX = 0x0010, 81 PER_MASK = 0x00ff, 82 }; 83 84 /* 85 * Return the base personality without flags. 86 */ 87 #define personality(pers) (pers & PER_MASK) 88 89 /* this flag is uneffective under linux too, should be deleted */ 90 #ifndef MAP_DENYWRITE 91 #define MAP_DENYWRITE 0 92 #endif 93 94 /* should probably go in elf.h */ 95 #ifndef ELIBBAD 96 #define ELIBBAD 80 97 #endif 98 99 #ifdef TARGET_WORDS_BIGENDIAN 100 #define ELF_DATA ELFDATA2MSB 101 #else 102 #define ELF_DATA ELFDATA2LSB 103 #endif 104 105 #ifdef TARGET_ABI_MIPSN32 106 typedef abi_ullong target_elf_greg_t; 107 #define tswapreg(ptr) tswap64(ptr) 108 #else 109 typedef abi_ulong target_elf_greg_t; 110 #define tswapreg(ptr) tswapal(ptr) 111 #endif 112 113 #ifdef USE_UID16 114 typedef abi_ushort target_uid_t; 115 typedef abi_ushort target_gid_t; 116 #else 117 typedef abi_uint target_uid_t; 118 typedef abi_uint target_gid_t; 119 #endif 120 typedef abi_int target_pid_t; 121 122 #ifdef TARGET_I386 123 124 #define ELF_PLATFORM get_elf_platform() 125 126 static const char *get_elf_platform(void) 127 { 128 static char elf_platform[] = "i386"; 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 130 if (family > 6) 131 family = 6; 132 if (family >= 3) 133 elf_platform[1] = '0' + family; 134 return elf_platform; 135 } 136 137 #define ELF_HWCAP get_elf_hwcap() 138 139 static uint32_t get_elf_hwcap(void) 140 { 141 X86CPU *cpu = X86_CPU(thread_cpu); 142 143 return cpu->env.features[FEAT_1_EDX]; 144 } 145 146 #ifdef TARGET_X86_64 147 #define ELF_START_MMAP 0x2aaaaab000ULL 148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) 149 150 #define ELF_CLASS ELFCLASS64 151 #define ELF_ARCH EM_X86_64 152 153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 154 { 155 regs->rax = 0; 156 regs->rsp = infop->start_stack; 157 regs->rip = infop->entry; 158 } 159 160 #define ELF_NREG 27 161 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 162 163 /* 164 * Note that ELF_NREG should be 29 as there should be place for 165 * TRAPNO and ERR "registers" as well but linux doesn't dump 166 * those. 167 * 168 * See linux kernel: arch/x86/include/asm/elf.h 169 */ 170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 171 { 172 (*regs)[0] = env->regs[15]; 173 (*regs)[1] = env->regs[14]; 174 (*regs)[2] = env->regs[13]; 175 (*regs)[3] = env->regs[12]; 176 (*regs)[4] = env->regs[R_EBP]; 177 (*regs)[5] = env->regs[R_EBX]; 178 (*regs)[6] = env->regs[11]; 179 (*regs)[7] = env->regs[10]; 180 (*regs)[8] = env->regs[9]; 181 (*regs)[9] = env->regs[8]; 182 (*regs)[10] = env->regs[R_EAX]; 183 (*regs)[11] = env->regs[R_ECX]; 184 (*regs)[12] = env->regs[R_EDX]; 185 (*regs)[13] = env->regs[R_ESI]; 186 (*regs)[14] = env->regs[R_EDI]; 187 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 188 (*regs)[16] = env->eip; 189 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 190 (*regs)[18] = env->eflags; 191 (*regs)[19] = env->regs[R_ESP]; 192 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 193 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 194 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 195 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 196 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 197 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 198 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 199 } 200 201 #else 202 203 #define ELF_START_MMAP 0x80000000 204 205 /* 206 * This is used to ensure we don't load something for the wrong architecture. 207 */ 208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 209 210 /* 211 * These are used to set parameters in the core dumps. 212 */ 213 #define ELF_CLASS ELFCLASS32 214 #define ELF_ARCH EM_386 215 216 static inline void init_thread(struct target_pt_regs *regs, 217 struct image_info *infop) 218 { 219 regs->esp = infop->start_stack; 220 regs->eip = infop->entry; 221 222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 223 starts %edx contains a pointer to a function which might be 224 registered using `atexit'. This provides a mean for the 225 dynamic linker to call DT_FINI functions for shared libraries 226 that have been loaded before the code runs. 227 228 A value of 0 tells we have no such handler. */ 229 regs->edx = 0; 230 } 231 232 #define ELF_NREG 17 233 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 234 235 /* 236 * Note that ELF_NREG should be 19 as there should be place for 237 * TRAPNO and ERR "registers" as well but linux doesn't dump 238 * those. 239 * 240 * See linux kernel: arch/x86/include/asm/elf.h 241 */ 242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 243 { 244 (*regs)[0] = env->regs[R_EBX]; 245 (*regs)[1] = env->regs[R_ECX]; 246 (*regs)[2] = env->regs[R_EDX]; 247 (*regs)[3] = env->regs[R_ESI]; 248 (*regs)[4] = env->regs[R_EDI]; 249 (*regs)[5] = env->regs[R_EBP]; 250 (*regs)[6] = env->regs[R_EAX]; 251 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 252 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 253 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 254 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 255 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 256 (*regs)[12] = env->eip; 257 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 258 (*regs)[14] = env->eflags; 259 (*regs)[15] = env->regs[R_ESP]; 260 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 261 } 262 #endif 263 264 #define USE_ELF_CORE_DUMP 265 #define ELF_EXEC_PAGESIZE 4096 266 267 #endif 268 269 #ifdef TARGET_ARM 270 271 #ifndef TARGET_AARCH64 272 /* 32 bit ARM definitions */ 273 274 #define ELF_START_MMAP 0x80000000 275 276 #define elf_check_arch(x) ((x) == ELF_MACHINE) 277 278 #define ELF_ARCH ELF_MACHINE 279 #define ELF_CLASS ELFCLASS32 280 281 static inline void init_thread(struct target_pt_regs *regs, 282 struct image_info *infop) 283 { 284 abi_long stack = infop->start_stack; 285 memset(regs, 0, sizeof(*regs)); 286 287 regs->ARM_cpsr = 0x10; 288 if (infop->entry & 1) 289 regs->ARM_cpsr |= CPSR_T; 290 regs->ARM_pc = infop->entry & 0xfffffffe; 291 regs->ARM_sp = infop->start_stack; 292 /* FIXME - what to for failure of get_user()? */ 293 get_user_ual(regs->ARM_r2, stack + 8); /* envp */ 294 get_user_ual(regs->ARM_r1, stack + 4); /* envp */ 295 /* XXX: it seems that r0 is zeroed after ! */ 296 regs->ARM_r0 = 0; 297 /* For uClinux PIC binaries. */ 298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 299 regs->ARM_r10 = infop->start_data; 300 } 301 302 #define ELF_NREG 18 303 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 304 305 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 306 { 307 (*regs)[0] = tswapreg(env->regs[0]); 308 (*regs)[1] = tswapreg(env->regs[1]); 309 (*regs)[2] = tswapreg(env->regs[2]); 310 (*regs)[3] = tswapreg(env->regs[3]); 311 (*regs)[4] = tswapreg(env->regs[4]); 312 (*regs)[5] = tswapreg(env->regs[5]); 313 (*regs)[6] = tswapreg(env->regs[6]); 314 (*regs)[7] = tswapreg(env->regs[7]); 315 (*regs)[8] = tswapreg(env->regs[8]); 316 (*regs)[9] = tswapreg(env->regs[9]); 317 (*regs)[10] = tswapreg(env->regs[10]); 318 (*regs)[11] = tswapreg(env->regs[11]); 319 (*regs)[12] = tswapreg(env->regs[12]); 320 (*regs)[13] = tswapreg(env->regs[13]); 321 (*regs)[14] = tswapreg(env->regs[14]); 322 (*regs)[15] = tswapreg(env->regs[15]); 323 324 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 325 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 326 } 327 328 #define USE_ELF_CORE_DUMP 329 #define ELF_EXEC_PAGESIZE 4096 330 331 enum 332 { 333 ARM_HWCAP_ARM_SWP = 1 << 0, 334 ARM_HWCAP_ARM_HALF = 1 << 1, 335 ARM_HWCAP_ARM_THUMB = 1 << 2, 336 ARM_HWCAP_ARM_26BIT = 1 << 3, 337 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 338 ARM_HWCAP_ARM_FPA = 1 << 5, 339 ARM_HWCAP_ARM_VFP = 1 << 6, 340 ARM_HWCAP_ARM_EDSP = 1 << 7, 341 ARM_HWCAP_ARM_JAVA = 1 << 8, 342 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 343 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 344 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 345 ARM_HWCAP_ARM_NEON = 1 << 12, 346 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 347 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 348 ARM_HWCAP_ARM_TLS = 1 << 15, 349 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 350 ARM_HWCAP_ARM_IDIVA = 1 << 17, 351 ARM_HWCAP_ARM_IDIVT = 1 << 18, 352 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 353 ARM_HWCAP_ARM_LPAE = 1 << 20, 354 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 355 }; 356 357 enum { 358 ARM_HWCAP2_ARM_AES = 1 << 0, 359 ARM_HWCAP2_ARM_PMULL = 1 << 1, 360 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 361 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 362 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 363 }; 364 365 /* The commpage only exists for 32 bit kernels */ 366 367 #define TARGET_HAS_VALIDATE_GUEST_SPACE 368 /* Return 1 if the proposed guest space is suitable for the guest. 369 * Return 0 if the proposed guest space isn't suitable, but another 370 * address space should be tried. 371 * Return -1 if there is no way the proposed guest space can be 372 * valid regardless of the base. 373 * The guest code may leave a page mapped and populate it if the 374 * address is suitable. 375 */ 376 static int validate_guest_space(unsigned long guest_base, 377 unsigned long guest_size) 378 { 379 unsigned long real_start, test_page_addr; 380 381 /* We need to check that we can force a fault on access to the 382 * commpage at 0xffff0fxx 383 */ 384 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 385 386 /* If the commpage lies within the already allocated guest space, 387 * then there is no way we can allocate it. 388 */ 389 if (test_page_addr >= guest_base 390 && test_page_addr <= (guest_base + guest_size)) { 391 return -1; 392 } 393 394 /* Note it needs to be writeable to let us initialise it */ 395 real_start = (unsigned long) 396 mmap((void *)test_page_addr, qemu_host_page_size, 397 PROT_READ | PROT_WRITE, 398 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 399 400 /* If we can't map it then try another address */ 401 if (real_start == -1ul) { 402 return 0; 403 } 404 405 if (real_start != test_page_addr) { 406 /* OS didn't put the page where we asked - unmap and reject */ 407 munmap((void *)real_start, qemu_host_page_size); 408 return 0; 409 } 410 411 /* Leave the page mapped 412 * Populate it (mmap should have left it all 0'd) 413 */ 414 415 /* Kernel helper versions */ 416 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 417 418 /* Now it's populated make it RO */ 419 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 420 perror("Protecting guest commpage"); 421 exit(-1); 422 } 423 424 return 1; /* All good */ 425 } 426 427 #define ELF_HWCAP get_elf_hwcap() 428 #define ELF_HWCAP2 get_elf_hwcap2() 429 430 static uint32_t get_elf_hwcap(void) 431 { 432 ARMCPU *cpu = ARM_CPU(thread_cpu); 433 uint32_t hwcaps = 0; 434 435 hwcaps |= ARM_HWCAP_ARM_SWP; 436 hwcaps |= ARM_HWCAP_ARM_HALF; 437 hwcaps |= ARM_HWCAP_ARM_THUMB; 438 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 439 440 /* probe for the extra features */ 441 #define GET_FEATURE(feat, hwcap) \ 442 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 444 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 445 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 446 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 447 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 448 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 450 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 