1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/path.h" 11 #include "qemu/queue.h" 12 #include "qemu/guest-random.h" 13 14 #ifdef _ARCH_PPC64 15 #undef ARCH_DLINFO 16 #undef ELF_PLATFORM 17 #undef ELF_HWCAP 18 #undef ELF_HWCAP2 19 #undef ELF_CLASS 20 #undef ELF_DATA 21 #undef ELF_ARCH 22 #endif 23 24 #define ELF_OSABI ELFOSABI_SYSV 25 26 /* from personality.h */ 27 28 /* 29 * Flags for bug emulation. 30 * 31 * These occupy the top three bytes. 32 */ 33 enum { 34 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 35 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 36 descriptors (signal handling) */ 37 MMAP_PAGE_ZERO = 0x0100000, 38 ADDR_COMPAT_LAYOUT = 0x0200000, 39 READ_IMPLIES_EXEC = 0x0400000, 40 ADDR_LIMIT_32BIT = 0x0800000, 41 SHORT_INODE = 0x1000000, 42 WHOLE_SECONDS = 0x2000000, 43 STICKY_TIMEOUTS = 0x4000000, 44 ADDR_LIMIT_3GB = 0x8000000, 45 }; 46 47 /* 48 * Personality types. 49 * 50 * These go in the low byte. Avoid using the top bit, it will 51 * conflict with error returns. 52 */ 53 enum { 54 PER_LINUX = 0x0000, 55 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 56 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 57 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 58 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 60 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 61 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 62 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 63 PER_BSD = 0x0006, 64 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 65 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 66 PER_LINUX32 = 0x0008, 67 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 68 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 69 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 70 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 71 PER_RISCOS = 0x000c, 72 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 73 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 74 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 75 PER_HPUX = 0x0010, 76 PER_MASK = 0x00ff, 77 }; 78 79 /* 80 * Return the base personality without flags. 81 */ 82 #define personality(pers) (pers & PER_MASK) 83 84 int info_is_fdpic(struct image_info *info) 85 { 86 return info->personality == PER_LINUX_FDPIC; 87 } 88 89 /* this flag is uneffective under linux too, should be deleted */ 90 #ifndef MAP_DENYWRITE 91 #define MAP_DENYWRITE 0 92 #endif 93 94 /* should probably go in elf.h */ 95 #ifndef ELIBBAD 96 #define ELIBBAD 80 97 #endif 98 99 #ifdef TARGET_WORDS_BIGENDIAN 100 #define ELF_DATA ELFDATA2MSB 101 #else 102 #define ELF_DATA ELFDATA2LSB 103 #endif 104 105 #ifdef TARGET_ABI_MIPSN32 106 typedef abi_ullong target_elf_greg_t; 107 #define tswapreg(ptr) tswap64(ptr) 108 #else 109 typedef abi_ulong target_elf_greg_t; 110 #define tswapreg(ptr) tswapal(ptr) 111 #endif 112 113 #ifdef USE_UID16 114 typedef abi_ushort target_uid_t; 115 typedef abi_ushort target_gid_t; 116 #else 117 typedef abi_uint target_uid_t; 118 typedef abi_uint target_gid_t; 119 #endif 120 typedef abi_int target_pid_t; 121 122 #ifdef TARGET_I386 123 124 #define ELF_PLATFORM get_elf_platform() 125 126 static const char *get_elf_platform(void) 127 { 128 static char elf_platform[] = "i386"; 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 130 if (family > 6) 131 family = 6; 132 if (family >= 3) 133 elf_platform[1] = '0' + family; 134 return elf_platform; 135 } 136 137 #define ELF_HWCAP get_elf_hwcap() 138 139 static uint32_t get_elf_hwcap(void) 140 { 141 X86CPU *cpu = X86_CPU(thread_cpu); 142 143 return cpu->env.features[FEAT_1_EDX]; 144 } 145 146 #ifdef TARGET_X86_64 147 #define ELF_START_MMAP 0x2aaaaab000ULL 148 149 #define ELF_CLASS ELFCLASS64 150 #define ELF_ARCH EM_X86_64 151 152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 153 { 154 regs->rax = 0; 155 regs->rsp = infop->start_stack; 156 regs->rip = infop->entry; 157 } 158 159 #define ELF_NREG 27 160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 161 162 /* 163 * Note that ELF_NREG should be 29 as there should be place for 164 * TRAPNO and ERR "registers" as well but linux doesn't dump 165 * those. 166 * 167 * See linux kernel: arch/x86/include/asm/elf.h 168 */ 169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 170 { 171 (*regs)[0] = env->regs[15]; 172 (*regs)[1] = env->regs[14]; 173 (*regs)[2] = env->regs[13]; 174 (*regs)[3] = env->regs[12]; 175 (*regs)[4] = env->regs[R_EBP]; 176 (*regs)[5] = env->regs[R_EBX]; 177 (*regs)[6] = env->regs[11]; 178 (*regs)[7] = env->regs[10]; 179 (*regs)[8] = env->regs[9]; 180 (*regs)[9] = env->regs[8]; 181 (*regs)[10] = env->regs[R_EAX]; 182 (*regs)[11] = env->regs[R_ECX]; 183 (*regs)[12] = env->regs[R_EDX]; 184 (*regs)[13] = env->regs[R_ESI]; 185 (*regs)[14] = env->regs[R_EDI]; 186 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 187 (*regs)[16] = env->eip; 188 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 189 (*regs)[18] = env->eflags; 190 (*regs)[19] = env->regs[R_ESP]; 191 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 192 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 193 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 194 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 195 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 196 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 197 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 198 } 199 200 #else 201 202 #define ELF_START_MMAP 0x80000000 203 204 /* 205 * This is used to ensure we don't load something for the wrong architecture. 206 */ 207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 208 209 /* 210 * These are used to set parameters in the core dumps. 211 */ 212 #define ELF_CLASS ELFCLASS32 213 #define ELF_ARCH EM_386 214 215 static inline void init_thread(struct target_pt_regs *regs, 216 struct image_info *infop) 217 { 218 regs->esp = infop->start_stack; 219 regs->eip = infop->entry; 220 221 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 222 starts %edx contains a pointer to a function which might be 223 registered using `atexit'. This provides a mean for the 224 dynamic linker to call DT_FINI functions for shared libraries 225 that have been loaded before the code runs. 226 227 A value of 0 tells we have no such handler. */ 228 regs->edx = 0; 229 } 230 231 #define ELF_NREG 17 232 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 233 234 /* 235 * Note that ELF_NREG should be 19 as there should be place for 236 * TRAPNO and ERR "registers" as well but linux doesn't dump 237 * those. 238 * 239 * See linux kernel: arch/x86/include/asm/elf.h 240 */ 241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 242 { 243 (*regs)[0] = env->regs[R_EBX]; 244 (*regs)[1] = env->regs[R_ECX]; 245 (*regs)[2] = env->regs[R_EDX]; 246 (*regs)[3] = env->regs[R_ESI]; 247 (*regs)[4] = env->regs[R_EDI]; 248 (*regs)[5] = env->regs[R_EBP]; 249 (*regs)[6] = env->regs[R_EAX]; 250 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 251 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 252 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 253 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 254 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 255 (*regs)[12] = env->eip; 256 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 257 (*regs)[14] = env->eflags; 258 (*regs)[15] = env->regs[R_ESP]; 259 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 260 } 261 #endif 262 263 #define USE_ELF_CORE_DUMP 264 #define ELF_EXEC_PAGESIZE 4096 265 266 #endif 267 268 #ifdef TARGET_ARM 269 270 #ifndef TARGET_AARCH64 271 /* 32 bit ARM definitions */ 272 273 #define ELF_START_MMAP 0x80000000 274 275 #define ELF_ARCH EM_ARM 276 #define ELF_CLASS ELFCLASS32 277 278 static inline void init_thread(struct target_pt_regs *regs, 279 struct image_info *infop) 280 { 281 abi_long stack = infop->start_stack; 282 memset(regs, 0, sizeof(*regs)); 283 284 regs->uregs[16] = ARM_CPU_MODE_USR; 285 if (infop->entry & 1) { 286 regs->uregs[16] |= CPSR_T; 287 } 288 regs->uregs[15] = infop->entry & 0xfffffffe; 289 regs->uregs[13] = infop->start_stack; 290 /* FIXME - what to for failure of get_user()? */ 291 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 292 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 293 /* XXX: it seems that r0 is zeroed after ! */ 294 regs->uregs[0] = 0; 295 /* For uClinux PIC binaries. */ 296 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 297 regs->uregs[10] = infop->start_data; 298 299 /* Support ARM FDPIC. */ 300 if (info_is_fdpic(infop)) { 301 /* As described in the ABI document, r7 points to the loadmap info 302 * prepared by the kernel. If an interpreter is needed, r8 points 303 * to the interpreter loadmap and r9 points to the interpreter 304 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 305 * r9 points to the main program PT_DYNAMIC info. 306 */ 307 regs->uregs[7] = infop->loadmap_addr; 308 if (infop->interpreter_loadmap_addr) { 309 /* Executable is dynamically loaded. */ 310 regs->uregs[8] = infop->interpreter_loadmap_addr; 311 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 312 } else { 313 regs->uregs[8] = 0; 314 regs->uregs[9] = infop->pt_dynamic_addr; 315 } 316 } 317 } 318 319 #define ELF_NREG 18 320 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 321 322 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 323 { 324 (*regs)[0] = tswapreg(env->regs[0]); 325 (*regs)[1] = tswapreg(env->regs[1]); 326 (*regs)[2] = tswapreg(env->regs[2]); 327 (*regs)[3] = tswapreg(env->regs[3]); 328 (*regs)[4] = tswapreg(env->regs[4]); 329 (*regs)[5] = tswapreg(env->regs[5]); 330 (*regs)[6] = tswapreg(env->regs[6]); 331 (*regs)[7] = tswapreg(env->regs[7]); 332 (*regs)[8] = tswapreg(env->regs[8]); 333 (*regs)[9] = tswapreg(env->regs[9]); 334 (*regs)[10] = tswapreg(env->regs[10]); 335 (*regs)[11] = tswapreg(env->regs[11]); 336 (*regs)[12] = tswapreg(env->regs[12]); 337 (*regs)[13] = tswapreg(env->regs[13]); 338 (*regs)[14] = tswapreg(env->regs[14]); 339 (*regs)[15] = tswapreg(env->regs[15]); 340 341 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 342 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 343 } 344 345 #define USE_ELF_CORE_DUMP 346 #define ELF_EXEC_PAGESIZE 4096 347 348 enum 349 { 350 ARM_HWCAP_ARM_SWP = 1 << 0, 351 ARM_HWCAP_ARM_HALF = 1 << 1, 352 ARM_HWCAP_ARM_THUMB = 1 << 2, 353 ARM_HWCAP_ARM_26BIT = 1 << 3, 354 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 355 ARM_HWCAP_ARM_FPA = 1 << 5, 356 ARM_HWCAP_ARM_VFP = 1 << 6, 357 ARM_HWCAP_ARM_EDSP = 1 << 7, 358 ARM_HWCAP_ARM_JAVA = 1 << 8, 359 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 360 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 361 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 362 ARM_HWCAP_ARM_NEON = 1 << 12, 363 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 364 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 365 ARM_HWCAP_ARM_TLS = 1 << 15, 366 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 367 ARM_HWCAP_ARM_IDIVA = 1 << 17, 368 ARM_HWCAP_ARM_IDIVT = 1 << 18, 369 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 370 ARM_HWCAP_ARM_LPAE = 1 << 20, 371 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 372 }; 373 374 enum { 375 ARM_HWCAP2_ARM_AES = 1 << 0, 376 ARM_HWCAP2_ARM_PMULL = 1 << 1, 377 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 378 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 379 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 380 }; 381 382 /* The commpage only exists for 32 bit kernels */ 383 384 /* Return 1 if the proposed guest space is suitable for the guest. 385 * Return 0 if the proposed guest space isn't suitable, but another 386 * address space should be tried. 387 * Return -1 if there is no way the proposed guest space can be 388 * valid regardless of the base. 389 * The guest code may leave a page mapped and populate it if the 390 * address is suitable. 391 */ 392 static int init_guest_commpage(unsigned long guest_base, 393 unsigned long guest_size) 394 { 395 unsigned long real_start, test_page_addr; 396 397 /* We need to check that we can force a fault on access to the 398 * commpage at 0xffff0fxx 399 */ 400 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 401 402 /* If the commpage lies within the already allocated guest space, 403 * then there is no way we can allocate it. 404 * 405 * You may be thinking that that this check is redundant because 406 * we already validated the guest size against MAX_RESERVED_VA; 407 * but if qemu_host_page_mask is unusually large, then 408 * test_page_addr may be lower. 