xref: /openbmc/qemu/linux-user/elfload.c (revision 1538d763)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
13 #include "qemu/units.h"
14 #include "qemu/selfmap.h"
15 
16 #ifdef _ARCH_PPC64
17 #undef ARCH_DLINFO
18 #undef ELF_PLATFORM
19 #undef ELF_HWCAP
20 #undef ELF_HWCAP2
21 #undef ELF_CLASS
22 #undef ELF_DATA
23 #undef ELF_ARCH
24 #endif
25 
26 #define ELF_OSABI   ELFOSABI_SYSV
27 
28 /* from personality.h */
29 
30 /*
31  * Flags for bug emulation.
32  *
33  * These occupy the top three bytes.
34  */
35 enum {
36     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
37     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
38                                            descriptors (signal handling) */
39     MMAP_PAGE_ZERO =    0x0100000,
40     ADDR_COMPAT_LAYOUT = 0x0200000,
41     READ_IMPLIES_EXEC = 0x0400000,
42     ADDR_LIMIT_32BIT =  0x0800000,
43     SHORT_INODE =       0x1000000,
44     WHOLE_SECONDS =     0x2000000,
45     STICKY_TIMEOUTS =   0x4000000,
46     ADDR_LIMIT_3GB =    0x8000000,
47 };
48 
49 /*
50  * Personality types.
51  *
52  * These go in the low byte.  Avoid using the top bit, it will
53  * conflict with error returns.
54  */
55 enum {
56     PER_LINUX =         0x0000,
57     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
58     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
59     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
60     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
61     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
62     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
63     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
65     PER_BSD =           0x0006,
66     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
67     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
68     PER_LINUX32 =       0x0008,
69     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
70     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
71     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
72     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
73     PER_RISCOS =        0x000c,
74     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
75     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
76     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
77     PER_HPUX =          0x0010,
78     PER_MASK =          0x00ff,
79 };
80 
81 /*
82  * Return the base personality without flags.
83  */
84 #define personality(pers)       (pers & PER_MASK)
85 
86 int info_is_fdpic(struct image_info *info)
87 {
88     return info->personality == PER_LINUX_FDPIC;
89 }
90 
91 /* this flag is uneffective under linux too, should be deleted */
92 #ifndef MAP_DENYWRITE
93 #define MAP_DENYWRITE 0
94 #endif
95 
96 /* should probably go in elf.h */
97 #ifndef ELIBBAD
98 #define ELIBBAD 80
99 #endif
100 
101 #ifdef TARGET_WORDS_BIGENDIAN
102 #define ELF_DATA        ELFDATA2MSB
103 #else
104 #define ELF_DATA        ELFDATA2LSB
105 #endif
106 
107 #ifdef TARGET_ABI_MIPSN32
108 typedef abi_ullong      target_elf_greg_t;
109 #define tswapreg(ptr)   tswap64(ptr)
110 #else
111 typedef abi_ulong       target_elf_greg_t;
112 #define tswapreg(ptr)   tswapal(ptr)
113 #endif
114 
115 #ifdef USE_UID16
116 typedef abi_ushort      target_uid_t;
117 typedef abi_ushort      target_gid_t;
118 #else
119 typedef abi_uint        target_uid_t;
120 typedef abi_uint        target_gid_t;
121 #endif
122 typedef abi_int         target_pid_t;
123 
124 #ifdef TARGET_I386
125 
126 #define ELF_PLATFORM get_elf_platform()
127 
128 static const char *get_elf_platform(void)
129 {
130     static char elf_platform[] = "i386";
131     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
132     if (family > 6)
133         family = 6;
134     if (family >= 3)
135         elf_platform[1] = '0' + family;
136     return elf_platform;
137 }
138 
139 #define ELF_HWCAP get_elf_hwcap()
140 
141 static uint32_t get_elf_hwcap(void)
142 {
143     X86CPU *cpu = X86_CPU(thread_cpu);
144 
145     return cpu->env.features[FEAT_1_EDX];
146 }
147 
148 #ifdef TARGET_X86_64
149 #define ELF_START_MMAP 0x2aaaaab000ULL
150 
151 #define ELF_CLASS      ELFCLASS64
152 #define ELF_ARCH       EM_X86_64
153 
154 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
155 {
156     regs->rax = 0;
157     regs->rsp = infop->start_stack;
158     regs->rip = infop->entry;
159 }
160 
161 #define ELF_NREG    27
162 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
163 
164 /*
165  * Note that ELF_NREG should be 29 as there should be place for
166  * TRAPNO and ERR "registers" as well but linux doesn't dump
167  * those.
168  *
169  * See linux kernel: arch/x86/include/asm/elf.h
170  */
171 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
172 {
173     (*regs)[0] = env->regs[15];
174     (*regs)[1] = env->regs[14];
175     (*regs)[2] = env->regs[13];
176     (*regs)[3] = env->regs[12];
177     (*regs)[4] = env->regs[R_EBP];
178     (*regs)[5] = env->regs[R_EBX];
179     (*regs)[6] = env->regs[11];
180     (*regs)[7] = env->regs[10];
181     (*regs)[8] = env->regs[9];
182     (*regs)[9] = env->regs[8];
183     (*regs)[10] = env->regs[R_EAX];
184     (*regs)[11] = env->regs[R_ECX];
185     (*regs)[12] = env->regs[R_EDX];
186     (*regs)[13] = env->regs[R_ESI];
187     (*regs)[14] = env->regs[R_EDI];
188     (*regs)[15] = env->regs[R_EAX]; /* XXX */
189     (*regs)[16] = env->eip;
190     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
191     (*regs)[18] = env->eflags;
192     (*regs)[19] = env->regs[R_ESP];
193     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
194     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
195     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
196     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
197     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
198     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
199     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
200 }
201 
202 #else
203 
204 #define ELF_START_MMAP 0x80000000
205 
206 /*
207  * This is used to ensure we don't load something for the wrong architecture.
208  */
209 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
210 
211 /*
212  * These are used to set parameters in the core dumps.
213  */
214 #define ELF_CLASS       ELFCLASS32
215 #define ELF_ARCH        EM_386
216 
217 static inline void init_thread(struct target_pt_regs *regs,
218                                struct image_info *infop)
219 {
220     regs->esp = infop->start_stack;
221     regs->eip = infop->entry;
222 
223     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
224        starts %edx contains a pointer to a function which might be
225        registered using `atexit'.  This provides a mean for the
226        dynamic linker to call DT_FINI functions for shared libraries
227        that have been loaded before the code runs.
228 
229        A value of 0 tells we have no such handler.  */
230     regs->edx = 0;
231 }
232 
233 #define ELF_NREG    17
234 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
235 
236 /*
237  * Note that ELF_NREG should be 19 as there should be place for
238  * TRAPNO and ERR "registers" as well but linux doesn't dump
239  * those.
240  *
241  * See linux kernel: arch/x86/include/asm/elf.h
242  */
243 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
244 {
245     (*regs)[0] = env->regs[R_EBX];
246     (*regs)[1] = env->regs[R_ECX];
247     (*regs)[2] = env->regs[R_EDX];
248     (*regs)[3] = env->regs[R_ESI];
249     (*regs)[4] = env->regs[R_EDI];
250     (*regs)[5] = env->regs[R_EBP];
251     (*regs)[6] = env->regs[R_EAX];
252     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
253     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
254     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
255     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
256     (*regs)[11] = env->regs[R_EAX]; /* XXX */
257     (*regs)[12] = env->eip;
258     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
259     (*regs)[14] = env->eflags;
260     (*regs)[15] = env->regs[R_ESP];
261     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
262 }
263 #endif
264 
265 #define USE_ELF_CORE_DUMP
266 #define ELF_EXEC_PAGESIZE       4096
267 
268 #endif
269 
270 #ifdef TARGET_ARM
271 
272 #ifndef TARGET_AARCH64
273 /* 32 bit ARM definitions */
274 
275 #define ELF_START_MMAP 0x80000000
276 
277 #define ELF_ARCH        EM_ARM
278 #define ELF_CLASS       ELFCLASS32
279 
280 static inline void init_thread(struct target_pt_regs *regs,
281                                struct image_info *infop)
282 {
283     abi_long stack = infop->start_stack;
284     memset(regs, 0, sizeof(*regs));
285 
286     regs->uregs[16] = ARM_CPU_MODE_USR;
287     if (infop->entry & 1) {
288         regs->uregs[16] |= CPSR_T;
289     }
290     regs->uregs[15] = infop->entry & 0xfffffffe;
291     regs->uregs[13] = infop->start_stack;
292     /* FIXME - what to for failure of get_user()? */
293     get_user_ual(regs->uregs[2], stack + 8); /* envp */
294     get_user_ual(regs->uregs[1], stack + 4); /* envp */
295     /* XXX: it seems that r0 is zeroed after ! */
296     regs->uregs[0] = 0;
297     /* For uClinux PIC binaries.  */
298     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299     regs->uregs[10] = infop->start_data;
300 
301     /* Support ARM FDPIC.  */
302     if (info_is_fdpic(infop)) {
303         /* As described in the ABI document, r7 points to the loadmap info
304          * prepared by the kernel. If an interpreter is needed, r8 points
305          * to the interpreter loadmap and r9 points to the interpreter
306          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
307          * r9 points to the main program PT_DYNAMIC info.
308          */
309         regs->uregs[7] = infop->loadmap_addr;
310         if (infop->interpreter_loadmap_addr) {
311             /* Executable is dynamically loaded.  */
312             regs->uregs[8] = infop->interpreter_loadmap_addr;
313             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
314         } else {
315             regs->uregs[8] = 0;
316             regs->uregs[9] = infop->pt_dynamic_addr;
317         }
318     }
319 }
320 
321 #define ELF_NREG    18
322 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
323 
324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
325 {
326     (*regs)[0] = tswapreg(env->regs[0]);
327     (*regs)[1] = tswapreg(env->regs[1]);
328     (*regs)[2] = tswapreg(env->regs[2]);
329     (*regs)[3] = tswapreg(env->regs[3]);
330     (*regs)[4] = tswapreg(env->regs[4]);
331     (*regs)[5] = tswapreg(env->regs[5]);
332     (*regs)[6] = tswapreg(env->regs[6]);
333     (*regs)[7] = tswapreg(env->regs[7]);
334     (*regs)[8] = tswapreg(env->regs[8]);
335     (*regs)[9] = tswapreg(env->regs[9]);
336     (*regs)[10] = tswapreg(env->regs[10]);
337     (*regs)[11] = tswapreg(env->regs[11]);
338     (*regs)[12] = tswapreg(env->regs[12]);
339     (*regs)[13] = tswapreg(env->regs[13]);
340     (*regs)[14] = tswapreg(env->regs[14]);
341     (*regs)[15] = tswapreg(env->regs[15]);
342 
343     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
344     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
345 }
346 
347 #define USE_ELF_CORE_DUMP
348 #define ELF_EXEC_PAGESIZE       4096
349 
350 enum
351 {
352     ARM_HWCAP_ARM_SWP       = 1 << 0,
353     ARM_HWCAP_ARM_HALF      = 1 << 1,
354     ARM_HWCAP_ARM_THUMB     = 1 << 2,
355     ARM_HWCAP_ARM_26BIT     = 1 << 3,
356     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
357     ARM_HWCAP_ARM_FPA       = 1 << 5,
358     ARM_HWCAP_ARM_VFP       = 1 << 6,
359     ARM_HWCAP_ARM_EDSP      = 1 << 7,
360     ARM_HWCAP_ARM_JAVA      = 1 << 8,
361     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
362     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
363     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
364     ARM_HWCAP_ARM_NEON      = 1 << 12,
365     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
366     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
367     ARM_HWCAP_ARM_TLS       = 1 << 15,
368     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
369     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
370     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
371     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
372     ARM_HWCAP_ARM_LPAE      = 1 << 20,
373     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
374 };
375 
376 enum {
377     ARM_HWCAP2_ARM_AES      = 1 << 0,
378     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
379     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
380     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
381     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
382 };
383 
384 /* The commpage only exists for 32 bit kernels */
385 
386 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
387 
388 static bool init_guest_commpage(void)
389 {
390     void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size);
391     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
392                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
393 
394     if (addr == MAP_FAILED) {
395         perror("Allocating guest commpage");
396         exit(EXIT_FAILURE);
397     }
398     if (addr != want) {
399         return false;
400     }
401 
402     /* Set kernel helper versions; rest of page is 0.  */
403     __put_user(5, (uint32_t *)g2h(0xffff0ffcu));
404 
405     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
406         perror("Protecting guest commpage");
407         exit(EXIT_FAILURE);
408     }
409     return true;
410 }
411 
412 #define ELF_HWCAP get_elf_hwcap()
413 #define ELF_HWCAP2 get_elf_hwcap2()
414 
415 static uint32_t get_elf_hwcap(void)
416 {
417     ARMCPU *cpu = ARM_CPU(thread_cpu);
418     uint32_t hwcaps = 0;
419 
420     hwcaps |= ARM_HWCAP_ARM_SWP;
421     hwcaps |= ARM_HWCAP_ARM_HALF;
422     hwcaps |= ARM_HWCAP_ARM_THUMB;
423     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
424 
425     /* probe for the extra features */
426 #define GET_FEATURE(feat, hwcap) \
427     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
428 
429 #define GET_FEATURE_ID(feat, hwcap) \
430     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
431 
432     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
433     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
434     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
435     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
436     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
437     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
438     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
439     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
440     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
441     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
442 
443     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
444         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
