1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/path.h" 11 #include "qemu/queue.h" 12 #include "qemu/guest-random.h" 13 #include "qemu/units.h" 14 #include "qemu/selfmap.h" 15 #include "qapi/error.h" 16 17 #ifdef _ARCH_PPC64 18 #undef ARCH_DLINFO 19 #undef ELF_PLATFORM 20 #undef ELF_HWCAP 21 #undef ELF_HWCAP2 22 #undef ELF_CLASS 23 #undef ELF_DATA 24 #undef ELF_ARCH 25 #endif 26 27 #define ELF_OSABI ELFOSABI_SYSV 28 29 /* from personality.h */ 30 31 /* 32 * Flags for bug emulation. 33 * 34 * These occupy the top three bytes. 35 */ 36 enum { 37 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 38 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 39 descriptors (signal handling) */ 40 MMAP_PAGE_ZERO = 0x0100000, 41 ADDR_COMPAT_LAYOUT = 0x0200000, 42 READ_IMPLIES_EXEC = 0x0400000, 43 ADDR_LIMIT_32BIT = 0x0800000, 44 SHORT_INODE = 0x1000000, 45 WHOLE_SECONDS = 0x2000000, 46 STICKY_TIMEOUTS = 0x4000000, 47 ADDR_LIMIT_3GB = 0x8000000, 48 }; 49 50 /* 51 * Personality types. 52 * 53 * These go in the low byte. Avoid using the top bit, it will 54 * conflict with error returns. 55 */ 56 enum { 57 PER_LINUX = 0x0000, 58 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 59 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 60 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 61 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 62 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 63 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 64 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 65 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 66 PER_BSD = 0x0006, 67 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 68 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 69 PER_LINUX32 = 0x0008, 70 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 71 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 72 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 73 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 74 PER_RISCOS = 0x000c, 75 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 76 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 77 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 78 PER_HPUX = 0x0010, 79 PER_MASK = 0x00ff, 80 }; 81 82 /* 83 * Return the base personality without flags. 84 */ 85 #define personality(pers) (pers & PER_MASK) 86 87 int info_is_fdpic(struct image_info *info) 88 { 89 return info->personality == PER_LINUX_FDPIC; 90 } 91 92 /* this flag is uneffective under linux too, should be deleted */ 93 #ifndef MAP_DENYWRITE 94 #define MAP_DENYWRITE 0 95 #endif 96 97 /* should probably go in elf.h */ 98 #ifndef ELIBBAD 99 #define ELIBBAD 80 100 #endif 101 102 #ifdef TARGET_WORDS_BIGENDIAN 103 #define ELF_DATA ELFDATA2MSB 104 #else 105 #define ELF_DATA ELFDATA2LSB 106 #endif 107 108 #ifdef TARGET_ABI_MIPSN32 109 typedef abi_ullong target_elf_greg_t; 110 #define tswapreg(ptr) tswap64(ptr) 111 #else 112 typedef abi_ulong target_elf_greg_t; 113 #define tswapreg(ptr) tswapal(ptr) 114 #endif 115 116 #ifdef USE_UID16 117 typedef abi_ushort target_uid_t; 118 typedef abi_ushort target_gid_t; 119 #else 120 typedef abi_uint target_uid_t; 121 typedef abi_uint target_gid_t; 122 #endif 123 typedef abi_int target_pid_t; 124 125 #ifdef TARGET_I386 126 127 #define ELF_PLATFORM get_elf_platform() 128 129 static const char *get_elf_platform(void) 130 { 131 static char elf_platform[] = "i386"; 132 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 133 if (family > 6) 134 family = 6; 135 if (family >= 3) 136 elf_platform[1] = '0' + family; 137 return elf_platform; 138 } 139 140 #define ELF_HWCAP get_elf_hwcap() 141 142 static uint32_t get_elf_hwcap(void) 143 { 144 X86CPU *cpu = X86_CPU(thread_cpu); 145 146 return cpu->env.features[FEAT_1_EDX]; 147 } 148 149 #ifdef TARGET_X86_64 150 #define ELF_START_MMAP 0x2aaaaab000ULL 151 152 #define ELF_CLASS ELFCLASS64 153 #define ELF_ARCH EM_X86_64 154 155 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 156 { 157 regs->rax = 0; 158 regs->rsp = infop->start_stack; 159 regs->rip = infop->entry; 160 } 161 162 #define ELF_NREG 27 163 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 164 165 /* 166 * Note that ELF_NREG should be 29 as there should be place for 167 * TRAPNO and ERR "registers" as well but linux doesn't dump 168 * those. 169 * 170 * See linux kernel: arch/x86/include/asm/elf.h 171 */ 172 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 173 { 174 (*regs)[0] = env->regs[15]; 175 (*regs)[1] = env->regs[14]; 176 (*regs)[2] = env->regs[13]; 177 (*regs)[3] = env->regs[12]; 178 (*regs)[4] = env->regs[R_EBP]; 179 (*regs)[5] = env->regs[R_EBX]; 180 (*regs)[6] = env->regs[11]; 181 (*regs)[7] = env->regs[10]; 182 (*regs)[8] = env->regs[9]; 183 (*regs)[9] = env->regs[8]; 184 (*regs)[10] = env->regs[R_EAX]; 185 (*regs)[11] = env->regs[R_ECX]; 186 (*regs)[12] = env->regs[R_EDX]; 187 (*regs)[13] = env->regs[R_ESI]; 188 (*regs)[14] = env->regs[R_EDI]; 189 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 190 (*regs)[16] = env->eip; 191 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 192 (*regs)[18] = env->eflags; 193 (*regs)[19] = env->regs[R_ESP]; 194 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 195 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 196 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 197 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 198 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 199 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 200 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 201 } 202 203 #else 204 205 #define ELF_START_MMAP 0x80000000 206 207 /* 208 * This is used to ensure we don't load something for the wrong architecture. 209 */ 210 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 211 212 /* 213 * These are used to set parameters in the core dumps. 214 */ 215 #define ELF_CLASS ELFCLASS32 216 #define ELF_ARCH EM_386 217 218 static inline void init_thread(struct target_pt_regs *regs, 219 struct image_info *infop) 220 { 221 regs->esp = infop->start_stack; 222 regs->eip = infop->entry; 223 224 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 225 starts %edx contains a pointer to a function which might be 226 registered using `atexit'. This provides a mean for the 227 dynamic linker to call DT_FINI functions for shared libraries 228 that have been loaded before the code runs. 229 230 A value of 0 tells we have no such handler. */ 231 regs->edx = 0; 232 } 233 234 #define ELF_NREG 17 235 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 236 237 /* 238 * Note that ELF_NREG should be 19 as there should be place for 239 * TRAPNO and ERR "registers" as well but linux doesn't dump 240 * those. 241 * 242 * See linux kernel: arch/x86/include/asm/elf.h 243 */ 244 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 245 { 246 (*regs)[0] = env->regs[R_EBX]; 247 (*regs)[1] = env->regs[R_ECX]; 248 (*regs)[2] = env->regs[R_EDX]; 249 (*regs)[3] = env->regs[R_ESI]; 250 (*regs)[4] = env->regs[R_EDI]; 251 (*regs)[5] = env->regs[R_EBP]; 252 (*regs)[6] = env->regs[R_EAX]; 253 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 254 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 255 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 256 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 257 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 258 (*regs)[12] = env->eip; 259 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 260 (*regs)[14] = env->eflags; 261 (*regs)[15] = env->regs[R_ESP]; 262 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 263 } 264 #endif 265 266 #define USE_ELF_CORE_DUMP 267 #define ELF_EXEC_PAGESIZE 4096 268 269 #endif 270 271 #ifdef TARGET_ARM 272 273 #ifndef TARGET_AARCH64 274 /* 32 bit ARM definitions */ 275 276 #define ELF_START_MMAP 0x80000000 277 278 #define ELF_ARCH EM_ARM 279 #define ELF_CLASS ELFCLASS32 280 281 static inline void init_thread(struct target_pt_regs *regs, 282 struct image_info *infop) 283 { 284 abi_long stack = infop->start_stack; 285 memset(regs, 0, sizeof(*regs)); 286 287 regs->uregs[16] = ARM_CPU_MODE_USR; 288 if (infop->entry & 1) { 289 regs->uregs[16] |= CPSR_T; 290 } 291 regs->uregs[15] = infop->entry & 0xfffffffe; 292 regs->uregs[13] = infop->start_stack; 293 /* FIXME - what to for failure of get_user()? */ 294 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 295 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 296 /* XXX: it seems that r0 is zeroed after ! */ 297 regs->uregs[0] = 0; 298 /* For uClinux PIC binaries. */ 299 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 300 regs->uregs[10] = infop->start_data; 301 302 /* Support ARM FDPIC. */ 303 if (info_is_fdpic(infop)) { 304 /* As described in the ABI document, r7 points to the loadmap info 305 * prepared by the kernel. If an interpreter is needed, r8 points 306 * to the interpreter loadmap and r9 points to the interpreter 307 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 308 * r9 points to the main program PT_DYNAMIC info. 309 */ 310 regs->uregs[7] = infop->loadmap_addr; 311 if (infop->interpreter_loadmap_addr) { 312 /* Executable is dynamically loaded. */ 313 regs->uregs[8] = infop->interpreter_loadmap_addr; 314 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 315 } else { 316 regs->uregs[8] = 0; 317 regs->uregs[9] = infop->pt_dynamic_addr; 318 } 319 } 320 } 321 322 #define ELF_NREG 18 323 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 324 325 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 326 { 327 (*regs)[0] = tswapreg(env->regs[0]); 328 (*regs)[1] = tswapreg(env->regs[1]); 329 (*regs)[2] = tswapreg(env->regs[2]); 330 (*regs)[3] = tswapreg(env->regs[3]); 331 (*regs)[4] = tswapreg(env->regs[4]); 332 (*regs)[5] = tswapreg(env->regs[5]); 333 (*regs)[6] = tswapreg(env->regs[6]); 334 (*regs)[7] = tswapreg(env->regs[7]); 335 (*regs)[8] = tswapreg(env->regs[8]); 336 (*regs)[9] = tswapreg(env->regs[9]); 337 (*regs)[10] = tswapreg(env->regs[10]); 338 (*regs)[11] = tswapreg(env->regs[11]); 339 (*regs)[12] = tswapreg(env->regs[12]); 340 (*regs)[13] = tswapreg(env->regs[13]); 341 (*regs)[14] = tswapreg(env->regs[14]); 342 (*regs)[15] = tswapreg(env->regs[15]); 343 344 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 345 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 346 } 347 348 #define USE_ELF_CORE_DUMP 349 #define ELF_EXEC_PAGESIZE 4096 350 351 enum 352 { 353 ARM_HWCAP_ARM_SWP = 1 << 0, 354 ARM_HWCAP_ARM_HALF = 1 << 1, 355 ARM_HWCAP_ARM_THUMB = 1 << 2, 356 ARM_HWCAP_ARM_26BIT = 1 << 3, 357 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 358 ARM_HWCAP_ARM_FPA = 1 << 5, 359 ARM_HWCAP_ARM_VFP = 1 << 6, 360 ARM_HWCAP_ARM_EDSP = 1 << 7, 361 ARM_HWCAP_ARM_JAVA = 1 << 8, 362 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 363 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 364 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 365 ARM_HWCAP_ARM_NEON = 1 << 12, 366 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 367 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 368 ARM_HWCAP_ARM_TLS = 1 << 15, 369 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 370 ARM_HWCAP_ARM_IDIVA = 1 << 17, 371 ARM_HWCAP_ARM_IDIVT = 1 << 18, 372 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 373 ARM_HWCAP_ARM_LPAE = 1 << 20, 374 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 375 }; 376 377 enum { 378 ARM_HWCAP2_ARM_AES = 1 << 0, 379 ARM_HWCAP2_ARM_PMULL = 1 << 1, 380 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 381 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 382 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 383 }; 384 385 /* The commpage only exists for 32 bit kernels */ 386 387 #define ARM_COMMPAGE (intptr_t)0xffff0f00u 388 389 static bool init_guest_commpage(void) 390 { 391 void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size); 392 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 393 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 394 395 if (addr == MAP_FAILED) { 396 perror("Allocating guest commpage"); 397 exit(EXIT_FAILURE); 398 } 399 if (addr != want) { 400 return false; 401 } 402 403 /* Set kernel helper versions; rest of page is 0. */ 404 __put_user(5, (uint32_t *)g2h(0xffff0ffcu)); 405 406 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 407 perror("Protecting guest commpage"); 408 exit(EXIT_FAILURE); 409 } 410 return true; 411 } 412 413 #define ELF_HWCAP get_elf_hwcap() 414 #define ELF_HWCAP2 get_elf_hwcap2() 415 416 static uint32_t get_elf_hwcap(void) 417 { 418 ARMCPU *cpu = ARM_CPU(thread_cpu); 419 uint32_t hwcaps = 0; 420 421 hwcaps |= ARM_HWCAP_ARM_SWP; 422 hwcaps |= ARM_HWCAP_ARM_HALF; 423 hwcaps |= ARM_HWCAP_ARM_THUMB; 424 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 425 426 /* probe for the extra features */ 427 #define GET_FEATURE(feat, hwcap) \ 428 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 429 430 #define GET_FEATURE_ID(feat, hwcap) \ 431 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 432 433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 435 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 436 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 437 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 438 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 439 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 440 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 441 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 442 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 443 444 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 445 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 446 hwcaps |= ARM_HWCAP_ARM_VFPv3; 447 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 448 hwcaps |= ARM_HWCAP_ARM_VFPD32; 449 } else { 450 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 451 } 452 } 453 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 454 455 return hwcaps; 456 } 457 458 static uint32_t get_elf_hwcap2(void) 459 { 460 ARMCPU *cpu = ARM_CPU(thread_cpu); 461 uint32_t hwcaps = 0; 462 463 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 464 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 465 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 466 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 467 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 468 return hwcaps; 469 } 470 471 #undef GET_FEATURE 472 #undef GET_FEATURE_ID 473 474 #define ELF_PLATFORM get_elf_platform() 475 476 static const char *get_elf_platform(void) 477 { 478 CPUARMState *env = thread_cpu->env_ptr; 479 480 #ifdef TARGET_WORDS_BIGENDIAN 481 # define END "b" 482 #else 483 # define END "l" 484 #endif 485 486 if (arm_feature(env, ARM_FEATURE_V8)) { 487 return "v8" END; 488 } else if (arm_feature(env, ARM_FEATURE_V7)) { 489 if (arm_feature(env, ARM_FEATURE_M)) { 490 return "v7m" END; 491 } else { 492 return "v7" END; 493 } 494 } else if (arm_feature(env, ARM_FEATURE_V6)) { 495 return "v6" END; 496 } else if (arm_feature(env, ARM_FEATURE_V5)) { 497 return "v5" END; 498 } else { 499 return "v4" END; 500 } 501 502 #undef END 503 } 504 505 #else 506 /* 64 bit ARM definitions */ 507 #define ELF_START_MMAP 0x80000000 508 509 #define ELF_ARCH EM_AARCH64 510 #define ELF_CLASS ELFCLASS64 511 #ifdef TARGET_WORDS_BIGENDIAN 512 # define ELF_PLATFORM "aarch64_be" 513 #else 514 # define ELF_PLATFORM "aarch64" 515 #endif 516 517 static inline void init_thread(struct target_pt_regs *regs, 518 struct image_info *infop) 519 { 520 abi_long stack = infop->start_stack; 521 memset(regs, 0, sizeof(*regs)); 522 523 regs->pc = infop->entry & ~0x3ULL; 524 regs->sp = stack; 525 } 526 527 #define ELF_NREG 34 528 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 529 530 static void elf_core_copy_regs(target_elf_gregset_t *regs, 531 const CPUARMState *env) 532 { 533 int i; 534 535 for (i = 0; i < 32; i++) { 536 (*regs)[i] = tswapreg(env->xregs[i]); 537 } 538 (*regs)[32] = tswapreg(env->pc); 539 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 540 } 541 542 #define USE_ELF_CORE_DUMP 543 #define ELF_EXEC_PAGESIZE 4096 544 545 enum { 546 ARM_HWCAP_A64_FP = 1 << 0, 547 ARM_HWCAP_A64_ASIMD = 1 << 1, 548 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 549 ARM_HWCAP_A64_AES = 1 << 3, 550 ARM_HWCAP_A64_PMULL = 1 << 4, 551 ARM_HWCAP_A64_SHA1 = 1 << 5, 552 ARM_HWCAP_A64_SHA2 = 1 << 6, 553 ARM_HWCAP_A64_CRC32 = 1 << 7, 554 ARM_HWCAP_A64_ATOMICS = 1 << 8, 555 ARM_HWCAP_A64_FPHP = 1 << 9, 556 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 557 ARM_HWCAP_A64_CPUID = 1 << 11, 558 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 559 ARM_HWCAP_A64_JSCVT = 1 << 13, 560 ARM_HWCAP_A64_FCMA = 1 << 14, 561 ARM_HWCAP_A64_LRCPC = 1 << 15, 562 ARM_HWCAP_A64_DCPOP = 1 << 16, 563 ARM_HWCAP_A64_SHA3 = 1 << 17, 564 ARM_HWCAP_A64_SM3 = 1 << 18, 565 ARM_HWCAP_A64_SM4 = 1 << 19, 566 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 567 ARM_HWCAP_A64_SHA512 = 1 << 21, 568 ARM_HWCAP_A64_SVE = 1 << 22, 569 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 570 ARM_HWCAP_A64_DIT = 1 << 24, 571 ARM_HWCAP_A64_USCAT = 1 << 25, 572 ARM_HWCAP_A64_ILRCPC = 1 << 26, 573 ARM_HWCAP_A64_FLAGM = 1 << 27, 574 ARM_HWCAP_A64_SSBS = 1 << 28, 575 ARM_HWCAP_A64_SB = 1 << 29, 576 ARM_HWCAP_A64_PACA = 1 << 30, 577 ARM_HWCAP_A64_PACG = 1UL << 31, 578 579 ARM_HWCAP2_A64_DCPODP = 1 << 0, 580 ARM_HWCAP2_A64_SVE2 = 1 << 1, 581 ARM_HWCAP2_A64_SVEAES = 1 << 2, 582 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 583 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 584 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 585 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 586 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 587 ARM_HWCAP2_A64_FRINT = 1 << 8, 588 }; 589 590 #define ELF_HWCAP get_elf_hwcap() 591 #define ELF_HWCAP2 get_elf_hwcap2() 592 593 #define GET_FEATURE_ID(feat, hwcap) \ 594 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 595 596 static uint32_t get_elf_hwcap(void) 597 { 598 ARMCPU *cpu = ARM_CPU(thread_cpu); 599 uint32_t hwcaps = 0; 600 601 hwcaps |= ARM_HWCAP_A64_FP; 602 hwcaps |= ARM_HWCAP_A64_ASIMD; 603 hwcaps |= ARM_HWCAP_A64_CPUID; 604 605 /* probe for the extra features */ 606 607 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 608 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 609 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 610 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 611 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 612 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 613 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 614 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 615 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 616 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 617 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 618 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 619 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 620 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 621 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 622 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 623 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 624 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 625 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 626 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 627 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 628 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 629 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 630 631 return hwcaps; 632 } 633 634 static uint32_t get_elf_hwcap2(void) 635 { 636 ARMCPU *cpu = ARM_CPU(thread_cpu); 637 uint32_t hwcaps = 0; 638 639 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 640 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 641 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 642 643 return hwcaps; 644 } 645 646 #undef GET_FEATURE_ID 647 648 #endif /* not TARGET_AARCH64 */ 649 #endif /* TARGET_ARM */ 650 651 #ifdef TARGET_SPARC 652 #ifdef TARGET_SPARC64 653 654 #define ELF_START_MMAP 0x80000000 655 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 656 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 657 #ifndef TARGET_ABI32 658 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 659 #else 660 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 661 #endif 662 663 #define ELF_CLASS ELFCLASS64 664 #define ELF_ARCH EM_SPARCV9 665 666 #define STACK_BIAS 2047 667 668 static inline void init_thread(struct target_pt_regs *regs, 669 struct image_info *infop) 670 { 671 #ifndef TARGET_ABI32 672 regs->tstate = 0; 673 #endif 674 regs->pc = infop->entry; 675 regs->npc = regs->pc + 4; 676 regs->y = 0; 677 #ifdef TARGET_ABI32 678 regs->u_regs[14] = infop->start_stack - 16 * 4; 679 #else 680 if (personality(infop->personality) == PER_LINUX32) 681 regs->u_regs[14] = infop->start_stack - 16 * 4; 682 else 683 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 684 #endif 685 } 686 687 #else 688 #define ELF_START_MMAP 0x80000000 689 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 690 | HWCAP_SPARC_MULDIV) 691 692 #define ELF_CLASS ELFCLASS32 693 #define ELF_ARCH EM_SPARC 694 695 static inline void init_thread(struct target_pt_regs *regs, 696 struct image_info *infop) 697 { 698 regs->psr = 0; 699 regs->pc = infop->entry; 700 regs->npc = regs->pc + 4; 701 regs->y = 0; 702 regs->u_regs[14] = infop->start_stack - 16 * 4; 703 } 704 705 #endif 706 #endif 707 708 #ifdef TARGET_PPC 709 710 #define ELF_MACHINE PPC_ELF_MACHINE 711 #define ELF_START_MMAP 0x80000000 712 713 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 714 715 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 716 717 #define ELF_CLASS ELFCLASS64 718 719 #else 720 721 #define ELF_CLASS ELFCLASS32 722 723 #endif 724 725 #define ELF_ARCH EM_PPC 726 727 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 728 See arch/powerpc/include/asm/cputable.h. */ 729 enum { 730 QEMU_PPC_FEATURE_32 = 0x80000000, 731 QEMU_PPC_FEATURE_64 = 0x40000000, 732 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 733 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 734 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 735 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 736 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 737 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 738 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 739 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 740 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 741 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 742 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 743 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 744 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 745 QEMU_PPC_FEATURE_CELL = 0x00010000, 746 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 747 QEMU_PPC_FEATURE_SMT = 0x00004000, 748 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 749 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 750 QEMU_PPC_FEATURE_PA6T = 0x00000800, 751 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 752 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 753 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 754 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 755 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 756 757 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 758 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 759 760 /* Feature definitions in AT_HWCAP2. */ 761 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 762 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 763 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 764 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 765 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 766 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 767 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 768 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 769 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 770 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 771 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 772 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 773 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 774 }; 775 776 #define ELF_HWCAP get_elf_hwcap() 777 778 static uint32_t get_elf_hwcap(void) 779 { 780 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 781 uint32_t features = 0; 782 783 /* We don't have to be terribly complete here; the high points are 784 Altivec/FP/SPE support. Anything else is just a bonus. */ 785 #define GET_FEATURE(flag, feature) \ 786 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 787 #define GET_FEATURE2(flags, feature) \ 788 do { \ 789 if ((cpu->env.insns_flags2 & flags) == flags) { \ 790 features |= feature; \ 791 } \ 792 } while (0) 793 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 794 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 795 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 796 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 797 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 798 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 799 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 800 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 801 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 802 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 803 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 804 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 805 QEMU_PPC_FEATURE_ARCH_2_06); 806 #undef GET_FEATURE 807 #undef GET_FEATURE2 808 809 return features; 810 } 811 812 #define ELF_HWCAP2 get_elf_hwcap2() 813 814 static uint32_t get_elf_hwcap2(void) 815 { 816 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 817 uint32_t features = 0; 818 819 #define GET_FEATURE(flag, feature) \ 820 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 821 #define GET_FEATURE2(flag, feature) \ 822 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 823 824 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 825 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 826 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 827 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 828 QEMU_PPC_FEATURE2_VEC_CRYPTO); 829 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 830 QEMU_PPC_FEATURE2_DARN); 831 832 #undef GET_FEATURE 833 #undef GET_FEATURE2 834 835 return features; 836 } 837 838 /* 839 * The requirements here are: 840 * - keep the final alignment of sp (sp & 0xf) 841 * - make sure the 32-bit value at the first 16 byte aligned position of 842 * AUXV is greater than 16 for glibc compatibility. 843 * AT_IGNOREPPC is used for that. 844 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 845 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 846 */ 847 #define DLINFO_ARCH_ITEMS 5 848 #define ARCH_DLINFO \ 849 do { \ 850 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 851 /* \ 852 * Handle glibc compatibility: these magic entries must \ 853 * be at the lowest addresses in the final auxv. \ 854 */ \ 855 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 856 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 857 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 858 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 859 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 860 } while (0) 861 862 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 863 { 864 _regs->gpr[1] = infop->start_stack; 865 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 866 if (get_ppc64_abi(infop) < 2) { 867 uint64_t val; 868 get_user_u64(val, infop->entry + 8); 869 _regs->gpr[2] = val + infop->load_bias; 870 get_user_u64(val, infop->entry); 871 infop->entry = val + infop->load_bias; 872 } else { 873 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 874 } 875 #endif 876 _regs->nip = infop->entry; 877 } 878 879 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 880 #define ELF_NREG 48 881 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 882 883 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 884 { 885 int i; 886 target_ulong ccr = 0; 887 888 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 889 (*regs)[i] = tswapreg(env->gpr[i]); 890 } 891 892 (*regs)[32] = tswapreg(env->nip); 893 (*regs)[33] = tswapreg(env->msr); 894 (*regs)[35] = tswapreg(env->ctr); 895 (*regs)[36] = tswapreg(env->lr); 896 (*regs)[37] = tswapreg(env->xer); 897 898 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 899 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 900 } 901 (*regs)[38] = tswapreg(ccr); 902 } 903 904 #define USE_ELF_CORE_DUMP 905 #define ELF_EXEC_PAGESIZE 4096 906 907 #endif 908 909 #ifdef TARGET_MIPS 910 911 #define ELF_START_MMAP 0x80000000 912 913 #ifdef TARGET_MIPS64 914 #define ELF_CLASS ELFCLASS64 915 #else 916 #define ELF_CLASS ELFCLASS32 917 #endif 918 #define ELF_ARCH EM_MIPS 919 920 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 921 922 #ifdef TARGET_ABI_MIPSN32 923 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 924 #else 925 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 926 #endif 927 928 static inline void init_thread(struct target_pt_regs *regs, 929 struct image_info *infop) 930 { 931 regs->cp0_status = 2 << CP0St_KSU; 932 regs->cp0_epc = infop->entry; 933 regs->regs[29] = infop->start_stack; 934 } 935 936 /* See linux kernel: arch/mips/include/asm/elf.h. */ 937 #define ELF_NREG 45 938 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 939 940 /* See linux kernel: arch/mips/include/asm/reg.h. */ 941 enum { 942 #ifdef TARGET_MIPS64 943 TARGET_EF_R0 = 0, 944 #else 945 TARGET_EF_R0 = 6, 946 #endif 947 TARGET_EF_R26 = TARGET_EF_R0 + 26, 948 TARGET_EF_R27 = TARGET_EF_R0 + 27, 949 TARGET_EF_LO = TARGET_EF_R0 + 32, 950 TARGET_EF_HI = TARGET_EF_R0 + 33, 951 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 952 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 953 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 954 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 955 }; 956 957 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 958 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 959 { 960 int i; 961 962 for (i = 0; i < TARGET_EF_R0; i++) { 963 (*regs)[i] = 0; 964 } 965 (*regs)[TARGET_EF_R0] = 0; 966 967 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 968 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 969 } 970 971 (*regs)[TARGET_EF_R26] = 0; 972 (*regs)[TARGET_EF_R27] = 0; 973 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 974 