xref: /openbmc/qemu/linux-user/elfload.c (revision 200dbf37)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/guest-random.h"
12 
13 #ifdef _ARCH_PPC64
14 #undef ARCH_DLINFO
15 #undef ELF_PLATFORM
16 #undef ELF_HWCAP
17 #undef ELF_HWCAP2
18 #undef ELF_CLASS
19 #undef ELF_DATA
20 #undef ELF_ARCH
21 #endif
22 
23 #define ELF_OSABI   ELFOSABI_SYSV
24 
25 /* from personality.h */
26 
27 /*
28  * Flags for bug emulation.
29  *
30  * These occupy the top three bytes.
31  */
32 enum {
33     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
34     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
35                                            descriptors (signal handling) */
36     MMAP_PAGE_ZERO =    0x0100000,
37     ADDR_COMPAT_LAYOUT = 0x0200000,
38     READ_IMPLIES_EXEC = 0x0400000,
39     ADDR_LIMIT_32BIT =  0x0800000,
40     SHORT_INODE =       0x1000000,
41     WHOLE_SECONDS =     0x2000000,
42     STICKY_TIMEOUTS =   0x4000000,
43     ADDR_LIMIT_3GB =    0x8000000,
44 };
45 
46 /*
47  * Personality types.
48  *
49  * These go in the low byte.  Avoid using the top bit, it will
50  * conflict with error returns.
51  */
52 enum {
53     PER_LINUX =         0x0000,
54     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
55     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
56     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
57     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
58     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
59     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
60     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
61     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
62     PER_BSD =           0x0006,
63     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
64     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
65     PER_LINUX32 =       0x0008,
66     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
67     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
68     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
69     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
70     PER_RISCOS =        0x000c,
71     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
72     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
73     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
74     PER_HPUX =          0x0010,
75     PER_MASK =          0x00ff,
76 };
77 
78 /*
79  * Return the base personality without flags.
80  */
81 #define personality(pers)       (pers & PER_MASK)
82 
83 int info_is_fdpic(struct image_info *info)
84 {
85     return info->personality == PER_LINUX_FDPIC;
86 }
87 
88 /* this flag is uneffective under linux too, should be deleted */
89 #ifndef MAP_DENYWRITE
90 #define MAP_DENYWRITE 0
91 #endif
92 
93 /* should probably go in elf.h */
94 #ifndef ELIBBAD
95 #define ELIBBAD 80
96 #endif
97 
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA        ELFDATA2MSB
100 #else
101 #define ELF_DATA        ELFDATA2LSB
102 #endif
103 
104 #ifdef TARGET_ABI_MIPSN32
105 typedef abi_ullong      target_elf_greg_t;
106 #define tswapreg(ptr)   tswap64(ptr)
107 #else
108 typedef abi_ulong       target_elf_greg_t;
109 #define tswapreg(ptr)   tswapal(ptr)
110 #endif
111 
112 #ifdef USE_UID16
113 typedef abi_ushort      target_uid_t;
114 typedef abi_ushort      target_gid_t;
115 #else
116 typedef abi_uint        target_uid_t;
117 typedef abi_uint        target_gid_t;
118 #endif
119 typedef abi_int         target_pid_t;
120 
121 #ifdef TARGET_I386
122 
123 #define ELF_PLATFORM get_elf_platform()
124 
125 static const char *get_elf_platform(void)
126 {
127     static char elf_platform[] = "i386";
128     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
129     if (family > 6)
130         family = 6;
131     if (family >= 3)
132         elf_platform[1] = '0' + family;
133     return elf_platform;
134 }
135 
136 #define ELF_HWCAP get_elf_hwcap()
137 
138 static uint32_t get_elf_hwcap(void)
139 {
140     X86CPU *cpu = X86_CPU(thread_cpu);
141 
142     return cpu->env.features[FEAT_1_EDX];
143 }
144 
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147 
148 #define ELF_CLASS      ELFCLASS64
149 #define ELF_ARCH       EM_X86_64
150 
151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
152 {
153     regs->rax = 0;
154     regs->rsp = infop->start_stack;
155     regs->rip = infop->entry;
156 }
157 
158 #define ELF_NREG    27
159 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
160 
161 /*
162  * Note that ELF_NREG should be 29 as there should be place for
163  * TRAPNO and ERR "registers" as well but linux doesn't dump
164  * those.
165  *
166  * See linux kernel: arch/x86/include/asm/elf.h
167  */
168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
169 {
170     (*regs)[0] = env->regs[15];
171     (*regs)[1] = env->regs[14];
172     (*regs)[2] = env->regs[13];
173     (*regs)[3] = env->regs[12];
174     (*regs)[4] = env->regs[R_EBP];
175     (*regs)[5] = env->regs[R_EBX];
176     (*regs)[6] = env->regs[11];
177     (*regs)[7] = env->regs[10];
178     (*regs)[8] = env->regs[9];
179     (*regs)[9] = env->regs[8];
180     (*regs)[10] = env->regs[R_EAX];
181     (*regs)[11] = env->regs[R_ECX];
182     (*regs)[12] = env->regs[R_EDX];
183     (*regs)[13] = env->regs[R_ESI];
184     (*regs)[14] = env->regs[R_EDI];
185     (*regs)[15] = env->regs[R_EAX]; /* XXX */
186     (*regs)[16] = env->eip;
187     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
188     (*regs)[18] = env->eflags;
189     (*regs)[19] = env->regs[R_ESP];
190     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
191     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
192     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
193     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
194     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
195     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
196     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
197 }
198 
199 #else
200 
201 #define ELF_START_MMAP 0x80000000
202 
203 /*
204  * This is used to ensure we don't load something for the wrong architecture.
205  */
206 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207 
208 /*
209  * These are used to set parameters in the core dumps.
210  */
211 #define ELF_CLASS       ELFCLASS32
212 #define ELF_ARCH        EM_386
213 
214 static inline void init_thread(struct target_pt_regs *regs,
215                                struct image_info *infop)
216 {
217     regs->esp = infop->start_stack;
218     regs->eip = infop->entry;
219 
220     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
221        starts %edx contains a pointer to a function which might be
222        registered using `atexit'.  This provides a mean for the
223        dynamic linker to call DT_FINI functions for shared libraries
224        that have been loaded before the code runs.
225 
226        A value of 0 tells we have no such handler.  */
227     regs->edx = 0;
228 }
229 
230 #define ELF_NREG    17
231 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
232 
233 /*
234  * Note that ELF_NREG should be 19 as there should be place for
235  * TRAPNO and ERR "registers" as well but linux doesn't dump
236  * those.
237  *
238  * See linux kernel: arch/x86/include/asm/elf.h
239  */
240 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
241 {
242     (*regs)[0] = env->regs[R_EBX];
243     (*regs)[1] = env->regs[R_ECX];
244     (*regs)[2] = env->regs[R_EDX];
245     (*regs)[3] = env->regs[R_ESI];
246     (*regs)[4] = env->regs[R_EDI];
247     (*regs)[5] = env->regs[R_EBP];
248     (*regs)[6] = env->regs[R_EAX];
249     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
250     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
251     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
252     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
253     (*regs)[11] = env->regs[R_EAX]; /* XXX */
254     (*regs)[12] = env->eip;
255     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
256     (*regs)[14] = env->eflags;
257     (*regs)[15] = env->regs[R_ESP];
258     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
259 }
260 #endif
261 
262 #define USE_ELF_CORE_DUMP
263 #define ELF_EXEC_PAGESIZE       4096
264 
265 #endif
266 
267 #ifdef TARGET_ARM
268 
269 #ifndef TARGET_AARCH64
270 /* 32 bit ARM definitions */
271 
272 #define ELF_START_MMAP 0x80000000
273 
274 #define ELF_ARCH        EM_ARM
275 #define ELF_CLASS       ELFCLASS32
276 
277 static inline void init_thread(struct target_pt_regs *regs,
278                                struct image_info *infop)
279 {
280     abi_long stack = infop->start_stack;
281     memset(regs, 0, sizeof(*regs));
282 
283     regs->uregs[16] = ARM_CPU_MODE_USR;
284     if (infop->entry & 1) {
285         regs->uregs[16] |= CPSR_T;
286     }
287     regs->uregs[15] = infop->entry & 0xfffffffe;
288     regs->uregs[13] = infop->start_stack;
289     /* FIXME - what to for failure of get_user()? */
290     get_user_ual(regs->uregs[2], stack + 8); /* envp */
291     get_user_ual(regs->uregs[1], stack + 4); /* envp */
292     /* XXX: it seems that r0 is zeroed after ! */
293     regs->uregs[0] = 0;
294     /* For uClinux PIC binaries.  */
295     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
296     regs->uregs[10] = infop->start_data;
297 
298     /* Support ARM FDPIC.  */
299     if (info_is_fdpic(infop)) {
300         /* As described in the ABI document, r7 points to the loadmap info
301          * prepared by the kernel. If an interpreter is needed, r8 points
302          * to the interpreter loadmap and r9 points to the interpreter
303          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
304          * r9 points to the main program PT_DYNAMIC info.
305          */
306         regs->uregs[7] = infop->loadmap_addr;
307         if (infop->interpreter_loadmap_addr) {
308             /* Executable is dynamically loaded.  */
309             regs->uregs[8] = infop->interpreter_loadmap_addr;
310             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
311         } else {
312             regs->uregs[8] = 0;
313             regs->uregs[9] = infop->pt_dynamic_addr;
314         }
315     }
316 }
317 
318 #define ELF_NREG    18
319 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
320 
321 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
322 {
323     (*regs)[0] = tswapreg(env->regs[0]);
324     (*regs)[1] = tswapreg(env->regs[1]);
325     (*regs)[2] = tswapreg(env->regs[2]);
326     (*regs)[3] = tswapreg(env->regs[3]);
327     (*regs)[4] = tswapreg(env->regs[4]);
328     (*regs)[5] = tswapreg(env->regs[5]);
329     (*regs)[6] = tswapreg(env->regs[6]);
330     (*regs)[7] = tswapreg(env->regs[7]);
331     (*regs)[8] = tswapreg(env->regs[8]);
332     (*regs)[9] = tswapreg(env->regs[9]);
333     (*regs)[10] = tswapreg(env->regs[10]);
334     (*regs)[11] = tswapreg(env->regs[11]);
335     (*regs)[12] = tswapreg(env->regs[12]);
336     (*regs)[13] = tswapreg(env->regs[13]);
337     (*regs)[14] = tswapreg(env->regs[14]);
338     (*regs)[15] = tswapreg(env->regs[15]);
339 
340     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
341     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
342 }
343 
344 #define USE_ELF_CORE_DUMP
345 #define ELF_EXEC_PAGESIZE       4096
346 
347 enum
348 {
349     ARM_HWCAP_ARM_SWP       = 1 << 0,
350     ARM_HWCAP_ARM_HALF      = 1 << 1,
351     ARM_HWCAP_ARM_THUMB     = 1 << 2,
352     ARM_HWCAP_ARM_26BIT     = 1 << 3,
353     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
354     ARM_HWCAP_ARM_FPA       = 1 << 5,
355     ARM_HWCAP_ARM_VFP       = 1 << 6,
356     ARM_HWCAP_ARM_EDSP      = 1 << 7,
357     ARM_HWCAP_ARM_JAVA      = 1 << 8,
358     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
359     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
360     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
361     ARM_HWCAP_ARM_NEON      = 1 << 12,
362     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
363     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
364     ARM_HWCAP_ARM_TLS       = 1 << 15,
365     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
366     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
367     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
368     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
369     ARM_HWCAP_ARM_LPAE      = 1 << 20,
370     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
371 };
372 
373 enum {
374     ARM_HWCAP2_ARM_AES      = 1 << 0,
375     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
376     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
377     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
378     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
379 };
380 
381 /* The commpage only exists for 32 bit kernels */
382 
383 /* Return 1 if the proposed guest space is suitable for the guest.
384  * Return 0 if the proposed guest space isn't suitable, but another
385  * address space should be tried.
386  * Return -1 if there is no way the proposed guest space can be
387  * valid regardless of the base.
388  * The guest code may leave a page mapped and populate it if the
389  * address is suitable.
390  */
391 static int init_guest_commpage(unsigned long guest_base,
392                                unsigned long guest_size)
393 {
394     unsigned long real_start, test_page_addr;
395 
396     /* We need to check that we can force a fault on access to the
397      * commpage at 0xffff0fxx
398      */
399     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
400 
401     /* If the commpage lies within the already allocated guest space,
402      * then there is no way we can allocate it.
403      *
404      * You may be thinking that that this check is redundant because
405      * we already validated the guest size against MAX_RESERVED_VA;
406      * but if qemu_host_page_mask is unusually large, then
407      * test_page_addr may be lower.
408      */
409     if (test_page_addr >= guest_base
410         && test_page_addr < (guest_base + guest_size)) {
411         return -1;
412     }
413 
414     /* Note it needs to be writeable to let us initialise it */
415     real_start = (unsigned long)
416                  mmap((void *)test_page_addr, qemu_host_page_size,
417                      PROT_READ | PROT_WRITE,
418                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
419 
420     /* If we can't map it then try another address */
421     if (real_start == -1ul) {
422         return 0;
423     }
424 
425     if (real_start != test_page_addr) {
426         /* OS didn't put the page where we asked - unmap and reject */
427         munmap((void *)real_start, qemu_host_page_size);
428         return 0;
429     }
430 
431     /* Leave the page mapped
432      * Populate it (mmap should have left it all 0'd)
433      */
434 
435     /* Kernel helper versions */
436     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
437 
438     /* Now it's populated make it RO */
439     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
440         perror("Protecting guest commpage");
441         exit(-1);
442     }
443 
444     return 1; /* All good */
445 }
446 
447 #define ELF_HWCAP get_elf_hwcap()
448 #define ELF_HWCAP2 get_elf_hwcap2()
449 
450 static uint32_t get_elf_hwcap(void)
451 {
452     ARMCPU *cpu = ARM_CPU(thread_cpu);
453     uint32_t hwcaps = 0;
454 
455     hwcaps |= ARM_HWCAP_ARM_SWP;
456     hwcaps |= ARM_HWCAP_ARM_HALF;
457     hwcaps |= ARM_HWCAP_ARM_THUMB;
458     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
459 
460     /* probe for the extra features */
461 #define GET_FEATURE(feat, hwcap) \
462     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
463 
464 #define GET_FEATURE_ID(feat, hwcap) \
465     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
466 
467     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
468     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
469     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
470     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
471     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
472     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
473     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
474     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
475     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
476     GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
477     GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
478     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
479      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
480      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
481      * to our VFP_FP16 feature bit.
