1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/path.h" 11 #include "qemu/queue.h" 12 #include "qemu/guest-random.h" 13 #include "qemu/units.h" 14 #include "qemu/selfmap.h" 15 16 #ifdef _ARCH_PPC64 17 #undef ARCH_DLINFO 18 #undef ELF_PLATFORM 19 #undef ELF_HWCAP 20 #undef ELF_HWCAP2 21 #undef ELF_CLASS 22 #undef ELF_DATA 23 #undef ELF_ARCH 24 #endif 25 26 #define ELF_OSABI ELFOSABI_SYSV 27 28 /* from personality.h */ 29 30 /* 31 * Flags for bug emulation. 32 * 33 * These occupy the top three bytes. 34 */ 35 enum { 36 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 37 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 38 descriptors (signal handling) */ 39 MMAP_PAGE_ZERO = 0x0100000, 40 ADDR_COMPAT_LAYOUT = 0x0200000, 41 READ_IMPLIES_EXEC = 0x0400000, 42 ADDR_LIMIT_32BIT = 0x0800000, 43 SHORT_INODE = 0x1000000, 44 WHOLE_SECONDS = 0x2000000, 45 STICKY_TIMEOUTS = 0x4000000, 46 ADDR_LIMIT_3GB = 0x8000000, 47 }; 48 49 /* 50 * Personality types. 51 * 52 * These go in the low byte. Avoid using the top bit, it will 53 * conflict with error returns. 54 */ 55 enum { 56 PER_LINUX = 0x0000, 57 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 58 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 59 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 60 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 61 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 62 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 63 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 64 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 65 PER_BSD = 0x0006, 66 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 67 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 68 PER_LINUX32 = 0x0008, 69 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 70 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 71 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 72 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 73 PER_RISCOS = 0x000c, 74 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 75 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 76 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 77 PER_HPUX = 0x0010, 78 PER_MASK = 0x00ff, 79 }; 80 81 /* 82 * Return the base personality without flags. 83 */ 84 #define personality(pers) (pers & PER_MASK) 85 86 int info_is_fdpic(struct image_info *info) 87 { 88 return info->personality == PER_LINUX_FDPIC; 89 } 90 91 /* this flag is uneffective under linux too, should be deleted */ 92 #ifndef MAP_DENYWRITE 93 #define MAP_DENYWRITE 0 94 #endif 95 96 /* should probably go in elf.h */ 97 #ifndef ELIBBAD 98 #define ELIBBAD 80 99 #endif 100 101 #ifdef TARGET_WORDS_BIGENDIAN 102 #define ELF_DATA ELFDATA2MSB 103 #else 104 #define ELF_DATA ELFDATA2LSB 105 #endif 106 107 #ifdef TARGET_ABI_MIPSN32 108 typedef abi_ullong target_elf_greg_t; 109 #define tswapreg(ptr) tswap64(ptr) 110 #else 111 typedef abi_ulong target_elf_greg_t; 112 #define tswapreg(ptr) tswapal(ptr) 113 #endif 114 115 #ifdef USE_UID16 116 typedef abi_ushort target_uid_t; 117 typedef abi_ushort target_gid_t; 118 #else 119 typedef abi_uint target_uid_t; 120 typedef abi_uint target_gid_t; 121 #endif 122 typedef abi_int target_pid_t; 123 124 #ifdef TARGET_I386 125 126 #define ELF_PLATFORM get_elf_platform() 127 128 static const char *get_elf_platform(void) 129 { 130 static char elf_platform[] = "i386"; 131 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 132 if (family > 6) 133 family = 6; 134 if (family >= 3) 135 elf_platform[1] = '0' + family; 136 return elf_platform; 137 } 138 139 #define ELF_HWCAP get_elf_hwcap() 140 141 static uint32_t get_elf_hwcap(void) 142 { 143 X86CPU *cpu = X86_CPU(thread_cpu); 144 145 return cpu->env.features[FEAT_1_EDX]; 146 } 147 148 #ifdef TARGET_X86_64 149 #define ELF_START_MMAP 0x2aaaaab000ULL 150 151 #define ELF_CLASS ELFCLASS64 152 #define ELF_ARCH EM_X86_64 153 154 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 155 { 156 regs->rax = 0; 157 regs->rsp = infop->start_stack; 158 regs->rip = infop->entry; 159 } 160 161 #define ELF_NREG 27 162 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 163 164 /* 165 * Note that ELF_NREG should be 29 as there should be place for 166 * TRAPNO and ERR "registers" as well but linux doesn't dump 167 * those. 168 * 169 * See linux kernel: arch/x86/include/asm/elf.h 170 */ 171 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 172 { 173 (*regs)[0] = env->regs[15]; 174 (*regs)[1] = env->regs[14]; 175 (*regs)[2] = env->regs[13]; 176 (*regs)[3] = env->regs[12]; 177 (*regs)[4] = env->regs[R_EBP]; 178 (*regs)[5] = env->regs[R_EBX]; 179 (*regs)[6] = env->regs[11]; 180 (*regs)[7] = env->regs[10]; 181 (*regs)[8] = env->regs[9]; 182 (*regs)[9] = env->regs[8]; 183 (*regs)[10] = env->regs[R_EAX]; 184 (*regs)[11] = env->regs[R_ECX]; 185 (*regs)[12] = env->regs[R_EDX]; 186 (*regs)[13] = env->regs[R_ESI]; 187 (*regs)[14] = env->regs[R_EDI]; 188 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 189 (*regs)[16] = env->eip; 190 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 191 (*regs)[18] = env->eflags; 192 (*regs)[19] = env->regs[R_ESP]; 193 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 194 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 195 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 196 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 197 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 198 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 199 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 200 } 201 202 #else 203 204 #define ELF_START_MMAP 0x80000000 205 206 /* 207 * This is used to ensure we don't load something for the wrong architecture. 208 */ 209 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 210 211 /* 212 * These are used to set parameters in the core dumps. 213 */ 214 #define ELF_CLASS ELFCLASS32 215 #define ELF_ARCH EM_386 216 217 static inline void init_thread(struct target_pt_regs *regs, 218 struct image_info *infop) 219 { 220 regs->esp = infop->start_stack; 221 regs->eip = infop->entry; 222 223 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 224 starts %edx contains a pointer to a function which might be 225 registered using `atexit'. This provides a mean for the 226 dynamic linker to call DT_FINI functions for shared libraries 227 that have been loaded before the code runs. 228 229 A value of 0 tells we have no such handler. */ 230 regs->edx = 0; 231 } 232 233 #define ELF_NREG 17 234 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 235 236 /* 237 * Note that ELF_NREG should be 19 as there should be place for 238 * TRAPNO and ERR "registers" as well but linux doesn't dump 239 * those. 240 * 241 * See linux kernel: arch/x86/include/asm/elf.h 242 */ 243 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 244 { 245 (*regs)[0] = env->regs[R_EBX]; 246 (*regs)[1] = env->regs[R_ECX]; 247 (*regs)[2] = env->regs[R_EDX]; 248 (*regs)[3] = env->regs[R_ESI]; 249 (*regs)[4] = env->regs[R_EDI]; 250 (*regs)[5] = env->regs[R_EBP]; 251 (*regs)[6] = env->regs[R_EAX]; 252 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 253 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 254 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 255 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 256 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 257 (*regs)[12] = env->eip; 258 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 259 (*regs)[14] = env->eflags; 260 (*regs)[15] = env->regs[R_ESP]; 261 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 262 } 263 #endif 264 265 #define USE_ELF_CORE_DUMP 266 #define ELF_EXEC_PAGESIZE 4096 267 268 #endif 269 270 #ifdef TARGET_ARM 271 272 #ifndef TARGET_AARCH64 273 /* 32 bit ARM definitions */ 274 275 #define ELF_START_MMAP 0x80000000 276 277 #define ELF_ARCH EM_ARM 278 #define ELF_CLASS ELFCLASS32 279 280 static inline void init_thread(struct target_pt_regs *regs, 281 struct image_info *infop) 282 { 283 abi_long stack = infop->start_stack; 284 memset(regs, 0, sizeof(*regs)); 285 286 regs->uregs[16] = ARM_CPU_MODE_USR; 287 if (infop->entry & 1) { 288 regs->uregs[16] |= CPSR_T; 289 } 290 regs->uregs[15] = infop->entry & 0xfffffffe; 291 regs->uregs[13] = infop->start_stack; 292 /* FIXME - what to for failure of get_user()? */ 293 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 294 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 295 /* XXX: it seems that r0 is zeroed after ! */ 296 regs->uregs[0] = 0; 297 /* For uClinux PIC binaries. */ 298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 299 regs->uregs[10] = infop->start_data; 300 301 /* Support ARM FDPIC. */ 302 if (info_is_fdpic(infop)) { 303 /* As described in the ABI document, r7 points to the loadmap info 304 * prepared by the kernel. If an interpreter is needed, r8 points 305 * to the interpreter loadmap and r9 points to the interpreter 306 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 307 * r9 points to the main program PT_DYNAMIC info. 308 */ 309 regs->uregs[7] = infop->loadmap_addr; 310 if (infop->interpreter_loadmap_addr) { 311 /* Executable is dynamically loaded. */ 312 regs->uregs[8] = infop->interpreter_loadmap_addr; 313 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 314 } else { 315 regs->uregs[8] = 0; 316 regs->uregs[9] = infop->pt_dynamic_addr; 317 } 318 } 319 } 320 321 #define ELF_NREG 18 322 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 323 324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 325 { 326 (*regs)[0] = tswapreg(env->regs[0]); 327 (*regs)[1] = tswapreg(env->regs[1]); 328 (*regs)[2] = tswapreg(env->regs[2]); 329 (*regs)[3] = tswapreg(env->regs[3]); 330 (*regs)[4] = tswapreg(env->regs[4]); 331 (*regs)[5] = tswapreg(env->regs[5]); 332 (*regs)[6] = tswapreg(env->regs[6]); 333 (*regs)[7] = tswapreg(env->regs[7]); 334 (*regs)[8] = tswapreg(env->regs[8]); 335 (*regs)[9] = tswapreg(env->regs[9]); 336 (*regs)[10] = tswapreg(env->regs[10]); 337 (*regs)[11] = tswapreg(env->regs[11]); 338 (*regs)[12] = tswapreg(env->regs[12]); 339 (*regs)[13] = tswapreg(env->regs[13]); 340 (*regs)[14] = tswapreg(env->regs[14]); 341 (*regs)[15] = tswapreg(env->regs[15]); 342 343 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 344 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 345 } 346 347 #define USE_ELF_CORE_DUMP 348 #define ELF_EXEC_PAGESIZE 4096 349 350 enum 351 { 352 ARM_HWCAP_ARM_SWP = 1 << 0, 353 ARM_HWCAP_ARM_HALF = 1 << 1, 354 ARM_HWCAP_ARM_THUMB = 1 << 2, 355 ARM_HWCAP_ARM_26BIT = 1 << 3, 356 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 357 ARM_HWCAP_ARM_FPA = 1 << 5, 358 ARM_HWCAP_ARM_VFP = 1 << 6, 359 ARM_HWCAP_ARM_EDSP = 1 << 7, 360 ARM_HWCAP_ARM_JAVA = 1 << 8, 361 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 362 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 363 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 364 ARM_HWCAP_ARM_NEON = 1 << 12, 365 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 366 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 367 ARM_HWCAP_ARM_TLS = 1 << 15, 368 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 369 ARM_HWCAP_ARM_IDIVA = 1 << 17, 370 ARM_HWCAP_ARM_IDIVT = 1 << 18, 371 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 372 ARM_HWCAP_ARM_LPAE = 1 << 20, 373 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 374 }; 375 376 enum { 377 ARM_HWCAP2_ARM_AES = 1 << 0, 378 ARM_HWCAP2_ARM_PMULL = 1 << 1, 379 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 380 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 381 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 382 }; 383 384 /* The commpage only exists for 32 bit kernels */ 385 386 #define ARM_COMMPAGE (intptr_t)0xffff0f00u 387 388 static bool init_guest_commpage(void) 389 { 390 void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size); 391 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 392 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 393 394 if (addr == MAP_FAILED) { 395 perror("Allocating guest commpage"); 396 exit(EXIT_FAILURE); 397 } 398 if (addr != want) { 399 return false; 400 } 401 402 /* Set kernel helper versions; rest of page is 0. */ 403 __put_user(5, (uint32_t *)g2h(0xffff0ffcu)); 404 405 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 406 perror("Protecting guest commpage"); 407 exit(EXIT_FAILURE); 408 } 409 return true; 410 } 411 412 #define ELF_HWCAP get_elf_hwcap() 413 #define ELF_HWCAP2 get_elf_hwcap2() 414 415 static uint32_t get_elf_hwcap(void) 416 { 417 ARMCPU *cpu = ARM_CPU(thread_cpu); 418 uint32_t hwcaps = 0; 419 420 hwcaps |= ARM_HWCAP_ARM_SWP; 421 hwcaps |= ARM_HWCAP_ARM_HALF; 422 hwcaps |= ARM_HWCAP_ARM_THUMB; 423 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 424 425 /* probe for the extra features */ 426 #define GET_FEATURE(feat, hwcap) \ 427 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 428 429 #define GET_FEATURE_ID(feat, hwcap) \ 430 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 431 432 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 433 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 434 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 435 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 436 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 437 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 438 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 439 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 440 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 441 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 442 443 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 444 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 445 hwcaps |= ARM_HWCAP_ARM_VFPv3; 446 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 447 hwcaps |= ARM_HWCAP_ARM_VFPD32; 448 } else { 449 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 450 } 451 } 452 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 453 454 return hwcaps; 455 } 456 457 static uint32_t get_elf_hwcap2(void) 458 { 459 ARMCPU *cpu = ARM_CPU(thread_cpu); 460 uint32_t hwcaps = 0; 461 462 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 463 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 464 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 465 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 466 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 467 return hwcaps; 468 } 469 470 #undef GET_FEATURE 471 #undef GET_FEATURE_ID 472 473 #define ELF_PLATFORM get_elf_platform() 474 475 static const char *get_elf_platform(void) 