409 */ 410 if (test_page_addr >= guest_base 411 && test_page_addr < (guest_base + guest_size)) { 412 return -1; 413 } 414 415 /* Note it needs to be writeable to let us initialise it */ 416 real_start = (unsigned long) 417 mmap((void *)test_page_addr, qemu_host_page_size, 418 PROT_READ | PROT_WRITE, 419 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 420 421 /* If we can't map it then try another address */ 422 if (real_start == -1ul) { 423 return 0; 424 } 425 426 if (real_start != test_page_addr) { 427 /* OS didn't put the page where we asked - unmap and reject */ 428 munmap((void *)real_start, qemu_host_page_size); 429 return 0; 430 } 431 432 /* Leave the page mapped 433 * Populate it (mmap should have left it all 0'd) 434 */ 435 436 /* Kernel helper versions */ 437 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 438 439 /* Now it's populated make it RO */ 440 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 441 perror("Protecting guest commpage"); 442 exit(-1); 443 } 444 445 return 1; /* All good */ 446 } 447 448 #define ELF_HWCAP get_elf_hwcap() 449 #define ELF_HWCAP2 get_elf_hwcap2() 450 451 static uint32_t get_elf_hwcap(void) 452 { 453 ARMCPU *cpu = ARM_CPU(thread_cpu); 454 uint32_t hwcaps = 0; 455 456 hwcaps |= ARM_HWCAP_ARM_SWP; 457 hwcaps |= ARM_HWCAP_ARM_HALF; 458 hwcaps |= ARM_HWCAP_ARM_THUMB; 459 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 460 461 /* probe for the extra features */ 462 #define GET_FEATURE(feat, hwcap) \ 463 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 464 465 #define GET_FEATURE_ID(feat, hwcap) \ 466 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 467 468 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 469 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 470 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 471 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 472 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 473 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 474 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 475 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 476 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 477 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA); 478 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT); 479 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 480 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 481 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 482 * to our VFP_FP16 feature bit. 483 */ 484 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 485 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 486 487 return hwcaps; 488 } 489 490 static uint32_t get_elf_hwcap2(void) 491 { 492 ARMCPU *cpu = ARM_CPU(thread_cpu); 493 uint32_t hwcaps = 0; 494 495 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 496 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 497 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 498 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 499 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 500 return hwcaps; 501 } 502 503 #undef GET_FEATURE 504 #undef GET_FEATURE_ID 505 506 #define ELF_PLATFORM get_elf_platform() 507 508 static const char *get_elf_platform(void) 509 { 510 CPUARMState *env = thread_cpu->env_ptr; 511 512 #ifdef TARGET_WORDS_BIGENDIAN 513 # define END "b" 514 #else 515 # define END "l" 516 #endif 517 518 if (arm_feature(env, ARM_FEATURE_V8)) { 519 return "v8" END; 520 } else if (arm_feature(env, ARM_FEATURE_V7)) { 521 if (arm_feature(env, ARM_FEATURE_M)) { 522 return "v7m" END; 523 } else { 524 return "v7" END; 525 } 526 } else if (arm_feature(env, ARM_FEATURE_V6)) { 527 return "v6" END; 528 } else if (arm_feature(env, ARM_FEATURE_V5)) { 529 return "v5" END; 530 } else { 531 return "v4" END; 532 } 533 534 #undef END 535 } 536 537 #else 538 /* 64 bit ARM definitions */ 539 #define ELF_START_MMAP 0x80000000 540 541 #define ELF_ARCH EM_AARCH64 542 #define ELF_CLASS ELFCLASS64 543 #ifdef TARGET_WORDS_BIGENDIAN 544 # define ELF_PLATFORM "aarch64_be" 545 #else 546 # define ELF_PLATFORM "aarch64" 547 #endif 548 549 static inline void init_thread(struct target_pt_regs *regs, 550 struct image_info *infop) 551 { 552 abi_long stack = infop->start_stack; 553 memset(regs, 0, sizeof(*regs)); 554 555 regs->pc = infop->entry & ~0x3ULL; 556 regs->sp = stack; 557 } 558 559 #define ELF_NREG 34 560 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 561 562 static void elf_core_copy_regs(target_elf_gregset_t *regs, 563 const CPUARMState *env) 564 { 565 int i; 566 567 for (i = 0; i < 32; i++) { 568 (*regs)[i] = tswapreg(env->xregs[i]); 569 } 570 (*regs)[32] = tswapreg(env->pc); 571 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 572 } 573 574 #define USE_ELF_CORE_DUMP 575 #define ELF_EXEC_PAGESIZE 4096 576 577 enum { 578 ARM_HWCAP_A64_FP = 1 << 0, 579 ARM_HWCAP_A64_ASIMD = 1 << 1, 580 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 581 ARM_HWCAP_A64_AES = 1 << 3, 582 ARM_HWCAP_A64_PMULL = 1 << 4, 583 ARM_HWCAP_A64_SHA1 = 1 << 5, 584 ARM_HWCAP_A64_SHA2 = 1 << 6, 585 ARM_HWCAP_A64_CRC32 = 1 << 7, 586 ARM_HWCAP_A64_ATOMICS = 1 << 8, 587 ARM_HWCAP_A64_FPHP = 1 << 9, 588 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 589 ARM_HWCAP_A64_CPUID = 1 << 11, 590 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 591 ARM_HWCAP_A64_JSCVT = 1 << 13, 592 ARM_HWCAP_A64_FCMA = 1 << 14, 593 ARM_HWCAP_A64_LRCPC = 1 << 15, 594 ARM_HWCAP_A64_DCPOP = 1 << 16, 595 ARM_HWCAP_A64_SHA3 = 1 << 17, 596 ARM_HWCAP_A64_SM3 = 1 << 18, 597 ARM_HWCAP_A64_SM4 = 1 << 19, 598 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 599 ARM_HWCAP_A64_SHA512 = 1 << 21, 600 ARM_HWCAP_A64_SVE = 1 << 22, 601 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 602 ARM_HWCAP_A64_DIT = 1 << 24, 603 ARM_HWCAP_A64_USCAT = 1 << 25, 604 ARM_HWCAP_A64_ILRCPC = 1 << 26, 605 ARM_HWCAP_A64_FLAGM = 1 << 27, 606 ARM_HWCAP_A64_SSBS = 1 << 28, 607 ARM_HWCAP_A64_SB = 1 << 29, 608 ARM_HWCAP_A64_PACA = 1 << 30, 609 ARM_HWCAP_A64_PACG = 1UL << 31, 610 }; 611 612 #define ELF_HWCAP get_elf_hwcap() 613 614 static uint32_t get_elf_hwcap(void) 615 { 616 ARMCPU *cpu = ARM_CPU(thread_cpu); 617 uint32_t hwcaps = 0; 618 619 hwcaps |= ARM_HWCAP_A64_FP; 620 hwcaps |= ARM_HWCAP_A64_ASIMD; 621 hwcaps |= ARM_HWCAP_A64_CPUID; 622 623 /* probe for the extra features */ 624 #define GET_FEATURE_ID(feat, hwcap) \ 625 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 626 627 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 628 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 629 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 630 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 631 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 632 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 633 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 634 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 635 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 636 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 637 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 638 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 639 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 640 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 641 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 642 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 643 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 644 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 645 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 646 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 647 648 #undef GET_FEATURE_ID 649 650 return hwcaps; 651 } 652 653 #endif /* not TARGET_AARCH64 */ 654 #endif /* TARGET_ARM */ 655 656 #ifdef TARGET_SPARC 657 #ifdef TARGET_SPARC64 658 659 #define ELF_START_MMAP 0x80000000 660 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 661 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 662 #ifndef TARGET_ABI32 663 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 664 #else 665 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 666 #endif 667 668 #define ELF_CLASS ELFCLASS64 669 #define ELF_ARCH EM_SPARCV9 670 671 #define STACK_BIAS 2047 672 673 static inline void init_thread(struct target_pt_regs *regs, 674 struct image_info *infop) 675 { 676 #ifndef TARGET_ABI32 677 regs->tstate = 0; 678 #endif 679 regs->pc = infop->entry; 680 regs->npc = regs->pc + 4; 681 regs->y = 0; 682 #ifdef TARGET_ABI32 683 regs->u_regs[14] = infop->start_stack - 16 * 4; 684 #else 685 if (personality(infop->personality) == PER_LINUX32) 686 regs->u_regs[14] = infop->start_stack - 16 * 4; 687 else 688 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 689 #endif 690 } 691 692 #else 693 #define ELF_START_MMAP 0x80000000 694 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 695 | HWCAP_SPARC_MULDIV) 696 697 #define ELF_CLASS ELFCLASS32 698 #define ELF_ARCH EM_SPARC 699 700 static inline void init_thread(struct target_pt_regs *regs, 701 struct image_info *infop) 702 { 703 regs->psr = 0; 704 regs->pc = infop->entry; 705 regs->npc = regs->pc + 4; 706 regs->y = 0; 707 regs->u_regs[14] = infop->start_stack - 16 * 4; 708 } 709 710 #endif 711 #endif 712 713 #ifdef TARGET_PPC 714 715 #define ELF_MACHINE PPC_ELF_MACHINE 716 #define ELF_START_MMAP 0x80000000 717 718 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 719 720 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 721 722 #define ELF_CLASS ELFCLASS64 723 724 #else 725 726 #define ELF_CLASS ELFCLASS32 727 728 #endif 729 730 #define ELF_ARCH EM_PPC 731 732 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 733 See arch/powerpc/include/asm/cputable.h. */ 734 enum { 735 QEMU_PPC_FEATURE_32 = 0x80000000, 736 QEMU_PPC_FEATURE_64 = 0x40000000, 737 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 738 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 739 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 740 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 741 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 742 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 743 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 744 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 745 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 746 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 747 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 748 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 749 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 750 QEMU_PPC_FEATURE_CELL = 0x00010000, 751 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 752 QEMU_PPC_FEATURE_SMT = 0x00004000, 753 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 754 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 755 QEMU_PPC_FEATURE_PA6T = 0x00000800, 756 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 757 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 758 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 759 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 760 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 761 762 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 763 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 764 765 /* Feature definitions in AT_HWCAP2. */ 766 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 767 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 768 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 769 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 770 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 771 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 772 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 773 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 774 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 775 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 776 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 777 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 778 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 779 }; 780 781 #define ELF_HWCAP get_elf_hwcap() 782 783 static uint32_t get_elf_hwcap(void) 784 { 785 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 786 uint32_t features = 0; 787 788 /* We don't have to be terribly complete here; the high points are 789 Altivec/FP/SPE support. Anything else is just a bonus. */ 790 #define GET_FEATURE(flag, feature) \ 791 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 792 #define GET_FEATURE2(flags, feature) \ 793 do { \ 794 if ((cpu->env.insns_flags2 & flags) == flags) { \ 795 features |= feature; \ 796 } \ 797 } while (0) 798 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 799 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 800 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 801 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 802 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 803 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 804 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 805 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 806 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 807 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 808 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 809 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 810 QEMU_PPC_FEATURE_ARCH_2_06); 811 #undef GET_FEATURE 812 #undef GET_FEATURE2 813 814 return features; 815 } 816 817 #define ELF_HWCAP2 get_elf_hwcap2() 818 819 static uint32_t get_elf_hwcap2(void) 820 { 821 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 822 uint32_t features = 0; 823 824 #define GET_FEATURE(flag, feature) \ 825 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 826 #define GET_FEATURE2(flag, feature) \ 827 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 828 829 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 830 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 831 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 832 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 833 QEMU_PPC_FEATURE2_VEC_CRYPTO); 834 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 835 QEMU_PPC_FEATURE2_DARN); 836 837 #undef GET_FEATURE 838 #undef GET_FEATURE2 839 840 return features; 841 } 842 843 /* 844 * The requirements here are: 845 * - keep the final alignment of sp (sp & 0xf) 846 * - make sure the 32-bit value at the first 16 byte aligned position of 847 * AUXV is greater than 16 for glibc compatibility. 