451 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 452 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 453 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 454 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 455 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 456 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 457 * to our VFP_FP16 feature bit. 458 */ 459 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 460 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 461 462 return hwcaps; 463 } 464 465 static uint32_t get_elf_hwcap2(void) 466 { 467 ARMCPU *cpu = ARM_CPU(thread_cpu); 468 uint32_t hwcaps = 0; 469 470 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 471 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 472 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 473 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 474 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 475 return hwcaps; 476 } 477 478 #undef GET_FEATURE 479 480 #else 481 /* 64 bit ARM definitions */ 482 #define ELF_START_MMAP 0x80000000 483 484 #define elf_check_arch(x) ((x) == ELF_MACHINE) 485 486 #define ELF_ARCH ELF_MACHINE 487 #define ELF_CLASS ELFCLASS64 488 #define ELF_PLATFORM "aarch64" 489 490 static inline void init_thread(struct target_pt_regs *regs, 491 struct image_info *infop) 492 { 493 abi_long stack = infop->start_stack; 494 memset(regs, 0, sizeof(*regs)); 495 496 regs->pc = infop->entry & ~0x3ULL; 497 regs->sp = stack; 498 } 499 500 #define ELF_NREG 34 501 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 502 503 static void elf_core_copy_regs(target_elf_gregset_t *regs, 504 const CPUARMState *env) 505 { 506 int i; 507 508 for (i = 0; i < 32; i++) { 509 (*regs)[i] = tswapreg(env->xregs[i]); 510 } 511 (*regs)[32] = tswapreg(env->pc); 512 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 513 } 514 515 #define USE_ELF_CORE_DUMP 516 #define ELF_EXEC_PAGESIZE 4096 517 518 enum { 519 ARM_HWCAP_A64_FP = 1 << 0, 520 ARM_HWCAP_A64_ASIMD = 1 << 1, 521 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 522 ARM_HWCAP_A64_AES = 1 << 3, 523 ARM_HWCAP_A64_PMULL = 1 << 4, 524 ARM_HWCAP_A64_SHA1 = 1 << 5, 525 ARM_HWCAP_A64_SHA2 = 1 << 6, 526 ARM_HWCAP_A64_CRC32 = 1 << 7, 527 }; 528 529 #define ELF_HWCAP get_elf_hwcap() 530 531 static uint32_t get_elf_hwcap(void) 532 { 533 ARMCPU *cpu = ARM_CPU(thread_cpu); 534 uint32_t hwcaps = 0; 535 536 hwcaps |= ARM_HWCAP_A64_FP; 537 hwcaps |= ARM_HWCAP_A64_ASIMD; 538 539 /* probe for the extra features */ 540 #define GET_FEATURE(feat, hwcap) \ 541 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 542 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 543 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 544 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 545 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 546 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 547 #undef GET_FEATURE 548 549 return hwcaps; 550 } 551 552 #endif /* not TARGET_AARCH64 */ 553 #endif /* TARGET_ARM */ 554 555 #ifdef TARGET_UNICORE32 556 557 #define ELF_START_MMAP 0x80000000 558 559 #define elf_check_arch(x) ((x) == EM_UNICORE32) 560 561 #define ELF_CLASS ELFCLASS32 562 #define ELF_DATA ELFDATA2LSB 563 #define ELF_ARCH EM_UNICORE32 564 565 static inline void init_thread(struct target_pt_regs *regs, 566 struct image_info *infop) 567 { 568 abi_long stack = infop->start_stack; 569 memset(regs, 0, sizeof(*regs)); 570 regs->UC32_REG_asr = 0x10; 571 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 572 regs->UC32_REG_sp = infop->start_stack; 573 /* FIXME - what to for failure of get_user()? */ 574 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 575 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 576 /* XXX: it seems that r0 is zeroed after ! */ 577 regs->UC32_REG_00 = 0; 578 } 579 580 #define ELF_NREG 34 581 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 582 583 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 584 { 585 (*regs)[0] = env->regs[0]; 586 (*regs)[1] = env->regs[1]; 587 (*regs)[2] = env->regs[2]; 588 (*regs)[3] = env->regs[3]; 589 (*regs)[4] = env->regs[4]; 590 (*regs)[5] = env->regs[5]; 591 (*regs)[6] = env->regs[6]; 592 (*regs)[7] = env->regs[7]; 593 (*regs)[8] = env->regs[8]; 594 (*regs)[9] = env->regs[9]; 595 (*regs)[10] = env->regs[10]; 596 (*regs)[11] = env->regs[11]; 597 (*regs)[12] = env->regs[12]; 598 (*regs)[13] = env->regs[13]; 599 (*regs)[14] = env->regs[14]; 600 (*regs)[15] = env->regs[15]; 601 (*regs)[16] = env->regs[16]; 602 (*regs)[17] = env->regs[17]; 603 (*regs)[18] = env->regs[18]; 604 (*regs)[19] = env->regs[19]; 605 (*regs)[20] = env->regs[20]; 606 (*regs)[21] = env->regs[21]; 607 (*regs)[22] = env->regs[22]; 608 (*regs)[23] = env->regs[23]; 609 (*regs)[24] = env->regs[24]; 610 (*regs)[25] = env->regs[25]; 611 (*regs)[26] = env->regs[26]; 612 (*regs)[27] = env->regs[27]; 613 (*regs)[28] = env->regs[28]; 614 (*regs)[29] = env->regs[29]; 615 (*regs)[30] = env->regs[30]; 616 (*regs)[31] = env->regs[31]; 617 618 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 619 (*regs)[33] = env->regs[0]; /* XXX */ 620 } 621 622 #define USE_ELF_CORE_DUMP 623 #define ELF_EXEC_PAGESIZE 4096 624 625 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 626 627 #endif 628 629 #ifdef TARGET_SPARC 630 #ifdef TARGET_SPARC64 631 632 #define ELF_START_MMAP 0x80000000 633 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 634 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 635 #ifndef TARGET_ABI32 636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 637 #else 638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 639 #endif 640 641 #define ELF_CLASS ELFCLASS64 642 #define ELF_ARCH EM_SPARCV9 643 644 #define STACK_BIAS 2047 645 646 static inline void init_thread(struct target_pt_regs *regs, 647 struct image_info *infop) 648 { 649 #ifndef TARGET_ABI32 650 regs->tstate = 0; 651 #endif 652 regs->pc = infop->entry; 653 regs->npc = regs->pc + 4; 654 regs->y = 0; 655 #ifdef TARGET_ABI32 656 regs->u_regs[14] = infop->start_stack - 16 * 4; 657 #else 658 if (personality(infop->personality) == PER_LINUX32) 659 regs->u_regs[14] = infop->start_stack - 16 * 4; 660 else 661 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 662 #endif 663 } 664 665 #else 666 #define ELF_START_MMAP 0x80000000 667 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 668 | HWCAP_SPARC_MULDIV) 669 #define elf_check_arch(x) ( (x) == EM_SPARC ) 670 671 #define ELF_CLASS ELFCLASS32 672 #define ELF_ARCH EM_SPARC 673 674 static inline void init_thread(struct target_pt_regs *regs, 675 struct image_info *infop) 676 { 677 regs->psr = 0; 678 regs->pc = infop->entry; 679 regs->npc = regs->pc + 4; 680 regs->y = 0; 681 regs->u_regs[14] = infop->start_stack - 16 * 4; 682 } 683 684 #endif 685 #endif 686 687 #ifdef TARGET_PPC 688 689 #define ELF_START_MMAP 0x80000000 690 691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 692 693 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 694 695 #define ELF_CLASS ELFCLASS64 696 697 #else 698 699 #define elf_check_arch(x) ( (x) == EM_PPC ) 700 701 #define ELF_CLASS ELFCLASS32 702 703 #endif 704 705 #define ELF_ARCH EM_PPC 706 707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 708 See arch/powerpc/include/asm/cputable.h. */ 709 enum { 710 QEMU_PPC_FEATURE_32 = 0x80000000, 711 QEMU_PPC_FEATURE_64 = 0x40000000, 712 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 713 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 714 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 715 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 716 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 717 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 718 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 719 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 720 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 721 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 722 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 723 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 724 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 725 QEMU_PPC_FEATURE_CELL = 0x00010000, 726 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 727 QEMU_PPC_FEATURE_SMT = 0x00004000, 728 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 729 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 730 QEMU_PPC_FEATURE_PA6T = 0x00000800, 731 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 732 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 733 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 734 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 735 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 736 737 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 738 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 739 740 /* Feature definitions in AT_HWCAP2. */ 741 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 742 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 743 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 744 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 745 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 746 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 747 }; 748 749 #define ELF_HWCAP get_elf_hwcap() 750 751 static uint32_t get_elf_hwcap(void) 752 { 753 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 754 uint32_t features = 0; 755 756 /* We don't have to be terribly complete here; the high points are 757 Altivec/FP/SPE support. Anything else is just a bonus. */ 758 #define GET_FEATURE(flag, feature) \ 759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 760 #define GET_FEATURE2(flag, feature) \ 761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 762 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 763 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 764 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 765 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 766 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 767 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 768 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 769 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 770 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 771 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 772 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 773 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 774 QEMU_PPC_FEATURE_ARCH_2_06); 775 #undef GET_FEATURE 776 #undef GET_FEATURE2 777 778 return features; 779 } 780 781 #define ELF_HWCAP2 get_elf_hwcap2() 782 783 static uint32_t get_elf_hwcap2(void) 784 { 785 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 786 uint32_t features = 0; 787 788 #define GET_FEATURE(flag, feature) \ 789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 790 #define GET_FEATURE2(flag, feature) \ 791 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 792 793 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 794 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 795 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 796 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 797 798 #undef GET_FEATURE 799 #undef GET_FEATURE2 800 801 return features; 802 } 803 804 /* 805 * The requirements here are: 806 * - keep the final alignment of sp (sp & 0xf) 807 * - make sure the 32-bit value at the first 16 byte aligned position of 808 * AUXV is greater than 16 for glibc compatibility. 