445         hwcaps |= ARM_HWCAP_ARM_VFPv3;
446         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
447             hwcaps |= ARM_HWCAP_ARM_VFPD32;
448         } else {
449             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
450         }
451     }
452     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
453 
454     return hwcaps;
455 }
456 
457 static uint32_t get_elf_hwcap2(void)
458 {
459     ARMCPU *cpu = ARM_CPU(thread_cpu);
460     uint32_t hwcaps = 0;
461 
462     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
463     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
464     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
465     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
466     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
467     return hwcaps;
468 }
469 
470 #undef GET_FEATURE
471 #undef GET_FEATURE_ID
472 
473 #define ELF_PLATFORM get_elf_platform()
474 
475 static const char *get_elf_platform(void)
476 {
477     CPUARMState *env = thread_cpu->env_ptr;
478 
479 #ifdef TARGET_WORDS_BIGENDIAN
480 # define END  "b"
481 #else
482 # define END  "l"
483 #endif
484 
485     if (arm_feature(env, ARM_FEATURE_V8)) {
486         return "v8" END;
487     } else if (arm_feature(env, ARM_FEATURE_V7)) {
488         if (arm_feature(env, ARM_FEATURE_M)) {
489             return "v7m" END;
490         } else {
491             return "v7" END;
492         }
493     } else if (arm_feature(env, ARM_FEATURE_V6)) {
494         return "v6" END;
495     } else if (arm_feature(env, ARM_FEATURE_V5)) {
496         return "v5" END;
497     } else {
498         return "v4" END;
499     }
500 
501 #undef END
502 }
503 
504 #else
505 /* 64 bit ARM definitions */
506 #define ELF_START_MMAP 0x80000000
507 
508 #define ELF_ARCH        EM_AARCH64
509 #define ELF_CLASS       ELFCLASS64
510 #ifdef TARGET_WORDS_BIGENDIAN
511 # define ELF_PLATFORM    "aarch64_be"
512 #else
513 # define ELF_PLATFORM    "aarch64"
514 #endif
515 
516 static inline void init_thread(struct target_pt_regs *regs,
517                                struct image_info *infop)
518 {
519     abi_long stack = infop->start_stack;
520     memset(regs, 0, sizeof(*regs));
521 
522     regs->pc = infop->entry & ~0x3ULL;
523     regs->sp = stack;
524 }
525 
526 #define ELF_NREG    34
527 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
528 
529 static void elf_core_copy_regs(target_elf_gregset_t *regs,
530                                const CPUARMState *env)
531 {
532     int i;
533 
534     for (i = 0; i < 32; i++) {
535         (*regs)[i] = tswapreg(env->xregs[i]);
536     }
537     (*regs)[32] = tswapreg(env->pc);
538     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
539 }
540 
541 #define USE_ELF_CORE_DUMP
542 #define ELF_EXEC_PAGESIZE       4096
543 
544 enum {
545     ARM_HWCAP_A64_FP            = 1 << 0,
546     ARM_HWCAP_A64_ASIMD         = 1 << 1,
547     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
548     ARM_HWCAP_A64_AES           = 1 << 3,
549     ARM_HWCAP_A64_PMULL         = 1 << 4,
550     ARM_HWCAP_A64_SHA1          = 1 << 5,
551     ARM_HWCAP_A64_SHA2          = 1 << 6,
552     ARM_HWCAP_A64_CRC32         = 1 << 7,
553     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
554     ARM_HWCAP_A64_FPHP          = 1 << 9,
555     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
556     ARM_HWCAP_A64_CPUID         = 1 << 11,
557     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
558     ARM_HWCAP_A64_JSCVT         = 1 << 13,
559     ARM_HWCAP_A64_FCMA          = 1 << 14,
560     ARM_HWCAP_A64_LRCPC         = 1 << 15,
561     ARM_HWCAP_A64_DCPOP         = 1 << 16,
562     ARM_HWCAP_A64_SHA3          = 1 << 17,
563     ARM_HWCAP_A64_SM3           = 1 << 18,
564     ARM_HWCAP_A64_SM4           = 1 << 19,
565     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
566     ARM_HWCAP_A64_SHA512        = 1 << 21,
567     ARM_HWCAP_A64_SVE           = 1 << 22,
568     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
569     ARM_HWCAP_A64_DIT           = 1 << 24,
570     ARM_HWCAP_A64_USCAT         = 1 << 25,
571     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
572     ARM_HWCAP_A64_FLAGM         = 1 << 27,
573     ARM_HWCAP_A64_SSBS          = 1 << 28,
574     ARM_HWCAP_A64_SB            = 1 << 29,
575     ARM_HWCAP_A64_PACA          = 1 << 30,
576     ARM_HWCAP_A64_PACG          = 1UL << 31,
577 
578     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
579     ARM_HWCAP2_A64_SVE2         = 1 << 1,
580     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
581     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
582     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
583     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
584     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
585     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
586     ARM_HWCAP2_A64_FRINT        = 1 << 8,
587 };
588 
589 #define ELF_HWCAP   get_elf_hwcap()
590 #define ELF_HWCAP2  get_elf_hwcap2()
591 
592 #define GET_FEATURE_ID(feat, hwcap) \
593     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
594 
595 static uint32_t get_elf_hwcap(void)
596 {
597     ARMCPU *cpu = ARM_CPU(thread_cpu);
598     uint32_t hwcaps = 0;
599 
600     hwcaps |= ARM_HWCAP_A64_FP;
601     hwcaps |= ARM_HWCAP_A64_ASIMD;
602     hwcaps |= ARM_HWCAP_A64_CPUID;
603 
604     /* probe for the extra features */
605 
606     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
607     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
608     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
609     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
610     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
611     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
612     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
613     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
614     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
615     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
616     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
617     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
618     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
619     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
620     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
621     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
622     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
623     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
624     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
625     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
626     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
627     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
628     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
629 
630     return hwcaps;
631 }
632 
633 static uint32_t get_elf_hwcap2(void)
634 {
635     ARMCPU *cpu = ARM_CPU(thread_cpu);
636     uint32_t hwcaps = 0;
637 
638     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
639     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
640     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
641 
642     return hwcaps;
643 }
644 
645 #undef GET_FEATURE_ID
646 
647 #endif /* not TARGET_AARCH64 */
648 #endif /* TARGET_ARM */
649 
650 #ifdef TARGET_SPARC
651 #ifdef TARGET_SPARC64
652 
653 #define ELF_START_MMAP 0x80000000
654 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
655                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
656 #ifndef TARGET_ABI32
657 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
658 #else
659 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
660 #endif
661 
662 #define ELF_CLASS   ELFCLASS64
663 #define ELF_ARCH    EM_SPARCV9
664 
665 #define STACK_BIAS              2047
666 
667 static inline void init_thread(struct target_pt_regs *regs,
668                                struct image_info *infop)
669 {
670 #ifndef TARGET_ABI32
671     regs->tstate = 0;
672 #endif
673     regs->pc = infop->entry;
674     regs->npc = regs->pc + 4;
675     regs->y = 0;
676 #ifdef TARGET_ABI32
677     regs->u_regs[14] = infop->start_stack - 16 * 4;
678 #else
679     if (personality(infop->personality) == PER_LINUX32)
680         regs->u_regs[14] = infop->start_stack - 16 * 4;
681     else
682         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
683 #endif
684 }
685 
686 #else
687 #define ELF_START_MMAP 0x80000000
688 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
689                     | HWCAP_SPARC_MULDIV)
690 
691 #define ELF_CLASS   ELFCLASS32
692 #define ELF_ARCH    EM_SPARC
693 
694 static inline void init_thread(struct target_pt_regs *regs,
695                                struct image_info *infop)
696 {
697     regs->psr = 0;
698     regs->pc = infop->entry;
699     regs->npc = regs->pc + 4;
700     regs->y = 0;
701     regs->u_regs[14] = infop->start_stack - 16 * 4;
702 }
703 
704 #endif
705 #endif
706 
707 #ifdef TARGET_PPC
708 
709 #define ELF_MACHINE    PPC_ELF_MACHINE
710 #define ELF_START_MMAP 0x80000000
711 
712 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
713 
714 #define elf_check_arch(x) ( (x) == EM_PPC64 )
715 
716 #define ELF_CLASS       ELFCLASS64
717 
718 #else
719 
720 #define ELF_CLASS       ELFCLASS32
721 
722 #endif
723 
724 #define ELF_ARCH        EM_PPC
725 
726 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
727    See arch/powerpc/include/asm/cputable.h.  */
728 enum {
729     QEMU_PPC_FEATURE_32 = 0x80000000,
730     QEMU_PPC_FEATURE_64 = 0x40000000,
731     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
732     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
733     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
734     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
735     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
736     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
737     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
738     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
739     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
740     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
741     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
742     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
743     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
744     QEMU_PPC_FEATURE_CELL = 0x00010000,
745     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
746     QEMU_PPC_FEATURE_SMT = 0x00004000,
747     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
748     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
749     QEMU_PPC_FEATURE_PA6T = 0x00000800,
750     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
751     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
752     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
753     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
754     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
755 
756     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
757     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
758 
759     /* Feature definitions in AT_HWCAP2.  */
760     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
761     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
762     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
763     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
764     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
765     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
766     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
767     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
768     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
769     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
770     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
771     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
772     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
773 };
774 
775 #define ELF_HWCAP get_elf_hwcap()
776 
777 static uint32_t get_elf_hwcap(void)
778 {
779     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
780     uint32_t features = 0;
781 
782     /* We don't have to be terribly complete here; the high points are
783        Altivec/FP/SPE support.  Anything else is just a bonus.  */
784 #define GET_FEATURE(flag, feature)                                      \
785     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
786 #define GET_FEATURE2(flags, feature) \
787     do { \
788         if ((cpu->env.insns_flags2 & flags) == flags) { \
789             features |= feature; \
790         } \
791     } while (0)
792     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
793     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
794     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
795     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
796     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
797     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
798     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
799     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
800     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
801     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
802     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
803                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
804                   QEMU_PPC_FEATURE_ARCH_2_06);
805 #undef GET_FEATURE
806 #undef GET_FEATURE2
807 
808     return features;
809 }
810 
811 #define ELF_HWCAP2 get_elf_hwcap2()
812 
813 static uint32_t get_elf_hwcap2(void)
814 {
815     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
816     uint32_t features = 0;
817 
818 #define GET_FEATURE(flag, feature)                                      \
819     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
820 #define GET_FEATURE2(flag, feature)                                      \
821     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
822 
823     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
824     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
825     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
826                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
827                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
828     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
829                  QEMU_PPC_FEATURE2_DARN);
830 
831 #undef GET_FEATURE
832 #undef GET_FEATURE2
833 
834     return features;
835 }
836 
837 /*
838  * The requirements here are:
839  * - keep the final alignment of sp (sp & 0xf)
840  * - make sure the 32-bit value at the first 16 byte aligned position of
841  *   AUXV is greater than 16 for glibc compatibility.
842  *   AT_IGNOREPPC is used for that.
843  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
844  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
845  */
846 #define DLINFO_ARCH_ITEMS       5
847 #define ARCH_DLINFO                                     \
