xref: /openbmc/qemu/linux-user/elfload.c (revision 136cb9cc)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
25 
26 #ifdef _ARCH_PPC64
27 #undef ARCH_DLINFO
28 #undef ELF_PLATFORM
29 #undef ELF_HWCAP
30 #undef ELF_HWCAP2
31 #undef ELF_CLASS
32 #undef ELF_DATA
33 #undef ELF_ARCH
34 #endif
35 
36 #define ELF_OSABI   ELFOSABI_SYSV
37 
38 /* from personality.h */
39 
40 /*
41  * Flags for bug emulation.
42  *
43  * These occupy the top three bytes.
44  */
45 enum {
46     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
47     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
48                                            descriptors (signal handling) */
49     MMAP_PAGE_ZERO =    0x0100000,
50     ADDR_COMPAT_LAYOUT = 0x0200000,
51     READ_IMPLIES_EXEC = 0x0400000,
52     ADDR_LIMIT_32BIT =  0x0800000,
53     SHORT_INODE =       0x1000000,
54     WHOLE_SECONDS =     0x2000000,
55     STICKY_TIMEOUTS =   0x4000000,
56     ADDR_LIMIT_3GB =    0x8000000,
57 };
58 
59 /*
60  * Personality types.
61  *
62  * These go in the low byte.  Avoid using the top bit, it will
63  * conflict with error returns.
64  */
65 enum {
66     PER_LINUX =         0x0000,
67     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
68     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
69     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
75     PER_BSD =           0x0006,
76     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
77     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78     PER_LINUX32 =       0x0008,
79     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
80     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83     PER_RISCOS =        0x000c,
84     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
85     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
87     PER_HPUX =          0x0010,
88     PER_MASK =          0x00ff,
89 };
90 
91 /*
92  * Return the base personality without flags.
93  */
94 #define personality(pers)       (pers & PER_MASK)
95 
96 int info_is_fdpic(struct image_info *info)
97 {
98     return info->personality == PER_LINUX_FDPIC;
99 }
100 
101 /* this flag is uneffective under linux too, should be deleted */
102 #ifndef MAP_DENYWRITE
103 #define MAP_DENYWRITE 0
104 #endif
105 
106 /* should probably go in elf.h */
107 #ifndef ELIBBAD
108 #define ELIBBAD 80
109 #endif
110 
111 #if TARGET_BIG_ENDIAN
112 #define ELF_DATA        ELFDATA2MSB
113 #else
114 #define ELF_DATA        ELFDATA2LSB
115 #endif
116 
117 #ifdef TARGET_ABI_MIPSN32
118 typedef abi_ullong      target_elf_greg_t;
119 #define tswapreg(ptr)   tswap64(ptr)
120 #else
121 typedef abi_ulong       target_elf_greg_t;
122 #define tswapreg(ptr)   tswapal(ptr)
123 #endif
124 
125 #ifdef USE_UID16
126 typedef abi_ushort      target_uid_t;
127 typedef abi_ushort      target_gid_t;
128 #else
129 typedef abi_uint        target_uid_t;
130 typedef abi_uint        target_gid_t;
131 #endif
132 typedef abi_int         target_pid_t;
133 
134 #ifdef TARGET_I386
135 
136 #define ELF_HWCAP get_elf_hwcap()
137 
138 static uint32_t get_elf_hwcap(void)
139 {
140     X86CPU *cpu = X86_CPU(thread_cpu);
141 
142     return cpu->env.features[FEAT_1_EDX];
143 }
144 
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147 
148 #define ELF_CLASS      ELFCLASS64
149 #define ELF_ARCH       EM_X86_64
150 
151 #define ELF_PLATFORM   "x86_64"
152 
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155     regs->rax = 0;
156     regs->rsp = infop->start_stack;
157     regs->rip = infop->entry;
158 }
159 
160 #define ELF_NREG    27
161 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
162 
163 /*
164  * Note that ELF_NREG should be 29 as there should be place for
165  * TRAPNO and ERR "registers" as well but linux doesn't dump
166  * those.
167  *
168  * See linux kernel: arch/x86/include/asm/elf.h
169  */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172     (*regs)[0] = tswapreg(env->regs[15]);
173     (*regs)[1] = tswapreg(env->regs[14]);
174     (*regs)[2] = tswapreg(env->regs[13]);
175     (*regs)[3] = tswapreg(env->regs[12]);
176     (*regs)[4] = tswapreg(env->regs[R_EBP]);
177     (*regs)[5] = tswapreg(env->regs[R_EBX]);
178     (*regs)[6] = tswapreg(env->regs[11]);
179     (*regs)[7] = tswapreg(env->regs[10]);
180     (*regs)[8] = tswapreg(env->regs[9]);
181     (*regs)[9] = tswapreg(env->regs[8]);
182     (*regs)[10] = tswapreg(env->regs[R_EAX]);
183     (*regs)[11] = tswapreg(env->regs[R_ECX]);
184     (*regs)[12] = tswapreg(env->regs[R_EDX]);
185     (*regs)[13] = tswapreg(env->regs[R_ESI]);
186     (*regs)[14] = tswapreg(env->regs[R_EDI]);
187     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
188     (*regs)[16] = tswapreg(env->eip);
189     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
190     (*regs)[18] = tswapreg(env->eflags);
191     (*regs)[19] = tswapreg(env->regs[R_ESP]);
192     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
193     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
194     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
195     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
196     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
197     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
198     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
199 }
200 
201 #if ULONG_MAX > UINT32_MAX
202 #define INIT_GUEST_COMMPAGE
203 static bool init_guest_commpage(void)
204 {
205     /*
206      * The vsyscall page is at a high negative address aka kernel space,
207      * which means that we cannot actually allocate it with target_mmap.
208      * We still should be able to use page_set_flags, unless the user
209      * has specified -R reserved_va, which would trigger an assert().
210      */
211     if (reserved_va != 0 &&
212         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
213         error_report("Cannot allocate vsyscall page");
214         exit(EXIT_FAILURE);
215     }
216     page_set_flags(TARGET_VSYSCALL_PAGE,
217                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
218                    PAGE_EXEC | PAGE_VALID);
219     return true;
220 }
221 #endif
222 #else
223 
224 #define ELF_START_MMAP 0x80000000
225 
226 /*
227  * This is used to ensure we don't load something for the wrong architecture.
228  */
229 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
230 
231 /*
232  * These are used to set parameters in the core dumps.
233  */
234 #define ELF_CLASS       ELFCLASS32
235 #define ELF_ARCH        EM_386
236 
237 #define ELF_PLATFORM get_elf_platform()
238 #define EXSTACK_DEFAULT true
239 
240 static const char *get_elf_platform(void)
241 {
242     static char elf_platform[] = "i386";
243     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
244     if (family > 6) {
245         family = 6;
246     }
247     if (family >= 3) {
248         elf_platform[1] = '0' + family;
249     }
250     return elf_platform;
251 }
252 
253 static inline void init_thread(struct target_pt_regs *regs,
254                                struct image_info *infop)
255 {
256     regs->esp = infop->start_stack;
257     regs->eip = infop->entry;
258 
259     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
260        starts %edx contains a pointer to a function which might be
261        registered using `atexit'.  This provides a mean for the
262        dynamic linker to call DT_FINI functions for shared libraries
263        that have been loaded before the code runs.
264 
265        A value of 0 tells we have no such handler.  */
266     regs->edx = 0;
267 }
268 
269 #define ELF_NREG    17
270 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
271 
272 /*
273  * Note that ELF_NREG should be 19 as there should be place for
274  * TRAPNO and ERR "registers" as well but linux doesn't dump
275  * those.
276  *
277  * See linux kernel: arch/x86/include/asm/elf.h
278  */
279 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
280 {
281     (*regs)[0] = tswapreg(env->regs[R_EBX]);
282     (*regs)[1] = tswapreg(env->regs[R_ECX]);
283     (*regs)[2] = tswapreg(env->regs[R_EDX]);
284     (*regs)[3] = tswapreg(env->regs[R_ESI]);
285     (*regs)[4] = tswapreg(env->regs[R_EDI]);
286     (*regs)[5] = tswapreg(env->regs[R_EBP]);
287     (*regs)[6] = tswapreg(env->regs[R_EAX]);
288     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
289     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
290     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
291     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
292     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
293     (*regs)[12] = tswapreg(env->eip);
294     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
295     (*regs)[14] = tswapreg(env->eflags);
296     (*regs)[15] = tswapreg(env->regs[R_ESP]);
297     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
298 }
299 #endif
300 
301 #define USE_ELF_CORE_DUMP
302 #define ELF_EXEC_PAGESIZE       4096
303 
304 #endif
305 
306 #ifdef TARGET_ARM
307 
308 #ifndef TARGET_AARCH64
309 /* 32 bit ARM definitions */
310 
311 #define ELF_START_MMAP 0x80000000
312 
313 #define ELF_ARCH        EM_ARM
314 #define ELF_CLASS       ELFCLASS32
315 #define EXSTACK_DEFAULT true
316 
317 static inline void init_thread(struct target_pt_regs *regs,
318                                struct image_info *infop)
319 {
320     abi_long stack = infop->start_stack;
321     memset(regs, 0, sizeof(*regs));
322 
323     regs->uregs[16] = ARM_CPU_MODE_USR;
324     if (infop->entry & 1) {
325         regs->uregs[16] |= CPSR_T;
326     }
327     regs->uregs[15] = infop->entry & 0xfffffffe;
328     regs->uregs[13] = infop->start_stack;
329     /* FIXME - what to for failure of get_user()? */
330     get_user_ual(regs->uregs[2], stack + 8); /* envp */
331     get_user_ual(regs->uregs[1], stack + 4); /* envp */
332     /* XXX: it seems that r0 is zeroed after ! */
333     regs->uregs[0] = 0;
334     /* For uClinux PIC binaries.  */
335     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
336     regs->uregs[10] = infop->start_data;
337 
338     /* Support ARM FDPIC.  */
339     if (info_is_fdpic(infop)) {
340         /* As described in the ABI document, r7 points to the loadmap info
341          * prepared by the kernel. If an interpreter is needed, r8 points
342          * to the interpreter loadmap and r9 points to the interpreter
343          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
344          * r9 points to the main program PT_DYNAMIC info.
345          */
346         regs->uregs[7] = infop->loadmap_addr;
347         if (infop->interpreter_loadmap_addr) {
348             /* Executable is dynamically loaded.  */
349             regs->uregs[8] = infop->interpreter_loadmap_addr;
350             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
351         } else {
352             regs->uregs[8] = 0;
353             regs->uregs[9] = infop->pt_dynamic_addr;
354         }
355     }
356 }
357 
358 #define ELF_NREG    18
359 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
360 
361 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
362 {
363     (*regs)[0] = tswapreg(env->regs[0]);
364     (*regs)[1] = tswapreg(env->regs[1]);
365     (*regs)[2] = tswapreg(env->regs[2]);
366     (*regs)[3] = tswapreg(env->regs[3]);
367     (*regs)[4] = tswapreg(env->regs[4]);
368     (*regs)[5] = tswapreg(env->regs[5]);
369     (*regs)[6] = tswapreg(env->regs[6]);
370     (*regs)[7] = tswapreg(env->regs[7]);
371     (*regs)[8] = tswapreg(env->regs[8]);
372     (*regs)[9] = tswapreg(env->regs[9]);
373     (*regs)[10] = tswapreg(env->regs[10]);
374     (*regs)[11] = tswapreg(env->regs[11]);
375     (*regs)[12] = tswapreg(env->regs[12]);
376     (*regs)[13] = tswapreg(env->regs[13]);
377     (*regs)[14] = tswapreg(env->regs[14]);
378     (*regs)[15] = tswapreg(env->regs[15]);
379 
380     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
381     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
382 }
383 
384 #define USE_ELF_CORE_DUMP
385 #define ELF_EXEC_PAGESIZE       4096
386 
387 enum
388 {
389     ARM_HWCAP_ARM_SWP       = 1 << 0,
390     ARM_HWCAP_ARM_HALF      = 1 << 1,
391     ARM_HWCAP_ARM_THUMB     = 1 << 2,
392     ARM_HWCAP_ARM_26BIT     = 1 << 3,
393     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
394     ARM_HWCAP_ARM_FPA       = 1 << 5,
395     ARM_HWCAP_ARM_VFP       = 1 << 6,
396     ARM_HWCAP_ARM_EDSP      = 1 << 7,
397     ARM_HWCAP_ARM_JAVA      = 1 << 8,
398     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
399     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
400     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
401     ARM_HWCAP_ARM_NEON      = 1 << 12,
402     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
403     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
404     ARM_HWCAP_ARM_TLS       = 1 << 15,
405     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
406     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
407     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
408     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
409     ARM_HWCAP_ARM_LPAE      = 1 << 20,
410     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
411 };
412 
413 enum {
414     ARM_HWCAP2_ARM_AES      = 1 << 0,
415     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
416     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
417     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
418     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
419 };
420 
421 /* The commpage only exists for 32 bit kernels */
422 
423 #define HI_COMMPAGE (intptr_t)0xffff0f00u
424 
425 static bool init_guest_commpage(void)
426 {
427     ARMCPU *cpu = ARM_CPU(thread_cpu);
428     abi_ptr commpage;
429     void *want;
430     void *addr;
431 
432     /*
433      * M-profile allocates maximum of 2GB address space, so can never
434      * allocate the commpage.  Skip it.