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 975 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 976 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 977 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 978 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 979 } 980 981 #define USE_ELF_CORE_DUMP 982 #define ELF_EXEC_PAGESIZE 4096 983 984 /* See arch/mips/include/uapi/asm/hwcap.h. */ 985 enum { 986 HWCAP_MIPS_R6 = (1 << 0), 987 HWCAP_MIPS_MSA = (1 << 1), 988 }; 989 990 #define ELF_HWCAP get_elf_hwcap() 991 992 static uint32_t get_elf_hwcap(void) 993 { 994 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 995 uint32_t hwcaps = 0; 996 997 #define GET_FEATURE(flag, hwcap) \ 998 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 999 1000 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 1001 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 1002 1003 #undef GET_FEATURE 1004 1005 return hwcaps; 1006 } 1007 1008 #endif /* TARGET_MIPS */ 1009 1010 #ifdef TARGET_MICROBLAZE 1011 1012 #define ELF_START_MMAP 0x80000000 1013 1014 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1015 1016 #define ELF_CLASS ELFCLASS32 1017 #define ELF_ARCH EM_MICROBLAZE 1018 1019 static inline void init_thread(struct target_pt_regs *regs, 1020 struct image_info *infop) 1021 { 1022 regs->pc = infop->entry; 1023 regs->r1 = infop->start_stack; 1024 1025 } 1026 1027 #define ELF_EXEC_PAGESIZE 4096 1028 1029 #define USE_ELF_CORE_DUMP 1030 #define ELF_NREG 38 1031 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1032 1033 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1034 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1035 { 1036 int i, pos = 0; 1037 1038 for (i = 0; i < 32; i++) { 1039 (*regs)[pos++] = tswapreg(env->regs[i]); 1040 } 1041 1042 (*regs)[pos++] = tswapreg(env->pc); 1043 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1044 (*regs)[pos++] = 0; 1045 (*regs)[pos++] = tswapreg(env->ear); 1046 (*regs)[pos++] = 0; 1047 (*regs)[pos++] = tswapreg(env->esr); 1048 } 1049 1050 #endif /* TARGET_MICROBLAZE */ 1051 1052 #ifdef TARGET_NIOS2 1053 1054 #define ELF_START_MMAP 0x80000000 1055 1056 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1057 1058 #define ELF_CLASS ELFCLASS32 1059 #define ELF_ARCH EM_ALTERA_NIOS2 1060 1061 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1062 { 1063 regs->ea = infop->entry; 1064 regs->sp = infop->start_stack; 1065 regs->estatus = 0x3; 1066 } 1067 1068 #define ELF_EXEC_PAGESIZE 4096 1069 1070 #define USE_ELF_CORE_DUMP 1071 #define ELF_NREG 49 1072 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1073 1074 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1075 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1076 const CPUNios2State *env) 1077 { 1078 int i; 1079 1080 (*regs)[0] = -1; 1081 for (i = 1; i < 8; i++) /* r0-r7 */ 1082 (*regs)[i] = tswapreg(env->regs[i + 7]); 1083 1084 for (i = 8; i < 16; i++) /* r8-r15 */ 1085 (*regs)[i] = tswapreg(env->regs[i - 8]); 1086 1087 for (i = 16; i < 24; i++) /* r16-r23 */ 1088 (*regs)[i] = tswapreg(env->regs[i + 7]); 1089 (*regs)[24] = -1; /* R_ET */ 1090 (*regs)[25] = -1; /* R_BT */ 1091 (*regs)[26] = tswapreg(env->regs[R_GP]); 1092 (*regs)[27] = tswapreg(env->regs[R_SP]); 1093 (*regs)[28] = tswapreg(env->regs[R_FP]); 1094 (*regs)[29] = tswapreg(env->regs[R_EA]); 1095 (*regs)[30] = -1; /* R_SSTATUS */ 1096 (*regs)[31] = tswapreg(env->regs[R_RA]); 1097 1098 (*regs)[32] = tswapreg(env->regs[R_PC]); 1099 1100 (*regs)[33] = -1; /* R_STATUS */ 1101 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1102 1103 for (i = 35; i < 49; i++) /* ... */ 1104 (*regs)[i] = -1; 1105 } 1106 1107 #endif /* TARGET_NIOS2 */ 1108 1109 #ifdef TARGET_OPENRISC 1110 1111 #define ELF_START_MMAP 0x08000000 1112 1113 #define ELF_ARCH EM_OPENRISC 1114 #define ELF_CLASS ELFCLASS32 1115 #define ELF_DATA ELFDATA2MSB 1116 1117 static inline void init_thread(struct target_pt_regs *regs, 1118 struct image_info *infop) 1119 { 1120 regs->pc = infop->entry; 1121 regs->gpr[1] = infop->start_stack; 1122 } 1123 1124 #define USE_ELF_CORE_DUMP 1125 #define ELF_EXEC_PAGESIZE 8192 1126 1127 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1128 #define ELF_NREG 34 /* gprs and pc, sr */ 1129 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1130 1131 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1132 const CPUOpenRISCState *env) 1133 { 1134 int i; 1135 1136 for (i = 0; i < 32; i++) { 1137 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1138 } 1139 (*regs)[32] = tswapreg(env->pc); 1140 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1141 } 1142 #define ELF_HWCAP 0 1143 #define ELF_PLATFORM NULL 1144 1145 #endif /* TARGET_OPENRISC */ 1146 1147 #ifdef TARGET_SH4 1148 1149 #define ELF_START_MMAP 0x80000000 1150 1151 #define ELF_CLASS ELFCLASS32 1152 #define ELF_ARCH EM_SH 1153 1154 static inline void init_thread(struct target_pt_regs *regs, 1155 struct image_info *infop) 1156 { 1157 /* Check other registers XXXXX */ 1158 regs->pc = infop->entry; 1159 regs->regs[15] = infop->start_stack; 1160 } 1161 1162 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1163 #define ELF_NREG 23 1164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1165 1166 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1167 enum { 1168 TARGET_REG_PC = 16, 1169 TARGET_REG_PR = 17, 1170 TARGET_REG_SR = 18, 1171 TARGET_REG_GBR = 19, 1172 TARGET_REG_MACH = 20, 1173 TARGET_REG_MACL = 21, 1174 TARGET_REG_SYSCALL = 22 1175 }; 1176 1177 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1178 const CPUSH4State *env) 1179 { 1180 int i; 1181 1182 for (i = 0; i < 16; i++) { 1183 (*regs)[i] = tswapreg(env->gregs[i]); 1184 } 1185 1186 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1187 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1188 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1189 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1190 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1191 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1192 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1193 } 1194 1195 #define USE_ELF_CORE_DUMP 1196 #define ELF_EXEC_PAGESIZE 4096 1197 1198 enum { 1199 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1200 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1201 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1202 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1203 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1204 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1205 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1206 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1207 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1208 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1209 }; 1210 1211 #define ELF_HWCAP get_elf_hwcap() 1212 1213 static uint32_t get_elf_hwcap(void) 1214 { 1215 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1216 uint32_t hwcap = 0; 1217 1218 hwcap |= SH_CPU_HAS_FPU; 1219 1220 if (cpu->env.features & SH_FEATURE_SH4A) { 1221 hwcap |= SH_CPU_HAS_LLSC; 1222 } 1223 1224 return hwcap; 1225 } 1226 1227 #endif 1228 1229 #ifdef TARGET_CRIS 1230 1231 #define ELF_START_MMAP 0x80000000 1232 1233 #define ELF_CLASS ELFCLASS32 1234 #define ELF_ARCH EM_CRIS 1235 1236 static inline void init_thread(struct target_pt_regs *regs, 1237 struct image_info *infop) 1238 { 1239 regs->erp = infop->entry; 1240 } 1241 1242 #define ELF_EXEC_PAGESIZE 8192 1243 1244 #endif 1245 1246 #ifdef TARGET_M68K 1247 1248 #define ELF_START_MMAP 0x80000000 1249 1250 #define ELF_CLASS ELFCLASS32 1251 #define ELF_ARCH EM_68K 1252 1253 /* ??? Does this need to do anything? 1254 #define ELF_PLAT_INIT(_r) */ 1255 1256 static inline void init_thread(struct target_pt_regs *regs, 1257 struct image_info *infop) 1258 { 1259 regs->usp = infop->start_stack; 1260 regs->sr = 0; 1261 regs->pc = infop->entry; 1262 } 1263 1264 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1265 #define ELF_NREG 20 1266 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1267 1268 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1269 { 1270 (*regs)[0] = tswapreg(env->dregs[1]); 1271 (*regs)[1] = tswapreg(env->dregs[2]); 1272 (*regs)[2] = tswapreg(env->dregs[3]); 1273 (*regs)[3] = tswapreg(env->dregs[4]); 1274 (*regs)[4] = tswapreg(env->dregs[5]); 1275 (*regs)[5] = tswapreg(env->dregs[6]); 1276 (*regs)[6] = tswapreg(env->dregs[7]); 1277 (*regs)[7] = tswapreg(env->aregs[0]); 1278 (*regs)[8] = tswapreg(env->aregs[1]); 1279 (*regs)[9] = tswapreg(env->aregs[2]); 1280 (*regs)[10] = tswapreg(env->aregs[3]); 1281 (*regs)[11] = tswapreg(env->aregs[4]); 1282 (*regs)[12] = tswapreg(env->aregs[5]); 1283 (*regs)[13] = tswapreg(env->aregs[6]); 1284 (*regs)[14] = tswapreg(env->dregs[0]); 1285 (*regs)[15] = tswapreg(env->aregs[7]); 1286 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1287 (*regs)[17] = tswapreg(env->sr); 1288 (*regs)[18] = tswapreg(env->pc); 1289 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1290 } 1291 1292 #define USE_ELF_CORE_DUMP 1293 #define ELF_EXEC_PAGESIZE 8192 1294 1295 #endif 1296 1297 #ifdef TARGET_ALPHA 1298 1299 #define ELF_START_MMAP (0x30000000000ULL) 1300 1301 #define ELF_CLASS ELFCLASS64 1302 #define ELF_ARCH EM_ALPHA 1303 1304 static inline void init_thread(struct target_pt_regs *regs, 1305 struct image_info *infop) 1306 { 1307 regs->pc = infop->entry; 1308 regs->ps = 8; 1309 regs->usp = infop->start_stack; 1310 } 1311 1312 #define ELF_EXEC_PAGESIZE 8192 1313 1314 #endif /* TARGET_ALPHA */ 1315 1316 #ifdef TARGET_S390X 1317 1318 #define ELF_START_MMAP (0x20000000000ULL) 1319 1320 #define ELF_CLASS ELFCLASS64 1321 #define ELF_DATA ELFDATA2MSB 1322 #define ELF_ARCH EM_S390 1323 1324 #include "elf.h" 1325 1326 #define ELF_HWCAP get_elf_hwcap() 1327 1328 #define GET_FEATURE(_feat, _hwcap) \ 1329 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1330 1331 static uint32_t get_elf_hwcap(void) 1332 { 1333 /* 1334 * Let's assume we always have esan3 and zarch. 1335 * 31-bit processes can use 64-bit registers (high gprs). 1336 */ 1337 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1338 1339 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1340 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1341 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1342 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1343 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1344 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1345 hwcap |= HWCAP_S390_ETF3EH; 1346 } 1347 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1348 1349 return hwcap; 1350 } 1351 1352 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1353 { 1354 regs->psw.addr = infop->entry; 1355 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1356 regs->gprs[15] = infop->start_stack; 1357 } 1358 1359 #endif /* TARGET_S390X */ 1360 1361 #ifdef TARGET_TILEGX 1362 1363 /* 42 bits real used address, a half for user mode */ 1364 #define ELF_START_MMAP (0x00000020000000000ULL) 1365 1366 #define elf_check_arch(x) ((x) == EM_TILEGX) 1367 1368 #define ELF_CLASS ELFCLASS64 1369 #define ELF_DATA ELFDATA2LSB 1370 #define ELF_ARCH EM_TILEGX 1371 1372 static inline void init_thread(struct target_pt_regs *regs, 1373 struct image_info *infop) 1374 { 1375 regs->pc = infop->entry; 1376 regs->sp = infop->start_stack; 1377 1378 } 1379 1380 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1381 1382 #endif /* TARGET_TILEGX */ 1383 1384 #ifdef TARGET_RISCV 1385 1386 #define ELF_START_MMAP 0x80000000 1387 #define ELF_ARCH EM_RISCV 1388 1389 #ifdef TARGET_RISCV32 1390 #define ELF_CLASS ELFCLASS32 1391 #else 1392 #define ELF_CLASS ELFCLASS64 1393 #endif 1394 1395 static inline void init_thread(struct target_pt_regs *regs, 1396 struct image_info *infop) 1397 { 1398 regs->sepc = infop->entry; 1399 regs->sp = infop->start_stack; 1400 } 1401 1402 #define ELF_EXEC_PAGESIZE 4096 1403 1404 #endif /* TARGET_RISCV */ 1405 1406 #ifdef TARGET_HPPA 1407 1408 #define ELF_START_MMAP 0x80000000 1409 #define ELF_CLASS ELFCLASS32 1410 #define ELF_ARCH EM_PARISC 1411 #define ELF_PLATFORM "PARISC" 1412 #define STACK_GROWS_DOWN 0 1413 #define STACK_ALIGNMENT 64 1414 1415 static inline void init_thread(struct target_pt_regs *regs, 1416 struct image_info *infop) 1417 { 1418 regs->iaoq[0] = infop->entry; 1419 regs->iaoq[1] = infop->entry + 4; 1420 regs->gr[23] = 0; 1421 regs->gr[24] = infop->arg_start; 1422 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1423 /* The top-of-stack contains a linkage buffer. */ 1424 regs->gr[30] = infop->start_stack + 64; 1425 regs->gr[31] = infop->entry; 1426 } 1427 1428 #endif /* TARGET_HPPA */ 1429 1430 #ifdef TARGET_XTENSA 1431 1432 #define ELF_START_MMAP 0x20000000 1433 1434 #define ELF_CLASS ELFCLASS32 1435 #define ELF_ARCH EM_XTENSA 1436 1437 static inline void init_thread(struct target_pt_regs *regs, 1438 struct image_info *infop) 1439 { 1440 regs->windowbase = 0; 1441 regs->windowstart = 1; 1442 regs->areg[1] = infop->start_stack; 1443 regs->pc = infop->entry; 1444 } 1445 1446 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1447 #define ELF_NREG 128 1448 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1449 1450 enum { 1451 TARGET_REG_PC, 1452 TARGET_REG_PS, 1453 TARGET_REG_LBEG, 1454 TARGET_REG_LEND, 1455 TARGET_REG_LCOUNT, 1456 TARGET_REG_SAR, 1457 TARGET_REG_WINDOWSTART, 1458 TARGET_REG_WINDOWBASE, 1459 TARGET_REG_THREADPTR, 1460 TARGET_REG_AR0 = 64, 1461 }; 1462 1463 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1464 const CPUXtensaState *env) 1465 { 1466 unsigned i; 1467 1468 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1469 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1470 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1471 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1472 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1473 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1474 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1475 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1476 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1477 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1478 for (i = 0; i < env->config->nareg; ++i) { 1479 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1480 } 1481 } 1482 1483 #define USE_ELF_CORE_DUMP 1484 #define ELF_EXEC_PAGESIZE 4096 1485 1486 #endif /* TARGET_XTENSA */ 1487 1488 #ifndef ELF_PLATFORM 1489 #define ELF_PLATFORM (NULL) 1490 #endif 1491 1492 #ifndef ELF_MACHINE 1493 #define ELF_MACHINE ELF_ARCH 1494 #endif 1495 1496 #ifndef elf_check_arch 1497 #define elf_check_arch(x) ((x) == ELF_ARCH) 1498 #endif 1499 1500 #ifndef elf_check_abi 1501 #define elf_check_abi(x) (1) 1502 #endif 1503 1504 #ifndef ELF_HWCAP 1505 #define ELF_HWCAP 0 1506 #endif 1507 1508 #ifndef STACK_GROWS_DOWN 1509 #define STACK_GROWS_DOWN 1 1510 #endif 1511 1512 #ifndef STACK_ALIGNMENT 1513 #define STACK_ALIGNMENT 16 1514 #endif 1515 1516 #ifdef TARGET_ABI32 1517 #undef ELF_CLASS 1518 #define ELF_CLASS ELFCLASS32 1519 #undef bswaptls 1520 #define bswaptls(ptr) bswap32s(ptr) 1521 #endif 1522 1523 #include "elf.h" 1524 1525 /* We must delay the following stanzas until after "elf.h". */ 1526 #if defined(TARGET_AARCH64) 1527 1528 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1529 const uint32_t *data, 1530 struct image_info *info, 1531 Error **errp) 1532 { 1533 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1534 if (pr_datasz != sizeof(uint32_t)) { 1535 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1536 return false; 1537 } 1538 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1539 info->note_flags = *data; 1540 } 1541 return true; 1542 } 1543 #define ARCH_USE_GNU_PROPERTY 1 1544 1545 #else 1546 1547 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1548 const uint32_t *data, 1549 struct image_info *info, 1550 Error **errp) 1551 { 1552 g_assert_not_reached(); 1553 } 1554 #define ARCH_USE_GNU_PROPERTY 0 1555 1556 #endif 1557 1558 struct exec 1559 { 1560 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1561 unsigned int a_text; /* length of text, in bytes */ 1562 unsigned int a_data; /* length of data, in bytes */ 1563 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1564 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1565 unsigned int a_entry; /* start address */ 1566 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1567 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1568 }; 1569 1570 1571 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1572 #define OMAGIC 0407 1573 #define NMAGIC 0410 1574 #define ZMAGIC 0413 1575 #define QMAGIC 0314 1576 1577 /* Necessary parameters */ 1578 #define TARGET_ELF_EXEC_PAGESIZE \ 1579 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1580 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1581 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1582 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1583 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1584 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1585 1586 #define DLINFO_ITEMS 16 1587 1588 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1589 { 1590 memcpy(to, from, n); 1591 } 1592 1593 #ifdef BSWAP_NEEDED 1594 static void bswap_ehdr(struct elfhdr *ehdr) 1595 { 1596 bswap16s(&ehdr->e_type); /* Object file type */ 1597 bswap16s(&ehdr->e_machine); /* Architecture */ 1598 bswap32s(&ehdr->e_version); /* Object file version */ 1599 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1600 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1601 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1602 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1603 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1604 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1605 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1606 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1607 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1608 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1609 } 1610 1611 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1612 { 1613 int i; 1614 for (i = 0; i < phnum; ++i, ++phdr) { 1615 bswap32s(&phdr->p_type); /* Segment type */ 1616 bswap32s(&phdr->p_flags); /* Segment flags */ 1617 bswaptls(&phdr->p_offset); /* Segment file offset */ 1618 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1619 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1620 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1621 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1622 bswaptls(&phdr->p_align); /* Segment alignment */ 1623 } 1624 } 1625 1626 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1627 { 1628 int i; 1629 for (i = 0; i < shnum; ++i, ++shdr) { 1630 bswap32s(&shdr->sh_name); 1631 bswap32s(&shdr->sh_type); 1632 bswaptls(&shdr->sh_flags); 1633 bswaptls(&shdr->sh_addr); 1634 bswaptls(&shdr->sh_offset); 1635 bswaptls(&shdr->sh_size); 1636 bswap32s(&shdr->sh_link); 1637 bswap32s(&shdr->sh_info); 1638 bswaptls(&shdr->sh_addralign); 1639 bswaptls(&shdr->sh_entsize); 1640 } 1641 } 1642 1643 static void bswap_sym(struct elf_sym *sym) 1644 { 1645 bswap32s(&sym->st_name); 1646 bswaptls(&sym->st_value); 1647 bswaptls(&sym->st_size); 1648 bswap16s(&sym->st_shndx); 1649 } 1650 1651 #ifdef TARGET_MIPS 1652 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1653 { 1654 bswap16s(&abiflags->version); 1655 bswap32s(&abiflags->ases); 1656 bswap32s(&abiflags->isa_ext); 1657 bswap32s(&abiflags->flags1); 1658 bswap32s(&abiflags->flags2); 1659 } 1660 #endif 1661 #else 1662 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1663 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1664 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1665 static inline void bswap_sym(struct elf_sym *sym) { } 1666 #ifdef TARGET_MIPS 1667 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1668 #endif 1669 #endif 1670 1671 #ifdef USE_ELF_CORE_DUMP 1672 static int elf_core_dump(int, const CPUArchState *); 1673 #endif /* USE_ELF_CORE_DUMP */ 1674 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1675 1676 /* Verify the portions of EHDR within E_IDENT for the target. 1677 This can be performed before bswapping the entire header. */ 1678 static bool elf_check_ident(struct elfhdr *ehdr) 1679 { 1680 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1681 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1682 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1683 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1684 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1685 && ehdr->e_ident[EI_DATA] == ELF_DATA 1686 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1687 } 1688 1689 /* Verify the portions of EHDR outside of E_IDENT for the target. 1690 This has to wait until after bswapping the header. */ 1691 static bool elf_check_ehdr(struct elfhdr *ehdr) 1692 { 1693 return (elf_check_arch(ehdr->e_machine) 1694 && elf_check_abi(ehdr->e_flags) 1695 && ehdr->e_ehsize == sizeof(struct elfhdr) 1696 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1697 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1698 } 1699 1700 /* 1701 * 'copy_elf_strings()' copies argument/envelope strings from user 1702 * memory to free pages in kernel mem. These are in a format ready 1703 * to be put directly into the top of new user memory. 1704 * 1705 */ 1706 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1707 abi_ulong p, abi_ulong stack_limit) 1708 { 1709 char *tmp; 1710 int len, i; 1711 abi_ulong top = p; 1712 1713 if (!p) { 1714 return 0; /* bullet-proofing */ 1715 } 1716 1717 if (STACK_GROWS_DOWN) { 1718 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1719 for (i = argc - 1; i >= 0; --i) { 1720 tmp = argv[i]; 1721 if (!tmp) { 1722 fprintf(stderr, "VFS: argc is wrong"); 1723 exit(-1); 1724 } 1725 len = strlen(tmp) + 1; 1726 tmp += len; 1727 1728 if (len > (p - stack_limit)) { 1729 return 0; 1730 } 1731 while (len) { 1732 int bytes_to_copy = (len > offset) ? offset : len; 1733 tmp -= bytes_to_copy; 1734 p -= bytes_to_copy; 1735 offset -= bytes_to_copy; 1736 len -= bytes_to_copy; 1737 1738 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1739 1740 if (offset == 0) { 1741 memcpy_to_target(p, scratch, top - p); 1742 top = p; 1743 offset = TARGET_PAGE_SIZE; 1744 } 1745 } 1746 } 1747 if (p != top) { 1748 memcpy_to_target(p, scratch + offset, top - p); 1749 } 1750 } else { 1751 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1752 for (i = 0; i < argc; ++i) { 1753 tmp = argv[i]; 1754 if (!tmp) { 1755 fprintf(stderr, "VFS: argc is wrong"); 1756 exit(-1); 1757 } 1758 len = strlen(tmp) + 1; 1759 if (len > (stack_limit - p)) { 1760 return 0; 1761 } 1762 while (len) { 1763 int bytes_to_copy = (len > remaining) ? remaining : len; 1764 1765 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1766 1767 tmp += bytes_to_copy; 1768 remaining -= bytes_to_copy; 1769 p += bytes_to_copy; 1770 len -= bytes_to_copy; 1771 1772 if (remaining == 0) { 1773 memcpy_to_target(top, scratch, p - top); 1774 top = p; 1775 remaining = TARGET_PAGE_SIZE; 1776 } 1777 } 1778 } 1779 if (p != top) { 1780 memcpy_to_target(top, scratch, p - top); 1781 } 1782 } 1783 1784 return p; 1785 } 1786 1787 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1788 * argument/environment space. Newer kernels (>2.6.33) allow more, 1789 * dependent on stack size, but guarantee at least 32 pages for 1790 * backwards compatibility. 1791 */ 1792 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1793 1794 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1795 struct image_info *info) 1796 { 1797 abi_ulong size, error, guard; 1798 1799 size = guest_stack_size; 1800 if (size < STACK_LOWER_LIMIT) { 1801 size = STACK_LOWER_LIMIT; 1802 } 1803 guard = TARGET_PAGE_SIZE; 1804 if (guard < qemu_real_host_page_size) { 1805 guard = qemu_real_host_page_size; 1806 } 1807 1808 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1809 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1810 if (error == -1) { 1811 perror("mmap stack"); 1812 exit(-1); 1813 } 1814 1815 /* We reserve one extra page at the top of the stack as guard. */ 1816 if (STACK_GROWS_DOWN) { 1817 target_mprotect(error, guard, PROT_NONE); 1818 info->stack_limit = error + guard; 1819 return info->stack_limit + size - sizeof(void *); 1820 } else { 1821 target_mprotect(error + size, guard, PROT_NONE); 1822 info->stack_limit = error + size; 1823 return error; 1824 } 1825 } 1826 1827 /* Map and zero the bss. We need to explicitly zero any fractional pages 1828 after the data section (i.e. bss). */ 1829 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1830 { 1831 uintptr_t host_start, host_map_start, host_end; 1832 1833 last_bss = TARGET_PAGE_ALIGN(last_bss); 1834 1835 /* ??? There is confusion between qemu_real_host_page_size and 1836 qemu_host_page_size here and elsewhere in target_mmap, which 1837 may lead to the end of the data section mapping from the file 1838 not being mapped. At least there was an explicit test and 1839 comment for that here, suggesting that "the file size must 1840 be known". The comment probably pre-dates the introduction 1841 of the fstat system call in target_mmap which does in fact 1842 find out the size. What isn't clear is if the workaround 1843 here is still actually needed. For now, continue with it, 1844 but merge it with the "normal" mmap that would allocate the bss. */ 1845 1846 host_start = (uintptr_t) g2h(elf_bss); 1847 host_end = (uintptr_t) g2h(last_bss); 1848 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1849 1850 if (host_map_start < host_end) { 1851 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1852 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1853 if (p == MAP_FAILED) { 1854 perror("cannot mmap brk"); 1855 exit(-1); 1856 } 1857 } 1858 1859 /* Ensure that the bss page(s) are valid */ 1860 if ((page_get_flags(last_bss-1) & prot) != prot) { 1861 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1862 } 1863 1864 if (host_start < host_map_start) { 1865 memset((void *)host_start, 0, host_map_start - host_start); 1866 } 1867 } 1868 1869 #ifdef TARGET_ARM 1870 static int elf_is_fdpic(struct elfhdr *exec) 1871 { 1872 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1873 } 1874 #else 1875 /* Default implementation, always false. */ 1876 static int elf_is_fdpic(struct elfhdr *exec) 1877 { 1878 return 0; 1879 } 1880 #endif 1881 1882 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1883 { 1884 uint16_t n; 1885 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1886 1887 /* elf32_fdpic_loadseg */ 1888 n = info->nsegs; 1889 while (n--) { 1890 sp -= 12; 1891 put_user_u32(loadsegs[n].addr, sp+0); 1892 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1893 put_user_u32(loadsegs[n].p_memsz, sp+8); 1894 } 1895 1896 /* elf32_fdpic_loadmap */ 1897 sp -= 4; 1898 put_user_u16(0, sp+0); /* version */ 1899 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1900 1901 info->personality = PER_LINUX_FDPIC; 1902 info->loadmap_addr = sp; 1903 1904 return sp; 1905 } 1906 1907 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1908 struct elfhdr *exec, 1909 struct image_info *info, 1910 struct image_info *interp_info) 1911 { 1912 abi_ulong sp; 1913 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1914 int size; 1915 int i; 1916 abi_ulong u_rand_bytes; 1917 uint8_t k_rand_bytes[16]; 1918 abi_ulong u_platform; 1919 const char *k_platform; 1920 const int n = sizeof(elf_addr_t); 1921 1922 sp = p; 1923 1924 /* Needs to be before we load the env/argc/... */ 1925 if (elf_is_fdpic(exec)) { 1926 /* Need 4 byte alignment for these structs */ 1927 sp &= ~3; 1928 sp = loader_build_fdpic_loadmap(info, sp); 1929 info->other_info = interp_info; 1930 if (interp_info) { 1931 interp_info->other_info = info; 1932 sp = loader_build_fdpic_loadmap(interp_info, sp); 1933 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1934 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1935 } else { 1936 info->interpreter_loadmap_addr = 0; 1937 info->interpreter_pt_dynamic_addr = 0; 1938 } 1939 } 1940 1941 u_platform = 0; 1942 k_platform = ELF_PLATFORM; 1943 if (k_platform) { 1944 size_t len = strlen(k_platform) + 1; 1945 if (STACK_GROWS_DOWN) { 1946 sp -= (len + n - 1) & ~(n - 1); 1947 u_platform = sp; 1948 /* FIXME - check return value of memcpy_to_target() for failure */ 1949 memcpy_to_target(sp, k_platform, len); 1950 } else { 1951 memcpy_to_target(sp, k_platform, len); 1952 u_platform = sp; 1953 sp += len + 1; 1954 } 1955 } 1956 1957 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1958 * the argv and envp pointers. 1959 */ 1960 if (STACK_GROWS_DOWN) { 1961 sp = QEMU_ALIGN_DOWN(sp, 16); 1962 } else { 1963 sp = QEMU_ALIGN_UP(sp, 16); 1964 } 1965 1966 /* 1967 * Generate 16 random bytes for userspace PRNG seeding. 1968 */ 1969 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 1970 if (STACK_GROWS_DOWN) { 1971 sp -= 16; 1972 u_rand_bytes = sp; 1973 /* FIXME - check return value of memcpy_to_target() for failure */ 1974 memcpy_to_target(sp, k_rand_bytes, 16); 1975 } else { 1976 memcpy_to_target(sp, k_rand_bytes, 16); 1977 u_rand_bytes = sp; 1978 sp += 16; 1979 } 1980 1981 size = (DLINFO_ITEMS + 1) * 2; 1982 if (k_platform) 1983 size += 2; 1984 #ifdef DLINFO_ARCH_ITEMS 1985 size += DLINFO_ARCH_ITEMS * 2; 1986 #endif 1987 #ifdef ELF_HWCAP2 1988 size += 2; 1989 #endif 1990 info->auxv_len = size * n; 1991 1992 size += envc + argc + 2; 1993 size += 1; /* argc itself */ 1994 size *= n; 1995 1996 /* Allocate space and finalize stack alignment for entry now. */ 1997 if (STACK_GROWS_DOWN) { 1998 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1999 sp = u_argc; 2000 } else { 2001 u_argc = sp; 2002 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2003 } 2004 2005 u_argv = u_argc + n; 2006 u_envp = u_argv + (argc + 1) * n; 2007 u_auxv = u_envp + (envc + 1) * n; 2008 info->saved_auxv = u_auxv; 2009 info->arg_start = u_argv; 2010 info->arg_end = u_argv + argc * n; 2011 2012 /* This is correct because Linux defines 2013 * elf_addr_t as Elf32_Off / Elf64_Off 2014 */ 2015 #define NEW_AUX_ENT(id, val) do { \ 2016 put_user_ual(id, u_auxv); u_auxv += n; \ 2017 put_user_ual(val, u_auxv); u_auxv += n; \ 2018 } while(0) 2019 2020 #ifdef ARCH_DLINFO 2021 /* 2022 * ARCH_DLINFO must come first so platform specific code can enforce 2023 * special alignment requirements on the AUXV if necessary (eg. PPC). 2024 */ 2025 ARCH_DLINFO; 2026 #endif 2027 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2028 * on info->auxv_len will trigger. 