848     do {                                                \
849         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
850         /*                                              \
851          * Handle glibc compatibility: these magic entries must \
852          * be at the lowest addresses in the final auxv.        \
853          */                                             \
854         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
855         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
856         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
857         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
858         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
859     } while (0)
860 
861 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
862 {
863     _regs->gpr[1] = infop->start_stack;
864 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
865     if (get_ppc64_abi(infop) < 2) {
866         uint64_t val;
867         get_user_u64(val, infop->entry + 8);
868         _regs->gpr[2] = val + infop->load_bias;
869         get_user_u64(val, infop->entry);
870         infop->entry = val + infop->load_bias;
871     } else {
872         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
873     }
874 #endif
875     _regs->nip = infop->entry;
876 }
877 
878 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
879 #define ELF_NREG 48
880 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
881 
882 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
883 {
884     int i;
885     target_ulong ccr = 0;
886 
887     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
888         (*regs)[i] = tswapreg(env->gpr[i]);
889     }
890 
891     (*regs)[32] = tswapreg(env->nip);
892     (*regs)[33] = tswapreg(env->msr);
893     (*regs)[35] = tswapreg(env->ctr);
894     (*regs)[36] = tswapreg(env->lr);
895     (*regs)[37] = tswapreg(env->xer);
896 
897     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
898         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
899     }
900     (*regs)[38] = tswapreg(ccr);
901 }
902 
903 #define USE_ELF_CORE_DUMP
904 #define ELF_EXEC_PAGESIZE       4096
905 
906 #endif
907 
908 #ifdef TARGET_MIPS
909 
910 #define ELF_START_MMAP 0x80000000
911 
912 #ifdef TARGET_MIPS64
913 #define ELF_CLASS   ELFCLASS64
914 #else
915 #define ELF_CLASS   ELFCLASS32
916 #endif
917 #define ELF_ARCH    EM_MIPS
918 
919 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
920 
921 #ifdef TARGET_ABI_MIPSN32
922 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
923 #else
924 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
925 #endif
926 
927 static inline void init_thread(struct target_pt_regs *regs,
928                                struct image_info *infop)
929 {
930     regs->cp0_status = 2 << CP0St_KSU;
931     regs->cp0_epc = infop->entry;
932     regs->regs[29] = infop->start_stack;
933 }
934 
935 /* See linux kernel: arch/mips/include/asm/elf.h.  */
936 #define ELF_NREG 45
937 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
938 
939 /* See linux kernel: arch/mips/include/asm/reg.h.  */
940 enum {
941 #ifdef TARGET_MIPS64
942     TARGET_EF_R0 = 0,
943 #else
944     TARGET_EF_R0 = 6,
945 #endif
946     TARGET_EF_R26 = TARGET_EF_R0 + 26,
947     TARGET_EF_R27 = TARGET_EF_R0 + 27,
948     TARGET_EF_LO = TARGET_EF_R0 + 32,
949     TARGET_EF_HI = TARGET_EF_R0 + 33,
950     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
951     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
952     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
953     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
954 };
955 
956 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
957 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
958 {
959     int i;
960 
961     for (i = 0; i < TARGET_EF_R0; i++) {
962         (*regs)[i] = 0;
963     }
964     (*regs)[TARGET_EF_R0] = 0;
965 
966     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
967         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
968     }
969 
970     (*regs)[TARGET_EF_R26] = 0;
971     (*regs)[TARGET_EF_R27] = 0;
972     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
973     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
974     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
975     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
976     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
977     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
978 }
979 
980 #define USE_ELF_CORE_DUMP
981 #define ELF_EXEC_PAGESIZE        4096
982 
983 /* See arch/mips/include/uapi/asm/hwcap.h.  */
984 enum {
985     HWCAP_MIPS_R6           = (1 << 0),
986     HWCAP_MIPS_MSA          = (1 << 1),
987 };
988 
989 #define ELF_HWCAP get_elf_hwcap()
990 
991 static uint32_t get_elf_hwcap(void)
992 {
993     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
994     uint32_t hwcaps = 0;
995 
996 #define GET_FEATURE(flag, hwcap) \
997     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
998 
999     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
1000     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1001 
1002 #undef GET_FEATURE
1003 
1004     return hwcaps;
1005 }
1006 
1007 #endif /* TARGET_MIPS */
1008 
1009 #ifdef TARGET_MICROBLAZE
1010 
1011 #define ELF_START_MMAP 0x80000000
1012 
1013 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1014 
1015 #define ELF_CLASS   ELFCLASS32
1016 #define ELF_ARCH    EM_MICROBLAZE
1017 
1018 static inline void init_thread(struct target_pt_regs *regs,
1019                                struct image_info *infop)
1020 {
1021     regs->pc = infop->entry;
1022     regs->r1 = infop->start_stack;
1023 
1024 }
1025 
1026 #define ELF_EXEC_PAGESIZE        4096
1027 
1028 #define USE_ELF_CORE_DUMP
1029 #define ELF_NREG 38
1030 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1031 
1032 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1033 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1034 {
1035     int i, pos = 0;
1036 
1037     for (i = 0; i < 32; i++) {
1038         (*regs)[pos++] = tswapreg(env->regs[i]);
1039     }
1040 
1041     for (i = 0; i < 6; i++) {
1042         (*regs)[pos++] = tswapreg(env->sregs[i]);
1043     }
1044 }
1045 
1046 #endif /* TARGET_MICROBLAZE */
1047 
1048 #ifdef TARGET_NIOS2
1049 
1050 #define ELF_START_MMAP 0x80000000
1051 
1052 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1053 
1054 #define ELF_CLASS   ELFCLASS32
1055 #define ELF_ARCH    EM_ALTERA_NIOS2
1056 
1057 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1058 {
1059     regs->ea = infop->entry;
1060     regs->sp = infop->start_stack;
1061     regs->estatus = 0x3;
1062 }
1063 
1064 #define ELF_EXEC_PAGESIZE        4096
1065 
1066 #define USE_ELF_CORE_DUMP
1067 #define ELF_NREG 49
1068 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1069 
1070 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1071 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1072                                const CPUNios2State *env)
1073 {
1074     int i;
1075 
1076     (*regs)[0] = -1;
1077     for (i = 1; i < 8; i++)    /* r0-r7 */
1078         (*regs)[i] = tswapreg(env->regs[i + 7]);
1079 
1080     for (i = 8; i < 16; i++)   /* r8-r15 */
1081         (*regs)[i] = tswapreg(env->regs[i - 8]);
1082 
1083     for (i = 16; i < 24; i++)  /* r16-r23 */
1084         (*regs)[i] = tswapreg(env->regs[i + 7]);
1085     (*regs)[24] = -1;    /* R_ET */
1086     (*regs)[25] = -1;    /* R_BT */
1087     (*regs)[26] = tswapreg(env->regs[R_GP]);
1088     (*regs)[27] = tswapreg(env->regs[R_SP]);
1089     (*regs)[28] = tswapreg(env->regs[R_FP]);
1090     (*regs)[29] = tswapreg(env->regs[R_EA]);
1091     (*regs)[30] = -1;    /* R_SSTATUS */
1092     (*regs)[31] = tswapreg(env->regs[R_RA]);
1093 
1094     (*regs)[32] = tswapreg(env->regs[R_PC]);
1095 
1096     (*regs)[33] = -1; /* R_STATUS */
1097     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1098 
1099     for (i = 35; i < 49; i++)    /* ... */
1100         (*regs)[i] = -1;
1101 }
1102 
1103 #endif /* TARGET_NIOS2 */
1104 
1105 #ifdef TARGET_OPENRISC
1106 
1107 #define ELF_START_MMAP 0x08000000
1108 
1109 #define ELF_ARCH EM_OPENRISC
1110 #define ELF_CLASS ELFCLASS32
1111 #define ELF_DATA  ELFDATA2MSB
1112 
1113 static inline void init_thread(struct target_pt_regs *regs,
1114                                struct image_info *infop)
1115 {
1116     regs->pc = infop->entry;
1117     regs->gpr[1] = infop->start_stack;
1118 }
1119 
1120 #define USE_ELF_CORE_DUMP
1121 #define ELF_EXEC_PAGESIZE 8192
1122 
1123 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1124 #define ELF_NREG 34 /* gprs and pc, sr */
1125 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1126 
1127 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1128                                const CPUOpenRISCState *env)
1129 {
1130     int i;
1131 
1132     for (i = 0; i < 32; i++) {
1133         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1134     }
1135     (*regs)[32] = tswapreg(env->pc);
1136     (*regs)[33] = tswapreg(cpu_get_sr(env));
1137 }
1138 #define ELF_HWCAP 0
1139 #define ELF_PLATFORM NULL
1140 
1141 #endif /* TARGET_OPENRISC */
1142 
1143 #ifdef TARGET_SH4
1144 
1145 #define ELF_START_MMAP 0x80000000
1146 
1147 #define ELF_CLASS ELFCLASS32
1148 #define ELF_ARCH  EM_SH
1149 
1150 static inline void init_thread(struct target_pt_regs *regs,
1151                                struct image_info *infop)
1152 {
1153     /* Check other registers XXXXX */
1154     regs->pc = infop->entry;
1155     regs->regs[15] = infop->start_stack;
1156 }
1157 
1158 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1159 #define ELF_NREG 23
1160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1161 
1162 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1163 enum {
1164     TARGET_REG_PC = 16,
1165     TARGET_REG_PR = 17,
1166     TARGET_REG_SR = 18,
1167     TARGET_REG_GBR = 19,
1168     TARGET_REG_MACH = 20,
1169     TARGET_REG_MACL = 21,
1170     TARGET_REG_SYSCALL = 22
1171 };
1172 
1173 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1174                                       const CPUSH4State *env)
1175 {
1176     int i;
1177 
1178     for (i = 0; i < 16; i++) {
1179         (*regs)[i] = tswapreg(env->gregs[i]);
1180     }
1181 
1182     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1183     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1184     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1185     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1186     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1187     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1188     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1189 }
1190 
1191 #define USE_ELF_CORE_DUMP
1192 #define ELF_EXEC_PAGESIZE        4096
1193 
1194 enum {
1195     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1196     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1197     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1198     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1199     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1200     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1201     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1202     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1203     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1204     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1205 };
1206 
1207 #define ELF_HWCAP get_elf_hwcap()
1208 
1209 static uint32_t get_elf_hwcap(void)
1210 {
1211     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1212     uint32_t hwcap = 0;
1213 
1214     hwcap |= SH_CPU_HAS_FPU;
1215 
1216     if (cpu->env.features & SH_FEATURE_SH4A) {
1217         hwcap |= SH_CPU_HAS_LLSC;
1218     }
1219 
1220     return hwcap;
1221 }
1222 
1223 #endif
1224 
1225 #ifdef TARGET_CRIS
1226 
1227 #define ELF_START_MMAP 0x80000000
1228 
1229 #define ELF_CLASS ELFCLASS32
1230 #define ELF_ARCH  EM_CRIS
1231 
1232 static inline void init_thread(struct target_pt_regs *regs,
1233                                struct image_info *infop)
1234 {
1235     regs->erp = infop->entry;
1236 }
1237 
1238 #define ELF_EXEC_PAGESIZE        8192
1239 
1240 #endif
1241 
1242 #ifdef TARGET_M68K
1243 
1244 #define ELF_START_MMAP 0x80000000
1245 
1246 #define ELF_CLASS       ELFCLASS32
1247 #define ELF_ARCH        EM_68K
1248 
1249 /* ??? Does this need to do anything?
1250    #define ELF_PLAT_INIT(_r) */
1251 
1252 static inline void init_thread(struct target_pt_regs *regs,
1253                                struct image_info *infop)
1254 {
1255     regs->usp = infop->start_stack;
1256     regs->sr = 0;
1257     regs->pc = infop->entry;
1258 }
1259 
1260 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1261 #define ELF_NREG 20
1262 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1263 
1264 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1265 {
1266     (*regs)[0] = tswapreg(env->dregs[1]);
1267     (*regs)[1] = tswapreg(env->dregs[2]);
1268     (*regs)[2] = tswapreg(env->dregs[3]);
1269     (*regs)[3] = tswapreg(env->dregs[4]);
1270     (*regs)[4] = tswapreg(env->dregs[5]);
1271     (*regs)[5] = tswapreg(env->dregs[6]);
1272     (*regs)[6] = tswapreg(env->dregs[7]);
1273     (*regs)[7] = tswapreg(env->aregs[0]);
1274     (*regs)[8] = tswapreg(env->aregs[1]);
1275     (*regs)[9] = tswapreg(env->aregs[2]);
1276     (*regs)[10] = tswapreg(env->aregs[3]);
1277     (*regs)[11] = tswapreg(env->aregs[4]);
1278     (*regs)[12] = tswapreg(env->aregs[5]);
1279     (*regs)[13] = tswapreg(env->aregs[6]);
1280     (*regs)[14] = tswapreg(env->dregs[0]);
1281     (*regs)[15] = tswapreg(env->aregs[7]);
1282     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1283     (*regs)[17] = tswapreg(env->sr);
1284     (*regs)[18] = tswapreg(env->pc);
1285     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1286 }
1287 
1288 #define USE_ELF_CORE_DUMP
1289 #define ELF_EXEC_PAGESIZE       8192
1290 
1291 #endif
1292 
1293 #ifdef TARGET_ALPHA
1294 
1295 #define ELF_START_MMAP (0x30000000000ULL)
1296 
1297 #define ELF_CLASS      ELFCLASS64
1298 #define ELF_ARCH       EM_ALPHA
1299 
1300 static inline void init_thread(struct target_pt_regs *regs,
1301                                struct image_info *infop)
1302 {
1303     regs->pc = infop->entry;
1304     regs->ps = 8;
1305     regs->usp = infop->start_stack;
1306 }
1307 
1308 #define ELF_EXEC_PAGESIZE        8192
1309 
1310 #endif /* TARGET_ALPHA */
1311 
1312 #ifdef TARGET_S390X
1313 
1314 #define ELF_START_MMAP (0x20000000000ULL)
1315 
1316 #define ELF_CLASS	ELFCLASS64
1317 #define ELF_DATA	ELFDATA2MSB
1318 #define ELF_ARCH	EM_S390
1319 
1320 #include "elf.h"
1321 
1322 #define ELF_HWCAP get_elf_hwcap()
1323 
1324 #define GET_FEATURE(_feat, _hwcap) \
1325     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1326 
1327 static uint32_t get_elf_hwcap(void)
1328 {
1329     /*
1330      * Let's assume we always have esan3 and zarch.
1331      * 31-bit processes can use 64-bit registers (high gprs).