435      */
436     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
437         return true;
438     }
439 
440     commpage = HI_COMMPAGE & -qemu_host_page_size;
441     want = g2h_untagged(commpage);
442     addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
443                 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
444 
445     if (addr == MAP_FAILED) {
446         perror("Allocating guest commpage");
447         exit(EXIT_FAILURE);
448     }
449     if (addr != want) {
450         return false;
451     }
452 
453     /* Set kernel helper versions; rest of page is 0.  */
454     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
455 
456     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
457         perror("Protecting guest commpage");
458         exit(EXIT_FAILURE);
459     }
460 
461     page_set_flags(commpage, commpage | ~qemu_host_page_mask,
462                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
463     return true;
464 }
465 
466 #define ELF_HWCAP get_elf_hwcap()
467 #define ELF_HWCAP2 get_elf_hwcap2()
468 
469 static uint32_t get_elf_hwcap(void)
470 {
471     ARMCPU *cpu = ARM_CPU(thread_cpu);
472     uint32_t hwcaps = 0;
473 
474     hwcaps |= ARM_HWCAP_ARM_SWP;
475     hwcaps |= ARM_HWCAP_ARM_HALF;
476     hwcaps |= ARM_HWCAP_ARM_THUMB;
477     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
478 
479     /* probe for the extra features */
480 #define GET_FEATURE(feat, hwcap) \
481     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
482 
483 #define GET_FEATURE_ID(feat, hwcap) \
484     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
485 
486     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
487     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
488     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
489     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
490     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
491     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
492     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
493     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
494     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
495     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
496 
497     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
498         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
499         hwcaps |= ARM_HWCAP_ARM_VFPv3;
500         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
501             hwcaps |= ARM_HWCAP_ARM_VFPD32;
502         } else {
503             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
504         }
505     }
506     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
507 
508     return hwcaps;
509 }
510 
511 static uint32_t get_elf_hwcap2(void)
512 {
513     ARMCPU *cpu = ARM_CPU(thread_cpu);
514     uint32_t hwcaps = 0;
515 
516     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
517     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
518     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
519     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
520     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
521     return hwcaps;
522 }
523 
524 #undef GET_FEATURE
525 #undef GET_FEATURE_ID
526 
527 #define ELF_PLATFORM get_elf_platform()
528 
529 static const char *get_elf_platform(void)
530 {
531     CPUARMState *env = thread_cpu->env_ptr;
532 
533 #if TARGET_BIG_ENDIAN
534 # define END  "b"
535 #else
536 # define END  "l"
537 #endif
538 
539     if (arm_feature(env, ARM_FEATURE_V8)) {
540         return "v8" END;
541     } else if (arm_feature(env, ARM_FEATURE_V7)) {
542         if (arm_feature(env, ARM_FEATURE_M)) {
543             return "v7m" END;
544         } else {
545             return "v7" END;
546         }
547     } else if (arm_feature(env, ARM_FEATURE_V6)) {
548         return "v6" END;
549     } else if (arm_feature(env, ARM_FEATURE_V5)) {
550         return "v5" END;
551     } else {
552         return "v4" END;
553     }
554 
555 #undef END
556 }
557 
558 #else
559 /* 64 bit ARM definitions */
560 #define ELF_START_MMAP 0x80000000
561 
562 #define ELF_ARCH        EM_AARCH64
563 #define ELF_CLASS       ELFCLASS64
564 #if TARGET_BIG_ENDIAN
565 # define ELF_PLATFORM    "aarch64_be"
566 #else
567 # define ELF_PLATFORM    "aarch64"
568 #endif
569 
570 static inline void init_thread(struct target_pt_regs *regs,
571                                struct image_info *infop)
572 {
573     abi_long stack = infop->start_stack;
574     memset(regs, 0, sizeof(*regs));
575 
576     regs->pc = infop->entry & ~0x3ULL;
577     regs->sp = stack;
578 }
579 
580 #define ELF_NREG    34
581 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
582 
583 static void elf_core_copy_regs(target_elf_gregset_t *regs,
584                                const CPUARMState *env)
585 {
586     int i;
587 
588     for (i = 0; i < 32; i++) {
589         (*regs)[i] = tswapreg(env->xregs[i]);
590     }
591     (*regs)[32] = tswapreg(env->pc);
592     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
593 }
594 
595 #define USE_ELF_CORE_DUMP
596 #define ELF_EXEC_PAGESIZE       4096
597 
598 enum {
599     ARM_HWCAP_A64_FP            = 1 << 0,
600     ARM_HWCAP_A64_ASIMD         = 1 << 1,
601     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
602     ARM_HWCAP_A64_AES           = 1 << 3,
603     ARM_HWCAP_A64_PMULL         = 1 << 4,
604     ARM_HWCAP_A64_SHA1          = 1 << 5,
605     ARM_HWCAP_A64_SHA2          = 1 << 6,
606     ARM_HWCAP_A64_CRC32         = 1 << 7,
607     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
608     ARM_HWCAP_A64_FPHP          = 1 << 9,
609     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
610     ARM_HWCAP_A64_CPUID         = 1 << 11,
611     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
612     ARM_HWCAP_A64_JSCVT         = 1 << 13,
613     ARM_HWCAP_A64_FCMA          = 1 << 14,
614     ARM_HWCAP_A64_LRCPC         = 1 << 15,
615     ARM_HWCAP_A64_DCPOP         = 1 << 16,
616     ARM_HWCAP_A64_SHA3          = 1 << 17,
617     ARM_HWCAP_A64_SM3           = 1 << 18,
618     ARM_HWCAP_A64_SM4           = 1 << 19,
619     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
620     ARM_HWCAP_A64_SHA512        = 1 << 21,
621     ARM_HWCAP_A64_SVE           = 1 << 22,
622     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
623     ARM_HWCAP_A64_DIT           = 1 << 24,
624     ARM_HWCAP_A64_USCAT         = 1 << 25,
625     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
626     ARM_HWCAP_A64_FLAGM         = 1 << 27,
627     ARM_HWCAP_A64_SSBS          = 1 << 28,
628     ARM_HWCAP_A64_SB            = 1 << 29,
629     ARM_HWCAP_A64_PACA          = 1 << 30,
630     ARM_HWCAP_A64_PACG          = 1UL << 31,
631 
632     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
633     ARM_HWCAP2_A64_SVE2         = 1 << 1,
634     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
635     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
636     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
637     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
638     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
639     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
640     ARM_HWCAP2_A64_FRINT        = 1 << 8,
641     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
642     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
643     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
644     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
645     ARM_HWCAP2_A64_I8MM         = 1 << 13,
646     ARM_HWCAP2_A64_BF16         = 1 << 14,
647     ARM_HWCAP2_A64_DGH          = 1 << 15,
648     ARM_HWCAP2_A64_RNG          = 1 << 16,
649     ARM_HWCAP2_A64_BTI          = 1 << 17,
650     ARM_HWCAP2_A64_MTE          = 1 << 18,
651     ARM_HWCAP2_A64_ECV          = 1 << 19,
652     ARM_HWCAP2_A64_AFP          = 1 << 20,
653     ARM_HWCAP2_A64_RPRES        = 1 << 21,
654     ARM_HWCAP2_A64_MTE3         = 1 << 22,
655     ARM_HWCAP2_A64_SME          = 1 << 23,
656     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
657     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
658     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
659     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
660     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
661     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
662     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
663 };
664 
665 #define ELF_HWCAP   get_elf_hwcap()
666 #define ELF_HWCAP2  get_elf_hwcap2()
667 
668 #define GET_FEATURE_ID(feat, hwcap) \
669     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
670 
671 static uint32_t get_elf_hwcap(void)
672 {
673     ARMCPU *cpu = ARM_CPU(thread_cpu);
674     uint32_t hwcaps = 0;
675 
676     hwcaps |= ARM_HWCAP_A64_FP;
677     hwcaps |= ARM_HWCAP_A64_ASIMD;
678     hwcaps |= ARM_HWCAP_A64_CPUID;
679 
680     /* probe for the extra features */
681 
682     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
683     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
684     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
685     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
686     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
687     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
688     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
689     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
690     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
691     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
692     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
693     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
694     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
695     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
696     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
697     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
698     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
699     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
700     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
701     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
702     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
703     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
704     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
705 
706     return hwcaps;
707 }
708 
709 static uint32_t get_elf_hwcap2(void)
710 {
711     ARMCPU *cpu = ARM_CPU(thread_cpu);
712     uint32_t hwcaps = 0;
713 
714     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
715     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
716     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
717     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
718     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
719     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
720     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
721     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
722     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
723     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
724     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
725     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
726     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
727     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
728     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
729     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
730     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
731     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
732     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
733                               ARM_HWCAP2_A64_SME_F32F32 |
734                               ARM_HWCAP2_A64_SME_B16F32 |
735                               ARM_HWCAP2_A64_SME_F16F32 |
736                               ARM_HWCAP2_A64_SME_I8I32));
737     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
738     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
739     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
740 
741     return hwcaps;
742 }
743 
744 #undef GET_FEATURE_ID
745 
746 #endif /* not TARGET_AARCH64 */
747 #endif /* TARGET_ARM */
748 
749 #ifdef TARGET_SPARC
750 #ifdef TARGET_SPARC64
751 
752 #define ELF_START_MMAP 0x80000000
753 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
754                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
755 #ifndef TARGET_ABI32
756 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
757 #else
758 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
759 #endif
760 
761 #define ELF_CLASS   ELFCLASS64
762 #define ELF_ARCH    EM_SPARCV9
763 #else
764 #define ELF_START_MMAP 0x80000000
765 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
766                     | HWCAP_SPARC_MULDIV)
767 #define ELF_CLASS   ELFCLASS32
768 #define ELF_ARCH    EM_SPARC
769 #endif /* TARGET_SPARC64 */
770 
771 static inline void init_thread(struct target_pt_regs *regs,
772                                struct image_info *infop)
773 {
774     /* Note that target_cpu_copy_regs does not read psr/tstate. */
775     regs->pc = infop->entry;
776     regs->npc = regs->pc + 4;
777     regs->y = 0;
778     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
779                         - TARGET_STACK_BIAS);
780 }
781 #endif /* TARGET_SPARC */
782 
783 #ifdef TARGET_PPC
784 
785 #define ELF_MACHINE    PPC_ELF_MACHINE
786 #define ELF_START_MMAP 0x80000000
787 
788 #if defined(TARGET_PPC64)
789 
790 #define elf_check_arch(x) ( (x) == EM_PPC64 )
791 
792 #define ELF_CLASS       ELFCLASS64
793 
794 #else
795 
796 #define ELF_CLASS       ELFCLASS32
797 #define EXSTACK_DEFAULT true
798 
799 #endif
800 
801 #define ELF_ARCH        EM_PPC
802 
803 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
804    See arch/powerpc/include/asm/cputable.h.  */
805 enum {
806     QEMU_PPC_FEATURE_32 = 0x80000000,
807     QEMU_PPC_FEATURE_64 = 0x40000000,
808     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
809     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
810     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
811     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
812     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
813     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
814     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
815     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
816     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
817     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
818     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
819     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
820     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
821     QEMU_PPC_FEATURE_CELL = 0x00010000,
822     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
823     QEMU_PPC_FEATURE_SMT = 0x00004000,
824     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
825     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
826     QEMU_PPC_FEATURE_PA6T = 0x00000800,
827     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
828     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
829     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
830     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
831     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
832 
833     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
834     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
835 
836     /* Feature definitions in AT_HWCAP2.  */
837     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
838     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
839     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
840     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
841     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
842     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
843     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
844     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
845     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
846     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
847     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
848     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
849     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
850     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
851     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
852 };
853 
854 #define ELF_HWCAP get_elf_hwcap()
855 
856 static uint32_t get_elf_hwcap(void)
857 {
858     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
859     uint32_t features = 0;
860 
861     /* We don't have to be terribly complete here; the high points are
862        Altivec/FP/SPE support.  Anything else is just a bonus.  */
863 #define GET_FEATURE(flag, feature)                                      \
864     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
865 #define GET_FEATURE2(flags, feature) \
866     do { \
867         if ((cpu->env.insns_flags2 & flags) == flags) { \
868             features |= feature; \
869         } \
870     } while (0)
871     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
872     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
873     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
874     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
875     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
876     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
877     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
878     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
879     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
880     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
881     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
882                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
883                   QEMU_PPC_FEATURE_ARCH_2_06);
884 #undef GET_FEATURE
885 #undef GET_FEATURE2
886 
887     return features;
888 }
889 
890 #define ELF_HWCAP2 get_elf_hwcap2()
891 
892 static uint32_t get_elf_hwcap2(void)
893 {
894     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
895     uint32_t features = 0;
896 
897 #define GET_FEATURE(flag, feature)                                      \
898     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
899 #define GET_FEATURE2(flag, feature)                                      \
900     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
901 
902     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
903     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
904     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
905                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
906                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
907     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
908                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
909     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
910                  QEMU_PPC_FEATURE2_MMA);
911 
912 #undef GET_FEATURE
913 #undef GET_FEATURE2
914 
915     return features;
916 }
917 
918 /*
919  * The requirements here are:
920  * - keep the final alignment of sp (sp & 0xf)
921  * - make sure the 32-bit value at the first 16 byte aligned position of
922  *   AUXV is greater than 16 for glibc compatibility.
923  *   AT_IGNOREPPC is used for that.
924  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
925  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
926  */
927 #define DLINFO_ARCH_ITEMS       5
928 #define ARCH_DLINFO                                     \
929     do {                                                \
930         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
931         /*                                              \
932          * Handle glibc compatibility: these magic entries must \
933          * be at the lowest addresses in the final auxv.        \
934          */                                             \
935         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
936         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
937         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
938         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
939         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
940     } while (0)
941 
942 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
943 {
944     _regs->gpr[1] = infop->start_stack;
945 #if defined(TARGET_PPC64)
946     if (get_ppc64_abi(infop) < 2) {
947         uint64_t val;
948         get_user_u64(val, infop->entry + 8);
949         _regs->gpr[2] = val + infop->load_bias;
950         get_user_u64(val, infop->entry);
951         infop->entry = val + infop->load_bias;
952     } else {
953         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
954     }
955 #endif
956     _regs->nip = infop->entry;
957 }
958 
959 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
960 #define ELF_NREG 48
961 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
962 
963 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
964 {
965     int i;
966     target_ulong ccr = 0;
967 
968     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
969         (*regs)[i] = tswapreg(env->gpr[i]);
970     }
971 
972     (*regs)[32] = tswapreg(env->nip);
973     (*regs)[33] = tswapreg(env->msr);
974     (*regs)[35] = tswapreg(env->ctr);
975     (*regs)[36] = tswapreg(env->lr);
976     (*regs)[37] = tswapreg(cpu_read_xer(env));
977 
978     ccr = ppc_get_cr(env);
979     (*regs)[38] = tswapreg(ccr);
980 }
981 
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE       4096
984 
985 #endif
986 
987 #ifdef TARGET_LOONGARCH64
988 
989 #define ELF_START_MMAP 0x80000000
990 
991 #define ELF_CLASS   ELFCLASS64
992 #define ELF_ARCH    EM_LOONGARCH
993 #define EXSTACK_DEFAULT true
994 
995 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
996 
997 static inline void init_thread(struct target_pt_regs *regs,
998                                struct image_info *infop)
999 {
1000     /*Set crmd PG,DA = 1,0 */
1001     regs->csr.crmd = 2 << 3;
1002     regs->csr.era = infop->entry;
1003     regs->regs[3] = infop->start_stack;
1004 }
1005 
1006 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1007 #define ELF_NREG 45
1008 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1009 
1010 enum {
1011     TARGET_EF_R0 = 0,
1012     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1013     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1014 };
1015 
1016 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1017                                const CPULoongArchState *env)
1018 {
1019     int i;
1020 
1021     (*regs)[TARGET_EF_R0] = 0;
1022 
1023     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1024         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1025     }
1026 
1027     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1028     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1029 }
1030 
1031 #define USE_ELF_CORE_DUMP
1032 #define ELF_EXEC_PAGESIZE        4096
1033 
1034 #define ELF_HWCAP get_elf_hwcap()
1035 
1036 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1037 enum {
1038     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1039     HWCAP_LOONGARCH_LAM      = (1 << 1),
1040     HWCAP_LOONGARCH_UAL      = (1 << 2),
1041     HWCAP_LOONGARCH_FPU      = (1 << 3),
1042     HWCAP_LOONGARCH_LSX      = (1 << 4),
1043     HWCAP_LOONGARCH_LASX     = (1 << 5),