809 * AT_IGNOREPPC is used for that. 810 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 811 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 812 */ 813 #define DLINFO_ARCH_ITEMS 5 814 #define ARCH_DLINFO \ 815 do { \ 816 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 817 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 818 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 819 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 820 /* \ 821 * Now handle glibc compatibility. \ 822 */ \ 823 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 824 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 825 } while (0) 826 827 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 828 { 829 _regs->gpr[1] = infop->start_stack; 830 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 831 if (get_ppc64_abi(infop) < 2) { 832 uint64_t val; 833 get_user_u64(val, infop->entry + 8); 834 _regs->gpr[2] = val + infop->load_bias; 835 get_user_u64(val, infop->entry); 836 infop->entry = val + infop->load_bias; 837 } else { 838 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 839 } 840 #endif 841 _regs->nip = infop->entry; 842 } 843 844 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 845 #define ELF_NREG 48 846 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 847 848 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 849 { 850 int i; 851 target_ulong ccr = 0; 852 853 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 854 (*regs)[i] = tswapreg(env->gpr[i]); 855 } 856 857 (*regs)[32] = tswapreg(env->nip); 858 (*regs)[33] = tswapreg(env->msr); 859 (*regs)[35] = tswapreg(env->ctr); 860 (*regs)[36] = tswapreg(env->lr); 861 (*regs)[37] = tswapreg(env->xer); 862 863 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 864 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 865 } 866 (*regs)[38] = tswapreg(ccr); 867 } 868 869 #define USE_ELF_CORE_DUMP 870 #define ELF_EXEC_PAGESIZE 4096 871 872 #endif 873 874 #ifdef TARGET_MIPS 875 876 #define ELF_START_MMAP 0x80000000 877 878 #define elf_check_arch(x) ( (x) == EM_MIPS ) 879 880 #ifdef TARGET_MIPS64 881 #define ELF_CLASS ELFCLASS64 882 #else 883 #define ELF_CLASS ELFCLASS32 884 #endif 885 #define ELF_ARCH EM_MIPS 886 887 static inline void init_thread(struct target_pt_regs *regs, 888 struct image_info *infop) 889 { 890 regs->cp0_status = 2 << CP0St_KSU; 891 regs->cp0_epc = infop->entry; 892 regs->regs[29] = infop->start_stack; 893 } 894 895 /* See linux kernel: arch/mips/include/asm/elf.h. */ 896 #define ELF_NREG 45 897 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 898 899 /* See linux kernel: arch/mips/include/asm/reg.h. */ 900 enum { 901 #ifdef TARGET_MIPS64 902 TARGET_EF_R0 = 0, 903 #else 904 TARGET_EF_R0 = 6, 905 #endif 906 TARGET_EF_R26 = TARGET_EF_R0 + 26, 907 TARGET_EF_R27 = TARGET_EF_R0 + 27, 908 TARGET_EF_LO = TARGET_EF_R0 + 32, 909 TARGET_EF_HI = TARGET_EF_R0 + 33, 910 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 911 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 912 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 913 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 914 }; 915 916 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 917 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 918 { 919 int i; 920 921 for (i = 0; i < TARGET_EF_R0; i++) { 922 (*regs)[i] = 0; 923 } 924 (*regs)[TARGET_EF_R0] = 0; 925 926 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 927 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 928 } 929 930 (*regs)[TARGET_EF_R26] = 0; 931 (*regs)[TARGET_EF_R27] = 0; 932 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 933 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 934 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 935 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 936 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 937 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 938 } 939 940 #define USE_ELF_CORE_DUMP 941 #define ELF_EXEC_PAGESIZE 4096 942 943 #endif /* TARGET_MIPS */ 944 945 #ifdef TARGET_MICROBLAZE 946 947 #define ELF_START_MMAP 0x80000000 948 949 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 950 951 #define ELF_CLASS ELFCLASS32 952 #define ELF_ARCH EM_MICROBLAZE 953 954 static inline void init_thread(struct target_pt_regs *regs, 955 struct image_info *infop) 956 { 957 regs->pc = infop->entry; 958 regs->r1 = infop->start_stack; 959 960 } 961 962 #define ELF_EXEC_PAGESIZE 4096 963 964 #define USE_ELF_CORE_DUMP 965 #define ELF_NREG 38 966 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 967 968 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 969 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 970 { 971 int i, pos = 0; 972 973 for (i = 0; i < 32; i++) { 974 (*regs)[pos++] = tswapreg(env->regs[i]); 975 } 976 977 for (i = 0; i < 6; i++) { 978 (*regs)[pos++] = tswapreg(env->sregs[i]); 979 } 980 } 981 982 #endif /* TARGET_MICROBLAZE */ 983 984 #ifdef TARGET_OPENRISC 985 986 #define ELF_START_MMAP 0x08000000 987 988 #define elf_check_arch(x) ((x) == EM_OPENRISC) 989 990 #define ELF_ARCH EM_OPENRISC 991 #define ELF_CLASS ELFCLASS32 992 #define ELF_DATA ELFDATA2MSB 993 994 static inline void init_thread(struct target_pt_regs *regs, 995 struct image_info *infop) 996 { 997 regs->pc = infop->entry; 998 regs->gpr[1] = infop->start_stack; 999 } 1000 1001 #define USE_ELF_CORE_DUMP 1002 #define ELF_EXEC_PAGESIZE 8192 1003 1004 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1005 #define ELF_NREG 34 /* gprs and pc, sr */ 1006 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1007 1008 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1009 const CPUOpenRISCState *env) 1010 { 1011 int i; 1012 1013 for (i = 0; i < 32; i++) { 1014 (*regs)[i] = tswapreg(env->gpr[i]); 1015 } 1016 1017 (*regs)[32] = tswapreg(env->pc); 1018 (*regs)[33] = tswapreg(env->sr); 1019 } 1020 #define ELF_HWCAP 0 1021 #define ELF_PLATFORM NULL 1022 1023 #endif /* TARGET_OPENRISC */ 1024 1025 #ifdef TARGET_SH4 1026 1027 #define ELF_START_MMAP 0x80000000 1028 1029 #define elf_check_arch(x) ( (x) == EM_SH ) 1030 1031 #define ELF_CLASS ELFCLASS32 1032 #define ELF_ARCH EM_SH 1033 1034 static inline void init_thread(struct target_pt_regs *regs, 1035 struct image_info *infop) 1036 { 1037 /* Check other registers XXXXX */ 1038 regs->pc = infop->entry; 1039 regs->regs[15] = infop->start_stack; 1040 } 1041 1042 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1043 #define ELF_NREG 23 1044 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1045 1046 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1047 enum { 1048 TARGET_REG_PC = 16, 1049 TARGET_REG_PR = 17, 1050 TARGET_REG_SR = 18, 1051 TARGET_REG_GBR = 19, 1052 TARGET_REG_MACH = 20, 1053 TARGET_REG_MACL = 21, 1054 TARGET_REG_SYSCALL = 22 1055 }; 1056 1057 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1058 const CPUSH4State *env) 1059 { 1060 int i; 1061 1062 for (i = 0; i < 16; i++) { 1063 (*regs[i]) = tswapreg(env->gregs[i]); 1064 } 1065 1066 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1067 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1068 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1069 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1070 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1071 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1072 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1073 } 1074 1075 #define USE_ELF_CORE_DUMP 1076 #define ELF_EXEC_PAGESIZE 4096 1077 1078 #endif 1079 1080 #ifdef TARGET_CRIS 1081 1082 #define ELF_START_MMAP 0x80000000 1083 1084 #define elf_check_arch(x) ( (x) == EM_CRIS ) 1085 1086 #define ELF_CLASS ELFCLASS32 1087 #define ELF_ARCH EM_CRIS 1088 1089 static inline void init_thread(struct target_pt_regs *regs, 1090 struct image_info *infop) 1091 { 1092 regs->erp = infop->entry; 1093 } 1094 1095 #define ELF_EXEC_PAGESIZE 8192 1096 1097 #endif 1098 1099 #ifdef TARGET_M68K 1100 1101 #define ELF_START_MMAP 0x80000000 1102 1103 #define elf_check_arch(x) ( (x) == EM_68K ) 1104 1105 #define ELF_CLASS ELFCLASS32 1106 #define ELF_ARCH EM_68K 1107 1108 /* ??? Does this need to do anything? 1109 #define ELF_PLAT_INIT(_r) */ 1110 1111 static inline void init_thread(struct target_pt_regs *regs, 1112 struct image_info *infop) 1113 { 1114 regs->usp = infop->start_stack; 1115 regs->sr = 0; 1116 regs->pc = infop->entry; 1117 } 1118 1119 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1120 #define ELF_NREG 20 1121 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1122 1123 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1124 { 1125 (*regs)[0] = tswapreg(env->dregs[1]); 1126 (*regs)[1] = tswapreg(env->dregs[2]); 1127 (*regs)[2] = tswapreg(env->dregs[3]); 1128 (*regs)[3] = tswapreg(env->dregs[4]); 1129 (*regs)[4] = tswapreg(env->dregs[5]); 1130 (*regs)[5] = tswapreg(env->dregs[6]); 1131 (*regs)[6] = tswapreg(env->dregs[7]); 1132 (*regs)[7] = tswapreg(env->aregs[0]); 1133 (*regs)[8] = tswapreg(env->aregs[1]); 1134 (*regs)[9] = tswapreg(env->aregs[2]); 1135 (*regs)[10] = tswapreg(env->aregs[3]); 1136 (*regs)[11] = tswapreg(env->aregs[4]); 1137 (*regs)[12] = tswapreg(env->aregs[5]); 1138 (*regs)[13] = tswapreg(env->aregs[6]); 1139 (*regs)[14] = tswapreg(env->dregs[0]); 1140 (*regs)[15] = tswapreg(env->aregs[7]); 1141 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1142 (*regs)[17] = tswapreg(env->sr); 1143 (*regs)[18] = tswapreg(env->pc); 1144 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1145 } 1146 1147 #define USE_ELF_CORE_DUMP 1148 #define ELF_EXEC_PAGESIZE 8192 1149 1150 #endif 1151 1152 #ifdef TARGET_ALPHA 1153 1154 #define ELF_START_MMAP (0x30000000000ULL) 1155 1156 #define elf_check_arch(x) ( (x) == ELF_ARCH ) 1157 1158 #define ELF_CLASS ELFCLASS64 1159 #define ELF_ARCH EM_ALPHA 1160 1161 static inline void init_thread(struct target_pt_regs *regs, 1162 struct image_info *infop) 1163 { 1164 regs->pc = infop->entry; 1165 regs->ps = 8; 1166 regs->usp = infop->start_stack; 1167 } 1168 1169 #define ELF_EXEC_PAGESIZE 8192 1170 1171 #endif /* TARGET_ALPHA */ 1172 1173 #ifdef TARGET_S390X 1174 1175 #define ELF_START_MMAP (0x20000000000ULL) 1176 1177 #define elf_check_arch(x) ( (x) == ELF_ARCH ) 1178 1179 #define ELF_CLASS ELFCLASS64 1180 #define ELF_DATA ELFDATA2MSB 1181 #define ELF_ARCH EM_S390 1182 1183 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1184 { 1185 regs->psw.addr = infop->entry; 1186 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1187 regs->gprs[15] = infop->start_stack; 1188 } 1189 1190 #endif /* TARGET_S390X */ 1191 1192 #ifndef ELF_PLATFORM 1193 #define ELF_PLATFORM (NULL) 1194 #endif 1195 1196 #ifndef ELF_HWCAP 1197 #define ELF_HWCAP 0 1198 #endif 1199 1200 #ifdef TARGET_ABI32 1201 #undef ELF_CLASS 1202 #define ELF_CLASS ELFCLASS32 1203 #undef bswaptls 1204 #define bswaptls(ptr) bswap32s(ptr) 1205 #endif 1206 1207 #include "elf.h" 1208 1209 struct exec 1210 { 1211 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1212 unsigned int a_text; /* length of text, in bytes */ 1213 unsigned int a_data; /* length of data, in bytes */ 1214 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1215 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1216 unsigned int a_entry; /* start address */ 1217 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1218 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1219 }; 1220 1221 1222 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1223 #define OMAGIC 0407 1224 #define NMAGIC 0410 1225 #define ZMAGIC 0413 1226 #define QMAGIC 0314 1227 1228 /* Necessary parameters */ 1229 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1230 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) 1231 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1232 1233 #define DLINFO_ITEMS 14 1234 1235 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1236 { 1237 memcpy(to, from, n); 1238 } 1239 1240 #ifdef BSWAP_NEEDED 1241 static void bswap_ehdr(struct elfhdr *ehdr) 1242 { 1243 bswap16s(&ehdr->e_type); /* Object file type */ 1244 bswap16s(&ehdr->e_machine); /* Architecture */ 1245 bswap32s(&ehdr->e_version); /* Object file version */ 1246 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1247 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1248 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1249 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1250 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1251 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1252 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1253 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1254 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1255 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1256 } 1257 1258 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1259 { 1260 int i; 1261 for (i = 0; i < phnum; ++i, ++phdr) { 1262 bswap32s(&phdr->p_type); /* Segment type */ 1263 bswap32s(&phdr->p_flags); /* Segment flags */ 1264 bswaptls(&phdr->p_offset); /* Segment file offset */ 1265 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1266 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1267 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1268 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1269 bswaptls(&phdr->p_align); /* Segment alignment */ 1270 } 1271 } 1272 1273 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1274 { 1275 int i; 1276 for (i = 0; i < shnum; ++i, ++shdr) { 1277 bswap32s(&shdr->sh_name); 1278 bswap32s(&shdr->sh_type); 1279 bswaptls(&shdr->sh_flags); 1280 bswaptls(&shdr->sh_addr); 1281 bswaptls(&shdr->sh_offset); 1282 bswaptls(&shdr->sh_size); 1283 bswap32s(&shdr->sh_link); 1284 bswap32s(&shdr->sh_info); 1285 bswaptls(&shdr->sh_addralign); 1286 bswaptls(&shdr->sh_entsize); 1287 } 1288 } 1289 1290 static void bswap_sym(struct elf_sym *sym) 1291 { 1292 bswap32s(&sym->st_name); 1293 bswaptls(&sym->st_value); 1294 bswaptls(&sym->st_size); 1295 bswap16s(&sym->st_shndx); 1296 } 1297 #else 1298 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1299 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1300 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1301 static inline void bswap_sym(struct elf_sym *sym) { } 1302 #endif 1303 1304 #ifdef USE_ELF_CORE_DUMP 1305 static int elf_core_dump(int, const CPUArchState *); 1306 #endif /* USE_ELF_CORE_DUMP */ 1307 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1308 1309 /* Verify the portions of EHDR within E_IDENT for the target. 1310 This can be performed before bswapping the entire header. */ 1311 static bool elf_check_ident(struct elfhdr *ehdr) 1312 { 1313 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1314 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1315 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1316 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1317 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1318 && ehdr->e_ident[EI_DATA] == ELF_DATA 1319 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1320 } 1321 1322 /* Verify the portions of EHDR outside of E_IDENT for the target. 1323 This has to wait until after bswapping the header. */ 1324 static bool elf_check_ehdr(struct elfhdr *ehdr) 1325 { 1326 return (elf_check_arch(ehdr->e_machine) 1327 && ehdr->e_ehsize == sizeof(struct elfhdr) 1328 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1329 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1330 } 1331 1332 /* 1333 * 'copy_elf_strings()' copies argument/envelope strings from user 1334 * memory to free pages in kernel mem. These are in a format ready 1335 * to be put directly into the top of new user memory. 1336 * 1337 */ 1338 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, 1339 abi_ulong p) 1340 { 1341 char *tmp, *tmp1, *pag = NULL; 1342 int len, offset = 0; 1343 1344 if (!p) { 1345 return 0; /* bullet-proofing */ 1346 } 1347 while (argc-- > 0) { 1348 tmp = argv[argc]; 1349 if (!tmp) { 1350 fprintf(stderr, "VFS: argc is wrong"); 1351 exit(-1); 1352 } 1353 tmp1 = tmp; 1354 while (*tmp++); 1355 len = tmp - tmp1; 1356 if (p < len) { /* this shouldn't happen - 128kB */ 1357 return 0; 1358 } 1359 while (len) { 1360 --p; --tmp; --len; 1361 if (--offset < 0) { 1362 offset = p % TARGET_PAGE_SIZE; 1363 pag = (char *)page[p/TARGET_PAGE_SIZE]; 1364 if (!pag) { 1365 pag = g_try_malloc0(TARGET_PAGE_SIZE); 1366 page[p/TARGET_PAGE_SIZE] = pag; 1367 if (!pag) 1368 return 0; 1369 } 1370 } 1371 if (len == 0 || offset == 0) { 1372 *(pag + offset) = *tmp; 1373 } 1374 else { 1375 int bytes_to_copy = (len > offset) ? offset : len; 1376 tmp -= bytes_to_copy; 1377 p -= bytes_to_copy; 1378 offset -= bytes_to_copy; 1379 len -= bytes_to_copy; 1380 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); 1381 } 1382 } 1383 } 1384 return p; 1385 } 1386 1387 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, 1388 struct image_info *info) 1389 { 1390 abi_ulong stack_base, size, error, guard; 1391 int i; 1392 1393 /* Create enough stack to hold everything. If we don't use 1394 it for args, we'll use it for something else. */ 1395 size = guest_stack_size; 1396 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) { 1397 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; 1398 } 1399 guard = TARGET_PAGE_SIZE; 1400 if (guard < qemu_real_host_page_size) { 1401 guard = qemu_real_host_page_size; 1402 } 1403 1404 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1405 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1406 if (error == -1) { 1407 perror("mmap stack"); 1408 exit(-1); 1409 } 1410 1411 /* We reserve one extra page at the top of the stack as guard. */ 1412 target_mprotect(error, guard, PROT_NONE); 1413 1414 info->stack_limit = error + guard; 1415 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; 1416 p += stack_base; 1417 1418 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 1419 if (bprm->page[i]) { 1420 info->rss++; 1421 /* FIXME - check return value of memcpy_to_target() for failure */ 1422 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); 1423 g_free(bprm->page[i]); 1424 } 1425 stack_base += TARGET_PAGE_SIZE; 1426 } 1427 return p; 1428 } 1429 1430 /* Map and zero the bss. We need to explicitly zero any fractional pages 1431 after the data section (i.e. bss). */ 1432 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1433 { 1434 uintptr_t host_start, host_map_start, host_end; 1435 1436 last_bss = TARGET_PAGE_ALIGN(last_bss); 1437 1438 /* ??? There is confusion between qemu_real_host_page_size and 1439 qemu_host_page_size here and elsewhere in target_mmap, which 1440 may lead to the end of the data section mapping from the file 1441 not being mapped. At least there was an explicit test and 1442 comment for that here, suggesting that "the file size must 1443 be known". The comment probably pre-dates the introduction 1444 of the fstat system call in target_mmap which does in fact 1445 find out the size. What isn't clear is if the workaround 1446 here is still actually needed. For now, continue with it, 1447 but merge it with the "normal" mmap that would allocate the bss. */ 1448 1449 host_start = (uintptr_t) g2h(elf_bss); 1450 host_end = (uintptr_t) g2h(last_bss); 1451 host_map_start = (host_start + qemu_real_host_page_size - 1); 1452 host_map_start &= -qemu_real_host_page_size; 1453 1454 if (host_map_start < host_end) { 1455 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1456 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1457 if (p == MAP_FAILED) { 1458 perror("cannot mmap brk"); 1459 exit(-1); 1460 } 1461 } 1462 1463 /* Ensure that the bss page(s) are valid */ 1464 if ((page_get_flags(last_bss-1) & prot) != prot) { 1465 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1466 } 1467 1468 if (host_start < host_map_start) { 1469 memset((void *)host_start, 0, host_map_start - host_start); 1470 } 1471 } 1472 1473 #ifdef CONFIG_USE_FDPIC 1474 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1475 { 1476 uint16_t n; 1477 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1478 1479 /* elf32_fdpic_loadseg */ 1480 n = info->nsegs; 1481 while (n--) { 1482 sp -= 12; 1483 put_user_u32(loadsegs[n].addr, sp+0); 1484 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1485 put_user_u32(loadsegs[n].p_memsz, sp+8); 1486 } 1487 1488 /* elf32_fdpic_loadmap */ 1489 sp -= 4; 1490 put_user_u16(0, sp+0); /* version */ 1491 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1492 1493 info->personality = PER_LINUX_FDPIC; 1494 info->loadmap_addr = sp; 1495 1496 return sp; 1497 } 1498 #endif 1499 1500 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1501 struct elfhdr *exec, 1502 struct image_info *info, 1503 struct image_info *interp_info) 1504 { 1505 abi_ulong sp; 1506 abi_ulong sp_auxv; 1507 int size; 1508 int i; 1509 abi_ulong u_rand_bytes; 1510 uint8_t k_rand_bytes[16]; 1511 abi_ulong u_platform; 1512 const char *k_platform; 1513 const int n = sizeof(elf_addr_t); 1514 1515 sp = p; 1516 1517 #ifdef CONFIG_USE_FDPIC 1518 /* Needs to be before we load the env/argc/... */ 1519 if (elf_is_fdpic(exec)) { 1520 /* Need 4 byte alignment for these structs */ 1521 sp &= ~3; 1522 sp = loader_build_fdpic_loadmap(info, sp); 1523 info->other_info = interp_info; 1524 if (interp_info) { 1525 interp_info->other_info = info; 1526 sp = loader_build_fdpic_loadmap(interp_info, sp); 1527 } 1528 } 1529 #endif 1530 1531 u_platform = 0; 1532 k_platform = ELF_PLATFORM; 1533 if (k_platform) { 1534 size_t len = strlen(k_platform) + 1; 1535 sp -= (len + n - 1) & ~(n - 1); 1536 u_platform = sp; 1537 /* FIXME - check return value of memcpy_to_target() for failure */ 1538 memcpy_to_target(sp, k_platform, len); 1539 } 1540 1541 /* 1542 * Generate 16 random bytes for userspace PRNG seeding (not 1543 * cryptically secure but it's not the aim of QEMU). 1544 */ 1545 for (i = 0; i < 16; i++) { 1546 k_rand_bytes[i] = rand(); 1547 } 1548 sp -= 16; 1549 u_rand_bytes = sp; 1550 /* FIXME - check return value of memcpy_to_target() for failure */ 1551 memcpy_to_target(sp, k_rand_bytes, 16); 1552 1553 /* 1554 * Force 16 byte _final_ alignment here for generality. 