1332      */
1333     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1334 
1335     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1336     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1337     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1338     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1339     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1340         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1341         hwcap |= HWCAP_S390_ETF3EH;
1342     }
1343     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1344 
1345     return hwcap;
1346 }
1347 
1348 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1349 {
1350     regs->psw.addr = infop->entry;
1351     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1352     regs->gprs[15] = infop->start_stack;
1353 }
1354 
1355 #endif /* TARGET_S390X */
1356 
1357 #ifdef TARGET_TILEGX
1358 
1359 /* 42 bits real used address, a half for user mode */
1360 #define ELF_START_MMAP (0x00000020000000000ULL)
1361 
1362 #define elf_check_arch(x) ((x) == EM_TILEGX)
1363 
1364 #define ELF_CLASS   ELFCLASS64
1365 #define ELF_DATA    ELFDATA2LSB
1366 #define ELF_ARCH    EM_TILEGX
1367 
1368 static inline void init_thread(struct target_pt_regs *regs,
1369                                struct image_info *infop)
1370 {
1371     regs->pc = infop->entry;
1372     regs->sp = infop->start_stack;
1373 
1374 }
1375 
1376 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1377 
1378 #endif /* TARGET_TILEGX */
1379 
1380 #ifdef TARGET_RISCV
1381 
1382 #define ELF_START_MMAP 0x80000000
1383 #define ELF_ARCH  EM_RISCV
1384 
1385 #ifdef TARGET_RISCV32
1386 #define ELF_CLASS ELFCLASS32
1387 #else
1388 #define ELF_CLASS ELFCLASS64
1389 #endif
1390 
1391 static inline void init_thread(struct target_pt_regs *regs,
1392                                struct image_info *infop)
1393 {
1394     regs->sepc = infop->entry;
1395     regs->sp = infop->start_stack;
1396 }
1397 
1398 #define ELF_EXEC_PAGESIZE 4096
1399 
1400 #endif /* TARGET_RISCV */
1401 
1402 #ifdef TARGET_HPPA
1403 
1404 #define ELF_START_MMAP  0x80000000
1405 #define ELF_CLASS       ELFCLASS32
1406 #define ELF_ARCH        EM_PARISC
1407 #define ELF_PLATFORM    "PARISC"
1408 #define STACK_GROWS_DOWN 0
1409 #define STACK_ALIGNMENT  64
1410 
1411 static inline void init_thread(struct target_pt_regs *regs,
1412                                struct image_info *infop)
1413 {
1414     regs->iaoq[0] = infop->entry;
1415     regs->iaoq[1] = infop->entry + 4;
1416     regs->gr[23] = 0;
1417     regs->gr[24] = infop->arg_start;
1418     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1419     /* The top-of-stack contains a linkage buffer.  */
1420     regs->gr[30] = infop->start_stack + 64;
1421     regs->gr[31] = infop->entry;
1422 }
1423 
1424 #endif /* TARGET_HPPA */
1425 
1426 #ifdef TARGET_XTENSA
1427 
1428 #define ELF_START_MMAP 0x20000000
1429 
1430 #define ELF_CLASS       ELFCLASS32
1431 #define ELF_ARCH        EM_XTENSA
1432 
1433 static inline void init_thread(struct target_pt_regs *regs,
1434                                struct image_info *infop)
1435 {
1436     regs->windowbase = 0;
1437     regs->windowstart = 1;
1438     regs->areg[1] = infop->start_stack;
1439     regs->pc = infop->entry;
1440 }
1441 
1442 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1443 #define ELF_NREG 128
1444 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1445 
1446 enum {
1447     TARGET_REG_PC,
1448     TARGET_REG_PS,
1449     TARGET_REG_LBEG,
1450     TARGET_REG_LEND,
1451     TARGET_REG_LCOUNT,
1452     TARGET_REG_SAR,
1453     TARGET_REG_WINDOWSTART,
1454     TARGET_REG_WINDOWBASE,
1455     TARGET_REG_THREADPTR,
1456     TARGET_REG_AR0 = 64,
1457 };
1458 
1459 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1460                                const CPUXtensaState *env)
1461 {
1462     unsigned i;
1463 
1464     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1465     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1466     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1467     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1468     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1469     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1470     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1471     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1472     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1473     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1474     for (i = 0; i < env->config->nareg; ++i) {
1475         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1476     }
1477 }
1478 
1479 #define USE_ELF_CORE_DUMP
1480 #define ELF_EXEC_PAGESIZE       4096
1481 
1482 #endif /* TARGET_XTENSA */
1483 
1484 #ifndef ELF_PLATFORM
1485 #define ELF_PLATFORM (NULL)
1486 #endif
1487 
1488 #ifndef ELF_MACHINE
1489 #define ELF_MACHINE ELF_ARCH
1490 #endif
1491 
1492 #ifndef elf_check_arch
1493 #define elf_check_arch(x) ((x) == ELF_ARCH)
1494 #endif
1495 
1496 #ifndef elf_check_abi
1497 #define elf_check_abi(x) (1)
1498 #endif
1499 
1500 #ifndef ELF_HWCAP
1501 #define ELF_HWCAP 0
1502 #endif
1503 
1504 #ifndef STACK_GROWS_DOWN
1505 #define STACK_GROWS_DOWN 1
1506 #endif
1507 
1508 #ifndef STACK_ALIGNMENT
1509 #define STACK_ALIGNMENT 16
1510 #endif
1511 
1512 #ifdef TARGET_ABI32
1513 #undef ELF_CLASS
1514 #define ELF_CLASS ELFCLASS32
1515 #undef bswaptls
1516 #define bswaptls(ptr) bswap32s(ptr)
1517 #endif
1518 
1519 #include "elf.h"
1520 
1521 struct exec
1522 {
1523     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1524     unsigned int a_text;   /* length of text, in bytes */
1525     unsigned int a_data;   /* length of data, in bytes */
1526     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1527     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1528     unsigned int a_entry;  /* start address */
1529     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1530     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1531 };
1532 
1533 
1534 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1535 #define OMAGIC 0407
1536 #define NMAGIC 0410
1537 #define ZMAGIC 0413
1538 #define QMAGIC 0314
1539 
1540 /* Necessary parameters */
1541 #define TARGET_ELF_EXEC_PAGESIZE \
1542         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1543          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1544 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1545 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1546                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1547 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1548 
1549 #define DLINFO_ITEMS 16
1550 
1551 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1552 {
1553     memcpy(to, from, n);
1554 }
1555 
1556 #ifdef BSWAP_NEEDED
1557 static void bswap_ehdr(struct elfhdr *ehdr)
1558 {
1559     bswap16s(&ehdr->e_type);            /* Object file type */
1560     bswap16s(&ehdr->e_machine);         /* Architecture */
1561     bswap32s(&ehdr->e_version);         /* Object file version */
1562     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1563     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1564     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1565     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1566     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1567     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1568     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1569     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1570     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1571     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1572 }
1573 
1574 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1575 {
1576     int i;
1577     for (i = 0; i < phnum; ++i, ++phdr) {
1578         bswap32s(&phdr->p_type);        /* Segment type */
1579         bswap32s(&phdr->p_flags);       /* Segment flags */
1580         bswaptls(&phdr->p_offset);      /* Segment file offset */
1581         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1582         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1583         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1584         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1585         bswaptls(&phdr->p_align);       /* Segment alignment */
1586     }
1587 }
1588 
1589 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1590 {
1591     int i;
1592     for (i = 0; i < shnum; ++i, ++shdr) {
1593         bswap32s(&shdr->sh_name);
1594         bswap32s(&shdr->sh_type);
1595         bswaptls(&shdr->sh_flags);
1596         bswaptls(&shdr->sh_addr);
1597         bswaptls(&shdr->sh_offset);
1598         bswaptls(&shdr->sh_size);
1599         bswap32s(&shdr->sh_link);
1600         bswap32s(&shdr->sh_info);
1601         bswaptls(&shdr->sh_addralign);
1602         bswaptls(&shdr->sh_entsize);
1603     }
1604 }
1605 
1606 static void bswap_sym(struct elf_sym *sym)
1607 {
1608     bswap32s(&sym->st_name);
1609     bswaptls(&sym->st_value);
1610     bswaptls(&sym->st_size);
1611     bswap16s(&sym->st_shndx);
1612 }
1613 
1614 #ifdef TARGET_MIPS
1615 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1616 {
1617     bswap16s(&abiflags->version);
1618     bswap32s(&abiflags->ases);
1619     bswap32s(&abiflags->isa_ext);
1620     bswap32s(&abiflags->flags1);
1621     bswap32s(&abiflags->flags2);
1622 }
1623 #endif
1624 #else
1625 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1626 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1627 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1628 static inline void bswap_sym(struct elf_sym *sym) { }
1629 #ifdef TARGET_MIPS
1630 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1631 #endif
1632 #endif
1633 
1634 #ifdef USE_ELF_CORE_DUMP
1635 static int elf_core_dump(int, const CPUArchState *);
1636 #endif /* USE_ELF_CORE_DUMP */
1637 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1638 
1639 /* Verify the portions of EHDR within E_IDENT for the target.
1640    This can be performed before bswapping the entire header.  */
1641 static bool elf_check_ident(struct elfhdr *ehdr)
1642 {
1643     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1644             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1645             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1646             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1647             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1648             && ehdr->e_ident[EI_DATA] == ELF_DATA
1649             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1650 }
1651 
1652 /* Verify the portions of EHDR outside of E_IDENT for the target.
1653    This has to wait until after bswapping the header.  */
1654 static bool elf_check_ehdr(struct elfhdr *ehdr)
1655 {
1656     return (elf_check_arch(ehdr->e_machine)
1657             && elf_check_abi(ehdr->e_flags)
1658             && ehdr->e_ehsize == sizeof(struct elfhdr)
1659             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1660             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1661 }
1662 
1663 /*
1664  * 'copy_elf_strings()' copies argument/envelope strings from user
1665  * memory to free pages in kernel mem. These are in a format ready
1666  * to be put directly into the top of new user memory.
1667  *
1668  */
1669 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1670                                   abi_ulong p, abi_ulong stack_limit)
1671 {
1672     char *tmp;
1673     int len, i;
1674     abi_ulong top = p;
1675 
1676     if (!p) {
1677         return 0;       /* bullet-proofing */
1678     }
1679 
1680     if (STACK_GROWS_DOWN) {
1681         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1682         for (i = argc - 1; i >= 0; --i) {
1683             tmp = argv[i];
1684             if (!tmp) {
1685                 fprintf(stderr, "VFS: argc is wrong");
1686                 exit(-1);
1687             }
1688             len = strlen(tmp) + 1;
1689             tmp += len;
1690 
1691             if (len > (p - stack_limit)) {
1692                 return 0;
1693             }
1694             while (len) {
1695                 int bytes_to_copy = (len > offset) ? offset : len;
1696                 tmp -= bytes_to_copy;
1697                 p -= bytes_to_copy;
1698                 offset -= bytes_to_copy;
1699                 len -= bytes_to_copy;
1700 
1701                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1702 
1703                 if (offset == 0) {
1704                     memcpy_to_target(p, scratch, top - p);
1705                     top = p;
1706                     offset = TARGET_PAGE_SIZE;
1707                 }
1708             }
1709         }
1710         if (p != top) {
1711             memcpy_to_target(p, scratch + offset, top - p);
1712         }
1713     } else {
1714         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1715         for (i = 0; i < argc; ++i) {
1716             tmp = argv[i];
1717             if (!tmp) {
1718                 fprintf(stderr, "VFS: argc is wrong");
1719                 exit(-1);
1720             }
1721             len = strlen(tmp) + 1;
1722             if (len > (stack_limit - p)) {
1723                 return 0;
1724             }
1725             while (len) {
1726                 int bytes_to_copy = (len > remaining) ? remaining : len;
1727 
1728                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1729 
1730                 tmp += bytes_to_copy;
1731                 remaining -= bytes_to_copy;
1732                 p += bytes_to_copy;
1733                 len -= bytes_to_copy;
1734 
1735                 if (remaining == 0) {
1736                     memcpy_to_target(top, scratch, p - top);
1737                     top = p;
1738                     remaining = TARGET_PAGE_SIZE;
1739                 }
1740             }
1741         }
1742         if (p != top) {
1743             memcpy_to_target(top, scratch, p - top);
1744         }
1745     }
1746 
1747     return p;
1748 }
1749 
1750 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1751  * argument/environment space. Newer kernels (>2.6.33) allow more,
1752  * dependent on stack size, but guarantee at least 32 pages for
1753  * backwards compatibility.
1754  */
1755 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1756 
1757 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1758                                  struct image_info *info)
1759 {
1760     abi_ulong size, error, guard;
1761 
1762     size = guest_stack_size;
1763     if (size < STACK_LOWER_LIMIT) {
1764         size = STACK_LOWER_LIMIT;
1765     }
1766     guard = TARGET_PAGE_SIZE;
1767     if (guard < qemu_real_host_page_size) {
1768         guard = qemu_real_host_page_size;
1769     }
1770 
1771     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1772                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1773     if (error == -1) {
1774         perror("mmap stack");
1775         exit(-1);
1776     }
1777 
1778     /* We reserve one extra page at the top of the stack as guard.  */
1779     if (STACK_GROWS_DOWN) {
1780         target_mprotect(error, guard, PROT_NONE);
1781         info->stack_limit = error + guard;
1782         return info->stack_limit + size - sizeof(void *);
1783     } else {
1784         target_mprotect(error + size, guard, PROT_NONE);
1785         info->stack_limit = error + size;
1786         return error;
1787     }
1788 }
1789 
1790 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1791    after the data section (i.e. bss).  */
1792 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1793 {
1794     uintptr_t host_start, host_map_start, host_end;
1795 
1796     last_bss = TARGET_PAGE_ALIGN(last_bss);
1797 
1798     /* ??? There is confusion between qemu_real_host_page_size and
1799        qemu_host_page_size here and elsewhere in target_mmap, which
1800        may lead to the end of the data section mapping from the file
1801        not being mapped.  At least there was an explicit test and
1802        comment for that here, suggesting that "the file size must
1803        be known".  The comment probably pre-dates the introduction
1804        of the fstat system call in target_mmap which does in fact
1805        find out the size.  What isn't clear is if the workaround
1806        here is still actually needed.  For now, continue with it,
1807        but merge it with the "normal" mmap that would allocate the bss.  */
1808 
1809     host_start = (uintptr_t) g2h(elf_bss);
1810     host_end = (uintptr_t) g2h(last_bss);
1811     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1812 
1813     if (host_map_start < host_end) {
1814         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1815                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1816         if (p == MAP_FAILED) {
1817             perror("cannot mmap brk");
1818             exit(-1);
1819         }
1820     }
1821 
1822     /* Ensure that the bss page(s) are valid */
1823     if ((page_get_flags(last_bss-1) & prot) != prot) {
1824         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1825     }
1826 
1827     if (host_start < host_map_start) {
1828         memset((void *)host_start, 0, host_map_start - host_start);
1829     }
1830 }
1831 
1832 #ifdef TARGET_ARM
1833 static int elf_is_fdpic(struct elfhdr *exec)
1834 {
1835     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1836 }
1837 #else
1838 /* Default implementation, always false.  */
1839 static int elf_is_fdpic(struct elfhdr *exec)
1840 {
1841     return 0;
1842 }
1843 #endif
1844 
1845 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1846 {
1847     uint16_t n;
1848     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1849 
1850     /* elf32_fdpic_loadseg */
1851     n = info->nsegs;
1852     while (n--) {
1853         sp -= 12;
1854         put_user_u32(loadsegs[n].addr, sp+0);
1855         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1856         put_user_u32(loadsegs[n].p_memsz, sp+8);
1857     }
1858 
1859     /* elf32_fdpic_loadmap */
1860     sp -= 4;
1861     put_user_u16(0, sp+0); /* version */
1862     put_user_u16(info->nsegs, sp+2); /* nsegs */
1863 
1864     info->personality = PER_LINUX_FDPIC;
1865     info->loadmap_addr = sp;
1866 
1867     return sp;
1868 }
1869 
1870 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1871                                    struct elfhdr *exec,
1872                                    struct image_info *info,
1873                                    struct image_info *interp_info)
1874 {
1875     abi_ulong sp;
1876     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1877     int size;
1878     int i;
1879     abi_ulong u_rand_bytes;
1880     uint8_t k_rand_bytes[16];
1881     abi_ulong u_platform;
1882     const char *k_platform;
1883     const int n = sizeof(elf_addr_t);
1884 
1885     sp = p;
1886 
1887     /* Needs to be before we load the env/argc/... */
1888     if (elf_is_fdpic(exec)) {
1889         /* Need 4 byte alignment for these structs */
1890         sp &= ~3;
1891         sp = loader_build_fdpic_loadmap(info, sp);
1892         info->other_info = interp_info;
1893         if (interp_info) {
1894             interp_info->other_info = info;
1895             sp = loader_build_fdpic_loadmap(interp_info, sp);
1896             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1897             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1898         } else {
1899             info->interpreter_loadmap_addr = 0;
1900             info->interpreter_pt_dynamic_addr = 0;
1901         }
1902     }
1903 
1904     u_platform = 0;
1905     k_platform = ELF_PLATFORM;
1906     if (k_platform) {
1907         size_t len = strlen(k_platform) + 1;
1908         if (STACK_GROWS_DOWN) {
1909             sp -= (len + n - 1) & ~(n - 1);
1910             u_platform = sp;
1911             /* FIXME - check return value of memcpy_to_target() for failure */
1912             memcpy_to_target(sp, k_platform, len);
1913         } else {
1914             memcpy_to_target(sp, k_platform, len);
1915             u_platform = sp;
1916             sp += len + 1;
1917         }
1918     }
1919 
1920     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1921      * the argv and envp pointers.
1922      */
1923     if (STACK_GROWS_DOWN) {
1924         sp = QEMU_ALIGN_DOWN(sp, 16);
1925     } else {
1926         sp = QEMU_ALIGN_UP(sp, 16);
1927     }
1928 
1929     /*
1930      * Generate 16 random bytes for userspace PRNG seeding.