2029 */ 2030 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2031 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2032 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2033 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2034 /* Target doesn't support host page size alignment */ 2035 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2036 } else { 2037 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2038 qemu_host_page_size))); 2039 } 2040 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2041 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2042 NEW_AUX_ENT(AT_ENTRY, info->entry); 2043 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2044 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2045 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2046 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2047 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2048 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2049 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2050 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2051 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2052 2053 #ifdef ELF_HWCAP2 2054 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2055 #endif 2056 2057 if (u_platform) { 2058 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2059 } 2060 NEW_AUX_ENT (AT_NULL, 0); 2061 #undef NEW_AUX_ENT 2062 2063 /* Check that our initial calculation of the auxv length matches how much 2064 * we actually put into it. 2065 */ 2066 assert(info->auxv_len == u_auxv - info->saved_auxv); 2067 2068 put_user_ual(argc, u_argc); 2069 2070 p = info->arg_strings; 2071 for (i = 0; i < argc; ++i) { 2072 put_user_ual(p, u_argv); 2073 u_argv += n; 2074 p += target_strlen(p) + 1; 2075 } 2076 put_user_ual(0, u_argv); 2077 2078 p = info->env_strings; 2079 for (i = 0; i < envc; ++i) { 2080 put_user_ual(p, u_envp); 2081 u_envp += n; 2082 p += target_strlen(p) + 1; 2083 } 2084 put_user_ual(0, u_envp); 2085 2086 return sp; 2087 } 2088 2089 #ifndef ARM_COMMPAGE 2090 #define ARM_COMMPAGE 0 2091 #define init_guest_commpage() true 2092 #endif 2093 2094 static void pgb_fail_in_use(const char *image_name) 2095 { 2096 error_report("%s: requires virtual address space that is in use " 2097 "(omit the -B option or choose a different value)", 2098 image_name); 2099 exit(EXIT_FAILURE); 2100 } 2101 2102 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2103 abi_ulong guest_hiaddr, long align) 2104 { 2105 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2106 void *addr, *test; 2107 2108 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2109 fprintf(stderr, "Requested guest base 0x%lx does not satisfy " 2110 "host minimum alignment (0x%lx)\n", 2111 guest_base, align); 2112 exit(EXIT_FAILURE); 2113 } 2114 2115 /* Sanity check the guest binary. */ 2116 if (reserved_va) { 2117 if (guest_hiaddr > reserved_va) { 2118 error_report("%s: requires more than reserved virtual " 2119 "address space (0x%" PRIx64 " > 0x%lx)", 2120 image_name, (uint64_t)guest_hiaddr, reserved_va); 2121 exit(EXIT_FAILURE); 2122 } 2123 } else { 2124 #if HOST_LONG_BITS < TARGET_ABI_BITS 2125 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2126 error_report("%s: requires more virtual address space " 2127 "than the host can provide (0x%" PRIx64 ")", 2128 image_name, (uint64_t)guest_hiaddr - guest_base); 2129 exit(EXIT_FAILURE); 2130 } 2131 #endif 2132 } 2133 2134 /* 2135 * Expand the allocation to the entire reserved_va. 2136 * Exclude the mmap_min_addr hole. 2137 */ 2138 if (reserved_va) { 2139 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2140 : mmap_min_addr - guest_base); 2141 guest_hiaddr = reserved_va; 2142 } 2143 2144 /* Reserve the address space for the binary, or reserved_va. */ 2145 test = g2h(guest_loaddr); 2146 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2147 if (test != addr) { 2148 pgb_fail_in_use(image_name); 2149 } 2150 } 2151 2152 /** 2153 * pgd_find_hole_fallback: potential mmap address 2154 * @guest_size: size of available space 2155 * @brk: location of break 2156 * @align: memory alignment 2157 * 2158 * This is a fallback method for finding a hole in the host address 2159 * space if we don't have the benefit of being able to access 2160 * /proc/self/map. It can potentially take a very long time as we can 2161 * only dumbly iterate up the host address space seeing if the 2162 * allocation would work. 2163 */ 2164 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2165 long align, uintptr_t offset) 2166 { 2167 uintptr_t base; 2168 2169 /* Start (aligned) at the bottom and work our way up */ 2170 base = ROUND_UP(mmap_min_addr, align); 2171 2172 while (true) { 2173 uintptr_t align_start, end; 2174 align_start = ROUND_UP(base, align); 2175 end = align_start + guest_size + offset; 2176 2177 /* if brk is anywhere in the range give ourselves some room to grow. */ 2178 if (align_start <= brk && brk < end) { 2179 base = brk + (16 * MiB); 2180 continue; 2181 } else if (align_start + guest_size < align_start) { 2182 /* we have run out of space */ 2183 return -1; 2184 } else { 2185 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2186 MAP_FIXED_NOREPLACE; 2187 void * mmap_start = mmap((void *) align_start, guest_size, 2188 PROT_NONE, flags, -1, 0); 2189 if (mmap_start != MAP_FAILED) { 2190 munmap((void *) align_start, guest_size); 2191 if (MAP_FIXED_NOREPLACE != 0 || 2192 mmap_start == (void *) align_start) { 2193 return (uintptr_t) mmap_start + offset; 2194 } 2195 } 2196 base += qemu_host_page_size; 2197 } 2198 } 2199 } 2200 2201 /* Return value for guest_base, or -1 if no hole found. */ 2202 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2203 long align, uintptr_t offset) 2204 { 2205 GSList *maps, *iter; 2206 uintptr_t this_start, this_end, next_start, brk; 2207 intptr_t ret = -1; 2208 2209 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2210 2211 maps = read_self_maps(); 2212 2213 /* Read brk after we've read the maps, which will malloc. */ 2214 brk = (uintptr_t)sbrk(0); 2215 2216 if (!maps) { 2217 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2218 } 2219 2220 /* The first hole is before the first map entry. */ 2221 this_start = mmap_min_addr; 2222 2223 for (iter = maps; iter; 2224 this_start = next_start, iter = g_slist_next(iter)) { 2225 uintptr_t align_start, hole_size; 2226 2227 this_end = ((MapInfo *)iter->data)->start; 2228 next_start = ((MapInfo *)iter->data)->end; 2229 align_start = ROUND_UP(this_start + offset, align); 2230 2231 /* Skip holes that are too small. */ 2232 if (align_start >= this_end) { 2233 continue; 2234 } 2235 hole_size = this_end - align_start; 2236 if (hole_size < guest_size) { 2237 continue; 2238 } 2239 2240 /* If this hole contains brk, give ourselves some room to grow. */ 2241 if (this_start <= brk && brk < this_end) { 2242 hole_size -= guest_size; 2243 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2244 align_start += 1 * GiB; 2245 } else if (hole_size >= 16 * MiB) { 2246 align_start += 16 * MiB; 2247 } else { 2248 align_start = (this_end - guest_size) & -align; 2249 if (align_start < this_start) { 2250 continue; 2251 } 2252 } 2253 } 2254 2255 /* Record the lowest successful match. */ 2256 if (ret < 0) { 2257 ret = align_start - guest_loaddr; 2258 } 2259 /* If this hole contains the identity map, select it. */ 2260 if (align_start <= guest_loaddr && 2261 guest_loaddr + guest_size <= this_end) { 2262 ret = 0; 2263 } 2264 /* If this hole ends above the identity map, stop looking. */ 2265 if (this_end >= guest_loaddr) { 2266 break; 2267 } 2268 } 2269 free_self_maps(maps); 2270 2271 return ret; 2272 } 2273 2274 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2275 abi_ulong orig_hiaddr, long align) 2276 { 2277 uintptr_t loaddr = orig_loaddr; 2278 uintptr_t hiaddr = orig_hiaddr; 2279 uintptr_t offset = 0; 2280 uintptr_t addr; 2281 2282 if (hiaddr != orig_hiaddr) { 2283 error_report("%s: requires virtual address space that the " 2284 "host cannot provide (0x%" PRIx64 ")", 2285 image_name, (uint64_t)orig_hiaddr); 2286 exit(EXIT_FAILURE); 2287 } 2288 2289 loaddr &= -align; 2290 if (ARM_COMMPAGE) { 2291 /* 2292 * Extend the allocation to include the commpage. 2293 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2294 * need to ensure there is space bellow the guest_base so we 2295 * can map the commpage in the place needed when the address 2296 * arithmetic wraps around. 2297 */ 2298 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2299 hiaddr = (uintptr_t) 4 << 30; 2300 } else { 2301 offset = -(ARM_COMMPAGE & -align); 2302 } 2303 } 2304 2305 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2306 if (addr == -1) { 2307 /* 2308 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation 2309 * that can satisfy both. But as the normal arm32 link base address 2310 * is ~32k, and we extend down to include the commpage, making the 2311 * overhead only ~96k, this is unlikely. 2312 */ 2313 error_report("%s: Unable to allocate %#zx bytes of " 2314 "virtual address space", image_name, 2315 (size_t)(hiaddr - loaddr)); 2316 exit(EXIT_FAILURE); 2317 } 2318 2319 guest_base = addr; 2320 } 2321 2322 static void pgb_dynamic(const char *image_name, long align) 2323 { 2324 /* 2325 * The executable is dynamic and does not require a fixed address. 2326 * All we need is a commpage that satisfies align. 2327 * If we do not need a commpage, leave guest_base == 0. 2328 */ 2329 if (ARM_COMMPAGE) { 2330 uintptr_t addr, commpage; 2331 2332 /* 64-bit hosts should have used reserved_va. */ 2333 assert(sizeof(uintptr_t) == 4); 2334 2335 /* 2336 * By putting the commpage at the first hole, that puts guest_base 2337 * just above that, and maximises the positive guest addresses. 2338 */ 2339 commpage = ARM_COMMPAGE & -align; 2340 addr = pgb_find_hole(commpage, -commpage, align, 0); 2341 assert(addr != -1); 2342 guest_base = addr; 2343 } 2344 } 2345 2346 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2347 abi_ulong guest_hiaddr, long align) 2348 { 2349 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2350 void *addr, *test; 2351 2352 if (guest_hiaddr > reserved_va) { 2353 error_report("%s: requires more than reserved virtual " 2354 "address space (0x%" PRIx64 " > 0x%lx)", 2355 image_name, (uint64_t)guest_hiaddr, reserved_va); 2356 exit(EXIT_FAILURE); 2357 } 2358 2359 /* Widen the "image" to the entire reserved address space. */ 2360 pgb_static(image_name, 0, reserved_va, align); 2361 2362 /* osdep.h defines this as 0 if it's missing */ 2363 flags |= MAP_FIXED_NOREPLACE; 2364 2365 /* Reserve the memory on the host. */ 2366 assert(guest_base != 0); 2367 test = g2h(0); 2368 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2369 if (addr == MAP_FAILED || addr != test) { 2370 error_report("Unable to reserve 0x%lx bytes of virtual address " 2371 "space at %p (%s) for use as guest address space (check your" 2372 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2373 "using -R option)", reserved_va, test, strerror(errno)); 2374 exit(EXIT_FAILURE); 2375 } 2376 } 2377 2378 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2379 abi_ulong guest_hiaddr) 2380 { 2381 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2382 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2383 2384 if (have_guest_base) { 2385 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2386 } else if (reserved_va) { 2387 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2388 } else if (guest_loaddr) { 2389 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2390 } else { 2391 pgb_dynamic(image_name, align); 2392 } 2393 2394 /* Reserve and initialize the commpage. */ 2395 if (!init_guest_commpage()) { 2396 /* 2397 * With have_guest_base, the user has selected the address and 2398 * we are trying to work with that. Otherwise, we have selected 2399 * free space and init_guest_commpage must succeeded. 2400 */ 2401 assert(have_guest_base); 2402 pgb_fail_in_use(image_name); 2403 } 2404 2405 assert(QEMU_IS_ALIGNED(guest_base, align)); 2406 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2407 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2408 } 2409 2410 enum { 2411 /* The string "GNU\0" as a magic number. */ 2412 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2413 NOTE_DATA_SZ = 1 * KiB, 2414 NOTE_NAME_SZ = 4, 2415 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2416 }; 2417 2418 /* 2419 * Process a single gnu_property entry. 2420 * Return false for error. 2421 */ 2422 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2423 struct image_info *info, bool have_prev_type, 2424 uint32_t *prev_type, Error **errp) 2425 { 2426 uint32_t pr_type, pr_datasz, step; 2427 2428 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2429 goto error_data; 2430 } 2431 datasz -= *off; 2432 data += *off / sizeof(uint32_t); 2433 2434 if (datasz < 2 * sizeof(uint32_t)) { 2435 goto error_data; 2436 } 2437 pr_type = data[0]; 2438 pr_datasz = data[1]; 2439 data += 2; 2440 datasz -= 2 * sizeof(uint32_t); 2441 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2442 if (step > datasz) { 2443 goto error_data; 2444 } 2445 2446 /* Properties are supposed to be unique and sorted on pr_type. */ 2447 if (have_prev_type && pr_type <= *prev_type) { 2448 if (pr_type == *prev_type) { 2449 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2450 } else { 2451 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2452 } 2453 return false; 2454 } 2455 *prev_type = pr_type; 2456 2457 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2458 return false; 2459 } 2460 2461 *off += 2 * sizeof(uint32_t) + step; 2462 return true; 2463 2464 error_data: 2465 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2466 return false; 2467 } 2468 2469 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2470 static bool parse_elf_properties(int image_fd, 2471 struct image_info *info, 2472 const struct elf_phdr *phdr, 2473 char bprm_buf[BPRM_BUF_SIZE], 2474 Error **errp) 2475 { 2476 union { 2477 struct elf_note nhdr; 2478 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2479 } note; 2480 2481 int n, off, datasz; 2482 bool have_prev_type; 2483 uint32_t prev_type; 2484 2485 /* Unless the arch requires properties, ignore them. */ 2486 if (!ARCH_USE_GNU_PROPERTY) { 2487 return true; 2488 } 2489 2490 /* If the properties are crazy large, that's too bad. */ 2491 n = phdr->p_filesz; 2492 if (n > sizeof(note)) { 2493 error_setg(errp, "PT_GNU_PROPERTY too large"); 2494 return false; 2495 } 2496 if (n < sizeof(note.nhdr)) { 2497 error_setg(errp, "PT_GNU_PROPERTY too small"); 2498 return false; 2499 } 2500 2501 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2502 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2503 } else { 2504 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2505 if (len != n) { 2506 error_setg_errno(errp, errno, "Error reading file header"); 2507 return false; 2508 } 2509 } 2510 2511 /* 2512 * The contents of a valid PT_GNU_PROPERTY is a sequence 2513 * of uint32_t -- swap them all now. 2514 */ 2515 #ifdef BSWAP_NEEDED 2516 for (int i = 0; i < n / 4; i++) { 2517 bswap32s(note.data + i); 2518 } 2519 #endif 2520 2521 /* 2522 * Note that nhdr is 3 words, and that the "name" described by namesz 2523 * immediately follows nhdr and is thus at the 4th word. Further, all 2524 * of the inputs to the kernel's round_up are multiples of 4. 