482      */
483     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
484     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
485 
486     return hwcaps;
487 }
488 
489 static uint32_t get_elf_hwcap2(void)
490 {
491     ARMCPU *cpu = ARM_CPU(thread_cpu);
492     uint32_t hwcaps = 0;
493 
494     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
495     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
496     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
497     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
498     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
499     return hwcaps;
500 }
501 
502 #undef GET_FEATURE
503 #undef GET_FEATURE_ID
504 
505 #define ELF_PLATFORM get_elf_platform()
506 
507 static const char *get_elf_platform(void)
508 {
509     CPUARMState *env = thread_cpu->env_ptr;
510 
511 #ifdef TARGET_WORDS_BIGENDIAN
512 # define END  "b"
513 #else
514 # define END  "l"
515 #endif
516 
517     if (arm_feature(env, ARM_FEATURE_V8)) {
518         return "v8" END;
519     } else if (arm_feature(env, ARM_FEATURE_V7)) {
520         if (arm_feature(env, ARM_FEATURE_M)) {
521             return "v7m" END;
522         } else {
523             return "v7" END;
524         }
525     } else if (arm_feature(env, ARM_FEATURE_V6)) {
526         return "v6" END;
527     } else if (arm_feature(env, ARM_FEATURE_V5)) {
528         return "v5" END;
529     } else {
530         return "v4" END;
531     }
532 
533 #undef END
534 }
535 
536 #else
537 /* 64 bit ARM definitions */
538 #define ELF_START_MMAP 0x80000000
539 
540 #define ELF_ARCH        EM_AARCH64
541 #define ELF_CLASS       ELFCLASS64
542 #ifdef TARGET_WORDS_BIGENDIAN
543 # define ELF_PLATFORM    "aarch64_be"
544 #else
545 # define ELF_PLATFORM    "aarch64"
546 #endif
547 
548 static inline void init_thread(struct target_pt_regs *regs,
549                                struct image_info *infop)
550 {
551     abi_long stack = infop->start_stack;
552     memset(regs, 0, sizeof(*regs));
553 
554     regs->pc = infop->entry & ~0x3ULL;
555     regs->sp = stack;
556 }
557 
558 #define ELF_NREG    34
559 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
560 
561 static void elf_core_copy_regs(target_elf_gregset_t *regs,
562                                const CPUARMState *env)
563 {
564     int i;
565 
566     for (i = 0; i < 32; i++) {
567         (*regs)[i] = tswapreg(env->xregs[i]);
568     }
569     (*regs)[32] = tswapreg(env->pc);
570     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
571 }
572 
573 #define USE_ELF_CORE_DUMP
574 #define ELF_EXEC_PAGESIZE       4096
575 
576 enum {
577     ARM_HWCAP_A64_FP            = 1 << 0,
578     ARM_HWCAP_A64_ASIMD         = 1 << 1,
579     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
580     ARM_HWCAP_A64_AES           = 1 << 3,
581     ARM_HWCAP_A64_PMULL         = 1 << 4,
582     ARM_HWCAP_A64_SHA1          = 1 << 5,
583     ARM_HWCAP_A64_SHA2          = 1 << 6,
584     ARM_HWCAP_A64_CRC32         = 1 << 7,
585     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
586     ARM_HWCAP_A64_FPHP          = 1 << 9,
587     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
588     ARM_HWCAP_A64_CPUID         = 1 << 11,
589     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
590     ARM_HWCAP_A64_JSCVT         = 1 << 13,
591     ARM_HWCAP_A64_FCMA          = 1 << 14,
592     ARM_HWCAP_A64_LRCPC         = 1 << 15,
593     ARM_HWCAP_A64_DCPOP         = 1 << 16,
594     ARM_HWCAP_A64_SHA3          = 1 << 17,
595     ARM_HWCAP_A64_SM3           = 1 << 18,
596     ARM_HWCAP_A64_SM4           = 1 << 19,
597     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
598     ARM_HWCAP_A64_SHA512        = 1 << 21,
599     ARM_HWCAP_A64_SVE           = 1 << 22,
600     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
601     ARM_HWCAP_A64_DIT           = 1 << 24,
602     ARM_HWCAP_A64_USCAT         = 1 << 25,
603     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
604     ARM_HWCAP_A64_FLAGM         = 1 << 27,
605     ARM_HWCAP_A64_SSBS          = 1 << 28,
606     ARM_HWCAP_A64_SB            = 1 << 29,
607     ARM_HWCAP_A64_PACA          = 1 << 30,
608     ARM_HWCAP_A64_PACG          = 1UL << 31,
609 };
610 
611 #define ELF_HWCAP get_elf_hwcap()
612 
613 static uint32_t get_elf_hwcap(void)
614 {
615     ARMCPU *cpu = ARM_CPU(thread_cpu);
616     uint32_t hwcaps = 0;
617 
618     hwcaps |= ARM_HWCAP_A64_FP;
619     hwcaps |= ARM_HWCAP_A64_ASIMD;
620     hwcaps |= ARM_HWCAP_A64_CPUID;
621 
622     /* probe for the extra features */
623 #define GET_FEATURE_ID(feat, hwcap) \
624     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
625 
626     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
627     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
628     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
629     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
630     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
631     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
632     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
633     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
634     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
635     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
636     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
637     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
638     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
639     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
640     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
641     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
642     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
643     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
644     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
645     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
646 
647 #undef GET_FEATURE_ID
648 
649     return hwcaps;
650 }
651 
652 #endif /* not TARGET_AARCH64 */
653 #endif /* TARGET_ARM */
654 
655 #ifdef TARGET_SPARC
656 #ifdef TARGET_SPARC64
657 
658 #define ELF_START_MMAP 0x80000000
659 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
660                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
661 #ifndef TARGET_ABI32
662 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
663 #else
664 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
665 #endif
666 
667 #define ELF_CLASS   ELFCLASS64
668 #define ELF_ARCH    EM_SPARCV9
669 
670 #define STACK_BIAS              2047
671 
672 static inline void init_thread(struct target_pt_regs *regs,
673                                struct image_info *infop)
674 {
675 #ifndef TARGET_ABI32
676     regs->tstate = 0;
677 #endif
678     regs->pc = infop->entry;
679     regs->npc = regs->pc + 4;
680     regs->y = 0;
681 #ifdef TARGET_ABI32
682     regs->u_regs[14] = infop->start_stack - 16 * 4;
683 #else
684     if (personality(infop->personality) == PER_LINUX32)
685         regs->u_regs[14] = infop->start_stack - 16 * 4;
686     else
687         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
688 #endif
689 }
690 
691 #else
692 #define ELF_START_MMAP 0x80000000
693 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
694                     | HWCAP_SPARC_MULDIV)
695 
696 #define ELF_CLASS   ELFCLASS32
697 #define ELF_ARCH    EM_SPARC
698 
699 static inline void init_thread(struct target_pt_regs *regs,
700                                struct image_info *infop)
701 {
702     regs->psr = 0;
703     regs->pc = infop->entry;
704     regs->npc = regs->pc + 4;
705     regs->y = 0;
706     regs->u_regs[14] = infop->start_stack - 16 * 4;
707 }
708 
709 #endif
710 #endif
711 
712 #ifdef TARGET_PPC
713 
714 #define ELF_MACHINE    PPC_ELF_MACHINE
715 #define ELF_START_MMAP 0x80000000
716 
717 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
718 
719 #define elf_check_arch(x) ( (x) == EM_PPC64 )
720 
721 #define ELF_CLASS       ELFCLASS64
722 
723 #else
724 
725 #define ELF_CLASS       ELFCLASS32
726 
727 #endif
728 
729 #define ELF_ARCH        EM_PPC
730 
731 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
732    See arch/powerpc/include/asm/cputable.h.  */
733 enum {
734     QEMU_PPC_FEATURE_32 = 0x80000000,
735     QEMU_PPC_FEATURE_64 = 0x40000000,
736     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
737     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
738     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
739     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
740     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
741     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
742     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
743     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
744     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
745     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
746     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
747     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
748     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
749     QEMU_PPC_FEATURE_CELL = 0x00010000,
750     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
751     QEMU_PPC_FEATURE_SMT = 0x00004000,
752     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
753     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
754     QEMU_PPC_FEATURE_PA6T = 0x00000800,
755     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
756     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
757     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
758     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
759     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
760 
761     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
762     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
763 
764     /* Feature definitions in AT_HWCAP2.  */
765     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
766     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
767     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
768     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
769     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
770     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
771     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
772 };
773 
774 #define ELF_HWCAP get_elf_hwcap()
775 
776 static uint32_t get_elf_hwcap(void)
777 {
778     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
779     uint32_t features = 0;
780 
781     /* We don't have to be terribly complete here; the high points are
782        Altivec/FP/SPE support.  Anything else is just a bonus.  */
783 #define GET_FEATURE(flag, feature)                                      \
784     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
785 #define GET_FEATURE2(flags, feature) \
786     do { \
787         if ((cpu->env.insns_flags2 & flags) == flags) { \
788             features |= feature; \
789         } \
790     } while (0)
791     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
792     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
793     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
794     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
795     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
796     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
797     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
798     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
799     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
800     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
801     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
802                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
803                   QEMU_PPC_FEATURE_ARCH_2_06);
804 #undef GET_FEATURE
805 #undef GET_FEATURE2
806 
807     return features;
808 }
809 
810 #define ELF_HWCAP2 get_elf_hwcap2()
811 
812 static uint32_t get_elf_hwcap2(void)
813 {
814     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
815     uint32_t features = 0;
816 
817 #define GET_FEATURE(flag, feature)                                      \
818     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
819 #define GET_FEATURE2(flag, feature)                                      \
820     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
821 
822     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
823     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
824     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
825                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
826     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
827 
828 #undef GET_FEATURE
829 #undef GET_FEATURE2
830 
831     return features;
832 }
833 
834 /*
835  * The requirements here are:
836  * - keep the final alignment of sp (sp & 0xf)
837  * - make sure the 32-bit value at the first 16 byte aligned position of
838  *   AUXV is greater than 16 for glibc compatibility.
839  *   AT_IGNOREPPC is used for that.