1931      */
1932     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1933     if (STACK_GROWS_DOWN) {
1934         sp -= 16;
1935         u_rand_bytes = sp;
1936         /* FIXME - check return value of memcpy_to_target() for failure */
1937         memcpy_to_target(sp, k_rand_bytes, 16);
1938     } else {
1939         memcpy_to_target(sp, k_rand_bytes, 16);
1940         u_rand_bytes = sp;
1941         sp += 16;
1942     }
1943 
1944     size = (DLINFO_ITEMS + 1) * 2;
1945     if (k_platform)
1946         size += 2;
1947 #ifdef DLINFO_ARCH_ITEMS
1948     size += DLINFO_ARCH_ITEMS * 2;
1949 #endif
1950 #ifdef ELF_HWCAP2
1951     size += 2;
1952 #endif
1953     info->auxv_len = size * n;
1954 
1955     size += envc + argc + 2;
1956     size += 1;  /* argc itself */
1957     size *= n;
1958 
1959     /* Allocate space and finalize stack alignment for entry now.  */
1960     if (STACK_GROWS_DOWN) {
1961         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1962         sp = u_argc;
1963     } else {
1964         u_argc = sp;
1965         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1966     }
1967 
1968     u_argv = u_argc + n;
1969     u_envp = u_argv + (argc + 1) * n;
1970     u_auxv = u_envp + (envc + 1) * n;
1971     info->saved_auxv = u_auxv;
1972     info->arg_start = u_argv;
1973     info->arg_end = u_argv + argc * n;
1974 
1975     /* This is correct because Linux defines
1976      * elf_addr_t as Elf32_Off / Elf64_Off
1977      */
1978 #define NEW_AUX_ENT(id, val) do {               \
1979         put_user_ual(id, u_auxv);  u_auxv += n; \
1980         put_user_ual(val, u_auxv); u_auxv += n; \
1981     } while(0)
1982 
1983 #ifdef ARCH_DLINFO
1984     /*
1985      * ARCH_DLINFO must come first so platform specific code can enforce
1986      * special alignment requirements on the AUXV if necessary (eg. PPC).
1987      */
1988     ARCH_DLINFO;
1989 #endif
1990     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1991      * on info->auxv_len will trigger.
1992      */
1993     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1994     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1995     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1996     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1997         /* Target doesn't support host page size alignment */
1998         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1999     } else {
2000         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2001                                                qemu_host_page_size)));
2002     }
2003     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2004     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2005     NEW_AUX_ENT(AT_ENTRY, info->entry);
2006     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2007     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2008     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2009     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2010     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2011     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2012     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2013     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2014     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2015 
2016 #ifdef ELF_HWCAP2
2017     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2018 #endif
2019 
2020     if (u_platform) {
2021         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2022     }
2023     NEW_AUX_ENT (AT_NULL, 0);
2024 #undef NEW_AUX_ENT
2025 
2026     /* Check that our initial calculation of the auxv length matches how much
2027      * we actually put into it.
2028      */
2029     assert(info->auxv_len == u_auxv - info->saved_auxv);
2030 
2031     put_user_ual(argc, u_argc);
2032 
2033     p = info->arg_strings;
2034     for (i = 0; i < argc; ++i) {
2035         put_user_ual(p, u_argv);
2036         u_argv += n;
2037         p += target_strlen(p) + 1;
2038     }
2039     put_user_ual(0, u_argv);
2040 
2041     p = info->env_strings;
2042     for (i = 0; i < envc; ++i) {
2043         put_user_ual(p, u_envp);
2044         u_envp += n;
2045         p += target_strlen(p) + 1;
2046     }
2047     put_user_ual(0, u_envp);
2048 
2049     return sp;
2050 }
2051 
2052 #ifndef ARM_COMMPAGE
2053 #define ARM_COMMPAGE 0
2054 #define init_guest_commpage() true
2055 #endif
2056 
2057 static void pgb_fail_in_use(const char *image_name)
2058 {
2059     error_report("%s: requires virtual address space that is in use "
2060                  "(omit the -B option or choose a different value)",
2061                  image_name);
2062     exit(EXIT_FAILURE);
2063 }
2064 
2065 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2066                                 abi_ulong guest_hiaddr, long align)
2067 {
2068     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2069     void *addr, *test;
2070 
2071     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2072         fprintf(stderr, "Requested guest base 0x%lx does not satisfy "
2073                 "host minimum alignment (0x%lx)\n",
2074                 guest_base, align);
2075         exit(EXIT_FAILURE);
2076     }
2077 
2078     /* Sanity check the guest binary. */
2079     if (reserved_va) {
2080         if (guest_hiaddr > reserved_va) {
2081             error_report("%s: requires more than reserved virtual "
2082                          "address space (0x%" PRIx64 " > 0x%lx)",
2083                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2084             exit(EXIT_FAILURE);
2085         }
2086     } else {
2087 #if HOST_LONG_BITS < TARGET_ABI_BITS
2088         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2089             error_report("%s: requires more virtual address space "
2090                          "than the host can provide (0x%" PRIx64 ")",
2091                          image_name, (uint64_t)guest_hiaddr - guest_base);
2092             exit(EXIT_FAILURE);
2093         }
2094 #endif
2095     }
2096 
2097     /*
2098      * Expand the allocation to the entire reserved_va.
2099      * Exclude the mmap_min_addr hole.
2100      */
2101     if (reserved_va) {
2102         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2103                         : mmap_min_addr - guest_base);
2104         guest_hiaddr = reserved_va;
2105     }
2106 
2107     /* Reserve the address space for the binary, or reserved_va. */
2108     test = g2h(guest_loaddr);
2109     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2110     if (test != addr) {
2111         pgb_fail_in_use(image_name);
2112     }
2113 }
2114 
2115 /**
2116  * pgd_find_hole_fallback: potential mmap address
2117  * @guest_size: size of available space
2118  * @brk: location of break
2119  * @align: memory alignment
2120  *
2121  * This is a fallback method for finding a hole in the host address
2122  * space if we don't have the benefit of being able to access
2123  * /proc/self/map. It can potentially take a very long time as we can
2124  * only dumbly iterate up the host address space seeing if the
2125  * allocation would work.
2126  */
2127 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2128                                         long align, uintptr_t offset)
2129 {
2130     uintptr_t base;
2131 
2132     /* Start (aligned) at the bottom and work our way up */
2133     base = ROUND_UP(mmap_min_addr, align);
2134 
2135     while (true) {
2136         uintptr_t align_start, end;
2137         align_start = ROUND_UP(base, align);
2138         end = align_start + guest_size + offset;
2139 
2140         /* if brk is anywhere in the range give ourselves some room to grow. */
2141         if (align_start <= brk && brk < end) {
2142             base = brk + (16 * MiB);
2143             continue;
2144         } else if (align_start + guest_size < align_start) {
2145             /* we have run out of space */
2146             return -1;
2147         } else {
2148             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2149                 MAP_FIXED_NOREPLACE;
2150             void * mmap_start = mmap((void *) align_start, guest_size,
2151                                      PROT_NONE, flags, -1, 0);
2152             if (mmap_start != MAP_FAILED) {
2153                 munmap((void *) align_start, guest_size);
2154                 if (MAP_FIXED_NOREPLACE || mmap_start == (void *) align_start) {
2155                     return (uintptr_t) mmap_start + offset;
2156                 }
2157             }
2158             base += qemu_host_page_size;
2159         }
2160     }
2161 }
2162 
2163 /* Return value for guest_base, or -1 if no hole found. */
2164 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2165                                long align, uintptr_t offset)
2166 {
2167     GSList *maps, *iter;
2168     uintptr_t this_start, this_end, next_start, brk;
2169     intptr_t ret = -1;
2170 
2171     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2172 
2173     maps = read_self_maps();
2174 
2175     /* Read brk after we've read the maps, which will malloc. */
2176     brk = (uintptr_t)sbrk(0);
2177 
2178     if (!maps) {
2179         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2180     }
2181 
2182     /* The first hole is before the first map entry. */
2183     this_start = mmap_min_addr;
2184 
2185     for (iter = maps; iter;
2186          this_start = next_start, iter = g_slist_next(iter)) {
2187         uintptr_t align_start, hole_size;
2188 
2189         this_end = ((MapInfo *)iter->data)->start;
2190         next_start = ((MapInfo *)iter->data)->end;
2191         align_start = ROUND_UP(this_start + offset, align);
2192 
2193         /* Skip holes that are too small. */
2194         if (align_start >= this_end) {
2195             continue;
2196         }
2197         hole_size = this_end - align_start;
2198         if (hole_size < guest_size) {
2199             continue;
2200         }
2201 
2202         /* If this hole contains brk, give ourselves some room to grow. */
2203         if (this_start <= brk && brk < this_end) {
2204             hole_size -= guest_size;
2205             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2206                 align_start += 1 * GiB;
2207             } else if (hole_size >= 16 * MiB) {
2208                 align_start += 16 * MiB;
2209             } else {
2210                 align_start = (this_end - guest_size) & -align;
2211                 if (align_start < this_start) {
2212                     continue;
2213                 }
2214             }
2215         }
2216 
2217         /* Record the lowest successful match. */
2218         if (ret < 0) {
2219             ret = align_start - guest_loaddr;
2220         }
2221         /* If this hole contains the identity map, select it. */
2222         if (align_start <= guest_loaddr &&
2223             guest_loaddr + guest_size <= this_end) {
2224             ret = 0;
2225         }
2226         /* If this hole ends above the identity map, stop looking. */
2227         if (this_end >= guest_loaddr) {
2228             break;
2229         }
2230     }
2231     free_self_maps(maps);
2232 
2233     return ret;
2234 }
2235 
2236 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2237                        abi_ulong orig_hiaddr, long align)
2238 {
2239     uintptr_t loaddr = orig_loaddr;
2240     uintptr_t hiaddr = orig_hiaddr;
2241     uintptr_t offset = 0;
2242     uintptr_t addr;
2243 
2244     if (hiaddr != orig_hiaddr) {
2245         error_report("%s: requires virtual address space that the "
2246                      "host cannot provide (0x%" PRIx64 ")",
2247                      image_name, (uint64_t)orig_hiaddr);
2248         exit(EXIT_FAILURE);
2249     }
2250 
2251     loaddr &= -align;
2252     if (ARM_COMMPAGE) {
2253         /*
2254          * Extend the allocation to include the commpage.
2255          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2256          * need to ensure there is space bellow the guest_base so we
2257          * can map the commpage in the place needed when the address
2258          * arithmetic wraps around.
2259          */
2260         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2261             hiaddr = (uintptr_t) 4 << 30;
2262         } else {
2263             offset = -(ARM_COMMPAGE & -align);
2264         }
2265     }
2266 
2267     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2268     if (addr == -1) {
2269         /*
2270          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2271          * that can satisfy both.  But as the normal arm32 link base address
2272          * is ~32k, and we extend down to include the commpage, making the
2273          * overhead only ~96k, this is unlikely.
2274          */
2275         error_report("%s: Unable to allocate %#zx bytes of "
2276                      "virtual address space", image_name,
2277                      (size_t)(hiaddr - loaddr));
2278         exit(EXIT_FAILURE);
2279     }
2280 
2281     guest_base = addr;
2282 }
2283 
2284 static void pgb_dynamic(const char *image_name, long align)
2285 {
2286     /*
2287      * The executable is dynamic and does not require a fixed address.
2288      * All we need is a commpage that satisfies align.
2289      * If we do not need a commpage, leave guest_base == 0.
2290      */
2291     if (ARM_COMMPAGE) {
2292         uintptr_t addr, commpage;
2293 
2294         /* 64-bit hosts should have used reserved_va. */
2295         assert(sizeof(uintptr_t) == 4);
2296 
2297         /*
2298          * By putting the commpage at the first hole, that puts guest_base
2299          * just above that, and maximises the positive guest addresses.
2300          */
2301         commpage = ARM_COMMPAGE & -align;
2302         addr = pgb_find_hole(commpage, -commpage, align, 0);
2303         assert(addr != -1);
2304         guest_base = addr;
2305     }
2306 }
2307 
2308 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2309                             abi_ulong guest_hiaddr, long align)
2310 {
2311     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2312     void *addr, *test;
2313 
2314     if (guest_hiaddr > reserved_va) {
2315         error_report("%s: requires more than reserved virtual "
2316                      "address space (0x%" PRIx64 " > 0x%lx)",
2317                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2318         exit(EXIT_FAILURE);
2319     }
2320 
2321     /* Widen the "image" to the entire reserved address space. */
2322     pgb_static(image_name, 0, reserved_va, align);
2323 
2324     /* osdep.h defines this as 0 if it's missing */
2325     flags |= MAP_FIXED_NOREPLACE;
2326 
2327     /* Reserve the memory on the host. */
2328     assert(guest_base != 0);
2329     test = g2h(0);
2330     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2331     if (addr == MAP_FAILED) {
2332         error_report("Unable to reserve 0x%lx bytes of virtual address "
2333                      "space (%s) for use as guest address space (check your "
2334                      "virtual memory ulimit setting or reserve less "
2335                      "using -R option)", reserved_va, strerror(errno));
2336         exit(EXIT_FAILURE);
2337     }
2338     assert(addr == test);
2339 }
2340 
2341 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2342                       abi_ulong guest_hiaddr)
2343 {
2344     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2345     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2346 
2347     if (have_guest_base) {
2348         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2349     } else if (reserved_va) {
2350         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2351     } else if (guest_loaddr) {
2352         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2353     } else {
2354         pgb_dynamic(image_name, align);
2355     }
2356 
2357     /* Reserve and initialize the commpage. */
2358     if (!init_guest_commpage()) {
2359         /*
2360          * With have_guest_base, the user has selected the address and
2361          * we are trying to work with that.  Otherwise, we have selected
2362          * free space and init_guest_commpage must succeeded.
2363          */
2364         assert(have_guest_base);
2365         pgb_fail_in_use(image_name);
2366     }
2367 
2368     assert(QEMU_IS_ALIGNED(guest_base, align));
2369     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2370                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2371 }
2372 
2373 /* Load an ELF image into the address space.
2374 
2375    IMAGE_NAME is the filename of the image, to use in error messages.
2376    IMAGE_FD is the open file descriptor for the image.
2377 
2378    BPRM_BUF is a copy of the beginning of the file; this of course
2379    contains the elf file header at offset 0.  It is assumed that this
2380    buffer is sufficiently aligned to present no problems to the host
2381    in accessing data at aligned offsets within the buffer.