476 { 477 CPUARMState *env = thread_cpu->env_ptr; 478 479 #ifdef TARGET_WORDS_BIGENDIAN 480 # define END "b" 481 #else 482 # define END "l" 483 #endif 484 485 if (arm_feature(env, ARM_FEATURE_V8)) { 486 return "v8" END; 487 } else if (arm_feature(env, ARM_FEATURE_V7)) { 488 if (arm_feature(env, ARM_FEATURE_M)) { 489 return "v7m" END; 490 } else { 491 return "v7" END; 492 } 493 } else if (arm_feature(env, ARM_FEATURE_V6)) { 494 return "v6" END; 495 } else if (arm_feature(env, ARM_FEATURE_V5)) { 496 return "v5" END; 497 } else { 498 return "v4" END; 499 } 500 501 #undef END 502 } 503 504 #else 505 /* 64 bit ARM definitions */ 506 #define ELF_START_MMAP 0x80000000 507 508 #define ELF_ARCH EM_AARCH64 509 #define ELF_CLASS ELFCLASS64 510 #ifdef TARGET_WORDS_BIGENDIAN 511 # define ELF_PLATFORM "aarch64_be" 512 #else 513 # define ELF_PLATFORM "aarch64" 514 #endif 515 516 static inline void init_thread(struct target_pt_regs *regs, 517 struct image_info *infop) 518 { 519 abi_long stack = infop->start_stack; 520 memset(regs, 0, sizeof(*regs)); 521 522 regs->pc = infop->entry & ~0x3ULL; 523 regs->sp = stack; 524 } 525 526 #define ELF_NREG 34 527 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 528 529 static void elf_core_copy_regs(target_elf_gregset_t *regs, 530 const CPUARMState *env) 531 { 532 int i; 533 534 for (i = 0; i < 32; i++) { 535 (*regs)[i] = tswapreg(env->xregs[i]); 536 } 537 (*regs)[32] = tswapreg(env->pc); 538 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 539 } 540 541 #define USE_ELF_CORE_DUMP 542 #define ELF_EXEC_PAGESIZE 4096 543 544 enum { 545 ARM_HWCAP_A64_FP = 1 << 0, 546 ARM_HWCAP_A64_ASIMD = 1 << 1, 547 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 548 ARM_HWCAP_A64_AES = 1 << 3, 549 ARM_HWCAP_A64_PMULL = 1 << 4, 550 ARM_HWCAP_A64_SHA1 = 1 << 5, 551 ARM_HWCAP_A64_SHA2 = 1 << 6, 552 ARM_HWCAP_A64_CRC32 = 1 << 7, 553 ARM_HWCAP_A64_ATOMICS = 1 << 8, 554 ARM_HWCAP_A64_FPHP = 1 << 9, 555 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 556 ARM_HWCAP_A64_CPUID = 1 << 11, 557 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 558 ARM_HWCAP_A64_JSCVT = 1 << 13, 559 ARM_HWCAP_A64_FCMA = 1 << 14, 560 ARM_HWCAP_A64_LRCPC = 1 << 15, 561 ARM_HWCAP_A64_DCPOP = 1 << 16, 562 ARM_HWCAP_A64_SHA3 = 1 << 17, 563 ARM_HWCAP_A64_SM3 = 1 << 18, 564 ARM_HWCAP_A64_SM4 = 1 << 19, 565 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 566 ARM_HWCAP_A64_SHA512 = 1 << 21, 567 ARM_HWCAP_A64_SVE = 1 << 22, 568 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 569 ARM_HWCAP_A64_DIT = 1 << 24, 570 ARM_HWCAP_A64_USCAT = 1 << 25, 571 ARM_HWCAP_A64_ILRCPC = 1 << 26, 572 ARM_HWCAP_A64_FLAGM = 1 << 27, 573 ARM_HWCAP_A64_SSBS = 1 << 28, 574 ARM_HWCAP_A64_SB = 1 << 29, 575 ARM_HWCAP_A64_PACA = 1 << 30, 576 ARM_HWCAP_A64_PACG = 1UL << 31, 577 578 ARM_HWCAP2_A64_DCPODP = 1 << 0, 579 ARM_HWCAP2_A64_SVE2 = 1 << 1, 580 ARM_HWCAP2_A64_SVEAES = 1 << 2, 581 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 582 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 583 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 584 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 585 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 586 ARM_HWCAP2_A64_FRINT = 1 << 8, 587 }; 588 589 #define ELF_HWCAP get_elf_hwcap() 590 #define ELF_HWCAP2 get_elf_hwcap2() 591 592 #define GET_FEATURE_ID(feat, hwcap) \ 593 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 594 595 static uint32_t get_elf_hwcap(void) 596 { 597 ARMCPU *cpu = ARM_CPU(thread_cpu); 598 uint32_t hwcaps = 0; 599 600 hwcaps |= ARM_HWCAP_A64_FP; 601 hwcaps |= ARM_HWCAP_A64_ASIMD; 602 hwcaps |= ARM_HWCAP_A64_CPUID; 603 604 /* probe for the extra features */ 605 606 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 607 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 608 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 609 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 610 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 611 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 612 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 613 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 614 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 615 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 616 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 617 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 618 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 619 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 620 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 621 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 622 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 623 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 624 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 625 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 626 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 627 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 628 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 629 630 return hwcaps; 631 } 632 633 static uint32_t get_elf_hwcap2(void) 634 { 635 ARMCPU *cpu = ARM_CPU(thread_cpu); 636 uint32_t hwcaps = 0; 637 638 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 639 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 640 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 641 642 return hwcaps; 643 } 644 645 #undef GET_FEATURE_ID 646 647 #endif /* not TARGET_AARCH64 */ 648 #endif /* TARGET_ARM */ 649 650 #ifdef TARGET_SPARC 651 #ifdef TARGET_SPARC64 652 653 #define ELF_START_MMAP 0x80000000 654 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 655 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 656 #ifndef TARGET_ABI32 657 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 658 #else 659 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 660 #endif 661 662 #define ELF_CLASS ELFCLASS64 663 #define ELF_ARCH EM_SPARCV9 664 665 #define STACK_BIAS 2047 666 667 static inline void init_thread(struct target_pt_regs *regs, 668 struct image_info *infop) 669 { 670 #ifndef TARGET_ABI32 671 regs->tstate = 0; 672 #endif 673 regs->pc = infop->entry; 674 regs->npc = regs->pc + 4; 675 regs->y = 0; 676 #ifdef TARGET_ABI32 677 regs->u_regs[14] = infop->start_stack - 16 * 4; 678 #else 679 if (personality(infop->personality) == PER_LINUX32) 680 regs->u_regs[14] = infop->start_stack - 16 * 4; 681 else 682 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 683 #endif 684 } 685 686 #else 687 #define ELF_START_MMAP 0x80000000 688 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 689 | HWCAP_SPARC_MULDIV) 690 691 #define ELF_CLASS ELFCLASS32 692 #define ELF_ARCH EM_SPARC 693 694 static inline void init_thread(struct target_pt_regs *regs, 695 struct image_info *infop) 696 { 697 regs->psr = 0; 698 regs->pc = infop->entry; 699 regs->npc = regs->pc + 4; 700 regs->y = 0; 701 regs->u_regs[14] = infop->start_stack - 16 * 4; 702 } 703 704 #endif 705 #endif 706 707 #ifdef TARGET_PPC 708 709 #define ELF_MACHINE PPC_ELF_MACHINE 710 #define ELF_START_MMAP 0x80000000 711 712 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 713 714 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 715 716 #define ELF_CLASS ELFCLASS64 717 718 #else 719 720 #define ELF_CLASS ELFCLASS32 721 722 #endif 723 724 #define ELF_ARCH EM_PPC 725 726 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 727 See arch/powerpc/include/asm/cputable.h. */ 728 enum { 729 QEMU_PPC_FEATURE_32 = 0x80000000, 730 QEMU_PPC_FEATURE_64 = 0x40000000, 731 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 732 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 733 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 734 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 735 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 736 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 737 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 738 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 739 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 740 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 741 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 742 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 743 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 744 QEMU_PPC_FEATURE_CELL = 0x00010000, 745 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 746 QEMU_PPC_FEATURE_SMT = 0x00004000, 747 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 748 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 749 QEMU_PPC_FEATURE_PA6T = 0x00000800, 750 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 751 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 752 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 753 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 754 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 755 756 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 757 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 758 759 /* Feature definitions in AT_HWCAP2. */ 760 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 761 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 762 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 763 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 764 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 765 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 766 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 767 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 768 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 769 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 770 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 771 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 772 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 773 }; 774 775 #define ELF_HWCAP get_elf_hwcap() 776 777 static uint32_t get_elf_hwcap(void) 778 { 779 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 780 uint32_t features = 0; 781 782 /* We don't have to be terribly complete here; the high points are 783 Altivec/FP/SPE support. Anything else is just a bonus. */ 784 #define GET_FEATURE(flag, feature) \ 785 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 786 #define GET_FEATURE2(flags, feature) \ 787 do { \ 788 if ((cpu->env.insns_flags2 & flags) == flags) { \ 789 features |= feature; \ 790 } \ 791 } while (0) 792 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 793 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 794 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 795 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 796 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 797 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 798 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 799 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 800 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 801 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 802 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 803 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 804 QEMU_PPC_FEATURE_ARCH_2_06); 805 #undef GET_FEATURE 806 #undef GET_FEATURE2 807 808 return features; 809 } 810 811 #define ELF_HWCAP2 get_elf_hwcap2() 812 813 static uint32_t get_elf_hwcap2(void) 814 { 815 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 816 uint32_t features = 0; 817 818 #define GET_FEATURE(flag, feature) \ 819 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 820 #define GET_FEATURE2(flag, feature) \ 821 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 822 823 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 824 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 825 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 826 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 827 QEMU_PPC_FEATURE2_VEC_CRYPTO); 828 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 829 QEMU_PPC_FEATURE2_DARN); 830 831 #undef GET_FEATURE 832 #undef GET_FEATURE2 833 834 return features; 835 } 836 837 /* 838 * The requirements here are: 839 * - keep the final alignment of sp (sp & 0xf) 840 * - make sure the 32-bit value at the first 16 byte aligned position of 841 * AUXV is greater than 16 for glibc compatibility. 842 * AT_IGNOREPPC is used for that. 843 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 844 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 845 */ 846 #define DLINFO_ARCH_ITEMS 5 847 #define ARCH_DLINFO \ 848 do { \ 849 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 850 /* \ 851 * Handle glibc compatibility: these magic entries must \ 852 * be at the lowest addresses in the final auxv. \ 853 */ \ 854 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 855 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 856 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 857 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 858 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 859 } while (0) 860 861 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 862 { 863 _regs->gpr[1] = infop->start_stack; 864 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 865 if (get_ppc64_abi(infop) < 2) { 866 uint64_t val; 867 get_user_u64(val, infop->entry + 8); 868 _regs->gpr[2] = val + infop->load_bias; 869 get_user_u64(val, infop->entry); 870 infop->entry = val + infop->load_bias; 871 } else { 872 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 873 } 874 #endif 875 _regs->nip = infop->entry; 876 } 877 878 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 879 #define ELF_NREG 48 880 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 881 882 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 883 { 884 int i; 885 target_ulong ccr = 0; 886 887 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 888 (*regs)[i] = tswapreg(env->gpr[i]); 889 } 890 891 (*regs)[32] = tswapreg(env->nip); 892 (*regs)[33] = tswapreg(env->msr); 893 (*regs)[35] = tswapreg(env->ctr); 894 (*regs)[36] = tswapreg(env->lr); 895 (*regs)[37] = tswapreg(env->xer); 896 897 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 898 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 899 } 900 (*regs)[38] = tswapreg(ccr); 901 } 902 903 #define USE_ELF_CORE_DUMP 904 #define ELF_EXEC_PAGESIZE 4096 905 906 #endif 907 908 #ifdef TARGET_MIPS 909 910 #define ELF_START_MMAP 0x80000000 911 912 #ifdef TARGET_MIPS64 913 #define ELF_CLASS ELFCLASS64 914 #else 915 #define ELF_CLASS ELFCLASS32 916 #endif 917 #define ELF_ARCH EM_MIPS 918 919 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 920 921 #ifdef