xref: /openbmc/qemu/linux-user/elfload.c (revision 10358b6a)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4 
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15 
16 #include "qemu.h"
17 #include "disas/disas.h"
18 
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_HWCAP2
24 #undef ELF_CLASS
25 #undef ELF_DATA
26 #undef ELF_ARCH
27 #endif
28 
29 #define ELF_OSABI   ELFOSABI_SYSV
30 
31 /* from personality.h */
32 
33 /*
34  * Flags for bug emulation.
35  *
36  * These occupy the top three bytes.
37  */
38 enum {
39     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
40     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
41                                            descriptors (signal handling) */
42     MMAP_PAGE_ZERO =    0x0100000,
43     ADDR_COMPAT_LAYOUT = 0x0200000,
44     READ_IMPLIES_EXEC = 0x0400000,
45     ADDR_LIMIT_32BIT =  0x0800000,
46     SHORT_INODE =       0x1000000,
47     WHOLE_SECONDS =     0x2000000,
48     STICKY_TIMEOUTS =   0x4000000,
49     ADDR_LIMIT_3GB =    0x8000000,
50 };
51 
52 /*
53  * Personality types.
54  *
55  * These go in the low byte.  Avoid using the top bit, it will
56  * conflict with error returns.
57  */
58 enum {
59     PER_LINUX =         0x0000,
60     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
61     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
62     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
68     PER_BSD =           0x0006,
69     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
70     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_LINUX32 =       0x0008,
72     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
73     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76     PER_RISCOS =        0x000c,
77     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
78     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
80     PER_HPUX =          0x0010,
81     PER_MASK =          0x00ff,
82 };
83 
84 /*
85  * Return the base personality without flags.
86  */
87 #define personality(pers)       (pers & PER_MASK)
88 
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93 
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98 
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA        ELFDATA2MSB
101 #else
102 #define ELF_DATA        ELFDATA2LSB
103 #endif
104 
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong      target_elf_greg_t;
107 #define tswapreg(ptr)   tswap64(ptr)
108 #else
109 typedef abi_ulong       target_elf_greg_t;
110 #define tswapreg(ptr)   tswapal(ptr)
111 #endif
112 
113 #ifdef USE_UID16
114 typedef abi_ushort      target_uid_t;
115 typedef abi_ushort      target_gid_t;
116 #else
117 typedef abi_uint        target_uid_t;
118 typedef abi_uint        target_gid_t;
119 #endif
120 typedef abi_int         target_pid_t;
121 
122 #ifdef TARGET_I386
123 
124 #define ELF_PLATFORM get_elf_platform()
125 
126 static const char *get_elf_platform(void)
127 {
128     static char elf_platform[] = "i386";
129     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130     if (family > 6)
131         family = 6;
132     if (family >= 3)
133         elf_platform[1] = '0' + family;
134     return elf_platform;
135 }
136 
137 #define ELF_HWCAP get_elf_hwcap()
138 
139 static uint32_t get_elf_hwcap(void)
140 {
141     X86CPU *cpu = X86_CPU(thread_cpu);
142 
143     return cpu->env.features[FEAT_1_EDX];
144 }
145 
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
149 
150 #define ELF_CLASS      ELFCLASS64
151 #define ELF_ARCH       EM_X86_64
152 
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155     regs->rax = 0;
156     regs->rsp = infop->start_stack;
157     regs->rip = infop->entry;
158 }
159 
160 #define ELF_NREG    27
161 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
162 
163 /*
164  * Note that ELF_NREG should be 29 as there should be place for
165  * TRAPNO and ERR "registers" as well but linux doesn't dump
166  * those.
167  *
168  * See linux kernel: arch/x86/include/asm/elf.h
169  */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172     (*regs)[0] = env->regs[15];
173     (*regs)[1] = env->regs[14];
174     (*regs)[2] = env->regs[13];
175     (*regs)[3] = env->regs[12];
176     (*regs)[4] = env->regs[R_EBP];
177     (*regs)[5] = env->regs[R_EBX];
178     (*regs)[6] = env->regs[11];
179     (*regs)[7] = env->regs[10];
180     (*regs)[8] = env->regs[9];
181     (*regs)[9] = env->regs[8];
182     (*regs)[10] = env->regs[R_EAX];
183     (*regs)[11] = env->regs[R_ECX];
184     (*regs)[12] = env->regs[R_EDX];
185     (*regs)[13] = env->regs[R_ESI];
186     (*regs)[14] = env->regs[R_EDI];
187     (*regs)[15] = env->regs[R_EAX]; /* XXX */
188     (*regs)[16] = env->eip;
189     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190     (*regs)[18] = env->eflags;
191     (*regs)[19] = env->regs[R_ESP];
192     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199 }
200 
201 #else
202 
203 #define ELF_START_MMAP 0x80000000
204 
205 /*
206  * This is used to ensure we don't load something for the wrong architecture.