848 * AT_IGNOREPPC is used for that. 849 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 850 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 851 */ 852 #define DLINFO_ARCH_ITEMS 5 853 #define ARCH_DLINFO \ 854 do { \ 855 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 856 /* \ 857 * Handle glibc compatibility: these magic entries must \ 858 * be at the lowest addresses in the final auxv. \ 859 */ \ 860 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 861 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 862 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 863 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 864 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 865 } while (0) 866 867 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 868 { 869 _regs->gpr[1] = infop->start_stack; 870 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 871 if (get_ppc64_abi(infop) < 2) { 872 uint64_t val; 873 get_user_u64(val, infop->entry + 8); 874 _regs->gpr[2] = val + infop->load_bias; 875 get_user_u64(val, infop->entry); 876 infop->entry = val + infop->load_bias; 877 } else { 878 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 879 } 880 #endif 881 _regs->nip = infop->entry; 882 } 883 884 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 885 #define ELF_NREG 48 886 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 887 888 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 889 { 890 int i; 891 target_ulong ccr = 0; 892 893 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 894 (*regs)[i] = tswapreg(env->gpr[i]); 895 } 896 897 (*regs)[32] = tswapreg(env->nip); 898 (*regs)[33] = tswapreg(env->msr); 899 (*regs)[35] = tswapreg(env->ctr); 900 (*regs)[36] = tswapreg(env->lr); 901 (*regs)[37] = tswapreg(env->xer); 902 903 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 904 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 905 } 906 (*regs)[38] = tswapreg(ccr); 907 } 908 909 #define USE_ELF_CORE_DUMP 910 #define ELF_EXEC_PAGESIZE 4096 911 912 #endif 913 914 #ifdef TARGET_MIPS 915 916 #define ELF_START_MMAP 0x80000000 917 918 #ifdef TARGET_MIPS64 919 #define ELF_CLASS ELFCLASS64 920 #else 921 #define ELF_CLASS ELFCLASS32 922 #endif 923 #define ELF_ARCH EM_MIPS 924 925 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 926 927 static inline void init_thread(struct target_pt_regs *regs, 928 struct image_info *infop) 929 { 930 regs->cp0_status = 2 << CP0St_KSU; 931 regs->cp0_epc = infop->entry; 932 regs->regs[29] = infop->start_stack; 933 } 934 935 /* See linux kernel: arch/mips/include/asm/elf.h. */ 936 #define ELF_NREG 45 937 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 938 939 /* See linux kernel: arch/mips/include/asm/reg.h. */ 940 enum { 941 #ifdef TARGET_MIPS64 942 TARGET_EF_R0 = 0, 943 #else 944 TARGET_EF_R0 = 6, 945 #endif 946 TARGET_EF_R26 = TARGET_EF_R0 + 26, 947 TARGET_EF_R27 = TARGET_EF_R0 + 27, 948 TARGET_EF_LO = TARGET_EF_R0 + 32, 949 TARGET_EF_HI = TARGET_EF_R0 + 33, 950 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 951 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 952 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 953 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 954 }; 955 956 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 957 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 958 { 959 int i; 960 961 for (i = 0; i < TARGET_EF_R0; i++) { 962 (*regs)[i] = 0; 963 } 964 (*regs)[TARGET_EF_R0] = 0; 965 966 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 967 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 968 } 969 970 (*regs)[TARGET_EF_R26] = 0; 971 (*regs)[TARGET_EF_R27] = 0; 972 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 973 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 974 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 975 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 976 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 977 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 978 } 979 980 #define USE_ELF_CORE_DUMP 981 #define ELF_EXEC_PAGESIZE 4096 982 983 /* See arch/mips/include/uapi/asm/hwcap.h. */ 984 enum { 985 HWCAP_MIPS_R6 = (1 << 0), 986 HWCAP_MIPS_MSA = (1 << 1), 987 }; 988 989 #define ELF_HWCAP get_elf_hwcap() 990 991 static uint32_t get_elf_hwcap(void) 992 { 993 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 994 uint32_t hwcaps = 0; 995 996 #define GET_FEATURE(flag, hwcap) \ 997 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 998 999 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 1000 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 1001 1002 #undef GET_FEATURE 1003 1004 return hwcaps; 1005 } 1006 1007 #endif /* TARGET_MIPS */ 1008 1009 #ifdef TARGET_MICROBLAZE 1010 1011 #define ELF_START_MMAP 0x80000000 1012 1013 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1014 1015 #define ELF_CLASS ELFCLASS32 1016 #define ELF_ARCH EM_MICROBLAZE 1017 1018 static inline void init_thread(struct target_pt_regs *regs, 1019 struct image_info *infop) 1020 { 1021 regs->pc = infop->entry; 1022 regs->r1 = infop->start_stack; 1023 1024 } 1025 1026 #define ELF_EXEC_PAGESIZE 4096 1027 1028 #define USE_ELF_CORE_DUMP 1029 #define ELF_NREG 38 1030 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1031 1032 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1033 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1034 { 1035 int i, pos = 0; 1036 1037 for (i = 0; i < 32; i++) { 1038 (*regs)[pos++] = tswapreg(env->regs[i]); 1039 } 1040 1041 for (i = 0; i < 6; i++) { 1042 (*regs)[pos++] = tswapreg(env->sregs[i]); 1043 } 1044 } 1045 1046 #endif /* TARGET_MICROBLAZE */ 1047 1048 #ifdef TARGET_NIOS2 1049 1050 #define ELF_START_MMAP 0x80000000 1051 1052 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1053 1054 #define ELF_CLASS ELFCLASS32 1055 #define ELF_ARCH EM_ALTERA_NIOS2 1056 1057 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1058 { 1059 regs->ea = infop->entry; 1060 regs->sp = infop->start_stack; 1061 regs->estatus = 0x3; 1062 } 1063 1064 #define ELF_EXEC_PAGESIZE 4096 1065 1066 #define USE_ELF_CORE_DUMP 1067 #define ELF_NREG 49 1068 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1069 1070 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1071 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1072 const CPUNios2State *env) 1073 { 1074 int i; 1075 1076 (*regs)[0] = -1; 1077 for (i = 1; i < 8; i++) /* r0-r7 */ 1078 (*regs)[i] = tswapreg(env->regs[i + 7]); 1079 1080 for (i = 8; i < 16; i++) /* r8-r15 */ 1081 (*regs)[i] = tswapreg(env->regs[i - 8]); 1082 1083 for (i = 16; i < 24; i++) /* r16-r23 */ 1084 (*regs)[i] = tswapreg(env->regs[i + 7]); 1085 (*regs)[24] = -1; /* R_ET */ 1086 (*regs)[25] = -1; /* R_BT */ 1087 (*regs)[26] = tswapreg(env->regs[R_GP]); 1088 (*regs)[27] = tswapreg(env->regs[R_SP]); 1089 (*regs)[28] = tswapreg(env->regs[R_FP]); 1090 (*regs)[29] = tswapreg(env->regs[R_EA]); 1091 (*regs)[30] = -1; /* R_SSTATUS */ 1092 (*regs)[31] = tswapreg(env->regs[R_RA]); 1093 1094 (*regs)[32] = tswapreg(env->regs[R_PC]); 1095 1096 (*regs)[33] = -1; /* R_STATUS */ 1097 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1098 1099 for (i = 35; i < 49; i++) /* ... */ 1100 (*regs)[i] = -1; 1101 } 1102 1103 #endif /* TARGET_NIOS2 */ 1104 1105 #ifdef TARGET_OPENRISC 1106 1107 #define ELF_START_MMAP 0x08000000 1108 1109 #define ELF_ARCH EM_OPENRISC 1110 #define ELF_CLASS ELFCLASS32 1111 #define ELF_DATA ELFDATA2MSB 1112 1113 static inline void init_thread(struct target_pt_regs *regs, 1114 struct image_info *infop) 1115 { 1116 regs->pc = infop->entry; 1117 regs->gpr[1] = infop->start_stack; 1118 } 1119 1120 #define USE_ELF_CORE_DUMP 1121 #define ELF_EXEC_PAGESIZE 8192 1122 1123 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1124 #define ELF_NREG 34 /* gprs and pc, sr */ 1125 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1126 1127 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1128 const CPUOpenRISCState *env) 1129 { 1130 int i; 1131 1132 for (i = 0; i < 32; i++) { 1133 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1134 } 1135 (*regs)[32] = tswapreg(env->pc); 1136 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1137 } 1138 #define ELF_HWCAP 0 1139 #define ELF_PLATFORM NULL 1140 1141 #endif /* TARGET_OPENRISC */ 1142 1143 #ifdef TARGET_SH4 1144 1145 #define ELF_START_MMAP 0x80000000 1146 1147 #define ELF_CLASS ELFCLASS32 1148 #define ELF_ARCH EM_SH 1149 1150 static inline void init_thread(struct target_pt_regs *regs, 1151 struct image_info *infop) 1152 { 1153 /* Check other registers XXXXX */ 1154 regs->pc = infop->entry; 1155 regs->regs[15] = infop->start_stack; 1156 } 1157 1158 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1159 #define ELF_NREG 23 1160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1161 1162 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1163 enum { 1164 TARGET_REG_PC = 16, 1165 TARGET_REG_PR = 17, 1166 TARGET_REG_SR = 18, 1167 TARGET_REG_GBR = 19, 1168 TARGET_REG_MACH = 20, 1169 TARGET_REG_MACL = 21, 1170 TARGET_REG_SYSCALL = 22 1171 }; 1172 1173 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1174 const CPUSH4State *env) 1175 { 1176 int i; 1177 1178 for (i = 0; i < 16; i++) { 1179 (*regs)[i] = tswapreg(env->gregs[i]); 1180 } 1181 1182 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1183 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1184 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1185 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1186 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1187 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1188 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1189 } 1190 1191 #define USE_ELF_CORE_DUMP 1192 #define ELF_EXEC_PAGESIZE 4096 1193 1194 enum { 1195 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1196 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1197 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1198 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1199 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1200 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1201 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1202 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1203 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1204 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1205 }; 1206 1207 #define ELF_HWCAP get_elf_hwcap() 1208 1209 static uint32_t get_elf_hwcap(void) 1210 { 1211 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1212 uint32_t hwcap = 0; 1213 1214 hwcap |= SH_CPU_HAS_FPU; 1215 1216 if (cpu->env.features & SH_FEATURE_SH4A) { 1217 hwcap |= SH_CPU_HAS_LLSC; 1218 } 1219 1220 return hwcap; 1221 } 1222 1223 #endif 1224 1225 #ifdef TARGET_CRIS 1226 1227 #define ELF_START_MMAP 0x80000000 1228 1229 #define ELF_CLASS ELFCLASS32 1230 #define ELF_ARCH EM_CRIS 1231 1232 static inline void init_thread(struct target_pt_regs *regs, 1233 struct image_info *infop) 1234 { 1235 regs->erp = infop->entry; 1236 } 1237 1238 #define ELF_EXEC_PAGESIZE 8192 1239 1240 #endif 1241 1242 #ifdef TARGET_M68K 1243 1244 #define ELF_START_MMAP 0x80000000 1245 1246 #define ELF_CLASS ELFCLASS32 1247 #define ELF_ARCH EM_68K 1248 1249 /* ??? Does this need to do anything? 1250 #define ELF_PLAT_INIT(_r) */ 1251 1252 static inline void init_thread(struct target_pt_regs *regs, 1253 struct image_info *infop) 1254 { 1255 regs->usp = infop->start_stack; 1256 regs->sr = 0; 1257 regs->pc = infop->entry; 1258 } 1259 1260 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1261 #define ELF_NREG 20 1262 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1263 1264 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1265 { 1266 (*regs)[0] = tswapreg(env->dregs[1]); 1267 (*regs)[1] = tswapreg(env->dregs[2]); 1268 (*regs)[2] = tswapreg(env->dregs[3]); 1269 (*regs)[3] = tswapreg(env->dregs[4]); 1270 (*regs)[4] = tswapreg(env->dregs[5]); 1271 (*regs)[5] = tswapreg(env->dregs[6]); 1272 (*regs)[6] = tswapreg(env->dregs[7]); 1273 (*regs)[7] = tswapreg(env->aregs[0]); 1274 (*regs)[8] = tswapreg(env->aregs[1]); 1275 (*regs)[9] = tswapreg(env->aregs[2]); 1276 (*regs)[10] = tswapreg(env->aregs[3]); 1277 (*regs)[11] = tswapreg(env->aregs[4]); 1278 (*regs)[12] = tswapreg(env->aregs[5]); 1279 (*regs)[13] = tswapreg(env->aregs[6]); 1280 (*regs)[14] = tswapreg(env->dregs[0]); 1281 (*regs)[15] = tswapreg(env->aregs[7]); 1282 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1283 (*regs)[17] = tswapreg(env->sr); 1284 (*regs)[18] = tswapreg(env->pc); 1285 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1286 } 1287 1288 #define USE_ELF_CORE_DUMP 1289 #define ELF_EXEC_PAGESIZE 8192 1290 1291 #endif 1292 1293 #ifdef TARGET_ALPHA 1294 1295 #define ELF_START_MMAP (0x30000000000ULL) 1296 1297 #define ELF_CLASS ELFCLASS64 1298 #define ELF_ARCH EM_ALPHA 1299 1300 static inline void init_thread(struct target_pt_regs *regs, 1301 struct image_info *infop) 1302 { 1303 regs->pc = infop->entry; 1304 regs->ps = 8; 1305 regs->usp = infop->start_stack; 1306 } 1307 1308 #define ELF_EXEC_PAGESIZE 8192 1309 1310 #endif /* TARGET_ALPHA */ 1311 1312 #ifdef TARGET_S390X 1313 1314 #define ELF_START_MMAP (0x20000000000ULL) 1315 1316 #define ELF_CLASS ELFCLASS64 1317 #define ELF_DATA ELFDATA2MSB 1318 #define ELF_ARCH EM_S390 1319 1320 #include "elf.h" 1321 1322 #define ELF_HWCAP get_elf_hwcap() 1323 1324 #define GET_FEATURE(_feat, _hwcap) \ 1325 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1326 1327 static uint32_t get_elf_hwcap(void) 1328 { 1329 /* 1330 * Let's assume we always have esan3 and zarch. 1331 * 31-bit processes can use 64-bit registers (high gprs). 