TARGET_ABI_MIPSN32 922 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 923 #else 924 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 925 #endif 926 927 static inline void init_thread(struct target_pt_regs *regs, 928 struct image_info *infop) 929 { 930 regs->cp0_status = 2 << CP0St_KSU; 931 regs->cp0_epc = infop->entry; 932 regs->regs[29] = infop->start_stack; 933 } 934 935 /* See linux kernel: arch/mips/include/asm/elf.h. */ 936 #define ELF_NREG 45 937 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 938 939 /* See linux kernel: arch/mips/include/asm/reg.h. */ 940 enum { 941 #ifdef TARGET_MIPS64 942 TARGET_EF_R0 = 0, 943 #else 944 TARGET_EF_R0 = 6, 945 #endif 946 TARGET_EF_R26 = TARGET_EF_R0 + 26, 947 TARGET_EF_R27 = TARGET_EF_R0 + 27, 948 TARGET_EF_LO = TARGET_EF_R0 + 32, 949 TARGET_EF_HI = TARGET_EF_R0 + 33, 950 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 951 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 952 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 953 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 954 }; 955 956 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 957 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 958 { 959 int i; 960 961 for (i = 0; i < TARGET_EF_R0; i++) { 962 (*regs)[i] = 0; 963 } 964 (*regs)[TARGET_EF_R0] = 0; 965 966 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 967 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 968 } 969 970 (*regs)[TARGET_EF_R26] = 0; 971 (*regs)[TARGET_EF_R27] = 0; 972 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 973 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 974 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 975 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 976 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 977 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 978 } 979 980 #define USE_ELF_CORE_DUMP 981 #define ELF_EXEC_PAGESIZE 4096 982 983 /* See arch/mips/include/uapi/asm/hwcap.h. */ 984 enum { 985 HWCAP_MIPS_R6 = (1 << 0), 986 HWCAP_MIPS_MSA = (1 << 1), 987 }; 988 989 #define ELF_HWCAP get_elf_hwcap() 990 991 static uint32_t get_elf_hwcap(void) 992 { 993 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 994 uint32_t hwcaps = 0; 995 996 #define GET_FEATURE(flag, hwcap) \ 997 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 998 999 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 1000 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 1001 1002 #undef GET_FEATURE 1003 1004 return hwcaps; 1005 } 1006 1007 #endif /* TARGET_MIPS */ 1008 1009 #ifdef TARGET_MICROBLAZE 1010 1011 #define ELF_START_MMAP 0x80000000 1012 1013 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1014 1015 #define ELF_CLASS ELFCLASS32 1016 #define ELF_ARCH EM_MICROBLAZE 1017 1018 static inline void init_thread(struct target_pt_regs *regs, 1019 struct image_info *infop) 1020 { 1021 regs->pc = infop->entry; 1022 regs->r1 = infop->start_stack; 1023 1024 } 1025 1026 #define ELF_EXEC_PAGESIZE 4096 1027 1028 #define USE_ELF_CORE_DUMP 1029 #define ELF_NREG 38 1030 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1031 1032 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1033 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1034 { 1035 int i, pos = 0; 1036 1037 for (i = 0; i < 32; i++) { 1038 (*regs)[pos++] = tswapreg(env->regs[i]); 1039 } 1040 1041 for (i = 0; i < 6; i++) { 1042 (*regs)[pos++] = tswapreg(env->sregs[i]); 1043 } 1044 } 1045 1046 #endif /* TARGET_MICROBLAZE */ 1047 1048 #ifdef TARGET_NIOS2 1049 1050 #define ELF_START_MMAP 0x80000000 1051 1052 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1053 1054 #define ELF_CLASS ELFCLASS32 1055 #define ELF_ARCH EM_ALTERA_NIOS2 1056 1057 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1058 { 1059 regs->ea = infop->entry; 1060 regs->sp = infop->start_stack; 1061 regs->estatus = 0x3; 1062 } 1063 1064 #define ELF_EXEC_PAGESIZE 4096 1065 1066 #define USE_ELF_CORE_DUMP 1067 #define ELF_NREG 49 1068 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1069 1070 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1071 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1072 const CPUNios2State *env) 1073 { 1074 int i; 1075 1076 (*regs)[0] = -1; 1077 for (i = 1; i < 8; i++) /* r0-r7 */ 1078 (*regs)[i] = tswapreg(env->regs[i + 7]); 1079 1080 for (i = 8; i < 16; i++) /* r8-r15 */ 1081 (*regs)[i] = tswapreg(env->regs[i - 8]); 1082 1083 for (i = 16; i < 24; i++) /* r16-r23 */ 1084 (*regs)[i] = tswapreg(env->regs[i + 7]); 1085 (*regs)[24] = -1; /* R_ET */ 1086 (*regs)[25] = -1; /* R_BT */ 1087 (*regs)[26] = tswapreg(env->regs[R_GP]); 1088 (*regs)[27] = tswapreg(env->regs[R_SP]); 1089 (*regs)[28] = tswapreg(env->regs[R_FP]); 1090 (*regs)[29] = tswapreg(env->regs[R_EA]); 1091 (*regs)[30] = -1; /* R_SSTATUS */ 1092 (*regs)[31] = tswapreg(env->regs[R_RA]); 1093 1094 (*regs)[32] = tswapreg(env->regs[R_PC]); 1095 1096 (*regs)[33] = -1; /* R_STATUS */ 1097 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1098 1099 for (i = 35; i < 49; i++) /* ... */ 1100 (*regs)[i] = -1; 1101 } 1102 1103 #endif /* TARGET_NIOS2 */ 1104 1105 #ifdef TARGET_OPENRISC 1106 1107 #define ELF_START_MMAP 0x08000000 1108 1109 #define ELF_ARCH EM_OPENRISC 1110 #define ELF_CLASS ELFCLASS32 1111 #define ELF_DATA ELFDATA2MSB 1112 1113 static inline void init_thread(struct target_pt_regs *regs, 1114 struct image_info *infop) 1115 { 1116 regs->pc = infop->entry; 1117 regs->gpr[1] = infop->start_stack; 1118 } 1119 1120 #define USE_ELF_CORE_DUMP 1121 #define ELF_EXEC_PAGESIZE 8192 1122 1123 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1124 #define ELF_NREG 34 /* gprs and pc, sr */ 1125 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1126 1127 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1128 const CPUOpenRISCState *env) 1129 { 1130 int i; 1131 1132 for (i = 0; i < 32; i++) { 1133 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1134 } 1135 (*regs)[32] = tswapreg(env->pc); 1136 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1137 } 1138 #define ELF_HWCAP 0 1139 #define ELF_PLATFORM NULL 1140 1141 #endif /* TARGET_OPENRISC */ 1142 1143 #ifdef TARGET_SH4 1144 1145 #define ELF_START_MMAP 0x80000000 1146 1147 #define ELF_CLASS ELFCLASS32 1148 #define ELF_ARCH EM_SH 1149 1150 static inline void init_thread(struct target_pt_regs *regs, 1151 struct image_info *infop) 1152 { 1153 /* Check other registers XXXXX */ 1154 regs->pc = infop->entry; 1155 regs->regs[15] = infop->start_stack; 1156 } 1157 1158 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1159 #define ELF_NREG 23 1160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1161 1162 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1163 enum { 1164 TARGET_REG_PC = 16, 1165 TARGET_REG_PR = 17, 1166 TARGET_REG_SR = 18, 1167 TARGET_REG_GBR = 19, 1168 TARGET_REG_MACH = 20, 1169 TARGET_REG_MACL = 21, 1170 TARGET_REG_SYSCALL = 22 1171 }; 1172 1173 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1174 const CPUSH4State *env) 1175 { 1176 int i; 1177 1178 for (i = 0; i < 16; i++) { 1179 (*regs)[i] = tswapreg(env->gregs[i]); 1180 } 1181 1182 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1183 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1184 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1185 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1186 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1187 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1188 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1189 } 1190 1191 #define USE_ELF_CORE_DUMP 1192 #define ELF_EXEC_PAGESIZE 4096 1193 1194 enum { 1195 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1196 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1197 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1198 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1199 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1200 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1201 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1202 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1203 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1204 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1205 }; 1206 1207 #define ELF_HWCAP get_elf_hwcap() 1208 1209 static uint32_t get_elf_hwcap(void) 1210 { 1211 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1212 uint32_t hwcap = 0; 1213 1214 hwcap |= SH_CPU_HAS_FPU; 1215 1216 if (cpu->env.features & SH_FEATURE_SH4A) { 1217 hwcap |= SH_CPU_HAS_LLSC; 1218 } 1219 1220 return hwcap; 1221 } 1222 1223 #endif 1224 1225 #ifdef TARGET_CRIS 1226 1227 #define ELF_START_MMAP 0x80000000 1228 1229 #define ELF_CLASS ELFCLASS32 1230 #define ELF_ARCH EM_CRIS 1231 1232 static inline void init_thread(struct target_pt_regs *regs, 1233 struct image_info *infop) 1234 { 1235 regs->erp = infop->entry; 1236 } 1237 1238 #define ELF_EXEC_PAGESIZE 8192 1239 1240 #endif 1241 1242 #ifdef TARGET_M68K 1243 1244 #define ELF_START_MMAP 0x80000000 1245 1246 #define ELF_CLASS ELFCLASS32 1247 #define ELF_ARCH EM_68K 1248 1249 /* ??? Does this need to do anything? 1250 #define ELF_PLAT_INIT(_r) */ 1251 1252 static inline void init_thread(struct target_pt_regs *regs, 1253 struct image_info *infop) 1254 { 1255 regs->usp = infop->start_stack; 1256 regs->sr = 0; 1257 regs->pc = infop->entry; 1258 } 1259 1260 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1261 #define ELF_NREG 20 1262 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1263 1264 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1265 { 1266 (*regs)[0] = tswapreg(env->dregs[1]); 1267 (*regs)[1] = tswapreg(env->dregs[2]); 1268 (*regs)[2] = tswapreg(env->dregs[3]); 1269 (*regs)[3] = tswapreg(env->dregs[4]); 1270 (*regs)[4] = tswapreg(env->dregs[5]); 1271 (*regs)[5] = tswapreg(env->dregs[6]); 1272 (*regs)[6] = tswapreg(env->dregs[7]); 1273 (*regs)[7] = tswapreg(env->aregs[0]); 1274 (*regs)[8] = tswapreg(env->aregs[1]); 1275 (*regs)[9] = tswapreg(env->aregs[2]); 1276 (*regs)[10] = tswapreg(env->aregs[3]); 1277 (*regs)[11] = tswapreg(env->aregs[4]); 1278 (*regs)[12] = tswapreg(env->aregs[5]); 1279 (*regs)[13] = tswapreg(env->aregs[6]); 1280 (*regs)[14] = tswapreg(env->dregs[0]); 1281 (*regs)[15] = tswapreg(env->aregs[7]); 1282 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1283 (*regs)[17] = tswapreg(env->sr); 1284 (*regs)[18] = tswapreg(env->pc); 1285 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1286 } 1287 1288 #define USE_ELF_CORE_DUMP 1289 #define ELF_EXEC_PAGESIZE 8192 1290 1291 #endif 1292 1293 #ifdef TARGET_ALPHA 1294 1295 #define ELF_START_MMAP (0x30000000000ULL) 1296 1297 #define ELF_CLASS ELFCLASS64 1298 #define ELF_ARCH EM_ALPHA 1299 1300 static inline void init_thread(struct target_pt_regs *regs, 1301 struct image_info *infop) 1302 { 1303 regs->pc = infop->entry; 1304 regs->ps = 8; 1305 regs->usp = infop->start_stack; 1306 } 1307 1308 #define ELF_EXEC_PAGESIZE 8192 1309 1310 #endif /* TARGET_ALPHA */ 1311 1312 #ifdef TARGET_S390X 1313 1314 #define ELF_START_MMAP (0x20000000000ULL) 1315 1316 #define ELF_CLASS ELFCLASS64 1317 #define ELF_DATA ELFDATA2MSB 1318 #define ELF_ARCH EM_S390 1319 1320 #include "elf.h" 1321 1322 #define ELF_HWCAP get_elf_hwcap() 1323 1324 #define GET_FEATURE(_feat, _hwcap) \ 1325 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1326 1327 static uint32_t get_elf_hwcap(void) 1328 { 1329 /* 1330 * Let's assume we always have esan3 and zarch. 1331 * 31-bit processes can use 64-bit registers (high gprs). 1332 */ 1333 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1334 1335 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1336 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1337 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1338 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1339 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1340 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1341 hwcap |= HWCAP_S390_ETF3EH; 1342 } 1343 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1344 1345 return hwcap; 1346 } 1347 1348 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1349 { 1350 regs->psw.addr = infop->entry; 1351 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1352 regs->gprs[15] = infop->start_stack; 1353 } 1354 1355 #endif /* TARGET_S390X */ 1356 1357 #ifdef TARGET_TILEGX 1358 1359 /* 42 bits real used address, a half for user mode */ 1360 #define ELF_START_MMAP (0x00000020000000000ULL) 1361 1362 #define elf_check_arch(x) ((x) == EM_TILEGX) 1363 1364 #define ELF_CLASS ELFCLASS64 1365 #define ELF_DATA ELFDATA2LSB 1366 #define ELF_ARCH EM_TILEGX 1367 1368 static inline void init_thread(struct target_pt_regs *regs, 1369 struct image_info *infop) 1370 { 1371 regs->pc = infop->entry; 1372 regs->sp = infop->start_stack; 1373 1374 } 1375 1376 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1377 1378 #endif /* TARGET_TILEGX */ 1379 1380 #ifdef TARGET_RISCV 1381 1382 #define ELF_START_MMAP 0x80000000 1383 #define ELF_ARCH EM_RISCV 1384 1385 #ifdef TARGET_RISCV32 1386 #define ELF_CLASS ELFCLASS32 1387 #else 1388 #define ELF_CLASS ELFCLASS64 1389 #endif 1390 1391 static inline void init_thread(struct target_pt_regs *regs, 1392 struct image_info *infop) 1393 { 1394 regs->sepc = infop->entry; 1395 regs->sp = infop->start_stack; 1396 } 1397 1398 #define ELF_EXEC_PAGESIZE 4096 1399 1400 #endif /* TARGET_RISCV */ 1401 1402 #ifdef TARGET_HPPA 1403 1404 #define ELF_START_MMAP 0x80000000 1405 #define ELF_CLASS ELFCLASS32 1406 #define ELF_ARCH EM_PARISC 1407 #define ELF_PLATFORM "PARISC" 1408 #define STACK_GROWS_DOWN 0 1409 #define STACK_ALIGNMENT 64 1410 1411 static inline void init_thread(struct target_pt_regs *regs, 1412 struct image_info *infop) 1413 { 1414 regs->iaoq[0] = infop->entry; 1415 regs->iaoq[1] = infop->entry + 4; 1416 regs->gr[23] = 0; 1417 regs->gr[24] = infop->arg_start; 1418 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1419 /* The top-of-stack contains a linkage buffer. */ 1420 regs->gr[30] = infop->start_stack + 64; 1421 regs->gr[31] = infop->entry; 1422 } 1423 1424 #endif /* TARGET_HPPA */ 1425 1426 #ifdef TARGET_XTENSA 1427 1428 #define ELF_START_MMAP 0x20000000 1429 1430 #define ELF_CLASS ELFCLASS32 1431 #define ELF_ARCH EM_XTENSA 1432 1433 static inline void init_thread(struct target_pt_regs *regs, 1434 struct image_info *infop) 1435 { 1436 regs->windowbase = 0; 1437 regs->windowstart = 1; 1438 regs->areg[1] = infop->start_stack; 1439 regs->pc = infop->entry; 1440 } 1441 1442 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1443 #define ELF_NREG 128 1444 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1445 1446 enum { 1447 TARGET_REG_PC, 1448 TARGET_REG_PS, 1449 TARGET_REG_LBEG, 1450 TARGET_REG_LEND, 1451 TARGET_REG_LCOUNT, 1452 TARGET_REG_SAR, 1453 TARGET_REG_WINDOWSTART, 1454 TARGET_REG_WINDOWBASE, 1455 TARGET_REG_THREADPTR, 1456 TARGET_REG_AR0 = 64, 1457 }; 1458 1459 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1460 const CPUXtensaState *env) 1461 { 1462 unsigned i; 1463 1464 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1465 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1466 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1467 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1468 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1469 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1470 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1471 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1472 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1473 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1474 for (i = 0; i < env->config->nareg; ++i) { 1475 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1476 } 1477 } 1478 1479 #define USE_ELF_CORE_DUMP 1480 #define ELF_EXEC_PAGESIZE 4096 1481 1482 #endif /* TARGET_XTENSA */ 1483 1484 #ifndef ELF_PLATFORM 1485 #define ELF_PLATFORM (NULL) 1486 #endif 1487 1488 #ifndef ELF_MACHINE 1489 #define ELF_MACHINE ELF_ARCH 1490 #endif 1491 1492 #ifndef elf_check_arch 1493 #define elf_check_arch(x) ((x) == ELF_ARCH) 1494 #endif 1495 1496 #ifndef elf_check_abi 1497 #define elf_check_abi(x) (1) 1498 #endif 1499 1500 #ifndef ELF_HWCAP 1501 #define ELF_HWCAP 0 1502 #endif 1503 1504 #ifndef STACK_GROWS_DOWN 1505 #define STACK_GROWS_DOWN 1 1506 #endif 1507 1508 #ifndef STACK_ALIGNMENT 1509 #define STACK_ALIGNMENT 16 1510 #endif 1511 1512 #ifdef TARGET_ABI32 1513 #undef ELF_CLASS 1514 #define ELF_CLASS ELFCLASS32 1515 #undef bswaptls 1516 #define bswaptls(ptr) bswap32s(ptr) 1517 #endif 1518 1519 #include "elf.h" 1520 1521 struct exec 1522 { 1523 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1524 unsigned int a_text; /* length of text, in bytes */ 1525 unsigned int a_data; /* length of data, in bytes */ 1526 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1527 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1528 unsigned int a_entry; /* start address */ 1529 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1530 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1531 }; 1532 1533 1534 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1535 #define OMAGIC 0407 1536 #define NMAGIC 0410 1537 #define ZMAGIC 0413 1538 #define QMAGIC 0314 1539 1540 /* Necessary parameters */ 1541 #define TARGET_ELF_EXEC_PAGESIZE \ 1542 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1543 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1544 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1545 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1546 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1547 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1548 1549 #define DLINFO_ITEMS 16 1550 1551 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1552 { 1553 memcpy(to, from, n); 1554 } 1555 1556 #ifdef BSWAP_NEEDED 1557 static void bswap_ehdr(struct elfhdr *ehdr) 1558 { 1559 bswap16s(&ehdr->e_type); /* Object file type */ 1560 bswap16s(&ehdr->e_machine); /* Architecture */ 1561 bswap32s(&ehdr->e_version); /* Object file version */ 1562 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1563 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1564 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1565 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1566 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1567 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1568 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1569 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1570 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1571 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1572 } 1573 1574 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1575 { 1576 int i; 1577 for (i = 0; i < phnum; ++i, ++phdr) { 1578 bswap32s(&phdr->p_type); /* Segment type */ 1579 bswap32s(&phdr->p_flags); /* Segment flags */ 1580 bswaptls(&phdr->p_offset); /* Segment file offset */ 1581 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1582 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1583 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1584 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1585 bswaptls(&phdr->p_align); /* Segment alignment */ 1586 } 1587 } 1588 1589 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1590 { 1591 int i; 1592 for (i = 0; i < shnum; ++i, ++shdr) { 1593 bswap32s(&shdr->sh_name); 1594 bswap32s(&shdr->sh_type); 1595 bswaptls(&shdr->sh_flags); 1596 bswaptls(&shdr->sh_addr); 1597 bswaptls(&shdr->sh_offset); 1598 bswaptls(&shdr->sh_size); 1599 bswap32s(&shdr->sh_link); 1600 bswap32s(&shdr->sh_info); 1601 bswaptls(&shdr->sh_addralign); 1602 bswaptls(&shdr->sh_entsize); 1603 } 1604 } 1605 1606 static void bswap_sym(struct elf_sym *sym) 1607 { 1608 bswap32s(&sym->st_name); 1609 bswaptls(&sym->st_value); 1610 bswaptls(&sym->st_size); 1611 bswap16s(&sym->st_shndx); 1612 } 1613 1614 #ifdef TARGET_MIPS 1615 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1616 { 1617 bswap16s(&abiflags->version); 1618 bswap32s(&abiflags->ases); 1619 bswap32s(&abiflags->isa_ext); 1620 bswap32s(&abiflags->flags1); 1621 bswap32s(&abiflags->flags2); 1622 } 1623 #endif 1624 #else 1625 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1626 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1627 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1628 static inline void bswap_sym(struct elf_sym *sym) { } 1629 #ifdef TARGET_MIPS 1630 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1631 #endif 1632 #endif 1633 1634 #ifdef USE_ELF_CORE_DUMP 1635 static int elf_core_dump(int, const CPUArchState *); 1636 #endif /* USE_ELF_CORE_DUMP */ 1637 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1638 1639 /* Verify the portions of EHDR within E_IDENT for the target. 1640 This can be performed before bswapping the entire header. */ 1641 static bool elf_check_ident(struct elfhdr *ehdr) 1642 { 1643 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1644 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1645 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1646 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1647 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1648 && ehdr->e_ident[EI_DATA] == ELF_DATA 1649 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1650 } 1651 1652 /* Verify the portions of EHDR outside of E_IDENT for the target. 1653 This has to wait until after bswapping the header. */ 1654 static bool elf_check_ehdr(struct elfhdr *ehdr) 1655 { 1656 return (elf_check_arch(ehdr->e_machine) 1657 && elf_check_abi(ehdr->e_flags) 1658 && ehdr->e_ehsize == sizeof(struct elfhdr) 1659 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1660 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1661 } 1662 1663 /* 1664 * 'copy_elf_strings()' copies argument/envelope strings from user 1665 * memory to free pages in kernel mem. These are in a format ready 1666 * to be put directly into the top of new user memory. 1667 * 1668 */ 1669 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1670 abi_ulong p, abi_ulong stack_limit) 1671 { 1672 char *tmp; 1673 int len, i; 1674 abi_ulong top = p; 1675 1676 if (!p) { 1677 return 0; /* bullet-proofing */ 1678 } 1679 1680 if (STACK_GROWS_DOWN) { 1681 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1682 for (i = argc - 1; i >= 0; --i) { 1683 tmp = argv[i]; 1684 if (!tmp) { 1685 fprintf(stderr, "VFS: argc is wrong"); 1686 exit(-1); 1687 } 1688 len = strlen(tmp) + 1; 1689 tmp += len; 1690 1691 if (len > (p - stack_limit)) { 1692 return 0; 1693 } 1694 while (len) { 1695 int bytes_to_copy = (len > offset) ? offset : len; 1696 tmp -= bytes_to_copy; 1697 p -= bytes_to_copy; 1698 offset -= bytes_to_copy; 1699 len -= bytes_to_copy; 1700 1701 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1702 1703 if (offset == 0) { 1704 memcpy_to_target(p, scratch, top - p); 1705 top = p; 1706 offset = TARGET_PAGE_SIZE; 1707 } 1708 } 1709 } 1710 if (p != top) { 1711 memcpy_to_target(p, scratch + offset, top - p); 1712 } 1713 } else { 1714 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1715 for (i = 0; i < argc; ++i) { 1716 tmp = argv[i]; 1717 if (!tmp) { 1718 fprintf(stderr, "VFS: argc is wrong"); 1719 exit(-1); 1720 } 1721 len = strlen(tmp) + 1; 1722 if (len > (stack_limit - p)) { 1723 return 0; 1724 } 1725 while (len) { 1726 int bytes_to_copy = (len > remaining) ? remaining : len; 1727 1728 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1729 1730 tmp += bytes_to_copy; 1731 remaining -= bytes_to_copy; 1732 p += bytes_to_copy; 1733 len -= bytes_to_copy; 1734 1735 if (remaining == 0) { 1736 memcpy_to_target(top, scratch, p - top); 1737 top = p; 1738 remaining = TARGET_PAGE_SIZE; 1739 } 1740 } 1741 } 1742 if (p != top) { 1743 memcpy_to_target(top, scratch, p - top); 1744 } 1745 } 1746 1747 return p; 1748 } 1749 1750 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1751 * argument/environment space. Newer kernels (>2.6.33) allow more, 1752 * dependent on stack size, but guarantee at least 32 pages for 1753 * backwards compatibility. 1754 */ 1755 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1756 1757 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1758 struct image_info *info) 1759 { 1760 abi_ulong size, error, guard; 1761 1762 size = guest_stack_size; 1763 if (size < STACK_LOWER_LIMIT) { 1764 size = STACK_LOWER_LIMIT; 1765 } 1766 guard = TARGET_PAGE_SIZE; 1767 if (guard < qemu_real_host_page_size) { 1768 guard = qemu_real_host_page_size; 1769 } 1770 1771 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1772 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1773 if (error == -1) { 1774 perror("mmap stack"); 1775 exit(-1); 1776 } 1777 1778 /* We reserve one extra page at the top of the stack as guard. */ 1779 if (STACK_GROWS_DOWN) { 1780 target_mprotect(error, guard, PROT_NONE); 1781 info->stack_limit = error + guard; 1782 return info->stack_limit + size - sizeof(void *); 1783 } else { 1784 target_mprotect(error + size, guard, PROT_NONE); 1785 info->stack_limit = error + size; 1786 return error; 1787 } 1788 } 1789 1790 /* Map and zero the bss. We need to explicitly zero any fractional pages 1791 after the data section (i.e. bss). */ 1792 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1793 { 1794 uintptr_t host_start, host_map_start, host_end; 1795 1796 last_bss = TARGET_PAGE_ALIGN(last_bss); 1797 1798 /* ??? There is confusion between qemu_real_host_page_size and 1799 qemu_host_page_size here and elsewhere in target_mmap, which 1800 may lead to the end of the data section mapping from the file 1801 not being mapped. At least there was an explicit test and 1802 comment for that here, suggesting that "the file size must 1803 be known". The comment probably pre-dates the introduction 1804 of the fstat system call in target_mmap which does in fact 1805 find out the size. What isn't clear is if the workaround 1806 here is still actually needed. For now, continue with it, 1807 but merge it with the "normal" mmap that would allocate the bss. */ 1808 1809 host_start = (uintptr_t) g2h(elf_bss); 1810 host_end = (uintptr_t) g2h(last_bss); 1811 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1812 1813 if (host_map_start < host_end) { 1814 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1815 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1816 if (p == MAP_FAILED) { 1817 perror("cannot mmap brk"); 1818 exit(-1); 1819 } 1820 } 1821 1822 /* Ensure that the bss page(s) are valid */ 1823 if ((page_get_flags(last_bss-1) & prot) != prot) { 1824 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1825 } 1826 1827 if (host_start < host_map_start) { 1828 memset((void *)host_start, 0, host_map_start - host_start); 1829 } 1830 } 1831 1832 #ifdef TARGET_ARM 1833 static int elf_is_fdpic(struct elfhdr *exec) 1834 { 1835 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1836 } 1837 #else 1838 /* Default implementation, always false. */ 1839 static int elf_is_fdpic(struct elfhdr *exec) 1840 { 1841 return 0; 1842 } 1843 #endif 1844 1845 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1846 { 1847 uint16_t n; 1848 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1849 1850 /* elf32_fdpic_loadseg */ 1851 n = info->nsegs; 1852 while (n--) { 1853 sp -= 12; 1854 put_user_u32(loadsegs[n].addr, sp+0); 1855 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1856 put_user_u32(loadsegs[n].p_memsz, sp+8); 1857 } 1858 1859 /* elf32_fdpic_loadmap */ 1860 sp -= 4; 1861 put_user_u16(0, sp+0); /* version */ 1862 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1863 1864 info->personality = PER_LINUX_FDPIC; 1865 info->loadmap_addr = sp; 1866 1867 return sp; 1868 } 1869 1870 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1871 struct elfhdr *exec, 1872 struct image_info *info, 1873 struct image_info *interp_info) 1874 { 1875 abi_ulong sp; 1876 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1877 int size; 1878 int i; 1879 abi_ulong u_rand_bytes; 1880 uint8_t k_rand_bytes[16]; 1881 abi_ulong u_platform; 1882 const char *k_platform; 1883 const int n = sizeof(elf_addr_t); 1884 1885 sp = p; 1886 1887 /* Needs to be before we load the env/argc/... */ 1888 if (elf_is_fdpic(exec)) { 1889 /* Need 4 byte alignment for these structs */ 1890 sp &= ~3; 1891 sp = loader_build_fdpic_loadmap(info, sp); 1892 info->other_info = interp_info; 1893 if (interp_info) { 1894 interp_info->other_info = info; 1895 sp = loader_build_fdpic_loadmap(interp_info, sp); 1896 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1897 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1898 } else { 1899 info->interpreter_loadmap_addr = 0; 1900 info->interpreter_pt_dynamic_addr = 0; 1901 } 1902 } 1903 1904 u_platform = 0; 1905 k_platform = ELF_PLATFORM; 1906 if (k_platform) { 1907 size_t len = strlen(k_platform) + 1; 1908 if (STACK_GROWS_DOWN) { 1909 sp -= (len + n - 1) & ~(n - 1); 1910 u_platform = sp; 1911 /* FIXME - check return value of memcpy_to_target() for failure */ 1912 memcpy_to_target(sp, k_platform, len); 1913 } else { 1914 memcpy_to_target(sp, k_platform, len); 1915 u_platform = sp; 1916 sp += len + 1; 1917 } 1918 } 1919 1920 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1921 * the argv and envp pointers. 