840  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
841  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
842  */
843 #define DLINFO_ARCH_ITEMS       5
844 #define ARCH_DLINFO                                     \
845     do {                                                \
846         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
847         /*                                              \
848          * Handle glibc compatibility: these magic entries must \
849          * be at the lowest addresses in the final auxv.        \
850          */                                             \
851         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
852         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
853         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
854         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
855         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
856     } while (0)
857 
858 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
859 {
860     _regs->gpr[1] = infop->start_stack;
861 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
862     if (get_ppc64_abi(infop) < 2) {
863         uint64_t val;
864         get_user_u64(val, infop->entry + 8);
865         _regs->gpr[2] = val + infop->load_bias;
866         get_user_u64(val, infop->entry);
867         infop->entry = val + infop->load_bias;
868     } else {
869         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
870     }
871 #endif
872     _regs->nip = infop->entry;
873 }
874 
875 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
876 #define ELF_NREG 48
877 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
878 
879 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
880 {
881     int i;
882     target_ulong ccr = 0;
883 
884     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
885         (*regs)[i] = tswapreg(env->gpr[i]);
886     }
887 
888     (*regs)[32] = tswapreg(env->nip);
889     (*regs)[33] = tswapreg(env->msr);
890     (*regs)[35] = tswapreg(env->ctr);
891     (*regs)[36] = tswapreg(env->lr);
892     (*regs)[37] = tswapreg(env->xer);
893 
894     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
895         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
896     }
897     (*regs)[38] = tswapreg(ccr);
898 }
899 
900 #define USE_ELF_CORE_DUMP
901 #define ELF_EXEC_PAGESIZE       4096
902 
903 #endif
904 
905 #ifdef TARGET_MIPS
906 
907 #define ELF_START_MMAP 0x80000000
908 
909 #ifdef TARGET_MIPS64
910 #define ELF_CLASS   ELFCLASS64
911 #else
912 #define ELF_CLASS   ELFCLASS32
913 #endif
914 #define ELF_ARCH    EM_MIPS
915 
916 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
917 
918 static inline void init_thread(struct target_pt_regs *regs,
919                                struct image_info *infop)
920 {
921     regs->cp0_status = 2 << CP0St_KSU;
922     regs->cp0_epc = infop->entry;
923     regs->regs[29] = infop->start_stack;
924 }
925 
926 /* See linux kernel: arch/mips/include/asm/elf.h.  */
927 #define ELF_NREG 45
928 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
929 
930 /* See linux kernel: arch/mips/include/asm/reg.h.  */
931 enum {
932 #ifdef TARGET_MIPS64
933     TARGET_EF_R0 = 0,
934 #else
935     TARGET_EF_R0 = 6,
936 #endif
937     TARGET_EF_R26 = TARGET_EF_R0 + 26,
938     TARGET_EF_R27 = TARGET_EF_R0 + 27,
939     TARGET_EF_LO = TARGET_EF_R0 + 32,
940     TARGET_EF_HI = TARGET_EF_R0 + 33,
941     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
942     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
943     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
944     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
945 };
946 
947 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
948 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
949 {
950     int i;
951 
952     for (i = 0; i < TARGET_EF_R0; i++) {
953         (*regs)[i] = 0;
954     }
955     (*regs)[TARGET_EF_R0] = 0;
956 
957     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
958         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
959     }
960 
961     (*regs)[TARGET_EF_R26] = 0;
962     (*regs)[TARGET_EF_R27] = 0;
963     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
964     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
965     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
966     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
967     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
968     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
969 }
970 
971 #define USE_ELF_CORE_DUMP
972 #define ELF_EXEC_PAGESIZE        4096
973 
974 /* See arch/mips/include/uapi/asm/hwcap.h.  */
975 enum {
976     HWCAP_MIPS_R6           = (1 << 0),
977     HWCAP_MIPS_MSA          = (1 << 1),
978 };
979 
980 #define ELF_HWCAP get_elf_hwcap()
981 
982 static uint32_t get_elf_hwcap(void)
983 {
984     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
985     uint32_t hwcaps = 0;
986 
987 #define GET_FEATURE(flag, hwcap) \
988     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
989 
990     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
991     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
992 
993 #undef GET_FEATURE
994 
995     return hwcaps;
996 }
997 
998 #endif /* TARGET_MIPS */
999 
1000 #ifdef TARGET_MICROBLAZE
1001 
1002 #define ELF_START_MMAP 0x80000000
1003 
1004 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1005 
1006 #define ELF_CLASS   ELFCLASS32
1007 #define ELF_ARCH    EM_MICROBLAZE
1008 
1009 static inline void init_thread(struct target_pt_regs *regs,
1010                                struct image_info *infop)
1011 {
1012     regs->pc = infop->entry;
1013     regs->r1 = infop->start_stack;
1014 
1015 }
1016 
1017 #define ELF_EXEC_PAGESIZE        4096
1018 
1019 #define USE_ELF_CORE_DUMP
1020 #define ELF_NREG 38
1021 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1022 
1023 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1024 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1025 {
1026     int i, pos = 0;
1027 
1028     for (i = 0; i < 32; i++) {
1029         (*regs)[pos++] = tswapreg(env->regs[i]);
1030     }
1031 
1032     for (i = 0; i < 6; i++) {
1033         (*regs)[pos++] = tswapreg(env->sregs[i]);
1034     }
1035 }
1036 
1037 #endif /* TARGET_MICROBLAZE */
1038 
1039 #ifdef TARGET_NIOS2
1040 
1041 #define ELF_START_MMAP 0x80000000
1042 
1043 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1044 
1045 #define ELF_CLASS   ELFCLASS32
1046 #define ELF_ARCH    EM_ALTERA_NIOS2
1047 
1048 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1049 {
1050     regs->ea = infop->entry;
1051     regs->sp = infop->start_stack;
1052     regs->estatus = 0x3;
1053 }
1054 
1055 #define ELF_EXEC_PAGESIZE        4096
1056 
1057 #define USE_ELF_CORE_DUMP
1058 #define ELF_NREG 49
1059 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1060 
1061 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1062 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1063                                const CPUNios2State *env)
1064 {
1065     int i;
1066 
1067     (*regs)[0] = -1;
1068     for (i = 1; i < 8; i++)    /* r0-r7 */
1069         (*regs)[i] = tswapreg(env->regs[i + 7]);
1070 
1071     for (i = 8; i < 16; i++)   /* r8-r15 */
1072         (*regs)[i] = tswapreg(env->regs[i - 8]);
1073 
1074     for (i = 16; i < 24; i++)  /* r16-r23 */
1075         (*regs)[i] = tswapreg(env->regs[i + 7]);
1076     (*regs)[24] = -1;    /* R_ET */
1077     (*regs)[25] = -1;    /* R_BT */
1078     (*regs)[26] = tswapreg(env->regs[R_GP]);
1079     (*regs)[27] = tswapreg(env->regs[R_SP]);
1080     (*regs)[28] = tswapreg(env->regs[R_FP]);
1081     (*regs)[29] = tswapreg(env->regs[R_EA]);
1082     (*regs)[30] = -1;    /* R_SSTATUS */
1083     (*regs)[31] = tswapreg(env->regs[R_RA]);
1084 
1085     (*regs)[32] = tswapreg(env->regs[R_PC]);
1086 
1087     (*regs)[33] = -1; /* R_STATUS */
1088     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1089 
1090     for (i = 35; i < 49; i++)    /* ... */
1091         (*regs)[i] = -1;
1092 }
1093 
1094 #endif /* TARGET_NIOS2 */
1095 
1096 #ifdef TARGET_OPENRISC
1097 
1098 #define ELF_START_MMAP 0x08000000
1099 
1100 #define ELF_ARCH EM_OPENRISC
1101 #define ELF_CLASS ELFCLASS32
1102 #define ELF_DATA  ELFDATA2MSB
1103 
1104 static inline void init_thread(struct target_pt_regs *regs,
1105                                struct image_info *infop)
1106 {
1107     regs->pc = infop->entry;
1108     regs->gpr[1] = infop->start_stack;
1109 }
1110 
1111 #define USE_ELF_CORE_DUMP
1112 #define ELF_EXEC_PAGESIZE 8192
1113 
1114 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1115 #define ELF_NREG 34 /* gprs and pc, sr */
1116 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1117 
1118 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1119                                const CPUOpenRISCState *env)
1120 {
1121     int i;
1122 
1123     for (i = 0; i < 32; i++) {
1124         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1125     }
1126     (*regs)[32] = tswapreg(env->pc);
1127     (*regs)[33] = tswapreg(cpu_get_sr(env));
1128 }
1129 #define ELF_HWCAP 0
1130 #define ELF_PLATFORM NULL
1131 
1132 #endif /* TARGET_OPENRISC */
1133 
1134 #ifdef TARGET_SH4
1135 
1136 #define ELF_START_MMAP 0x80000000
1137 
1138 #define ELF_CLASS ELFCLASS32
1139 #define ELF_ARCH  EM_SH
1140 
1141 static inline void init_thread(struct target_pt_regs *regs,
1142                                struct image_info *infop)
1143 {
1144     /* Check other registers XXXXX */
1145     regs->pc = infop->entry;
1146     regs->regs[15] = infop->start_stack;
1147 }
1148 
1149 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1150 #define ELF_NREG 23
1151 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1152 
1153 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1154 enum {
1155     TARGET_REG_PC = 16,
1156     TARGET_REG_PR = 17,
1157     TARGET_REG_SR = 18,
1158     TARGET_REG_GBR = 19,
1159     TARGET_REG_MACH = 20,
1160     TARGET_REG_MACL = 21,
1161     TARGET_REG_SYSCALL = 22
1162 };
1163 
1164 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1165                                       const CPUSH4State *env)
1166 {
1167     int i;
1168 
1169     for (i = 0; i < 16; i++) {
1170         (*regs)[i] = tswapreg(env->gregs[i]);
1171     }
1172 
1173     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1174     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1175     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1176     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1177     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1178     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1179     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1180 }
1181 
1182 #define USE_ELF_CORE_DUMP
1183 #define ELF_EXEC_PAGESIZE        4096
1184 
1185 enum {
1186     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1187     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1188     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1189     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1190     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1191     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1192     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1193     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1194     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1195     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1196 };
1197 
1198 #define ELF_HWCAP get_elf_hwcap()
1199 
1200 static uint32_t get_elf_hwcap(void)
1201 {
1202     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1203     uint32_t hwcap = 0;
1204 
1205     hwcap |= SH_CPU_HAS_FPU;
1206 
1207     if (cpu->env.features & SH_FEATURE_SH4A) {
1208         hwcap |= SH_CPU_HAS_LLSC;
1209     }
1210 
1211     return hwcap;
1212 }
1213 
1214 #endif
1215 
1216 #ifdef TARGET_CRIS
1217 
1218 #define ELF_START_MMAP 0x80000000
1219 
1220 #define ELF_CLASS ELFCLASS32
1221 #define ELF_ARCH  EM_CRIS
1222 
1223 static inline void init_thread(struct target_pt_regs *regs,
1224                                struct image_info *infop)
1225 {
1226     regs->erp = infop->entry;
1227 }
1228 
1229 #define ELF_EXEC_PAGESIZE        8192
1230 
1231 #endif
1232 
1233 #ifdef TARGET_M68K
1234 
1235 #define ELF_START_MMAP 0x80000000
1236 
1237 #define ELF_CLASS       ELFCLASS32
1238 #define ELF_ARCH        EM_68K
1239 
1240 /* ??? Does this need to do anything?
1241    #define ELF_PLAT_INIT(_r) */
1242 
1243 static inline void init_thread(struct target_pt_regs *regs,
1244                                struct image_info *infop)
1245 {
1246     regs->usp = infop->start_stack;
1247     regs->sr = 0;
1248     regs->pc = infop->entry;
1249 }
1250 
1251 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1252 #define ELF_NREG 20
1253 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1254 
1255 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1256 {
1257     (*regs)[0] = tswapreg(env->dregs[1]);
1258     (*regs)[1] = tswapreg(env->dregs[2]);
1259     (*regs)[2] = tswapreg(env->dregs[3]);
1260     (*regs)[3] = tswapreg(env->dregs[4]);
1261     (*regs)[4] = tswapreg(env->dregs[5]);
1262     (*regs)[5] = tswapreg(env->dregs[6]);
1263     (*regs)[6] = tswapreg(env->dregs[7]);
1264     (*regs)[7] = tswapreg(env->aregs[0]);
1265     (*regs)[8] = tswapreg(env->aregs[1]);
1266     (*regs)[9] = tswapreg(env->aregs[2]);
1267     (*regs)[10] = tswapreg(env->aregs[3]);
1268     (*regs)[11] = tswapreg(env->aregs[4]);
1269     (*regs)[12] = tswapreg(env->aregs[5]);
1270     (*regs)[13] = tswapreg(env->aregs[6]);
1271     (*regs)[14] = tswapreg(env->dregs[0]);
1272     (*regs)[15] = tswapreg(env->aregs[7]);
1273     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1274     (*regs)[17] = tswapreg(env->sr);
1275     (*regs)[18] = tswapreg(env->pc);
1276     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1277 }
1278 
1279 #define USE_ELF_CORE_DUMP
1280 #define ELF_EXEC_PAGESIZE       8192
1281 
1282 #endif
1283 
1284 #ifdef TARGET_ALPHA
1285 
1286 #define ELF_START_MMAP (0x30000000000ULL)
1287 
1288 #define ELF_CLASS      ELFCLASS64
1289 #define ELF_ARCH       EM_ALPHA
1290 
1291 static inline void init_thread(struct target_pt_regs *regs,
1292                                struct image_info *infop)
1293 {
1294     regs->pc = infop->entry;
1295     regs->ps = 8;
1296     regs->usp = infop->start_stack;
1297 }
1298 
1299 #define ELF_EXEC_PAGESIZE        8192
1300 
1301 #endif /* TARGET_ALPHA */
1302 
1303 #ifdef TARGET_S390X
1304 
1305 #define ELF_START_MMAP (0x20000000000ULL)
1306 
1307 #define ELF_CLASS	ELFCLASS64
1308 #define ELF_DATA	ELFDATA2MSB
1309 #define ELF_ARCH	EM_S390
1310 
1311 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1312 {
1313     regs->psw.addr = infop->entry;
1314     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1315     regs->gprs[15] = infop->start_stack;
1316 }
1317 
1318 #endif /* TARGET_S390X */
1319 
1320 #ifdef TARGET_TILEGX
1321 
1322 /* 42 bits real used address, a half for user mode */
1323 #define ELF_START_MMAP (0x00000020000000000ULL)
1324 
1325 #define elf_check_arch(x) ((x) == EM_TILEGX)
1326 
1327 #define ELF_CLASS   ELFCLASS64
1328 #define ELF_DATA    ELFDATA2LSB
1329 #define ELF_ARCH    EM_TILEGX
1330 
1331 static inline void init_thread(struct target_pt_regs *regs,
1332                                struct image_info *infop)
1333 {
1334     regs->pc = infop->entry;
1335     regs->sp = infop->start_stack;
1336 
1337 }
1338 
1339 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1340 
1341 #endif /* TARGET_TILEGX */
1342 
1343 #ifdef TARGET_RISCV
1344 
1345 #define ELF_START_MMAP 0x80000000
1346 #define ELF_ARCH  EM_RISCV
1347 
1348 #ifdef TARGET_RISCV32
1349 #define ELF_CLASS ELFCLASS32
1350 #else
1351 #define ELF_CLASS ELFCLASS64
1352 #endif
1353 
1354 static inline void init_thread(struct target_pt_regs *regs,
1355                                struct image_info *infop)
1356 {
1357     regs->sepc = infop->entry;
1358     regs->sp = infop->start_stack;
1359 }
1360 
1361 #define ELF_EXEC_PAGESIZE 4096
1362 
1363 #endif /* TARGET_RISCV */
1364 
1365 #ifdef TARGET_HPPA
1366 
1367 #define ELF_START_MMAP  0x80000000
1368 #define ELF_CLASS       ELFCLASS32
1369 #define ELF_ARCH        EM_PARISC
1370 #define ELF_PLATFORM    "PARISC"
1371 #define STACK_GROWS_DOWN 0
1372 #define STACK_ALIGNMENT  64
1373 
1374 static inline void init_thread(struct target_pt_regs *regs,
1375                                struct image_info *infop)
1376 {
1377     regs->iaoq[0] = infop->entry;
1378     regs->iaoq[1] = infop->entry + 4;
1379     regs->gr[23] = 0;
1380     regs->gr[24] = infop->arg_start;
1381     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1382     /* The top-of-stack contains a linkage buffer.  */
1383     regs->gr[30] = infop->start_stack + 64;
1384     regs->gr[31] = infop->entry;
1385 }
1386 
1387 #endif /* TARGET_HPPA */
1388 
1389 #ifdef TARGET_XTENSA
1390 
1391 #define ELF_START_MMAP 0x20000000
1392 
1393 #define ELF_CLASS       ELFCLASS32
1394 #define ELF_ARCH        EM_XTENSA
1395 
1396 static inline void init_thread(struct target_pt_regs *regs,