207  */
208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209 
210 /*
211  * These are used to set parameters in the core dumps.
212  */
213 #define ELF_CLASS       ELFCLASS32
214 #define ELF_ARCH        EM_386
215 
216 static inline void init_thread(struct target_pt_regs *regs,
217                                struct image_info *infop)
218 {
219     regs->esp = infop->start_stack;
220     regs->eip = infop->entry;
221 
222     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223        starts %edx contains a pointer to a function which might be
224        registered using `atexit'.  This provides a mean for the
225        dynamic linker to call DT_FINI functions for shared libraries
226        that have been loaded before the code runs.
227 
228        A value of 0 tells we have no such handler.  */
229     regs->edx = 0;
230 }
231 
232 #define ELF_NREG    17
233 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
234 
235 /*
236  * Note that ELF_NREG should be 19 as there should be place for
237  * TRAPNO and ERR "registers" as well but linux doesn't dump
238  * those.
239  *
240  * See linux kernel: arch/x86/include/asm/elf.h
241  */
242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
243 {
244     (*regs)[0] = env->regs[R_EBX];
245     (*regs)[1] = env->regs[R_ECX];
246     (*regs)[2] = env->regs[R_EDX];
247     (*regs)[3] = env->regs[R_ESI];
248     (*regs)[4] = env->regs[R_EDI];
249     (*regs)[5] = env->regs[R_EBP];
250     (*regs)[6] = env->regs[R_EAX];
251     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255     (*regs)[11] = env->regs[R_EAX]; /* XXX */
256     (*regs)[12] = env->eip;
257     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258     (*regs)[14] = env->eflags;
259     (*regs)[15] = env->regs[R_ESP];
260     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261 }
262 #endif
263 
264 #define USE_ELF_CORE_DUMP
265 #define ELF_EXEC_PAGESIZE       4096
266 
267 #endif
268 
269 #ifdef TARGET_ARM
270 
271 #ifndef TARGET_AARCH64
272 /* 32 bit ARM definitions */
273 
274 #define ELF_START_MMAP 0x80000000
275 
276 #define elf_check_arch(x) ((x) == ELF_MACHINE)
277 
278 #define ELF_ARCH        ELF_MACHINE
279 #define ELF_CLASS       ELFCLASS32
280 
281 static inline void init_thread(struct target_pt_regs *regs,
282                                struct image_info *infop)
283 {
284     abi_long stack = infop->start_stack;
285     memset(regs, 0, sizeof(*regs));
286 
287     regs->ARM_cpsr = 0x10;
288     if (infop->entry & 1)
289         regs->ARM_cpsr |= CPSR_T;
290     regs->ARM_pc = infop->entry & 0xfffffffe;
291     regs->ARM_sp = infop->start_stack;
292     /* FIXME - what to for failure of get_user()? */
293     get_user_ual(regs->ARM_r2, stack + 8); /* envp */
294     get_user_ual(regs->ARM_r1, stack + 4); /* envp */
295     /* XXX: it seems that r0 is zeroed after ! */
296     regs->ARM_r0 = 0;
297     /* For uClinux PIC binaries.  */
298     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299     regs->ARM_r10 = infop->start_data;
300 }
301 
302 #define ELF_NREG    18
303 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
304 
305 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
306 {
307     (*regs)[0] = tswapreg(env->regs[0]);
308     (*regs)[1] = tswapreg(env->regs[1]);
309     (*regs)[2] = tswapreg(env->regs[2]);
310     (*regs)[3] = tswapreg(env->regs[3]);
311     (*regs)[4] = tswapreg(env->regs[4]);
312     (*regs)[5] = tswapreg(env->regs[5]);
313     (*regs)[6] = tswapreg(env->regs[6]);
314     (*regs)[7] = tswapreg(env->regs[7]);
315     (*regs)[8] = tswapreg(env->regs[8]);
316     (*regs)[9] = tswapreg(env->regs[9]);
317     (*regs)[10] = tswapreg(env->regs[10]);
318     (*regs)[11] = tswapreg(env->regs[11]);
319     (*regs)[12] = tswapreg(env->regs[12]);
320     (*regs)[13] = tswapreg(env->regs[13]);
321     (*regs)[14] = tswapreg(env->regs[14]);
322     (*regs)[15] = tswapreg(env->regs[15]);
323 
324     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
325     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
326 }
327 
328 #define USE_ELF_CORE_DUMP
329 #define ELF_EXEC_PAGESIZE       4096
330 
331 enum
332 {
333     ARM_HWCAP_ARM_SWP       = 1 << 0,
334     ARM_HWCAP_ARM_HALF      = 1 << 1,
335     ARM_HWCAP_ARM_THUMB     = 1 << 2,
336     ARM_HWCAP_ARM_26BIT     = 1 << 3,
337     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
338     ARM_HWCAP_ARM_FPA       = 1 << 5,
339     ARM_HWCAP_ARM_VFP       = 1 << 6,
340     ARM_HWCAP_ARM_EDSP      = 1 << 7,
341     ARM_HWCAP_ARM_JAVA      = 1 << 8,