1332 */ 1333 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1334 1335 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1336 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1337 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1338 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1339 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1340 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1341 hwcap |= HWCAP_S390_ETF3EH; 1342 } 1343 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1344 1345 return hwcap; 1346 } 1347 1348 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1349 { 1350 regs->psw.addr = infop->entry; 1351 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1352 regs->gprs[15] = infop->start_stack; 1353 } 1354 1355 #endif /* TARGET_S390X */ 1356 1357 #ifdef TARGET_TILEGX 1358 1359 /* 42 bits real used address, a half for user mode */ 1360 #define ELF_START_MMAP (0x00000020000000000ULL) 1361 1362 #define elf_check_arch(x) ((x) == EM_TILEGX) 1363 1364 #define ELF_CLASS ELFCLASS64 1365 #define ELF_DATA ELFDATA2LSB 1366 #define ELF_ARCH EM_TILEGX 1367 1368 static inline void init_thread(struct target_pt_regs *regs, 1369 struct image_info *infop) 1370 { 1371 regs->pc = infop->entry; 1372 regs->sp = infop->start_stack; 1373 1374 } 1375 1376 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1377 1378 #endif /* TARGET_TILEGX */ 1379 1380 #ifdef TARGET_RISCV 1381 1382 #define ELF_START_MMAP 0x80000000 1383 #define ELF_ARCH EM_RISCV 1384 1385 #ifdef TARGET_RISCV32 1386 #define ELF_CLASS ELFCLASS32 1387 #else 1388 #define ELF_CLASS ELFCLASS64 1389 #endif 1390 1391 static inline void init_thread(struct target_pt_regs *regs, 1392 struct image_info *infop) 1393 { 1394 regs->sepc = infop->entry; 1395 regs->sp = infop->start_stack; 1396 } 1397 1398 #define ELF_EXEC_PAGESIZE 4096 1399 1400 #endif /* TARGET_RISCV */ 1401 1402 #ifdef TARGET_HPPA 1403 1404 #define ELF_START_MMAP 0x80000000 1405 #define ELF_CLASS ELFCLASS32 1406 #define ELF_ARCH EM_PARISC 1407 #define ELF_PLATFORM "PARISC" 1408 #define STACK_GROWS_DOWN 0 1409 #define STACK_ALIGNMENT 64 1410 1411 static inline void init_thread(struct target_pt_regs *regs, 1412 struct image_info *infop) 1413 { 1414 regs->iaoq[0] = infop->entry; 1415 regs->iaoq[1] = infop->entry + 4; 1416 regs->gr[23] = 0; 1417 regs->gr[24] = infop->arg_start; 1418 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1419 /* The top-of-stack contains a linkage buffer. */ 1420 regs->gr[30] = infop->start_stack + 64; 1421 regs->gr[31] = infop->entry; 1422 } 1423 1424 #endif /* TARGET_HPPA */ 1425 1426 #ifdef TARGET_XTENSA 1427 1428 #define ELF_START_MMAP 0x20000000 1429 1430 #define ELF_CLASS ELFCLASS32 1431 #define ELF_ARCH EM_XTENSA 1432 1433 static inline void init_thread(struct target_pt_regs *regs, 1434 struct image_info *infop) 1435 { 1436 regs->windowbase = 0; 1437 regs->windowstart = 1; 1438 regs->areg[1] = infop->start_stack; 1439 regs->pc = infop->entry; 1440 } 1441 1442 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1443 #define ELF_NREG 128 1444 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1445 1446 enum { 1447 TARGET_REG_PC, 1448 TARGET_REG_PS, 1449 TARGET_REG_LBEG, 1450 TARGET_REG_LEND, 1451 TARGET_REG_LCOUNT, 1452 TARGET_REG_SAR, 1453 TARGET_REG_WINDOWSTART, 1454 TARGET_REG_WINDOWBASE, 1455 TARGET_REG_THREADPTR, 1456 TARGET_REG_AR0 = 64, 1457 }; 1458 1459 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1460 const CPUXtensaState *env) 1461 { 1462 unsigned i; 1463 1464 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1465 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1466 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1467 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1468 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1469 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1470 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1471 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1472 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1473 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1474 for (i = 0; i < env->config->nareg; ++i) { 1475 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1476 } 1477 } 1478 1479 #define USE_ELF_CORE_DUMP 1480 #define ELF_EXEC_PAGESIZE 4096 1481 1482 #endif /* TARGET_XTENSA */ 1483 1484 #ifndef ELF_PLATFORM 1485 #define ELF_PLATFORM (NULL) 1486 #endif 1487 1488 #ifndef ELF_MACHINE 1489 #define ELF_MACHINE ELF_ARCH 1490 #endif 1491 1492 #ifndef elf_check_arch 1493 #define elf_check_arch(x) ((x) == ELF_ARCH) 1494 #endif 1495 1496 #ifndef ELF_HWCAP 1497 #define ELF_HWCAP 0 1498 #endif 1499 1500 #ifndef STACK_GROWS_DOWN 1501 #define STACK_GROWS_DOWN 1 1502 #endif 1503 1504 #ifndef STACK_ALIGNMENT 1505 #define STACK_ALIGNMENT 16 1506 #endif 1507 1508 #ifdef TARGET_ABI32 1509 #undef ELF_CLASS 1510 #define ELF_CLASS ELFCLASS32 1511 #undef bswaptls 1512 #define bswaptls(ptr) bswap32s(ptr) 1513 #endif 1514 1515 #include "elf.h" 1516 1517 struct exec 1518 { 1519 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1520 unsigned int a_text; /* length of text, in bytes */ 1521 unsigned int a_data; /* length of data, in bytes */ 1522 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1523 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1524 unsigned int a_entry; /* start address */ 1525 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1526 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1527 }; 1528 1529 1530 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1531 #define OMAGIC 0407 1532 #define NMAGIC 0410 1533 #define ZMAGIC 0413 1534 #define QMAGIC 0314 1535 1536 /* Necessary parameters */ 1537 #define TARGET_ELF_EXEC_PAGESIZE \ 1538 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1539 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1540 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1541 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1542 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1543 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1544 1545 #define DLINFO_ITEMS 15 1546 1547 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1548 { 1549 memcpy(to, from, n); 1550 } 1551 1552 #ifdef BSWAP_NEEDED 1553 static void bswap_ehdr(struct elfhdr *ehdr) 1554 { 1555 bswap16s(&ehdr->e_type); /* Object file type */ 1556 bswap16s(&ehdr->e_machine); /* Architecture */ 1557 bswap32s(&ehdr->e_version); /* Object file version */ 1558 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1559 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1560 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1561 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1562 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1563 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1564 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1565 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1566 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1567 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1568 } 1569 1570 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1571 { 1572 int i; 1573 for (i = 0; i < phnum; ++i, ++phdr) { 1574 bswap32s(&phdr->p_type); /* Segment type */ 1575 bswap32s(&phdr->p_flags); /* Segment flags */ 1576 bswaptls(&phdr->p_offset); /* Segment file offset */ 1577 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1578 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1579 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1580 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1581 bswaptls(&phdr->p_align); /* Segment alignment */ 1582 } 1583 } 1584 1585 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1586 { 1587 int i; 1588 for (i = 0; i < shnum; ++i, ++shdr) { 1589 bswap32s(&shdr->sh_name); 1590 bswap32s(&shdr->sh_type); 1591 bswaptls(&shdr->sh_flags); 1592 bswaptls(&shdr->sh_addr); 1593 bswaptls(&shdr->sh_offset); 1594 bswaptls(&shdr->sh_size); 1595 bswap32s(&shdr->sh_link); 1596 bswap32s(&shdr->sh_info); 1597 bswaptls(&shdr->sh_addralign); 1598 bswaptls(&shdr->sh_entsize); 1599 } 1600 } 1601 1602 static void bswap_sym(struct elf_sym *sym) 1603 { 1604 bswap32s(&sym->st_name); 1605 bswaptls(&sym->st_value); 1606 bswaptls(&sym->st_size); 1607 bswap16s(&sym->st_shndx); 1608 } 1609 1610 #ifdef TARGET_MIPS 1611 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1612 { 1613 bswap16s(&abiflags->version); 1614 bswap32s(&abiflags->ases); 1615 bswap32s(&abiflags->isa_ext); 1616 bswap32s(&abiflags->flags1); 1617 bswap32s(&abiflags->flags2); 1618 } 1619 #endif 1620 #else 1621 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1622 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1623 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1624 static inline void bswap_sym(struct elf_sym *sym) { } 1625 #ifdef TARGET_MIPS 1626 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1627 #endif 1628 #endif 1629 1630 #ifdef USE_ELF_CORE_DUMP 1631 static int elf_core_dump(int, const CPUArchState *); 1632 #endif /* USE_ELF_CORE_DUMP */ 1633 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1634 1635 /* Verify the portions of EHDR within E_IDENT for the target. 1636 This can be performed before bswapping the entire header. */ 1637 static bool elf_check_ident(struct elfhdr *ehdr) 1638 { 1639 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1640 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1641 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1642 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1643 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1644 && ehdr->e_ident[EI_DATA] == ELF_DATA 1645 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1646 } 1647 1648 /* Verify the portions of EHDR outside of E_IDENT for the target. 1649 This has to wait until after bswapping the header. */ 1650 static bool elf_check_ehdr(struct elfhdr *ehdr) 1651 { 1652 return (elf_check_arch(ehdr->e_machine) 1653 && ehdr->e_ehsize == sizeof(struct elfhdr) 1654 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1655 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1656 } 1657 1658 /* 1659 * 'copy_elf_strings()' copies argument/envelope strings from user 1660 * memory to free pages in kernel mem. These are in a format ready 1661 * to be put directly into the top of new user memory. 1662 * 1663 */ 1664 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1665 abi_ulong p, abi_ulong stack_limit) 1666 { 1667 char *tmp; 1668 int len, i; 1669 abi_ulong top = p; 1670 1671 if (!p) { 1672 return 0; /* bullet-proofing */ 1673 } 1674 1675 if (STACK_GROWS_DOWN) { 1676 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1677 for (i = argc - 1; i >= 0; --i) { 1678 tmp = argv[i]; 1679 if (!tmp) { 1680 fprintf(stderr, "VFS: argc is wrong"); 1681 exit(-1); 1682 } 1683 len = strlen(tmp) + 1; 1684 tmp += len; 1685 1686 if (len > (p - stack_limit)) { 1687 return 0; 1688 } 1689 while (len) { 1690 int bytes_to_copy = (len > offset) ? offset : len; 1691 tmp -= bytes_to_copy; 1692 p -= bytes_to_copy; 1693 offset -= bytes_to_copy; 1694 len -= bytes_to_copy; 1695 1696 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1697 1698 if (offset == 0) { 1699 memcpy_to_target(p, scratch, top - p); 1700 top = p; 1701 offset = TARGET_PAGE_SIZE; 1702 } 1703 } 1704 } 1705 if (p != top) { 1706 memcpy_to_target(p, scratch + offset, top - p); 1707 } 1708 } else { 1709 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1710 for (i = 0; i < argc; ++i) { 1711 tmp = argv[i]; 1712 if (!tmp) { 1713 fprintf(stderr, "VFS: argc is wrong"); 1714 exit(-1); 1715 } 1716 len = strlen(tmp) + 1; 1717 if (len > (stack_limit - p)) { 1718 return 0; 1719 } 1720 while (len) { 1721 int bytes_to_copy = (len > remaining) ? remaining : len; 1722 1723 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1724 1725 tmp += bytes_to_copy; 1726 remaining -= bytes_to_copy; 1727 p += bytes_to_copy; 1728 len -= bytes_to_copy; 1729 1730 if (remaining == 0) { 1731 memcpy_to_target(top, scratch, p - top); 1732 top = p; 1733 remaining = TARGET_PAGE_SIZE; 1734 } 1735 } 1736 } 1737 if (p != top) { 1738 memcpy_to_target(top, scratch, p - top); 1739 } 1740 } 1741 1742 return p; 1743 } 1744 1745 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1746 * argument/environment space. Newer kernels (>2.6.33) allow more, 1747 * dependent on stack size, but guarantee at least 32 pages for 1748 * backwards compatibility. 1749 */ 1750 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1751 1752 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1753 struct image_info *info) 1754 { 1755 abi_ulong size, error, guard; 1756 1757 size = guest_stack_size; 1758 if (size < STACK_LOWER_LIMIT) { 1759 size = STACK_LOWER_LIMIT; 1760 } 1761 guard = TARGET_PAGE_SIZE; 1762 if (guard < qemu_real_host_page_size) { 1763 guard = qemu_real_host_page_size; 1764 } 1765 1766 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1767 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1768 if (error == -1) { 1769 perror("mmap stack"); 1770 exit(-1); 1771 } 1772 1773 /* We reserve one extra page at the top of the stack as guard. */ 1774 if (STACK_GROWS_DOWN) { 1775 target_mprotect(error, guard, PROT_NONE); 1776 info->stack_limit = error + guard; 1777 return info->stack_limit + size - sizeof(void *); 1778 } else { 1779 target_mprotect(error + size, guard, PROT_NONE); 1780 info->stack_limit = error + size; 1781 return error; 1782 } 1783 } 1784 1785 /* Map and zero the bss. We need to explicitly zero any fractional pages 1786 after the data section (i.e. bss). */ 1787 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1788 { 1789 uintptr_t host_start, host_map_start, host_end; 1790 1791 last_bss = TARGET_PAGE_ALIGN(last_bss); 1792 1793 /* ??? There is confusion between qemu_real_host_page_size and 1794 qemu_host_page_size here and elsewhere in target_mmap, which 1795 may lead to the end of the data section mapping from the file 1796 not being mapped. At least there was an explicit test and 1797 comment for that here, suggesting that "the file size must 1798 be known". The comment probably pre-dates the introduction 1799 of the fstat system call in target_mmap which does in fact 1800 find out the size. What isn't clear is if the workaround 1801 here is still actually needed. For now, continue with it, 1802 but merge it with the "normal" mmap that would allocate the bss. */ 1803 1804 host_start = (uintptr_t) g2h(elf_bss); 1805 host_end = (uintptr_t) g2h(last_bss); 1806 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1807 1808 if (host_map_start < host_end) { 1809 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1810 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1811 if (p == MAP_FAILED) { 1812 perror("cannot mmap brk"); 1813 exit(-1); 1814 } 1815 } 1816 1817 /* Ensure that the bss page(s) are valid */ 1818 if ((page_get_flags(last_bss-1) & prot) != prot) { 1819 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1820 } 1821 1822 if (host_start < host_map_start) { 1823 memset((void *)host_start, 0, host_map_start - host_start); 1824 } 1825 } 1826 1827 #ifdef TARGET_ARM 1828 static int elf_is_fdpic(struct elfhdr *exec) 1829 { 1830 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1831 } 1832 #else 1833 /* Default implementation, always false. */ 1834 static int elf_is_fdpic(struct elfhdr *exec) 1835 { 1836 return 0; 1837 } 1838 #endif 1839 1840 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1841 { 1842 uint16_t n; 1843 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1844 1845 /* elf32_fdpic_loadseg */ 1846 n = info->nsegs; 1847 while (n--) { 1848 sp -= 12; 1849 put_user_u32(loadsegs[n].addr, sp+0); 1850 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1851 put_user_u32(loadsegs[n].p_memsz, sp+8); 1852 } 1853 1854 /* elf32_fdpic_loadmap */ 1855 sp -= 4; 1856 put_user_u16(0, sp+0); /* version */ 1857 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1858 1859 info->personality = PER_LINUX_FDPIC; 1860 info->loadmap_addr = sp; 1861 1862 return sp; 1863 } 1864 1865 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1866 struct elfhdr *exec, 1867 struct image_info *info, 1868 struct image_info *interp_info) 1869 { 1870 abi_ulong sp; 1871 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1872 int size; 1873 int i; 1874 abi_ulong u_rand_bytes; 1875 uint8_t k_rand_bytes[16]; 1876 abi_ulong u_platform; 1877 const char *k_platform; 1878 const int n = sizeof(elf_addr_t); 1879 1880 sp = p; 1881 1882 /* Needs to be before we load the env/argc/... */ 1883 if (elf_is_fdpic(exec)) { 1884 /* Need 4 byte alignment for these structs */ 1885 sp &= ~3; 1886 sp = loader_build_fdpic_loadmap(info, sp); 1887 info->other_info = interp_info; 1888 if (interp_info) { 1889 interp_info->other_info = info; 1890 sp = loader_build_fdpic_loadmap(interp_info, sp); 1891 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1892 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1893 } else { 1894 info->interpreter_loadmap_addr = 0; 1895 info->interpreter_pt_dynamic_addr = 0; 1896 } 1897 } 1898 1899 u_platform = 0; 1900 k_platform = ELF_PLATFORM; 1901 if (k_platform) { 1902 size_t len = strlen(k_platform) + 1; 1903 if (STACK_GROWS_DOWN) { 1904 sp -= (len + n - 1) & ~(n - 1); 1905 u_platform = sp; 1906 /* FIXME - check return value of memcpy_to_target() for failure */ 1907 memcpy_to_target(sp, k_platform, len); 1908 } else { 1909 memcpy_to_target(sp, k_platform, len); 1910 u_platform = sp; 1911 sp += len + 1; 1912 } 1913 } 1914 1915 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1916 * the argv and envp pointers. 