1397                                struct image_info *infop)
1398 {
1399     regs->windowbase = 0;
1400     regs->windowstart = 1;
1401     regs->areg[1] = infop->start_stack;
1402     regs->pc = infop->entry;
1403 }
1404 
1405 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1406 #define ELF_NREG 128
1407 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1408 
1409 enum {
1410     TARGET_REG_PC,
1411     TARGET_REG_PS,
1412     TARGET_REG_LBEG,
1413     TARGET_REG_LEND,
1414     TARGET_REG_LCOUNT,
1415     TARGET_REG_SAR,
1416     TARGET_REG_WINDOWSTART,
1417     TARGET_REG_WINDOWBASE,
1418     TARGET_REG_THREADPTR,
1419     TARGET_REG_AR0 = 64,
1420 };
1421 
1422 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1423                                const CPUXtensaState *env)
1424 {
1425     unsigned i;
1426 
1427     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1428     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1429     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1430     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1431     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1432     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1433     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1434     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1435     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1436     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1437     for (i = 0; i < env->config->nareg; ++i) {
1438         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1439     }
1440 }
1441 
1442 #define USE_ELF_CORE_DUMP
1443 #define ELF_EXEC_PAGESIZE       4096
1444 
1445 #endif /* TARGET_XTENSA */
1446 
1447 #ifndef ELF_PLATFORM
1448 #define ELF_PLATFORM (NULL)
1449 #endif
1450 
1451 #ifndef ELF_MACHINE
1452 #define ELF_MACHINE ELF_ARCH
1453 #endif
1454 
1455 #ifndef elf_check_arch
1456 #define elf_check_arch(x) ((x) == ELF_ARCH)
1457 #endif
1458 
1459 #ifndef ELF_HWCAP
1460 #define ELF_HWCAP 0
1461 #endif
1462 
1463 #ifndef STACK_GROWS_DOWN
1464 #define STACK_GROWS_DOWN 1
1465 #endif
1466 
1467 #ifndef STACK_ALIGNMENT
1468 #define STACK_ALIGNMENT 16
1469 #endif
1470 
1471 #ifdef TARGET_ABI32
1472 #undef ELF_CLASS
1473 #define ELF_CLASS ELFCLASS32
1474 #undef bswaptls
1475 #define bswaptls(ptr) bswap32s(ptr)
1476 #endif
1477 
1478 #include "elf.h"
1479 
1480 struct exec
1481 {
1482     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1483     unsigned int a_text;   /* length of text, in bytes */
1484     unsigned int a_data;   /* length of data, in bytes */
1485     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1486     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1487     unsigned int a_entry;  /* start address */
1488     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1489     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1490 };
1491 
1492 
1493 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1494 #define OMAGIC 0407
1495 #define NMAGIC 0410
1496 #define ZMAGIC 0413
1497 #define QMAGIC 0314
1498 
1499 /* Necessary parameters */
1500 #define TARGET_ELF_EXEC_PAGESIZE \
1501         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1502          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1503 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1504 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1505                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1506 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1507 
1508 #define DLINFO_ITEMS 15
1509 
1510 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1511 {
1512     memcpy(to, from, n);
1513 }
1514 
1515 #ifdef BSWAP_NEEDED
1516 static void bswap_ehdr(struct elfhdr *ehdr)
1517 {
1518     bswap16s(&ehdr->e_type);            /* Object file type */
1519     bswap16s(&ehdr->e_machine);         /* Architecture */
1520     bswap32s(&ehdr->e_version);         /* Object file version */
1521     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1522     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1523     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1524     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1525     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1526     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1527     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1528     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1529     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1530     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1531 }
1532 
1533 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1534 {
1535     int i;
1536     for (i = 0; i < phnum; ++i, ++phdr) {
1537         bswap32s(&phdr->p_type);        /* Segment type */
1538         bswap32s(&phdr->p_flags);       /* Segment flags */
1539         bswaptls(&phdr->p_offset);      /* Segment file offset */
1540         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1541         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1542         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1543         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1544         bswaptls(&phdr->p_align);       /* Segment alignment */
1545     }
1546 }
1547 
1548 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1549 {
1550     int i;
1551     for (i = 0; i < shnum; ++i, ++shdr) {
1552         bswap32s(&shdr->sh_name);
1553         bswap32s(&shdr->sh_type);
1554         bswaptls(&shdr->sh_flags);
1555         bswaptls(&shdr->sh_addr);
1556         bswaptls(&shdr->sh_offset);
1557         bswaptls(&shdr->sh_size);
1558         bswap32s(&shdr->sh_link);
1559         bswap32s(&shdr->sh_info);
1560         bswaptls(&shdr->sh_addralign);
1561         bswaptls(&shdr->sh_entsize);
1562     }
1563 }
1564 
1565 static void bswap_sym(struct elf_sym *sym)
1566 {
1567     bswap32s(&sym->st_name);
1568     bswaptls(&sym->st_value);
1569     bswaptls(&sym->st_size);
1570     bswap16s(&sym->st_shndx);
1571 }
1572 
1573 #ifdef TARGET_MIPS
1574 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1575 {
1576     bswap16s(&abiflags->version);
1577     bswap32s(&abiflags->ases);
1578     bswap32s(&abiflags->isa_ext);
1579     bswap32s(&abiflags->flags1);
1580     bswap32s(&abiflags->flags2);
1581 }
1582 #endif
1583 #else
1584 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1585 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1586 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1587 static inline void bswap_sym(struct elf_sym *sym) { }
1588 #ifdef TARGET_MIPS
1589 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1590 #endif
1591 #endif
1592 
1593 #ifdef USE_ELF_CORE_DUMP
1594 static int elf_core_dump(int, const CPUArchState *);
1595 #endif /* USE_ELF_CORE_DUMP */
1596 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1597 
1598 /* Verify the portions of EHDR within E_IDENT for the target.
1599    This can be performed before bswapping the entire header.  */
1600 static bool elf_check_ident(struct elfhdr *ehdr)
1601 {
1602     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1603             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1604             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1605             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1606             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1607             && ehdr->e_ident[EI_DATA] == ELF_DATA
1608             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1609 }
1610 
1611 /* Verify the portions of EHDR outside of E_IDENT for the target.
1612    This has to wait until after bswapping the header.  */
1613 static bool elf_check_ehdr(struct elfhdr *ehdr)
1614 {
1615     return (elf_check_arch(ehdr->e_machine)
1616             && ehdr->e_ehsize == sizeof(struct elfhdr)
1617             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1618             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1619 }
1620 
1621 /*
1622  * 'copy_elf_strings()' copies argument/envelope strings from user
1623  * memory to free pages in kernel mem. These are in a format ready
1624  * to be put directly into the top of new user memory.
1625  *
1626  */
1627 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1628                                   abi_ulong p, abi_ulong stack_limit)
1629 {
1630     char *tmp;
1631     int len, i;
1632     abi_ulong top = p;
1633 
1634     if (!p) {
1635         return 0;       /* bullet-proofing */
1636     }
1637 
1638     if (STACK_GROWS_DOWN) {
1639         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1640         for (i = argc - 1; i >= 0; --i) {
1641             tmp = argv[i];
1642             if (!tmp) {
1643                 fprintf(stderr, "VFS: argc is wrong");
1644                 exit(-1);
1645             }
1646             len = strlen(tmp) + 1;
1647             tmp += len;
1648 
1649             if (len > (p - stack_limit)) {
1650                 return 0;
1651             }
1652             while (len) {
1653                 int bytes_to_copy = (len > offset) ? offset : len;
1654                 tmp -= bytes_to_copy;
1655                 p -= bytes_to_copy;
1656                 offset -= bytes_to_copy;
1657                 len -= bytes_to_copy;
1658 
1659                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1660 
1661                 if (offset == 0) {
1662                     memcpy_to_target(p, scratch, top - p);
1663                     top = p;
1664                     offset = TARGET_PAGE_SIZE;
1665                 }
1666             }
1667         }
1668         if (p != top) {
1669             memcpy_to_target(p, scratch + offset, top - p);
1670         }
1671     } else {
1672         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1673         for (i = 0; i < argc; ++i) {
1674             tmp = argv[i];
1675             if (!tmp) {
1676                 fprintf(stderr, "VFS: argc is wrong");
1677                 exit(-1);
1678             }
1679             len = strlen(tmp) + 1;
1680             if (len > (stack_limit - p)) {
1681                 return 0;
1682             }
1683             while (len) {
1684                 int bytes_to_copy = (len > remaining) ? remaining : len;
1685 
1686                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1687 
1688                 tmp += bytes_to_copy;
1689                 remaining -= bytes_to_copy;
1690                 p += bytes_to_copy;
1691                 len -= bytes_to_copy;
1692 
1693                 if (remaining == 0) {
1694                     memcpy_to_target(top, scratch, p - top);
1695                     top = p;
1696                     remaining = TARGET_PAGE_SIZE;
1697                 }
1698             }
1699         }
1700         if (p != top) {
1701             memcpy_to_target(top, scratch, p - top);
1702         }
1703     }
1704 
1705     return p;
1706 }
1707 
1708 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1709  * argument/environment space. Newer kernels (>2.6.33) allow more,
1710  * dependent on stack size, but guarantee at least 32 pages for
1711  * backwards compatibility.
1712  */
1713 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1714 
1715 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1716                                  struct image_info *info)
1717 {
1718     abi_ulong size, error, guard;
1719 
1720     size = guest_stack_size;
1721     if (size < STACK_LOWER_LIMIT) {
1722         size = STACK_LOWER_LIMIT;
1723     }
1724     guard = TARGET_PAGE_SIZE;
1725     if (guard < qemu_real_host_page_size) {
1726         guard = qemu_real_host_page_size;
1727     }
1728 
1729     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1730                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1731     if (error == -1) {
1732         perror("mmap stack");
1733         exit(-1);
1734     }
1735 
1736     /* We reserve one extra page at the top of the stack as guard.  */
1737     if (STACK_GROWS_DOWN) {
1738         target_mprotect(error, guard, PROT_NONE);
1739         info->stack_limit = error + guard;
1740         return info->stack_limit + size - sizeof(void *);
1741     } else {
1742         target_mprotect(error + size, guard, PROT_NONE);
1743         info->stack_limit = error + size;
1744         return error;
1745     }
1746 }
1747 
1748 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1749    after the data section (i.e. bss).  */
1750 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1751 {
1752     uintptr_t host_start, host_map_start, host_end;
1753 
1754     last_bss = TARGET_PAGE_ALIGN(last_bss);
1755 
1756     /* ??? There is confusion between qemu_real_host_page_size and
1757        qemu_host_page_size here and elsewhere in target_mmap, which
1758        may lead to the end of the data section mapping from the file
1759        not being mapped.  At least there was an explicit test and
1760        comment for that here, suggesting that "the file size must
1761        be known".  The comment probably pre-dates the introduction
1762        of the fstat system call in target_mmap which does in fact
1763        find out the size.  What isn't clear is if the workaround
1764        here is still actually needed.  For now, continue with it,
1765        but merge it with the "normal" mmap that would allocate the bss.  */
1766 
1767     host_start = (uintptr_t) g2h(elf_bss);
1768     host_end = (uintptr_t) g2h(last_bss);
1769     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1770 
1771     if (host_map_start < host_end) {
1772         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1773                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1774         if (p == MAP_FAILED) {
1775             perror("cannot mmap brk");
1776             exit(-1);
1777         }
1778     }
1779 
1780     /* Ensure that the bss page(s) are valid */
1781     if ((page_get_flags(last_bss-1) & prot) != prot) {
1782         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1783     }
1784 
1785     if (host_start < host_map_start) {
1786         memset((void *)host_start, 0, host_map_start - host_start);
1787     }
1788 }
1789 
1790 #ifdef TARGET_ARM
1791 static int elf_is_fdpic(struct elfhdr *exec)
1792 {
1793     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1794 }
1795 #else
1796 /* Default implementation, always false.  */
1797 static int elf_is_fdpic(struct elfhdr *exec)
1798 {
1799     return 0;
1800 }
1801 #endif
1802 
1803 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1804 {
1805     uint16_t n;
1806     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1807 
1808     /* elf32_fdpic_loadseg */
1809     n = info->nsegs;
1810     while (n--) {
1811         sp -= 12;
1812         put_user_u32(loadsegs[n].addr, sp+0);
1813         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1814         put_user_u32(loadsegs[n].p_memsz, sp+8);
1815     }
1816 
1817     /* elf32_fdpic_loadmap */
1818     sp -= 4;
1819     put_user_u16(0, sp+0); /* version */
1820     put_user_u16(info->nsegs, sp+2); /* nsegs */
1821 
1822     info->personality = PER_LINUX_FDPIC;
1823     info->loadmap_addr = sp;
1824 
1825     return sp;
1826 }
1827 
1828 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1829                                    struct elfhdr *exec,
1830                                    struct image_info *info,
1831                                    struct image_info *interp_info)
1832 {
1833     abi_ulong sp;
1834     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1835     int size;
1836     int i;
1837     abi_ulong u_rand_bytes;
1838     uint8_t k_rand_bytes[16];
1839     abi_ulong u_platform;
1840     const char *k_platform;
1841     const int n = sizeof(elf_addr_t);
1842 
1843     sp = p;
1844 
1845     /* Needs to be before we load the env/argc/... */
1846     if (elf_is_fdpic(exec)) {
1847         /* Need 4 byte alignment for these structs */
1848         sp &= ~3;
1849         sp = loader_build_fdpic_loadmap(info, sp);
1850         info->other_info = interp_info;
1851         if (interp_info) {
1852             interp_info->other_info = info;
1853             sp = loader_build_fdpic_loadmap(interp_info, sp);
1854             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1855             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1856         } else {
1857             info->interpreter_loadmap_addr = 0;
1858             info->interpreter_pt_dynamic_addr = 0;
1859         }
1860     }
1861 
1862     u_platform = 0;
1863     k_platform = ELF_PLATFORM;
1864     if (k_platform) {
1865         size_t len = strlen(k_platform) + 1;
1866         if (STACK_GROWS_DOWN) {
1867             sp -= (len + n - 1) & ~(n - 1);
1868             u_platform = sp;
1869             /* FIXME - check return value of memcpy_to_target() for failure */
1870             memcpy_to_target(sp, k_platform, len);
1871         } else {
1872             memcpy_to_target(sp, k_platform, len);
1873             u_platform = sp;
1874             sp += len + 1;
1875         }
1876     }
1877 
1878     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1879      * the argv and envp pointers.