1922 */ 1923 if (STACK_GROWS_DOWN) { 1924 sp = QEMU_ALIGN_DOWN(sp, 16); 1925 } else { 1926 sp = QEMU_ALIGN_UP(sp, 16); 1927 } 1928 1929 /* 1930 * Generate 16 random bytes for userspace PRNG seeding. 1931 */ 1932 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 1933 if (STACK_GROWS_DOWN) { 1934 sp -= 16; 1935 u_rand_bytes = sp; 1936 /* FIXME - check return value of memcpy_to_target() for failure */ 1937 memcpy_to_target(sp, k_rand_bytes, 16); 1938 } else { 1939 memcpy_to_target(sp, k_rand_bytes, 16); 1940 u_rand_bytes = sp; 1941 sp += 16; 1942 } 1943 1944 size = (DLINFO_ITEMS + 1) * 2; 1945 if (k_platform) 1946 size += 2; 1947 #ifdef DLINFO_ARCH_ITEMS 1948 size += DLINFO_ARCH_ITEMS * 2; 1949 #endif 1950 #ifdef ELF_HWCAP2 1951 size += 2; 1952 #endif 1953 info->auxv_len = size * n; 1954 1955 size += envc + argc + 2; 1956 size += 1; /* argc itself */ 1957 size *= n; 1958 1959 /* Allocate space and finalize stack alignment for entry now. */ 1960 if (STACK_GROWS_DOWN) { 1961 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1962 sp = u_argc; 1963 } else { 1964 u_argc = sp; 1965 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1966 } 1967 1968 u_argv = u_argc + n; 1969 u_envp = u_argv + (argc + 1) * n; 1970 u_auxv = u_envp + (envc + 1) * n; 1971 info->saved_auxv = u_auxv; 1972 info->arg_start = u_argv; 1973 info->arg_end = u_argv + argc * n; 1974 1975 /* This is correct because Linux defines 1976 * elf_addr_t as Elf32_Off / Elf64_Off 1977 */ 1978 #define NEW_AUX_ENT(id, val) do { \ 1979 put_user_ual(id, u_auxv); u_auxv += n; \ 1980 put_user_ual(val, u_auxv); u_auxv += n; \ 1981 } while(0) 1982 1983 #ifdef ARCH_DLINFO 1984 /* 1985 * ARCH_DLINFO must come first so platform specific code can enforce 1986 * special alignment requirements on the AUXV if necessary (eg. PPC). 1987 */ 1988 ARCH_DLINFO; 1989 #endif 1990 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1991 * on info->auxv_len will trigger. 1992 */ 1993 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1994 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1995 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1996 if ((info->alignment & ~qemu_host_page_mask) != 0) { 1997 /* Target doesn't support host page size alignment */ 1998 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1999 } else { 2000 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2001 qemu_host_page_size))); 2002 } 2003 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2004 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2005 NEW_AUX_ENT(AT_ENTRY, info->entry); 2006 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2007 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2008 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2009 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2010 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2011 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2012 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2013 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2014 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2015 2016 #ifdef ELF_HWCAP2 2017 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2018 #endif 2019 2020 if (u_platform) { 2021 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2022 } 2023 NEW_AUX_ENT (AT_NULL, 0); 2024 #undef NEW_AUX_ENT 2025 2026 /* Check that our initial calculation of the auxv length matches how much 2027 * we actually put into it. 2028 */ 2029 assert(info->auxv_len == u_auxv - info->saved_auxv); 2030 2031 put_user_ual(argc, u_argc); 2032 2033 p = info->arg_strings; 2034 for (i = 0; i < argc; ++i) { 2035 put_user_ual(p, u_argv); 2036 u_argv += n; 2037 p += target_strlen(p) + 1; 2038 } 2039 put_user_ual(0, u_argv); 2040 2041 p = info->env_strings; 2042 for (i = 0; i < envc; ++i) { 2043 put_user_ual(p, u_envp); 2044 u_envp += n; 2045 p += target_strlen(p) + 1; 2046 } 2047 put_user_ual(0, u_envp); 2048 2049 return sp; 2050 } 2051 2052 #ifndef ARM_COMMPAGE 2053 #define ARM_COMMPAGE 0 2054 #define init_guest_commpage() true 2055 #endif 2056 2057 static void pgb_fail_in_use(const char *image_name) 2058 { 2059 error_report("%s: requires virtual address space that is in use " 2060 "(omit the -B option or choose a different value)", 2061 image_name); 2062 exit(EXIT_FAILURE); 2063 } 2064 2065 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2066 abi_ulong guest_hiaddr, long align) 2067 { 2068 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2069 void *addr, *test; 2070 2071 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2072 fprintf(stderr, "Requested guest base 0x%lx does not satisfy " 2073 "host minimum alignment (0x%lx)\n", 2074 guest_base, align); 2075 exit(EXIT_FAILURE); 2076 } 2077 2078 /* Sanity check the guest binary. */ 2079 if (reserved_va) { 2080 if (guest_hiaddr > reserved_va) { 2081 error_report("%s: requires more than reserved virtual " 2082 "address space (0x%" PRIx64 " > 0x%lx)", 2083 image_name, (uint64_t)guest_hiaddr, reserved_va); 2084 exit(EXIT_FAILURE); 2085 } 2086 } else { 2087 #if HOST_LONG_BITS < TARGET_ABI_BITS 2088 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2089 error_report("%s: requires more virtual address space " 2090 "than the host can provide (0x%" PRIx64 ")", 2091 image_name, (uint64_t)guest_hiaddr - guest_base); 2092 exit(EXIT_FAILURE); 2093 } 2094 #endif 2095 } 2096 2097 /* 2098 * Expand the allocation to the entire reserved_va. 2099 * Exclude the mmap_min_addr hole. 2100 */ 2101 if (reserved_va) { 2102 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2103 : mmap_min_addr - guest_base); 2104 guest_hiaddr = reserved_va; 2105 } 2106 2107 /* Reserve the address space for the binary, or reserved_va. */ 2108 test = g2h(guest_loaddr); 2109 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2110 if (test != addr) { 2111 pgb_fail_in_use(image_name); 2112 } 2113 } 2114 2115 /** 2116 * pgd_find_hole_fallback: potential mmap address 2117 * @guest_size: size of available space 2118 * @brk: location of break 2119 * @align: memory alignment 2120 * 2121 * This is a fallback method for finding a hole in the host address 2122 * space if we don't have the benefit of being able to access 2123 * /proc/self/map. It can potentially take a very long time as we can 2124 * only dumbly iterate up the host address space seeing if the 2125 * allocation would work. 2126 */ 2127 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2128 long align, uintptr_t offset) 2129 { 2130 uintptr_t base; 2131 2132 /* Start (aligned) at the bottom and work our way up */ 2133 base = ROUND_UP(mmap_min_addr, align); 2134 2135 while (true) { 2136 uintptr_t align_start, end; 2137 align_start = ROUND_UP(base, align); 2138 end = align_start + guest_size + offset; 2139 2140 /* if brk is anywhere in the range give ourselves some room to grow. */ 2141 if (align_start <= brk && brk < end) { 2142 base = brk + (16 * MiB); 2143 continue; 2144 } else if (align_start + guest_size < align_start) { 2145 /* we have run out of space */ 2146 return -1; 2147 } else { 2148 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2149 MAP_FIXED_NOREPLACE; 2150 void * mmap_start = mmap((void *) align_start, guest_size, 2151 PROT_NONE, flags, -1, 0); 2152 if (mmap_start != MAP_FAILED) { 2153 munmap((void *) align_start, guest_size); 2154 if (MAP_FIXED_NOREPLACE || mmap_start == (void *) align_start) { 2155 return (uintptr_t) mmap_start + offset; 2156 } 2157 } 2158 base += qemu_host_page_size; 2159 } 2160 } 2161 } 2162 2163 /* Return value for guest_base, or -1 if no hole found. */ 2164 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2165 long align, uintptr_t offset) 2166 { 2167 GSList *maps, *iter; 2168 uintptr_t this_start, this_end, next_start, brk; 2169 intptr_t ret = -1; 2170 2171 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2172 2173 maps = read_self_maps(); 2174 2175 /* Read brk after we've read the maps, which will malloc. */ 2176 brk = (uintptr_t)sbrk(0); 2177 2178 if (!maps) { 2179 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2180 } 2181 2182 /* The first hole is before the first map entry. */ 2183 this_start = mmap_min_addr; 2184 2185 for (iter = maps; iter; 2186 this_start = next_start, iter = g_slist_next(iter)) { 2187 uintptr_t align_start, hole_size; 2188 2189 this_end = ((MapInfo *)iter->data)->start; 2190 next_start = ((MapInfo *)iter->data)->end; 2191 align_start = ROUND_UP(this_start + offset, align); 2192 2193 /* Skip holes that are too small. */ 2194 if (align_start >= this_end) { 2195 continue; 2196 } 2197 hole_size = this_end - align_start; 2198 if (hole_size < guest_size) { 2199 continue; 2200 } 2201 2202 /* If this hole contains brk, give ourselves some room to grow. */ 2203 if (this_start <= brk && brk < this_end) { 2204 hole_size -= guest_size; 2205 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2206 align_start += 1 * GiB; 2207 } else if (hole_size >= 16 * MiB) { 2208 align_start += 16 * MiB; 2209 } else { 2210 align_start = (this_end - guest_size) & -align; 2211 if (align_start < this_start) { 2212 continue; 2213 } 2214 } 2215 } 2216 2217 /* Record the lowest successful match. */ 2218 if (ret < 0) { 2219 ret = align_start - guest_loaddr; 2220 } 2221 /* If this hole contains the identity map, select it. */ 2222 if (align_start <= guest_loaddr && 2223 guest_loaddr + guest_size <= this_end) { 2224 ret = 0; 2225 } 2226 /* If this hole ends above the identity map, stop looking. */ 2227 if (this_end >= guest_loaddr) { 2228 break; 2229 } 2230 } 2231 free_self_maps(maps); 2232 2233 return ret; 2234 } 2235 2236 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2237 abi_ulong orig_hiaddr, long align) 2238 { 2239 uintptr_t loaddr = orig_loaddr; 2240 uintptr_t hiaddr = orig_hiaddr; 2241 uintptr_t offset = 0; 2242 uintptr_t addr; 2243 2244 if (hiaddr != orig_hiaddr) { 2245 error_report("%s: requires virtual address space that the " 2246 "host cannot provide (0x%" PRIx64 ")", 2247 image_name, (uint64_t)orig_hiaddr); 2248 exit(EXIT_FAILURE); 2249 } 2250 2251 loaddr &= -align; 2252 if (ARM_COMMPAGE) { 2253 /* 2254 * Extend the allocation to include the commpage. 2255 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2256 * need to ensure there is space bellow the guest_base so we 2257 * can map the commpage in the place needed when the address 2258 * arithmetic wraps around. 2259 */ 2260 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2261 hiaddr = (uintptr_t) 4 << 30; 2262 } else { 2263 offset = -(ARM_COMMPAGE & -align); 2264 } 2265 } 2266 2267 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2268 if (addr == -1) { 2269 /* 2270 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation 2271 * that can satisfy both. But as the normal arm32 link base address 2272 * is ~32k, and we extend down to include the commpage, making the 2273 * overhead only ~96k, this is unlikely. 2274 */ 2275 error_report("%s: Unable to allocate %#zx bytes of " 2276 "virtual address space", image_name, 2277 (size_t)(hiaddr - loaddr)); 2278 exit(EXIT_FAILURE); 2279 } 2280 2281 guest_base = addr; 2282 } 2283 2284 static void pgb_dynamic(const char *image_name, long align) 2285 { 2286 /* 2287 * The executable is dynamic and does not require a fixed address. 2288 * All we need is a commpage that satisfies align. 2289 * If we do not need a commpage, leave guest_base == 0. 2290 */ 2291 if (ARM_COMMPAGE) { 2292 uintptr_t addr, commpage; 2293 2294 /* 64-bit hosts should have used reserved_va. */ 2295 assert(sizeof(uintptr_t) == 4); 2296 2297 /* 2298 * By putting the commpage at the first hole, that puts guest_base 2299 * just above that, and maximises the positive guest addresses. 2300 */ 2301 commpage = ARM_COMMPAGE & -align; 2302 addr = pgb_find_hole(commpage, -commpage, align, 0); 2303 assert(addr != -1); 2304 guest_base = addr; 2305 } 2306 } 2307 2308 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2309 abi_ulong guest_hiaddr, long align) 2310 { 2311 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2312 void *addr, *test; 2313 2314 if (guest_hiaddr > reserved_va) { 2315 error_report("%s: requires more than reserved virtual " 2316 "address space (0x%" PRIx64 " > 0x%lx)", 2317 image_name, (uint64_t)guest_hiaddr, reserved_va); 2318 exit(EXIT_FAILURE); 2319 } 2320 2321 /* Widen the "image" to the entire reserved address space. */ 2322 pgb_static(image_name, 0, reserved_va, align); 2323 2324 /* osdep.h defines this as 0 if it's missing */ 2325 flags |= MAP_FIXED_NOREPLACE; 2326 2327 /* Reserve the memory on the host. */ 2328 assert(guest_base != 0); 2329 test = g2h(0); 2330 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2331 if (addr == MAP_FAILED) { 2332 error_report("Unable to reserve 0x%lx bytes of virtual address " 2333 "space (%s) for use as guest address space (check your " 2334 "virtual memory ulimit setting or reserve less " 2335 "using -R option)", reserved_va, strerror(errno)); 2336 exit(EXIT_FAILURE); 2337 } 2338 assert(addr == test); 2339 } 2340 2341 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2342 abi_ulong guest_hiaddr) 2343 { 2344 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2345 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2346 2347 if (have_guest_base) { 2348 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2349 } else if (reserved_va) { 2350 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2351 } else if (guest_loaddr) { 2352 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2353 } else { 2354 pgb_dynamic(image_name, align); 2355 } 2356 2357 /* Reserve and initialize the commpage. */ 2358 if (!init_guest_commpage()) { 2359 /* 2360 * With have_guest_base, the user has selected the address and 2361 * we are trying to work with that. Otherwise, we have selected 2362 * free space and init_guest_commpage must succeeded. 2363 */ 2364 assert(have_guest_base); 2365 pgb_fail_in_use(image_name); 2366 } 2367 2368 assert(QEMU_IS_ALIGNED(guest_base, align)); 2369 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2370 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2371 } 2372 2373 /* Load an ELF image into the address space. 2374 2375 IMAGE_NAME is the filename of the image, to use in error messages. 2376 IMAGE_FD is the open file descriptor for the image. 2377 2378 BPRM_BUF is a copy of the beginning of the file; this of course 2379 contains the elf file header at offset 0. It is assumed that this 2380 buffer is sufficiently aligned to present no problems to the host 2381 in accessing data at aligned offsets within the buffer. 