1917 */ 1918 if (STACK_GROWS_DOWN) { 1919 sp = QEMU_ALIGN_DOWN(sp, 16); 1920 } else { 1921 sp = QEMU_ALIGN_UP(sp, 16); 1922 } 1923 1924 /* 1925 * Generate 16 random bytes for userspace PRNG seeding. 1926 */ 1927 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 1928 if (STACK_GROWS_DOWN) { 1929 sp -= 16; 1930 u_rand_bytes = sp; 1931 /* FIXME - check return value of memcpy_to_target() for failure */ 1932 memcpy_to_target(sp, k_rand_bytes, 16); 1933 } else { 1934 memcpy_to_target(sp, k_rand_bytes, 16); 1935 u_rand_bytes = sp; 1936 sp += 16; 1937 } 1938 1939 size = (DLINFO_ITEMS + 1) * 2; 1940 if (k_platform) 1941 size += 2; 1942 #ifdef DLINFO_ARCH_ITEMS 1943 size += DLINFO_ARCH_ITEMS * 2; 1944 #endif 1945 #ifdef ELF_HWCAP2 1946 size += 2; 1947 #endif 1948 info->auxv_len = size * n; 1949 1950 size += envc + argc + 2; 1951 size += 1; /* argc itself */ 1952 size *= n; 1953 1954 /* Allocate space and finalize stack alignment for entry now. */ 1955 if (STACK_GROWS_DOWN) { 1956 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1957 sp = u_argc; 1958 } else { 1959 u_argc = sp; 1960 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1961 } 1962 1963 u_argv = u_argc + n; 1964 u_envp = u_argv + (argc + 1) * n; 1965 u_auxv = u_envp + (envc + 1) * n; 1966 info->saved_auxv = u_auxv; 1967 info->arg_start = u_argv; 1968 info->arg_end = u_argv + argc * n; 1969 1970 /* This is correct because Linux defines 1971 * elf_addr_t as Elf32_Off / Elf64_Off 1972 */ 1973 #define NEW_AUX_ENT(id, val) do { \ 1974 put_user_ual(id, u_auxv); u_auxv += n; \ 1975 put_user_ual(val, u_auxv); u_auxv += n; \ 1976 } while(0) 1977 1978 #ifdef ARCH_DLINFO 1979 /* 1980 * ARCH_DLINFO must come first so platform specific code can enforce 1981 * special alignment requirements on the AUXV if necessary (eg. PPC). 1982 */ 1983 ARCH_DLINFO; 1984 #endif 1985 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1986 * on info->auxv_len will trigger. 1987 */ 1988 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1989 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1990 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1991 if ((info->alignment & ~qemu_host_page_mask) != 0) { 1992 /* Target doesn't support host page size alignment */ 1993 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1994 } else { 1995 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 1996 qemu_host_page_size))); 1997 } 1998 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1999 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2000 NEW_AUX_ENT(AT_ENTRY, info->entry); 2001 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2002 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2003 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2004 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2005 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2006 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2007 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2008 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2009 2010 #ifdef ELF_HWCAP2 2011 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2012 #endif 2013 2014 if (u_platform) { 2015 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2016 } 2017 NEW_AUX_ENT (AT_NULL, 0); 2018 #undef NEW_AUX_ENT 2019 2020 /* Check that our initial calculation of the auxv length matches how much 2021 * we actually put into it. 2022 */ 2023 assert(info->auxv_len == u_auxv - info->saved_auxv); 2024 2025 put_user_ual(argc, u_argc); 2026 2027 p = info->arg_strings; 2028 for (i = 0; i < argc; ++i) { 2029 put_user_ual(p, u_argv); 2030 u_argv += n; 2031 p += target_strlen(p) + 1; 2032 } 2033 put_user_ual(0, u_argv); 2034 2035 p = info->env_strings; 2036 for (i = 0; i < envc; ++i) { 2037 put_user_ual(p, u_envp); 2038 u_envp += n; 2039 p += target_strlen(p) + 1; 2040 } 2041 put_user_ual(0, u_envp); 2042 2043 return sp; 2044 } 2045 2046 unsigned long init_guest_space(unsigned long host_start, 2047 unsigned long host_size, 2048 unsigned long guest_start, 2049 bool fixed) 2050 { 2051 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2052 unsigned long align = MAX(SHMLBA, qemu_host_page_size); 2053 unsigned long current_start, aligned_start; 2054 int flags; 2055 2056 assert(host_start || host_size); 2057 2058 /* If just a starting address is given, then just verify that 2059 * address. */ 2060 if (host_start && !host_size) { 2061 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2062 if (init_guest_commpage(host_start, host_size) != 1) { 2063 return (unsigned long)-1; 2064 } 2065 #endif 2066 return host_start; 2067 } 2068 2069 /* Setup the initial flags and start address. */ 2070 current_start = host_start & -align; 2071 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2072 if (fixed) { 2073 flags |= MAP_FIXED; 2074 } 2075 2076 /* Otherwise, a non-zero size region of memory needs to be mapped 2077 * and validated. */ 2078 2079 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2080 /* On 32-bit ARM, we need to map not just the usable memory, but 2081 * also the commpage. Try to find a suitable place by allocating 2082 * a big chunk for all of it. If host_start, then the naive 2083 * strategy probably does good enough. 2084 */ 2085 if (!host_start) { 2086 unsigned long guest_full_size, host_full_size, real_start; 2087 2088 guest_full_size = 2089 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 2090 host_full_size = guest_full_size - guest_start; 2091 real_start = (unsigned long) 2092 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 2093 if (real_start == (unsigned long)-1) { 2094 if (host_size < host_full_size - qemu_host_page_size) { 2095 /* We failed to map a continous segment, but we're 2096 * allowed to have a gap between the usable memory and 2097 * the commpage where other things can be mapped. 2098 * This sparseness gives us more flexibility to find 2099 * an address range. 2100 */ 2101 goto naive; 2102 } 2103 return (unsigned long)-1; 2104 } 2105 munmap((void *)real_start, host_full_size); 2106 if (real_start & (align - 1)) { 2107 /* The same thing again, but with extra 2108 * so that we can shift around alignment. 2109 */ 2110 unsigned long real_size = host_full_size + qemu_host_page_size; 2111 real_start = (unsigned long) 2112 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 2113 if (real_start == (unsigned long)-1) { 2114 if (host_size < host_full_size - qemu_host_page_size) { 2115 goto naive; 2116 } 2117 return (unsigned long)-1; 2118 } 2119 munmap((void *)real_start, real_size); 2120 real_start = ROUND_UP(real_start, align); 2121 } 2122 current_start = real_start; 2123 } 2124 naive: 2125 #endif 2126 2127 while (1) { 2128 unsigned long real_start, real_size, aligned_size; 2129 aligned_size = real_size = host_size; 2130 2131 /* Do not use mmap_find_vma here because that is limited to the 2132 * guest address space. We are going to make the 2133 * guest address space fit whatever we're given. 2134 */ 2135 real_start = (unsigned long) 2136 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2137 if (real_start == (unsigned long)-1) { 2138 return (unsigned long)-1; 2139 } 2140 2141 /* Check to see if the address is valid. */ 2142 if (host_start && real_start != current_start) { 2143 goto try_again; 2144 } 2145 2146 /* Ensure the address is properly aligned. */ 2147 if (real_start & (align - 1)) { 2148 /* Ideally, we adjust like 2149 * 2150 * pages: [ ][ ][ ][ ][ ] 2151 * old: [ real ] 2152 * [ aligned ] 2153 * new: [ real ] 2154 * [ aligned ] 2155 * 2156 * But if there is something else mapped right after it, 2157 * then obviously it won't have room to grow, and the 2158 * kernel will put the new larger real someplace else with 2159 * unknown alignment (if we made it to here, then 2160 * fixed=false). Which is why we grow real by a full page 2161 * size, instead of by part of one; so that even if we get 2162 * moved, we can still guarantee alignment. But this does 2163 * mean that there is a padding of < 1 page both before 2164 * and after the aligned range; the "after" could could 2165 * cause problems for ARM emulation where it could butt in 2166 * to where we need to put the commpage. 2167 */ 2168 munmap((void *)real_start, host_size); 2169 real_size = aligned_size + qemu_host_page_size; 2170 real_start = (unsigned long) 2171 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2172 if (real_start == (unsigned long)-1) { 2173 return (unsigned long)-1; 2174 } 2175 aligned_start = ROUND_UP(real_start, align); 2176 } else { 2177 aligned_start = real_start; 2178 } 2179 2180 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2181 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2182 int valid = init_guest_commpage(aligned_start - guest_start, 2183 aligned_size + guest_start); 2184 if (valid == -1) { 2185 munmap((void *)real_start, real_size); 2186 return (unsigned long)-1; 2187 } else if (valid == 0) { 2188 goto try_again; 2189 } 2190 #endif 2191 2192 /* If nothing has said `return -1` or `goto try_again` yet, 2193 * then the address we have is good. 2194 */ 2195 break; 2196 2197 try_again: 2198 /* That address didn't work. Unmap and try a different one. 2199 * The address the host picked because is typically right at 2200 * the top of the host address space and leaves the guest with 2201 * no usable address space. Resort to a linear search. We 2202 * already compensated for mmap_min_addr, so this should not 2203 * happen often. Probably means we got unlucky and host 2204 * address space randomization put a shared library somewhere 2205 * inconvenient. 2206 * 2207 * This is probably a good strategy if host_start, but is 2208 * probably a bad strategy if not, which means we got here 2209 * because of trouble with ARM commpage setup. 2210 */ 2211 munmap((void *)real_start, real_size); 2212 current_start += align; 2213 if (host_start == current_start) { 2214 /* Theoretically possible if host doesn't have any suitably 2215 * aligned areas. Normally the first mmap will fail. 2216 */ 2217 return (unsigned long)-1; 2218 } 2219 } 2220 2221 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2222 2223 return aligned_start; 2224 } 2225 2226 static void probe_guest_base(const char *image_name, 2227 abi_ulong loaddr, abi_ulong hiaddr) 2228 { 2229 /* Probe for a suitable guest base address, if the user has not set 2230 * it explicitly, and set guest_base appropriately. 2231 * In case of error we will print a suitable message and exit. 2232 */ 2233 const char *errmsg; 2234 if (!have_guest_base && !reserved_va) { 2235 unsigned long host_start, real_start, host_size; 2236 2237 /* Round addresses to page boundaries. */ 2238 loaddr &= qemu_host_page_mask; 2239 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2240 2241 if (loaddr < mmap_min_addr) { 2242 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2243 } else { 2244 host_start = loaddr; 2245 if (host_start != loaddr) { 2246 errmsg = "Address overflow loading ELF binary"; 2247 goto exit_errmsg; 2248 } 2249 } 2250 host_size = hiaddr - loaddr; 2251 2252 /* Setup the initial guest memory space with ranges gleaned from 2253 * the ELF image that is being loaded. 2254 */ 2255 real_start = init_guest_space(host_start, host_size, loaddr, false); 2256 if (real_start == (unsigned long)-1) { 2257 errmsg = "Unable to find space for application"; 2258 goto exit_errmsg; 2259 } 2260 guest_base = real_start - loaddr; 2261 2262 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2263 TARGET_ABI_FMT_lx " to 0x%lx\n", 2264 loaddr, real_start); 2265 } 2266 return; 2267 2268 exit_errmsg: 2269 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2270 exit(-1); 2271 } 2272 2273 2274 /* Load an ELF image into the address space. 2275 2276 IMAGE_NAME is the filename of the image, to use in error messages. 2277 IMAGE_FD is the open file descriptor for the image. 2278 2279 BPRM_BUF is a copy of the beginning of the file; this of course 2280 contains the elf file header at offset 0. It is assumed that this 2281 buffer is sufficiently aligned to present no problems to the host 2282 in accessing data at aligned offsets within the buffer. 