1555 */ 1556 sp = sp &~ (abi_ulong)15; 1557 size = (DLINFO_ITEMS + 1) * 2; 1558 if (k_platform) 1559 size += 2; 1560 #ifdef DLINFO_ARCH_ITEMS 1561 size += DLINFO_ARCH_ITEMS * 2; 1562 #endif 1563 #ifdef ELF_HWCAP2 1564 size += 2; 1565 #endif 1566 size += envc + argc + 2; 1567 size += 1; /* argc itself */ 1568 size *= n; 1569 if (size & 15) 1570 sp -= 16 - (size & 15); 1571 1572 /* This is correct because Linux defines 1573 * elf_addr_t as Elf32_Off / Elf64_Off 1574 */ 1575 #define NEW_AUX_ENT(id, val) do { \ 1576 sp -= n; put_user_ual(val, sp); \ 1577 sp -= n; put_user_ual(id, sp); \ 1578 } while(0) 1579 1580 sp_auxv = sp; 1581 NEW_AUX_ENT (AT_NULL, 0); 1582 1583 /* There must be exactly DLINFO_ITEMS entries here. */ 1584 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1585 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1586 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1587 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1588 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1589 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1590 NEW_AUX_ENT(AT_ENTRY, info->entry); 1591 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1592 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1593 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1594 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1595 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1596 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1597 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1598 1599 #ifdef ELF_HWCAP2 1600 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1601 #endif 1602 1603 if (k_platform) 1604 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1605 #ifdef ARCH_DLINFO 1606 /* 1607 * ARCH_DLINFO must come last so platform specific code can enforce 1608 * special alignment requirements on the AUXV if necessary (eg. PPC). 1609 */ 1610 ARCH_DLINFO; 1611 #endif 1612 #undef NEW_AUX_ENT 1613 1614 info->saved_auxv = sp; 1615 info->auxv_len = sp_auxv - sp; 1616 1617 sp = loader_build_argptr(envc, argc, sp, p, 0); 1618 /* Check the right amount of stack was allocated for auxvec, envp & argv. */ 1619 assert(sp_auxv - sp == size); 1620 return sp; 1621 } 1622 1623 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1624 /* If the guest doesn't have a validation function just agree */ 1625 static int validate_guest_space(unsigned long guest_base, 1626 unsigned long guest_size) 1627 { 1628 return 1; 1629 } 1630 #endif 1631 1632 unsigned long init_guest_space(unsigned long host_start, 1633 unsigned long host_size, 1634 unsigned long guest_start, 1635 bool fixed) 1636 { 1637 unsigned long current_start, real_start; 1638 int flags; 1639 1640 assert(host_start || host_size); 1641 1642 /* If just a starting address is given, then just verify that 1643 * address. */ 1644 if (host_start && !host_size) { 1645 if (validate_guest_space(host_start, host_size) == 1) { 1646 return host_start; 1647 } else { 1648 return (unsigned long)-1; 1649 } 1650 } 1651 1652 /* Setup the initial flags and start address. */ 1653 current_start = host_start & qemu_host_page_mask; 1654 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1655 if (fixed) { 1656 flags |= MAP_FIXED; 1657 } 1658 1659 /* Otherwise, a non-zero size region of memory needs to be mapped 1660 * and validated. */ 1661 while (1) { 1662 unsigned long real_size = host_size; 1663 1664 /* Do not use mmap_find_vma here because that is limited to the 1665 * guest address space. We are going to make the 1666 * guest address space fit whatever we're given. 1667 */ 1668 real_start = (unsigned long) 1669 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1670 if (real_start == (unsigned long)-1) { 1671 return (unsigned long)-1; 1672 } 1673 1674 /* Ensure the address is properly aligned. */ 1675 if (real_start & ~qemu_host_page_mask) { 1676 munmap((void *)real_start, host_size); 1677 real_size = host_size + qemu_host_page_size; 1678 real_start = (unsigned long) 1679 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1680 if (real_start == (unsigned long)-1) { 1681 return (unsigned long)-1; 1682 } 1683 real_start = HOST_PAGE_ALIGN(real_start); 1684 } 1685 1686 /* Check to see if the address is valid. */ 1687 if (!host_start || real_start == current_start) { 1688 int valid = validate_guest_space(real_start - guest_start, 1689 real_size); 1690 if (valid == 1) { 1691 break; 1692 } else if (valid == -1) { 1693 return (unsigned long)-1; 1694 } 1695 /* valid == 0, so try again. */ 1696 } 1697 1698 /* That address didn't work. Unmap and try a different one. 1699 * The address the host picked because is typically right at 1700 * the top of the host address space and leaves the guest with 1701 * no usable address space. Resort to a linear search. We 1702 * already compensated for mmap_min_addr, so this should not 1703 * happen often. Probably means we got unlucky and host 1704 * address space randomization put a shared library somewhere 1705 * inconvenient. 1706 */ 1707 munmap((void *)real_start, host_size); 1708 current_start += qemu_host_page_size; 1709 if (host_start == current_start) { 1710 /* Theoretically possible if host doesn't have any suitably 1711 * aligned areas. Normally the first mmap will fail. 1712 */ 1713 return (unsigned long)-1; 1714 } 1715 } 1716 1717 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size); 1718 1719 return real_start; 1720 } 1721 1722 static void probe_guest_base(const char *image_name, 1723 abi_ulong loaddr, abi_ulong hiaddr) 1724 { 1725 /* Probe for a suitable guest base address, if the user has not set 1726 * it explicitly, and set guest_base appropriately. 1727 * In case of error we will print a suitable message and exit. 1728 */ 1729 #if defined(CONFIG_USE_GUEST_BASE) 1730 const char *errmsg; 1731 if (!have_guest_base && !reserved_va) { 1732 unsigned long host_start, real_start, host_size; 1733 1734 /* Round addresses to page boundaries. */ 1735 loaddr &= qemu_host_page_mask; 1736 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1737 1738 if (loaddr < mmap_min_addr) { 1739 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1740 } else { 1741 host_start = loaddr; 1742 if (host_start != loaddr) { 1743 errmsg = "Address overflow loading ELF binary"; 1744 goto exit_errmsg; 1745 } 1746 } 1747 host_size = hiaddr - loaddr; 1748 1749 /* Setup the initial guest memory space with ranges gleaned from 1750 * the ELF image that is being loaded. 1751 */ 1752 real_start = init_guest_space(host_start, host_size, loaddr, false); 1753 if (real_start == (unsigned long)-1) { 1754 errmsg = "Unable to find space for application"; 1755 goto exit_errmsg; 1756 } 1757 guest_base = real_start - loaddr; 1758 1759 qemu_log("Relocating guest address space from 0x" 1760 TARGET_ABI_FMT_lx " to 0x%lx\n", 1761 loaddr, real_start); 1762 } 1763 return; 1764 1765 exit_errmsg: 1766 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1767 exit(-1); 1768 #endif 1769 } 1770 1771 1772 /* Load an ELF image into the address space. 1773 1774 IMAGE_NAME is the filename of the image, to use in error messages. 1775 IMAGE_FD is the open file descriptor for the image. 1776 1777 BPRM_BUF is a copy of the beginning of the file; this of course 1778 contains the elf file header at offset 0. It is assumed that this 1779 buffer is sufficiently aligned to present no problems to the host 1780 in accessing data at aligned offsets within the buffer. 1781 1782 On return: INFO values will be filled in, as necessary or available. */ 1783 1784 static void load_elf_image(const char *image_name, int image_fd, 1785 struct image_info *info, char **pinterp_name, 1786 char bprm_buf[BPRM_BUF_SIZE]) 1787 { 1788 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1789 struct elf_phdr *phdr; 1790 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1791 int i, retval; 1792 const char *errmsg; 1793 1794 /* First of all, some simple consistency checks */ 1795 errmsg = "Invalid ELF image for this architecture"; 1796 if (!elf_check_ident(ehdr)) { 1797 goto exit_errmsg; 1798 } 1799 bswap_ehdr(ehdr); 1800 if (!elf_check_ehdr(ehdr)) { 1801 goto exit_errmsg; 1802 } 1803 1804 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1805 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 1806 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 1807 } else { 1808 phdr = (struct elf_phdr *) alloca(i); 1809 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 1810 if (retval != i) { 1811 goto exit_read; 1812 } 1813 } 1814 bswap_phdr(phdr, ehdr->e_phnum); 1815 1816 #ifdef CONFIG_USE_FDPIC 1817 info->nsegs = 0; 1818 info->pt_dynamic_addr = 0; 1819 #endif 1820 1821 /* Find the maximum size of the image and allocate an appropriate 1822 amount of memory to handle that. */ 1823 loaddr = -1, hiaddr = 0; 1824 for (i = 0; i < ehdr->e_phnum; ++i) { 1825 if (phdr[i].p_type == PT_LOAD) { 1826 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 1827 if (a < loaddr) { 1828 loaddr = a; 1829 } 1830 a = phdr[i].p_vaddr + phdr[i].p_memsz; 1831 if (a > hiaddr) { 1832 hiaddr = a; 1833 } 1834 #ifdef CONFIG_USE_FDPIC 1835 ++info->nsegs; 1836 #endif 1837 } 1838 } 1839 1840 load_addr = loaddr; 1841 if (ehdr->e_type == ET_DYN) { 1842 /* The image indicates that it can be loaded anywhere. Find a 1843 location that can hold the memory space required. If the 1844 image is pre-linked, LOADDR will be non-zero. Since we do 1845 not supply MAP_FIXED here we'll use that address if and 1846 only if it remains available. */ 1847 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 1848 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 1849 -1, 0); 1850 if (load_addr == -1) { 1851 goto exit_perror; 1852 } 1853 } else if (pinterp_name != NULL) { 1854 /* This is the main executable. Make sure that the low 1855 address does not conflict with MMAP_MIN_ADDR or the 1856 QEMU application itself. */ 1857 probe_guest_base(image_name, loaddr, hiaddr); 1858 } 1859 load_bias = load_addr - loaddr; 1860 1861 #ifdef CONFIG_USE_FDPIC 1862 { 1863 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 1864 g_malloc(sizeof(*loadsegs) * info->nsegs); 1865 1866 for (i = 0; i < ehdr->e_phnum; ++i) { 1867 switch (phdr[i].p_type) { 1868 case PT_DYNAMIC: 1869 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 1870 break; 1871 case PT_LOAD: 1872 loadsegs->addr = phdr[i].p_vaddr + load_bias; 1873 loadsegs->p_vaddr = phdr[i].p_vaddr; 1874 loadsegs->p_memsz = phdr[i].p_memsz; 1875 ++loadsegs; 1876 break; 1877 } 1878 } 1879 } 1880 #endif 1881 1882 info->load_bias = load_bias; 1883 info->load_addr = load_addr; 1884 info->entry = ehdr->e_entry + load_bias; 1885 info->start_code = -1; 1886 info->end_code = 0; 1887 info->start_data = -1; 1888 info->end_data = 0; 1889 info->brk = 0; 1890 info->elf_flags = ehdr->e_flags; 1891 1892 for (i = 0; i < ehdr->e_phnum; i++) { 1893 struct elf_phdr *eppnt = phdr + i; 1894 if (eppnt->p_type == PT_LOAD) { 1895 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 1896 int elf_prot = 0; 1897 1898 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 1899 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 1900 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 1901 1902 vaddr = load_bias + eppnt->p_vaddr; 1903 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 1904 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 1905 1906 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 1907 elf_prot, MAP_PRIVATE | MAP_FIXED, 1908 image_fd, eppnt->p_offset - vaddr_po); 1909 if (error == -1) { 1910 goto exit_perror; 1911 } 1912 1913 vaddr_ef = vaddr + eppnt->p_filesz; 1914 vaddr_em = vaddr + eppnt->p_memsz; 1915 1916 /* If the load segment requests extra zeros (e.g. bss), map it. */ 1917 if (vaddr_ef < vaddr_em) { 1918 zero_bss(vaddr_ef, vaddr_em, elf_prot); 1919 } 1920 1921 /* Find the full program boundaries. */ 1922 if (elf_prot & PROT_EXEC) { 1923 if (vaddr < info->start_code) { 1924 info->start_code = vaddr; 1925 } 1926 if (vaddr_ef > info->end_code) { 1927 info->end_code = vaddr_ef; 1928 } 1929 } 1930 if (elf_prot & PROT_WRITE) { 1931 if (vaddr < info->start_data) { 1932 info->start_data = vaddr; 1933 } 1934 if (vaddr_ef > info->end_data) { 1935 info->end_data = vaddr_ef; 1936 } 1937 if (vaddr_em > info->brk) { 1938 info->brk = vaddr_em; 1939 } 1940 } 1941 