1044     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1045     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1046     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1047     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1048     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1049     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1050     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1051 };
1052 
1053 static uint32_t get_elf_hwcap(void)
1054 {
1055     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1056     uint32_t hwcaps = 0;
1057 
1058     hwcaps |= HWCAP_LOONGARCH_CRC32;
1059 
1060     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1061         hwcaps |= HWCAP_LOONGARCH_UAL;
1062     }
1063 
1064     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1065         hwcaps |= HWCAP_LOONGARCH_FPU;
1066     }
1067 
1068     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1069         hwcaps |= HWCAP_LOONGARCH_LAM;
1070     }
1071 
1072     return hwcaps;
1073 }
1074 
1075 #define ELF_PLATFORM "loongarch"
1076 
1077 #endif /* TARGET_LOONGARCH64 */
1078 
1079 #ifdef TARGET_MIPS
1080 
1081 #define ELF_START_MMAP 0x80000000
1082 
1083 #ifdef TARGET_MIPS64
1084 #define ELF_CLASS   ELFCLASS64
1085 #else
1086 #define ELF_CLASS   ELFCLASS32
1087 #endif
1088 #define ELF_ARCH    EM_MIPS
1089 #define EXSTACK_DEFAULT true
1090 
1091 #ifdef TARGET_ABI_MIPSN32
1092 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1093 #else
1094 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1095 #endif
1096 
1097 #define ELF_BASE_PLATFORM get_elf_base_platform()
1098 
1099 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1100     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1101     { return _base_platform; } } while (0)
1102 
1103 static const char *get_elf_base_platform(void)
1104 {
1105     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1106 
1107     /* 64 bit ISAs goes first */
1108     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1109     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1110     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1111     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1112     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1113     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1114     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1115 
1116     /* 32 bit ISAs */
1117     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1118     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1119     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1120     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1121     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1122 
1123     /* Fallback */
1124     return "mips";
1125 }
1126 #undef MATCH_PLATFORM_INSN
1127 
1128 static inline void init_thread(struct target_pt_regs *regs,
1129                                struct image_info *infop)
1130 {
1131     regs->cp0_status = 2 << CP0St_KSU;
1132     regs->cp0_epc = infop->entry;
1133     regs->regs[29] = infop->start_stack;
1134 }
1135 
1136 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1137 #define ELF_NREG 45
1138 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1139 
1140 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1141 enum {
1142 #ifdef TARGET_MIPS64
1143     TARGET_EF_R0 = 0,
1144 #else
1145     TARGET_EF_R0 = 6,
1146 #endif
1147     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1148     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1149     TARGET_EF_LO = TARGET_EF_R0 + 32,
1150     TARGET_EF_HI = TARGET_EF_R0 + 33,
1151     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1152     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1153     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1154     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1155 };
1156 
1157 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1158 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1159 {
1160     int i;
1161 
1162     for (i = 0; i < TARGET_EF_R0; i++) {
1163         (*regs)[i] = 0;
1164     }
1165     (*regs)[TARGET_EF_R0] = 0;
1166 
1167     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1168         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1169     }
1170 
1171     (*regs)[TARGET_EF_R26] = 0;
1172     (*regs)[TARGET_EF_R27] = 0;
1173     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1174     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1175     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1176     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1177     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1178     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1179 }
1180 
1181 #define USE_ELF_CORE_DUMP
1182 #define ELF_EXEC_PAGESIZE        4096
1183 
1184 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1185 enum {
1186     HWCAP_MIPS_R6           = (1 << 0),
1187     HWCAP_MIPS_MSA          = (1 << 1),
1188     HWCAP_MIPS_CRC32        = (1 << 2),
1189     HWCAP_MIPS_MIPS16       = (1 << 3),
1190     HWCAP_MIPS_MDMX         = (1 << 4),
1191     HWCAP_MIPS_MIPS3D       = (1 << 5),
1192     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1193     HWCAP_MIPS_DSP          = (1 << 7),
1194     HWCAP_MIPS_DSP2         = (1 << 8),
1195     HWCAP_MIPS_DSP3         = (1 << 9),
1196     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1197     HWCAP_LOONGSON_MMI      = (1 << 11),
1198     HWCAP_LOONGSON_EXT      = (1 << 12),
1199     HWCAP_LOONGSON_EXT2     = (1 << 13),
1200     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1201 };
1202 
1203 #define ELF_HWCAP get_elf_hwcap()
1204 
1205 #define GET_FEATURE_INSN(_flag, _hwcap) \
1206     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1207 
1208 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1209     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1210 
1211 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1212     do { \
1213         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1214             hwcaps |= _hwcap; \
1215         } \
1216     } while (0)
1217 
1218 static uint32_t get_elf_hwcap(void)
1219 {
1220     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1221     uint32_t hwcaps = 0;
1222 
1223     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1224                         2, HWCAP_MIPS_R6);
1225     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1226     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1227     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1228 
1229     return hwcaps;
1230 }
1231 
1232 #undef GET_FEATURE_REG_EQU
1233 #undef GET_FEATURE_REG_SET
1234 #undef GET_FEATURE_INSN
1235 
1236 #endif /* TARGET_MIPS */
1237 
1238 #ifdef TARGET_MICROBLAZE
1239 
1240 #define ELF_START_MMAP 0x80000000
1241 
1242 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1243 
1244 #define ELF_CLASS   ELFCLASS32
1245 #define ELF_ARCH    EM_MICROBLAZE
1246 
1247 static inline void init_thread(struct target_pt_regs *regs,
1248                                struct image_info *infop)
1249 {
1250     regs->pc = infop->entry;
1251     regs->r1 = infop->start_stack;
1252 
1253 }
1254 
1255 #define ELF_EXEC_PAGESIZE        4096
1256 
1257 #define USE_ELF_CORE_DUMP
1258 #define ELF_NREG 38
1259 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1260 
1261 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1262 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1263 {
1264     int i, pos = 0;
1265 
1266     for (i = 0; i < 32; i++) {
1267         (*regs)[pos++] = tswapreg(env->regs[i]);
1268     }
1269 
1270     (*regs)[pos++] = tswapreg(env->pc);
1271     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1272     (*regs)[pos++] = 0;
1273     (*regs)[pos++] = tswapreg(env->ear);
1274     (*regs)[pos++] = 0;
1275     (*regs)[pos++] = tswapreg(env->esr);
1276 }
1277 
1278 #endif /* TARGET_MICROBLAZE */
1279 
1280 #ifdef TARGET_NIOS2
1281 
1282 #define ELF_START_MMAP 0x80000000
1283 
1284 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1285 
1286 #define ELF_CLASS   ELFCLASS32
1287 #define ELF_ARCH    EM_ALTERA_NIOS2
1288 
1289 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1290 {
1291     regs->ea = infop->entry;
1292     regs->sp = infop->start_stack;
1293 }
1294 
1295 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1296 
1297 static bool init_guest_commpage(void)
1298 {
1299     static const uint8_t kuser_page[4 + 2 * 64] = {
1300         /* __kuser_helper_version */
1301         [0x00] = 0x02, 0x00, 0x00, 0x00,
1302 
1303         /* __kuser_cmpxchg */
1304         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1305                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1306 
1307         /* __kuser_sigtramp */
1308         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1309                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1310     };
1311 
1312     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1313     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1314                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1315 
1316     if (addr == MAP_FAILED) {
1317         perror("Allocating guest commpage");
1318         exit(EXIT_FAILURE);
1319     }
1320     if (addr != want) {
1321         return false;
1322     }
1323 
1324     memcpy(addr, kuser_page, sizeof(kuser_page));
1325 
1326     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1327         perror("Protecting guest commpage");
1328         exit(EXIT_FAILURE);
1329     }
1330 
1331     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1332                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1333     return true;
1334 }
1335 
1336 #define ELF_EXEC_PAGESIZE        4096
1337 
1338 #define USE_ELF_CORE_DUMP
1339 #define ELF_NREG 49
1340 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1341 
1342 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1343 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1344                                const CPUNios2State *env)
1345 {
1346     int i;
1347 
1348     (*regs)[0] = -1;
1349     for (i = 1; i < 8; i++)    /* r0-r7 */
1350         (*regs)[i] = tswapreg(env->regs[i + 7]);
1351 
1352     for (i = 8; i < 16; i++)   /* r8-r15 */
1353         (*regs)[i] = tswapreg(env->regs[i - 8]);
1354 
1355     for (i = 16; i < 24; i++)  /* r16-r23 */
1356         (*regs)[i] = tswapreg(env->regs[i + 7]);
1357     (*regs)[24] = -1;    /* R_ET */
1358     (*regs)[25] = -1;    /* R_BT */
1359     (*regs)[26] = tswapreg(env->regs[R_GP]);
1360     (*regs)[27] = tswapreg(env->regs[R_SP]);
1361     (*regs)[28] = tswapreg(env->regs[R_FP]);
1362     (*regs)[29] = tswapreg(env->regs[R_EA]);
1363     (*regs)[30] = -1;    /* R_SSTATUS */
1364     (*regs)[31] = tswapreg(env->regs[R_RA]);
1365 
1366     (*regs)[32] = tswapreg(env->pc);
1367 
1368     (*regs)[33] = -1; /* R_STATUS */
1369     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1370 
1371     for (i = 35; i < 49; i++)    /* ... */
1372         (*regs)[i] = -1;
1373 }
1374 
1375 #endif /* TARGET_NIOS2 */
1376 
1377 #ifdef TARGET_OPENRISC
1378 
1379 #define ELF_START_MMAP 0x08000000
1380 
1381 #define ELF_ARCH EM_OPENRISC
1382 #define ELF_CLASS ELFCLASS32
1383 #define ELF_DATA  ELFDATA2MSB
1384 
1385 static inline void init_thread(struct target_pt_regs *regs,
1386                                struct image_info *infop)
1387 {
1388     regs->pc = infop->entry;
1389     regs->gpr[1] = infop->start_stack;
1390 }
1391 
1392 #define USE_ELF_CORE_DUMP
1393 #define ELF_EXEC_PAGESIZE 8192
1394 
1395 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1396 #define ELF_NREG 34 /* gprs and pc, sr */
1397 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1398 
1399 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1400                                const CPUOpenRISCState *env)
1401 {
1402     int i;
1403 
1404     for (i = 0; i < 32; i++) {
1405         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1406     }
1407     (*regs)[32] = tswapreg(env->pc);
1408     (*regs)[33] = tswapreg(cpu_get_sr(env));
1409 }
1410 #define ELF_HWCAP 0
1411 #define ELF_PLATFORM NULL
1412 
1413 #endif /* TARGET_OPENRISC */
1414 
1415 #ifdef TARGET_SH4
1416 
1417 #define ELF_START_MMAP 0x80000000
1418 
1419 #define ELF_CLASS ELFCLASS32
1420 #define ELF_ARCH  EM_SH
1421 
1422 static inline void init_thread(struct target_pt_regs *regs,
1423                                struct image_info *infop)
1424 {
1425     /* Check other registers XXXXX */
1426     regs->pc = infop->entry;
1427     regs->regs[15] = infop->start_stack;
1428 }
1429 
1430 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1431 #define ELF_NREG 23
1432 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1433 
1434 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1435 enum {
1436     TARGET_REG_PC = 16,
1437     TARGET_REG_PR = 17,
1438     TARGET_REG_SR = 18,
1439     TARGET_REG_GBR = 19,
1440     TARGET_REG_MACH = 20,
1441     TARGET_REG_MACL = 21,
1442     TARGET_REG_SYSCALL = 22
1443 };
1444 
1445 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1446                                       const CPUSH4State *env)
1447 {
1448     int i;
1449 
1450     for (i = 0; i < 16; i++) {
1451         (*regs)[i] = tswapreg(env->gregs[i]);
1452     }
1453 
1454     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1455     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1456     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1457     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1458     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1459     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1460     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1461 }
1462 
1463 #define USE_ELF_CORE_DUMP
1464 #define ELF_EXEC_PAGESIZE        4096
1465 
1466 enum {
1467     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1468     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1469     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1470     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1471     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1472     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1473     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1474     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1475     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1476     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1477 };
1478 
1479 #define ELF_HWCAP get_elf_hwcap()
1480 
1481 static uint32_t get_elf_hwcap(void)
1482 {
1483     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1484     uint32_t hwcap = 0;
1485 
1486     hwcap |= SH_CPU_HAS_FPU;
1487 
1488     if (cpu->env.features & SH_FEATURE_SH4A) {
1489         hwcap |= SH_CPU_HAS_LLSC;
1490     }
1491 
1492     return hwcap;
1493 }
1494 
1495 #endif
1496 
1497 #ifdef TARGET_CRIS
1498 
1499 #define ELF_START_MMAP 0x80000000
1500 
1501 #define ELF_CLASS ELFCLASS32
1502 #define ELF_ARCH  EM_CRIS
1503 
1504 static inline void init_thread(struct target_pt_regs *regs,
1505                                struct image_info *infop)
1506 {
1507     regs->erp = infop->entry;
1508 }
1509 
1510 #define ELF_EXEC_PAGESIZE        8192
1511 
1512 #endif
1513 
1514 #ifdef TARGET_M68K
1515 
1516 #define ELF_START_MMAP 0x80000000
1517 
1518 #define ELF_CLASS       ELFCLASS32
1519 #define ELF_ARCH        EM_68K
1520 
1521 /* ??? Does this need to do anything?
1522    #define ELF_PLAT_INIT(_r) */
1523 
1524 static inline void init_thread(struct target_pt_regs *regs,
1525                                struct image_info *infop)
1526 {
1527     regs->usp = infop->start_stack;
1528     regs->sr = 0;
1529     regs->pc = infop->entry;
1530 }
1531 
1532 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1533 #define ELF_NREG 20
1534 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1535 
1536 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1537 {
1538     (*regs)[0] = tswapreg(env->dregs[1]);
1539     (*regs)[1] = tswapreg(env->dregs[2]);
1540     (*regs)[2] = tswapreg(env->dregs[3]);
1541     (*regs)[3] = tswapreg(env->dregs[4]);
1542     (*regs)[4] = tswapreg(env->dregs[5]);
1543     (*regs)[5] = tswapreg(env->dregs[6]);
1544     (*regs)[6] = tswapreg(env->dregs[7]);
1545     (*regs)[7] = tswapreg(env->aregs[0]);
1546     (*regs)[8] = tswapreg(env->aregs[1]);
1547     (*regs)[9] = tswapreg(env->aregs[2]);
1548     (*regs)[10] = tswapreg(env->aregs[3]);
1549     (*regs)[11] = tswapreg(env->aregs[4]);
1550     (*regs)[12] = tswapreg(env->aregs[5]);
1551     (*regs)[13] = tswapreg(env->aregs[6]);
1552     (*regs)[14] = tswapreg(env->dregs[0]);
1553     (*regs)[15] = tswapreg(env->aregs[7]);
1554     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1555     (*regs)[17] = tswapreg(env->sr);
1556     (*regs)[18] = tswapreg(env->pc);
1557     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1558 }
1559 
1560 #define USE_ELF_CORE_DUMP
1561 #define ELF_EXEC_PAGESIZE       8192
1562 
1563 #endif
1564 
1565 #ifdef TARGET_ALPHA
1566 
1567 #define ELF_START_MMAP (0x30000000000ULL)
1568 
1569 #define ELF_CLASS      ELFCLASS64
1570 #define ELF_ARCH       EM_ALPHA
1571 
1572 static inline void init_thread(struct target_pt_regs *regs,
1573                                struct image_info *infop)
1574 {
1575     regs->pc = infop->entry;
1576     regs->ps = 8;
1577     regs->usp = infop->start_stack;
1578 }
1579 
1580 #define ELF_EXEC_PAGESIZE        8192
1581 
1582 #endif /* TARGET_ALPHA */
1583 
1584 #ifdef TARGET_S390X
1585 
1586 #define ELF_START_MMAP (0x20000000000ULL)
1587 
1588 #define ELF_CLASS	ELFCLASS64
1589 #define ELF_DATA	ELFDATA2MSB
1590 #define ELF_ARCH	EM_S390
1591 
1592 #include "elf.h"
1593 
1594 #define ELF_HWCAP get_elf_hwcap()
1595 
1596 #define GET_FEATURE(_feat, _hwcap) \
1597     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1598 
1599 uint32_t get_elf_hwcap(void)
1600 {
1601     /*
1602      * Let's assume we always have esan3 and zarch.
1603      * 31-bit processes can use 64-bit registers (high gprs).
1604      */
1605     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1606 
1607     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1608     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1609     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1610     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1611     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1612         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1613         hwcap |= HWCAP_S390_ETF3EH;
1614     }
1615     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1616     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1617 
1618     return hwcap;
1619 }
1620 
1621 const char *elf_hwcap_str(uint32_t bit)
1622 {
1623     static const char *hwcap_str[] = {
1624         [HWCAP_S390_NR_ESAN3]     = "esan3",
1625         [HWCAP_S390_NR_ZARCH]     = "zarch",
1626         [HWCAP_S390_NR_STFLE]     = "stfle",
1627         [HWCAP_S390_NR_MSA]       = "msa",
1628         [HWCAP_S390_NR_LDISP]     = "ldisp",
1629         [HWCAP_S390_NR_EIMM]      = "eimm",
1630         [HWCAP_S390_NR_DFP]       = "dfp",
1631         [HWCAP_S390_NR_HPAGE]     = "edat",
1632         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1633         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1634         [HWCAP_S390_NR_TE]        = "te",
1635         [HWCAP_S390_NR_VXRS]      = "vx",
1636         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1637         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1638         [HWCAP_S390_NR_GS]        = "gs",
1639         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1640         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1641         [HWCAP_S390_NR_SORT]      = "sort",
1642         [HWCAP_S390_NR_DFLT]      = "dflt",
1643         [HWCAP_S390_NR_NNPA]      = "nnpa",
1644         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1645         [HWCAP_S390_NR_SIE]       = "sie",
1646     };
1647 
1648     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1649 }
1650 
1651 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1652 {
1653     regs->psw.addr = infop->entry;
1654     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1655                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1656                      PSW_MASK_32;
1657     regs->gprs[15] = infop->start_stack;
1658 }
1659 
1660 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1661 #define ELF_NREG 27
1662 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1663 
1664 enum {
1665     TARGET_REG_PSWM = 0,
1666     TARGET_REG_PSWA = 1,
1667     TARGET_REG_GPRS = 2,
1668     TARGET_REG_ARS = 18,
1669     TARGET_REG_ORIG_R2 = 26,
1670 };
1671 
1672 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1673                                const CPUS390XState *env)
1674 {
1675     int i;
1676     uint32_t *aregs;
1677 
1678     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1679     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1680     for (i = 0; i < 16; i++) {
1681         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1682     }
1683     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1684     for (i = 0; i < 16; i++) {
1685         aregs[i] = tswap32(env->aregs[i]);
1686     }
1687     (*regs)[TARGET_REG_ORIG_R2] = 0;
1688 }
1689 
1690 #define USE_ELF_CORE_DUMP
1691 #define ELF_EXEC_PAGESIZE 4096
1692 
1693 #endif /* TARGET_S390X */
1694 
1695 #ifdef TARGET_RISCV
1696 
1697 #define ELF_START_MMAP 0x80000000
1698 #define ELF_ARCH  EM_RISCV
1699 
1700 #ifdef TARGET_RISCV32
1701 #define ELF_CLASS ELFCLASS32
1702 #else
1703 #define ELF_CLASS ELFCLASS64
1704 #endif
1705 
1706 #define ELF_HWCAP get_elf_hwcap()
1707 
1708 static uint32_t get_elf_hwcap(void)
1709 {
1710 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1711     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1712     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1713                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1714                     | MISA_BIT('V');
1715 
1716     return cpu->env.misa_ext & mask;
1717 #undef MISA_BIT
1718 }
1719 
1720 static inline void init_thread(struct target_pt_regs *regs,
1721                                struct image_info *infop)
1722 {
1723     regs->sepc = infop->entry;
1724     regs->sp = infop->start_stack;
1725 }
1726 
1727 #define ELF_EXEC_PAGESIZE 4096
1728 
1729 #endif /* TARGET_RISCV */
1730 
1731 #ifdef TARGET_HPPA
1732 
1733 #define ELF_START_MMAP  0x80000000
1734 #define ELF_CLASS       ELFCLASS32
1735 #define ELF_ARCH        EM_PARISC
1736 #define ELF_PLATFORM    "PARISC"
1737 #define STACK_GROWS_DOWN 0
1738 #define STACK_ALIGNMENT  64
1739 
1740 static inline void init_thread(struct target_pt_regs *regs,
1741                                struct image_info *infop)
1742 {
1743     regs->iaoq[0] = infop->entry;
1744     regs->iaoq[1] = infop->entry + 4;
1745     regs->gr[23] = 0;
1746     regs->gr[24] = infop->argv;
1747     regs->gr[25] = infop->argc;
1748     /* The top-of-stack contains a linkage buffer.  */
1749     regs->gr[30] = infop->start_stack + 64;
1750     regs->gr[31] = infop->entry;
1751 }
1752 
1753 #define LO_COMMPAGE  0
1754 
1755 static bool init_guest_commpage(void)
1756 {
1757     void *want = g2h_untagged(LO_COMMPAGE);
1758     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1759                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1760 
1761     if (addr == MAP_FAILED) {
1762         perror("Allocating guest commpage");
1763         exit(EXIT_FAILURE);
1764     }
1765     if (addr != want) {
1766         return false;
1767     }
1768 
1769     /*
1770      * On Linux, page zero is normally marked execute only + gateway.