2525 */ 2526 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2527 note.nhdr.n_namesz != NOTE_NAME_SZ || 2528 note.data[3] != GNU0_MAGIC) { 2529 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2530 return false; 2531 } 2532 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2533 2534 datasz = note.nhdr.n_descsz + off; 2535 if (datasz > n) { 2536 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2537 return false; 2538 } 2539 2540 have_prev_type = false; 2541 prev_type = 0; 2542 while (1) { 2543 if (off == datasz) { 2544 return true; /* end, exit ok */ 2545 } 2546 if (!parse_elf_property(note.data, &off, datasz, info, 2547 have_prev_type, &prev_type, errp)) { 2548 return false; 2549 } 2550 have_prev_type = true; 2551 } 2552 } 2553 2554 /* Load an ELF image into the address space. 2555 2556 IMAGE_NAME is the filename of the image, to use in error messages. 2557 IMAGE_FD is the open file descriptor for the image. 2558 2559 BPRM_BUF is a copy of the beginning of the file; this of course 2560 contains the elf file header at offset 0. It is assumed that this 2561 buffer is sufficiently aligned to present no problems to the host 2562 in accessing data at aligned offsets within the buffer. 2563 2564 On return: INFO values will be filled in, as necessary or available. */ 2565 2566 static void load_elf_image(const char *image_name, int image_fd, 2567 struct image_info *info, char **pinterp_name, 2568 char bprm_buf[BPRM_BUF_SIZE]) 2569 { 2570 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2571 struct elf_phdr *phdr; 2572 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2573 int i, retval, prot_exec; 2574 Error *err = NULL; 2575 2576 /* First of all, some simple consistency checks */ 2577 if (!elf_check_ident(ehdr)) { 2578 error_setg(&err, "Invalid ELF image for this architecture"); 2579 goto exit_errmsg; 2580 } 2581 bswap_ehdr(ehdr); 2582 if (!elf_check_ehdr(ehdr)) { 2583 error_setg(&err, "Invalid ELF image for this architecture"); 2584 goto exit_errmsg; 2585 } 2586 2587 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2588 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2589 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2590 } else { 2591 phdr = (struct elf_phdr *) alloca(i); 2592 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2593 if (retval != i) { 2594 goto exit_read; 2595 } 2596 } 2597 bswap_phdr(phdr, ehdr->e_phnum); 2598 2599 info->nsegs = 0; 2600 info->pt_dynamic_addr = 0; 2601 2602 mmap_lock(); 2603 2604 /* 2605 * Find the maximum size of the image and allocate an appropriate 2606 * amount of memory to handle that. Locate the interpreter, if any. 2607 */ 2608 loaddr = -1, hiaddr = 0; 2609 info->alignment = 0; 2610 for (i = 0; i < ehdr->e_phnum; ++i) { 2611 struct elf_phdr *eppnt = phdr + i; 2612 if (eppnt->p_type == PT_LOAD) { 2613 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 2614 if (a < loaddr) { 2615 loaddr = a; 2616 } 2617 a = eppnt->p_vaddr + eppnt->p_memsz; 2618 if (a > hiaddr) { 2619 hiaddr = a; 2620 } 2621 ++info->nsegs; 2622 info->alignment |= eppnt->p_align; 2623 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2624 g_autofree char *interp_name = NULL; 2625 2626 if (*pinterp_name) { 2627 error_setg(&err, "Multiple PT_INTERP entries"); 2628 goto exit_errmsg; 2629 } 2630 2631 interp_name = g_malloc(eppnt->p_filesz); 2632 2633 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2634 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2635 eppnt->p_filesz); 2636 } else { 2637 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2638 eppnt->p_offset); 2639 if (retval != eppnt->p_filesz) { 2640 goto exit_read; 2641 } 2642 } 2643 if (interp_name[eppnt->p_filesz - 1] != 0) { 2644 error_setg(&err, "Invalid PT_INTERP entry"); 2645 goto exit_errmsg; 2646 } 2647 *pinterp_name = g_steal_pointer(&interp_name); 2648 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 2649 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 2650 goto exit_errmsg; 2651 } 2652 } 2653 } 2654 2655 if (pinterp_name != NULL) { 2656 /* 2657 * This is the main executable. 2658 * 2659 * Reserve extra space for brk. 2660 * We hold on to this space while placing the interpreter 2661 * and the stack, lest they be placed immediately after 2662 * the data segment and block allocation from the brk. 2663 * 2664 * 16MB is chosen as "large enough" without being so large 2665 * as to allow the result to not fit with a 32-bit guest on 2666 * a 32-bit host. 2667 */ 2668 info->reserve_brk = 16 * MiB; 2669 hiaddr += info->reserve_brk; 2670 2671 if (ehdr->e_type == ET_EXEC) { 2672 /* 2673 * Make sure that the low address does not conflict with 2674 * MMAP_MIN_ADDR or the QEMU application itself. 2675 */ 2676 probe_guest_base(image_name, loaddr, hiaddr); 2677 } else { 2678 /* 2679 * The binary is dynamic, but we still need to 2680 * select guest_base. In this case we pass a size. 2681 */ 2682 probe_guest_base(image_name, 0, hiaddr - loaddr); 2683 } 2684 } 2685 2686 /* 2687 * Reserve address space for all of this. 2688 * 2689 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2690 * exactly the address range that is required. 2691 * 2692 * Otherwise this is ET_DYN, and we are searching for a location 2693 * that can hold the memory space required. If the image is 2694 * pre-linked, LOADDR will be non-zero, and the kernel should 2695 * honor that address if it happens to be free. 2696 * 2697 * In both cases, we will overwrite pages in this range with mappings 2698 * from the executable. 2699 */ 2700 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2701 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2702 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2703 -1, 0); 2704 if (load_addr == -1) { 2705 goto exit_mmap; 2706 } 2707 load_bias = load_addr - loaddr; 2708 2709 if (elf_is_fdpic(ehdr)) { 2710 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2711 g_malloc(sizeof(*loadsegs) * info->nsegs); 2712 2713 for (i = 0; i < ehdr->e_phnum; ++i) { 2714 switch (phdr[i].p_type) { 2715 case PT_DYNAMIC: 2716 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2717 break; 2718 case PT_LOAD: 2719 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2720 loadsegs->p_vaddr = phdr[i].p_vaddr; 2721 loadsegs->p_memsz = phdr[i].p_memsz; 2722 ++loadsegs; 2723 break; 2724 } 2725 } 2726 } 2727 2728 info->load_bias = load_bias; 2729 info->code_offset = load_bias; 2730 info->data_offset = load_bias; 2731 info->load_addr = load_addr; 2732 info->entry = ehdr->e_entry + load_bias; 2733 info->start_code = -1; 2734 info->end_code = 0; 2735 info->start_data = -1; 2736 info->end_data = 0; 2737 info->brk = 0; 2738 info->elf_flags = ehdr->e_flags; 2739 2740 prot_exec = PROT_EXEC; 2741 #ifdef TARGET_AARCH64 2742 /* 2743 * If the BTI feature is present, this indicates that the executable 2744 * pages of the startup binary should be mapped with PROT_BTI, so that 2745 * branch targets are enforced. 2746 * 2747 * The startup binary is either the interpreter or the static executable. 2748 * The interpreter is responsible for all pages of a dynamic executable. 2749 * 2750 * Elf notes are backward compatible to older cpus. 2751 * Do not enable BTI unless it is supported. 2752 */ 2753 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 2754 && (pinterp_name == NULL || *pinterp_name == 0) 2755 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 2756 prot_exec |= TARGET_PROT_BTI; 2757 } 2758 #endif 2759 2760 for (i = 0; i < ehdr->e_phnum; i++) { 2761 struct elf_phdr *eppnt = phdr + i; 2762 if (eppnt->p_type == PT_LOAD) { 2763 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2764 int elf_prot = 0; 2765 2766 if (eppnt->p_flags & PF_R) { 2767 elf_prot |= PROT_READ; 2768 } 2769 if (eppnt->p_flags & PF_W) { 2770 elf_prot |= PROT_WRITE; 2771 } 2772 if (eppnt->p_flags & PF_X) { 2773 elf_prot |= prot_exec; 2774 } 2775 2776 vaddr = load_bias + eppnt->p_vaddr; 2777 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2778 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2779 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2780 2781 /* 2782 * Some segments may be completely empty without any backing file 2783 * segment, in that case just let zero_bss allocate an empty buffer 2784 * for it. 2785 */ 2786 if (eppnt->p_filesz != 0) { 2787 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2788 MAP_PRIVATE | MAP_FIXED, 2789 image_fd, eppnt->p_offset - vaddr_po); 2790 2791 if (error == -1) { 2792 goto exit_mmap; 2793 } 2794 } 2795 2796 vaddr_ef = vaddr + eppnt->p_filesz; 2797 vaddr_em = vaddr + eppnt->p_memsz; 2798 2799 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2800 if (vaddr_ef < vaddr_em) { 2801 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2802 } 2803 2804 /* Find the full program boundaries. */ 2805 if (elf_prot & PROT_EXEC) { 2806 if (vaddr < info->start_code) { 2807 info->start_code = vaddr; 2808 } 2809 if (vaddr_ef > info->end_code) { 2810 info->end_code = vaddr_ef; 2811 } 2812 } 2813 if (elf_prot & PROT_WRITE) { 2814 if (vaddr < info->start_data) { 2815 info->start_data = vaddr; 2816 } 2817 if (vaddr_ef > info->end_data) { 2818 info->end_data = vaddr_ef; 2819 } 2820 } 2821 if (vaddr_em > info->brk) { 2822 info->brk = vaddr_em; 2823 } 2824 #ifdef TARGET_MIPS 2825 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2826 Mips_elf_abiflags_v0 abiflags; 2827 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2828 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 2829 goto exit_errmsg; 2830 } 2831 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2832 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2833 sizeof(Mips_elf_abiflags_v0)); 2834 } else { 2835 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2836 eppnt->p_offset); 2837 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2838 goto exit_read; 2839 } 2840 } 2841 bswap_mips_abiflags(&abiflags); 2842 info->fp_abi = abiflags.fp_abi; 2843 #endif 2844 } 2845 } 2846 2847 if (info->end_data == 0) { 2848 info->start_data = info->end_code; 2849 info->end_data = info->end_code; 2850 } 2851 2852 if (qemu_log_enabled()) { 2853 load_symbols(ehdr, image_fd, load_bias); 2854 } 2855 2856 mmap_unlock(); 2857 2858 close(image_fd); 2859 return; 2860 2861 exit_read: 2862 if (retval >= 0) { 2863 error_setg(&err, "Incomplete read of file header"); 2864 } else { 2865 error_setg_errno(&err, errno, "Error reading file header"); 2866 } 2867 goto exit_errmsg; 2868 exit_mmap: 2869 error_setg_errno(&err, errno, "Error mapping file"); 2870 goto exit_errmsg; 2871 exit_errmsg: 2872 error_reportf_err(err, "%s: ", image_name); 2873 exit(-1); 2874 } 2875 2876 static void load_elf_interp(const char *filename, struct image_info *info, 2877 char bprm_buf[BPRM_BUF_SIZE]) 2878 { 2879 int fd, retval; 2880 Error *err = NULL; 2881 2882 fd = open(path(filename), O_RDONLY); 2883 if (fd < 0) { 2884 error_setg_file_open(&err, errno, filename); 2885 error_report_err(err); 2886 exit(-1); 2887 } 2888 2889 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2890 if (retval < 0) { 2891 error_setg_errno(&err, errno, "Error reading file header"); 2892 error_reportf_err(err, "%s: ", filename); 2893 exit(-1); 2894 } 2895 2896 if (retval < BPRM_BUF_SIZE) { 2897 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2898 } 2899 2900 load_elf_image(filename, fd, info, NULL, bprm_buf); 2901 } 2902 2903 static int symfind(const void *s0, const void *s1) 2904 { 2905 target_ulong addr = *(target_ulong *)s0; 2906 struct elf_sym *sym = (struct elf_sym *)s1; 2907 int result = 0; 2908 if (addr < sym->st_value) { 2909 result = -1; 2910 } else if (addr >= sym->st_value + sym->st_size) { 2911 result = 1; 2912 } 2913 return result; 2914 } 2915 2916 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2917 { 2918 #if ELF_CLASS == ELFCLASS32 2919 struct elf_sym *syms = s->disas_symtab.elf32; 2920 #else 2921 struct elf_sym *syms = s->disas_symtab.elf64; 2922 #endif 2923 2924 // binary search 2925 struct elf_sym *sym; 2926 2927 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2928 if (sym != NULL) { 2929 return s->disas_strtab + sym->st_name; 2930 } 2931 2932 return ""; 2933 } 2934 2935 /* FIXME: This should use elf_ops.h */ 2936 static int symcmp(const void *s0, const void *s1) 2937 { 2938 struct elf_sym *sym0 = (struct elf_sym *)s0; 2939 struct elf_sym *sym1 = (struct elf_sym *)s1; 2940 return (sym0->st_value < sym1->st_value) 2941 ? -1 2942 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2943 } 2944 2945 /* Best attempt to load symbols from this ELF object. */ 2946 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2947 { 2948 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2949 uint64_t segsz; 2950 struct elf_shdr *shdr; 2951 char *strings = NULL; 2952 struct syminfo *s = NULL; 2953 struct elf_sym *new_syms, *syms = NULL; 2954 2955 shnum = hdr->e_shnum; 2956 i = shnum * sizeof(struct elf_shdr); 2957 shdr = (struct elf_shdr *)alloca(i); 2958 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2959 return; 2960 } 2961 2962 bswap_shdr(shdr, shnum); 2963 for (i = 0; i < shnum; ++i) { 2964 if (shdr[i].sh_type == SHT_SYMTAB) { 2965 sym_idx = i; 2966 str_idx = shdr[i].sh_link; 2967 goto found; 2968 } 2969 } 2970 2971 /* There will be no symbol table if the file was stripped. */ 2972 return; 2973 2974 found: 2975 /* Now know where the strtab and symtab are. Snarf them. */ 2976 s = g_try_new(struct syminfo, 1); 2977 if (!s) { 2978 goto give_up; 2979 } 2980 2981 segsz = shdr[str_idx].sh_size; 2982 s->disas_strtab = strings = g_try_malloc(segsz); 2983 if (!strings || 2984 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2985 goto give_up; 2986 } 2987 2988 segsz = shdr[sym_idx].sh_size; 2989 syms = g_try_malloc(segsz); 2990 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2991 goto give_up; 2992 } 2993 2994 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2995 /* Implausibly large symbol table: give up rather than ploughing 2996 * on with the number of symbols calculation overflowing 2997 */ 2998 goto give_up; 2999 } 3000 nsyms = segsz / sizeof(struct elf_sym); 3001 for (i = 0; i < nsyms; ) { 3002 bswap_sym(syms + i); 3003 /* Throw away entries which we do not need. */ 3004 if (syms[i].st_shndx == SHN_UNDEF 3005 || syms[i].st_shndx >= SHN_LORESERVE 3006 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3007 if (i < --nsyms) { 3008 syms[i] = syms[nsyms]; 3009 } 3010 } else { 3011 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3012 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3013 syms[i].st_value &= ~(target_ulong)1; 3014 #endif 3015 syms[i].st_value += load_bias; 3016 i++; 3017 } 3018 } 3019 3020 /* No "useful" symbol. */ 3021 if (nsyms == 0) { 3022 goto give_up; 3023 } 3024 3025 /* Attempt to free the storage associated with the local symbols 3026 that we threw away. Whether or not this has any effect on the 3027 memory allocation depends on the malloc implementation and how 3028 many symbols we managed to discard. */ 3029 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3030 if (new_syms == NULL) { 3031 goto give_up; 3032 } 3033 syms = new_syms; 3034 3035 qsort(syms, nsyms, sizeof(*syms), symcmp); 3036 3037 s->disas_num_syms = nsyms; 3038 #if ELF_CLASS == ELFCLASS32 3039 s->disas_symtab.elf32 = syms; 3040 #else 3041 s->disas_symtab.elf64 = syms; 3042 #endif 3043 s->lookup_symbol = lookup_symbolxx; 3044 s->next = syminfos; 3045 syminfos = s; 3046 3047 return; 3048 3049 