2283 2284 On return: INFO values will be filled in, as necessary or available. */ 2285 2286 static void load_elf_image(const char *image_name, int image_fd, 2287 struct image_info *info, char **pinterp_name, 2288 char bprm_buf[BPRM_BUF_SIZE]) 2289 { 2290 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2291 struct elf_phdr *phdr; 2292 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2293 int i, retval; 2294 const char *errmsg; 2295 2296 /* First of all, some simple consistency checks */ 2297 errmsg = "Invalid ELF image for this architecture"; 2298 if (!elf_check_ident(ehdr)) { 2299 goto exit_errmsg; 2300 } 2301 bswap_ehdr(ehdr); 2302 if (!elf_check_ehdr(ehdr)) { 2303 goto exit_errmsg; 2304 } 2305 2306 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2307 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2308 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2309 } else { 2310 phdr = (struct elf_phdr *) alloca(i); 2311 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2312 if (retval != i) { 2313 goto exit_read; 2314 } 2315 } 2316 bswap_phdr(phdr, ehdr->e_phnum); 2317 2318 info->nsegs = 0; 2319 info->pt_dynamic_addr = 0; 2320 2321 mmap_lock(); 2322 2323 /* Find the maximum size of the image and allocate an appropriate 2324 amount of memory to handle that. */ 2325 loaddr = -1, hiaddr = 0; 2326 info->alignment = 0; 2327 for (i = 0; i < ehdr->e_phnum; ++i) { 2328 if (phdr[i].p_type == PT_LOAD) { 2329 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2330 if (a < loaddr) { 2331 loaddr = a; 2332 } 2333 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2334 if (a > hiaddr) { 2335 hiaddr = a; 2336 } 2337 ++info->nsegs; 2338 info->alignment |= phdr[i].p_align; 2339 } 2340 } 2341 2342 load_addr = loaddr; 2343 if (ehdr->e_type == ET_DYN) { 2344 /* The image indicates that it can be loaded anywhere. Find a 2345 location that can hold the memory space required. If the 2346 image is pre-linked, LOADDR will be non-zero. Since we do 2347 not supply MAP_FIXED here we'll use that address if and 2348 only if it remains available. */ 2349 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2350 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2351 -1, 0); 2352 if (load_addr == -1) { 2353 goto exit_perror; 2354 } 2355 } else if (pinterp_name != NULL) { 2356 /* This is the main executable. Make sure that the low 2357 address does not conflict with MMAP_MIN_ADDR or the 2358 QEMU application itself. */ 2359 probe_guest_base(image_name, loaddr, hiaddr); 2360 } 2361 load_bias = load_addr - loaddr; 2362 2363 if (elf_is_fdpic(ehdr)) { 2364 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2365 g_malloc(sizeof(*loadsegs) * info->nsegs); 2366 2367 for (i = 0; i < ehdr->e_phnum; ++i) { 2368 switch (phdr[i].p_type) { 2369 case PT_DYNAMIC: 2370 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2371 break; 2372 case PT_LOAD: 2373 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2374 loadsegs->p_vaddr = phdr[i].p_vaddr; 2375 loadsegs->p_memsz = phdr[i].p_memsz; 2376 ++loadsegs; 2377 break; 2378 } 2379 } 2380 } 2381 2382 info->load_bias = load_bias; 2383 info->load_addr = load_addr; 2384 info->entry = ehdr->e_entry + load_bias; 2385 info->start_code = -1; 2386 info->end_code = 0; 2387 info->start_data = -1; 2388 info->end_data = 0; 2389 info->brk = 0; 2390 info->elf_flags = ehdr->e_flags; 2391 2392 for (i = 0; i < ehdr->e_phnum; i++) { 2393 struct elf_phdr *eppnt = phdr + i; 2394 if (eppnt->p_type == PT_LOAD) { 2395 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2396 int elf_prot = 0; 2397 2398 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2399 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2400 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2401 2402 vaddr = load_bias + eppnt->p_vaddr; 2403 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2404 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2405 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2406 2407 /* 2408 * Some segments may be completely empty without any backing file 2409 * segment, in that case just let zero_bss allocate an empty buffer 2410 * for it. 2411 */ 2412 if (eppnt->p_filesz != 0) { 2413 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2414 MAP_PRIVATE | MAP_FIXED, 2415 image_fd, eppnt->p_offset - vaddr_po); 2416 2417 if (error == -1) { 2418 goto exit_perror; 2419 } 2420 } 2421 2422 vaddr_ef = vaddr + eppnt->p_filesz; 2423 vaddr_em = vaddr + eppnt->p_memsz; 2424 2425 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2426 if (vaddr_ef < vaddr_em) { 2427 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2428 } 2429 2430 /* Find the full program boundaries. */ 2431 if (elf_prot & PROT_EXEC) { 2432 if (vaddr < info->start_code) { 2433 info->start_code = vaddr; 2434 } 2435 if (vaddr_ef > info->end_code) { 2436 info->end_code = vaddr_ef; 2437 } 2438 } 2439 if (elf_prot & PROT_WRITE) { 2440 if (vaddr < info->start_data) { 2441 info->start_data = vaddr; 2442 } 2443 if (vaddr_ef > info->end_data) { 2444 info->end_data = vaddr_ef; 2445 } 2446 if (vaddr_em > info->brk) { 2447 info->brk = vaddr_em; 2448 } 2449 } 2450 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2451 char *interp_name; 2452 2453 if (*pinterp_name) { 2454 errmsg = "Multiple PT_INTERP entries"; 2455 goto exit_errmsg; 2456 } 2457 interp_name = malloc(eppnt->p_filesz); 2458 if (!interp_name) { 2459 goto exit_perror; 2460 } 2461 2462 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2463 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2464 eppnt->p_filesz); 2465 } else { 2466 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2467 eppnt->p_offset); 2468 if (retval != eppnt->p_filesz) { 2469 goto exit_perror; 2470 } 2471 } 2472 if (interp_name[eppnt->p_filesz - 1] != 0) { 2473 errmsg = "Invalid PT_INTERP entry"; 2474 goto exit_errmsg; 2475 } 2476 *pinterp_name = interp_name; 2477 #ifdef TARGET_MIPS 2478 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2479 Mips_elf_abiflags_v0 abiflags; 2480 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2481 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2482 goto exit_errmsg; 2483 } 2484 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2485 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2486 sizeof(Mips_elf_abiflags_v0)); 2487 } else { 2488 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2489 eppnt->p_offset); 2490 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2491 goto exit_perror; 2492 } 2493 } 2494 bswap_mips_abiflags(&abiflags); 2495 info->fp_abi = abiflags.fp_abi; 2496 #endif 2497 } 2498 } 2499 2500 if (info->end_data == 0) { 2501 info->start_data = info->end_code; 2502 info->end_data = info->end_code; 2503 info->brk = info->end_code; 2504 } 2505 2506 if (qemu_log_enabled()) { 2507 load_symbols(ehdr, image_fd, load_bias); 2508 } 2509 2510 mmap_unlock(); 2511 2512 close(image_fd); 2513 return; 2514 2515 exit_read: 2516 if (retval >= 0) { 2517 errmsg = "Incomplete read of file header"; 2518 goto exit_errmsg; 2519 } 2520 exit_perror: 2521 errmsg = strerror(errno); 2522 exit_errmsg: 2523 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2524 exit(-1); 2525 } 2526 2527 static void load_elf_interp(const char *filename, struct image_info *info, 2528 char bprm_buf[BPRM_BUF_SIZE]) 2529 { 2530 int fd, retval; 2531 2532 fd = open(path(filename), O_RDONLY); 2533 if (fd < 0) { 2534 goto exit_perror; 2535 } 2536 2537 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2538 if (retval < 0) { 2539 goto exit_perror; 2540 } 2541 if (retval < BPRM_BUF_SIZE) { 2542 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2543 } 2544 2545 load_elf_image(filename, fd, info, NULL, bprm_buf); 2546 return; 2547 2548 exit_perror: 2549 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2550 exit(-1); 2551 } 2552 2553 static int symfind(const void *s0, const void *s1) 2554 { 2555 target_ulong addr = *(target_ulong *)s0; 2556 struct elf_sym *sym = (struct elf_sym *)s1; 2557 int result = 0; 2558 if (addr < sym->st_value) { 2559 result = -1; 2560 } else if (addr >= sym->st_value + sym->st_size) { 2561 result = 1; 2562 } 2563 return result; 2564 } 2565 2566 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2567 { 2568 #if ELF_CLASS == ELFCLASS32 2569 struct elf_sym *syms = s->disas_symtab.elf32; 2570 #else 2571 struct elf_sym *syms = s->disas_symtab.elf64; 2572 #endif 2573 2574 // binary search 2575 struct elf_sym *sym; 2576 2577 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2578 if (sym != NULL) { 2579 return s->disas_strtab + sym->st_name; 2580 } 2581 2582 return ""; 2583 } 2584 2585 /* FIXME: This should use elf_ops.h */ 2586 static int symcmp(const void *s0, const void *s1) 2587 { 2588 struct elf_sym *sym0 = (struct elf_sym *)s0; 2589 struct elf_sym *sym1 = (struct elf_sym *)s1; 2590 return (sym0->st_value < sym1->st_value) 2591 ? -1 2592 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2593 } 2594 2595 /* Best attempt to load symbols from this ELF object. */ 2596 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2597 { 2598 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2599 uint64_t segsz; 2600 struct elf_shdr *shdr; 2601 char *strings = NULL; 2602 struct syminfo *s = NULL; 2603 struct elf_sym *new_syms, *syms = NULL; 2604 2605 shnum = hdr->e_shnum; 2606 i = shnum * sizeof(struct elf_shdr); 2607 shdr = (struct elf_shdr *)alloca(i); 2608 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2609 return; 2610 } 2611 2612 bswap_shdr(shdr, shnum); 2613 for (i = 0; i < shnum; ++i) { 2614 if (shdr[i].sh_type == SHT_SYMTAB) { 2615 sym_idx = i; 2616 str_idx = shdr[i].sh_link; 2617 goto found; 2618 } 2619 } 2620 2621 /* There will be no symbol table if the file was stripped. */ 2622 return; 2623 2624 found: 2625 /* Now know where the strtab and symtab are. Snarf them. */ 2626 s = g_try_new(struct syminfo, 1); 2627 if (!s) { 2628 goto give_up; 2629 } 2630 2631 segsz = shdr[str_idx].sh_size; 2632 s->disas_strtab = strings = g_try_malloc(segsz); 2633 if (!strings || 2634 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2635 goto give_up; 2636 } 2637 2638 segsz = shdr[sym_idx].sh_size; 2639 syms = g_try_malloc(segsz); 2640 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2641 goto give_up; 2642 } 2643 2644 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2645 /* Implausibly large symbol table: give up rather than ploughing 2646 * on with the number of symbols calculation overflowing 2647 */ 2648 goto give_up; 2649 } 2650 nsyms = segsz / sizeof(struct elf_sym); 2651 for (i = 0; i < nsyms; ) { 2652 bswap_sym(syms + i); 2653 /* Throw away entries which we do not need. */ 2654 if (syms[i].st_shndx == SHN_UNDEF 2655 || syms[i].st_shndx >= SHN_LORESERVE 2656 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2657 if (i < --nsyms) { 2658 syms[i] = syms[nsyms]; 2659 } 2660 } else { 2661 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2662 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2663 syms[i].st_value &= ~(target_ulong)1; 2664 #endif 2665 syms[i].st_value += load_bias; 2666 i++; 2667 } 2668 } 2669 2670 /* No "useful" symbol. */ 2671 if (nsyms == 0) { 2672 goto give_up; 2673 } 2674 2675 /* Attempt to free the storage associated with the local symbols 2676 that we threw away. Whether or not this has any effect on the 2677 memory allocation depends on the malloc implementation and how 2678 many symbols we managed to discard. */ 2679 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2680 if (new_syms == NULL) { 2681 goto give_up; 2682 } 2683 syms = new_syms; 2684 2685 qsort(syms, nsyms, sizeof(*syms), symcmp); 2686 2687 s->disas_num_syms = nsyms; 2688 #if ELF_CLASS == ELFCLASS32 2689 s->disas_symtab.elf32 = syms; 2690 #else 2691 s->disas_symtab.elf64 = syms; 2692 #endif 2693 s->lookup_symbol = lookup_symbolxx; 2694 s->next = syminfos; 2695 syminfos = s; 2696 2697 return; 2698 2699 give_up: 2700 g_free(s); 2701 g_free(strings); 2702 g_free(syms); 2703 } 2704 2705 uint32_t get_elf_eflags(int fd) 2706 { 2707 struct elfhdr ehdr; 2708 off_t offset; 2709 int ret; 2710 2711 /* Read ELF header */ 2712 offset = lseek(fd, 0, SEEK_SET); 2713 if (offset == (off_t) -1) { 2714 return 0; 2715 } 2716 ret = read(fd, &ehdr, sizeof(ehdr)); 2717 if (ret < sizeof(ehdr)) { 2718 return 0; 2719 } 2720 offset = lseek(fd, offset, SEEK_SET); 2721 if (offset == (off_t) -1) { 2722 return 0; 2723 } 2724 2725 /* Check ELF signature */ 2726 if (!elf_check_ident(&ehdr)) { 2727 return 0; 2728 } 2729 2730 /* check header */ 2731 bswap_ehdr(&ehdr); 2732 if (!elf_check_ehdr(&ehdr)) { 2733 return 0; 2734 } 2735 2736 /* return architecture id */ 2737 return ehdr.e_flags; 2738 } 2739 2740 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2741 { 2742 struct image_info interp_info; 2743 struct elfhdr elf_ex; 2744 char *elf_interpreter = NULL; 2745 char *scratch; 2746 2747 memset(&interp_info, 0, sizeof(interp_info)); 2748 #ifdef TARGET_MIPS 2749 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 2750 #endif 2751 2752 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2753 2754 load_elf_image(bprm->filename, bprm->fd, info, 2755 &elf_interpreter, bprm->buf); 2756 2757 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2758 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2759 when we load the interpreter. */ 2760 elf_ex = *(struct elfhdr *)bprm->buf; 2761 2762 /* Do this so that we can load the interpreter, if need be. We will 2763 change some of these later */ 2764 bprm->p = setup_arg_pages(bprm, info); 2765 2766 scratch = g_new0(char, TARGET_PAGE_SIZE); 2767 if (STACK_GROWS_DOWN) { 2768 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2769 bprm->p, info->stack_limit); 2770 info->file_string = bprm->p; 2771 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2772 bprm->p, info->stack_limit); 2773 info->env_strings = bprm->p; 2774 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2775 bprm->p, info->stack_limit); 2776 info->arg_strings = bprm->p; 2777 } else { 2778 info->arg_strings = bprm->p; 2779 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2780 bprm->p, info->stack_limit); 2781 info->env_strings = bprm->p; 2782 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2783 bprm->p, info->stack_limit); 2784 info->file_string = bprm->p; 2785 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2786 bprm->p, info->stack_limit); 2787 } 2788 2789 g_free(scratch); 2790 2791 if (!bprm->p) { 2792 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2793 exit(-1); 2794 } 2795 2796 if (elf_interpreter) { 2797 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2798 2799 /* If the program interpreter is one of these two, then assume 2800 an iBCS2 image. Otherwise assume a native linux image. */ 2801 2802 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2803 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2804 info->personality = PER_SVR4; 2805 2806 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2807 and some applications "depend" upon this behavior. Since 2808 we do not have the power to recompile these, we emulate 2809 the SVr4 behavior. Sigh. */ 2810 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2811 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2812 } 2813 #ifdef TARGET_MIPS 2814 info->interp_fp_abi = interp_info.fp_abi; 2815 #endif 2816 } 2817 2818 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2819 info, (elf_interpreter ? &interp_info : NULL)); 2820 info->start_stack = bprm->p; 2821 2822 /* If we have an interpreter, set that as the program's entry point. 