2382 
2383    On return: INFO values will be filled in, as necessary or available.  */
2384 
2385 static void load_elf_image(const char *image_name, int image_fd,
2386                            struct image_info *info, char **pinterp_name,
2387                            char bprm_buf[BPRM_BUF_SIZE])
2388 {
2389     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2390     struct elf_phdr *phdr;
2391     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2392     int i, retval;
2393     const char *errmsg;
2394 
2395     /* First of all, some simple consistency checks */
2396     errmsg = "Invalid ELF image for this architecture";
2397     if (!elf_check_ident(ehdr)) {
2398         goto exit_errmsg;
2399     }
2400     bswap_ehdr(ehdr);
2401     if (!elf_check_ehdr(ehdr)) {
2402         goto exit_errmsg;
2403     }
2404 
2405     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2406     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2407         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2408     } else {
2409         phdr = (struct elf_phdr *) alloca(i);
2410         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2411         if (retval != i) {
2412             goto exit_read;
2413         }
2414     }
2415     bswap_phdr(phdr, ehdr->e_phnum);
2416 
2417     info->nsegs = 0;
2418     info->pt_dynamic_addr = 0;
2419 
2420     mmap_lock();
2421 
2422     /* Find the maximum size of the image and allocate an appropriate
2423        amount of memory to handle that.  */
2424     loaddr = -1, hiaddr = 0;
2425     info->alignment = 0;
2426     for (i = 0; i < ehdr->e_phnum; ++i) {
2427         if (phdr[i].p_type == PT_LOAD) {
2428             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2429             if (a < loaddr) {
2430                 loaddr = a;
2431             }
2432             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2433             if (a > hiaddr) {
2434                 hiaddr = a;
2435             }
2436             ++info->nsegs;
2437             info->alignment |= phdr[i].p_align;
2438         }
2439     }
2440 
2441     if (pinterp_name != NULL) {
2442         /*
2443          * This is the main executable.
2444          *
2445          * Reserve extra space for brk.
2446          * We hold on to this space while placing the interpreter
2447          * and the stack, lest they be placed immediately after
2448          * the data segment and block allocation from the brk.
2449          *
2450          * 16MB is chosen as "large enough" without being so large
2451          * as to allow the result to not fit with a 32-bit guest on
2452          * a 32-bit host.
2453          */
2454         info->reserve_brk = 16 * MiB;
2455         hiaddr += info->reserve_brk;
2456 
2457         if (ehdr->e_type == ET_EXEC) {
2458             /*
2459              * Make sure that the low address does not conflict with
2460              * MMAP_MIN_ADDR or the QEMU application itself.
2461              */
2462             probe_guest_base(image_name, loaddr, hiaddr);
2463         } else {
2464             /*
2465              * The binary is dynamic, but we still need to
2466              * select guest_base.  In this case we pass a size.
2467              */
2468             probe_guest_base(image_name, 0, hiaddr - loaddr);
2469         }
2470     }
2471 
2472     /*
2473      * Reserve address space for all of this.
2474      *
2475      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2476      * exactly the address range that is required.
2477      *
2478      * Otherwise this is ET_DYN, and we are searching for a location
2479      * that can hold the memory space required.  If the image is
2480      * pre-linked, LOADDR will be non-zero, and the kernel should
2481      * honor that address if it happens to be free.
2482      *
2483      * In both cases, we will overwrite pages in this range with mappings
2484      * from the executable.
2485      */
2486     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2487                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2488                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2489                             -1, 0);
2490     if (load_addr == -1) {
2491         goto exit_perror;
2492     }
2493     load_bias = load_addr - loaddr;
2494 
2495     if (elf_is_fdpic(ehdr)) {
2496         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2497             g_malloc(sizeof(*loadsegs) * info->nsegs);
2498 
2499         for (i = 0; i < ehdr->e_phnum; ++i) {
2500             switch (phdr[i].p_type) {
2501             case PT_DYNAMIC:
2502                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2503                 break;
2504             case PT_LOAD:
2505                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2506                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2507                 loadsegs->p_memsz = phdr[i].p_memsz;
2508                 ++loadsegs;
2509                 break;
2510             }
2511         }
2512     }
2513 
2514     info->load_bias = load_bias;
2515     info->code_offset = load_bias;
2516     info->data_offset = load_bias;
2517     info->load_addr = load_addr;
2518     info->entry = ehdr->e_entry + load_bias;
2519     info->start_code = -1;
2520     info->end_code = 0;
2521     info->start_data = -1;
2522     info->end_data = 0;
2523     info->brk = 0;
2524     info->elf_flags = ehdr->e_flags;
2525 
2526     for (i = 0; i < ehdr->e_phnum; i++) {
2527         struct elf_phdr *eppnt = phdr + i;
2528         if (eppnt->p_type == PT_LOAD) {
2529             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2530             int elf_prot = 0;
2531 
2532             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2533             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2534             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2535 
2536             vaddr = load_bias + eppnt->p_vaddr;
2537             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2538             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2539             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2540 
2541             /*
2542              * Some segments may be completely empty without any backing file
2543              * segment, in that case just let zero_bss allocate an empty buffer
2544              * for it.
2545              */
2546             if (eppnt->p_filesz != 0) {
2547                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2548                                     MAP_PRIVATE | MAP_FIXED,
2549                                     image_fd, eppnt->p_offset - vaddr_po);
2550 
2551                 if (error == -1) {
2552                     goto exit_perror;
2553                 }
2554             }
2555 
2556             vaddr_ef = vaddr + eppnt->p_filesz;
2557             vaddr_em = vaddr + eppnt->p_memsz;
2558 
2559             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2560             if (vaddr_ef < vaddr_em) {
2561                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2562             }
2563 
2564             /* Find the full program boundaries.  */
2565             if (elf_prot & PROT_EXEC) {
2566                 if (vaddr < info->start_code) {
2567                     info->start_code = vaddr;
2568                 }
2569                 if (vaddr_ef > info->end_code) {
2570                     info->end_code = vaddr_ef;
2571                 }
2572             }
2573             if (elf_prot & PROT_WRITE) {
2574                 if (vaddr < info->start_data) {
2575                     info->start_data = vaddr;
2576                 }
2577                 if (vaddr_ef > info->end_data) {
2578                     info->end_data = vaddr_ef;
2579                 }
2580                 if (vaddr_em > info->brk) {
2581                     info->brk = vaddr_em;
2582                 }
2583             }
2584         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2585             char *interp_name;
2586 
2587             if (*pinterp_name) {
2588                 errmsg = "Multiple PT_INTERP entries";
2589                 goto exit_errmsg;
2590             }
2591             interp_name = malloc(eppnt->p_filesz);
2592             if (!interp_name) {
2593                 goto exit_perror;
2594             }
2595 
2596             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2597                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2598                        eppnt->p_filesz);
2599             } else {
2600                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2601                                eppnt->p_offset);
2602                 if (retval != eppnt->p_filesz) {
2603                     goto exit_perror;
2604                 }
2605             }
2606             if (interp_name[eppnt->p_filesz - 1] != 0) {
2607                 errmsg = "Invalid PT_INTERP entry";
2608                 goto exit_errmsg;
2609             }
2610             *pinterp_name = interp_name;
2611 #ifdef TARGET_MIPS
2612         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2613             Mips_elf_abiflags_v0 abiflags;
2614             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2615                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2616                 goto exit_errmsg;
2617             }
2618             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2619                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2620                        sizeof(Mips_elf_abiflags_v0));
2621             } else {
2622                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2623                                eppnt->p_offset);
2624                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2625                     goto exit_perror;
2626                 }
2627             }
2628             bswap_mips_abiflags(&abiflags);
2629             info->fp_abi = abiflags.fp_abi;
2630 #endif
2631         }
2632     }
2633 
2634     if (info->end_data == 0) {
2635         info->start_data = info->end_code;
2636         info->end_data = info->end_code;
2637         info->brk = info->end_code;
2638     }
2639 
2640     if (qemu_log_enabled()) {
2641         load_symbols(ehdr, image_fd, load_bias);
2642     }
2643 
2644     mmap_unlock();
2645 
2646     close(image_fd);
2647     return;
2648 
2649  exit_read:
2650     if (retval >= 0) {
2651         errmsg = "Incomplete read of file header";
2652         goto exit_errmsg;
2653     }
2654  exit_perror:
2655     errmsg = strerror(errno);
2656  exit_errmsg:
2657     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2658     exit(-1);
2659 }
2660 
2661 static void load_elf_interp(const char *filename, struct image_info *info,
2662                             char bprm_buf[BPRM_BUF_SIZE])
2663 {
2664     int fd, retval;
2665 
2666     fd = open(path(filename), O_RDONLY);
2667     if (fd < 0) {
2668         goto exit_perror;
2669     }
2670 
2671     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2672     if (retval < 0) {
2673         goto exit_perror;
2674     }
2675     if (retval < BPRM_BUF_SIZE) {
2676         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2677     }
2678 
2679     load_elf_image(filename, fd, info, NULL, bprm_buf);
2680     return;
2681 
2682  exit_perror:
2683     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2684     exit(-1);
2685 }
2686 
2687 static int symfind(const void *s0, const void *s1)
2688 {
2689     target_ulong addr = *(target_ulong *)s0;
2690     struct elf_sym *sym = (struct elf_sym *)s1;
2691     int result = 0;
2692     if (addr < sym->st_value) {
2693         result = -1;
2694     } else if (addr >= sym->st_value + sym->st_size) {
2695         result = 1;
2696     }
2697     return result;
2698 }
2699 
2700 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2701 {
2702 #if ELF_CLASS == ELFCLASS32
2703     struct elf_sym *syms = s->disas_symtab.elf32;
2704 #else
2705     struct elf_sym *syms = s->disas_symtab.elf64;
2706 #endif
2707 
2708     // binary search
2709     struct elf_sym *sym;
2710 
2711     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2712     if (sym != NULL) {
2713         return s->disas_strtab + sym->st_name;
2714     }
2715 
2716     return "";
2717 }
2718 
2719 /* FIXME: This should use elf_ops.h  */
2720 static int symcmp(const void *s0, const void *s1)
2721 {
2722     struct elf_sym *sym0 = (struct elf_sym *)s0;
2723     struct elf_sym *sym1 = (struct elf_sym *)s1;
2724     return (sym0->st_value < sym1->st_value)
2725         ? -1
2726         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2727 }
2728 
2729 /* Best attempt to load symbols from this ELF object. */
2730 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2731 {
2732     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2733     uint64_t segsz;
2734     struct elf_shdr *shdr;
2735     char *strings = NULL;
2736     struct syminfo *s = NULL;
2737     struct elf_sym *new_syms, *syms = NULL;
2738 
2739     shnum = hdr->e_shnum;
2740     i = shnum * sizeof(struct elf_shdr);
2741     shdr = (struct elf_shdr *)alloca(i);
2742     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2743         return;
2744     }
2745 
2746     bswap_shdr(shdr, shnum);
2747     for (i = 0; i < shnum; ++i) {
2748         if (shdr[i].sh_type == SHT_SYMTAB) {
2749             sym_idx = i;
2750             str_idx = shdr[i].sh_link;
2751             goto found;
2752         }
2753     }
2754 
2755     /* There will be no symbol table if the file was stripped.  */
2756     return;
2757 
2758  found:
2759     /* Now know where the strtab and symtab are.  Snarf them.  */
2760     s = g_try_new(struct syminfo, 1);
2761     if (!s) {
2762         goto give_up;
2763     }
2764 
2765     segsz = shdr[str_idx].sh_size;
2766     s->disas_strtab = strings = g_try_malloc(segsz);
2767     if (!strings ||
2768         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2769         goto give_up;
2770     }
2771 
2772     segsz = shdr[sym_idx].sh_size;
2773     syms = g_try_malloc(segsz);
2774     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2775         goto give_up;
2776     }
2777 
2778     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2779         /* Implausibly large symbol table: give up rather than ploughing
2780          * on with the number of symbols calculation overflowing
2781          */
2782         goto give_up;
2783     }
2784     nsyms = segsz / sizeof(struct elf_sym);
2785     for (i = 0; i < nsyms; ) {
2786         bswap_sym(syms + i);
2787         /* Throw away entries which we do not need.  */
2788         if (syms[i].st_shndx == SHN_UNDEF
2789             || syms[i].st_shndx >= SHN_LORESERVE
2790             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2791             if (i < --nsyms) {
2792                 syms[i] = syms[nsyms];
2793             }
2794         } else {
2795 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2796             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2797             syms[i].st_value &= ~(target_ulong)1;
2798 #endif
2799             syms[i].st_value += load_bias;
2800             i++;
2801         }
2802     }
2803 
2804     /* No "useful" symbol.  */
2805     if (nsyms == 0) {
2806         goto give_up;
2807     }
2808 
2809     /* Attempt to free the storage associated with the local symbols
2810        that we threw away.  Whether or not this has any effect on the
2811        memory allocation depends on the malloc implementation and how
2812        many symbols we managed to discard.  */
2813     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2814     if (new_syms == NULL) {
2815         goto give_up;
2816     }
2817     syms = new_syms;
2818 
2819     qsort(syms, nsyms, sizeof(*syms), symcmp);
2820 
2821     s->disas_num_syms = nsyms;
2822 #if ELF_CLASS == ELFCLASS32
2823     s->disas_symtab.elf32 = syms;
2824 #else
2825     s->disas_symtab.elf64 = syms;
2826 #endif
2827     s->lookup_symbol = lookup_symbolxx;
2828     s->next = syminfos;
2829     syminfos = s;
2830 
2831     return;
2832 
2833 give_up:
2834     g_free(s);
2835     g_free(strings);
2836     g_free(syms);
2837 }
2838 
2839 uint32_t get_elf_eflags(int fd)
2840 {
2841     struct elfhdr ehdr;
2842     off_t offset;
2843     int ret;
2844 
2845     /* Read ELF header */
2846     offset = lseek(fd, 0, SEEK_SET);
2847     if (offset == (off_t) -1) {
2848         return 0;
2849     }
2850     ret = read(fd, &ehdr, sizeof(ehdr));
2851     if (ret < sizeof(ehdr)) {
2852         return 0;
2853     }
2854     offset = lseek(fd, offset, SEEK_SET);
2855     if (offset == (off_t) -1) {
2856         return 0;
2857     }
2858 
2859     /* Check ELF signature */
2860     if (!elf_check_ident(&ehdr)) {
2861         return 0;
2862     }
2863 
2864     /* check header */
2865     bswap_ehdr(&ehdr);
2866     if (!elf_check_ehdr(&ehdr)) {
2867         return 0;
2868     }
2869 
2870     /* return architecture id */
2871     return ehdr.e_flags;
2872 }
2873 
2874 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2875 {
2876     struct image_info interp_info;
2877     struct elfhdr elf_ex;
2878     char *elf_interpreter = NULL;
2879     char *scratch;
2880 
2881     memset(&interp_info, 0, sizeof(interp_info));
2882 #ifdef TARGET_MIPS
2883     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2884 #endif
2885 
2886     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2887 
2888     load_elf_image(bprm->filename, bprm->fd, info,
2889                    &elf_interpreter, bprm->buf);
2890 
2891     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2892        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2893        when we load the interpreter.  */
2894     elf_ex = *(struct elfhdr *)bprm->buf;
2895 
2896     /* Do this so that we can load the interpreter, if need be.  We will
2897        change some of these later */
2898     bprm->p = setup_arg_pages(bprm, info);
2899 
2900     scratch = g_new0(char, TARGET_PAGE_SIZE);
2901     if (STACK_GROWS_DOWN) {
2902         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2903                                    bprm->p, info->stack_limit);
2904         info->file_string = bprm->p;
2905         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2906                                    bprm->p, info->stack_limit);
2907         info->env_strings = bprm->p;
2908         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2909                                    bprm->p, info->stack_limit);
2910         info->arg_strings = bprm->p;
2911     } else {
2912         info->arg_strings = bprm->p;
2913         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2914                                    bprm->p, info->stack_limit);
2915         info->env_strings = bprm->p;
2916         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2917                                    bprm->p, info->stack_limit);
2918         info->file_string = bprm->p;
2919         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2920                                    bprm->p, info->stack_limit);
2921     }
2922 
2923     g_free(scratch);
2924 
2925     if (!bprm->p) {
2926         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2927         exit(-1);
2928     }
2929 
2930     if (elf_interpreter) {
2931         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2932 
2933         /* If the program interpreter is one of these two, then assume
2934            an iBCS2 image.  Otherwise assume a native linux image.  */
2935 
2936         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2937             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2938             info->personality = PER_SVR4;
2939 
2940             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2941                and some applications "depend" upon this behavior.  Since
2942                we do not have the power to recompile these, we emulate
2943                the SVr4 behavior.  Sigh.  */
2944             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2945                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2946         }
2947 #ifdef TARGET_MIPS
2948         info->interp_fp_abi = interp_info.fp_abi;
2949 #endif
2950     }
2951 
2952     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2953                                 info, (elf_interpreter ? &interp_info : NULL));
2954     info->start_stack = bprm->p;
2955 
2956     /* If we have an interpreter, set that as the program's entry point.