1771      * Normal read or write is supposed to fail (thus PROT_NONE above),
1772      * but specific offsets have kernel code mapped to raise permissions
1773      * and implement syscalls.  Here, simply mark the page executable.
1774      * Special case the entry points during translation (see do_page_zero).
1775      */
1776     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1777                    PAGE_EXEC | PAGE_VALID);
1778     return true;
1779 }
1780 
1781 #endif /* TARGET_HPPA */
1782 
1783 #ifdef TARGET_XTENSA
1784 
1785 #define ELF_START_MMAP 0x20000000
1786 
1787 #define ELF_CLASS       ELFCLASS32
1788 #define ELF_ARCH        EM_XTENSA
1789 
1790 static inline void init_thread(struct target_pt_regs *regs,
1791                                struct image_info *infop)
1792 {
1793     regs->windowbase = 0;
1794     regs->windowstart = 1;
1795     regs->areg[1] = infop->start_stack;
1796     regs->pc = infop->entry;
1797     if (info_is_fdpic(infop)) {
1798         regs->areg[4] = infop->loadmap_addr;
1799         regs->areg[5] = infop->interpreter_loadmap_addr;
1800         if (infop->interpreter_loadmap_addr) {
1801             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1802         } else {
1803             regs->areg[6] = infop->pt_dynamic_addr;
1804         }
1805     }
1806 }
1807 
1808 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1809 #define ELF_NREG 128
1810 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1811 
1812 enum {
1813     TARGET_REG_PC,
1814     TARGET_REG_PS,
1815     TARGET_REG_LBEG,
1816     TARGET_REG_LEND,
1817     TARGET_REG_LCOUNT,
1818     TARGET_REG_SAR,
1819     TARGET_REG_WINDOWSTART,
1820     TARGET_REG_WINDOWBASE,
1821     TARGET_REG_THREADPTR,
1822     TARGET_REG_AR0 = 64,
1823 };
1824 
1825 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1826                                const CPUXtensaState *env)
1827 {
1828     unsigned i;
1829 
1830     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1831     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1832     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1833     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1834     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1835     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1836     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1837     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1838     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1839     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1840     for (i = 0; i < env->config->nareg; ++i) {
1841         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1842     }
1843 }
1844 
1845 #define USE_ELF_CORE_DUMP
1846 #define ELF_EXEC_PAGESIZE       4096
1847 
1848 #endif /* TARGET_XTENSA */
1849 
1850 #ifdef TARGET_HEXAGON
1851 
1852 #define ELF_START_MMAP 0x20000000
1853 
1854 #define ELF_CLASS       ELFCLASS32
1855 #define ELF_ARCH        EM_HEXAGON
1856 
1857 static inline void init_thread(struct target_pt_regs *regs,
1858                                struct image_info *infop)
1859 {
1860     regs->sepc = infop->entry;
1861     regs->sp = infop->start_stack;
1862 }
1863 
1864 #endif /* TARGET_HEXAGON */
1865 
1866 #ifndef ELF_BASE_PLATFORM
1867 #define ELF_BASE_PLATFORM (NULL)
1868 #endif
1869 
1870 #ifndef ELF_PLATFORM
1871 #define ELF_PLATFORM (NULL)
1872 #endif
1873 
1874 #ifndef ELF_MACHINE
1875 #define ELF_MACHINE ELF_ARCH
1876 #endif
1877 
1878 #ifndef elf_check_arch
1879 #define elf_check_arch(x) ((x) == ELF_ARCH)
1880 #endif
1881 
1882 #ifndef elf_check_abi
1883 #define elf_check_abi(x) (1)
1884 #endif
1885 
1886 #ifndef ELF_HWCAP
1887 #define ELF_HWCAP 0
1888 #endif
1889 
1890 #ifndef STACK_GROWS_DOWN
1891 #define STACK_GROWS_DOWN 1
1892 #endif
1893 
1894 #ifndef STACK_ALIGNMENT
1895 #define STACK_ALIGNMENT 16
1896 #endif
1897 
1898 #ifdef TARGET_ABI32
1899 #undef ELF_CLASS
1900 #define ELF_CLASS ELFCLASS32
1901 #undef bswaptls
1902 #define bswaptls(ptr) bswap32s(ptr)
1903 #endif
1904 
1905 #ifndef EXSTACK_DEFAULT
1906 #define EXSTACK_DEFAULT false
1907 #endif
1908 
1909 #include "elf.h"
1910 
1911 /* We must delay the following stanzas until after "elf.h". */
1912 #if defined(TARGET_AARCH64)
1913 
1914 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1915                                     const uint32_t *data,
1916                                     struct image_info *info,
1917                                     Error **errp)
1918 {
1919     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1920         if (pr_datasz != sizeof(uint32_t)) {
1921             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1922             return false;
1923         }
1924         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1925         info->note_flags = *data;
1926     }
1927     return true;
1928 }
1929 #define ARCH_USE_GNU_PROPERTY 1
1930 
1931 #else
1932 
1933 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1934                                     const uint32_t *data,
1935                                     struct image_info *info,
1936                                     Error **errp)
1937 {
1938     g_assert_not_reached();
1939 }
1940 #define ARCH_USE_GNU_PROPERTY 0
1941 
1942 #endif
1943 
1944 struct exec
1945 {
1946     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1947     unsigned int a_text;   /* length of text, in bytes */
1948     unsigned int a_data;   /* length of data, in bytes */
1949     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1950     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1951     unsigned int a_entry;  /* start address */
1952     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1953     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1954 };
1955 
1956 
1957 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1958 #define OMAGIC 0407
1959 #define NMAGIC 0410
1960 #define ZMAGIC 0413
1961 #define QMAGIC 0314
1962 
1963 #define DLINFO_ITEMS 16
1964 
1965 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1966 {
1967     memcpy(to, from, n);
1968 }
1969 
1970 #ifdef BSWAP_NEEDED
1971 static void bswap_ehdr(struct elfhdr *ehdr)
1972 {
1973     bswap16s(&ehdr->e_type);            /* Object file type */
1974     bswap16s(&ehdr->e_machine);         /* Architecture */
1975     bswap32s(&ehdr->e_version);         /* Object file version */
1976     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1977     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1978     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1979     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1980     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1981     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1982     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1983     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1984     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1985     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1986 }
1987 
1988 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1989 {
1990     int i;
1991     for (i = 0; i < phnum; ++i, ++phdr) {
1992         bswap32s(&phdr->p_type);        /* Segment type */
1993         bswap32s(&phdr->p_flags);       /* Segment flags */
1994         bswaptls(&phdr->p_offset);      /* Segment file offset */
1995         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1996         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1997         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1998         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1999         bswaptls(&phdr->p_align);       /* Segment alignment */
2000     }
2001 }
2002 
2003 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2004 {
2005     int i;
2006     for (i = 0; i < shnum; ++i, ++shdr) {
2007         bswap32s(&shdr->sh_name);
2008         bswap32s(&shdr->sh_type);
2009         bswaptls(&shdr->sh_flags);
2010         bswaptls(&shdr->sh_addr);
2011         bswaptls(&shdr->sh_offset);
2012         bswaptls(&shdr->sh_size);
2013         bswap32s(&shdr->sh_link);
2014         bswap32s(&shdr->sh_info);
2015         bswaptls(&shdr->sh_addralign);
2016         bswaptls(&shdr->sh_entsize);
2017     }
2018 }
2019 
2020 static void bswap_sym(struct elf_sym *sym)
2021 {
2022     bswap32s(&sym->st_name);
2023     bswaptls(&sym->st_value);
2024     bswaptls(&sym->st_size);
2025     bswap16s(&sym->st_shndx);
2026 }
2027 
2028 #ifdef TARGET_MIPS
2029 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2030 {
2031     bswap16s(&abiflags->version);
2032     bswap32s(&abiflags->ases);
2033     bswap32s(&abiflags->isa_ext);
2034     bswap32s(&abiflags->flags1);
2035     bswap32s(&abiflags->flags2);
2036 }
2037 #endif
2038 #else
2039 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2040 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2041 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2042 static inline void bswap_sym(struct elf_sym *sym) { }
2043 #ifdef TARGET_MIPS
2044 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2045 #endif
2046 #endif
2047 
2048 #ifdef USE_ELF_CORE_DUMP
2049 static int elf_core_dump(int, const CPUArchState *);
2050 #endif /* USE_ELF_CORE_DUMP */
2051 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2052 
2053 /* Verify the portions of EHDR within E_IDENT for the target.
2054    This can be performed before bswapping the entire header.  */
2055 static bool elf_check_ident(struct elfhdr *ehdr)
2056 {
2057     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2058             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2059             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2060             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2061             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2062             && ehdr->e_ident[EI_DATA] == ELF_DATA
2063             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2064 }
2065 
2066 /* Verify the portions of EHDR outside of E_IDENT for the target.
2067    This has to wait until after bswapping the header.  */
2068 static bool elf_check_ehdr(struct elfhdr *ehdr)
2069 {
2070     return (elf_check_arch(ehdr->e_machine)
2071             && elf_check_abi(ehdr->e_flags)
2072             && ehdr->e_ehsize == sizeof(struct elfhdr)
2073             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2074             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2075 }
2076 
2077 /*
2078  * 'copy_elf_strings()' copies argument/envelope strings from user
2079  * memory to free pages in kernel mem. These are in a format ready
2080  * to be put directly into the top of new user memory.
2081  *
2082  */
2083 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2084                                   abi_ulong p, abi_ulong stack_limit)
2085 {
2086     char *tmp;
2087     int len, i;
2088     abi_ulong top = p;
2089 
2090     if (!p) {
2091         return 0;       /* bullet-proofing */
2092     }
2093 
2094     if (STACK_GROWS_DOWN) {
2095         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2096         for (i = argc - 1; i >= 0; --i) {
2097             tmp = argv[i];
2098             if (!tmp) {
2099                 fprintf(stderr, "VFS: argc is wrong");
2100                 exit(-1);
2101             }
2102             len = strlen(tmp) + 1;
2103             tmp += len;
2104 
2105             if (len > (p - stack_limit)) {
2106                 return 0;
2107             }
2108             while (len) {
2109                 int bytes_to_copy = (len > offset) ? offset : len;
2110                 tmp -= bytes_to_copy;
2111                 p -= bytes_to_copy;
2112                 offset -= bytes_to_copy;
2113                 len -= bytes_to_copy;
2114 
2115                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2116 
2117                 if (offset == 0) {
2118                     memcpy_to_target(p, scratch, top - p);
2119                     top = p;
2120                     offset = TARGET_PAGE_SIZE;
2121                 }
2122             }
2123         }
2124         if (p != top) {
2125             memcpy_to_target(p, scratch + offset, top - p);
2126         }
2127     } else {
2128         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2129         for (i = 0; i < argc; ++i) {
2130             tmp = argv[i];
2131             if (!tmp) {
2132                 fprintf(stderr, "VFS: argc is wrong");
2133                 exit(-1);
2134             }
2135             len = strlen(tmp) + 1;
2136             if (len > (stack_limit - p)) {
2137                 return 0;
2138             }
2139             while (len) {
2140                 int bytes_to_copy = (len > remaining) ? remaining : len;
2141 
2142                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2143 
2144                 tmp += bytes_to_copy;
2145                 remaining -= bytes_to_copy;
2146                 p += bytes_to_copy;
2147                 len -= bytes_to_copy;
2148 
2149                 if (remaining == 0) {
2150                     memcpy_to_target(top, scratch, p - top);
2151                     top = p;
2152                     remaining = TARGET_PAGE_SIZE;
2153                 }
2154             }
2155         }
2156         if (p != top) {
2157             memcpy_to_target(top, scratch, p - top);
2158         }
2159     }
2160 
2161     return p;
2162 }
2163 
2164 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2165  * argument/environment space. Newer kernels (>2.6.33) allow more,
2166  * dependent on stack size, but guarantee at least 32 pages for
2167  * backwards compatibility.
2168  */
2169 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2170 
2171 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2172                                  struct image_info *info)
2173 {
2174     abi_ulong size, error, guard;
2175     int prot;
2176 
2177     size = guest_stack_size;
2178     if (size < STACK_LOWER_LIMIT) {
2179         size = STACK_LOWER_LIMIT;
2180     }
2181 
2182     if (STACK_GROWS_DOWN) {
2183         guard = TARGET_PAGE_SIZE;
2184         if (guard < qemu_real_host_page_size()) {
2185             guard = qemu_real_host_page_size();
2186         }
2187     } else {
2188         /* no guard page for hppa target where stack grows upwards. */
2189         guard = 0;
2190     }
2191 
2192     prot = PROT_READ | PROT_WRITE;
2193     if (info->exec_stack) {
2194         prot |= PROT_EXEC;
2195     }
2196     error = target_mmap(0, size + guard, prot,
2197                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2198     if (error == -1) {
2199         perror("mmap stack");
2200         exit(-1);
2201     }
2202 
2203     /* We reserve one extra page at the top of the stack as guard.  */
2204     if (STACK_GROWS_DOWN) {
2205         target_mprotect(error, guard, PROT_NONE);
2206         info->stack_limit = error + guard;
2207         return info->stack_limit + size - sizeof(void *);
2208     } else {
2209         info->stack_limit = error + size;
2210         return error;
2211     }
2212 }
2213 
2214 /**
2215  * zero_bss:
2216  *
2217  * Map and zero the bss.  We need to explicitly zero any fractional pages
2218  * after the data section (i.e. bss).  Return false on mapping failure.
2219  */
2220 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, int prot)
2221 {
2222     abi_ulong align_bss;
2223 
2224     align_bss = TARGET_PAGE_ALIGN(start_bss);
2225     end_bss = TARGET_PAGE_ALIGN(end_bss);
2226 
2227     if (start_bss < align_bss) {
2228         int flags = page_get_flags(start_bss);
2229 
2230         if (!(flags & PAGE_VALID)) {
2231             /* Map the start of the bss. */
2232             align_bss -= TARGET_PAGE_SIZE;
2233         } else if (flags & PAGE_WRITE) {
2234             /* The page is already mapped writable. */
2235             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2236         } else {
2237             /* Read-only zeros? */
2238             g_assert_not_reached();
2239         }
2240     }
2241 
2242     return align_bss >= end_bss ||
2243            target_mmap(align_bss, end_bss - align_bss, prot,
2244                        MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) != -1;
2245 }
2246 
2247 #if defined(TARGET_ARM)
2248 static int elf_is_fdpic(struct elfhdr *exec)
2249 {
2250     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2251 }
2252 #elif defined(TARGET_XTENSA)
2253 static int elf_is_fdpic(struct elfhdr *exec)
2254 {
2255     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2256 }
2257 #else
2258 /* Default implementation, always false.  */
2259 static int elf_is_fdpic(struct elfhdr *exec)
2260 {
2261     return 0;
2262 }
2263 #endif
2264 
2265 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2266 {
2267     uint16_t n;
2268     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2269 
2270     /* elf32_fdpic_loadseg */
2271     n = info->nsegs;
2272     while (n--) {
2273         sp -= 12;
2274         put_user_u32(loadsegs[n].addr, sp+0);
2275         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2276         put_user_u32(loadsegs[n].p_memsz, sp+8);
2277     }
2278 
2279     /* elf32_fdpic_loadmap */
2280     sp -= 4;
2281     put_user_u16(0, sp+0); /* version */
2282     put_user_u16(info->nsegs, sp+2); /* nsegs */
2283 
2284     info->personality = PER_LINUX_FDPIC;
2285     info->loadmap_addr = sp;
2286 
2287     return sp;
2288 }
2289 
2290 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2291                                    struct elfhdr *exec,
2292                                    struct image_info *info,
2293                                    struct image_info *interp_info)
2294 {
2295     abi_ulong sp;
2296     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2297     int size;
2298     int i;
2299     abi_ulong u_rand_bytes;
2300     uint8_t k_rand_bytes[16];
2301     abi_ulong u_platform, u_base_platform;
2302     const char *k_platform, *k_base_platform;
2303     const int n = sizeof(elf_addr_t);
2304 
2305     sp = p;
2306 
2307     /* Needs to be before we load the env/argc/... */
2308     if (elf_is_fdpic(exec)) {
2309         /* Need 4 byte alignment for these structs */
2310         sp &= ~3;
2311         sp = loader_build_fdpic_loadmap(info, sp);
2312         info->other_info = interp_info;
2313         if (interp_info) {
2314             interp_info->other_info = info;
2315             sp = loader_build_fdpic_loadmap(interp_info, sp);
2316             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2317             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2318         } else {
2319             info->interpreter_loadmap_addr = 0;
2320             info->interpreter_pt_dynamic_addr = 0;
2321         }
2322     }
2323 
2324     u_base_platform = 0;
2325     k_base_platform = ELF_BASE_PLATFORM;
2326     if (k_base_platform) {
2327         size_t len = strlen(k_base_platform) + 1;
2328         if (STACK_GROWS_DOWN) {
2329             sp -= (len + n - 1) & ~(n - 1);
2330             u_base_platform = sp;
2331             /* FIXME - check return value of memcpy_to_target() for failure */
2332             memcpy_to_target(sp, k_base_platform, len);
2333         } else {
2334             memcpy_to_target(sp, k_base_platform, len);
2335             u_base_platform = sp;
2336             sp += len + 1;
2337         }
2338     }
2339 
2340     u_platform = 0;
2341     k_platform = ELF_PLATFORM;
2342     if (k_platform) {
2343         size_t len = strlen(k_platform) + 1;
2344         if (STACK_GROWS_DOWN) {
2345             sp -= (len + n - 1) & ~(n - 1);
2346             u_platform = sp;
2347             /* FIXME - check return value of memcpy_to_target() for failure */
2348             memcpy_to_target(sp, k_platform, len);
2349         } else {
2350             memcpy_to_target(sp, k_platform, len);
2351             u_platform = sp;
2352             sp += len + 1;
2353         }
2354     }
2355 
2356     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2357      * the argv and envp pointers.