2382 2383 On return: INFO values will be filled in, as necessary or available. */ 2384 2385 static void load_elf_image(const char *image_name, int image_fd, 2386 struct image_info *info, char **pinterp_name, 2387 char bprm_buf[BPRM_BUF_SIZE]) 2388 { 2389 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2390 struct elf_phdr *phdr; 2391 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2392 int i, retval; 2393 const char *errmsg; 2394 2395 /* First of all, some simple consistency checks */ 2396 errmsg = "Invalid ELF image for this architecture"; 2397 if (!elf_check_ident(ehdr)) { 2398 goto exit_errmsg; 2399 } 2400 bswap_ehdr(ehdr); 2401 if (!elf_check_ehdr(ehdr)) { 2402 goto exit_errmsg; 2403 } 2404 2405 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2406 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2407 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2408 } else { 2409 phdr = (struct elf_phdr *) alloca(i); 2410 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2411 if (retval != i) { 2412 goto exit_read; 2413 } 2414 } 2415 bswap_phdr(phdr, ehdr->e_phnum); 2416 2417 info->nsegs = 0; 2418 info->pt_dynamic_addr = 0; 2419 2420 mmap_lock(); 2421 2422 /* Find the maximum size of the image and allocate an appropriate 2423 amount of memory to handle that. */ 2424 loaddr = -1, hiaddr = 0; 2425 info->alignment = 0; 2426 for (i = 0; i < ehdr->e_phnum; ++i) { 2427 if (phdr[i].p_type == PT_LOAD) { 2428 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2429 if (a < loaddr) { 2430 loaddr = a; 2431 } 2432 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2433 if (a > hiaddr) { 2434 hiaddr = a; 2435 } 2436 ++info->nsegs; 2437 info->alignment |= phdr[i].p_align; 2438 } 2439 } 2440 2441 if (pinterp_name != NULL) { 2442 /* 2443 * This is the main executable. 2444 * 2445 * Reserve extra space for brk. 2446 * We hold on to this space while placing the interpreter 2447 * and the stack, lest they be placed immediately after 2448 * the data segment and block allocation from the brk. 2449 * 2450 * 16MB is chosen as "large enough" without being so large 2451 * as to allow the result to not fit with a 32-bit guest on 2452 * a 32-bit host. 2453 */ 2454 info->reserve_brk = 16 * MiB; 2455 hiaddr += info->reserve_brk; 2456 2457 if (ehdr->e_type == ET_EXEC) { 2458 /* 2459 * Make sure that the low address does not conflict with 2460 * MMAP_MIN_ADDR or the QEMU application itself. 2461 */ 2462 probe_guest_base(image_name, loaddr, hiaddr); 2463 } else { 2464 /* 2465 * The binary is dynamic, but we still need to 2466 * select guest_base. In this case we pass a size. 2467 */ 2468 probe_guest_base(image_name, 0, hiaddr - loaddr); 2469 } 2470 } 2471 2472 /* 2473 * Reserve address space for all of this. 2474 * 2475 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2476 * exactly the address range that is required. 2477 * 2478 * Otherwise this is ET_DYN, and we are searching for a location 2479 * that can hold the memory space required. If the image is 2480 * pre-linked, LOADDR will be non-zero, and the kernel should 2481 * honor that address if it happens to be free. 2482 * 2483 * In both cases, we will overwrite pages in this range with mappings 2484 * from the executable. 2485 */ 2486 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2487 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2488 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2489 -1, 0); 2490 if (load_addr == -1) { 2491 goto exit_perror; 2492 } 2493 load_bias = load_addr - loaddr; 2494 2495 if (elf_is_fdpic(ehdr)) { 2496 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2497 g_malloc(sizeof(*loadsegs) * info->nsegs); 2498 2499 for (i = 0; i < ehdr->e_phnum; ++i) { 2500 switch (phdr[i].p_type) { 2501 case PT_DYNAMIC: 2502 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2503 break; 2504 case PT_LOAD: 2505 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2506 loadsegs->p_vaddr = phdr[i].p_vaddr; 2507 loadsegs->p_memsz = phdr[i].p_memsz; 2508 ++loadsegs; 2509 break; 2510 } 2511 } 2512 } 2513 2514 info->load_bias = load_bias; 2515 info->code_offset = load_bias; 2516 info->data_offset = load_bias; 2517 info->load_addr = load_addr; 2518 info->entry = ehdr->e_entry + load_bias; 2519 info->start_code = -1; 2520 info->end_code = 0; 2521 info->start_data = -1; 2522 info->end_data = 0; 2523 info->brk = 0; 2524 info->elf_flags = ehdr->e_flags; 2525 2526 for (i = 0; i < ehdr->e_phnum; i++) { 2527 struct elf_phdr *eppnt = phdr + i; 2528 if (eppnt->p_type == PT_LOAD) { 2529 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2530 int elf_prot = 0; 2531 2532 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2533 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2534 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2535 2536 vaddr = load_bias + eppnt->p_vaddr; 2537 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2538 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2539 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2540 2541 /* 2542 * Some segments may be completely empty without any backing file 2543 * segment, in that case just let zero_bss allocate an empty buffer 2544 * for it. 2545 */ 2546 if (eppnt->p_filesz != 0) { 2547 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2548 MAP_PRIVATE | MAP_FIXED, 2549 image_fd, eppnt->p_offset - vaddr_po); 2550 2551 if (error == -1) { 2552 goto exit_perror; 2553 } 2554 } 2555 2556 vaddr_ef = vaddr + eppnt->p_filesz; 2557 vaddr_em = vaddr + eppnt->p_memsz; 2558 2559 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2560 if (vaddr_ef < vaddr_em) { 2561 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2562 } 2563 2564 /* Find the full program boundaries. */ 2565 if (elf_prot & PROT_EXEC) { 2566 if (vaddr < info->start_code) { 2567 info->start_code = vaddr; 2568 } 2569 if (vaddr_ef > info->end_code) { 2570 info->end_code = vaddr_ef; 2571 } 2572 } 2573 if (elf_prot & PROT_WRITE) { 2574 if (vaddr < info->start_data) { 2575 info->start_data = vaddr; 2576 } 2577 if (vaddr_ef > info->end_data) { 2578 info->end_data = vaddr_ef; 2579 } 2580 if (vaddr_em > info->brk) { 2581 info->brk = vaddr_em; 2582 } 2583 } 2584 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2585 char *interp_name; 2586 2587 if (*pinterp_name) { 2588 errmsg = "Multiple PT_INTERP entries"; 2589 goto exit_errmsg; 2590 } 2591 interp_name = malloc(eppnt->p_filesz); 2592 if (!interp_name) { 2593 goto exit_perror; 2594 } 2595 2596 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2597 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2598 eppnt->p_filesz); 2599 } else { 2600 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2601 eppnt->p_offset); 2602 if (retval != eppnt->p_filesz) { 2603 goto exit_perror; 2604 } 2605 } 2606 if (interp_name[eppnt->p_filesz - 1] != 0) { 2607 errmsg = "Invalid PT_INTERP entry"; 2608 goto exit_errmsg; 2609 } 2610 *pinterp_name = interp_name; 2611 #ifdef TARGET_MIPS 2612 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2613 Mips_elf_abiflags_v0 abiflags; 2614 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2615 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2616 goto exit_errmsg; 2617 } 2618 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2619 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2620 sizeof(Mips_elf_abiflags_v0)); 2621 } else { 2622 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2623 eppnt->p_offset); 2624 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2625 goto exit_perror; 2626 } 2627 } 2628 bswap_mips_abiflags(&abiflags); 2629 info->fp_abi = abiflags.fp_abi; 2630 #endif 2631 } 2632 } 2633 2634 if (info->end_data == 0) { 2635 info->start_data = info->end_code; 2636 info->end_data = info->end_code; 2637 info->brk = info->end_code; 2638 } 2639 2640 if (qemu_log_enabled()) { 2641 load_symbols(ehdr, image_fd, load_bias); 2642 } 2643 2644 mmap_unlock(); 2645 2646 close(image_fd); 2647 return; 2648 2649 exit_read: 2650 if (retval >= 0) { 2651 errmsg = "Incomplete read of file header"; 2652 goto exit_errmsg; 2653 } 2654 exit_perror: 2655 errmsg = strerror(errno); 2656 exit_errmsg: 2657 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2658 exit(-1); 2659 } 2660 2661 static void load_elf_interp(const char *filename, struct image_info *info, 2662 char bprm_buf[BPRM_BUF_SIZE]) 2663 { 2664 int fd, retval; 2665 2666 fd = open(path(filename), O_RDONLY); 2667 if (fd < 0) { 2668 goto exit_perror; 2669 } 2670 2671 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2672 if (retval < 0) { 2673 goto exit_perror; 2674 } 2675 if (retval < BPRM_BUF_SIZE) { 2676 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2677 } 2678 2679 load_elf_image(filename, fd, info, NULL, bprm_buf); 2680 return; 2681 2682 exit_perror: 2683 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2684 exit(-1); 2685 } 2686 2687 static int symfind(const void *s0, const void *s1) 2688 { 2689 target_ulong addr = *(target_ulong *)s0; 2690 struct elf_sym *sym = (struct elf_sym *)s1; 2691 int result = 0; 2692 if (addr < sym->st_value) { 2693 result = -1; 2694 } else if (addr >= sym->st_value + sym->st_size) { 2695 result = 1; 2696 } 2697 return result; 2698 } 2699 2700 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2701 { 2702 #if ELF_CLASS == ELFCLASS32 2703 struct elf_sym *syms = s->disas_symtab.elf32; 2704 #else 2705 struct elf_sym *syms = s->disas_symtab.elf64; 2706 #endif 2707 2708 // binary search 2709 struct elf_sym *sym; 2710 2711 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2712 if (sym != NULL) { 2713 return s->disas_strtab + sym->st_name; 2714 } 2715 2716 return ""; 2717 } 2718 2719 /* FIXME: This should use elf_ops.h */ 2720 static int symcmp(const void *s0, const void *s1) 2721 { 2722 struct elf_sym *sym0 = (struct elf_sym *)s0; 2723 struct elf_sym *sym1 = (struct elf_sym *)s1; 2724 return (sym0->st_value < sym1->st_value) 2725 ? -1 2726 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2727 } 2728 2729 /* Best attempt to load symbols from this ELF object. */ 2730 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2731 { 2732 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2733 uint64_t segsz; 2734 struct elf_shdr *shdr; 2735 char *strings = NULL; 2736 struct syminfo *s = NULL; 2737 struct elf_sym *new_syms, *syms = NULL; 2738 2739 shnum = hdr->e_shnum; 2740 i = shnum * sizeof(struct elf_shdr); 2741 shdr = (struct elf_shdr *)alloca(i); 2742 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2743 return; 2744 } 2745 2746 bswap_shdr(shdr, shnum); 2747 for (i = 0; i < shnum; ++i) { 2748 if (shdr[i].sh_type == SHT_SYMTAB) { 2749 sym_idx = i; 2750 str_idx = shdr[i].sh_link; 2751 goto found; 2752 } 2753 } 2754 2755 /* There will be no symbol table if the file was stripped. */ 2756 return; 2757 2758 found: 2759 /* Now know where the strtab and symtab are. Snarf them. */ 2760 s = g_try_new(struct syminfo, 1); 2761 if (!s) { 2762 goto give_up; 2763 } 2764 2765 segsz = shdr[str_idx].sh_size; 2766 s->disas_strtab = strings = g_try_malloc(segsz); 2767 if (!strings || 2768 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2769 goto give_up; 2770 } 2771 2772 segsz = shdr[sym_idx].sh_size; 2773 syms = g_try_malloc(segsz); 2774 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2775 goto give_up; 2776 } 2777 2778 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2779 /* Implausibly large symbol table: give up rather than ploughing 2780 * on with the number of symbols calculation overflowing 2781 */ 2782 goto give_up; 2783 } 2784 nsyms = segsz / sizeof(struct elf_sym); 2785 for (i = 0; i < nsyms; ) { 2786 bswap_sym(syms + i); 2787 /* Throw away entries which we do not need. */ 2788 if (syms[i].st_shndx == SHN_UNDEF 2789 || syms[i].st_shndx >= SHN_LORESERVE 2790 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2791 if (i < --nsyms) { 2792 syms[i] = syms[nsyms]; 2793 } 2794 } else { 2795 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2796 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2797 syms[i].st_value &= ~(target_ulong)1; 2798 #endif 2799 syms[i].st_value += load_bias; 2800 i++; 2801 } 2802 } 2803 2804 /* No "useful" symbol. */ 2805 if (nsyms == 0) { 2806 goto give_up; 2807 } 2808 2809 /* Attempt to free the storage associated with the local symbols 2810 that we threw away. Whether or not this has any effect on the 2811 memory allocation depends on the malloc implementation and how 2812 many symbols we managed to discard. */ 2813 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2814 if (new_syms == NULL) { 2815 goto give_up; 2816 } 2817 syms = new_syms; 2818 2819 qsort(syms, nsyms, sizeof(*syms), symcmp); 2820 2821 s->disas_num_syms = nsyms; 2822 #if ELF_CLASS == ELFCLASS32 2823 s->disas_symtab.elf32 = syms; 2824 #else 2825 s->disas_symtab.elf64 = syms; 2826 #endif 2827 s->lookup_symbol = lookup_symbolxx; 2828 s->next = syminfos; 2829 syminfos = s; 2830 2831 return; 2832 2833 give_up: 2834 g_free(s); 2835 g_free(strings); 2836 g_free(syms); 2837 } 2838 2839 uint32_t get_elf_eflags(int fd) 2840 { 2841 struct elfhdr ehdr; 2842 off_t offset; 2843 int ret; 2844 2845 /* Read ELF header */ 2846 offset = lseek(fd, 0, SEEK_SET); 2847 if (offset == (off_t) -1) { 2848 return 0; 2849 } 2850 ret = read(fd, &ehdr, sizeof(ehdr)); 2851 if (ret < sizeof(ehdr)) { 2852 return 0; 2853 } 2854 offset = lseek(fd, offset, SEEK_SET); 2855 if (offset == (off_t) -1) { 2856 return 0; 2857 } 2858 2859 /* Check ELF signature */ 2860 if (!elf_check_ident(&ehdr)) { 2861 return 0; 2862 } 2863 2864 /* check header */ 2865 bswap_ehdr(&ehdr); 2866 if (!elf_check_ehdr(&ehdr)) { 2867 return 0; 2868 } 2869 2870 /* return architecture id */ 2871 return ehdr.e_flags; 2872 } 2873 2874 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2875 { 2876 struct image_info interp_info; 2877 struct elfhdr elf_ex; 2878 char *elf_interpreter = NULL; 2879 char *scratch; 2880 2881 memset(&interp_info, 0, sizeof(interp_info)); 2882 #ifdef TARGET_MIPS 2883 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 2884 #endif 2885 2886 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2887 2888 load_elf_image(bprm->filename, bprm->fd, info, 2889 &elf_interpreter, bprm->buf); 2890 2891 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2892 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2893 when we load the interpreter. */ 2894 elf_ex = *(struct elfhdr *)bprm->buf; 2895 2896 /* Do this so that we can load the interpreter, if need be. We will 2897 change some of these later */ 2898 bprm->p = setup_arg_pages(bprm, info); 2899 2900 scratch = g_new0(char, TARGET_PAGE_SIZE); 2901 if (STACK_GROWS_DOWN) { 2902 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2903 bprm->p, info->stack_limit); 2904 info->file_string = bprm->p; 2905 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2906 bprm->p, info->stack_limit); 2907 info->env_strings = bprm->p; 2908 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2909 bprm->p, info->stack_limit); 2910 info->arg_strings = bprm->p; 2911 } else { 2912 info->arg_strings = bprm->p; 2913 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2914 bprm->p, info->stack_limit); 2915 info->env_strings = bprm->p; 2916 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2917 bprm->p, info->stack_limit); 2918 info->file_string = bprm->p; 2919 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2920 bprm->p, info->stack_limit); 2921 } 2922 2923 g_free(scratch); 2924 2925 if (!bprm->p) { 2926 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2927 exit(-1); 2928 } 2929 2930 if (elf_interpreter) { 2931 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2932 2933 /* If the program interpreter is one of these two, then assume 2934 an iBCS2 image. Otherwise assume a native linux image. */ 2935 2936 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2937 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2938 info->personality = PER_SVR4; 2939 2940 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2941 and some applications "depend" upon this behavior. Since 2942 we do not have the power to recompile these, we emulate 2943 the SVr4 behavior. Sigh. */ 2944 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2945 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2946 } 2947 #ifdef TARGET_MIPS 2948 info->interp_fp_abi = interp_info.fp_abi; 2949 #endif 2950 } 2951 2952 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2953 info, (elf_interpreter ? &interp_info : NULL)); 2954 info->start_stack = bprm->p; 2955 2956 /* If we have an interpreter, set that as the program's entry point. 