give_up: 3050 g_free(s); 3051 g_free(strings); 3052 g_free(syms); 3053 } 3054 3055 uint32_t get_elf_eflags(int fd) 3056 { 3057 struct elfhdr ehdr; 3058 off_t offset; 3059 int ret; 3060 3061 /* Read ELF header */ 3062 offset = lseek(fd, 0, SEEK_SET); 3063 if (offset == (off_t) -1) { 3064 return 0; 3065 } 3066 ret = read(fd, &ehdr, sizeof(ehdr)); 3067 if (ret < sizeof(ehdr)) { 3068 return 0; 3069 } 3070 offset = lseek(fd, offset, SEEK_SET); 3071 if (offset == (off_t) -1) { 3072 return 0; 3073 } 3074 3075 /* Check ELF signature */ 3076 if (!elf_check_ident(&ehdr)) { 3077 return 0; 3078 } 3079 3080 /* check header */ 3081 bswap_ehdr(&ehdr); 3082 if (!elf_check_ehdr(&ehdr)) { 3083 return 0; 3084 } 3085 3086 /* return architecture id */ 3087 return ehdr.e_flags; 3088 } 3089 3090 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3091 { 3092 struct image_info interp_info; 3093 struct elfhdr elf_ex; 3094 char *elf_interpreter = NULL; 3095 char *scratch; 3096 3097 memset(&interp_info, 0, sizeof(interp_info)); 3098 #ifdef TARGET_MIPS 3099 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3100 #endif 3101 3102 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3103 3104 load_elf_image(bprm->filename, bprm->fd, info, 3105 &elf_interpreter, bprm->buf); 3106 3107 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3108 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3109 when we load the interpreter. */ 3110 elf_ex = *(struct elfhdr *)bprm->buf; 3111 3112 /* Do this so that we can load the interpreter, if need be. We will 3113 change some of these later */ 3114 bprm->p = setup_arg_pages(bprm, info); 3115 3116 scratch = g_new0(char, TARGET_PAGE_SIZE); 3117 if (STACK_GROWS_DOWN) { 3118 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3119 bprm->p, info->stack_limit); 3120 info->file_string = bprm->p; 3121 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3122 bprm->p, info->stack_limit); 3123 info->env_strings = bprm->p; 3124 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3125 bprm->p, info->stack_limit); 3126 info->arg_strings = bprm->p; 3127 } else { 3128 info->arg_strings = bprm->p; 3129 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3130 bprm->p, info->stack_limit); 3131 info->env_strings = bprm->p; 3132 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3133 bprm->p, info->stack_limit); 3134 info->file_string = bprm->p; 3135 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3136 bprm->p, info->stack_limit); 3137 } 3138 3139 g_free(scratch); 3140 3141 if (!bprm->p) { 3142 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3143 exit(-1); 3144 } 3145 3146 if (elf_interpreter) { 3147 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3148 3149 /* If the program interpreter is one of these two, then assume 3150 an iBCS2 image. Otherwise assume a native linux image. */ 3151 3152 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3153 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3154 info->personality = PER_SVR4; 3155 3156 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3157 and some applications "depend" upon this behavior. Since 3158 we do not have the power to recompile these, we emulate 3159 the SVr4 behavior. Sigh. */ 3160 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3161 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3162 } 3163 #ifdef TARGET_MIPS 3164 info->interp_fp_abi = interp_info.fp_abi; 3165 #endif 3166 } 3167 3168 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3169 info, (elf_interpreter ? &interp_info : NULL)); 3170 info->start_stack = bprm->p; 3171 3172 /* If we have an interpreter, set that as the program's entry point. 3173 Copy the load_bias as well, to help PPC64 interpret the entry 3174 point as a function descriptor. Do this after creating elf tables 3175 so that we copy the original program entry point into the AUXV. */ 3176 if (elf_interpreter) { 3177 info->load_bias = interp_info.load_bias; 3178 info->entry = interp_info.entry; 3179 g_free(elf_interpreter); 3180 } 3181 3182 #ifdef USE_ELF_CORE_DUMP 3183 bprm->core_dump = &elf_core_dump; 3184 #endif 3185 3186 /* 3187 * If we reserved extra space for brk, release it now. 3188 * The implementation of do_brk in syscalls.c expects to be able 3189 * to mmap pages in this space. 3190 */ 3191 if (info->reserve_brk) { 3192 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3193 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3194 target_munmap(start_brk, end_brk - start_brk); 3195 } 3196 3197 return 0; 3198 } 3199 3200 #ifdef USE_ELF_CORE_DUMP 3201 /* 3202 * Definitions to generate Intel SVR4-like core files. 3203 * These mostly have the same names as the SVR4 types with "target_elf_" 3204 * tacked on the front to prevent clashes with linux definitions, 3205 * and the typedef forms have been avoided. This is mostly like 3206 * the SVR4 structure, but more Linuxy, with things that Linux does 3207 * not support and which gdb doesn't really use excluded. 3208 * 3209 * Fields we don't dump (their contents is zero) in linux-user qemu 3210 * are marked with XXX. 3211 * 3212 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3213 * 3214 * Porting ELF coredump for target is (quite) simple process. First you 3215 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3216 * the target resides): 3217 * 3218 * #define USE_ELF_CORE_DUMP 3219 * 3220 * Next you define type of register set used for dumping. ELF specification 3221 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3222 * 3223 * typedef <target_regtype> target_elf_greg_t; 3224 * #define ELF_NREG <number of registers> 3225 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3226 * 3227 * Last step is to implement target specific function that copies registers 3228 * from given cpu into just specified register set. Prototype is: 3229 * 3230 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3231 * const CPUArchState *env); 3232 * 3233 * Parameters: 3234 * regs - copy register values into here (allocated and zeroed by caller) 3235 * env - copy registers from here 3236 * 3237 * Example for ARM target is provided in this file. 3238 */ 3239 3240 /* An ELF note in memory */ 3241 struct memelfnote { 3242 const char *name; 3243 size_t namesz; 3244 size_t namesz_rounded; 3245 int type; 3246 size_t datasz; 3247 size_t datasz_rounded; 3248 void *data; 3249 size_t notesz; 3250 }; 3251 3252 struct target_elf_siginfo { 3253 abi_int si_signo; /* signal number */ 3254 abi_int si_code; /* extra code */ 3255 abi_int si_errno; /* errno */ 3256 }; 3257 3258 struct target_elf_prstatus { 3259 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3260 abi_short pr_cursig; /* Current signal */ 3261 abi_ulong pr_sigpend; /* XXX */ 3262 abi_ulong pr_sighold; /* XXX */ 3263 target_pid_t pr_pid; 3264 target_pid_t pr_ppid; 3265 target_pid_t pr_pgrp; 3266 target_pid_t pr_sid; 3267 struct target_timeval pr_utime; /* XXX User time */ 3268 struct target_timeval pr_stime; /* XXX System time */ 3269 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3270 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3271 target_elf_gregset_t pr_reg; /* GP registers */ 3272 abi_int pr_fpvalid; /* XXX */ 3273 }; 3274 3275 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3276 3277 struct target_elf_prpsinfo { 3278 char pr_state; /* numeric process state */ 3279 char pr_sname; /* char for pr_state */ 3280 char pr_zomb; /* zombie */ 3281 char pr_nice; /* nice val */ 3282 abi_ulong pr_flag; /* flags */ 3283 target_uid_t pr_uid; 3284 target_gid_t pr_gid; 3285 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3286 /* Lots missing */ 3287 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3288 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3289 }; 3290 3291 /* Here is the structure in which status of each thread is captured. */ 3292 struct elf_thread_status { 3293 QTAILQ_ENTRY(elf_thread_status) ets_link; 3294 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3295 #if 0 3296 elf_fpregset_t fpu; /* NT_PRFPREG */ 3297 struct task_struct *thread; 3298 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3299 #endif 3300 struct memelfnote notes[1]; 3301 int num_notes; 3302 }; 3303 3304 struct elf_note_info { 3305 struct memelfnote *notes; 3306 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3307 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3308 3309 QTAILQ_HEAD(, elf_thread_status) thread_list; 3310 #if 0 3311 /* 3312 * Current version of ELF coredump doesn't support 3313 * dumping fp regs etc. 3314 */ 3315 elf_fpregset_t *fpu; 3316 elf_fpxregset_t *xfpu; 3317 int thread_status_size; 3318 #endif 3319 int notes_size; 3320 int numnote; 3321 }; 3322 3323 struct vm_area_struct { 3324 target_ulong vma_start; /* start vaddr of memory region */ 3325 target_ulong vma_end; /* end vaddr of memory region */ 3326 abi_ulong vma_flags; /* protection etc. flags for the region */ 3327 QTAILQ_ENTRY(vm_area_struct) vma_link; 3328 }; 3329 3330 struct mm_struct { 3331 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3332 int mm_count; /* number of mappings */ 3333 }; 3334 3335 static struct mm_struct *vma_init(void); 3336 static void vma_delete(struct mm_struct *); 3337 static int vma_add_mapping(struct mm_struct *, target_ulong, 3338 target_ulong, abi_ulong); 3339 static int vma_get_mapping_count(const struct mm_struct *); 3340 static struct vm_area_struct *vma_first(const struct mm_struct *); 3341 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3342 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3343 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3344 unsigned long flags); 3345 3346 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3347 static void fill_note(struct memelfnote *, const char *, int, 3348 unsigned int, void *); 3349 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3350 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3351 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3352 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3353 static size_t note_size(const struct memelfnote *); 3354 static void free_note_info(struct elf_note_info *); 3355 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3356 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3357 static int core_dump_filename(const TaskState *, char *, size_t); 3358 3359 static int dump_write(int, const void *, size_t); 3360 static int write_note(struct memelfnote *, int); 3361 static int write_note_info(struct elf_note_info *, int); 3362 3363 #ifdef BSWAP_NEEDED 3364 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3365 { 3366 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3367 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3368 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3369 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3370 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3371 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3372 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3373 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3374 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3375 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3376 /* cpu times are not filled, so we skip them */ 3377 /* regs should be in correct format already */ 3378 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3379 } 3380 3381 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3382 { 3383 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3384 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3385 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3386 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3387 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3388 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3389 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3390 } 3391 3392 static void bswap_note(struct elf_note *en) 3393 { 3394 bswap32s(&en->n_namesz); 3395 bswap32s(&en->n_descsz); 3396 bswap32s(&en->n_type); 3397 } 3398 #else 3399 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3400 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3401 static inline void bswap_note(struct elf_note *en) { } 3402 #endif /* BSWAP_NEEDED */ 3403 3404 /* 3405 * Minimal support for linux memory regions. These are needed 3406 * when we are finding out what memory exactly belongs to 3407 * emulated process. No locks needed here, as long as 3408 * thread that received the signal is stopped. 3409 */ 3410 3411 static struct mm_struct *vma_init(void) 3412 { 3413 struct mm_struct *mm; 3414 3415 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3416 return (NULL); 3417 3418 mm->mm_count = 0; 3419 QTAILQ_INIT(&mm->mm_mmap); 3420 3421 return (mm); 3422 } 3423 3424 static void vma_delete(struct mm_struct *mm) 3425 { 3426 struct vm_area_struct *vma; 3427 3428 while ((vma = vma_first(mm)) != NULL) { 3429 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3430 g_free(vma); 3431 } 3432 g_free(mm); 3433 } 3434 3435 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3436 target_ulong end, abi_ulong flags) 3437 { 3438 struct vm_area_struct *vma; 3439 3440 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3441 return (-1); 3442 3443 vma->vma_start = start; 3444 vma->vma_end = end; 3445 vma->vma_flags = flags; 3446 3447 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3448 mm->mm_count++; 3449 3450 return (0); 3451 } 3452 3453 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3454 { 3455 return (QTAILQ_FIRST(&mm->mm_mmap)); 3456 } 3457 3458 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3459 { 3460 return (QTAILQ_NEXT(vma, vma_link)); 3461 } 3462 3463 static int vma_get_mapping_count(const struct mm_struct *mm) 3464 { 3465 return (mm->mm_count); 3466 } 3467 3468 /* 3469 * Calculate file (dump) size of given memory region. 3470 */ 3471 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3472 { 3473 /* if we cannot even read the first page, skip it */ 3474 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3475 return (0); 3476 3477 /* 3478 * Usually we don't dump executable pages as they contain 3479 * non-writable code that debugger can read directly from 3480 * target library etc. However, thread stacks are marked 3481 * also executable so we read in first page of given region 3482 * and check whether it contains elf header. If there is 3483 * no elf header, we dump it. 3484 */ 3485 if (vma->vma_flags & PROT_EXEC) { 3486 char page[TARGET_PAGE_SIZE]; 3487 3488 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3489 return 0; 3490 } 3491 if ((page[EI_MAG0] == ELFMAG0) && 3492 (page[EI_MAG1] == ELFMAG1) && 3493 (page[EI_MAG2] == ELFMAG2) && 3494 (page[EI_MAG3] == ELFMAG3)) { 3495 /* 3496 * Mappings are possibly from ELF binary. Don't dump 3497 * them. 3498 */ 3499 return (0); 3500 } 3501 } 3502 3503 return (vma->vma_end - vma->vma_start); 3504 } 3505 3506 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3507 unsigned long flags) 3508 { 3509 struct mm_struct *mm = (struct mm_struct *)priv; 3510 3511 vma_add_mapping(mm, start, end, flags); 3512 return (0); 3513 } 3514 3515 static void fill_note(struct memelfnote *note, const char *name, int type, 3516 unsigned int sz, void *data) 3517 { 3518 unsigned int namesz; 3519 3520 namesz = strlen(name) + 1; 3521 note->name = name; 3522 note->namesz = namesz; 3523 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3524 note->type = type; 3525 note->datasz = sz; 3526 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3527 3528 note->data = data; 3529 3530 /* 3531 * We calculate rounded up note size here as specified by 3532 * ELF document. 