2358      */
2359     if (STACK_GROWS_DOWN) {
2360         sp = QEMU_ALIGN_DOWN(sp, 16);
2361     } else {
2362         sp = QEMU_ALIGN_UP(sp, 16);
2363     }
2364 
2365     /*
2366      * Generate 16 random bytes for userspace PRNG seeding.
2367      */
2368     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2369     if (STACK_GROWS_DOWN) {
2370         sp -= 16;
2371         u_rand_bytes = sp;
2372         /* FIXME - check return value of memcpy_to_target() for failure */
2373         memcpy_to_target(sp, k_rand_bytes, 16);
2374     } else {
2375         memcpy_to_target(sp, k_rand_bytes, 16);
2376         u_rand_bytes = sp;
2377         sp += 16;
2378     }
2379 
2380     size = (DLINFO_ITEMS + 1) * 2;
2381     if (k_base_platform)
2382         size += 2;
2383     if (k_platform)
2384         size += 2;
2385 #ifdef DLINFO_ARCH_ITEMS
2386     size += DLINFO_ARCH_ITEMS * 2;
2387 #endif
2388 #ifdef ELF_HWCAP2
2389     size += 2;
2390 #endif
2391     info->auxv_len = size * n;
2392 
2393     size += envc + argc + 2;
2394     size += 1;  /* argc itself */
2395     size *= n;
2396 
2397     /* Allocate space and finalize stack alignment for entry now.  */
2398     if (STACK_GROWS_DOWN) {
2399         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2400         sp = u_argc;
2401     } else {
2402         u_argc = sp;
2403         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2404     }
2405 
2406     u_argv = u_argc + n;
2407     u_envp = u_argv + (argc + 1) * n;
2408     u_auxv = u_envp + (envc + 1) * n;
2409     info->saved_auxv = u_auxv;
2410     info->argc = argc;
2411     info->envc = envc;
2412     info->argv = u_argv;
2413     info->envp = u_envp;
2414 
2415     /* This is correct because Linux defines
2416      * elf_addr_t as Elf32_Off / Elf64_Off
2417      */
2418 #define NEW_AUX_ENT(id, val) do {               \
2419         put_user_ual(id, u_auxv);  u_auxv += n; \
2420         put_user_ual(val, u_auxv); u_auxv += n; \
2421     } while(0)
2422 
2423 #ifdef ARCH_DLINFO
2424     /*
2425      * ARCH_DLINFO must come first so platform specific code can enforce
2426      * special alignment requirements on the AUXV if necessary (eg. PPC).
2427      */
2428     ARCH_DLINFO;
2429 #endif
2430     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2431      * on info->auxv_len will trigger.
2432      */
2433     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2434     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2435     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2436     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2437         /* Target doesn't support host page size alignment */
2438         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2439     } else {
2440         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2441                                                qemu_host_page_size)));
2442     }
2443     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2444     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2445     NEW_AUX_ENT(AT_ENTRY, info->entry);
2446     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2447     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2448     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2449     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2450     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2451     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2452     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2453     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2454     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2455 
2456 #ifdef ELF_HWCAP2
2457     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2458 #endif
2459 
2460     if (u_base_platform) {
2461         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2462     }
2463     if (u_platform) {
2464         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2465     }
2466     NEW_AUX_ENT (AT_NULL, 0);
2467 #undef NEW_AUX_ENT
2468 
2469     /* Check that our initial calculation of the auxv length matches how much
2470      * we actually put into it.
2471      */
2472     assert(info->auxv_len == u_auxv - info->saved_auxv);
2473 
2474     put_user_ual(argc, u_argc);
2475 
2476     p = info->arg_strings;
2477     for (i = 0; i < argc; ++i) {
2478         put_user_ual(p, u_argv);
2479         u_argv += n;
2480         p += target_strlen(p) + 1;
2481     }
2482     put_user_ual(0, u_argv);
2483 
2484     p = info->env_strings;
2485     for (i = 0; i < envc; ++i) {
2486         put_user_ual(p, u_envp);
2487         u_envp += n;
2488         p += target_strlen(p) + 1;
2489     }
2490     put_user_ual(0, u_envp);
2491 
2492     return sp;
2493 }
2494 
2495 #if defined(HI_COMMPAGE)
2496 #define LO_COMMPAGE -1
2497 #elif defined(LO_COMMPAGE)
2498 #define HI_COMMPAGE 0
2499 #else
2500 #define HI_COMMPAGE 0
2501 #define LO_COMMPAGE -1
2502 #ifndef INIT_GUEST_COMMPAGE
2503 #define init_guest_commpage() true
2504 #endif
2505 #endif
2506 
2507 /**
2508  * pgb_try_mmap:
2509  * @addr: host start address
2510  * @addr_last: host last address
2511  * @keep: do not unmap the probe region
2512  *
2513  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2514  * return 0 if it is not available to map, and -1 on mmap error.
2515  * If @keep, the region is left mapped on success, otherwise unmapped.
2516  */
2517 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2518 {
2519     size_t size = addr_last - addr + 1;
2520     void *p = mmap((void *)addr, size, PROT_NONE,
2521                    MAP_ANONYMOUS | MAP_PRIVATE |
2522                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2523     int ret;
2524 
2525     if (p == MAP_FAILED) {
2526         return errno == EEXIST ? 0 : -1;
2527     }
2528     ret = p == (void *)addr;
2529     if (!keep || !ret) {
2530         munmap(p, size);
2531     }
2532     return ret;
2533 }
2534 
2535 /**
2536  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2537  * @addr: host address
2538  * @addr_last: host last address
2539  * @brk: host brk
2540  *
2541  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2542  */
2543 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2544                                  uintptr_t brk, bool keep)
2545 {
2546     uintptr_t brk_last = brk + 16 * MiB - 1;
2547 
2548     /* Do not map anything close to the host brk. */
2549     if (addr <= brk_last && brk <= addr_last) {
2550         return 0;
2551     }
2552     return pgb_try_mmap(addr, addr_last, keep);
2553 }
2554 
2555 /**
2556  * pgb_try_mmap_set:
2557  * @ga: set of guest addrs
2558  * @base: guest_base
2559  * @brk: host brk
2560  *
2561  * Return true if all @ga can be mapped by the host at @base.
2562  * On success, retain the mapping at index 0 for reserved_va.
2563  */
2564 
2565 typedef struct PGBAddrs {
2566     uintptr_t bounds[3][2]; /* start/last pairs */
2567     int nbounds;
2568 } PGBAddrs;
2569 
2570 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2571 {
2572     for (int i = ga->nbounds - 1; i >= 0; --i) {
2573         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2574                                   ga->bounds[i][1] + base,
2575                                   brk, i == 0 && reserved_va) <= 0) {
2576             return false;
2577         }
2578     }
2579     return true;
2580 }
2581 
2582 /**
2583  * pgb_addr_set:
2584  * @ga: output set of guest addrs
2585  * @guest_loaddr: guest image low address
2586  * @guest_loaddr: guest image high address
2587  * @identity: create for identity mapping
2588  *
2589  * Fill in @ga with the image, COMMPAGE and NULL page.
2590  */
2591 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2592                          abi_ulong guest_hiaddr, bool try_identity)
2593 {
2594     int n;
2595 
2596     /*
2597      * With a low commpage, or a guest mapped very low,
2598      * we may not be able to use the identity map.
2599      */
2600     if (try_identity) {
2601         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2602             return false;
2603         }
2604         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2605             return false;
2606         }
2607     }
2608 
2609     memset(ga, 0, sizeof(*ga));
2610     n = 0;
2611 
2612     if (reserved_va) {
2613         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2614         ga->bounds[n][1] = reserved_va;
2615         n++;
2616         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2617     } else {
2618         /* Add any LO_COMMPAGE or NULL page. */
2619         if (LO_COMMPAGE != -1) {
2620             ga->bounds[n][0] = 0;
2621             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2622             n++;
2623         } else if (!try_identity) {
2624             ga->bounds[n][0] = 0;
2625             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2626             n++;
2627         }
2628 
2629         /* Add the guest image for ET_EXEC. */
2630         if (guest_loaddr) {
2631             ga->bounds[n][0] = guest_loaddr;
2632             ga->bounds[n][1] = guest_hiaddr;
2633             n++;
2634         }
2635     }
2636 
2637     /*
2638      * Temporarily disable
2639      *   "comparison is always false due to limited range of data type"
2640      * due to comparison between unsigned and (possible) 0.
2641      */
2642 #pragma GCC diagnostic push
2643 #pragma GCC diagnostic ignored "-Wtype-limits"
2644 
2645     /* Add any HI_COMMPAGE not covered by reserved_va. */
2646     if (reserved_va < HI_COMMPAGE) {
2647         ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask;
2648         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2649         n++;
2650     }
2651 
2652 #pragma GCC diagnostic pop
2653 
2654     ga->nbounds = n;
2655     return true;
2656 }
2657 
2658 static void pgb_fail_in_use(const char *image_name)
2659 {
2660     error_report("%s: requires virtual address space that is in use "
2661                  "(omit the -B option or choose a different value)",
2662                  image_name);
2663     exit(EXIT_FAILURE);
2664 }
2665 
2666 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2667                       uintptr_t guest_hiaddr, uintptr_t align)
2668 {
2669     PGBAddrs ga;
2670     uintptr_t brk = (uintptr_t)sbrk(0);
2671 
2672     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2673         fprintf(stderr, "Requested guest base %p does not satisfy "
2674                 "host minimum alignment (0x%" PRIxPTR ")\n",
2675                 (void *)guest_base, align);
2676         exit(EXIT_FAILURE);
2677     }
2678 
2679     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2680         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2681         pgb_fail_in_use(image_name);
2682     }
2683 }
2684 
2685 /**
2686  * pgb_find_fallback:
2687  *
2688  * This is a fallback method for finding holes in the host address space
2689  * if we don't have the benefit of being able to access /proc/self/map.
2690  * It can potentially take a very long time as we can only dumbly iterate
2691  * up the host address space seeing if the allocation would work.
2692  */
2693 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2694                                    uintptr_t brk)
2695 {
2696     /* TODO: come up with a better estimate of how much to skip. */
2697     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2698 
2699     for (uintptr_t base = skip; ; base += skip) {
2700         base = ROUND_UP(base, align);
2701         if (pgb_try_mmap_set(ga, base, brk)) {
2702             return base;
2703         }
2704         if (base >= -skip) {
2705             return -1;
2706         }
2707     }
2708 }
2709 
2710 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2711                                IntervalTreeRoot *root)
2712 {
2713     for (int i = ga->nbounds - 1; i >= 0; --i) {
2714         uintptr_t s = base + ga->bounds[i][0];
2715         uintptr_t l = base + ga->bounds[i][1];
2716         IntervalTreeNode *n;
2717 
2718         if (l < s) {
2719             /* Wraparound. Skip to advance S to mmap_min_addr. */
2720             return mmap_min_addr - s;
2721         }
2722 
2723         n = interval_tree_iter_first(root, s, l);
2724         if (n != NULL) {
2725             /* Conflict.  Skip to advance S to LAST + 1. */
2726             return n->last - s + 1;
2727         }
2728     }
2729     return 0;  /* success */
2730 }
2731 
2732 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2733                                 uintptr_t align, uintptr_t brk)
2734 {
2735     uintptr_t last = mmap_min_addr;
2736     uintptr_t base, skip;
2737 
2738     while (true) {
2739         base = ROUND_UP(last, align);
2740         if (base < last) {
2741             return -1;
2742         }
2743 
2744         skip = pgb_try_itree(ga, base, root);
2745         if (skip == 0) {
2746             break;
2747         }
2748 
2749         last = base + skip;
2750         if (last < base) {
2751             return -1;
2752         }
2753     }
2754 
2755     /*
2756      * We've chosen 'base' based on holes in the interval tree,
2757      * but we don't yet know if it is a valid host address.
2758      * Because it is the first matching hole, if the host addresses
2759      * are invalid we know there are no further matches.
2760      */
2761     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2762 }
2763 
2764 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2765                         uintptr_t guest_hiaddr, uintptr_t align)
2766 {
2767     IntervalTreeRoot *root;
2768     uintptr_t brk, ret;
2769     PGBAddrs ga;
2770 
2771     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2772 
2773     /* Try the identity map first. */
2774     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2775         brk = (uintptr_t)sbrk(0);
2776         if (pgb_try_mmap_set(&ga, 0, brk)) {
2777             guest_base = 0;
2778             return;
2779         }
2780     }
2781 
2782     /*
2783      * Rebuild the address set for non-identity map.
2784      * This differs in the mapping of the guest NULL page.
2785      */
2786     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2787 
2788     root = read_self_maps();
2789 
2790     /* Read brk after we've read the maps, which will malloc. */
2791     brk = (uintptr_t)sbrk(0);
2792 
2793     if (!root) {
2794         ret = pgb_find_fallback(&ga, align, brk);
2795     } else {
2796         /*
2797          * Reserve the area close to the host brk.
2798          * This will be freed with the rest of the tree.
2799          */
2800         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2801         b->start = brk;
2802         b->last = brk + 16 * MiB - 1;
2803         interval_tree_insert(b, root);
2804 
2805         ret = pgb_find_itree(&ga, root, align, brk);
2806         free_self_maps(root);
2807     }
2808 
2809     if (ret == -1) {
2810         int w = TARGET_LONG_BITS / 4;
2811 
2812         error_report("%s: Unable to find a guest_base to satisfy all "
2813                      "guest address mapping requirements", image_name);
2814 
2815         for (int i = 0; i < ga.nbounds; ++i) {
2816             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
2817                          w, (uint64_t)ga.bounds[i][0],
2818                          w, (uint64_t)ga.bounds[i][1]);
2819         }
2820         exit(EXIT_FAILURE);
2821     }
2822     guest_base = ret;
2823 }
2824 
2825 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2826                       abi_ulong guest_hiaddr)
2827 {
2828     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2829     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2830 
2831     /* Sanity check the guest binary. */
2832     if (reserved_va) {
2833         if (guest_hiaddr > reserved_va) {
2834             error_report("%s: requires more than reserved virtual "
2835                          "address space (0x%" PRIx64 " > 0x%lx)",
2836                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2837             exit(EXIT_FAILURE);
2838         }
2839     } else {
2840         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
2841             error_report("%s: requires more virtual address space "
2842                          "than the host can provide (0x%" PRIx64 ")",
2843                          image_name, (uint64_t)guest_hiaddr + 1);
2844             exit(EXIT_FAILURE);
2845         }
2846     }
2847 
2848     if (have_guest_base) {
2849         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
2850     } else {
2851         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
2852     }
2853 
2854     /* Reserve and initialize the commpage. */
2855     if (!init_guest_commpage()) {
2856         /* We have already probed for the commpage being free. */
2857         g_assert_not_reached();
2858     }
2859 
2860     assert(QEMU_IS_ALIGNED(guest_base, align));
2861     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2862                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2863 }
2864 
2865 enum {
2866     /* The string "GNU\0" as a magic number. */
2867     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2868     NOTE_DATA_SZ = 1 * KiB,
2869     NOTE_NAME_SZ = 4,
2870     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2871 };
2872 
2873 /*
2874  * Process a single gnu_property entry.