2957        Copy the load_bias as well, to help PPC64 interpret the entry
2958        point as a function descriptor.  Do this after creating elf tables
2959        so that we copy the original program entry point into the AUXV.  */
2960     if (elf_interpreter) {
2961         info->load_bias = interp_info.load_bias;
2962         info->entry = interp_info.entry;
2963         free(elf_interpreter);
2964     }
2965 
2966 #ifdef USE_ELF_CORE_DUMP
2967     bprm->core_dump = &elf_core_dump;
2968 #endif
2969 
2970     /*
2971      * If we reserved extra space for brk, release it now.
2972      * The implementation of do_brk in syscalls.c expects to be able
2973      * to mmap pages in this space.
2974      */
2975     if (info->reserve_brk) {
2976         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
2977         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
2978         target_munmap(start_brk, end_brk - start_brk);
2979     }
2980 
2981     return 0;
2982 }
2983 
2984 #ifdef USE_ELF_CORE_DUMP
2985 /*
2986  * Definitions to generate Intel SVR4-like core files.
2987  * These mostly have the same names as the SVR4 types with "target_elf_"
2988  * tacked on the front to prevent clashes with linux definitions,
2989  * and the typedef forms have been avoided.  This is mostly like
2990  * the SVR4 structure, but more Linuxy, with things that Linux does
2991  * not support and which gdb doesn't really use excluded.
2992  *
2993  * Fields we don't dump (their contents is zero) in linux-user qemu
2994  * are marked with XXX.
2995  *
2996  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2997  *
2998  * Porting ELF coredump for target is (quite) simple process.  First you
2999  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3000  * the target resides):
3001  *
3002  * #define USE_ELF_CORE_DUMP
3003  *
3004  * Next you define type of register set used for dumping.  ELF specification
3005  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3006  *
3007  * typedef <target_regtype> target_elf_greg_t;
3008  * #define ELF_NREG <number of registers>
3009  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3010  *
3011  * Last step is to implement target specific function that copies registers
3012  * from given cpu into just specified register set.  Prototype is:
3013  *
3014  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3015  *                                const CPUArchState *env);
3016  *
3017  * Parameters:
3018  *     regs - copy register values into here (allocated and zeroed by caller)
3019  *     env - copy registers from here
3020  *
3021  * Example for ARM target is provided in this file.
3022  */
3023 
3024 /* An ELF note in memory */
3025 struct memelfnote {
3026     const char *name;
3027     size_t     namesz;
3028     size_t     namesz_rounded;
3029     int        type;
3030     size_t     datasz;
3031     size_t     datasz_rounded;
3032     void       *data;
3033     size_t     notesz;
3034 };
3035 
3036 struct target_elf_siginfo {
3037     abi_int    si_signo; /* signal number */
3038     abi_int    si_code;  /* extra code */
3039     abi_int    si_errno; /* errno */
3040 };
3041 
3042 struct target_elf_prstatus {
3043     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3044     abi_short          pr_cursig;    /* Current signal */
3045     abi_ulong          pr_sigpend;   /* XXX */
3046     abi_ulong          pr_sighold;   /* XXX */
3047     target_pid_t       pr_pid;
3048     target_pid_t       pr_ppid;
3049     target_pid_t       pr_pgrp;
3050     target_pid_t       pr_sid;
3051     struct target_timeval pr_utime;  /* XXX User time */
3052     struct target_timeval pr_stime;  /* XXX System time */
3053     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3054     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3055     target_elf_gregset_t      pr_reg;       /* GP registers */
3056     abi_int            pr_fpvalid;   /* XXX */
3057 };
3058 
3059 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3060 
3061 struct target_elf_prpsinfo {
3062     char         pr_state;       /* numeric process state */
3063     char         pr_sname;       /* char for pr_state */
3064     char         pr_zomb;        /* zombie */
3065     char         pr_nice;        /* nice val */
3066     abi_ulong    pr_flag;        /* flags */
3067     target_uid_t pr_uid;
3068     target_gid_t pr_gid;
3069     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3070     /* Lots missing */
3071     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3072     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3073 };
3074 
3075 /* Here is the structure in which status of each thread is captured. */
3076 struct elf_thread_status {
3077     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3078     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3079 #if 0
3080     elf_fpregset_t fpu;             /* NT_PRFPREG */
3081     struct task_struct *thread;
3082     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3083 #endif
3084     struct memelfnote notes[1];
3085     int num_notes;
3086 };
3087 
3088 struct elf_note_info {
3089     struct memelfnote   *notes;
3090     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3091     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3092 
3093     QTAILQ_HEAD(, elf_thread_status) thread_list;
3094 #if 0
3095     /*
3096      * Current version of ELF coredump doesn't support
3097      * dumping fp regs etc.
3098      */
3099     elf_fpregset_t *fpu;
3100     elf_fpxregset_t *xfpu;
3101     int thread_status_size;
3102 #endif
3103     int notes_size;
3104     int numnote;
3105 };
3106 
3107 struct vm_area_struct {
3108     target_ulong   vma_start;  /* start vaddr of memory region */
3109     target_ulong   vma_end;    /* end vaddr of memory region */
3110     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3111     QTAILQ_ENTRY(vm_area_struct) vma_link;
3112 };
3113 
3114 struct mm_struct {
3115     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3116     int mm_count;           /* number of mappings */
3117 };
3118 
3119 static struct mm_struct *vma_init(void);
3120 static void vma_delete(struct mm_struct *);
3121 static int vma_add_mapping(struct mm_struct *, target_ulong,
3122                            target_ulong, abi_ulong);
3123 static int vma_get_mapping_count(const struct mm_struct *);
3124 static struct vm_area_struct *vma_first(const struct mm_struct *);
3125 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3126 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3127 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3128                       unsigned long flags);
3129 
3130 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3131 static void fill_note(struct memelfnote *, const char *, int,
3132                       unsigned int, void *);
3133 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3134 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3135 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3136 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3137 static size_t note_size(const struct memelfnote *);
3138 static void free_note_info(struct elf_note_info *);
3139 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3140 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3141 static int core_dump_filename(const TaskState *, char *, size_t);
3142 
3143 static int dump_write(int, const void *, size_t);
3144 static int write_note(struct memelfnote *, int);
3145 static int write_note_info(struct elf_note_info *, int);
3146 
3147 #ifdef BSWAP_NEEDED
3148 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3149 {
3150     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3151     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3152     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3153     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3154     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3155     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3156     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3157     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3158     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3159     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3160     /* cpu times are not filled, so we skip them */
3161     /* regs should be in correct format already */
3162     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3163 }
3164 
3165 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3166 {
3167     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3168     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3169     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3170     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3171     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3172     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3173     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3174 }
3175 
3176 static void bswap_note(struct elf_note *en)
3177 {
3178     bswap32s(&en->n_namesz);
3179     bswap32s(&en->n_descsz);
3180     bswap32s(&en->n_type);
3181 }
3182 #else
3183 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3184 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3185 static inline void bswap_note(struct elf_note *en) { }
3186 #endif /* BSWAP_NEEDED */
3187 
3188 /*
3189  * Minimal support for linux memory regions.  These are needed
3190  * when we are finding out what memory exactly belongs to
3191  * emulated process.  No locks needed here, as long as
3192  * thread that received the signal is stopped.
3193  */
3194 
3195 static struct mm_struct *vma_init(void)
3196 {
3197     struct mm_struct *mm;
3198 
3199     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3200         return (NULL);
3201 
3202     mm->mm_count = 0;
3203     QTAILQ_INIT(&mm->mm_mmap);
3204 
3205     return (mm);
3206 }
3207 
3208 static void vma_delete(struct mm_struct *mm)
3209 {
3210     struct vm_area_struct *vma;
3211 
3212     while ((vma = vma_first(mm)) != NULL) {
3213         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3214         g_free(vma);
3215     }
3216     g_free(mm);
3217 }
3218 
3219 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3220                            target_ulong end, abi_ulong flags)
3221 {
3222     struct vm_area_struct *vma;
3223 
3224     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3225         return (-1);
3226 
3227     vma->vma_start = start;
3228     vma->vma_end = end;
3229     vma->vma_flags = flags;
3230 
3231     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3232     mm->mm_count++;
3233 
3234     return (0);
3235 }
3236 
3237 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3238 {
3239     return (QTAILQ_FIRST(&mm->mm_mmap));
3240 }
3241 
3242 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3243 {
3244     return (QTAILQ_NEXT(vma, vma_link));
3245 }
3246 
3247 static int vma_get_mapping_count(const struct mm_struct *mm)
3248 {
3249     return (mm->mm_count);
3250 }
3251 
3252 /*
3253  * Calculate file (dump) size of given memory region.
3254  */
3255 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3256 {
3257     /* if we cannot even read the first page, skip it */
3258     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3259         return (0);
3260 
3261     /*
3262      * Usually we don't dump executable pages as they contain
3263      * non-writable code that debugger can read directly from
3264      * target library etc.  However, thread stacks are marked
3265      * also executable so we read in first page of given region
3266      * and check whether it contains elf header.  If there is
3267      * no elf header, we dump it.
3268      */
3269     if (vma->vma_flags & PROT_EXEC) {
3270         char page[TARGET_PAGE_SIZE];
3271 
3272         copy_from_user(page, vma->vma_start, sizeof (page));
3273         if ((page[EI_MAG0] == ELFMAG0) &&
3274             (page[EI_MAG1] == ELFMAG1) &&
3275             (page[EI_MAG2] == ELFMAG2) &&
3276             (page[EI_MAG3] == ELFMAG3)) {
3277             /*
3278              * Mappings are possibly from ELF binary.  Don't dump
3279              * them.
3280              */
3281             return (0);
3282         }
3283     }
3284 
3285     return (vma->vma_end - vma->vma_start);
3286 }
3287 
3288 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3289                       unsigned long flags)
3290 {
3291     struct mm_struct *mm = (struct mm_struct *)priv;
3292 
3293     vma_add_mapping(mm, start, end, flags);
3294     return (0);
3295 }
3296 
3297 static void fill_note(struct memelfnote *note, const char *name, int type,
3298                       unsigned int sz, void *data)
3299 {
3300     unsigned int namesz;
3301 
3302     namesz = strlen(name) + 1;
3303     note->name = name;
3304     note->namesz = namesz;
3305     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3306     note->type = type;
3307     note->datasz = sz;
3308     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3309 
3310     note->data = data;
3311 
3312     /*
3313      * We calculate rounded up note size here as specified by
3314      * ELF document.
3315      */
3316     note->notesz = sizeof (struct elf_note) +
3317         note->namesz_rounded + note->datasz_rounded;
3318 }
3319 
3320 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3321                             uint32_t flags)
3322 {
3323     (void) memset(elf, 0, sizeof(*elf));
3324 
3325     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3326     elf->e_ident[EI_CLASS] = ELF_CLASS;
3327     elf->e_ident[EI_DATA] = ELF_DATA;
3328     elf->e_ident[EI_VERSION] = EV_CURRENT;
3329     elf->e_ident[EI_OSABI] = ELF_OSABI;
3330 
3331     elf->e_type = ET_CORE;
3332     elf->e_machine = machine;
3333     elf->e_version = EV_CURRENT;
3334     elf->e_phoff = sizeof(struct elfhdr);
3335     elf->e_flags = flags;
3336     elf->e_ehsize = sizeof(struct elfhdr);
3337     elf->e_phentsize = sizeof(struct elf_phdr);
3338     elf->e_phnum = segs;
3339 
3340     bswap_ehdr(elf);
3341 }
3342 
3343 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3344 {
3345     phdr->p_type = PT_NOTE;
3346     phdr->p_offset = offset;
3347     phdr->p_vaddr = 0;
3348     phdr->p_paddr = 0;
3349     phdr->p_filesz = sz;
3350     phdr->p_memsz = 0;
3351     phdr->p_flags = 0;
3352     phdr->p_align = 0;
3353 
3354     bswap_phdr(phdr, 1);
3355 }
3356 
3357 static size_t note_size(const struct memelfnote *note)
3358 {
3359     return (note->notesz);
3360 }
3361 
3362 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3363                           const TaskState *ts, int signr)
3364 {
3365     (void) memset(prstatus, 0, sizeof (*prstatus));
3366     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3367     prstatus->pr_pid = ts->ts_tid;
3368     prstatus->pr_ppid = getppid();
3369     prstatus->pr_pgrp = getpgrp();
3370     prstatus->pr_sid = getsid(0);
3371 
3372     bswap_prstatus(prstatus);
3373 }
3374 
3375 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3376 {
3377     char *base_filename;
3378     unsigned int i, len;
3379 
3380     (void) memset(psinfo, 0, sizeof (*psinfo));
3381 
3382     len = ts->info->arg_end - ts->info->arg_start;
3383     if (len >= ELF_PRARGSZ)
3384         len = ELF_PRARGSZ - 1;
3385     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3386         return -EFAULT;
3387     for (i = 0; i < len; i++)
3388         if (psinfo->pr_psargs[i] == 0)
3389             psinfo->pr_psargs[i] = ' ';
3390     psinfo->pr_psargs[len] = 0;
3391 
3392     psinfo->pr_pid = getpid();
3393     psinfo->pr_ppid = getppid();
3394     psinfo->pr_pgrp = getpgrp();
3395     psinfo->pr_sid = getsid(0);
3396     psinfo->pr_uid = getuid();
3397     psinfo->pr_gid = getgid();
3398 
3399     base_filename = g_path_get_basename(ts->bprm->filename);
3400     /*
3401      * Using strncpy here is fine: at max-length,
3402      * this field is not NUL-terminated.