342     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
343     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
344     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
345     ARM_HWCAP_ARM_NEON      = 1 << 12,
346     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
347     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
348     ARM_HWCAP_ARM_TLS       = 1 << 15,
349     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
350     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
351     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
352     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
353     ARM_HWCAP_ARM_LPAE      = 1 << 20,
354     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
355 };
356 
357 enum {
358     ARM_HWCAP2_ARM_AES      = 1 << 0,
359     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
360     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
361     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
362     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
363 };
364 
365 /* The commpage only exists for 32 bit kernels */
366 
367 #define TARGET_HAS_VALIDATE_GUEST_SPACE
368 /* Return 1 if the proposed guest space is suitable for the guest.
369  * Return 0 if the proposed guest space isn't suitable, but another
370  * address space should be tried.
371  * Return -1 if there is no way the proposed guest space can be
372  * valid regardless of the base.
373  * The guest code may leave a page mapped and populate it if the
374  * address is suitable.
375  */
376 static int validate_guest_space(unsigned long guest_base,
377                                 unsigned long guest_size)
378 {
379     unsigned long real_start, test_page_addr;
380 
381     /* We need to check that we can force a fault on access to the
382      * commpage at 0xffff0fxx
383      */
384     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
385 
386     /* If the commpage lies within the already allocated guest space,
387      * then there is no way we can allocate it.
388      */
389     if (test_page_addr >= guest_base
390         && test_page_addr <= (guest_base + guest_size)) {
391         return -1;
392     }
393 
394     /* Note it needs to be writeable to let us initialise it */
395     real_start = (unsigned long)
396                  mmap((void *)test_page_addr, qemu_host_page_size,
397                      PROT_READ | PROT_WRITE,
398                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
399 
400     /* If we can't map it then try another address */
401     if (real_start == -1ul) {
402         return 0;
403     }
404 
405     if (real_start != test_page_addr) {
406         /* OS didn't put the page where we asked - unmap and reject */
407         munmap((void *)real_start, qemu_host_page_size);
408         return 0;
409     }
410 
411     /* Leave the page mapped
412      * Populate it (mmap should have left it all 0'd)
413      */
414 
415     /* Kernel helper versions */
416     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
417 
418     /* Now it's populated make it RO */
419     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
420         perror("Protecting guest commpage");
421         exit(-1);
422     }
423 
424     return 1; /* All good */
425 }
426 
427 #define ELF_HWCAP get_elf_hwcap()
428 #define ELF_HWCAP2 get_elf_hwcap2()
429 
430 static uint32_t get_elf_hwcap(void)
431 {
432     ARMCPU *cpu = ARM_CPU(thread_cpu);
433     uint32_t hwcaps = 0;
434 
435     hwcaps |= ARM_HWCAP_ARM_SWP;
436     hwcaps |= ARM_HWCAP_ARM_HALF;
437     hwcaps |= ARM_HWCAP_ARM_THUMB;
438     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
439 
440     /* probe for the extra features */
441 #define GET_FEATURE(feat, hwcap) \
442     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
443     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
445     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
446     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
447     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
448     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
449     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
450     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
451     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
452     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
453     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
454     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457      * to our VFP_FP16 feature bit.