2823 Copy the load_bias as well, to help PPC64 interpret the entry 2824 point as a function descriptor. Do this after creating elf tables 2825 so that we copy the original program entry point into the AUXV. */ 2826 if (elf_interpreter) { 2827 info->load_bias = interp_info.load_bias; 2828 info->entry = interp_info.entry; 2829 free(elf_interpreter); 2830 } 2831 2832 #ifdef USE_ELF_CORE_DUMP 2833 bprm->core_dump = &elf_core_dump; 2834 #endif 2835 2836 return 0; 2837 } 2838 2839 #ifdef USE_ELF_CORE_DUMP 2840 /* 2841 * Definitions to generate Intel SVR4-like core files. 2842 * These mostly have the same names as the SVR4 types with "target_elf_" 2843 * tacked on the front to prevent clashes with linux definitions, 2844 * and the typedef forms have been avoided. This is mostly like 2845 * the SVR4 structure, but more Linuxy, with things that Linux does 2846 * not support and which gdb doesn't really use excluded. 2847 * 2848 * Fields we don't dump (their contents is zero) in linux-user qemu 2849 * are marked with XXX. 2850 * 2851 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2852 * 2853 * Porting ELF coredump for target is (quite) simple process. First you 2854 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2855 * the target resides): 2856 * 2857 * #define USE_ELF_CORE_DUMP 2858 * 2859 * Next you define type of register set used for dumping. ELF specification 2860 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2861 * 2862 * typedef <target_regtype> target_elf_greg_t; 2863 * #define ELF_NREG <number of registers> 2864 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2865 * 2866 * Last step is to implement target specific function that copies registers 2867 * from given cpu into just specified register set. Prototype is: 2868 * 2869 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2870 * const CPUArchState *env); 2871 * 2872 * Parameters: 2873 * regs - copy register values into here (allocated and zeroed by caller) 2874 * env - copy registers from here 2875 * 2876 * Example for ARM target is provided in this file. 2877 */ 2878 2879 /* An ELF note in memory */ 2880 struct memelfnote { 2881 const char *name; 2882 size_t namesz; 2883 size_t namesz_rounded; 2884 int type; 2885 size_t datasz; 2886 size_t datasz_rounded; 2887 void *data; 2888 size_t notesz; 2889 }; 2890 2891 struct target_elf_siginfo { 2892 abi_int si_signo; /* signal number */ 2893 abi_int si_code; /* extra code */ 2894 abi_int si_errno; /* errno */ 2895 }; 2896 2897 struct target_elf_prstatus { 2898 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2899 abi_short pr_cursig; /* Current signal */ 2900 abi_ulong pr_sigpend; /* XXX */ 2901 abi_ulong pr_sighold; /* XXX */ 2902 target_pid_t pr_pid; 2903 target_pid_t pr_ppid; 2904 target_pid_t pr_pgrp; 2905 target_pid_t pr_sid; 2906 struct target_timeval pr_utime; /* XXX User time */ 2907 struct target_timeval pr_stime; /* XXX System time */ 2908 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2909 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2910 target_elf_gregset_t pr_reg; /* GP registers */ 2911 abi_int pr_fpvalid; /* XXX */ 2912 }; 2913 2914 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2915 2916 struct target_elf_prpsinfo { 2917 char pr_state; /* numeric process state */ 2918 char pr_sname; /* char for pr_state */ 2919 char pr_zomb; /* zombie */ 2920 char pr_nice; /* nice val */ 2921 abi_ulong pr_flag; /* flags */ 2922 target_uid_t pr_uid; 2923 target_gid_t pr_gid; 2924 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2925 /* Lots missing */ 2926 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 2927 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2928 }; 2929 2930 /* Here is the structure in which status of each thread is captured. */ 2931 struct elf_thread_status { 2932 QTAILQ_ENTRY(elf_thread_status) ets_link; 2933 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2934 #if 0 2935 elf_fpregset_t fpu; /* NT_PRFPREG */ 2936 struct task_struct *thread; 2937 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2938 #endif 2939 struct memelfnote notes[1]; 2940 int num_notes; 2941 }; 2942 2943 struct elf_note_info { 2944 struct memelfnote *notes; 2945 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2946 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2947 2948 QTAILQ_HEAD(, elf_thread_status) thread_list; 2949 #if 0 2950 /* 2951 * Current version of ELF coredump doesn't support 2952 * dumping fp regs etc. 2953 */ 2954 elf_fpregset_t *fpu; 2955 elf_fpxregset_t *xfpu; 2956 int thread_status_size; 2957 #endif 2958 int notes_size; 2959 int numnote; 2960 }; 2961 2962 struct vm_area_struct { 2963 target_ulong vma_start; /* start vaddr of memory region */ 2964 target_ulong vma_end; /* end vaddr of memory region */ 2965 abi_ulong vma_flags; /* protection etc. flags for the region */ 2966 QTAILQ_ENTRY(vm_area_struct) vma_link; 2967 }; 2968 2969 struct mm_struct { 2970 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2971 int mm_count; /* number of mappings */ 2972 }; 2973 2974 static struct mm_struct *vma_init(void); 2975 static void vma_delete(struct mm_struct *); 2976 static int vma_add_mapping(struct mm_struct *, target_ulong, 2977 target_ulong, abi_ulong); 2978 static int vma_get_mapping_count(const struct mm_struct *); 2979 static struct vm_area_struct *vma_first(const struct mm_struct *); 2980 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2981 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2982 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2983 unsigned long flags); 2984 2985 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2986 static void fill_note(struct memelfnote *, const char *, int, 2987 unsigned int, void *); 2988 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2989 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2990 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2991 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2992 static size_t note_size(const struct memelfnote *); 2993 static void free_note_info(struct elf_note_info *); 2994 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2995 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2996 static int core_dump_filename(const TaskState *, char *, size_t); 2997 2998 static int dump_write(int, const void *, size_t); 2999 static int write_note(struct memelfnote *, int); 3000 static int write_note_info(struct elf_note_info *, int); 3001 3002 #ifdef BSWAP_NEEDED 3003 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3004 { 3005 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3006 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3007 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3008 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3009 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3010 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3011 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3012 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3013 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3014 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3015 /* cpu times are not filled, so we skip them */ 3016 /* regs should be in correct format already */ 3017 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3018 } 3019 3020 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3021 { 3022 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3023 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3024 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3025 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3026 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3027 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3028 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3029 } 3030 3031 static void bswap_note(struct elf_note *en) 3032 { 3033 bswap32s(&en->n_namesz); 3034 bswap32s(&en->n_descsz); 3035 bswap32s(&en->n_type); 3036 } 3037 #else 3038 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3039 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3040 static inline void bswap_note(struct elf_note *en) { } 3041 #endif /* BSWAP_NEEDED */ 3042 3043 /* 3044 * Minimal support for linux memory regions. These are needed 3045 * when we are finding out what memory exactly belongs to 3046 * emulated process. No locks needed here, as long as 3047 * thread that received the signal is stopped. 3048 */ 3049 3050 static struct mm_struct *vma_init(void) 3051 { 3052 struct mm_struct *mm; 3053 3054 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3055 return (NULL); 3056 3057 mm->mm_count = 0; 3058 QTAILQ_INIT(&mm->mm_mmap); 3059 3060 return (mm); 3061 } 3062 3063 static void vma_delete(struct mm_struct *mm) 3064 { 3065 struct vm_area_struct *vma; 3066 3067 while ((vma = vma_first(mm)) != NULL) { 3068 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3069 g_free(vma); 3070 } 3071 g_free(mm); 3072 } 3073 3074 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3075 target_ulong end, abi_ulong flags) 3076 { 3077 struct vm_area_struct *vma; 3078 3079 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3080 return (-1); 3081 3082 vma->vma_start = start; 3083 vma->vma_end = end; 3084 vma->vma_flags = flags; 3085 3086 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3087 mm->mm_count++; 3088 3089 return (0); 3090 } 3091 3092 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3093 { 3094 return (QTAILQ_FIRST(&mm->mm_mmap)); 3095 } 3096 3097 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3098 { 3099 return (QTAILQ_NEXT(vma, vma_link)); 3100 } 3101 3102 static int vma_get_mapping_count(const struct mm_struct *mm) 3103 { 3104 return (mm->mm_count); 3105 } 3106 3107 /* 3108 * Calculate file (dump) size of given memory region. 3109 */ 3110 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3111 { 3112 /* if we cannot even read the first page, skip it */ 3113 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3114 return (0); 3115 3116 /* 3117 * Usually we don't dump executable pages as they contain 3118 * non-writable code that debugger can read directly from 3119 * target library etc. However, thread stacks are marked 3120 * also executable so we read in first page of given region 3121 * and check whether it contains elf header. If there is 3122 * no elf header, we dump it. 3123 */ 3124 if (vma->vma_flags & PROT_EXEC) { 3125 char page[TARGET_PAGE_SIZE]; 3126 3127 copy_from_user(page, vma->vma_start, sizeof (page)); 3128 if ((page[EI_MAG0] == ELFMAG0) && 3129 (page[EI_MAG1] == ELFMAG1) && 3130 (page[EI_MAG2] == ELFMAG2) && 3131 (page[EI_MAG3] == ELFMAG3)) { 3132 /* 3133 * Mappings are possibly from ELF binary. Don't dump 3134 * them. 3135 */ 3136 return (0); 3137 } 3138 } 3139 3140 return (vma->vma_end - vma->vma_start); 3141 } 3142 3143 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3144 unsigned long flags) 3145 { 3146 struct mm_struct *mm = (struct mm_struct *)priv; 3147 3148 vma_add_mapping(mm, start, end, flags); 3149 return (0); 3150 } 3151 3152 static void fill_note(struct memelfnote *note, const char *name, int type, 3153 unsigned int sz, void *data) 3154 { 3155 unsigned int namesz; 3156 3157 namesz = strlen(name) + 1; 3158 note->name = name; 3159 note->namesz = namesz; 3160 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3161 note->type = type; 3162 note->datasz = sz; 3163 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3164 3165 note->data = data; 3166 3167 /* 3168 * We calculate rounded up note size here as specified by 3169 * ELF document. 