2957 Copy the load_bias as well, to help PPC64 interpret the entry 2958 point as a function descriptor. Do this after creating elf tables 2959 so that we copy the original program entry point into the AUXV. */ 2960 if (elf_interpreter) { 2961 info->load_bias = interp_info.load_bias; 2962 info->entry = interp_info.entry; 2963 free(elf_interpreter); 2964 } 2965 2966 #ifdef USE_ELF_CORE_DUMP 2967 bprm->core_dump = &elf_core_dump; 2968 #endif 2969 2970 /* 2971 * If we reserved extra space for brk, release it now. 2972 * The implementation of do_brk in syscalls.c expects to be able 2973 * to mmap pages in this space. 2974 */ 2975 if (info->reserve_brk) { 2976 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 2977 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 2978 target_munmap(start_brk, end_brk - start_brk); 2979 } 2980 2981 return 0; 2982 } 2983 2984 #ifdef USE_ELF_CORE_DUMP 2985 /* 2986 * Definitions to generate Intel SVR4-like core files. 2987 * These mostly have the same names as the SVR4 types with "target_elf_" 2988 * tacked on the front to prevent clashes with linux definitions, 2989 * and the typedef forms have been avoided. This is mostly like 2990 * the SVR4 structure, but more Linuxy, with things that Linux does 2991 * not support and which gdb doesn't really use excluded. 2992 * 2993 * Fields we don't dump (their contents is zero) in linux-user qemu 2994 * are marked with XXX. 2995 * 2996 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2997 * 2998 * Porting ELF coredump for target is (quite) simple process. First you 2999 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3000 * the target resides): 3001 * 3002 * #define USE_ELF_CORE_DUMP 3003 * 3004 * Next you define type of register set used for dumping. ELF specification 3005 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3006 * 3007 * typedef <target_regtype> target_elf_greg_t; 3008 * #define ELF_NREG <number of registers> 3009 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3010 * 3011 * Last step is to implement target specific function that copies registers 3012 * from given cpu into just specified register set. Prototype is: 3013 * 3014 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3015 * const CPUArchState *env); 3016 * 3017 * Parameters: 3018 * regs - copy register values into here (allocated and zeroed by caller) 3019 * env - copy registers from here 3020 * 3021 * Example for ARM target is provided in this file. 3022 */ 3023 3024 /* An ELF note in memory */ 3025 struct memelfnote { 3026 const char *name; 3027 size_t namesz; 3028 size_t namesz_rounded; 3029 int type; 3030 size_t datasz; 3031 size_t datasz_rounded; 3032 void *data; 3033 size_t notesz; 3034 }; 3035 3036 struct target_elf_siginfo { 3037 abi_int si_signo; /* signal number */ 3038 abi_int si_code; /* extra code */ 3039 abi_int si_errno; /* errno */ 3040 }; 3041 3042 struct target_elf_prstatus { 3043 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3044 abi_short pr_cursig; /* Current signal */ 3045 abi_ulong pr_sigpend; /* XXX */ 3046 abi_ulong pr_sighold; /* XXX */ 3047 target_pid_t pr_pid; 3048 target_pid_t pr_ppid; 3049 target_pid_t pr_pgrp; 3050 target_pid_t pr_sid; 3051 struct target_timeval pr_utime; /* XXX User time */ 3052 struct target_timeval pr_stime; /* XXX System time */ 3053 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3054 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3055 target_elf_gregset_t pr_reg; /* GP registers */ 3056 abi_int pr_fpvalid; /* XXX */ 3057 }; 3058 3059 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3060 3061 struct target_elf_prpsinfo { 3062 char pr_state; /* numeric process state */ 3063 char pr_sname; /* char for pr_state */ 3064 char pr_zomb; /* zombie */ 3065 char pr_nice; /* nice val */ 3066 abi_ulong pr_flag; /* flags */ 3067 target_uid_t pr_uid; 3068 target_gid_t pr_gid; 3069 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3070 /* Lots missing */ 3071 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3072 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3073 }; 3074 3075 /* Here is the structure in which status of each thread is captured. */ 3076 struct elf_thread_status { 3077 QTAILQ_ENTRY(elf_thread_status) ets_link; 3078 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3079 #if 0 3080 elf_fpregset_t fpu; /* NT_PRFPREG */ 3081 struct task_struct *thread; 3082 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3083 #endif 3084 struct memelfnote notes[1]; 3085 int num_notes; 3086 }; 3087 3088 struct elf_note_info { 3089 struct memelfnote *notes; 3090 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3091 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3092 3093 QTAILQ_HEAD(, elf_thread_status) thread_list; 3094 #if 0 3095 /* 3096 * Current version of ELF coredump doesn't support 3097 * dumping fp regs etc. 3098 */ 3099 elf_fpregset_t *fpu; 3100 elf_fpxregset_t *xfpu; 3101 int thread_status_size; 3102 #endif 3103 int notes_size; 3104 int numnote; 3105 }; 3106 3107 struct vm_area_struct { 3108 target_ulong vma_start; /* start vaddr of memory region */ 3109 target_ulong vma_end; /* end vaddr of memory region */ 3110 abi_ulong vma_flags; /* protection etc. flags for the region */ 3111 QTAILQ_ENTRY(vm_area_struct) vma_link; 3112 }; 3113 3114 struct mm_struct { 3115 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3116 int mm_count; /* number of mappings */ 3117 }; 3118 3119 static struct mm_struct *vma_init(void); 3120 static void vma_delete(struct mm_struct *); 3121 static int vma_add_mapping(struct mm_struct *, target_ulong, 3122 target_ulong, abi_ulong); 3123 static int vma_get_mapping_count(const struct mm_struct *); 3124 static struct vm_area_struct *vma_first(const struct mm_struct *); 3125 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3126 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3127 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3128 unsigned long flags); 3129 3130 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3131 static void fill_note(struct memelfnote *, const char *, int, 3132 unsigned int, void *); 3133 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3134 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3135 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3136 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3137 static size_t note_size(const struct memelfnote *); 3138 static void free_note_info(struct elf_note_info *); 3139 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3140 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3141 static int core_dump_filename(const TaskState *, char *, size_t); 3142 3143 static int dump_write(int, const void *, size_t); 3144 static int write_note(struct memelfnote *, int); 3145 static int write_note_info(struct elf_note_info *, int); 3146 3147 #ifdef BSWAP_NEEDED 3148 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3149 { 3150 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3151 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3152 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3153 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3154 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3155 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3156 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3157 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3158 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3159 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3160 /* cpu times are not filled, so we skip them */ 3161 /* regs should be in correct format already */ 3162 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3163 } 3164 3165 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3166 { 3167 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3168 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3169 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3170 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3171 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3172 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3173 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3174 } 3175 3176 static void bswap_note(struct elf_note *en) 3177 { 3178 bswap32s(&en->n_namesz); 3179 bswap32s(&en->n_descsz); 3180 bswap32s(&en->n_type); 3181 } 3182 #else 3183 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3184 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3185 static inline void bswap_note(struct elf_note *en) { } 3186 #endif /* BSWAP_NEEDED */ 3187 3188 /* 3189 * Minimal support for linux memory regions. These are needed 3190 * when we are finding out what memory exactly belongs to 3191 * emulated process. No locks needed here, as long as 3192 * thread that received the signal is stopped. 3193 */ 3194 3195 static struct mm_struct *vma_init(void) 3196 { 3197 struct mm_struct *mm; 3198 3199 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3200 return (NULL); 3201 3202 mm->mm_count = 0; 3203 QTAILQ_INIT(&mm->mm_mmap); 3204 3205 return (mm); 3206 } 3207 3208 static void vma_delete(struct mm_struct *mm) 3209 { 3210 struct vm_area_struct *vma; 3211 3212 while ((vma = vma_first(mm)) != NULL) { 3213 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3214 g_free(vma); 3215 } 3216 g_free(mm); 3217 } 3218 3219 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3220 target_ulong end, abi_ulong flags) 3221 { 3222 struct vm_area_struct *vma; 3223 3224 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3225 return (-1); 3226 3227 vma->vma_start = start; 3228 vma->vma_end = end; 3229 vma->vma_flags = flags; 3230 3231 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3232 mm->mm_count++; 3233 3234 return (0); 3235 } 3236 3237 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3238 { 3239 return (QTAILQ_FIRST(&mm->mm_mmap)); 3240 } 3241 3242 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3243 { 3244 return (QTAILQ_NEXT(vma, vma_link)); 3245 } 3246 3247 static int vma_get_mapping_count(const struct mm_struct *mm) 3248 { 3249 return (mm->mm_count); 3250 } 3251 3252 /* 3253 * Calculate file (dump) size of given memory region. 3254 */ 3255 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3256 { 3257 /* if we cannot even read the first page, skip it */ 3258 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3259 return (0); 3260 3261 /* 3262 * Usually we don't dump executable pages as they contain 3263 * non-writable code that debugger can read directly from 3264 * target library etc. However, thread stacks are marked 3265 * also executable so we read in first page of given region 3266 * and check whether it contains elf header. If there is 3267 * no elf header, we dump it. 3268 */ 3269 if (vma->vma_flags & PROT_EXEC) { 3270 char page[TARGET_PAGE_SIZE]; 3271 3272 copy_from_user(page, vma->vma_start, sizeof (page)); 3273 if ((page[EI_MAG0] == ELFMAG0) && 3274 (page[EI_MAG1] == ELFMAG1) && 3275 (page[EI_MAG2] == ELFMAG2) && 3276 (page[EI_MAG3] == ELFMAG3)) { 3277 /* 3278 * Mappings are possibly from ELF binary. Don't dump 3279 * them. 3280 */ 3281 return (0); 3282 } 3283 } 3284 3285 return (vma->vma_end - vma->vma_start); 3286 } 3287 3288 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3289 unsigned long flags) 3290 { 3291 struct mm_struct *mm = (struct mm_struct *)priv; 3292 3293 vma_add_mapping(mm, start, end, flags); 3294 return (0); 3295 } 3296 3297 static void fill_note(struct memelfnote *note, const char *name, int type, 3298 unsigned int sz, void *data) 3299 { 3300 unsigned int namesz; 3301 3302 namesz = strlen(name) + 1; 3303 note->name = name; 3304 note->namesz = namesz; 3305 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3306 note->type = type; 3307 note->datasz = sz; 3308 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3309 3310 note->data = data; 3311 3312 /* 3313 * We calculate rounded up note size here as specified by 3314 * ELF document. 