458      */
459     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
460     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
461 
462     return hwcaps;
463 }
464 
465 static uint32_t get_elf_hwcap2(void)
466 {
467     ARMCPU *cpu = ARM_CPU(thread_cpu);
468     uint32_t hwcaps = 0;
469 
470     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
471     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
472     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
473     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
474     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
475     return hwcaps;
476 }
477 
478 #undef GET_FEATURE
479 
480 #else
481 /* 64 bit ARM definitions */
482 #define ELF_START_MMAP 0x80000000
483 
484 #define elf_check_arch(x) ((x) == ELF_MACHINE)
485 
486 #define ELF_ARCH        ELF_MACHINE
487 #define ELF_CLASS       ELFCLASS64
488 #define ELF_PLATFORM    "aarch64"
489 
490 static inline void init_thread(struct target_pt_regs *regs,
491                                struct image_info *infop)
492 {
493     abi_long stack = infop->start_stack;
494     memset(regs, 0, sizeof(*regs));
495 
496     regs->pc = infop->entry & ~0x3ULL;
497     regs->sp = stack;
498 }
499 
500 #define ELF_NREG    34
501 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
502 
503 static void elf_core_copy_regs(target_elf_gregset_t *regs,
504                                const CPUARMState *env)
505 {
506     int i;
507 
508     for (i = 0; i < 32; i++) {
509         (*regs)[i] = tswapreg(env->xregs[i]);
510     }
511     (*regs)[32] = tswapreg(env->pc);
512     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
513 }
514 
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE       4096
517 
518 enum {
519     ARM_HWCAP_A64_FP            = 1 << 0,
520     ARM_HWCAP_A64_ASIMD         = 1 << 1,
521     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
522     ARM_HWCAP_A64_AES           = 1 << 3,
523     ARM_HWCAP_A64_PMULL         = 1 << 4,
524     ARM_HWCAP_A64_SHA1          = 1 << 5,
525     ARM_HWCAP_A64_SHA2          = 1 << 6,
526     ARM_HWCAP_A64_CRC32         = 1 << 7,
527 };
528 
529 #define ELF_HWCAP get_elf_hwcap()
530 
531 static uint32_t get_elf_hwcap(void)
532 {
533     ARMCPU *cpu = ARM_CPU(thread_cpu);
534     uint32_t hwcaps = 0;
535 
536     hwcaps |= ARM_HWCAP_A64_FP;
537     hwcaps |= ARM_HWCAP_A64_ASIMD;
538 
539     /* probe for the extra features */
540 #define GET_FEATURE(feat, hwcap) \
541     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
542     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
543     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
544     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
545     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
546     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
547 #undef GET_FEATURE
548 
549     return hwcaps;
550 }
551 
552 #endif /* not TARGET_AARCH64 */
553 #endif /* TARGET_ARM */
554 
555 #ifdef TARGET_UNICORE32
556 
557 #define ELF_START_MMAP          0x80000000
558 
559 #define elf_check_arch(x)       ((x) == EM_UNICORE32)
560 
561 #define ELF_CLASS               ELFCLASS32
562 #define ELF_DATA                ELFDATA2LSB
563 #define ELF_ARCH                EM_UNICORE32
564 
565 static inline void init_thread(struct target_pt_regs *regs,
566         struct image_info *infop)
567 {
568     abi_long stack = infop->start_stack;
569     memset(regs, 0, sizeof(*regs));
570     regs->UC32_REG_asr = 0x10;
571     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
572     regs->UC32_REG_sp = infop->start_stack;
573     /* FIXME - what to for failure of get_user()? */
574     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
575     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
576     /* XXX: it seems that r0 is zeroed after ! */
577     regs->UC32_REG_00 = 0;
578 }
579 
580 #define ELF_NREG    34
581 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
582 
583 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
584 {
585     (*regs)[0] = env->regs[0];
586     (*regs)[1] = env->regs[1];
587     (*regs)[2] = env->regs[2];
588     (*regs)[3] = env->regs[3];
589     (*regs)[4] = env->regs[4];
590     (*regs)[5] = env->regs[5];
591     (*regs)[6] = env->regs[6];
592     (*regs)[7] = env->regs[7];
593     (*regs)[8] = env->regs[8];
594     (*regs)[9] = env->regs[9];
595     (*regs)[10] = env->regs[10];
596     (*regs)[11] = env->regs[11];
597     (*regs)[12] = env->regs[12];
598     (*regs)[13] = env->regs[13];
599     (*regs)[14] = env->regs[14];
600     (*regs)[15] = env->regs[15];
601     (*regs)[16] = env->regs[16];
602     (*regs)[17] = env->regs[17];
603     (*regs)[18] = env->regs[18];
604     (*regs)[19] = env->regs[19];
605     (*regs)[20] = env->regs[20];
606     (*regs)[21] = env->regs[21];
607     (*regs)[22] = env->regs[22];
608     (*regs)[23] = env->regs[23];
609     (*regs)[24] = env->regs[24];
610     (*regs)[25] = env->regs[25];
611     (*regs)[26] = env->regs[26];