3403      */
3404     (void) strncpy(psinfo->pr_fname, base_filename,
3405                    sizeof(psinfo->pr_fname));
3406 
3407     g_free(base_filename);
3408     bswap_psinfo(psinfo);
3409     return (0);
3410 }
3411 
3412 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3413 {
3414     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3415     elf_addr_t orig_auxv = auxv;
3416     void *ptr;
3417     int len = ts->info->auxv_len;
3418 
3419     /*
3420      * Auxiliary vector is stored in target process stack.  It contains
3421      * {type, value} pairs that we need to dump into note.  This is not
3422      * strictly necessary but we do it here for sake of completeness.
3423      */
3424 
3425     /* read in whole auxv vector and copy it to memelfnote */
3426     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3427     if (ptr != NULL) {
3428         fill_note(note, "CORE", NT_AUXV, len, ptr);
3429         unlock_user(ptr, auxv, len);
3430     }
3431 }
3432 
3433 /*
3434  * Constructs name of coredump file.  We have following convention
3435  * for the name:
3436  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3437  *
3438  * Returns 0 in case of success, -1 otherwise (errno is set).
3439  */
3440 static int core_dump_filename(const TaskState *ts, char *buf,
3441                               size_t bufsize)
3442 {
3443     char timestamp[64];
3444     char *base_filename = NULL;
3445     struct timeval tv;
3446     struct tm tm;
3447 
3448     assert(bufsize >= PATH_MAX);
3449 
3450     if (gettimeofday(&tv, NULL) < 0) {
3451         (void) fprintf(stderr, "unable to get current timestamp: %s",
3452                        strerror(errno));
3453         return (-1);
3454     }
3455 
3456     base_filename = g_path_get_basename(ts->bprm->filename);
3457     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3458                     localtime_r(&tv.tv_sec, &tm));
3459     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3460                     base_filename, timestamp, (int)getpid());
3461     g_free(base_filename);
3462 
3463     return (0);
3464 }
3465 
3466 static int dump_write(int fd, const void *ptr, size_t size)
3467 {
3468     const char *bufp = (const char *)ptr;
3469     ssize_t bytes_written, bytes_left;
3470     struct rlimit dumpsize;
3471     off_t pos;
3472 
3473     bytes_written = 0;
3474     getrlimit(RLIMIT_CORE, &dumpsize);
3475     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3476         if (errno == ESPIPE) { /* not a seekable stream */
3477             bytes_left = size;
3478         } else {
3479             return pos;
3480         }
3481     } else {
3482         if (dumpsize.rlim_cur <= pos) {
3483             return -1;
3484         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3485             bytes_left = size;
3486         } else {
3487             size_t limit_left=dumpsize.rlim_cur - pos;
3488             bytes_left = limit_left >= size ? size : limit_left ;
3489         }
3490     }
3491 
3492     /*
3493      * In normal conditions, single write(2) should do but
3494      * in case of socket etc. this mechanism is more portable.
3495      */
3496     do {
3497         bytes_written = write(fd, bufp, bytes_left);
3498         if (bytes_written < 0) {
3499             if (errno == EINTR)
3500                 continue;
3501             return (-1);
3502         } else if (bytes_written == 0) { /* eof */
3503             return (-1);
3504         }
3505         bufp += bytes_written;
3506         bytes_left -= bytes_written;
3507     } while (bytes_left > 0);
3508 
3509     return (0);
3510 }
3511 
3512 static int write_note(struct memelfnote *men, int fd)
3513 {
3514     struct elf_note en;
3515 
3516     en.n_namesz = men->namesz;
3517     en.n_type = men->type;
3518     en.n_descsz = men->datasz;
3519 
3520     bswap_note(&en);
3521 
3522     if (dump_write(fd, &en, sizeof(en)) != 0)
3523         return (-1);
3524     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3525         return (-1);
3526     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3527         return (-1);
3528 
3529     return (0);
3530 }
3531 
3532 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3533 {
3534     CPUState *cpu = env_cpu((CPUArchState *)env);
3535     TaskState *ts = (TaskState *)cpu->opaque;
3536     struct elf_thread_status *ets;
3537 
3538     ets = g_malloc0(sizeof (*ets));
3539     ets->num_notes = 1; /* only prstatus is dumped */
3540     fill_prstatus(&ets->prstatus, ts, 0);
3541     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3542     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3543               &ets->prstatus);
3544 
3545     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3546 
3547     info->notes_size += note_size(&ets->notes[0]);
3548 }
3549 
3550 static void init_note_info(struct elf_note_info *info)
3551 {
3552     /* Initialize the elf_note_info structure so that it is at
3553      * least safe to call free_note_info() on it. Must be
3554      * called before calling fill_note_info().
3555      */
3556     memset(info, 0, sizeof (*info));
3557     QTAILQ_INIT(&info->thread_list);
3558 }
3559 
3560 static int fill_note_info(struct elf_note_info *info,
3561                           long signr, const CPUArchState *env)
3562 {
3563 #define NUMNOTES 3
3564     CPUState *cpu = env_cpu((CPUArchState *)env);
3565     TaskState *ts = (TaskState *)cpu->opaque;
3566     int i;
3567 
3568     info->notes = g_new0(struct memelfnote, NUMNOTES);
3569     if (info->notes == NULL)
3570         return (-ENOMEM);
3571     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3572     if (info->prstatus == NULL)
3573         return (-ENOMEM);
3574     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3575     if (info->prstatus == NULL)
3576         return (-ENOMEM);
3577 
3578     /*
3579      * First fill in status (and registers) of current thread
3580      * including process info & aux vector.
3581      */
3582     fill_prstatus(info->prstatus, ts, signr);
3583     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3584     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3585               sizeof (*info->prstatus), info->prstatus);
3586     fill_psinfo(info->psinfo, ts);
3587     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3588               sizeof (*info->psinfo), info->psinfo);
3589     fill_auxv_note(&info->notes[2], ts);
3590     info->numnote = 3;
3591 
3592     info->notes_size = 0;
3593     for (i = 0; i < info->numnote; i++)
3594         info->notes_size += note_size(&info->notes[i]);
3595 
3596     /* read and fill status of all threads */
3597     cpu_list_lock();
3598     CPU_FOREACH(cpu) {
3599         if (cpu == thread_cpu) {
3600             continue;
3601         }
3602         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3603     }
3604     cpu_list_unlock();
3605 
3606     return (0);
3607 }
3608 
3609 static void free_note_info(struct elf_note_info *info)
3610 {
3611     struct elf_thread_status *ets;
3612 
3613     while (!QTAILQ_EMPTY(&info->thread_list)) {
3614         ets = QTAILQ_FIRST(&info->thread_list);
3615         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3616         g_free(ets);
3617     }
3618 
3619     g_free(info->prstatus);
3620     g_free(info->psinfo);
3621     g_free(info->notes);
3622 }
3623 
3624 static int write_note_info(struct elf_note_info *info, int fd)
3625 {
3626     struct elf_thread_status *ets;
3627     int i, error = 0;
3628 
3629     /* write prstatus, psinfo and auxv for current thread */
3630     for (i = 0; i < info->numnote; i++)
3631         if ((error = write_note(&info->notes[i], fd)) != 0)
3632             return (error);
3633 
3634     /* write prstatus for each thread */
3635     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3636         if ((error = write_note(&ets->notes[0], fd)) != 0)
3637             return (error);
3638     }
3639 
3640     return (0);
3641 }
3642 
3643 /*
3644  * Write out ELF coredump.
3645  *
3646  * See documentation of ELF object file format in:
3647  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3648  *
3649  * Coredump format in linux is following:
3650  *
3651  * 0   +----------------------+         \
3652  *     | ELF header           | ET_CORE  |
3653  *     +----------------------+          |
3654  *     | ELF program headers  |          |--- headers
3655  *     | - NOTE section       |          |
3656  *     | - PT_LOAD sections   |          |
3657  *     +----------------------+         /
3658  *     | NOTEs:               |
3659  *     | - NT_PRSTATUS        |
3660  *     | - NT_PRSINFO         |
3661  *     | - NT_AUXV            |
3662  *     +----------------------+ <-- aligned to target page
3663  *     | Process memory dump  |
3664  *     :                      :
3665  *     .                      .
3666  *     :                      :
3667  *     |                      |
3668  *     +----------------------+
3669  *
3670  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3671  * NT_PRSINFO  -> struct elf_prpsinfo
3672  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3673  *
3674  * Format follows System V format as close as possible.  Current
3675  * version limitations are as follows:
3676  *     - no floating point registers are dumped
3677  *
3678  * Function returns 0 in case of success, negative errno otherwise.
3679  *
3680  * TODO: make this work also during runtime: it should be
3681  * possible to force coredump from running process and then
3682  * continue processing.  For example qemu could set up SIGUSR2
3683  * handler (provided that target process haven't registered
3684  * handler for that) that does the dump when signal is received.
3685  */
3686 static int elf_core_dump(int signr, const CPUArchState *env)
3687 {
3688     const CPUState *cpu = env_cpu((CPUArchState *)env);
3689     const TaskState *ts = (const TaskState *)cpu->opaque;
3690     struct vm_area_struct *vma = NULL;
3691     char corefile[PATH_MAX];
3692     struct elf_note_info info;
3693     struct elfhdr elf;
3694     struct elf_phdr phdr;
3695     struct rlimit dumpsize;
3696     struct mm_struct *mm = NULL;
3697     off_t offset = 0, data_offset = 0;
3698     int segs = 0;
3699     int fd = -1;
3700 
3701     init_note_info(&info);
3702 
3703     errno = 0;
3704     getrlimit(RLIMIT_CORE, &dumpsize);
3705     if (dumpsize.rlim_cur == 0)
3706         return 0;
3707 
3708     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3709         return (-errno);
3710 
3711     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3712                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3713         return (-errno);
3714 
3715     /*
3716      * Walk through target process memory mappings and
3717      * set up structure containing this information.  After
3718      * this point vma_xxx functions can be used.
3719      */
3720     if ((mm = vma_init()) == NULL)
3721         goto out;
3722 
3723     walk_memory_regions(mm, vma_walker);
3724     segs = vma_get_mapping_count(mm);
3725 
3726     /*
3727      * Construct valid coredump ELF header.  We also
3728      * add one more segment for notes.
3729      */
3730     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3731     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3732         goto out;
3733 
3734     /* fill in the in-memory version of notes */
3735     if (fill_note_info(&info, signr, env) < 0)
3736         goto out;
3737 
3738     offset += sizeof (elf);                             /* elf header */
3739     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3740 
3741     /* write out notes program header */
3742     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3743 
3744     offset += info.notes_size;
3745     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3746         goto out;
3747 
3748     /*
3749      * ELF specification wants data to start at page boundary so
3750      * we align it here.
3751      */
3752     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3753 
3754     /*
3755      * Write program headers for memory regions mapped in
3756      * the target process.
3757      */
3758     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3759         (void) memset(&phdr, 0, sizeof (phdr));
3760 
3761         phdr.p_type = PT_LOAD;
3762         phdr.p_offset = offset;
3763         phdr.p_vaddr = vma->vma_start;
3764         phdr.p_paddr = 0;
3765         phdr.p_filesz = vma_dump_size(vma);
3766         offset += phdr.p_filesz;
3767         phdr.p_memsz = vma->vma_end - vma->vma_start;
3768         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3769         if (vma->vma_flags & PROT_WRITE)
3770             phdr.p_flags |= PF_W;
3771         if (vma->vma_flags & PROT_EXEC)
3772             phdr.p_flags |= PF_X;
3773         phdr.p_align = ELF_EXEC_PAGESIZE;
3774 
3775         bswap_phdr(&phdr, 1);
3776         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3777             goto out;
3778         }
3779     }
3780 
3781     /*
3782      * Next we write notes just after program headers.  No
3783      * alignment needed here.
3784      */
3785     if (write_note_info(&info, fd) < 0)
3786         goto out;
3787 
3788     /* align data to page boundary */
3789     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3790         goto out;
3791 
3792     /*
3793      * Finally we can dump process memory into corefile as well.
3794      */
3795     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3796         abi_ulong addr;
3797         abi_ulong end;
3798 
3799         end = vma->vma_start + vma_dump_size(vma);
3800 
3801         for (addr = vma->vma_start; addr < end;
3802              addr += TARGET_PAGE_SIZE) {
3803             char page[TARGET_PAGE_SIZE];
3804             int error;
3805 
3806             /*
3807              *  Read in page from target process memory and
3808              *  write it to coredump file.
3809              */
3810             error = copy_from_user(page, addr, sizeof (page));
3811             if (error != 0) {
3812                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3813                                addr);
3814                 errno = -error;
3815                 goto out;
3816             }
3817             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3818                 goto out;
3819         }
3820     }
3821 
3822  out:
3823     free_note_info(&info);
3824     if (mm != NULL)
3825         vma_delete(mm);
3826     (void) close(fd);
3827 
3828     if (errno != 0)
3829         return (-errno);
3830     return (0);
3831 }
3832 #endif /* USE_ELF_CORE_DUMP */
3833 
3834 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3835 {
3836     init_thread(regs, infop);
3837 }
3838