3315 */ 3316 note->notesz = sizeof (struct elf_note) + 3317 note->namesz_rounded + note->datasz_rounded; 3318 } 3319 3320 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3321 uint32_t flags) 3322 { 3323 (void) memset(elf, 0, sizeof(*elf)); 3324 3325 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3326 elf->e_ident[EI_CLASS] = ELF_CLASS; 3327 elf->e_ident[EI_DATA] = ELF_DATA; 3328 elf->e_ident[EI_VERSION] = EV_CURRENT; 3329 elf->e_ident[EI_OSABI] = ELF_OSABI; 3330 3331 elf->e_type = ET_CORE; 3332 elf->e_machine = machine; 3333 elf->e_version = EV_CURRENT; 3334 elf->e_phoff = sizeof(struct elfhdr); 3335 elf->e_flags = flags; 3336 elf->e_ehsize = sizeof(struct elfhdr); 3337 elf->e_phentsize = sizeof(struct elf_phdr); 3338 elf->e_phnum = segs; 3339 3340 bswap_ehdr(elf); 3341 } 3342 3343 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3344 { 3345 phdr->p_type = PT_NOTE; 3346 phdr->p_offset = offset; 3347 phdr->p_vaddr = 0; 3348 phdr->p_paddr = 0; 3349 phdr->p_filesz = sz; 3350 phdr->p_memsz = 0; 3351 phdr->p_flags = 0; 3352 phdr->p_align = 0; 3353 3354 bswap_phdr(phdr, 1); 3355 } 3356 3357 static size_t note_size(const struct memelfnote *note) 3358 { 3359 return (note->notesz); 3360 } 3361 3362 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3363 const TaskState *ts, int signr) 3364 { 3365 (void) memset(prstatus, 0, sizeof (*prstatus)); 3366 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3367 prstatus->pr_pid = ts->ts_tid; 3368 prstatus->pr_ppid = getppid(); 3369 prstatus->pr_pgrp = getpgrp(); 3370 prstatus->pr_sid = getsid(0); 3371 3372 bswap_prstatus(prstatus); 3373 } 3374 3375 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3376 { 3377 char *base_filename; 3378 unsigned int i, len; 3379 3380 (void) memset(psinfo, 0, sizeof (*psinfo)); 3381 3382 len = ts->info->arg_end - ts->info->arg_start; 3383 if (len >= ELF_PRARGSZ) 3384 len = ELF_PRARGSZ - 1; 3385 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3386 return -EFAULT; 3387 for (i = 0; i < len; i++) 3388 if (psinfo->pr_psargs[i] == 0) 3389 psinfo->pr_psargs[i] = ' '; 3390 psinfo->pr_psargs[len] = 0; 3391 3392 psinfo->pr_pid = getpid(); 3393 psinfo->pr_ppid = getppid(); 3394 psinfo->pr_pgrp = getpgrp(); 3395 psinfo->pr_sid = getsid(0); 3396 psinfo->pr_uid = getuid(); 3397 psinfo->pr_gid = getgid(); 3398 3399 base_filename = g_path_get_basename(ts->bprm->filename); 3400 /* 3401 * Using strncpy here is fine: at max-length, 3402 * this field is not NUL-terminated. 3403 */ 3404 (void) strncpy(psinfo->pr_fname, base_filename, 3405 sizeof(psinfo->pr_fname)); 3406 3407 g_free(base_filename); 3408 bswap_psinfo(psinfo); 3409 return (0); 3410 } 3411 3412 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3413 { 3414 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3415 elf_addr_t orig_auxv = auxv; 3416 void *ptr; 3417 int len = ts->info->auxv_len; 3418 3419 /* 3420 * Auxiliary vector is stored in target process stack. It contains 3421 * {type, value} pairs that we need to dump into note. This is not 3422 * strictly necessary but we do it here for sake of completeness. 3423 */ 3424 3425 /* read in whole auxv vector and copy it to memelfnote */ 3426 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3427 if (ptr != NULL) { 3428 fill_note(note, "CORE", NT_AUXV, len, ptr); 3429 unlock_user(ptr, auxv, len); 3430 } 3431 } 3432 3433 /* 3434 * Constructs name of coredump file. We have following convention 3435 * for the name: 3436 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3437 * 3438 * Returns 0 in case of success, -1 otherwise (errno is set). 3439 */ 3440 static int core_dump_filename(const TaskState *ts, char *buf, 3441 size_t bufsize) 3442 { 3443 char timestamp[64]; 3444 char *base_filename = NULL; 3445 struct timeval tv; 3446 struct tm tm; 3447 3448 assert(bufsize >= PATH_MAX); 3449 3450 if (gettimeofday(&tv, NULL) < 0) { 3451 (void) fprintf(stderr, "unable to get current timestamp: %s", 3452 strerror(errno)); 3453 return (-1); 3454 } 3455 3456 base_filename = g_path_get_basename(ts->bprm->filename); 3457 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3458 localtime_r(&tv.tv_sec, &tm)); 3459 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3460 base_filename, timestamp, (int)getpid()); 3461 g_free(base_filename); 3462 3463 return (0); 3464 } 3465 3466 static int dump_write(int fd, const void *ptr, size_t size) 3467 { 3468 const char *bufp = (const char *)ptr; 3469 ssize_t bytes_written, bytes_left; 3470 struct rlimit dumpsize; 3471 off_t pos; 3472 3473 bytes_written = 0; 3474 getrlimit(RLIMIT_CORE, &dumpsize); 3475 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3476 if (errno == ESPIPE) { /* not a seekable stream */ 3477 bytes_left = size; 3478 } else { 3479 return pos; 3480 } 3481 } else { 3482 if (dumpsize.rlim_cur <= pos) { 3483 return -1; 3484 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3485 bytes_left = size; 3486 } else { 3487 size_t limit_left=dumpsize.rlim_cur - pos; 3488 bytes_left = limit_left >= size ? size : limit_left ; 3489 } 3490 } 3491 3492 /* 3493 * In normal conditions, single write(2) should do but 3494 * in case of socket etc. this mechanism is more portable. 3495 */ 3496 do { 3497 bytes_written = write(fd, bufp, bytes_left); 3498 if (bytes_written < 0) { 3499 if (errno == EINTR) 3500 continue; 3501 return (-1); 3502 } else if (bytes_written == 0) { /* eof */ 3503 return (-1); 3504 } 3505 bufp += bytes_written; 3506 bytes_left -= bytes_written; 3507 } while (bytes_left > 0); 3508 3509 return (0); 3510 } 3511 3512 static int write_note(struct memelfnote *men, int fd) 3513 { 3514 struct elf_note en; 3515 3516 en.n_namesz = men->namesz; 3517 en.n_type = men->type; 3518 en.n_descsz = men->datasz; 3519 3520 bswap_note(&en); 3521 3522 if (dump_write(fd, &en, sizeof(en)) != 0) 3523 return (-1); 3524 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3525 return (-1); 3526 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3527 return (-1); 3528 3529 return (0); 3530 } 3531 3532 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3533 { 3534 CPUState *cpu = env_cpu((CPUArchState *)env); 3535 TaskState *ts = (TaskState *)cpu->opaque; 3536 struct elf_thread_status *ets; 3537 3538 ets = g_malloc0(sizeof (*ets)); 3539 ets->num_notes = 1; /* only prstatus is dumped */ 3540 fill_prstatus(&ets->prstatus, ts, 0); 3541 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3542 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3543 &ets->prstatus); 3544 3545 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3546 3547 info->notes_size += note_size(&ets->notes[0]); 3548 } 3549 3550 static void init_note_info(struct elf_note_info *info) 3551 { 3552 /* Initialize the elf_note_info structure so that it is at 3553 * least safe to call free_note_info() on it. Must be 3554 * called before calling fill_note_info(). 3555 */ 3556 memset(info, 0, sizeof (*info)); 3557 QTAILQ_INIT(&info->thread_list); 3558 } 3559 3560 static int fill_note_info(struct elf_note_info *info, 3561 long signr, const CPUArchState *env) 3562 { 3563 #define NUMNOTES 3 3564 CPUState *cpu = env_cpu((CPUArchState *)env); 3565 TaskState *ts = (TaskState *)cpu->opaque; 3566 int i; 3567 3568 info->notes = g_new0(struct memelfnote, NUMNOTES); 3569 if (info->notes == NULL) 3570 return (-ENOMEM); 3571 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3572 if (info->prstatus == NULL) 3573 return (-ENOMEM); 3574 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3575 if (info->prstatus == NULL) 3576 return (-ENOMEM); 3577 3578 /* 3579 * First fill in status (and registers) of current thread 3580 * including process info & aux vector. 3581 */ 3582 fill_prstatus(info->prstatus, ts, signr); 3583 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3584 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3585 sizeof (*info->prstatus), info->prstatus); 3586 fill_psinfo(info->psinfo, ts); 3587 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3588 sizeof (*info->psinfo), info->psinfo); 3589 fill_auxv_note(&info->notes[2], ts); 3590 info->numnote = 3; 3591 3592 info->notes_size = 0; 3593 for (i = 0; i < info->numnote; i++) 3594 info->notes_size += note_size(&info->notes[i]); 3595 3596 /* read and fill status of all threads */ 3597 cpu_list_lock(); 3598 CPU_FOREACH(cpu) { 3599 if (cpu == thread_cpu) { 3600 continue; 3601 } 3602 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3603 } 3604 cpu_list_unlock(); 3605 3606 return (0); 3607 } 3608 3609 static void free_note_info(struct elf_note_info *info) 3610 { 3611 struct elf_thread_status *ets; 3612 3613 while (!QTAILQ_EMPTY(&info->thread_list)) { 3614 ets = QTAILQ_FIRST(&info->thread_list); 3615 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3616 g_free(ets); 3617 } 3618 3619 g_free(info->prstatus); 3620 g_free(info->psinfo); 3621 g_free(info->notes); 3622 } 3623 3624 static int write_note_info(struct elf_note_info *info, int fd) 3625 { 3626 struct elf_thread_status *ets; 3627 int i, error = 0; 3628 3629 /* write prstatus, psinfo and auxv for current thread */ 3630 for (i = 0; i < info->numnote; i++) 3631 if ((error = write_note(&info->notes[i], fd)) != 0) 3632 return (error); 3633 3634 /* write prstatus for each thread */ 3635 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3636 if ((error = write_note(&ets->notes[0], fd)) != 0) 3637 return (error); 3638 } 3639 3640 return (0); 3641 } 3642 3643 /* 3644 * Write out ELF coredump. 3645 * 3646 * See documentation of ELF object file format in: 3647 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3648 * 3649 * Coredump format in linux is following: 3650 * 3651 * 0 +----------------------+ \ 3652 * | ELF header | ET_CORE | 3653 * +----------------------+ | 3654 * | ELF program headers | |--- headers 3655 * | - NOTE section | | 3656 * | - PT_LOAD sections | | 3657 * +----------------------+ / 3658 * | NOTEs: | 3659 * | - NT_PRSTATUS | 3660 * | - NT_PRSINFO | 3661 * | - NT_AUXV | 3662 * +----------------------+ <-- aligned to target page 3663 * | Process memory dump | 3664 * : : 3665 * . . 3666 * : : 3667 * | | 3668 * +----------------------+ 3669 * 3670 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3671 * NT_PRSINFO -> struct elf_prpsinfo 3672 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3673 * 3674 * Format follows System V format as close as possible. Current 3675 * version limitations are as follows: 3676 * - no floating point registers are dumped 3677 * 3678 * Function returns 0 in case of success, negative errno otherwise. 3679 * 3680 * TODO: make this work also during runtime: it should be 3681 * possible to force coredump from running process and then 3682 * continue processing. For example qemu could set up SIGUSR2 3683 * handler (provided that target process haven't registered 3684 * handler for that) that does the dump when signal is received. 3685 */ 3686 static int elf_core_dump(int signr, const CPUArchState *env) 3687 { 3688 const CPUState *cpu = env_cpu((CPUArchState *)env); 3689 const TaskState *ts = (const TaskState *)cpu->opaque; 3690 struct vm_area_struct *vma = NULL; 3691 char corefile[PATH_MAX]; 3692 struct elf_note_info info; 3693 struct elfhdr elf; 3694 struct elf_phdr phdr; 3695 struct rlimit dumpsize; 3696 struct mm_struct *mm = NULL; 3697 off_t offset = 0, data_offset = 0; 3698 int segs = 0; 3699 int fd = -1; 3700 3701 init_note_info(&info); 3702 3703 errno = 0; 3704 getrlimit(RLIMIT_CORE, &dumpsize); 3705 if (dumpsize.rlim_cur == 0) 3706 return 0; 3707 3708 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3709 return (-errno); 3710 3711 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3712 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3713 return (-errno); 3714 3715 /* 3716 * Walk through target process memory mappings and 3717 * set up structure containing this information. After 3718 * this point vma_xxx functions can be used. 3719 */ 3720 if ((mm = vma_init()) == NULL) 3721 goto out; 3722 3723 walk_memory_regions(mm, vma_walker); 3724 segs = vma_get_mapping_count(mm); 3725 3726 /* 3727 * Construct valid coredump ELF header. We also 3728 * add one more segment for notes. 3729 */ 3730 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3731 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3732 goto out; 3733 3734 /* fill in the in-memory version of notes */ 3735 if (fill_note_info(&info, signr, env) < 0) 3736 goto out; 3737 3738 offset += sizeof (elf); /* elf header */ 3739 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3740 3741 /* write out notes program header */ 3742 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3743 3744 offset += info.notes_size; 3745 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3746 goto out; 3747 3748 /* 3749 * ELF specification wants data to start at page boundary so 3750 * we align it here. 3751 */ 3752 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3753 3754 /* 3755 * Write program headers for memory regions mapped in 3756 * the target process. 3757 */ 3758 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3759 (void) memset(&phdr, 0, sizeof (phdr)); 3760 3761 phdr.p_type = PT_LOAD; 3762 phdr.p_offset = offset; 3763 phdr.p_vaddr = vma->vma_start; 3764 phdr.p_paddr = 0; 3765 phdr.p_filesz = vma_dump_size(vma); 3766 offset += phdr.p_filesz; 3767 phdr.p_memsz = vma->vma_end - vma->vma_start; 3768 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3769 if (vma->vma_flags & PROT_WRITE) 3770 phdr.p_flags |= PF_W; 3771 if (vma->vma_flags & PROT_EXEC) 3772 phdr.p_flags |= PF_X; 3773 phdr.p_align = ELF_EXEC_PAGESIZE; 3774 3775 bswap_phdr(&phdr, 1); 3776 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3777 goto out; 3778 } 3779 } 3780 3781 /* 3782 * Next we write notes just after program headers. No 3783 * alignment needed here. 3784 */ 3785 if (write_note_info(&info, fd) < 0) 3786 goto out; 3787 3788 /* align data to page boundary */ 3789 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3790 goto out; 3791 3792 /* 3793 * Finally we can dump process memory into corefile as well. 3794 */ 3795 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3796 abi_ulong addr; 3797 abi_ulong end; 3798 3799 end = vma->vma_start + vma_dump_size(vma); 3800 3801 for (addr = vma->vma_start; addr < end; 3802 addr += TARGET_PAGE_SIZE) { 3803 char page[TARGET_PAGE_SIZE]; 3804 int error; 3805 3806 /* 3807 * Read in page from target process memory and 3808 * write it to coredump file. 3809 */ 3810 error = copy_from_user(page, addr, sizeof (page)); 3811 if (error != 0) { 3812 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3813 addr); 3814 errno = -error; 3815 goto out; 3816 } 3817 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3818 goto out; 3819 } 3820 } 3821 3822 out: 3823 free_note_info(&info); 3824 if (mm != NULL) 3825 vma_delete(mm); 3826 (void) close(fd); 3827 3828 if (errno != 0) 3829 return (-errno); 3830 return (0); 3831 } 3832 #endif /* USE_ELF_CORE_DUMP */ 3833 3834 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3835 { 3836 init_thread(regs, infop); 3837 } 3838