1880      */
1881     if (STACK_GROWS_DOWN) {
1882         sp = QEMU_ALIGN_DOWN(sp, 16);
1883     } else {
1884         sp = QEMU_ALIGN_UP(sp, 16);
1885     }
1886 
1887     /*
1888      * Generate 16 random bytes for userspace PRNG seeding.
1889      */
1890     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1891     if (STACK_GROWS_DOWN) {
1892         sp -= 16;
1893         u_rand_bytes = sp;
1894         /* FIXME - check return value of memcpy_to_target() for failure */
1895         memcpy_to_target(sp, k_rand_bytes, 16);
1896     } else {
1897         memcpy_to_target(sp, k_rand_bytes, 16);
1898         u_rand_bytes = sp;
1899         sp += 16;
1900     }
1901 
1902     size = (DLINFO_ITEMS + 1) * 2;
1903     if (k_platform)
1904         size += 2;
1905 #ifdef DLINFO_ARCH_ITEMS
1906     size += DLINFO_ARCH_ITEMS * 2;
1907 #endif
1908 #ifdef ELF_HWCAP2
1909     size += 2;
1910 #endif
1911     info->auxv_len = size * n;
1912 
1913     size += envc + argc + 2;
1914     size += 1;  /* argc itself */
1915     size *= n;
1916 
1917     /* Allocate space and finalize stack alignment for entry now.  */
1918     if (STACK_GROWS_DOWN) {
1919         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1920         sp = u_argc;
1921     } else {
1922         u_argc = sp;
1923         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1924     }
1925 
1926     u_argv = u_argc + n;
1927     u_envp = u_argv + (argc + 1) * n;
1928     u_auxv = u_envp + (envc + 1) * n;
1929     info->saved_auxv = u_auxv;
1930     info->arg_start = u_argv;
1931     info->arg_end = u_argv + argc * n;
1932 
1933     /* This is correct because Linux defines
1934      * elf_addr_t as Elf32_Off / Elf64_Off
1935      */
1936 #define NEW_AUX_ENT(id, val) do {               \
1937         put_user_ual(id, u_auxv);  u_auxv += n; \
1938         put_user_ual(val, u_auxv); u_auxv += n; \
1939     } while(0)
1940 
1941 #ifdef ARCH_DLINFO
1942     /*
1943      * ARCH_DLINFO must come first so platform specific code can enforce
1944      * special alignment requirements on the AUXV if necessary (eg. PPC).
1945      */
1946     ARCH_DLINFO;
1947 #endif
1948     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1949      * on info->auxv_len will trigger.
1950      */
1951     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1952     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1953     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1954     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1955         /* Target doesn't support host page size alignment */
1956         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1957     } else {
1958         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1959                                                qemu_host_page_size)));
1960     }
1961     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1962     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1963     NEW_AUX_ENT(AT_ENTRY, info->entry);
1964     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1965     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1966     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1967     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1968     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1969     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1970     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1971     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1972 
1973 #ifdef ELF_HWCAP2
1974     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1975 #endif
1976 
1977     if (u_platform) {
1978         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1979     }
1980     NEW_AUX_ENT (AT_NULL, 0);
1981 #undef NEW_AUX_ENT
1982 
1983     /* Check that our initial calculation of the auxv length matches how much
1984      * we actually put into it.
1985      */
1986     assert(info->auxv_len == u_auxv - info->saved_auxv);
1987 
1988     put_user_ual(argc, u_argc);
1989 
1990     p = info->arg_strings;
1991     for (i = 0; i < argc; ++i) {
1992         put_user_ual(p, u_argv);
1993         u_argv += n;
1994         p += target_strlen(p) + 1;
1995     }
1996     put_user_ual(0, u_argv);
1997 
1998     p = info->env_strings;
1999     for (i = 0; i < envc; ++i) {
2000         put_user_ual(p, u_envp);
2001         u_envp += n;
2002         p += target_strlen(p) + 1;
2003     }
2004     put_user_ual(0, u_envp);
2005 
2006     return sp;
2007 }
2008 
2009 unsigned long init_guest_space(unsigned long host_start,
2010                                unsigned long host_size,
2011                                unsigned long guest_start,
2012                                bool fixed)
2013 {
2014     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2015     unsigned long align = MAX(SHMLBA, qemu_host_page_size);
2016     unsigned long current_start, aligned_start;
2017     int flags;
2018 
2019     assert(host_start || host_size);
2020 
2021     /* If just a starting address is given, then just verify that
2022      * address.  */
2023     if (host_start && !host_size) {
2024 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2025         if (init_guest_commpage(host_start, host_size) != 1) {
2026             return (unsigned long)-1;
2027         }
2028 #endif
2029         return host_start;
2030     }
2031 
2032     /* Setup the initial flags and start address.  */
2033     current_start = host_start & -align;
2034     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2035     if (fixed) {
2036         flags |= MAP_FIXED;
2037     }
2038 
2039     /* Otherwise, a non-zero size region of memory needs to be mapped
2040      * and validated.  */
2041 
2042 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2043     /* On 32-bit ARM, we need to map not just the usable memory, but
2044      * also the commpage.  Try to find a suitable place by allocating
2045      * a big chunk for all of it.  If host_start, then the naive
2046      * strategy probably does good enough.
2047      */
2048     if (!host_start) {
2049         unsigned long guest_full_size, host_full_size, real_start;
2050 
2051         guest_full_size =
2052             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2053         host_full_size = guest_full_size - guest_start;
2054         real_start = (unsigned long)
2055             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2056         if (real_start == (unsigned long)-1) {
2057             if (host_size < host_full_size - qemu_host_page_size) {
2058                 /* We failed to map a continous segment, but we're
2059                  * allowed to have a gap between the usable memory and
2060                  * the commpage where other things can be mapped.
2061                  * This sparseness gives us more flexibility to find
2062                  * an address range.
2063                  */
2064                 goto naive;
2065             }
2066             return (unsigned long)-1;
2067         }
2068         munmap((void *)real_start, host_full_size);
2069         if (real_start & (align - 1)) {
2070             /* The same thing again, but with extra
2071              * so that we can shift around alignment.
2072              */
2073             unsigned long real_size = host_full_size + qemu_host_page_size;
2074             real_start = (unsigned long)
2075                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2076             if (real_start == (unsigned long)-1) {
2077                 if (host_size < host_full_size - qemu_host_page_size) {
2078                     goto naive;
2079                 }
2080                 return (unsigned long)-1;
2081             }
2082             munmap((void *)real_start, real_size);
2083             real_start = ROUND_UP(real_start, align);
2084         }
2085         current_start = real_start;
2086     }
2087  naive:
2088 #endif
2089 
2090     while (1) {
2091         unsigned long real_start, real_size, aligned_size;
2092         aligned_size = real_size = host_size;
2093 
2094         /* Do not use mmap_find_vma here because that is limited to the
2095          * guest address space.  We are going to make the
2096          * guest address space fit whatever we're given.
2097          */
2098         real_start = (unsigned long)
2099             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2100         if (real_start == (unsigned long)-1) {
2101             return (unsigned long)-1;
2102         }
2103 
2104         /* Check to see if the address is valid.  */
2105         if (host_start && real_start != current_start) {
2106             goto try_again;
2107         }
2108 
2109         /* Ensure the address is properly aligned.  */
2110         if (real_start & (align - 1)) {
2111             /* Ideally, we adjust like
2112              *
2113              *    pages: [  ][  ][  ][  ][  ]
2114              *      old:   [   real   ]
2115              *             [ aligned  ]
2116              *      new:   [     real     ]
2117              *               [ aligned  ]
2118              *
2119              * But if there is something else mapped right after it,
2120              * then obviously it won't have room to grow, and the
2121              * kernel will put the new larger real someplace else with
2122              * unknown alignment (if we made it to here, then
2123              * fixed=false).  Which is why we grow real by a full page
2124              * size, instead of by part of one; so that even if we get
2125              * moved, we can still guarantee alignment.  But this does
2126              * mean that there is a padding of < 1 page both before
2127              * and after the aligned range; the "after" could could
2128              * cause problems for ARM emulation where it could butt in
2129              * to where we need to put the commpage.
2130              */
2131             munmap((void *)real_start, host_size);
2132             real_size = aligned_size + qemu_host_page_size;
2133             real_start = (unsigned long)
2134                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2135             if (real_start == (unsigned long)-1) {
2136                 return (unsigned long)-1;
2137             }
2138             aligned_start = ROUND_UP(real_start, align);
2139         } else {
2140             aligned_start = real_start;
2141         }
2142 
2143 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2144         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2145         int valid = init_guest_commpage(aligned_start - guest_start,
2146                                         aligned_size + guest_start);
2147         if (valid == -1) {
2148             munmap((void *)real_start, real_size);
2149             return (unsigned long)-1;
2150         } else if (valid == 0) {
2151             goto try_again;
2152         }
2153 #endif
2154 
2155         /* If nothing has said `return -1` or `goto try_again` yet,
2156          * then the address we have is good.
2157          */
2158         break;
2159 
2160     try_again:
2161         /* That address didn't work.  Unmap and try a different one.
2162          * The address the host picked because is typically right at
2163          * the top of the host address space and leaves the guest with
2164          * no usable address space.  Resort to a linear search.  We
2165          * already compensated for mmap_min_addr, so this should not
2166          * happen often.  Probably means we got unlucky and host
2167          * address space randomization put a shared library somewhere
2168          * inconvenient.
2169          *
2170          * This is probably a good strategy if host_start, but is
2171          * probably a bad strategy if not, which means we got here
2172          * because of trouble with ARM commpage setup.
2173          */
2174         munmap((void *)real_start, real_size);
2175         current_start += align;
2176         if (host_start == current_start) {
2177             /* Theoretically possible if host doesn't have any suitably
2178              * aligned areas.  Normally the first mmap will fail.
2179              */
2180             return (unsigned long)-1;
2181         }
2182     }
2183 
2184     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2185 
2186     return aligned_start;
2187 }
2188 
2189 static void probe_guest_base(const char *image_name,
2190                              abi_ulong loaddr, abi_ulong hiaddr)
2191 {
2192     /* Probe for a suitable guest base address, if the user has not set
2193      * it explicitly, and set guest_base appropriately.
2194      * In case of error we will print a suitable message and exit.
2195      */
2196     const char *errmsg;
2197     if (!have_guest_base && !reserved_va) {
2198         unsigned long host_start, real_start, host_size;
2199 
2200         /* Round addresses to page boundaries.  */
2201         loaddr &= qemu_host_page_mask;
2202         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2203 
2204         if (loaddr < mmap_min_addr) {
2205             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2206         } else {
2207             host_start = loaddr;
2208             if (host_start != loaddr) {
2209                 errmsg = "Address overflow loading ELF binary";
2210                 goto exit_errmsg;
2211             }
2212         }
2213         host_size = hiaddr - loaddr;
2214 
2215         /* Setup the initial guest memory space with ranges gleaned from
2216          * the ELF image that is being loaded.
2217          */
2218         real_start = init_guest_space(host_start, host_size, loaddr, false);
2219         if (real_start == (unsigned long)-1) {
2220             errmsg = "Unable to find space for application";
2221             goto exit_errmsg;
2222         }
2223         guest_base = real_start - loaddr;
2224 
2225         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2226                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2227                       loaddr, real_start);
2228     }
2229     return;
2230 
2231 exit_errmsg:
2232     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2233     exit(-1);
2234 }
2235 
2236 
2237 /* Load an ELF image into the address space.
2238 
2239    IMAGE_NAME is the filename of the image, to use in error messages.
2240    IMAGE_FD is the open file descriptor for the image.
2241 
2242    BPRM_BUF is a copy of the beginning of the file; this of course
2243    contains the elf file header at offset 0.  It is assumed that this
2244    buffer is sufficiently aligned to present no problems to the host
2245    in accessing data at aligned offsets within the buffer.