3170 */ 3171 note->notesz = sizeof (struct elf_note) + 3172 note->namesz_rounded + note->datasz_rounded; 3173 } 3174 3175 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3176 uint32_t flags) 3177 { 3178 (void) memset(elf, 0, sizeof(*elf)); 3179 3180 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3181 elf->e_ident[EI_CLASS] = ELF_CLASS; 3182 elf->e_ident[EI_DATA] = ELF_DATA; 3183 elf->e_ident[EI_VERSION] = EV_CURRENT; 3184 elf->e_ident[EI_OSABI] = ELF_OSABI; 3185 3186 elf->e_type = ET_CORE; 3187 elf->e_machine = machine; 3188 elf->e_version = EV_CURRENT; 3189 elf->e_phoff = sizeof(struct elfhdr); 3190 elf->e_flags = flags; 3191 elf->e_ehsize = sizeof(struct elfhdr); 3192 elf->e_phentsize = sizeof(struct elf_phdr); 3193 elf->e_phnum = segs; 3194 3195 bswap_ehdr(elf); 3196 } 3197 3198 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3199 { 3200 phdr->p_type = PT_NOTE; 3201 phdr->p_offset = offset; 3202 phdr->p_vaddr = 0; 3203 phdr->p_paddr = 0; 3204 phdr->p_filesz = sz; 3205 phdr->p_memsz = 0; 3206 phdr->p_flags = 0; 3207 phdr->p_align = 0; 3208 3209 bswap_phdr(phdr, 1); 3210 } 3211 3212 static size_t note_size(const struct memelfnote *note) 3213 { 3214 return (note->notesz); 3215 } 3216 3217 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3218 const TaskState *ts, int signr) 3219 { 3220 (void) memset(prstatus, 0, sizeof (*prstatus)); 3221 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3222 prstatus->pr_pid = ts->ts_tid; 3223 prstatus->pr_ppid = getppid(); 3224 prstatus->pr_pgrp = getpgrp(); 3225 prstatus->pr_sid = getsid(0); 3226 3227 bswap_prstatus(prstatus); 3228 } 3229 3230 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3231 { 3232 char *base_filename; 3233 unsigned int i, len; 3234 3235 (void) memset(psinfo, 0, sizeof (*psinfo)); 3236 3237 len = ts->info->arg_end - ts->info->arg_start; 3238 if (len >= ELF_PRARGSZ) 3239 len = ELF_PRARGSZ - 1; 3240 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3241 return -EFAULT; 3242 for (i = 0; i < len; i++) 3243 if (psinfo->pr_psargs[i] == 0) 3244 psinfo->pr_psargs[i] = ' '; 3245 psinfo->pr_psargs[len] = 0; 3246 3247 psinfo->pr_pid = getpid(); 3248 psinfo->pr_ppid = getppid(); 3249 psinfo->pr_pgrp = getpgrp(); 3250 psinfo->pr_sid = getsid(0); 3251 psinfo->pr_uid = getuid(); 3252 psinfo->pr_gid = getgid(); 3253 3254 base_filename = g_path_get_basename(ts->bprm->filename); 3255 /* 3256 * Using strncpy here is fine: at max-length, 3257 * this field is not NUL-terminated. 3258 */ 3259 (void) strncpy(psinfo->pr_fname, base_filename, 3260 sizeof(psinfo->pr_fname)); 3261 3262 g_free(base_filename); 3263 bswap_psinfo(psinfo); 3264 return (0); 3265 } 3266 3267 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3268 { 3269 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3270 elf_addr_t orig_auxv = auxv; 3271 void *ptr; 3272 int len = ts->info->auxv_len; 3273 3274 /* 3275 * Auxiliary vector is stored in target process stack. It contains 3276 * {type, value} pairs that we need to dump into note. This is not 3277 * strictly necessary but we do it here for sake of completeness. 3278 */ 3279 3280 /* read in whole auxv vector and copy it to memelfnote */ 3281 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3282 if (ptr != NULL) { 3283 fill_note(note, "CORE", NT_AUXV, len, ptr); 3284 unlock_user(ptr, auxv, len); 3285 } 3286 } 3287 3288 /* 3289 * Constructs name of coredump file. We have following convention 3290 * for the name: 3291 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3292 * 3293 * Returns 0 in case of success, -1 otherwise (errno is set). 3294 */ 3295 static int core_dump_filename(const TaskState *ts, char *buf, 3296 size_t bufsize) 3297 { 3298 char timestamp[64]; 3299 char *base_filename = NULL; 3300 struct timeval tv; 3301 struct tm tm; 3302 3303 assert(bufsize >= PATH_MAX); 3304 3305 if (gettimeofday(&tv, NULL) < 0) { 3306 (void) fprintf(stderr, "unable to get current timestamp: %s", 3307 strerror(errno)); 3308 return (-1); 3309 } 3310 3311 base_filename = g_path_get_basename(ts->bprm->filename); 3312 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3313 localtime_r(&tv.tv_sec, &tm)); 3314 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3315 base_filename, timestamp, (int)getpid()); 3316 g_free(base_filename); 3317 3318 return (0); 3319 } 3320 3321 static int dump_write(int fd, const void *ptr, size_t size) 3322 { 3323 const char *bufp = (const char *)ptr; 3324 ssize_t bytes_written, bytes_left; 3325 struct rlimit dumpsize; 3326 off_t pos; 3327 3328 bytes_written = 0; 3329 getrlimit(RLIMIT_CORE, &dumpsize); 3330 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3331 if (errno == ESPIPE) { /* not a seekable stream */ 3332 bytes_left = size; 3333 } else { 3334 return pos; 3335 } 3336 } else { 3337 if (dumpsize.rlim_cur <= pos) { 3338 return -1; 3339 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3340 bytes_left = size; 3341 } else { 3342 size_t limit_left=dumpsize.rlim_cur - pos; 3343 bytes_left = limit_left >= size ? size : limit_left ; 3344 } 3345 } 3346 3347 /* 3348 * In normal conditions, single write(2) should do but 3349 * in case of socket etc. this mechanism is more portable. 3350 */ 3351 do { 3352 bytes_written = write(fd, bufp, bytes_left); 3353 if (bytes_written < 0) { 3354 if (errno == EINTR) 3355 continue; 3356 return (-1); 3357 } else if (bytes_written == 0) { /* eof */ 3358 return (-1); 3359 } 3360 bufp += bytes_written; 3361 bytes_left -= bytes_written; 3362 } while (bytes_left > 0); 3363 3364 return (0); 3365 } 3366 3367 static int write_note(struct memelfnote *men, int fd) 3368 { 3369 struct elf_note en; 3370 3371 en.n_namesz = men->namesz; 3372 en.n_type = men->type; 3373 en.n_descsz = men->datasz; 3374 3375 bswap_note(&en); 3376 3377 if (dump_write(fd, &en, sizeof(en)) != 0) 3378 return (-1); 3379 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3380 return (-1); 3381 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3382 return (-1); 3383 3384 return (0); 3385 } 3386 3387 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3388 { 3389 CPUState *cpu = env_cpu((CPUArchState *)env); 3390 TaskState *ts = (TaskState *)cpu->opaque; 3391 struct elf_thread_status *ets; 3392 3393 ets = g_malloc0(sizeof (*ets)); 3394 ets->num_notes = 1; /* only prstatus is dumped */ 3395 fill_prstatus(&ets->prstatus, ts, 0); 3396 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3397 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3398 &ets->prstatus); 3399 3400 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3401 3402 info->notes_size += note_size(&ets->notes[0]); 3403 } 3404 3405 static void init_note_info(struct elf_note_info *info) 3406 { 3407 /* Initialize the elf_note_info structure so that it is at 3408 * least safe to call free_note_info() on it. Must be 3409 * called before calling fill_note_info(). 3410 */ 3411 memset(info, 0, sizeof (*info)); 3412 QTAILQ_INIT(&info->thread_list); 3413 } 3414 3415 static int fill_note_info(struct elf_note_info *info, 3416 long signr, const CPUArchState *env) 3417 { 3418 #define NUMNOTES 3 3419 CPUState *cpu = env_cpu((CPUArchState *)env); 3420 TaskState *ts = (TaskState *)cpu->opaque; 3421 int i; 3422 3423 info->notes = g_new0(struct memelfnote, NUMNOTES); 3424 if (info->notes == NULL) 3425 return (-ENOMEM); 3426 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3427 if (info->prstatus == NULL) 3428 return (-ENOMEM); 3429 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3430 if (info->prstatus == NULL) 3431 return (-ENOMEM); 3432 3433 /* 3434 * First fill in status (and registers) of current thread 3435 * including process info & aux vector. 3436 */ 3437 fill_prstatus(info->prstatus, ts, signr); 3438 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3439 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3440 sizeof (*info->prstatus), info->prstatus); 3441 fill_psinfo(info->psinfo, ts); 3442 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3443 sizeof (*info->psinfo), info->psinfo); 3444 fill_auxv_note(&info->notes[2], ts); 3445 info->numnote = 3; 3446 3447 info->notes_size = 0; 3448 for (i = 0; i < info->numnote; i++) 3449 info->notes_size += note_size(&info->notes[i]); 3450 3451 /* read and fill status of all threads */ 3452 cpu_list_lock(); 3453 CPU_FOREACH(cpu) { 3454 if (cpu == thread_cpu) { 3455 continue; 3456 } 3457 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3458 } 3459 cpu_list_unlock(); 3460 3461 return (0); 3462 } 3463 3464 static void free_note_info(struct elf_note_info *info) 3465 { 3466 struct elf_thread_status *ets; 3467 3468 while (!QTAILQ_EMPTY(&info->thread_list)) { 3469 ets = QTAILQ_FIRST(&info->thread_list); 3470 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3471 g_free(ets); 3472 } 3473 3474 g_free(info->prstatus); 3475 g_free(info->psinfo); 3476 g_free(info->notes); 3477 } 3478 3479 static int write_note_info(struct elf_note_info *info, int fd) 3480 { 3481 struct elf_thread_status *ets; 3482 int i, error = 0; 3483 3484 /* write prstatus, psinfo and auxv for current thread */ 3485 for (i = 0; i < info->numnote; i++) 3486 if ((error = write_note(&info->notes[i], fd)) != 0) 3487 return (error); 3488 3489 /* write prstatus for each thread */ 3490 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3491 if ((error = write_note(&ets->notes[0], fd)) != 0) 3492 return (error); 3493 } 3494 3495 return (0); 3496 } 3497 3498 /* 3499 * Write out ELF coredump. 3500 * 3501 * See documentation of ELF object file format in: 3502 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3503 * 3504 * Coredump format in linux is following: 3505 * 3506 * 0 +----------------------+ \ 3507 * | ELF header | ET_CORE | 3508 * +----------------------+ | 3509 * | ELF program headers | |--- headers 3510 * | - NOTE section | | 3511 * | - PT_LOAD sections | | 3512 * +----------------------+ / 3513 * | NOTEs: | 3514 * | - NT_PRSTATUS | 3515 * | - NT_PRSINFO | 3516 * | - NT_AUXV | 3517 * +----------------------+ <-- aligned to target page 3518 * | Process memory dump | 3519 * : : 3520 * . . 3521 * : : 3522 * | | 3523 * +----------------------+ 3524 * 3525 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3526 * NT_PRSINFO -> struct elf_prpsinfo 3527 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3528 * 3529 * Format follows System V format as close as possible. Current 3530 * version limitations are as follows: 3531 * - no floating point registers are dumped 3532 * 3533 * Function returns 0 in case of success, negative errno otherwise. 3534 * 3535 * TODO: make this work also during runtime: it should be 3536 * possible to force coredump from running process and then 3537 * continue processing. For example qemu could set up SIGUSR2 3538 * handler (provided that target process haven't registered 3539 * handler for that) that does the dump when signal is received. 3540 */ 3541 static int elf_core_dump(int signr, const CPUArchState *env) 3542 { 3543 const CPUState *cpu = env_cpu((CPUArchState *)env); 3544 const TaskState *ts = (const TaskState *)cpu->opaque; 3545 struct vm_area_struct *vma = NULL; 3546 char corefile[PATH_MAX]; 3547 struct elf_note_info info; 3548 struct elfhdr elf; 3549 struct elf_phdr phdr; 3550 struct rlimit dumpsize; 3551 struct mm_struct *mm = NULL; 3552 off_t offset = 0, data_offset = 0; 3553 int segs = 0; 3554 int fd = -1; 3555 3556 init_note_info(&info); 3557 3558 errno = 0; 3559 getrlimit(RLIMIT_CORE, &dumpsize); 3560 if (dumpsize.rlim_cur == 0) 3561 return 0; 3562 3563 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3564 return (-errno); 3565 3566 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3567 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3568 return (-errno); 3569 3570 /* 3571 * Walk through target process memory mappings and 3572 * set up structure containing this information. After 3573 * this point vma_xxx functions can be used. 3574 */ 3575 if ((mm = vma_init()) == NULL) 3576 goto out; 3577 3578 walk_memory_regions(mm, vma_walker); 3579 segs = vma_get_mapping_count(mm); 3580 3581 /* 3582 * Construct valid coredump ELF header. We also 3583 * add one more segment for notes. 3584 */ 3585 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3586 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3587 goto out; 3588 3589 /* fill in the in-memory version of notes */ 3590 if (fill_note_info(&info, signr, env) < 0) 3591 goto out; 3592 3593 offset += sizeof (elf); /* elf header */ 3594 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3595 3596 /* write out notes program header */ 3597 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3598 3599 offset += info.notes_size; 3600 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3601 goto out; 3602 3603 /* 3604 * ELF specification wants data to start at page boundary so 3605 * we align it here. 3606 */ 3607 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3608 3609 /* 3610 * Write program headers for memory regions mapped in 3611 * the target process. 3612 */ 3613 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3614 (void) memset(&phdr, 0, sizeof (phdr)); 3615 3616 phdr.p_type = PT_LOAD; 3617 phdr.p_offset = offset; 3618 phdr.p_vaddr = vma->vma_start; 3619 phdr.p_paddr = 0; 3620 phdr.p_filesz = vma_dump_size(vma); 3621 offset += phdr.p_filesz; 3622 phdr.p_memsz = vma->vma_end - vma->vma_start; 3623 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3624 if (vma->vma_flags & PROT_WRITE) 3625 phdr.p_flags |= PF_W; 3626 if (vma->vma_flags & PROT_EXEC) 3627 phdr.p_flags |= PF_X; 3628 phdr.p_align = ELF_EXEC_PAGESIZE; 3629 3630 bswap_phdr(&phdr, 1); 3631 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3632 goto out; 3633 } 3634 } 3635 3636 /* 3637 * Next we write notes just after program headers. No 3638 * alignment needed here. 3639 */ 3640 if (write_note_info(&info, fd) < 0) 3641 goto out; 3642 3643 /* align data to page boundary */ 3644 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3645 goto out; 3646 3647 /* 3648 * Finally we can dump process memory into corefile as well. 3649 */ 3650 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3651 abi_ulong addr; 3652 abi_ulong end; 3653 3654 end = vma->vma_start + vma_dump_size(vma); 3655 3656 for (addr = vma->vma_start; addr < end; 3657 addr += TARGET_PAGE_SIZE) { 3658 char page[TARGET_PAGE_SIZE]; 3659 int error; 3660 3661 /* 3662 * Read in page from target process memory and 3663 * write it to coredump file. 3664 */ 3665 error = copy_from_user(page, addr, sizeof (page)); 3666 if (error != 0) { 3667 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3668 addr); 3669 errno = -error; 3670 goto out; 3671 } 3672 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3673 goto out; 3674 } 3675 } 3676 3677 out: 3678 free_note_info(&info); 3679 if (mm != NULL) 3680 vma_delete(mm); 3681 (void) close(fd); 3682 3683 if (errno != 0) 3684 return (-errno); 3685 return (0); 3686 } 3687 #endif /* USE_ELF_CORE_DUMP */ 3688 3689 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3690 { 3691 init_thread(regs, infop); 3692 } 3693