2875  * Return false for error.
2876  */
2877 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2878                                struct image_info *info, bool have_prev_type,
2879                                uint32_t *prev_type, Error **errp)
2880 {
2881     uint32_t pr_type, pr_datasz, step;
2882 
2883     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2884         goto error_data;
2885     }
2886     datasz -= *off;
2887     data += *off / sizeof(uint32_t);
2888 
2889     if (datasz < 2 * sizeof(uint32_t)) {
2890         goto error_data;
2891     }
2892     pr_type = data[0];
2893     pr_datasz = data[1];
2894     data += 2;
2895     datasz -= 2 * sizeof(uint32_t);
2896     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2897     if (step > datasz) {
2898         goto error_data;
2899     }
2900 
2901     /* Properties are supposed to be unique and sorted on pr_type. */
2902     if (have_prev_type && pr_type <= *prev_type) {
2903         if (pr_type == *prev_type) {
2904             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2905         } else {
2906             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2907         }
2908         return false;
2909     }
2910     *prev_type = pr_type;
2911 
2912     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2913         return false;
2914     }
2915 
2916     *off += 2 * sizeof(uint32_t) + step;
2917     return true;
2918 
2919  error_data:
2920     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2921     return false;
2922 }
2923 
2924 /* Process NT_GNU_PROPERTY_TYPE_0. */
2925 static bool parse_elf_properties(int image_fd,
2926                                  struct image_info *info,
2927                                  const struct elf_phdr *phdr,
2928                                  char bprm_buf[BPRM_BUF_SIZE],
2929                                  Error **errp)
2930 {
2931     union {
2932         struct elf_note nhdr;
2933         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2934     } note;
2935 
2936     int n, off, datasz;
2937     bool have_prev_type;
2938     uint32_t prev_type;
2939 
2940     /* Unless the arch requires properties, ignore them. */
2941     if (!ARCH_USE_GNU_PROPERTY) {
2942         return true;
2943     }
2944 
2945     /* If the properties are crazy large, that's too bad. */
2946     n = phdr->p_filesz;
2947     if (n > sizeof(note)) {
2948         error_setg(errp, "PT_GNU_PROPERTY too large");
2949         return false;
2950     }
2951     if (n < sizeof(note.nhdr)) {
2952         error_setg(errp, "PT_GNU_PROPERTY too small");
2953         return false;
2954     }
2955 
2956     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2957         memcpy(&note, bprm_buf + phdr->p_offset, n);
2958     } else {
2959         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2960         if (len != n) {
2961             error_setg_errno(errp, errno, "Error reading file header");
2962             return false;
2963         }
2964     }
2965 
2966     /*
2967      * The contents of a valid PT_GNU_PROPERTY is a sequence
2968      * of uint32_t -- swap them all now.
2969      */
2970 #ifdef BSWAP_NEEDED
2971     for (int i = 0; i < n / 4; i++) {
2972         bswap32s(note.data + i);
2973     }
2974 #endif
2975 
2976     /*
2977      * Note that nhdr is 3 words, and that the "name" described by namesz
2978      * immediately follows nhdr and is thus at the 4th word.  Further, all
2979      * of the inputs to the kernel's round_up are multiples of 4.
2980      */
2981     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2982         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2983         note.data[3] != GNU0_MAGIC) {
2984         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2985         return false;
2986     }
2987     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2988 
2989     datasz = note.nhdr.n_descsz + off;
2990     if (datasz > n) {
2991         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2992         return false;
2993     }
2994 
2995     have_prev_type = false;
2996     prev_type = 0;
2997     while (1) {
2998         if (off == datasz) {
2999             return true;  /* end, exit ok */
3000         }
3001         if (!parse_elf_property(note.data, &off, datasz, info,
3002                                 have_prev_type, &prev_type, errp)) {
3003             return false;
3004         }
3005         have_prev_type = true;
3006     }
3007 }
3008 
3009 /* Load an ELF image into the address space.
3010 
3011    IMAGE_NAME is the filename of the image, to use in error messages.
3012    IMAGE_FD is the open file descriptor for the image.
3013 
3014    BPRM_BUF is a copy of the beginning of the file; this of course
3015    contains the elf file header at offset 0.  It is assumed that this
3016    buffer is sufficiently aligned to present no problems to the host
3017    in accessing data at aligned offsets within the buffer.
3018 
3019    On return: INFO values will be filled in, as necessary or available.  */
3020 
3021 static void load_elf_image(const char *image_name, int image_fd,
3022                            struct image_info *info, char **pinterp_name,
3023                            char bprm_buf[BPRM_BUF_SIZE])
3024 {
3025     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3026     struct elf_phdr *phdr;
3027     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3028     int i, retval, prot_exec;
3029     Error *err = NULL;
3030 
3031     /* First of all, some simple consistency checks */
3032     if (!elf_check_ident(ehdr)) {
3033         error_setg(&err, "Invalid ELF image for this architecture");
3034         goto exit_errmsg;
3035     }
3036     bswap_ehdr(ehdr);
3037     if (!elf_check_ehdr(ehdr)) {
3038         error_setg(&err, "Invalid ELF image for this architecture");
3039         goto exit_errmsg;
3040     }
3041 
3042     i = ehdr->e_phnum * sizeof(struct elf_phdr);
3043     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3044         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
3045     } else {
3046         phdr = (struct elf_phdr *) alloca(i);
3047         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
3048         if (retval != i) {
3049             goto exit_read;
3050         }
3051     }
3052     bswap_phdr(phdr, ehdr->e_phnum);
3053 
3054     info->nsegs = 0;
3055     info->pt_dynamic_addr = 0;
3056 
3057     mmap_lock();
3058 
3059     /*
3060      * Find the maximum size of the image and allocate an appropriate
3061      * amount of memory to handle that.  Locate the interpreter, if any.
3062      */
3063     loaddr = -1, hiaddr = 0;
3064     info->alignment = 0;
3065     info->exec_stack = EXSTACK_DEFAULT;
3066     for (i = 0; i < ehdr->e_phnum; ++i) {
3067         struct elf_phdr *eppnt = phdr + i;
3068         if (eppnt->p_type == PT_LOAD) {
3069             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3070             if (a < loaddr) {
3071                 loaddr = a;
3072             }
3073             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3074             if (a > hiaddr) {
3075                 hiaddr = a;
3076             }
3077             ++info->nsegs;
3078             info->alignment |= eppnt->p_align;
3079         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3080             g_autofree char *interp_name = NULL;
3081 
3082             if (*pinterp_name) {
3083                 error_setg(&err, "Multiple PT_INTERP entries");
3084                 goto exit_errmsg;
3085             }
3086 
3087             interp_name = g_malloc(eppnt->p_filesz);
3088 
3089             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3090                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3091                        eppnt->p_filesz);
3092             } else {
3093                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3094                                eppnt->p_offset);
3095                 if (retval != eppnt->p_filesz) {
3096                     goto exit_read;
3097                 }
3098             }
3099             if (interp_name[eppnt->p_filesz - 1] != 0) {
3100                 error_setg(&err, "Invalid PT_INTERP entry");
3101                 goto exit_errmsg;
3102             }
3103             *pinterp_name = g_steal_pointer(&interp_name);
3104         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3105             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3106                 goto exit_errmsg;
3107             }
3108         } else if (eppnt->p_type == PT_GNU_STACK) {
3109             info->exec_stack = eppnt->p_flags & PF_X;
3110         }
3111     }
3112 
3113     load_addr = loaddr;
3114 
3115     if (pinterp_name != NULL) {
3116         if (ehdr->e_type == ET_EXEC) {
3117             /*
3118              * Make sure that the low address does not conflict with
3119              * MMAP_MIN_ADDR or the QEMU application itself.
3120              */
3121             probe_guest_base(image_name, loaddr, hiaddr);
3122         } else {
3123             abi_ulong align;
3124 
3125             /*
3126              * The binary is dynamic, but we still need to
3127              * select guest_base.  In this case we pass a size.
3128              */
3129             probe_guest_base(image_name, 0, hiaddr - loaddr);
3130 
3131             /*
3132              * Avoid collision with the loader by providing a different
3133              * default load address.
3134              */
3135             load_addr += elf_et_dyn_base;
3136 
3137             /*
3138              * TODO: Better support for mmap alignment is desirable.
3139              * Since we do not have complete control over the guest
3140              * address space, we prefer the kernel to choose some address
3141              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3142              * But without MAP_FIXED we cannot guarantee alignment,
3143              * only suggest it.
3144              */
3145             align = pow2ceil(info->alignment);
3146             if (align) {
3147                 load_addr &= -align;
3148             }
3149         }
3150     }
3151 
3152     /*
3153      * Reserve address space for all of this.
3154      *
3155      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3156      * exactly the address range that is required.  Without reserved_va,
3157      * the guest address space is not isolated.  We have attempted to avoid
3158      * conflict with the host program itself via probe_guest_base, but using
3159      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3160      *
3161      * Otherwise this is ET_DYN, and we are searching for a location
3162      * that can hold the memory space required.  If the image is
3163      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3164      * honor that address if it happens to be free.
3165      *
3166      * In both cases, we will overwrite pages in this range with mappings
3167      * from the executable.
3168      */
3169     load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3170                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3171                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3172                             -1, 0);
3173     if (load_addr == -1) {
3174         goto exit_mmap;
3175     }
3176     load_bias = load_addr - loaddr;
3177 
3178     if (elf_is_fdpic(ehdr)) {
3179         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3180             g_malloc(sizeof(*loadsegs) * info->nsegs);
3181 
3182         for (i = 0; i < ehdr->e_phnum; ++i) {
3183             switch (phdr[i].p_type) {
3184             case PT_DYNAMIC:
3185                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3186                 break;
3187             case PT_LOAD:
3188                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3189                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3190                 loadsegs->p_memsz = phdr[i].p_memsz;
3191                 ++loadsegs;
3192                 break;
3193             }
3194         }
3195     }
3196 
3197     info->load_bias = load_bias;
3198     info->code_offset = load_bias;
3199     info->data_offset = load_bias;
3200     info->load_addr = load_addr;
3201     info->entry = ehdr->e_entry + load_bias;
3202     info->start_code = -1;
3203     info->end_code = 0;
3204     info->start_data = -1;
3205     info->end_data = 0;
3206     /* Usual start for brk is after all sections of the main executable. */
3207     info->brk = TARGET_PAGE_ALIGN(hiaddr);
3208     info->elf_flags = ehdr->e_flags;
3209 
3210     prot_exec = PROT_EXEC;
3211 #ifdef TARGET_AARCH64
3212     /*
3213      * If the BTI feature is present, this indicates that the executable
3214      * pages of the startup binary should be mapped with PROT_BTI, so that
3215      * branch targets are enforced.
3216      *
3217      * The startup binary is either the interpreter or the static executable.
3218      * The interpreter is responsible for all pages of a dynamic executable.
3219      *
3220      * Elf notes are backward compatible to older cpus.
3221      * Do not enable BTI unless it is supported.
3222      */
3223     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3224         && (pinterp_name == NULL || *pinterp_name == 0)
3225         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3226         prot_exec |= TARGET_PROT_BTI;
3227     }
3228 #endif
3229 
3230     for (i = 0; i < ehdr->e_phnum; i++) {
3231         struct elf_phdr *eppnt = phdr + i;
3232         if (eppnt->p_type == PT_LOAD) {
3233             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3234             int elf_prot = 0;
3235 
3236             if (eppnt->p_flags & PF_R) {
3237                 elf_prot |= PROT_READ;
3238             }
3239             if (eppnt->p_flags & PF_W) {
3240                 elf_prot |= PROT_WRITE;
3241             }
3242             if (eppnt->p_flags & PF_X) {
3243                 elf_prot |= prot_exec;
3244             }
3245 
3246             vaddr = load_bias + eppnt->p_vaddr;
3247             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3248             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3249 
3250             vaddr_ef = vaddr + eppnt->p_filesz;
3251             vaddr_em = vaddr + eppnt->p_memsz;
3252 
3253             /*
3254              * Some segments may be completely empty, with a non-zero p_memsz
3255              * but no backing file segment.