2246 
2247    On return: INFO values will be filled in, as necessary or available.  */
2248 
2249 static void load_elf_image(const char *image_name, int image_fd,
2250                            struct image_info *info, char **pinterp_name,
2251                            char bprm_buf[BPRM_BUF_SIZE])
2252 {
2253     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2254     struct elf_phdr *phdr;
2255     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2256     int i, retval;
2257     const char *errmsg;
2258 
2259     /* First of all, some simple consistency checks */
2260     errmsg = "Invalid ELF image for this architecture";
2261     if (!elf_check_ident(ehdr)) {
2262         goto exit_errmsg;
2263     }
2264     bswap_ehdr(ehdr);
2265     if (!elf_check_ehdr(ehdr)) {
2266         goto exit_errmsg;
2267     }
2268 
2269     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2270     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2271         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2272     } else {
2273         phdr = (struct elf_phdr *) alloca(i);
2274         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2275         if (retval != i) {
2276             goto exit_read;
2277         }
2278     }
2279     bswap_phdr(phdr, ehdr->e_phnum);
2280 
2281     info->nsegs = 0;
2282     info->pt_dynamic_addr = 0;
2283 
2284     mmap_lock();
2285 
2286     /* Find the maximum size of the image and allocate an appropriate
2287        amount of memory to handle that.  */
2288     loaddr = -1, hiaddr = 0;
2289     info->alignment = 0;
2290     for (i = 0; i < ehdr->e_phnum; ++i) {
2291         if (phdr[i].p_type == PT_LOAD) {
2292             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2293             if (a < loaddr) {
2294                 loaddr = a;
2295             }
2296             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2297             if (a > hiaddr) {
2298                 hiaddr = a;
2299             }
2300             ++info->nsegs;
2301             info->alignment |= phdr[i].p_align;
2302         }
2303     }
2304 
2305     load_addr = loaddr;
2306     if (ehdr->e_type == ET_DYN) {
2307         /* The image indicates that it can be loaded anywhere.  Find a
2308            location that can hold the memory space required.  If the
2309            image is pre-linked, LOADDR will be non-zero.  Since we do
2310            not supply MAP_FIXED here we'll use that address if and
2311            only if it remains available.  */
2312         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2313                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2314                                 -1, 0);
2315         if (load_addr == -1) {
2316             goto exit_perror;
2317         }
2318     } else if (pinterp_name != NULL) {
2319         /* This is the main executable.  Make sure that the low
2320            address does not conflict with MMAP_MIN_ADDR or the
2321            QEMU application itself.  */
2322         probe_guest_base(image_name, loaddr, hiaddr);
2323     }
2324     load_bias = load_addr - loaddr;
2325 
2326     if (elf_is_fdpic(ehdr)) {
2327         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2328             g_malloc(sizeof(*loadsegs) * info->nsegs);
2329 
2330         for (i = 0; i < ehdr->e_phnum; ++i) {
2331             switch (phdr[i].p_type) {
2332             case PT_DYNAMIC:
2333                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2334                 break;
2335             case PT_LOAD:
2336                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2337                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2338                 loadsegs->p_memsz = phdr[i].p_memsz;
2339                 ++loadsegs;
2340                 break;
2341             }
2342         }
2343     }
2344 
2345     info->load_bias = load_bias;
2346     info->load_addr = load_addr;
2347     info->entry = ehdr->e_entry + load_bias;
2348     info->start_code = -1;
2349     info->end_code = 0;
2350     info->start_data = -1;
2351     info->end_data = 0;
2352     info->brk = 0;
2353     info->elf_flags = ehdr->e_flags;
2354 
2355     for (i = 0; i < ehdr->e_phnum; i++) {
2356         struct elf_phdr *eppnt = phdr + i;
2357         if (eppnt->p_type == PT_LOAD) {
2358             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2359             int elf_prot = 0;
2360 
2361             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2362             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2363             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2364 
2365             vaddr = load_bias + eppnt->p_vaddr;
2366             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2367             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2368             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2369 
2370             /*
2371              * Some segments may be completely empty without any backing file
2372              * segment, in that case just let zero_bss allocate an empty buffer
2373              * for it.
2374              */
2375             if (eppnt->p_filesz != 0) {
2376                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2377                                     MAP_PRIVATE | MAP_FIXED,
2378                                     image_fd, eppnt->p_offset - vaddr_po);
2379 
2380                 if (error == -1) {
2381                     goto exit_perror;
2382                 }
2383             }
2384 
2385             vaddr_ef = vaddr + eppnt->p_filesz;
2386             vaddr_em = vaddr + eppnt->p_memsz;
2387 
2388             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2389             if (vaddr_ef < vaddr_em) {
2390                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2391             }
2392 
2393             /* Find the full program boundaries.  */
2394             if (elf_prot & PROT_EXEC) {
2395                 if (vaddr < info->start_code) {
2396                     info->start_code = vaddr;
2397                 }
2398                 if (vaddr_ef > info->end_code) {
2399                     info->end_code = vaddr_ef;
2400                 }
2401             }
2402             if (elf_prot & PROT_WRITE) {
2403                 if (vaddr < info->start_data) {
2404                     info->start_data = vaddr;
2405                 }
2406                 if (vaddr_ef > info->end_data) {
2407                     info->end_data = vaddr_ef;
2408                 }
2409                 if (vaddr_em > info->brk) {
2410                     info->brk = vaddr_em;
2411                 }
2412             }
2413         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2414             char *interp_name;
2415 
2416             if (*pinterp_name) {
2417                 errmsg = "Multiple PT_INTERP entries";
2418                 goto exit_errmsg;
2419             }
2420             interp_name = malloc(eppnt->p_filesz);
2421             if (!interp_name) {
2422                 goto exit_perror;
2423             }
2424 
2425             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2426                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2427                        eppnt->p_filesz);
2428             } else {
2429                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2430                                eppnt->p_offset);
2431                 if (retval != eppnt->p_filesz) {
2432                     goto exit_perror;
2433                 }
2434             }
2435             if (interp_name[eppnt->p_filesz - 1] != 0) {
2436                 errmsg = "Invalid PT_INTERP entry";
2437                 goto exit_errmsg;
2438             }
2439             *pinterp_name = interp_name;
2440 #ifdef TARGET_MIPS
2441         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2442             Mips_elf_abiflags_v0 abiflags;
2443             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2444                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2445                 goto exit_errmsg;
2446             }
2447             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2448                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2449                        sizeof(Mips_elf_abiflags_v0));
2450             } else {
2451                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2452                                eppnt->p_offset);
2453                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2454                     goto exit_perror;
2455                 }
2456             }
2457             bswap_mips_abiflags(&abiflags);
2458             info->fp_abi = abiflags.fp_abi;
2459 #endif
2460         }
2461     }
2462 
2463     if (info->end_data == 0) {
2464         info->start_data = info->end_code;
2465         info->end_data = info->end_code;
2466         info->brk = info->end_code;
2467     }
2468 
2469     if (qemu_log_enabled()) {
2470         load_symbols(ehdr, image_fd, load_bias);
2471     }
2472 
2473     mmap_unlock();
2474 
2475     close(image_fd);
2476     return;
2477 
2478  exit_read:
2479     if (retval >= 0) {
2480         errmsg = "Incomplete read of file header";
2481         goto exit_errmsg;
2482     }
2483  exit_perror:
2484     errmsg = strerror(errno);
2485  exit_errmsg:
2486     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2487     exit(-1);
2488 }
2489 
2490 static void load_elf_interp(const char *filename, struct image_info *info,
2491                             char bprm_buf[BPRM_BUF_SIZE])
2492 {
2493     int fd, retval;
2494 
2495     fd = open(path(filename), O_RDONLY);
2496     if (fd < 0) {
2497         goto exit_perror;
2498     }
2499 
2500     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2501     if (retval < 0) {
2502         goto exit_perror;
2503     }
2504     if (retval < BPRM_BUF_SIZE) {
2505         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2506     }
2507 
2508     load_elf_image(filename, fd, info, NULL, bprm_buf);
2509     return;
2510 
2511  exit_perror:
2512     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2513     exit(-1);
2514 }
2515 
2516 static int symfind(const void *s0, const void *s1)
2517 {
2518     target_ulong addr = *(target_ulong *)s0;
2519     struct elf_sym *sym = (struct elf_sym *)s1;
2520     int result = 0;
2521     if (addr < sym->st_value) {
2522         result = -1;
2523     } else if (addr >= sym->st_value + sym->st_size) {
2524         result = 1;
2525     }
2526     return result;
2527 }
2528 
2529 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2530 {
2531 #if ELF_CLASS == ELFCLASS32
2532     struct elf_sym *syms = s->disas_symtab.elf32;
2533 #else
2534     struct elf_sym *syms = s->disas_symtab.elf64;
2535 #endif
2536 
2537     // binary search
2538     struct elf_sym *sym;
2539 
2540     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2541     if (sym != NULL) {
2542         return s->disas_strtab + sym->st_name;
2543     }
2544 
2545     return "";
2546 }
2547 
2548 /* FIXME: This should use elf_ops.h  */
2549 static int symcmp(const void *s0, const void *s1)
2550 {
2551     struct elf_sym *sym0 = (struct elf_sym *)s0;
2552     struct elf_sym *sym1 = (struct elf_sym *)s1;
2553     return (sym0->st_value < sym1->st_value)
2554         ? -1
2555         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2556 }
2557 
2558 /* Best attempt to load symbols from this ELF object. */
2559 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2560 {
2561     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2562     uint64_t segsz;
2563     struct elf_shdr *shdr;
2564     char *strings = NULL;
2565     struct syminfo *s = NULL;
2566     struct elf_sym *new_syms, *syms = NULL;
2567 
2568     shnum = hdr->e_shnum;
2569     i = shnum * sizeof(struct elf_shdr);
2570     shdr = (struct elf_shdr *)alloca(i);
2571     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2572         return;
2573     }
2574 
2575     bswap_shdr(shdr, shnum);
2576     for (i = 0; i < shnum; ++i) {
2577         if (shdr[i].sh_type == SHT_SYMTAB) {
2578             sym_idx = i;
2579             str_idx = shdr[i].sh_link;
2580             goto found;
2581         }
2582     }
2583 
2584     /* There will be no symbol table if the file was stripped.  */
2585     return;
2586 
2587  found:
2588     /* Now know where the strtab and symtab are.  Snarf them.  */
2589     s = g_try_new(struct syminfo, 1);
2590     if (!s) {
2591         goto give_up;
2592     }
2593 
2594     segsz = shdr[str_idx].sh_size;
2595     s->disas_strtab = strings = g_try_malloc(segsz);
2596     if (!strings ||
2597         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2598         goto give_up;
2599     }
2600 
2601     segsz = shdr[sym_idx].sh_size;
2602     syms = g_try_malloc(segsz);
2603     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2604         goto give_up;
2605     }
2606 
2607     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2608         /* Implausibly large symbol table: give up rather than ploughing
2609          * on with the number of symbols calculation overflowing
2610          */
2611         goto give_up;
2612     }
2613     nsyms = segsz / sizeof(struct elf_sym);
2614     for (i = 0; i < nsyms; ) {
2615         bswap_sym(syms + i);
2616         /* Throw away entries which we do not need.  */
2617         if (syms[i].st_shndx == SHN_UNDEF
2618             || syms[i].st_shndx >= SHN_LORESERVE
2619             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2620             if (i < --nsyms) {
2621                 syms[i] = syms[nsyms];
2622             }
2623         } else {
2624 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2625             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2626             syms[i].st_value &= ~(target_ulong)1;
2627 #endif
2628             syms[i].st_value += load_bias;
2629             i++;
2630         }
2631     }
2632 
2633     /* No "useful" symbol.  */
2634     if (nsyms == 0) {
2635         goto give_up;
2636     }
2637 
2638     /* Attempt to free the storage associated with the local symbols
2639        that we threw away.  Whether or not this has any effect on the
2640        memory allocation depends on the malloc implementation and how
2641        many symbols we managed to discard.  */
2642     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2643     if (new_syms == NULL) {
2644         goto give_up;
2645     }
2646     syms = new_syms;
2647 
2648     qsort(syms, nsyms, sizeof(*syms), symcmp);
2649 
2650     s->disas_num_syms = nsyms;
2651 #if ELF_CLASS == ELFCLASS32
2652     s->disas_symtab.elf32 = syms;
2653 #else
2654     s->disas_symtab.elf64 = syms;
2655 #endif
2656     s->lookup_symbol = lookup_symbolxx;
2657     s->next = syminfos;
2658     syminfos = s;
2659 
2660     return;
2661 
2662 give_up:
2663     g_free(s);
2664     g_free(strings);
2665     g_free(syms);
2666 }
2667 
2668 uint32_t get_elf_eflags(int fd)
2669 {
2670     struct elfhdr ehdr;
2671     off_t offset;
2672     int ret;
2673 
2674     /* Read ELF header */
2675     offset = lseek(fd, 0, SEEK_SET);
2676     if (offset == (off_t) -1) {
2677         return 0;
2678     }
2679     ret = read(fd, &ehdr, sizeof(ehdr));
2680     if (ret < sizeof(ehdr)) {
2681         return 0;
2682     }
2683     offset = lseek(fd, offset, SEEK_SET);
2684     if (offset == (off_t) -1) {
2685         return 0;
2686     }
2687 
2688     /* Check ELF signature */
2689     if (!elf_check_ident(&ehdr)) {
2690         return 0;
2691     }
2692 
2693     /* check header */
2694     bswap_ehdr(&ehdr);
2695     if (!elf_check_ehdr(&ehdr)) {
2696         return 0;
2697     }
2698 
2699     /* return architecture id */
2700     return ehdr.e_flags;
2701 }
2702 
2703 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2704 {
2705     struct image_info interp_info;
2706     struct elfhdr elf_ex;
2707     char *elf_interpreter = NULL;
2708     char *scratch;
2709 
2710     memset(&interp_info, 0, sizeof(interp_info));
2711 #ifdef TARGET_MIPS
2712     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2713 #endif
2714 
2715     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2716 
2717     load_elf_image(bprm->filename, bprm->fd, info,
2718                    &elf_interpreter, bprm->buf);
2719 
2720     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2721        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2722        when we load the interpreter.  */
2723     elf_ex = *(struct elfhdr *)bprm->buf;
2724 
2725     /* Do this so that we can load the interpreter, if need be.  We will
2726        change some of these later */
2727     bprm->p = setup_arg_pages(bprm, info);
2728 
2729     scratch = g_new0(char, TARGET_PAGE_SIZE);
2730     if (STACK_GROWS_DOWN) {
2731         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2732                                    bprm->p, info->stack_limit);
2733         info->file_string = bprm->p;
2734         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2735                                    bprm->p, info->stack_limit);
2736         info->env_strings = bprm->p;
2737         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2738                                    bprm->p, info->stack_limit);
2739         info->arg_strings = bprm->p;
2740     } else {
2741         info->arg_strings = bprm->p;
2742         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2743                                    bprm->p, info->stack_limit);
2744         info->env_strings = bprm->p;
2745         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2746                                    bprm->p, info->stack_limit);
2747         info->file_string = bprm->p;
2748         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2749                                    bprm->p, info->stack_limit);
2750     }
2751 
2752     g_free(scratch);
2753 
2754     if (!bprm->p) {
2755         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2756         exit(-1);
2757     }
2758 
2759     if (elf_interpreter) {
2760         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2761 
2762         /* If the program interpreter is one of these two, then assume
2763            an iBCS2 image.  Otherwise assume a native linux image.  */
2764 
2765         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2766             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2767             info->personality = PER_SVR4;
2768 
2769             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2770                and some applications "depend" upon this behavior.  Since
2771                we do not have the power to recompile these, we emulate
2772                the SVr4 behavior.  Sigh.  */
2773             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2774                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2775         }
2776 #ifdef TARGET_MIPS
2777         info->interp_fp_abi = interp_info.fp_abi;
2778 #endif
2779     }
2780 
2781     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2782                                 info, (elf_interpreter ? &interp_info : NULL));
2783     info->start_stack = bprm->p;
2784 
2785     /* If we have an interpreter, set that as the program's entry point.