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 1942 char *interp_name; 1943 1944 if (*pinterp_name) { 1945 errmsg = "Multiple PT_INTERP entries"; 1946 goto exit_errmsg; 1947 } 1948 interp_name = malloc(eppnt->p_filesz); 1949 if (!interp_name) { 1950 goto exit_perror; 1951 } 1952 1953 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 1954 memcpy(interp_name, bprm_buf + eppnt->p_offset, 1955 eppnt->p_filesz); 1956 } else { 1957 retval = pread(image_fd, interp_name, eppnt->p_filesz, 1958 eppnt->p_offset); 1959 if (retval != eppnt->p_filesz) { 1960 goto exit_perror; 1961 } 1962 } 1963 if (interp_name[eppnt->p_filesz - 1] != 0) { 1964 errmsg = "Invalid PT_INTERP entry"; 1965 goto exit_errmsg; 1966 } 1967 *pinterp_name = interp_name; 1968 } 1969 } 1970 1971 if (info->end_data == 0) { 1972 info->start_data = info->end_code; 1973 info->end_data = info->end_code; 1974 info->brk = info->end_code; 1975 } 1976 1977 if (qemu_log_enabled()) { 1978 load_symbols(ehdr, image_fd, load_bias); 1979 } 1980 1981 close(image_fd); 1982 return; 1983 1984 exit_read: 1985 if (retval >= 0) { 1986 errmsg = "Incomplete read of file header"; 1987 goto exit_errmsg; 1988 } 1989 exit_perror: 1990 errmsg = strerror(errno); 1991 exit_errmsg: 1992 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1993 exit(-1); 1994 } 1995 1996 static void load_elf_interp(const char *filename, struct image_info *info, 1997 char bprm_buf[BPRM_BUF_SIZE]) 1998 { 1999 int fd, retval; 2000 2001 fd = open(path(filename), O_RDONLY); 2002 if (fd < 0) { 2003 goto exit_perror; 2004 } 2005 2006 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2007 if (retval < 0) { 2008 goto exit_perror; 2009 } 2010 if (retval < BPRM_BUF_SIZE) { 2011 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2012 } 2013 2014 load_elf_image(filename, fd, info, NULL, bprm_buf); 2015 return; 2016 2017 exit_perror: 2018 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2019 exit(-1); 2020 } 2021 2022 static int symfind(const void *s0, const void *s1) 2023 { 2024 target_ulong addr = *(target_ulong *)s0; 2025 struct elf_sym *sym = (struct elf_sym *)s1; 2026 int result = 0; 2027 if (addr < sym->st_value) { 2028 result = -1; 2029 } else if (addr >= sym->st_value + sym->st_size) { 2030 result = 1; 2031 } 2032 return result; 2033 } 2034 2035 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2036 { 2037 #if ELF_CLASS == ELFCLASS32 2038 struct elf_sym *syms = s->disas_symtab.elf32; 2039 #else 2040 struct elf_sym *syms = s->disas_symtab.elf64; 2041 #endif 2042 2043 // binary search 2044 struct elf_sym *sym; 2045 2046 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2047 if (sym != NULL) { 2048 return s->disas_strtab + sym->st_name; 2049 } 2050 2051 return ""; 2052 } 2053 2054 /* FIXME: This should use elf_ops.h */ 2055 static int symcmp(const void *s0, const void *s1) 2056 { 2057 struct elf_sym *sym0 = (struct elf_sym *)s0; 2058 struct elf_sym *sym1 = (struct elf_sym *)s1; 2059 return (sym0->st_value < sym1->st_value) 2060 ? -1 2061 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2062 } 2063 2064 /* Best attempt to load symbols from this ELF object. */ 2065 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2066 { 2067 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2068 struct elf_shdr *shdr; 2069 char *strings = NULL; 2070 struct syminfo *s = NULL; 2071 struct elf_sym *new_syms, *syms = NULL; 2072 2073 shnum = hdr->e_shnum; 2074 i = shnum * sizeof(struct elf_shdr); 2075 shdr = (struct elf_shdr *)alloca(i); 2076 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2077 return; 2078 } 2079 2080 bswap_shdr(shdr, shnum); 2081 for (i = 0; i < shnum; ++i) { 2082 if (shdr[i].sh_type == SHT_SYMTAB) { 2083 sym_idx = i; 2084 str_idx = shdr[i].sh_link; 2085 goto found; 2086 } 2087 } 2088 2089 /* There will be no symbol table if the file was stripped. */ 2090 return; 2091 2092 found: 2093 /* Now know where the strtab and symtab are. Snarf them. */ 2094 s = malloc(sizeof(*s)); 2095 if (!s) { 2096 goto give_up; 2097 } 2098 2099 i = shdr[str_idx].sh_size; 2100 s->disas_strtab = strings = malloc(i); 2101 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { 2102 goto give_up; 2103 } 2104 2105 i = shdr[sym_idx].sh_size; 2106 syms = malloc(i); 2107 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { 2108 goto give_up; 2109 } 2110 2111 nsyms = i / sizeof(struct elf_sym); 2112 for (i = 0; i < nsyms; ) { 2113 bswap_sym(syms + i); 2114 /* Throw away entries which we do not need. */ 2115 if (syms[i].st_shndx == SHN_UNDEF 2116 || syms[i].st_shndx >= SHN_LORESERVE 2117 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2118 if (i < --nsyms) { 2119 syms[i] = syms[nsyms]; 2120 } 2121 } else { 2122 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2123 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2124 syms[i].st_value &= ~(target_ulong)1; 2125 #endif 2126 syms[i].st_value += load_bias; 2127 i++; 2128 } 2129 } 2130 2131 /* No "useful" symbol. */ 2132 if (nsyms == 0) { 2133 goto give_up; 2134 } 2135 2136 /* Attempt to free the storage associated with the local symbols 2137 that we threw away. Whether or not this has any effect on the 2138 memory allocation depends on the malloc implementation and how 2139 many symbols we managed to discard. */ 2140 new_syms = realloc(syms, nsyms * sizeof(*syms)); 2141 if (new_syms == NULL) { 2142 goto give_up; 2143 } 2144 syms = new_syms; 2145 2146 qsort(syms, nsyms, sizeof(*syms), symcmp); 2147 2148 s->disas_num_syms = nsyms; 2149 #if ELF_CLASS == ELFCLASS32 2150 s->disas_symtab.elf32 = syms; 2151 #else 2152 s->disas_symtab.elf64 = syms; 2153 #endif 2154 s->lookup_symbol = lookup_symbolxx; 2155 s->next = syminfos; 2156 syminfos = s; 2157 2158 return; 2159 2160 give_up: 2161 free(s); 2162 free(strings); 2163 free(syms); 2164 } 2165 2166 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2167 { 2168 struct image_info interp_info; 2169 struct elfhdr elf_ex; 2170 char *elf_interpreter = NULL; 2171 2172 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2173 info->mmap = 0; 2174 info->rss = 0; 2175 2176 load_elf_image(bprm->filename, bprm->fd, info, 2177 &elf_interpreter, bprm->buf); 2178 2179 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2180 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2181 when we load the interpreter. */ 2182 elf_ex = *(struct elfhdr *)bprm->buf; 2183 2184 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); 2185 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); 2186 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); 2187 if (!bprm->p) { 2188 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2189 exit(-1); 2190 } 2191 2192 /* Do this so that we can load the interpreter, if need be. We will 2193 change some of these later */ 2194 bprm->p = setup_arg_pages(bprm->p, bprm, info); 2195 2196 if (elf_interpreter) { 2197 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2198 2199 /* If the program interpreter is one of these two, then assume 2200 an iBCS2 image. Otherwise assume a native linux image. */ 2201 2202 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2203 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2204 info->personality = PER_SVR4; 2205 2206 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2207 and some applications "depend" upon this behavior. Since 2208 we do not have the power to recompile these, we emulate 2209 the SVr4 behavior. Sigh. */ 2210 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2211 MAP_FIXED | MAP_PRIVATE, -1, 0); 2212 } 2213 } 2214 2215 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2216 info, (elf_interpreter ? &interp_info : NULL)); 2217 info->start_stack = bprm->p; 2218 2219 /* If we have an interpreter, set that as the program's entry point. 2220 Copy the load_bias as well, to help PPC64 interpret the entry 2221 point as a function descriptor. Do this after creating elf tables 2222 so that we copy the original program entry point into the AUXV. */ 2223 if (elf_interpreter) { 2224 info->load_bias = interp_info.load_bias; 2225 info->entry = interp_info.entry; 2226 free(elf_interpreter); 2227 } 2228 2229 #ifdef USE_ELF_CORE_DUMP 2230 bprm->core_dump = &elf_core_dump; 2231 #endif 2232 2233 return 0; 2234 } 2235 2236 #ifdef USE_ELF_CORE_DUMP 2237 /* 2238 * Definitions to generate Intel SVR4-like core files. 2239 * These mostly have the same names as the SVR4 types with "target_elf_" 2240 * tacked on the front to prevent clashes with linux definitions, 2241 * and the typedef forms have been avoided. This is mostly like 2242 * the SVR4 structure, but more Linuxy, with things that Linux does 2243 * not support and which gdb doesn't really use excluded. 2244 * 2245 * Fields we don't dump (their contents is zero) in linux-user qemu 2246 * are marked with XXX. 2247 * 2248 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2249 * 2250 * Porting ELF coredump for target is (quite) simple process. First you 2251 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2252 * the target resides): 2253 * 2254 * #define USE_ELF_CORE_DUMP 2255 * 2256 * Next you define type of register set used for dumping. ELF specification 2257 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2258 * 2259 * typedef <target_regtype> target_elf_greg_t; 2260 * #define ELF_NREG <number of registers> 2261 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2262 * 2263 * Last step is to implement target specific function that copies registers 2264 * from given cpu into just specified register set. Prototype is: 2265 * 2266 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2267 * const CPUArchState *env); 2268 * 2269 * Parameters: 2270 * regs - copy register values into here (allocated and zeroed by caller) 2271 * env - copy registers from here 2272 * 2273 * Example for ARM target is provided in this file. 2274 */ 2275 2276 /* An ELF note in memory */ 2277 struct memelfnote { 2278 const char *name; 2279 size_t namesz; 2280 size_t namesz_rounded; 2281 int type; 2282 size_t datasz; 2283 size_t datasz_rounded; 2284 void *data; 2285 size_t notesz; 2286 }; 2287 2288 struct target_elf_siginfo { 2289 abi_int si_signo; /* signal number */ 2290 abi_int si_code; /* extra code */ 2291 abi_int si_errno; /* errno */ 2292 }; 2293 2294 struct target_elf_prstatus { 2295 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2296 abi_short pr_cursig; /* Current signal */ 2297 abi_ulong pr_sigpend; /* XXX */ 2298 abi_ulong pr_sighold; /* XXX */ 2299 target_pid_t pr_pid; 2300 target_pid_t pr_ppid; 2301 target_pid_t pr_pgrp; 2302 target_pid_t pr_sid; 2303 struct target_timeval pr_utime; /* XXX User time */ 2304 struct target_timeval pr_stime; /* XXX System time */ 2305 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2306 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2307 target_elf_gregset_t pr_reg; /* GP registers */ 2308 abi_int pr_fpvalid; /* XXX */ 2309 }; 2310 2311 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2312 2313 struct target_elf_prpsinfo { 2314 char pr_state; /* numeric process state */ 2315 char pr_sname; /* char for pr_state */ 2316 char pr_zomb; /* zombie */ 2317 char pr_nice; /* nice val */ 2318 abi_ulong pr_flag; /* flags */ 2319 target_uid_t pr_uid; 2320 target_gid_t pr_gid; 2321 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2322 /* Lots missing */ 2323 char pr_fname[16]; /* filename of executable */ 2324 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2325 }; 2326 2327 /* Here is the structure in which status of