3533 */ 3534 note->notesz = sizeof (struct elf_note) + 3535 note->namesz_rounded + note->datasz_rounded; 3536 } 3537 3538 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3539 uint32_t flags) 3540 { 3541 (void) memset(elf, 0, sizeof(*elf)); 3542 3543 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3544 elf->e_ident[EI_CLASS] = ELF_CLASS; 3545 elf->e_ident[EI_DATA] = ELF_DATA; 3546 elf->e_ident[EI_VERSION] = EV_CURRENT; 3547 elf->e_ident[EI_OSABI] = ELF_OSABI; 3548 3549 elf->e_type = ET_CORE; 3550 elf->e_machine = machine; 3551 elf->e_version = EV_CURRENT; 3552 elf->e_phoff = sizeof(struct elfhdr); 3553 elf->e_flags = flags; 3554 elf->e_ehsize = sizeof(struct elfhdr); 3555 elf->e_phentsize = sizeof(struct elf_phdr); 3556 elf->e_phnum = segs; 3557 3558 bswap_ehdr(elf); 3559 } 3560 3561 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3562 { 3563 phdr->p_type = PT_NOTE; 3564 phdr->p_offset = offset; 3565 phdr->p_vaddr = 0; 3566 phdr->p_paddr = 0; 3567 phdr->p_filesz = sz; 3568 phdr->p_memsz = 0; 3569 phdr->p_flags = 0; 3570 phdr->p_align = 0; 3571 3572 bswap_phdr(phdr, 1); 3573 } 3574 3575 static size_t note_size(const struct memelfnote *note) 3576 { 3577 return (note->notesz); 3578 } 3579 3580 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3581 const TaskState *ts, int signr) 3582 { 3583 (void) memset(prstatus, 0, sizeof (*prstatus)); 3584 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3585 prstatus->pr_pid = ts->ts_tid; 3586 prstatus->pr_ppid = getppid(); 3587 prstatus->pr_pgrp = getpgrp(); 3588 prstatus->pr_sid = getsid(0); 3589 3590 bswap_prstatus(prstatus); 3591 } 3592 3593 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3594 { 3595 char *base_filename; 3596 unsigned int i, len; 3597 3598 (void) memset(psinfo, 0, sizeof (*psinfo)); 3599 3600 len = ts->info->arg_end - ts->info->arg_start; 3601 if (len >= ELF_PRARGSZ) 3602 len = ELF_PRARGSZ - 1; 3603 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3604 return -EFAULT; 3605 for (i = 0; i < len; i++) 3606 if (psinfo->pr_psargs[i] == 0) 3607 psinfo->pr_psargs[i] = ' '; 3608 psinfo->pr_psargs[len] = 0; 3609 3610 psinfo->pr_pid = getpid(); 3611 psinfo->pr_ppid = getppid(); 3612 psinfo->pr_pgrp = getpgrp(); 3613 psinfo->pr_sid = getsid(0); 3614 psinfo->pr_uid = getuid(); 3615 psinfo->pr_gid = getgid(); 3616 3617 base_filename = g_path_get_basename(ts->bprm->filename); 3618 /* 3619 * Using strncpy here is fine: at max-length, 3620 * this field is not NUL-terminated. 3621 */ 3622 (void) strncpy(psinfo->pr_fname, base_filename, 3623 sizeof(psinfo->pr_fname)); 3624 3625 g_free(base_filename); 3626 bswap_psinfo(psinfo); 3627 return (0); 3628 } 3629 3630 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3631 { 3632 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3633 elf_addr_t orig_auxv = auxv; 3634 void *ptr; 3635 int len = ts->info->auxv_len; 3636 3637 /* 3638 * Auxiliary vector is stored in target process stack. It contains 3639 * {type, value} pairs that we need to dump into note. This is not 3640 * strictly necessary but we do it here for sake of completeness. 3641 */ 3642 3643 /* read in whole auxv vector and copy it to memelfnote */ 3644 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3645 if (ptr != NULL) { 3646 fill_note(note, "CORE", NT_AUXV, len, ptr); 3647 unlock_user(ptr, auxv, len); 3648 } 3649 } 3650 3651 /* 3652 * Constructs name of coredump file. We have following convention 3653 * for the name: 3654 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3655 * 3656 * Returns 0 in case of success, -1 otherwise (errno is set). 3657 */ 3658 static int core_dump_filename(const TaskState *ts, char *buf, 3659 size_t bufsize) 3660 { 3661 char timestamp[64]; 3662 char *base_filename = NULL; 3663 struct timeval tv; 3664 struct tm tm; 3665 3666 assert(bufsize >= PATH_MAX); 3667 3668 if (gettimeofday(&tv, NULL) < 0) { 3669 (void) fprintf(stderr, "unable to get current timestamp: %s", 3670 strerror(errno)); 3671 return (-1); 3672 } 3673 3674 base_filename = g_path_get_basename(ts->bprm->filename); 3675 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3676 localtime_r(&tv.tv_sec, &tm)); 3677 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3678 base_filename, timestamp, (int)getpid()); 3679 g_free(base_filename); 3680 3681 return (0); 3682 } 3683 3684 static int dump_write(int fd, const void *ptr, size_t size) 3685 { 3686 const char *bufp = (const char *)ptr; 3687 ssize_t bytes_written, bytes_left; 3688 struct rlimit dumpsize; 3689 off_t pos; 3690 3691 bytes_written = 0; 3692 getrlimit(RLIMIT_CORE, &dumpsize); 3693 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3694 if (errno == ESPIPE) { /* not a seekable stream */ 3695 bytes_left = size; 3696 } else { 3697 return pos; 3698 } 3699 } else { 3700 if (dumpsize.rlim_cur <= pos) { 3701 return -1; 3702 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3703 bytes_left = size; 3704 } else { 3705 size_t limit_left=dumpsize.rlim_cur - pos; 3706 bytes_left = limit_left >= size ? size : limit_left ; 3707 } 3708 } 3709 3710 /* 3711 * In normal conditions, single write(2) should do but 3712 * in case of socket etc. this mechanism is more portable. 3713 */ 3714 do { 3715 bytes_written = write(fd, bufp, bytes_left); 3716 if (bytes_written < 0) { 3717 if (errno == EINTR) 3718 continue; 3719 return (-1); 3720 } else if (bytes_written == 0) { /* eof */ 3721 return (-1); 3722 } 3723 bufp += bytes_written; 3724 bytes_left -= bytes_written; 3725 } while (bytes_left > 0); 3726 3727 return (0); 3728 } 3729 3730 static int write_note(struct memelfnote *men, int fd) 3731 { 3732 struct elf_note en; 3733 3734 en.n_namesz = men->namesz; 3735 en.n_type = men->type; 3736 en.n_descsz = men->datasz; 3737 3738 bswap_note(&en); 3739 3740 if (dump_write(fd, &en, sizeof(en)) != 0) 3741 return (-1); 3742 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3743 return (-1); 3744 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3745 return (-1); 3746 3747 return (0); 3748 } 3749 3750 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3751 { 3752 CPUState *cpu = env_cpu((CPUArchState *)env); 3753 TaskState *ts = (TaskState *)cpu->opaque; 3754 struct elf_thread_status *ets; 3755 3756 ets = g_malloc0(sizeof (*ets)); 3757 ets->num_notes = 1; /* only prstatus is dumped */ 3758 fill_prstatus(&ets->prstatus, ts, 0); 3759 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3760 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3761 &ets->prstatus); 3762 3763 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3764 3765 info->notes_size += note_size(&ets->notes[0]); 3766 } 3767 3768 static void init_note_info(struct elf_note_info *info) 3769 { 3770 /* Initialize the elf_note_info structure so that it is at 3771 * least safe to call free_note_info() on it. Must be 3772 * called before calling fill_note_info(). 3773 */ 3774 memset(info, 0, sizeof (*info)); 3775 QTAILQ_INIT(&info->thread_list); 3776 } 3777 3778 static int fill_note_info(struct elf_note_info *info, 3779 long signr, const CPUArchState *env) 3780 { 3781 #define NUMNOTES 3 3782 CPUState *cpu = env_cpu((CPUArchState *)env); 3783 TaskState *ts = (TaskState *)cpu->opaque; 3784 int i; 3785 3786 info->notes = g_new0(struct memelfnote, NUMNOTES); 3787 if (info->notes == NULL) 3788 return (-ENOMEM); 3789 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3790 if (info->prstatus == NULL) 3791 return (-ENOMEM); 3792 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3793 if (info->prstatus == NULL) 3794 return (-ENOMEM); 3795 3796 /* 3797 * First fill in status (and registers) of current thread 3798 * including process info & aux vector. 3799 */ 3800 fill_prstatus(info->prstatus, ts, signr); 3801 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3802 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3803 sizeof (*info->prstatus), info->prstatus); 3804 fill_psinfo(info->psinfo, ts); 3805 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3806 sizeof (*info->psinfo), info->psinfo); 3807 fill_auxv_note(&info->notes[2], ts); 3808 info->numnote = 3; 3809 3810 info->notes_size = 0; 3811 for (i = 0; i < info->numnote; i++) 3812 info->notes_size += note_size(&info->notes[i]); 3813 3814 /* read and fill status of all threads */ 3815 cpu_list_lock(); 3816 CPU_FOREACH(cpu) { 3817 if (cpu == thread_cpu) { 3818 continue; 3819 } 3820 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3821 } 3822 cpu_list_unlock(); 3823 3824 return (0); 3825 } 3826 3827 static void free_note_info(struct elf_note_info *info) 3828 { 3829 struct elf_thread_status *ets; 3830 3831 while (!QTAILQ_EMPTY(&info->thread_list)) { 3832 ets = QTAILQ_FIRST(&info->thread_list); 3833 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3834 g_free(ets); 3835 } 3836 3837 g_free(info->prstatus); 3838 g_free(info->psinfo); 3839 g_free(info->notes); 3840 } 3841 3842 static int write_note_info(struct elf_note_info *info, int fd) 3843 { 3844 struct elf_thread_status *ets; 3845 int i, error = 0; 3846 3847 /* write prstatus, psinfo and auxv for current thread */ 3848 for (i = 0; i < info->numnote; i++) 3849 if ((error = write_note(&info->notes[i], fd)) != 0) 3850 return (error); 3851 3852 /* write prstatus for each thread */ 3853 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3854 if ((error = write_note(&ets->notes[0], fd)) != 0) 3855 return (error); 3856 } 3857 3858 return (0); 3859 } 3860 3861 /* 3862 * Write out ELF coredump. 3863 * 3864 * See documentation of ELF object file format in: 3865 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3866 * 3867 * Coredump format in linux is following: 3868 * 3869 * 0 +----------------------+ \ 3870 * | ELF header | ET_CORE | 3871 * +----------------------+ | 3872 * | ELF program headers | |--- headers 3873 * | - NOTE section | | 3874 * | - PT_LOAD sections | | 3875 * +----------------------+ / 3876 * | NOTEs: | 3877 * | - NT_PRSTATUS | 3878 * | - NT_PRSINFO | 3879 * | - NT_AUXV | 3880 * +----------------------+ <-- aligned to target page 3881 * | Process memory dump | 3882 * : : 3883 * . . 3884 * : : 3885 * | | 3886 * +----------------------+ 3887 * 3888 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3889 * NT_PRSINFO -> struct elf_prpsinfo 3890 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3891 * 3892 * Format follows System V format as close as possible. Current 3893 * version limitations are as follows: 3894 * - no floating point registers are dumped 3895 * 3896 * Function returns 0 in case of success, negative errno otherwise. 3897 * 3898 * TODO: make this work also during runtime: it should be 3899 * possible to force coredump from running process and then 3900 * continue processing. For example qemu could set up SIGUSR2 3901 * handler (provided that target process haven't registered 3902 * handler for that) that does the dump when signal is received. 3903 */ 3904 static int elf_core_dump(int signr, const CPUArchState *env) 3905 { 3906 const CPUState *cpu = env_cpu((CPUArchState *)env); 3907 const TaskState *ts = (const TaskState *)cpu->opaque; 3908 struct vm_area_struct *vma = NULL; 3909 char corefile[PATH_MAX]; 3910 struct elf_note_info info; 3911 struct elfhdr elf; 3912 struct elf_phdr phdr; 3913 struct rlimit dumpsize; 3914 struct mm_struct *mm = NULL; 3915 off_t offset = 0, data_offset = 0; 3916 int segs = 0; 3917 int fd = -1; 3918 3919 init_note_info(&info); 3920 3921 errno = 0; 3922 getrlimit(RLIMIT_CORE, &dumpsize); 3923 if (dumpsize.rlim_cur == 0) 3924 return 0; 3925 3926 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3927 return (-errno); 3928 3929 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3930 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3931 return (-errno); 3932 3933 /* 3934 * Walk through target process memory mappings and 3935 * set up structure containing this information. After 3936 * this point vma_xxx functions can be used. 3937 */ 3938 if ((mm = vma_init()) == NULL) 3939 goto out; 3940 3941 walk_memory_regions(mm, vma_walker); 3942 segs = vma_get_mapping_count(mm); 3943 3944 /* 3945 * Construct valid coredump ELF header. We also 3946 * add one more segment for notes. 3947 */ 3948 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3949 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3950 goto out; 3951 3952 /* fill in the in-memory version of notes */ 3953 if (fill_note_info(&info, signr, env) < 0) 3954 goto out; 3955 3956 offset += sizeof (elf); /* elf header */ 3957 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3958 3959 /* write out notes program header */ 3960 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3961 3962 offset += info.notes_size; 3963 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3964 goto out; 3965 3966 /* 3967 * ELF specification wants data to start at page boundary so 3968 * we align it here. 3969 */ 3970 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3971 3972 /* 3973 * Write program headers for memory regions mapped in 3974 * the target process. 3975 */ 3976 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3977 (void) memset(&phdr, 0, sizeof (phdr)); 3978 3979 phdr.p_type = PT_LOAD; 3980 phdr.p_offset = offset; 3981 phdr.p_vaddr = vma->vma_start; 3982 phdr.p_paddr = 0; 3983 phdr.p_filesz = vma_dump_size(vma); 3984 offset += phdr.p_filesz; 3985 phdr.p_memsz = vma->vma_end - vma->vma_start; 3986 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3987 if (vma->vma_flags & PROT_WRITE) 3988 phdr.p_flags |= PF_W; 3989 if (vma->vma_flags & PROT_EXEC) 3990 phdr.p_flags |= PF_X; 3991 phdr.p_align = ELF_EXEC_PAGESIZE; 3992 3993 bswap_phdr(&phdr, 1); 3994 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3995 goto out; 3996 } 3997 } 3998 3999 /* 4000 * Next we write notes just after program headers. No 4001 * alignment needed here. 4002 */ 4003 if (write_note_info(&info, fd) < 0) 4004 goto out; 4005 4006 /* align data to page boundary */ 4007 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4008 goto out; 4009 4010 /* 4011 * Finally we can dump process memory into corefile as well. 4012 */ 4013 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4014 abi_ulong addr; 4015 abi_ulong end; 4016 4017 end = vma->vma_start + vma_dump_size(vma); 4018 4019 for (addr = vma->vma_start; addr < end; 4020 addr += TARGET_PAGE_SIZE) { 4021 char page[TARGET_PAGE_SIZE]; 4022 int error; 4023 4024 /* 4025 * Read in page from target process memory and 4026 * write it to coredump file. 4027 */ 4028 error = copy_from_user(page, addr, sizeof (page)); 4029 if (error != 0) { 4030 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4031 addr); 4032 errno = -error; 4033 goto out; 4034 } 4035 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4036 goto out; 4037 } 4038 } 4039 4040 out: 4041 free_note_info(&info); 4042 if (mm != NULL) 4043 vma_delete(mm); 4044 (void) close(fd); 4045 4046 if (errno != 0) 4047 return (-errno); 4048 return (0); 4049 } 4050 #endif /* USE_ELF_CORE_DUMP */ 4051 4052 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4053 { 4054 init_thread(regs, infop); 4055 } 4056