2786        Copy the load_bias as well, to help PPC64 interpret the entry
2787        point as a function descriptor.  Do this after creating elf tables
2788        so that we copy the original program entry point into the AUXV.  */
2789     if (elf_interpreter) {
2790         info->load_bias = interp_info.load_bias;
2791         info->entry = interp_info.entry;
2792         free(elf_interpreter);
2793     }
2794 
2795 #ifdef USE_ELF_CORE_DUMP
2796     bprm->core_dump = &elf_core_dump;
2797 #endif
2798 
2799     return 0;
2800 }
2801 
2802 #ifdef USE_ELF_CORE_DUMP
2803 /*
2804  * Definitions to generate Intel SVR4-like core files.
2805  * These mostly have the same names as the SVR4 types with "target_elf_"
2806  * tacked on the front to prevent clashes with linux definitions,
2807  * and the typedef forms have been avoided.  This is mostly like
2808  * the SVR4 structure, but more Linuxy, with things that Linux does
2809  * not support and which gdb doesn't really use excluded.
2810  *
2811  * Fields we don't dump (their contents is zero) in linux-user qemu
2812  * are marked with XXX.
2813  *
2814  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2815  *
2816  * Porting ELF coredump for target is (quite) simple process.  First you
2817  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2818  * the target resides):
2819  *
2820  * #define USE_ELF_CORE_DUMP
2821  *
2822  * Next you define type of register set used for dumping.  ELF specification
2823  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2824  *
2825  * typedef <target_regtype> target_elf_greg_t;
2826  * #define ELF_NREG <number of registers>
2827  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2828  *
2829  * Last step is to implement target specific function that copies registers
2830  * from given cpu into just specified register set.  Prototype is:
2831  *
2832  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2833  *                                const CPUArchState *env);
2834  *
2835  * Parameters:
2836  *     regs - copy register values into here (allocated and zeroed by caller)
2837  *     env - copy registers from here
2838  *
2839  * Example for ARM target is provided in this file.
2840  */
2841 
2842 /* An ELF note in memory */
2843 struct memelfnote {
2844     const char *name;
2845     size_t     namesz;
2846     size_t     namesz_rounded;
2847     int        type;
2848     size_t     datasz;
2849     size_t     datasz_rounded;
2850     void       *data;
2851     size_t     notesz;
2852 };
2853 
2854 struct target_elf_siginfo {
2855     abi_int    si_signo; /* signal number */
2856     abi_int    si_code;  /* extra code */
2857     abi_int    si_errno; /* errno */
2858 };
2859 
2860 struct target_elf_prstatus {
2861     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2862     abi_short          pr_cursig;    /* Current signal */
2863     abi_ulong          pr_sigpend;   /* XXX */
2864     abi_ulong          pr_sighold;   /* XXX */
2865     target_pid_t       pr_pid;
2866     target_pid_t       pr_ppid;
2867     target_pid_t       pr_pgrp;
2868     target_pid_t       pr_sid;
2869     struct target_timeval pr_utime;  /* XXX User time */
2870     struct target_timeval pr_stime;  /* XXX System time */
2871     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2872     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2873     target_elf_gregset_t      pr_reg;       /* GP registers */
2874     abi_int            pr_fpvalid;   /* XXX */
2875 };
2876 
2877 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2878 
2879 struct target_elf_prpsinfo {
2880     char         pr_state;       /* numeric process state */
2881     char         pr_sname;       /* char for pr_state */
2882     char         pr_zomb;        /* zombie */
2883     char         pr_nice;        /* nice val */
2884     abi_ulong    pr_flag;        /* flags */
2885     target_uid_t pr_uid;
2886     target_gid_t pr_gid;
2887     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2888     /* Lots missing */
2889     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
2890     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2891 };
2892 
2893 /* Here is the structure in which status of each thread is captured. */
2894 struct elf_thread_status {
2895     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2896     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2897 #if 0
2898     elf_fpregset_t fpu;             /* NT_PRFPREG */
2899     struct task_struct *thread;
2900     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2901 #endif
2902     struct memelfnote notes[1];
2903     int num_notes;
2904 };
2905 
2906 struct elf_note_info {
2907     struct memelfnote   *notes;
2908     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2909     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2910 
2911     QTAILQ_HEAD(, elf_thread_status) thread_list;
2912 #if 0
2913     /*
2914      * Current version of ELF coredump doesn't support
2915      * dumping fp regs etc.
2916      */
2917     elf_fpregset_t *fpu;
2918     elf_fpxregset_t *xfpu;
2919     int thread_status_size;
2920 #endif
2921     int notes_size;
2922     int numnote;
2923 };
2924 
2925 struct vm_area_struct {
2926     target_ulong   vma_start;  /* start vaddr of memory region */
2927     target_ulong   vma_end;    /* end vaddr of memory region */
2928     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2929     QTAILQ_ENTRY(vm_area_struct) vma_link;
2930 };
2931 
2932 struct mm_struct {
2933     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2934     int mm_count;           /* number of mappings */
2935 };
2936 
2937 static struct mm_struct *vma_init(void);
2938 static void vma_delete(struct mm_struct *);
2939 static int vma_add_mapping(struct mm_struct *, target_ulong,
2940                            target_ulong, abi_ulong);
2941 static int vma_get_mapping_count(const struct mm_struct *);
2942 static struct vm_area_struct *vma_first(const struct mm_struct *);
2943 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2944 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2945 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2946                       unsigned long flags);
2947 
2948 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2949 static void fill_note(struct memelfnote *, const char *, int,
2950                       unsigned int, void *);
2951 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2952 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2953 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2954 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2955 static size_t note_size(const struct memelfnote *);
2956 static void free_note_info(struct elf_note_info *);
2957 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2958 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2959 static int core_dump_filename(const TaskState *, char *, size_t);
2960 
2961 static int dump_write(int, const void *, size_t);
2962 static int write_note(struct memelfnote *, int);
2963 static int write_note_info(struct elf_note_info *, int);
2964 
2965 #ifdef BSWAP_NEEDED
2966 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2967 {
2968     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2969     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2970     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2971     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2972     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2973     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2974     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2975     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2976     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2977     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2978     /* cpu times are not filled, so we skip them */
2979     /* regs should be in correct format already */
2980     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2981 }
2982 
2983 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2984 {
2985     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2986     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2987     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2988     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2989     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2990     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2991     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2992 }
2993 
2994 static void bswap_note(struct elf_note *en)
2995 {
2996     bswap32s(&en->n_namesz);
2997     bswap32s(&en->n_descsz);
2998     bswap32s(&en->n_type);
2999 }
3000 #else
3001 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3002 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3003 static inline void bswap_note(struct elf_note *en) { }
3004 #endif /* BSWAP_NEEDED */
3005 
3006 /*
3007  * Minimal support for linux memory regions.  These are needed
3008  * when we are finding out what memory exactly belongs to
3009  * emulated process.  No locks needed here, as long as
3010  * thread that received the signal is stopped.
3011  */
3012 
3013 static struct mm_struct *vma_init(void)
3014 {
3015     struct mm_struct *mm;
3016 
3017     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3018         return (NULL);
3019 
3020     mm->mm_count = 0;
3021     QTAILQ_INIT(&mm->mm_mmap);
3022 
3023     return (mm);
3024 }
3025 
3026 static void vma_delete(struct mm_struct *mm)
3027 {
3028     struct vm_area_struct *vma;
3029 
3030     while ((vma = vma_first(mm)) != NULL) {
3031         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3032         g_free(vma);
3033     }
3034     g_free(mm);
3035 }
3036 
3037 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3038                            target_ulong end, abi_ulong flags)
3039 {
3040     struct vm_area_struct *vma;
3041 
3042     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3043         return (-1);
3044 
3045     vma->vma_start = start;
3046     vma->vma_end = end;
3047     vma->vma_flags = flags;
3048 
3049     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3050     mm->mm_count++;
3051 
3052     return (0);
3053 }
3054 
3055 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3056 {
3057     return (QTAILQ_FIRST(&mm->mm_mmap));
3058 }
3059 
3060 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3061 {
3062     return (QTAILQ_NEXT(vma, vma_link));
3063 }
3064 
3065 static int vma_get_mapping_count(const struct mm_struct *mm)
3066 {
3067     return (mm->mm_count);
3068 }
3069 
3070 /*
3071  * Calculate file (dump) size of given memory region.
3072  */
3073 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3074 {
3075     /* if we cannot even read the first page, skip it */
3076     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3077         return (0);
3078 
3079     /*
3080      * Usually we don't dump executable pages as they contain
3081      * non-writable code that debugger can read directly from
3082      * target library etc.  However, thread stacks are marked
3083      * also executable so we read in first page of given region
3084      * and check whether it contains elf header.  If there is
3085      * no elf header, we dump it.
3086      */
3087     if (vma->vma_flags & PROT_EXEC) {
3088         char page[TARGET_PAGE_SIZE];
3089 
3090         copy_from_user(page, vma->vma_start, sizeof (page));
3091         if ((page[EI_MAG0] == ELFMAG0) &&
3092             (page[EI_MAG1] == ELFMAG1) &&
3093             (page[EI_MAG2] == ELFMAG2) &&
3094             (page[EI_MAG3] == ELFMAG3)) {
3095             /*
3096              * Mappings are possibly from ELF binary.  Don't dump
3097              * them.
3098              */
3099             return (0);
3100         }
3101     }
3102 
3103     return (vma->vma_end - vma->vma_start);
3104 }
3105 
3106 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3107                       unsigned long flags)
3108 {
3109     struct mm_struct *mm = (struct mm_struct *)priv;
3110 
3111     vma_add_mapping(mm, start, end, flags);
3112     return (0);
3113 }
3114 
3115 static void fill_note(struct memelfnote *note, const char *name, int type,
3116                       unsigned int sz, void *data)
3117 {
3118     unsigned int namesz;
3119 
3120     namesz = strlen(name) + 1;
3121     note->name = name;
3122     note->namesz = namesz;
3123     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3124     note->type = type;
3125     note->datasz = sz;
3126     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3127 
3128     note->data = data;
3129 
3130     /*
3131      * We calculate rounded up note size here as specified by
3132      * ELF document.
3133      */
3134     note->notesz = sizeof (struct elf_note) +
3135         note->namesz_rounded + note->datasz_rounded;
3136 }
3137 
3138 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3139                             uint32_t flags)
3140 {
3141     (void) memset(elf, 0, sizeof(*elf));
3142 
3143     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3144     elf->e_ident[EI_CLASS] = ELF_CLASS;
3145     elf->e_ident[EI_DATA] = ELF_DATA;
3146     elf->e_ident[EI_VERSION] = EV_CURRENT;
3147     elf->e_ident[EI_OSABI] = ELF_OSABI;
3148 
3149     elf->e_type = ET_CORE;
3150     elf->e_machine = machine;
3151     elf->e_version = EV_CURRENT;
3152     elf->e_phoff = sizeof(struct elfhdr);
3153     elf->e_flags = flags;
3154     elf->e_ehsize = sizeof(struct elfhdr);
3155     elf->e_phentsize = sizeof(struct elf_phdr);
3156     elf->e_phnum = segs;
3157 
3158     bswap_ehdr(elf);
3159 }
3160 
3161 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3162 {
3163     phdr->p_type = PT_NOTE;
3164     phdr->p_offset = offset;
3165     phdr->p_vaddr = 0;
3166     phdr->p_paddr = 0;
3167     phdr->p_filesz = sz;
3168     phdr->p_memsz = 0;
3169     phdr->p_flags = 0;
3170     phdr->p_align = 0;
3171 
3172     bswap_phdr(phdr, 1);
3173 }
3174 
3175 static size_t note_size(const struct memelfnote *note)
3176 {
3177     return (note->notesz);
3178 }
3179 
3180 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3181                           const TaskState *ts, int signr)
3182 {
3183     (void) memset(prstatus, 0, sizeof (*prstatus));
3184     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3185     prstatus->pr_pid = ts->ts_tid;
3186     prstatus->pr_ppid = getppid();
3187     prstatus->pr_pgrp = getpgrp();
3188     prstatus->pr_sid = getsid(0);
3189 
3190     bswap_prstatus(prstatus);
3191 }
3192 
3193 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3194 {
3195     char *base_filename;
3196     unsigned int i, len;
3197 
3198     (void) memset(psinfo, 0, sizeof (*psinfo));
3199 
3200     len = ts->info->arg_end - ts->info->arg_start;
3201     if (len >= ELF_PRARGSZ)
3202         len = ELF_PRARGSZ - 1;
3203     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3204         return -EFAULT;
3205     for (i = 0; i < len; i++)
3206         if (psinfo->pr_psargs[i] == 0)
3207             psinfo->pr_psargs[i] = ' ';
3208     psinfo->pr_psargs[len] = 0;
3209 
3210     psinfo->pr_pid = getpid();
3211     psinfo->pr_ppid = getppid();
3212     psinfo->pr_pgrp = getpgrp();
3213     psinfo->pr_sid = getsid(0);
3214     psinfo->pr_uid = getuid();
3215     psinfo->pr_gid = getgid();
3216 
3217     base_filename = g_path_get_basename(ts->bprm->filename);
3218     /*
3219      * Using strncpy here is fine: at max-length,
3220      * this field is not NUL-terminated.