3256              */
3257             if (eppnt->p_filesz != 0) {
3258                 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3259                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3260                                     image_fd, eppnt->p_offset - vaddr_po);
3261                 if (error == -1) {
3262                     goto exit_mmap;
3263                 }
3264             }
3265 
3266             /* If the load segment requests extra zeros (e.g. bss), map it. */
3267             if (vaddr_ef < vaddr_em &&
3268                 !zero_bss(vaddr_ef, vaddr_em, elf_prot)) {
3269                 goto exit_mmap;
3270             }
3271 
3272             /* Find the full program boundaries.  */
3273             if (elf_prot & PROT_EXEC) {
3274                 if (vaddr < info->start_code) {
3275                     info->start_code = vaddr;
3276                 }
3277                 if (vaddr_ef > info->end_code) {
3278                     info->end_code = vaddr_ef;
3279                 }
3280             }
3281             if (elf_prot & PROT_WRITE) {
3282                 if (vaddr < info->start_data) {
3283                     info->start_data = vaddr;
3284                 }
3285                 if (vaddr_ef > info->end_data) {
3286                     info->end_data = vaddr_ef;
3287                 }
3288             }
3289 #ifdef TARGET_MIPS
3290         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3291             Mips_elf_abiflags_v0 abiflags;
3292             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3293                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3294                 goto exit_errmsg;
3295             }
3296             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3297                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3298                        sizeof(Mips_elf_abiflags_v0));
3299             } else {
3300                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3301                                eppnt->p_offset);
3302                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3303                     goto exit_read;
3304                 }
3305             }
3306             bswap_mips_abiflags(&abiflags);
3307             info->fp_abi = abiflags.fp_abi;
3308 #endif
3309         }
3310     }
3311 
3312     if (info->end_data == 0) {
3313         info->start_data = info->end_code;
3314         info->end_data = info->end_code;
3315     }
3316 
3317     if (qemu_log_enabled()) {
3318         load_symbols(ehdr, image_fd, load_bias);
3319     }
3320 
3321     debuginfo_report_elf(image_name, image_fd, load_bias);
3322 
3323     mmap_unlock();
3324 
3325     close(image_fd);
3326     return;
3327 
3328  exit_read:
3329     if (retval >= 0) {
3330         error_setg(&err, "Incomplete read of file header");
3331     } else {
3332         error_setg_errno(&err, errno, "Error reading file header");
3333     }
3334     goto exit_errmsg;
3335  exit_mmap:
3336     error_setg_errno(&err, errno, "Error mapping file");
3337     goto exit_errmsg;
3338  exit_errmsg:
3339     error_reportf_err(err, "%s: ", image_name);
3340     exit(-1);
3341 }
3342 
3343 static void load_elf_interp(const char *filename, struct image_info *info,
3344                             char bprm_buf[BPRM_BUF_SIZE])
3345 {
3346     int fd, retval;
3347     Error *err = NULL;
3348 
3349     fd = open(path(filename), O_RDONLY);
3350     if (fd < 0) {
3351         error_setg_file_open(&err, errno, filename);
3352         error_report_err(err);
3353         exit(-1);
3354     }
3355 
3356     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3357     if (retval < 0) {
3358         error_setg_errno(&err, errno, "Error reading file header");
3359         error_reportf_err(err, "%s: ", filename);
3360         exit(-1);
3361     }
3362 
3363     if (retval < BPRM_BUF_SIZE) {
3364         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3365     }
3366 
3367     load_elf_image(filename, fd, info, NULL, bprm_buf);
3368 }
3369 
3370 static int symfind(const void *s0, const void *s1)
3371 {
3372     struct elf_sym *sym = (struct elf_sym *)s1;
3373     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3374     int result = 0;
3375 
3376     if (addr < sym->st_value) {
3377         result = -1;
3378     } else if (addr >= sym->st_value + sym->st_size) {
3379         result = 1;
3380     }
3381     return result;
3382 }
3383 
3384 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3385 {
3386 #if ELF_CLASS == ELFCLASS32
3387     struct elf_sym *syms = s->disas_symtab.elf32;
3388 #else
3389     struct elf_sym *syms = s->disas_symtab.elf64;
3390 #endif
3391 
3392     // binary search
3393     struct elf_sym *sym;
3394 
3395     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3396     if (sym != NULL) {
3397         return s->disas_strtab + sym->st_name;
3398     }
3399 
3400     return "";
3401 }
3402 
3403 /* FIXME: This should use elf_ops.h  */
3404 static int symcmp(const void *s0, const void *s1)
3405 {
3406     struct elf_sym *sym0 = (struct elf_sym *)s0;
3407     struct elf_sym *sym1 = (struct elf_sym *)s1;
3408     return (sym0->st_value < sym1->st_value)
3409         ? -1
3410         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3411 }
3412 
3413 /* Best attempt to load symbols from this ELF object. */
3414 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3415 {
3416     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3417     uint64_t segsz;
3418     struct elf_shdr *shdr;
3419     char *strings = NULL;
3420     struct syminfo *s = NULL;
3421     struct elf_sym *new_syms, *syms = NULL;
3422 
3423     shnum = hdr->e_shnum;
3424     i = shnum * sizeof(struct elf_shdr);
3425     shdr = (struct elf_shdr *)alloca(i);
3426     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3427         return;
3428     }
3429 
3430     bswap_shdr(shdr, shnum);
3431     for (i = 0; i < shnum; ++i) {
3432         if (shdr[i].sh_type == SHT_SYMTAB) {
3433             sym_idx = i;
3434             str_idx = shdr[i].sh_link;
3435             goto found;
3436         }
3437     }
3438 
3439     /* There will be no symbol table if the file was stripped.  */
3440     return;
3441 
3442  found:
3443     /* Now know where the strtab and symtab are.  Snarf them.  */
3444     s = g_try_new(struct syminfo, 1);
3445     if (!s) {
3446         goto give_up;
3447     }
3448 
3449     segsz = shdr[str_idx].sh_size;
3450     s->disas_strtab = strings = g_try_malloc(segsz);
3451     if (!strings ||
3452         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3453         goto give_up;
3454     }
3455 
3456     segsz = shdr[sym_idx].sh_size;
3457     syms = g_try_malloc(segsz);
3458     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3459         goto give_up;
3460     }
3461 
3462     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3463         /* Implausibly large symbol table: give up rather than ploughing
3464          * on with the number of symbols calculation overflowing
3465          */
3466         goto give_up;
3467     }
3468     nsyms = segsz / sizeof(struct elf_sym);
3469     for (i = 0; i < nsyms; ) {
3470         bswap_sym(syms + i);
3471         /* Throw away entries which we do not need.  */
3472         if (syms[i].st_shndx == SHN_UNDEF
3473             || syms[i].st_shndx >= SHN_LORESERVE
3474             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3475             if (i < --nsyms) {
3476                 syms[i] = syms[nsyms];
3477             }
3478         } else {
3479 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3480             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3481             syms[i].st_value &= ~(target_ulong)1;
3482 #endif
3483             syms[i].st_value += load_bias;
3484             i++;
3485         }
3486     }
3487 
3488     /* No "useful" symbol.  */
3489     if (nsyms == 0) {
3490         goto give_up;
3491     }
3492 
3493     /* Attempt to free the storage associated with the local symbols
3494        that we threw away.  Whether or not this has any effect on the
3495        memory allocation depends on the malloc implementation and how
3496        many symbols we managed to discard.  */
3497     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3498     if (new_syms == NULL) {
3499         goto give_up;
3500     }
3501     syms = new_syms;
3502 
3503     qsort(syms, nsyms, sizeof(*syms), symcmp);
3504 
3505     s->disas_num_syms = nsyms;
3506 #if ELF_CLASS == ELFCLASS32
3507     s->disas_symtab.elf32 = syms;
3508 #else
3509     s->disas_symtab.elf64 = syms;
3510 #endif
3511     s->lookup_symbol = lookup_symbolxx;
3512     s->next = syminfos;
3513     syminfos = s;
3514 
3515     return;
3516 
3517 give_up:
3518     g_free(s);
3519     g_free(strings);
3520     g_free(syms);
3521 }
3522 
3523 uint32_t get_elf_eflags(int fd)
3524 {
3525     struct elfhdr ehdr;
3526     off_t offset;
3527     int ret;
3528 
3529     /* Read ELF header */
3530     offset = lseek(fd, 0, SEEK_SET);
3531     if (offset == (off_t) -1) {
3532         return 0;
3533     }
3534     ret = read(fd, &ehdr, sizeof(ehdr));
3535     if (ret < sizeof(ehdr)) {
3536         return 0;
3537     }
3538     offset = lseek(fd, offset, SEEK_SET);
3539     if (offset == (off_t) -1) {
3540         return 0;
3541     }
3542 
3543     /* Check ELF signature */
3544     if (!elf_check_ident(&ehdr)) {
3545         return 0;
3546     }
3547 
3548     /* check header */
3549     bswap_ehdr(&ehdr);
3550     if (!elf_check_ehdr(&ehdr)) {
3551         return 0;
3552     }
3553 
3554     /* return architecture id */
3555     return ehdr.e_flags;
3556 }
3557 
3558 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3559 {
3560     struct image_info interp_info;
3561     struct elfhdr elf_ex;
3562     char *elf_interpreter = NULL;
3563     char *scratch;
3564 
3565     memset(&interp_info, 0, sizeof(interp_info));
3566 #ifdef TARGET_MIPS
3567     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3568 #endif
3569 
3570     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3571 
3572     load_elf_image(bprm->filename, bprm->fd, info,
3573                    &elf_interpreter, bprm->buf);
3574 
3575     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3576        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3577        when we load the interpreter.  */
3578     elf_ex = *(struct elfhdr *)bprm->buf;
3579 
3580     /* Do this so that we can load the interpreter, if need be.  We will
3581        change some of these later */
3582     bprm->p = setup_arg_pages(bprm, info);
3583 
3584     scratch = g_new0(char, TARGET_PAGE_SIZE);
3585     if (STACK_GROWS_DOWN) {
3586         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3587                                    bprm->p, info->stack_limit);
3588         info->file_string = bprm->p;
3589         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3590                                    bprm->p, info->stack_limit);
3591         info->env_strings = bprm->p;
3592         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3593                                    bprm->p, info->stack_limit);
3594         info->arg_strings = bprm->p;
3595     } else {
3596         info->arg_strings = bprm->p;
3597         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3598                                    bprm->p, info->stack_limit);
3599         info->env_strings = bprm->p;
3600         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3601                                    bprm->p, info->stack_limit);
3602         info->file_string = bprm->p;
3603         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3604                                    bprm->p, info->stack_limit);
3605     }
3606 
3607     g_free(scratch);
3608 
3609     if (!bprm->p) {
3610         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3611         exit(-1);
3612     }
3613 
3614     if (elf_interpreter) {
3615         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3616 
3617         /*
3618          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3619          * with the mappings the interpreter can be loaded above but
3620          * near the main executable, which can leave very little room
3621          * for the heap.
3622          * If the current brk has less than 16MB, use the end of the
3623          * interpreter.
3624          */
3625         if (interp_info.brk > info->brk &&
3626             interp_info.load_bias - info->brk < 16 * MiB)  {
3627             info->brk = interp_info.brk;
3628         }
3629 
3630         /* If the program interpreter is one of these two, then assume
3631            an iBCS2 image.  Otherwise assume a native linux image.  */
3632 
3633         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3634             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3635             info->personality = PER_SVR4;
3636 
3637             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3638                and some applications "depend" upon this behavior.  Since
3639                we do not have the power to recompile these, we emulate
3640                the SVr4 behavior.  Sigh.  */
3641             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3642                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3643         }
3644 #ifdef TARGET_MIPS
3645         info->interp_fp_abi = interp_info.fp_abi;
3646 #endif
3647     }
3648 
3649     /*
3650      * TODO: load a vdso, which would also contain the signal trampolines.
3651      * Otherwise, allocate a private page to hold them.
3652      */
3653     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3654         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3655                                           PROT_READ | PROT_WRITE,
3656                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3657         if (tramp_page == -1) {
3658             return -errno;
3659         }
3660 
3661         setup_sigtramp(tramp_page);
3662         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3663     }
3664 
3665     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3666                                 info, (elf_interpreter ? &interp_info : NULL));
3667     info->start_stack = bprm->p;
3668 
3669     /* If we have an interpreter, set that as the program's entry point.
3670        Copy the load_bias as well, to help PPC64 interpret the entry
3671        point as a function descriptor.  Do this after creating elf tables
3672        so that we copy the original program entry point into the AUXV.  */
3673     if (elf_interpreter) {
3674         info->load_bias = interp_info.load_bias;
3675         info->entry = interp_info.entry;
3676         g_free(elf_interpreter);
3677     }
3678 
3679 #ifdef USE_ELF_CORE_DUMP
3680     bprm->core_dump = &elf_core_dump;
3681 #endif
3682 
3683     return 0;
3684 }
3685 
3686 #ifdef USE_ELF_CORE_DUMP
3687 /*
3688  * Definitions to generate Intel SVR4-like core files.
3689  * These mostly have the same names as the SVR4 types with "target_elf_"
3690  * tacked on the front to prevent clashes with linux definitions,
3691  * and the typedef forms have been avoided.  This is mostly like
3692  * the SVR4 structure, but more Linuxy, with things that Linux does
3693  * not support and which gdb doesn't really use excluded.
3694  *
3695  * Fields we don't dump (their contents is zero) in linux-user qemu
3696  * are marked with XXX.
3697  *
3698  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3699  *
3700  * Porting ELF coredump for target is (quite) simple process.  First you
3701  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3702  * the target resides):
3703  *
3704  * #define USE_ELF_CORE_DUMP
3705  *
3706  * Next you define type of register set used for dumping.  ELF specification
3707  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3708  *
3709  * typedef <target_regtype> target_elf_greg_t;
3710  * #define ELF_NREG <number of registers>
3711  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3712  *
3713  * Last step is to implement target specific function that copies registers
3714  * from given cpu into just specified register set.  Prototype is:
3715  *
3716  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3717  *                                const CPUArchState *env);
3718  *
3719  * Parameters:
3720  *     regs - copy register values into here (allocated and zeroed by caller)
3721  *     env - copy registers from here
3722  *
3723  * Example for ARM target is provided in this file.
3724  */
3725 
3726 /* An ELF note in memory */
3727 struct memelfnote {
3728     const char *name;
3729     size_t     namesz;
3730     size_t     namesz_rounded;
3731     int        type;
3732     size_t     datasz;
3733     size_t     datasz_rounded;
3734     void       *data;
3735     size_t     notesz;
3736 };
3737 
3738 struct target_elf_siginfo {
3739     abi_int    si_signo; /* signal number */
3740     abi_int    si_code;  /* extra code */
3741     abi_int    si_errno; /* errno */
3742 };
3743 
3744 struct target_elf_prstatus {
3745     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3746     abi_short          pr_cursig;    /* Current signal */
3747     abi_ulong          pr_sigpend;   /* XXX */
3748     abi_ulong          pr_sighold;   /* XXX */
3749     target_pid_t       pr_pid;
3750     target_pid_t       pr_ppid;
3751     target_pid_t       pr_pgrp;
3752     target_pid_t       pr_sid;
3753     struct target_timeval pr_utime;  /* XXX User time */
3754     struct target_timeval pr_stime;  /* XXX System time */
3755     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3756     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3757     target_elf_gregset_t      pr_reg;       /* GP registers */
3758     abi_int            pr_fpvalid;   /* XXX */
3759 };
3760 
3761 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3762 
3763 struct target_elf_prpsinfo {
3764     char         pr_state;       /* numeric process state */
3765     char         pr_sname;       /* char for pr_state */
3766     char         pr_zomb;        /* zombie */
3767     char         pr_nice;        /* nice val */
3768     abi_ulong    pr_flag;        /* flags */
3769     target_uid_t pr_uid;
3770     target_gid_t pr_gid;
3771     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3772     /* Lots missing */
3773     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3774     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3775 };
3776 
3777 /* Here is the structure in which status of each thread is captured. */
3778 struct elf_thread_status {
3779     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3780     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3781 #if 0
3782     elf_fpregset_t fpu;             /* NT_PRFPREG */
3783     struct task_struct *thread;
3784     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3785 #endif
3786     struct memelfnote notes[1];
3787     int num_notes;
3788 };
3789 
3790 struct elf_note_info {
3791     struct memelfnote   *notes;
3792     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3793     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3794 
3795     QTAILQ_HEAD(, elf_thread_status) thread_list;
3796 #if 0
3797     /*
3798      * Current version of ELF coredump doesn't support
3799      * dumping fp regs etc.
3800      */
3801     elf_fpregset_t *fpu;
3802     elf_fpxregset_t *xfpu;
3803     int thread_status_size;
3804 #endif
3805     int notes_size;
3806     int numnote;
3807 };
3808 
3809 struct vm_area_struct {
3810     target_ulong   vma_start;  /* start vaddr of memory region */
3811     target_ulong   vma_end;    /* end vaddr of memory region */
3812     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3813     QTAILQ_ENTRY(vm_area_struct) vma_link;
3814 };
3815 
3816 struct mm_struct {
3817     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3818     int mm_count;           /* number of mappings */
3819 };
3820 
3821 static struct mm_struct *vma_init(void);
3822 static void vma_delete(struct mm_struct *);
3823 static int vma_add_mapping(struct mm_struct *, target_ulong,
3824                            target_ulong, abi_ulong);
3825 static int vma_get_mapping_count(const struct mm_struct *);
3826 static struct vm_area_struct *vma_first(const struct mm_struct *);
3827 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3828 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3829 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3830                       unsigned long flags);
3831 
3832 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3833 static void fill_note(struct memelfnote *, const char *, int,
3834                       unsigned int, void *);
3835 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3836 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3837 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3838 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3839 static size_t note_size(const struct memelfnote *);
3840 static void free_note_info(struct elf_note_info *);
3841 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3842 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3843 
3844 static int dump_write(int, const void *, size_t);
3845 static int write_note(struct memelfnote *, int);
3846 static int write_note_info(struct elf_note_info *, int);
3847 
3848 #ifdef BSWAP_NEEDED
3849 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3850 {
3851     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3852     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3853     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3854     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3855     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3856     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3857     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3858     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3859     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3860     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3861     /* cpu times are not filled, so we skip them */
3862     /* regs should be in correct format already */
3863     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3864 }
3865 
3866 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3867 {
3868     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3869     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3870     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3871     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3872     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3873     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3874     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3875 }
3876 
3877 static void bswap_note(struct elf_note *en)
3878 {
3879     bswap32s(&en->n_namesz);
3880     bswap32s(&en->n_descsz);
3881     bswap32s(&en->n_type);
3882 }
3883 #else
3884 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3885 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3886 static inline void bswap_note(struct elf_note *en) { }
3887 #endif /* BSWAP_NEEDED */
3888 
3889 /*
3890  * Minimal support for linux memory regions.  These are needed
3891  * when we are finding out what memory exactly belongs to
3892  * emulated process.  No locks needed here, as long as
3893  * thread that received the signal is stopped.
3894  */
3895 
3896 static struct mm_struct *vma_init(void)
3897 {
3898     struct mm_struct *mm;
3899 
3900     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3901         return (NULL);
3902 
3903     mm->mm_count = 0;
3904     QTAILQ_INIT(&mm->mm_mmap);
3905 
3906     return (mm);
3907 }
3908 
3909 static void vma_delete(struct mm_struct *mm)
3910 {
3911     struct vm_area_struct *vma;
3912 
3913     while ((vma = vma_first(mm)) != NULL) {
3914         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3915         g_free(vma);
3916     }
3917     g_free(mm);
3918 }
3919 
3920 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3921                            target_ulong end, abi_ulong flags)
3922 {
3923     struct vm_area_struct *vma;
3924 
3925     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3926         return (-1);
3927 
3928     vma->vma_start = start;
3929     vma->vma_end = end;
3930     vma->vma_flags = flags;
3931 
3932     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3933     mm->mm_count++;
3934 
3935     return (0);
3936 }
3937 
3938 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3939 {
3940     return (QTAILQ_FIRST(&mm->mm_mmap));
3941 }
3942 
3943 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3944 {
3945     return (QTAILQ_NEXT(vma, vma_link));
3946 }
3947 
3948 static int vma_get_mapping_count(const struct mm_struct *mm)
3949 {
3950     return (mm->mm_count);
3951 }
3952 
3953 /*
3954  * Calculate file (dump) size of given memory region.
3955  */
3956 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3957 {
3958     /* if we cannot even read the first page, skip it */
3959     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3960         return (0);
3961 
3962     /*
3963      * Usually we don't dump executable pages as they contain
3964      * non-writable code that debugger can read directly from
3965      * target library etc.  However, thread stacks are marked
3966      * also executable so we read in first page of given region
3967      * and check whether it contains elf header.  If there is
3968      * no elf header, we dump it.