each thread is captured. */ 2328 struct elf_thread_status { 2329 QTAILQ_ENTRY(elf_thread_status) ets_link; 2330 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2331 #if 0 2332 elf_fpregset_t fpu; /* NT_PRFPREG */ 2333 struct task_struct *thread; 2334 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2335 #endif 2336 struct memelfnote notes[1]; 2337 int num_notes; 2338 }; 2339 2340 struct elf_note_info { 2341 struct memelfnote *notes; 2342 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2343 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2344 2345 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2346 #if 0 2347 /* 2348 * Current version of ELF coredump doesn't support 2349 * dumping fp regs etc. 2350 */ 2351 elf_fpregset_t *fpu; 2352 elf_fpxregset_t *xfpu; 2353 int thread_status_size; 2354 #endif 2355 int notes_size; 2356 int numnote; 2357 }; 2358 2359 struct vm_area_struct { 2360 target_ulong vma_start; /* start vaddr of memory region */ 2361 target_ulong vma_end; /* end vaddr of memory region */ 2362 abi_ulong vma_flags; /* protection etc. flags for the region */ 2363 QTAILQ_ENTRY(vm_area_struct) vma_link; 2364 }; 2365 2366 struct mm_struct { 2367 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2368 int mm_count; /* number of mappings */ 2369 }; 2370 2371 static struct mm_struct *vma_init(void); 2372 static void vma_delete(struct mm_struct *); 2373 static int vma_add_mapping(struct mm_struct *, target_ulong, 2374 target_ulong, abi_ulong); 2375 static int vma_get_mapping_count(const struct mm_struct *); 2376 static struct vm_area_struct *vma_first(const struct mm_struct *); 2377 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2378 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2379 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2380 unsigned long flags); 2381 2382 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2383 static void fill_note(struct memelfnote *, const char *, int, 2384 unsigned int, void *); 2385 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2386 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2387 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2388 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2389 static size_t note_size(const struct memelfnote *); 2390 static void free_note_info(struct elf_note_info *); 2391 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2392 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2393 static int core_dump_filename(const TaskState *, char *, size_t); 2394 2395 static int dump_write(int, const void *, size_t); 2396 static int write_note(struct memelfnote *, int); 2397 static int write_note_info(struct elf_note_info *, int); 2398 2399 #ifdef BSWAP_NEEDED 2400 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2401 { 2402 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2403 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2404 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2405 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2406 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2407 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2408 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2409 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2410 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2411 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2412 /* cpu times are not filled, so we skip them */ 2413 /* regs should be in correct format already */ 2414 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2415 } 2416 2417 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2418 { 2419 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2420 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2421 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2422 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2423 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2424 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2425 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2426 } 2427 2428 static void bswap_note(struct elf_note *en) 2429 { 2430 bswap32s(&en->n_namesz); 2431 bswap32s(&en->n_descsz); 2432 bswap32s(&en->n_type); 2433 } 2434 #else 2435 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2436 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2437 static inline void bswap_note(struct elf_note *en) { } 2438 #endif /* BSWAP_NEEDED */ 2439 2440 /* 2441 * Minimal support for linux memory regions. These are needed 2442 * when we are finding out what memory exactly belongs to 2443 * emulated process. No locks needed here, as long as 2444 * thread that received the signal is stopped. 2445 */ 2446 2447 static struct mm_struct *vma_init(void) 2448 { 2449 struct mm_struct *mm; 2450 2451 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2452 return (NULL); 2453 2454 mm->mm_count = 0; 2455 QTAILQ_INIT(&mm->mm_mmap); 2456 2457 return (mm); 2458 } 2459 2460 static void vma_delete(struct mm_struct *mm) 2461 { 2462 struct vm_area_struct *vma; 2463 2464 while ((vma = vma_first(mm)) != NULL) { 2465 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2466 g_free(vma); 2467 } 2468 g_free(mm); 2469 } 2470 2471 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2472 target_ulong end, abi_ulong flags) 2473 { 2474 struct vm_area_struct *vma; 2475 2476 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2477 return (-1); 2478 2479 vma->vma_start = start; 2480 vma->vma_end = end; 2481 vma->vma_flags = flags; 2482 2483 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2484 mm->mm_count++; 2485 2486 return (0); 2487 } 2488 2489 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2490 { 2491 return (QTAILQ_FIRST(&mm->mm_mmap)); 2492 } 2493 2494 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2495 { 2496 return (QTAILQ_NEXT(vma, vma_link)); 2497 } 2498 2499 static int vma_get_mapping_count(const struct mm_struct *mm) 2500 { 2501 return (mm->mm_count); 2502 } 2503 2504 /* 2505 * Calculate file (dump) size of given memory region. 2506 */ 2507 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2508 { 2509 /* if we cannot even read the first page, skip it */ 2510 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2511 return (0); 2512 2513 /* 2514 * Usually we don't dump executable pages as they contain 2515 * non-writable code that debugger can read directly from 2516 * target library etc. However, thread stacks are marked 2517 * also executable so we read in first page of given region 2518 * and check whether it contains elf header. If there is 2519 * no elf header, we dump it. 2520 */ 2521 if (vma->vma_flags & PROT_EXEC) { 2522 char page[TARGET_PAGE_SIZE]; 2523 2524 copy_from_user(page, vma->vma_start, sizeof (page)); 2525 if ((page[EI_MAG0] == ELFMAG0) && 2526 (page[EI_MAG1] == ELFMAG1) && 2527 (page[EI_MAG2] == ELFMAG2) && 2528 (page[EI_MAG3] == ELFMAG3)) { 2529 /* 2530 * Mappings are possibly from ELF binary. Don't dump 2531 * them. 2532 */ 2533 return (0); 2534 } 2535 } 2536 2537 return (vma->vma_end - vma->vma_start); 2538 } 2539 2540 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2541 unsigned long flags) 2542 { 2543 struct mm_struct *mm = (struct mm_struct *)priv; 2544 2545 vma_add_mapping(mm, start, end, flags); 2546 return (0); 2547 } 2548 2549 static void fill_note(struct memelfnote *note, const char *name, int type, 2550 unsigned int sz, void *data) 2551 { 2552 unsigned int namesz; 2553 2554 namesz = strlen(name) + 1; 2555 note->name = name; 2556 note->namesz = namesz; 2557 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2558 note->type = type; 2559 note->datasz = sz; 2560 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2561 2562 note->data = data; 2563 2564 /* 2565 * We calculate rounded up note size here as specified by 2566 * ELF document. 2567 */ 2568 note->notesz = sizeof (struct elf_note) + 2569 note->namesz_rounded + note->datasz_rounded; 2570 } 2571 2572 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2573 uint32_t flags) 2574 { 2575 (void) memset(elf, 0, sizeof(*elf)); 2576 2577 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2578 elf->e_ident[EI_CLASS] = ELF_CLASS; 2579 elf->e_ident[EI_DATA] = ELF_DATA; 2580 elf->e_ident[EI_VERSION] = EV_CURRENT; 2581 elf->e_ident[EI_OSABI] = ELF_OSABI; 2582 2583 elf->e_type = ET_CORE; 2584 elf->e_machine = machine; 2585 elf->e_version = EV_CURRENT; 2586 elf->e_phoff = sizeof(struct elfhdr); 2587 elf->e_flags = flags; 2588 elf->e_ehsize = sizeof(struct elfhdr); 2589 elf->e_phentsize = sizeof(struct elf_phdr); 2590 elf->e_phnum = segs; 2591 2592 bswap_ehdr(elf); 2593 } 2594 2595 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2596 { 2597 phdr->p_type = PT_NOTE; 2598 phdr->p_offset = offset; 2599 phdr->p_vaddr = 0; 2600 phdr->p_paddr = 0; 2601 phdr->p_filesz = sz; 2602 phdr->p_memsz = 0; 2603 phdr->p_flags = 0; 2604 phdr->p_align = 0; 2605 2606 bswap_phdr(phdr, 1); 2607 } 2608 2609 static size_t note_size(const struct memelfnote *note) 2610 { 2611 return (note->notesz); 2612 } 2613 2614 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2615 const TaskState *ts, int signr) 2616 { 2617 (void) memset(prstatus, 0, sizeof (*prstatus)); 2618 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2619 prstatus->pr_pid = ts->ts_tid; 2620 prstatus->pr_ppid = getppid(); 2621 prstatus->pr_pgrp = getpgrp(); 2622 prstatus->pr_sid = getsid(0); 2623 2624 bswap_prstatus(prstatus); 2625 } 2626 2627 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2628 { 2629 char *base_filename; 2630 unsigned int i, len; 2631 2632 (void) memset(psinfo, 0, sizeof (*psinfo)); 2633 2634 len = ts->info->arg_end - ts->info->arg_start; 2635 if (len >= ELF_PRARGSZ) 2636 len = ELF_PRARGSZ - 1; 2637 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2638 return -EFAULT; 2639 for (i = 0; i < len; i++) 2640 if (psinfo->pr_psargs[i] == 0) 2641 psinfo->pr_psargs[i] = ' '; 2642 psinfo->pr_psargs[len] = 0; 2643 2644 psinfo->pr_pid = getpid(); 2645 psinfo->pr_ppid = getppid(); 2646 psinfo->pr_pgrp = getpgrp(); 2647 psinfo->pr_sid = getsid(0); 2648 psinfo->pr_uid = getuid(); 2649 psinfo->pr_gid = getgid(); 2650 2651 base_filename = g_path_get_basename(ts->bprm->filename); 2652 /* 2653 * Using strncpy here is fine: at max-length, 2654 * this field is not NUL-terminated. 2655 */ 2656 (void) strncpy(psinfo->pr_fname, base_filename, 2657 sizeof(psinfo->pr_fname)); 2658 2659 g_free(base_filename); 2660 bswap_psinfo(psinfo); 2661 return (0); 2662 } 2663 2664 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2665 { 2666 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2667 elf_addr_t orig_auxv = auxv; 2668 void *ptr; 2669 int len = ts->info->auxv_len; 2670 2671 /* 2672 * Auxiliary vector is stored in target process stack. It contains 2673 * {type, value} pairs that we need to dump into note. This is not 2674 * strictly necessary but we do it here for sake of completeness. 2675 */ 2676 2677 /* read in whole auxv vector and copy it to memelfnote */ 2678 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2679 if (ptr != NULL) { 2680 fill_note(note, "CORE", NT_AUXV, len, ptr); 2681 unlock_user(ptr, auxv, len); 2682 } 2683 } 2684 2685 /* 2686 * Constructs name of coredump file. We have following convention 2687 * for the name: 2688 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2689 * 2690 * Returns 0 in case of success, -1 otherwise (errno is set). 