3221      */
3222     (void) strncpy(psinfo->pr_fname, base_filename,
3223                    sizeof(psinfo->pr_fname));
3224 
3225     g_free(base_filename);
3226     bswap_psinfo(psinfo);
3227     return (0);
3228 }
3229 
3230 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3231 {
3232     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3233     elf_addr_t orig_auxv = auxv;
3234     void *ptr;
3235     int len = ts->info->auxv_len;
3236 
3237     /*
3238      * Auxiliary vector is stored in target process stack.  It contains
3239      * {type, value} pairs that we need to dump into note.  This is not
3240      * strictly necessary but we do it here for sake of completeness.
3241      */
3242 
3243     /* read in whole auxv vector and copy it to memelfnote */
3244     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3245     if (ptr != NULL) {
3246         fill_note(note, "CORE", NT_AUXV, len, ptr);
3247         unlock_user(ptr, auxv, len);
3248     }
3249 }
3250 
3251 /*
3252  * Constructs name of coredump file.  We have following convention
3253  * for the name:
3254  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3255  *
3256  * Returns 0 in case of success, -1 otherwise (errno is set).
3257  */
3258 static int core_dump_filename(const TaskState *ts, char *buf,
3259                               size_t bufsize)
3260 {
3261     char timestamp[64];
3262     char *base_filename = NULL;
3263     struct timeval tv;
3264     struct tm tm;
3265 
3266     assert(bufsize >= PATH_MAX);
3267 
3268     if (gettimeofday(&tv, NULL) < 0) {
3269         (void) fprintf(stderr, "unable to get current timestamp: %s",
3270                        strerror(errno));
3271         return (-1);
3272     }
3273 
3274     base_filename = g_path_get_basename(ts->bprm->filename);
3275     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3276                     localtime_r(&tv.tv_sec, &tm));
3277     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3278                     base_filename, timestamp, (int)getpid());
3279     g_free(base_filename);
3280 
3281     return (0);
3282 }
3283 
3284 static int dump_write(int fd, const void *ptr, size_t size)
3285 {
3286     const char *bufp = (const char *)ptr;
3287     ssize_t bytes_written, bytes_left;
3288     struct rlimit dumpsize;
3289     off_t pos;
3290 
3291     bytes_written = 0;
3292     getrlimit(RLIMIT_CORE, &dumpsize);
3293     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3294         if (errno == ESPIPE) { /* not a seekable stream */
3295             bytes_left = size;
3296         } else {
3297             return pos;
3298         }
3299     } else {
3300         if (dumpsize.rlim_cur <= pos) {
3301             return -1;
3302         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3303             bytes_left = size;
3304         } else {
3305             size_t limit_left=dumpsize.rlim_cur - pos;
3306             bytes_left = limit_left >= size ? size : limit_left ;
3307         }
3308     }
3309 
3310     /*
3311      * In normal conditions, single write(2) should do but
3312      * in case of socket etc. this mechanism is more portable.
3313      */
3314     do {
3315         bytes_written = write(fd, bufp, bytes_left);
3316         if (bytes_written < 0) {
3317             if (errno == EINTR)
3318                 continue;
3319             return (-1);
3320         } else if (bytes_written == 0) { /* eof */
3321             return (-1);
3322         }
3323         bufp += bytes_written;
3324         bytes_left -= bytes_written;
3325     } while (bytes_left > 0);
3326 
3327     return (0);
3328 }
3329 
3330 static int write_note(struct memelfnote *men, int fd)
3331 {
3332     struct elf_note en;
3333 
3334     en.n_namesz = men->namesz;
3335     en.n_type = men->type;
3336     en.n_descsz = men->datasz;
3337 
3338     bswap_note(&en);
3339 
3340     if (dump_write(fd, &en, sizeof(en)) != 0)
3341         return (-1);
3342     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3343         return (-1);
3344     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3345         return (-1);
3346 
3347     return (0);
3348 }
3349 
3350 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3351 {
3352     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3353     TaskState *ts = (TaskState *)cpu->opaque;
3354     struct elf_thread_status *ets;
3355 
3356     ets = g_malloc0(sizeof (*ets));
3357     ets->num_notes = 1; /* only prstatus is dumped */
3358     fill_prstatus(&ets->prstatus, ts, 0);
3359     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3360     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3361               &ets->prstatus);
3362 
3363     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3364 
3365     info->notes_size += note_size(&ets->notes[0]);
3366 }
3367 
3368 static void init_note_info(struct elf_note_info *info)
3369 {
3370     /* Initialize the elf_note_info structure so that it is at
3371      * least safe to call free_note_info() on it. Must be
3372      * called before calling fill_note_info().
3373      */
3374     memset(info, 0, sizeof (*info));
3375     QTAILQ_INIT(&info->thread_list);
3376 }
3377 
3378 static int fill_note_info(struct elf_note_info *info,
3379                           long signr, const CPUArchState *env)
3380 {
3381 #define NUMNOTES 3
3382     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3383     TaskState *ts = (TaskState *)cpu->opaque;
3384     int i;
3385 
3386     info->notes = g_new0(struct memelfnote, NUMNOTES);
3387     if (info->notes == NULL)
3388         return (-ENOMEM);
3389     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3390     if (info->prstatus == NULL)
3391         return (-ENOMEM);
3392     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3393     if (info->prstatus == NULL)
3394         return (-ENOMEM);
3395 
3396     /*
3397      * First fill in status (and registers) of current thread
3398      * including process info & aux vector.
3399      */
3400     fill_prstatus(info->prstatus, ts, signr);
3401     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3402     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3403               sizeof (*info->prstatus), info->prstatus);
3404     fill_psinfo(info->psinfo, ts);
3405     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3406               sizeof (*info->psinfo), info->psinfo);
3407     fill_auxv_note(&info->notes[2], ts);
3408     info->numnote = 3;
3409 
3410     info->notes_size = 0;
3411     for (i = 0; i < info->numnote; i++)
3412         info->notes_size += note_size(&info->notes[i]);
3413 
3414     /* read and fill status of all threads */
3415     cpu_list_lock();
3416     CPU_FOREACH(cpu) {
3417         if (cpu == thread_cpu) {
3418             continue;
3419         }
3420         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3421     }
3422     cpu_list_unlock();
3423 
3424     return (0);
3425 }
3426 
3427 static void free_note_info(struct elf_note_info *info)
3428 {
3429     struct elf_thread_status *ets;
3430 
3431     while (!QTAILQ_EMPTY(&info->thread_list)) {
3432         ets = QTAILQ_FIRST(&info->thread_list);
3433         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3434         g_free(ets);
3435     }
3436 
3437     g_free(info->prstatus);
3438     g_free(info->psinfo);
3439     g_free(info->notes);
3440 }
3441 
3442 static int write_note_info(struct elf_note_info *info, int fd)
3443 {
3444     struct elf_thread_status *ets;
3445     int i, error = 0;
3446 
3447     /* write prstatus, psinfo and auxv for current thread */
3448     for (i = 0; i < info->numnote; i++)
3449         if ((error = write_note(&info->notes[i], fd)) != 0)
3450             return (error);
3451 
3452     /* write prstatus for each thread */
3453     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3454         if ((error = write_note(&ets->notes[0], fd)) != 0)
3455             return (error);
3456     }
3457 
3458     return (0);
3459 }
3460 
3461 /*
3462  * Write out ELF coredump.
3463  *
3464  * See documentation of ELF object file format in:
3465  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3466  *
3467  * Coredump format in linux is following:
3468  *
3469  * 0   +----------------------+         \
3470  *     | ELF header           | ET_CORE  |
3471  *     +----------------------+          |
3472  *     | ELF program headers  |          |--- headers
3473  *     | - NOTE section       |          |
3474  *     | - PT_LOAD sections   |          |
3475  *     +----------------------+         /
3476  *     | NOTEs:               |
3477  *     | - NT_PRSTATUS        |
3478  *     | - NT_PRSINFO         |
3479  *     | - NT_AUXV            |
3480  *     +----------------------+ <-- aligned to target page
3481  *     | Process memory dump  |
3482  *     :                      :
3483  *     .                      .
3484  *     :                      :
3485  *     |                      |
3486  *     +----------------------+
3487  *
3488  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3489  * NT_PRSINFO  -> struct elf_prpsinfo
3490  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3491  *
3492  * Format follows System V format as close as possible.  Current
3493  * version limitations are as follows:
3494  *     - no floating point registers are dumped
3495  *
3496  * Function returns 0 in case of success, negative errno otherwise.
3497  *
3498  * TODO: make this work also during runtime: it should be
3499  * possible to force coredump from running process and then
3500  * continue processing.  For example qemu could set up SIGUSR2
3501  * handler (provided that target process haven't registered
3502  * handler for that) that does the dump when signal is received.
3503  */
3504 static int elf_core_dump(int signr, const CPUArchState *env)
3505 {
3506     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3507     const TaskState *ts = (const TaskState *)cpu->opaque;
3508     struct vm_area_struct *vma = NULL;
3509     char corefile[PATH_MAX];
3510     struct elf_note_info info;
3511     struct elfhdr elf;
3512     struct elf_phdr phdr;
3513     struct rlimit dumpsize;
3514     struct mm_struct *mm = NULL;
3515     off_t offset = 0, data_offset = 0;
3516     int segs = 0;
3517     int fd = -1;
3518 
3519     init_note_info(&info);
3520 
3521     errno = 0;
3522     getrlimit(RLIMIT_CORE, &dumpsize);
3523     if (dumpsize.rlim_cur == 0)
3524         return 0;
3525 
3526     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3527         return (-errno);
3528 
3529     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3530                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3531         return (-errno);
3532 
3533     /*
3534      * Walk through target process memory mappings and
3535      * set up structure containing this information.  After
3536      * this point vma_xxx functions can be used.
3537      */
3538     if ((mm = vma_init()) == NULL)
3539         goto out;
3540 
3541     walk_memory_regions(mm, vma_walker);
3542     segs = vma_get_mapping_count(mm);
3543 
3544     /*
3545      * Construct valid coredump ELF header.  We also
3546      * add one more segment for notes.
3547      */
3548     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3549     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3550         goto out;
3551 
3552     /* fill in the in-memory version of notes */
3553     if (fill_note_info(&info, signr, env) < 0)
3554         goto out;
3555 
3556     offset += sizeof (elf);                             /* elf header */
3557     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3558 
3559     /* write out notes program header */
3560     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3561 
3562     offset += info.notes_size;
3563     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3564         goto out;
3565 
3566     /*
3567      * ELF specification wants data to start at page boundary so
3568      * we align it here.
3569      */
3570     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3571 
3572     /*
3573      * Write program headers for memory regions mapped in
3574      * the target process.
3575      */
3576     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3577         (void) memset(&phdr, 0, sizeof (phdr));
3578 
3579         phdr.p_type = PT_LOAD;
3580         phdr.p_offset = offset;
3581         phdr.p_vaddr = vma->vma_start;
3582         phdr.p_paddr = 0;
3583         phdr.p_filesz = vma_dump_size(vma);
3584         offset += phdr.p_filesz;
3585         phdr.p_memsz = vma->vma_end - vma->vma_start;
3586         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3587         if (vma->vma_flags & PROT_WRITE)
3588             phdr.p_flags |= PF_W;
3589         if (vma->vma_flags & PROT_EXEC)
3590             phdr.p_flags |= PF_X;
3591         phdr.p_align = ELF_EXEC_PAGESIZE;
3592 
3593         bswap_phdr(&phdr, 1);
3594         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3595             goto out;
3596         }
3597     }
3598 
3599     /*
3600      * Next we write notes just after program headers.  No
3601      * alignment needed here.
3602      */
3603     if (write_note_info(&info, fd) < 0)
3604         goto out;
3605 
3606     /* align data to page boundary */
3607     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3608         goto out;
3609 
3610     /*
3611      * Finally we can dump process memory into corefile as well.
3612      */
3613     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3614         abi_ulong addr;
3615         abi_ulong end;
3616 
3617         end = vma->vma_start + vma_dump_size(vma);
3618 
3619         for (addr = vma->vma_start; addr < end;
3620              addr += TARGET_PAGE_SIZE) {
3621             char page[TARGET_PAGE_SIZE];
3622             int error;
3623 
3624             /*
3625              *  Read in page from target process memory and
3626              *  write it to coredump file.
3627              */
3628             error = copy_from_user(page, addr, sizeof (page));
3629             if (error != 0) {
3630                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3631                                addr);
3632                 errno = -error;
3633                 goto out;
3634             }
3635             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3636                 goto out;
3637         }
3638     }
3639 
3640  out:
3641     free_note_info(&info);
3642     if (mm != NULL)
3643         vma_delete(mm);
3644     (void) close(fd);
3645 
3646     if (errno != 0)
3647         return (-errno);
3648     return (0);
3649 }
3650 #endif /* USE_ELF_CORE_DUMP */
3651 
3652 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3653 {
3654     init_thread(regs, infop);
3655 }
3656