3969      */
3970     if (vma->vma_flags & PROT_EXEC) {
3971         char page[TARGET_PAGE_SIZE];
3972 
3973         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3974             return 0;
3975         }
3976         if ((page[EI_MAG0] == ELFMAG0) &&
3977             (page[EI_MAG1] == ELFMAG1) &&
3978             (page[EI_MAG2] == ELFMAG2) &&
3979             (page[EI_MAG3] == ELFMAG3)) {
3980             /*
3981              * Mappings are possibly from ELF binary.  Don't dump
3982              * them.
3983              */
3984             return (0);
3985         }
3986     }
3987 
3988     return (vma->vma_end - vma->vma_start);
3989 }
3990 
3991 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3992                       unsigned long flags)
3993 {
3994     struct mm_struct *mm = (struct mm_struct *)priv;
3995 
3996     vma_add_mapping(mm, start, end, flags);
3997     return (0);
3998 }
3999 
4000 static void fill_note(struct memelfnote *note, const char *name, int type,
4001                       unsigned int sz, void *data)
4002 {
4003     unsigned int namesz;
4004 
4005     namesz = strlen(name) + 1;
4006     note->name = name;
4007     note->namesz = namesz;
4008     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4009     note->type = type;
4010     note->datasz = sz;
4011     note->datasz_rounded = roundup(sz, sizeof (int32_t));
4012 
4013     note->data = data;
4014 
4015     /*
4016      * We calculate rounded up note size here as specified by
4017      * ELF document.
4018      */
4019     note->notesz = sizeof (struct elf_note) +
4020         note->namesz_rounded + note->datasz_rounded;
4021 }
4022 
4023 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4024                             uint32_t flags)
4025 {
4026     (void) memset(elf, 0, sizeof(*elf));
4027 
4028     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4029     elf->e_ident[EI_CLASS] = ELF_CLASS;
4030     elf->e_ident[EI_DATA] = ELF_DATA;
4031     elf->e_ident[EI_VERSION] = EV_CURRENT;
4032     elf->e_ident[EI_OSABI] = ELF_OSABI;
4033 
4034     elf->e_type = ET_CORE;
4035     elf->e_machine = machine;
4036     elf->e_version = EV_CURRENT;
4037     elf->e_phoff = sizeof(struct elfhdr);
4038     elf->e_flags = flags;
4039     elf->e_ehsize = sizeof(struct elfhdr);
4040     elf->e_phentsize = sizeof(struct elf_phdr);
4041     elf->e_phnum = segs;
4042 
4043     bswap_ehdr(elf);
4044 }
4045 
4046 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4047 {
4048     phdr->p_type = PT_NOTE;
4049     phdr->p_offset = offset;
4050     phdr->p_vaddr = 0;
4051     phdr->p_paddr = 0;
4052     phdr->p_filesz = sz;
4053     phdr->p_memsz = 0;
4054     phdr->p_flags = 0;
4055     phdr->p_align = 0;
4056 
4057     bswap_phdr(phdr, 1);
4058 }
4059 
4060 static size_t note_size(const struct memelfnote *note)
4061 {
4062     return (note->notesz);
4063 }
4064 
4065 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4066                           const TaskState *ts, int signr)
4067 {
4068     (void) memset(prstatus, 0, sizeof (*prstatus));
4069     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4070     prstatus->pr_pid = ts->ts_tid;
4071     prstatus->pr_ppid = getppid();
4072     prstatus->pr_pgrp = getpgrp();
4073     prstatus->pr_sid = getsid(0);
4074 
4075     bswap_prstatus(prstatus);
4076 }
4077 
4078 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4079 {
4080     char *base_filename;
4081     unsigned int i, len;
4082 
4083     (void) memset(psinfo, 0, sizeof (*psinfo));
4084 
4085     len = ts->info->env_strings - ts->info->arg_strings;
4086     if (len >= ELF_PRARGSZ)
4087         len = ELF_PRARGSZ - 1;
4088     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4089         return -EFAULT;
4090     }
4091     for (i = 0; i < len; i++)
4092         if (psinfo->pr_psargs[i] == 0)
4093             psinfo->pr_psargs[i] = ' ';
4094     psinfo->pr_psargs[len] = 0;
4095 
4096     psinfo->pr_pid = getpid();
4097     psinfo->pr_ppid = getppid();
4098     psinfo->pr_pgrp = getpgrp();
4099     psinfo->pr_sid = getsid(0);
4100     psinfo->pr_uid = getuid();
4101     psinfo->pr_gid = getgid();
4102 
4103     base_filename = g_path_get_basename(ts->bprm->filename);
4104     /*
4105      * Using strncpy here is fine: at max-length,
4106      * this field is not NUL-terminated.
4107      */
4108     (void) strncpy(psinfo->pr_fname, base_filename,
4109                    sizeof(psinfo->pr_fname));
4110 
4111     g_free(base_filename);
4112     bswap_psinfo(psinfo);
4113     return (0);
4114 }
4115 
4116 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4117 {
4118     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4119     elf_addr_t orig_auxv = auxv;
4120     void *ptr;
4121     int len = ts->info->auxv_len;
4122 
4123     /*
4124      * Auxiliary vector is stored in target process stack.  It contains
4125      * {type, value} pairs that we need to dump into note.  This is not
4126      * strictly necessary but we do it here for sake of completeness.
4127      */
4128 
4129     /* read in whole auxv vector and copy it to memelfnote */
4130     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4131     if (ptr != NULL) {
4132         fill_note(note, "CORE", NT_AUXV, len, ptr);
4133         unlock_user(ptr, auxv, len);
4134     }
4135 }
4136 
4137 /*
4138  * Constructs name of coredump file.  We have following convention
4139  * for the name:
4140  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4141  *
4142  * Returns the filename
4143  */
4144 static char *core_dump_filename(const TaskState *ts)
4145 {
4146     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4147     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4148     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4149 
4150     return g_strdup_printf("qemu_%s_%s_%d.core",
4151                            base_filename, nowstr, (int)getpid());
4152 }
4153 
4154 static int dump_write(int fd, const void *ptr, size_t size)
4155 {
4156     const char *bufp = (const char *)ptr;
4157     ssize_t bytes_written, bytes_left;
4158     struct rlimit dumpsize;
4159     off_t pos;
4160 
4161     bytes_written = 0;
4162     getrlimit(RLIMIT_CORE, &dumpsize);
4163     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4164         if (errno == ESPIPE) { /* not a seekable stream */
4165             bytes_left = size;
4166         } else {
4167             return pos;
4168         }
4169     } else {
4170         if (dumpsize.rlim_cur <= pos) {
4171             return -1;
4172         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4173             bytes_left = size;
4174         } else {
4175             size_t limit_left=dumpsize.rlim_cur - pos;
4176             bytes_left = limit_left >= size ? size : limit_left ;
4177         }
4178     }
4179 
4180     /*
4181      * In normal conditions, single write(2) should do but
4182      * in case of socket etc. this mechanism is more portable.
4183      */
4184     do {
4185         bytes_written = write(fd, bufp, bytes_left);
4186         if (bytes_written < 0) {
4187             if (errno == EINTR)
4188                 continue;
4189             return (-1);
4190         } else if (bytes_written == 0) { /* eof */
4191             return (-1);
4192         }
4193         bufp += bytes_written;
4194         bytes_left -= bytes_written;
4195     } while (bytes_left > 0);
4196 
4197     return (0);
4198 }
4199 
4200 static int write_note(struct memelfnote *men, int fd)
4201 {
4202     struct elf_note en;
4203 
4204     en.n_namesz = men->namesz;
4205     en.n_type = men->type;
4206     en.n_descsz = men->datasz;
4207 
4208     bswap_note(&en);
4209 
4210     if (dump_write(fd, &en, sizeof(en)) != 0)
4211         return (-1);
4212     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4213         return (-1);
4214     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4215         return (-1);
4216 
4217     return (0);
4218 }
4219 
4220 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4221 {
4222     CPUState *cpu = env_cpu((CPUArchState *)env);
4223     TaskState *ts = (TaskState *)cpu->opaque;
4224     struct elf_thread_status *ets;
4225 
4226     ets = g_malloc0(sizeof (*ets));
4227     ets->num_notes = 1; /* only prstatus is dumped */
4228     fill_prstatus(&ets->prstatus, ts, 0);
4229     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4230     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4231               &ets->prstatus);
4232 
4233     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4234 
4235     info->notes_size += note_size(&ets->notes[0]);
4236 }
4237 
4238 static void init_note_info(struct elf_note_info *info)
4239 {
4240     /* Initialize the elf_note_info structure so that it is at
4241      * least safe to call free_note_info() on it. Must be
4242      * called before calling fill_note_info().
4243      */
4244     memset(info, 0, sizeof (*info));
4245     QTAILQ_INIT(&info->thread_list);
4246 }
4247 
4248 static int fill_note_info(struct elf_note_info *info,
4249                           long signr, const CPUArchState *env)
4250 {
4251 #define NUMNOTES 3
4252     CPUState *cpu = env_cpu((CPUArchState *)env);
4253     TaskState *ts = (TaskState *)cpu->opaque;
4254     int i;
4255 
4256     info->notes = g_new0(struct memelfnote, NUMNOTES);
4257     if (info->notes == NULL)
4258         return (-ENOMEM);
4259     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4260     if (info->prstatus == NULL)
4261         return (-ENOMEM);
4262     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4263     if (info->prstatus == NULL)
4264         return (-ENOMEM);
4265 
4266     /*
4267      * First fill in status (and registers) of current thread
4268      * including process info & aux vector.
4269      */
4270     fill_prstatus(info->prstatus, ts, signr);
4271     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4272     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4273               sizeof (*info->prstatus), info->prstatus);
4274     fill_psinfo(info->psinfo, ts);
4275     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4276               sizeof (*info->psinfo), info->psinfo);
4277     fill_auxv_note(&info->notes[2], ts);
4278     info->numnote = 3;
4279 
4280     info->notes_size = 0;
4281     for (i = 0; i < info->numnote; i++)
4282         info->notes_size += note_size(&info->notes[i]);
4283 
4284     /* read and fill status of all threads */
4285     WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4286         CPU_FOREACH(cpu) {
4287             if (cpu == thread_cpu) {
4288                 continue;
4289             }
4290             fill_thread_info(info, cpu->env_ptr);
4291         }
4292     }
4293 
4294     return (0);
4295 }
4296 
4297 static void free_note_info(struct elf_note_info *info)
4298 {
4299     struct elf_thread_status *ets;
4300 
4301     while (!QTAILQ_EMPTY(&info->thread_list)) {
4302         ets = QTAILQ_FIRST(&info->thread_list);
4303         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4304         g_free(ets);
4305     }
4306 
4307     g_free(info->prstatus);
4308     g_free(info->psinfo);
4309     g_free(info->notes);
4310 }
4311 
4312 static int write_note_info(struct elf_note_info *info, int fd)
4313 {
4314     struct elf_thread_status *ets;
4315     int i, error = 0;
4316 
4317     /* write prstatus, psinfo and auxv for current thread */
4318     for (i = 0; i < info->numnote; i++)
4319         if ((error = write_note(&info->notes[i], fd)) != 0)
4320             return (error);
4321 
4322     /* write prstatus for each thread */
4323     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4324         if ((error = write_note(&ets->notes[0], fd)) != 0)
4325             return (error);
4326     }
4327 
4328     return (0);
4329 }
4330 
4331 /*
4332  * Write out ELF coredump.
4333  *
4334  * See documentation of ELF object file format in:
4335  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4336  *
4337  * Coredump format in linux is following:
4338  *
4339  * 0   +----------------------+         \
4340  *     | ELF header           | ET_CORE  |
4341  *     +----------------------+          |
4342  *     | ELF program headers  |          |--- headers
4343  *     | - NOTE section       |          |
4344  *     | - PT_LOAD sections   |          |
4345  *     +----------------------+         /
4346  *     | NOTEs:               |
4347  *     | - NT_PRSTATUS        |
4348  *     | - NT_PRSINFO         |
4349  *     | - NT_AUXV            |
4350  *     +----------------------+ <-- aligned to target page
4351  *     | Process memory dump  |
4352  *     :                      :
4353  *     .                      .
4354  *     :                      :
4355  *     |                      |
4356  *     +----------------------+
4357  *
4358  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4359  * NT_PRSINFO  -> struct elf_prpsinfo
4360  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4361  *
4362  * Format follows System V format as close as possible.  Current
4363  * version limitations are as follows:
4364  *     - no floating point registers are dumped
4365  *
4366  * Function returns 0 in case of success, negative errno otherwise.
4367  *
4368  * TODO: make this work also during runtime: it should be
4369  * possible to force coredump from running process and then
4370  * continue processing.  For example qemu could set up SIGUSR2
4371  * handler (provided that target process haven't registered
4372  * handler for that) that does the dump when signal is received.
4373  */
4374 static int elf_core_dump(int signr, const CPUArchState *env)
4375 {
4376     const CPUState *cpu = env_cpu((CPUArchState *)env);
4377     const TaskState *ts = (const TaskState *)cpu->opaque;
4378     struct vm_area_struct *vma = NULL;
4379     g_autofree char *corefile = NULL;
4380     struct elf_note_info info;
4381     struct elfhdr elf;
4382     struct elf_phdr phdr;
4383     struct rlimit dumpsize;
4384     struct mm_struct *mm = NULL;
4385     off_t offset = 0, data_offset = 0;
4386     int segs = 0;
4387     int fd = -1;
4388 
4389     init_note_info(&info);
4390 
4391     errno = 0;
4392     getrlimit(RLIMIT_CORE, &dumpsize);
4393     if (dumpsize.rlim_cur == 0)
4394         return 0;
4395 
4396     corefile = core_dump_filename(ts);
4397 
4398     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4399                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4400         return (-errno);
4401 
4402     /*
4403      * Walk through target process memory mappings and
4404      * set up structure containing this information.  After
4405      * this point vma_xxx functions can be used.
4406      */
4407     if ((mm = vma_init()) == NULL)
4408         goto out;
4409 
4410     walk_memory_regions(mm, vma_walker);
4411     segs = vma_get_mapping_count(mm);
4412 
4413     /*
4414      * Construct valid coredump ELF header.  We also
4415      * add one more segment for notes.
4416      */
4417     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4418     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4419         goto out;
4420 
4421     /* fill in the in-memory version of notes */
4422     if (fill_note_info(&info, signr, env) < 0)
4423         goto out;
4424 
4425     offset += sizeof (elf);                             /* elf header */
4426     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4427 
4428     /* write out notes program header */
4429     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4430 
4431     offset += info.notes_size;
4432     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4433         goto out;
4434 
4435     /*
4436      * ELF specification wants data to start at page boundary so
4437      * we align it here.
4438      */
4439     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4440 
4441     /*
4442      * Write program headers for memory regions mapped in
4443      * the target process.
4444      */
4445     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4446         (void) memset(&phdr, 0, sizeof (phdr));
4447 
4448         phdr.p_type = PT_LOAD;
4449         phdr.p_offset = offset;
4450         phdr.p_vaddr = vma->vma_start;
4451         phdr.p_paddr = 0;
4452         phdr.p_filesz = vma_dump_size(vma);
4453         offset += phdr.p_filesz;
4454         phdr.p_memsz = vma->vma_end - vma->vma_start;
4455         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4456         if (vma->vma_flags & PROT_WRITE)
4457             phdr.p_flags |= PF_W;
4458         if (vma->vma_flags & PROT_EXEC)
4459             phdr.p_flags |= PF_X;
4460         phdr.p_align = ELF_EXEC_PAGESIZE;
4461 
4462         bswap_phdr(&phdr, 1);
4463         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4464             goto out;
4465         }
4466     }
4467 
4468     /*
4469      * Next we write notes just after program headers.  No
4470      * alignment needed here.
4471      */
4472     if (write_note_info(&info, fd) < 0)
4473         goto out;
4474 
4475     /* align data to page boundary */
4476     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4477         goto out;
4478 
4479     /*
4480      * Finally we can dump process memory into corefile as well.
4481      */
4482     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4483         abi_ulong addr;
4484         abi_ulong end;
4485 
4486         end = vma->vma_start + vma_dump_size(vma);
4487 
4488         for (addr = vma->vma_start; addr < end;
4489              addr += TARGET_PAGE_SIZE) {
4490             char page[TARGET_PAGE_SIZE];
4491             int error;
4492 
4493             /*
4494              *  Read in page from target process memory and
4495              *  write it to coredump file.
4496              */
4497             error = copy_from_user(page, addr, sizeof (page));
4498             if (error != 0) {
4499                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4500                                addr);
4501                 errno = -error;
4502                 goto out;
4503             }
4504             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4505                 goto out;
4506         }
4507     }
4508 
4509  out:
4510     free_note_info(&info);
4511     if (mm != NULL)
4512         vma_delete(mm);
4513     (void) close(fd);
4514 
4515     if (errno != 0)
4516         return (-errno);
4517     return (0);
4518 }
4519 #endif /* USE_ELF_CORE_DUMP */
4520 
4521 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4522 {
4523     init_thread(regs, infop);
4524 }
4525