2691 */ 2692 static int core_dump_filename(const TaskState *ts, char *buf, 2693 size_t bufsize) 2694 { 2695 char timestamp[64]; 2696 char *filename = NULL; 2697 char *base_filename = NULL; 2698 struct timeval tv; 2699 struct tm tm; 2700 2701 assert(bufsize >= PATH_MAX); 2702 2703 if (gettimeofday(&tv, NULL) < 0) { 2704 (void) fprintf(stderr, "unable to get current timestamp: %s", 2705 strerror(errno)); 2706 return (-1); 2707 } 2708 2709 filename = strdup(ts->bprm->filename); 2710 base_filename = strdup(basename(filename)); 2711 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2712 localtime_r(&tv.tv_sec, &tm)); 2713 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2714 base_filename, timestamp, (int)getpid()); 2715 free(base_filename); 2716 free(filename); 2717 2718 return (0); 2719 } 2720 2721 static int dump_write(int fd, const void *ptr, size_t size) 2722 { 2723 const char *bufp = (const char *)ptr; 2724 ssize_t bytes_written, bytes_left; 2725 struct rlimit dumpsize; 2726 off_t pos; 2727 2728 bytes_written = 0; 2729 getrlimit(RLIMIT_CORE, &dumpsize); 2730 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2731 if (errno == ESPIPE) { /* not a seekable stream */ 2732 bytes_left = size; 2733 } else { 2734 return pos; 2735 } 2736 } else { 2737 if (dumpsize.rlim_cur <= pos) { 2738 return -1; 2739 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2740 bytes_left = size; 2741 } else { 2742 size_t limit_left=dumpsize.rlim_cur - pos; 2743 bytes_left = limit_left >= size ? size : limit_left ; 2744 } 2745 } 2746 2747 /* 2748 * In normal conditions, single write(2) should do but 2749 * in case of socket etc. this mechanism is more portable. 2750 */ 2751 do { 2752 bytes_written = write(fd, bufp, bytes_left); 2753 if (bytes_written < 0) { 2754 if (errno == EINTR) 2755 continue; 2756 return (-1); 2757 } else if (bytes_written == 0) { /* eof */ 2758 return (-1); 2759 } 2760 bufp += bytes_written; 2761 bytes_left -= bytes_written; 2762 } while (bytes_left > 0); 2763 2764 return (0); 2765 } 2766 2767 static int write_note(struct memelfnote *men, int fd) 2768 { 2769 struct elf_note en; 2770 2771 en.n_namesz = men->namesz; 2772 en.n_type = men->type; 2773 en.n_descsz = men->datasz; 2774 2775 bswap_note(&en); 2776 2777 if (dump_write(fd, &en, sizeof(en)) != 0) 2778 return (-1); 2779 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2780 return (-1); 2781 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 2782 return (-1); 2783 2784 return (0); 2785 } 2786 2787 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 2788 { 2789 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2790 TaskState *ts = (TaskState *)cpu->opaque; 2791 struct elf_thread_status *ets; 2792 2793 ets = g_malloc0(sizeof (*ets)); 2794 ets->num_notes = 1; /* only prstatus is dumped */ 2795 fill_prstatus(&ets->prstatus, ts, 0); 2796 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 2797 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 2798 &ets->prstatus); 2799 2800 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 2801 2802 info->notes_size += note_size(&ets->notes[0]); 2803 } 2804 2805 static void init_note_info(struct elf_note_info *info) 2806 { 2807 /* Initialize the elf_note_info structure so that it is at 2808 * least safe to call free_note_info() on it. Must be 2809 * called before calling fill_note_info(). 2810 */ 2811 memset(info, 0, sizeof (*info)); 2812 QTAILQ_INIT(&info->thread_list); 2813 } 2814 2815 static int fill_note_info(struct elf_note_info *info, 2816 long signr, const CPUArchState *env) 2817 { 2818 #define NUMNOTES 3 2819 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2820 TaskState *ts = (TaskState *)cpu->opaque; 2821 int i; 2822 2823 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote)); 2824 if (info->notes == NULL) 2825 return (-ENOMEM); 2826 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 2827 if (info->prstatus == NULL) 2828 return (-ENOMEM); 2829 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 2830 if (info->prstatus == NULL) 2831 return (-ENOMEM); 2832 2833 /* 2834 * First fill in status (and registers) of current thread 2835 * including process info & aux vector. 2836 */ 2837 fill_prstatus(info->prstatus, ts, signr); 2838 elf_core_copy_regs(&info->prstatus->pr_reg, env); 2839 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 2840 sizeof (*info->prstatus), info->prstatus); 2841 fill_psinfo(info->psinfo, ts); 2842 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 2843 sizeof (*info->psinfo), info->psinfo); 2844 fill_auxv_note(&info->notes[2], ts); 2845 info->numnote = 3; 2846 2847 info->notes_size = 0; 2848 for (i = 0; i < info->numnote; i++) 2849 info->notes_size += note_size(&info->notes[i]); 2850 2851 /* read and fill status of all threads */ 2852 cpu_list_lock(); 2853 CPU_FOREACH(cpu) { 2854 if (cpu == thread_cpu) { 2855 continue; 2856 } 2857 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 2858 } 2859 cpu_list_unlock(); 2860 2861 return (0); 2862 } 2863 2864 static void free_note_info(struct elf_note_info *info) 2865 { 2866 struct elf_thread_status *ets; 2867 2868 while (!QTAILQ_EMPTY(&info->thread_list)) { 2869 ets = QTAILQ_FIRST(&info->thread_list); 2870 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 2871 g_free(ets); 2872 } 2873 2874 g_free(info->prstatus); 2875 g_free(info->psinfo); 2876 g_free(info->notes); 2877 } 2878 2879 static int write_note_info(struct elf_note_info *info, int fd) 2880 { 2881 struct elf_thread_status *ets; 2882 int i, error = 0; 2883 2884 /* write prstatus, psinfo and auxv for current thread */ 2885 for (i = 0; i < info->numnote; i++) 2886 if ((error = write_note(&info->notes[i], fd)) != 0) 2887 return (error); 2888 2889 /* write prstatus for each thread */ 2890 for (ets = info->thread_list.tqh_first; ets != NULL; 2891 ets = ets->ets_link.tqe_next) { 2892 if ((error = write_note(&ets->notes[0], fd)) != 0) 2893 return (error); 2894 } 2895 2896 return (0); 2897 } 2898 2899 /* 2900 * Write out ELF coredump. 2901 * 2902 * See documentation of ELF object file format in: 2903 * http://www.caldera.com/developers/devspecs/gabi41.pdf 2904 * 2905 * Coredump format in linux is following: 2906 * 2907 * 0 +----------------------+ \ 2908 * | ELF header | ET_CORE | 2909 * +----------------------+ | 2910 * | ELF program headers | |--- headers 2911 * | - NOTE section | | 2912 * | - PT_LOAD sections | | 2913 * +----------------------+ / 2914 * | NOTEs: | 2915 * | - NT_PRSTATUS | 2916 * | - NT_PRSINFO | 2917 * | - NT_AUXV | 2918 * +----------------------+ <-- aligned to target page 2919 * | Process memory dump | 2920 * : : 2921 * . . 2922 * : : 2923 * | | 2924 * +----------------------+ 2925 * 2926 * NT_PRSTATUS -> struct elf_prstatus (per thread) 2927 * NT_PRSINFO -> struct elf_prpsinfo 2928 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 2929 * 2930 * Format follows System V format as close as possible. Current 2931 * version limitations are as follows: 2932 * - no floating point registers are dumped 2933 * 2934 * Function returns 0 in case of success, negative errno otherwise. 2935 * 2936 * TODO: make this work also during runtime: it should be 2937 * possible to force coredump from running process and then 2938 * continue processing. For example qemu could set up SIGUSR2 2939 * handler (provided that target process haven't registered 2940 * handler for that) that does the dump when signal is received. 2941 */ 2942 static int elf_core_dump(int signr, const CPUArchState *env) 2943 { 2944 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2945 const TaskState *ts = (const TaskState *)cpu->opaque; 2946 struct vm_area_struct *vma = NULL; 2947 char corefile[PATH_MAX]; 2948 struct elf_note_info info; 2949 struct elfhdr elf; 2950 struct elf_phdr phdr; 2951 struct rlimit dumpsize; 2952 struct mm_struct *mm = NULL; 2953 off_t offset = 0, data_offset = 0; 2954 int segs = 0; 2955 int fd = -1; 2956 2957 init_note_info(&info); 2958 2959 errno = 0; 2960 getrlimit(RLIMIT_CORE, &dumpsize); 2961 if (dumpsize.rlim_cur == 0) 2962 return 0; 2963 2964 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 2965 return (-errno); 2966 2967 if ((fd = open(corefile, O_WRONLY | O_CREAT, 2968 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 2969 return (-errno); 2970 2971 /* 2972 * Walk through target process memory mappings and 2973 * set up structure containing this information. After 2974 * this point vma_xxx functions can be used. 2975 */ 2976 if ((mm = vma_init()) == NULL) 2977 goto out; 2978 2979 walk_memory_regions(mm, vma_walker); 2980 segs = vma_get_mapping_count(mm); 2981 2982 /* 2983 * Construct valid coredump ELF header. We also 2984 * add one more segment for notes. 2985 */ 2986 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 2987 if (dump_write(fd, &elf, sizeof (elf)) != 0) 2988 goto out; 2989 2990 /* fill in in-memory version of notes */ 2991 if (fill_note_info(&info, signr, env) < 0) 2992 goto out; 2993 2994 offset += sizeof (elf); /* elf header */ 2995 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 2996 2997 /* write out notes program header */ 2998 fill_elf_note_phdr(&phdr, info.notes_size, offset); 2999 3000 offset += info.notes_size; 3001 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3002 goto out; 3003 3004 /* 3005 * ELF specification wants data to start at page boundary so 3006 * we align it here. 3007 */ 3008 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3009 3010 /* 3011 * Write program headers for memory regions mapped in 3012 * the target process. 3013 */ 3014 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3015 (void) memset(&phdr, 0, sizeof (phdr)); 3016 3017 phdr.p_type = PT_LOAD; 3018 phdr.p_offset = offset; 3019 phdr.p_vaddr = vma->vma_start; 3020 phdr.p_paddr = 0; 3021 phdr.p_filesz = vma_dump_size(vma); 3022 offset += phdr.p_filesz; 3023 phdr.p_memsz = vma->vma_end - vma->vma_start; 3024 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3025 if (vma->vma_flags & PROT_WRITE) 3026 phdr.p_flags |= PF_W; 3027 if (vma->vma_flags & PROT_EXEC) 3028 phdr.p_flags |= PF_X; 3029 phdr.p_align = ELF_EXEC_PAGESIZE; 3030 3031 bswap_phdr(&phdr, 1); 3032 dump_write(fd, &phdr, sizeof (phdr)); 3033 } 3034 3035 /* 3036 * Next we write notes just after program headers. No 3037 * alignment needed here. 3038 */ 3039 if (write_note_info(&info, fd) < 0) 3040 goto out; 3041 3042 /* align data to page boundary */ 3043 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3044 goto out; 3045 3046 /* 3047 * Finally we can dump process memory into corefile as well. 3048 */ 3049 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3050 abi_ulong addr; 3051 abi_ulong end; 3052 3053 end = vma->vma_start + vma_dump_size(vma); 3054 3055 for (addr = vma->vma_start; addr < end; 3056 addr += TARGET_PAGE_SIZE) { 3057 char page[TARGET_PAGE_SIZE]; 3058 int error; 3059 3060 /* 3061 * Read in page from target process memory and 3062 * write it to coredump file. 3063 */ 3064 error = copy_from_user(page, addr, sizeof (page)); 3065 if (error != 0) { 3066 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3067 addr); 3068 errno = -error; 3069 goto out; 3070 } 3071 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3072 goto out; 3073 } 3074 } 3075 3076 out: 3077 free_note_info(&info); 3078 if (mm != NULL) 3079 vma_delete(mm); 3080 (void) close(fd); 3081 3082 if (errno != 0) 3083 return (-errno); 3084 return (0); 3085 } 3086 #endif /* USE_ELF_CORE_DUMP */ 3087 3088 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3089 { 3090 init_thread(regs, infop); 3091 } 3092