612     (*regs)[27] = env->regs[27];
613     (*regs)[28] = env->regs[28];
614     (*regs)[29] = env->regs[29];
615     (*regs)[30] = env->regs[30];
616     (*regs)[31] = env->regs[31];
617 
618     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
619     (*regs)[33] = env->regs[0]; /* XXX */
620 }
621 
622 #define USE_ELF_CORE_DUMP
623 #define ELF_EXEC_PAGESIZE               4096
624 
625 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
626 
627 #endif
628 
629 #ifdef TARGET_SPARC
630 #ifdef TARGET_SPARC64
631 
632 #define ELF_START_MMAP 0x80000000
633 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
635 #ifndef TARGET_ABI32
636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
637 #else
638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
639 #endif
640 
641 #define ELF_CLASS   ELFCLASS64
642 #define ELF_ARCH    EM_SPARCV9
643 
644 #define STACK_BIAS              2047
645 
646 static inline void init_thread(struct target_pt_regs *regs,
647                                struct image_info *infop)
648 {
649 #ifndef TARGET_ABI32
650     regs->tstate = 0;
651 #endif
652     regs->pc = infop->entry;
653     regs->npc = regs->pc + 4;
654     regs->y = 0;
655 #ifdef TARGET_ABI32
656     regs->u_regs[14] = infop->start_stack - 16 * 4;
657 #else
658     if (personality(infop->personality) == PER_LINUX32)
659         regs->u_regs[14] = infop->start_stack - 16 * 4;
660     else
661         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
662 #endif
663 }
664 
665 #else
666 #define ELF_START_MMAP 0x80000000
667 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668                     | HWCAP_SPARC_MULDIV)
669 #define elf_check_arch(x) ( (x) == EM_SPARC )
670 
671 #define ELF_CLASS   ELFCLASS32
672 #define ELF_ARCH    EM_SPARC
673 
674 static inline void init_thread(struct target_pt_regs *regs,
675                                struct image_info *infop)
676 {
677     regs->psr = 0;
678     regs->pc = infop->entry;
679     regs->npc = regs->pc + 4;
680     regs->y = 0;
681     regs->u_regs[14] = infop->start_stack - 16 * 4;
682 }
683 
684 #endif
685 #endif
686 
687 #ifdef TARGET_PPC
688 
689 #define ELF_START_MMAP 0x80000000
690 
691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
692 
693 #define elf_check_arch(x) ( (x) == EM_PPC64 )
694 
695 #define ELF_CLASS       ELFCLASS64
696 
697 #else
698 
699 #define elf_check_arch(x) ( (x) == EM_PPC )
700 
701 #define ELF_CLASS       ELFCLASS32
702 
703 #endif
704 
705 #define ELF_ARCH        EM_PPC
706 
707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708    See arch/powerpc/include/asm/cputable.h.  */
709 enum {
710     QEMU_PPC_FEATURE_32 = 0x80000000,
711     QEMU_PPC_FEATURE_64 = 0x40000000,
712     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
713     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
714     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
715     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
716     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
717     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
718     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
719     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
720     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
721     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
722     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
723     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
724     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
725     QEMU_PPC_FEATURE_CELL = 0x00010000,
726     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
727     QEMU_PPC_FEATURE_SMT = 0x00004000,
728     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
729     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
730     QEMU_PPC_FEATURE_PA6T = 0x00000800,
731     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
732     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
733     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
734     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
735     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
736 
737     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
738     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
739 };
740 
741 #define ELF_HWCAP get_elf_hwcap()
742 
743 static uint32_t get_elf_hwcap(void)
744 {
745     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
746     uint32_t features = 0;
747 
748     /* We don't have to be terribly complete here; the high points are
749        Altivec/FP/SPE support.  Anything else is just a bonus.  */
750 #define GET_FEATURE(flag, feature)                                      \
751     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
752     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
753     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
754     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
755     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
756     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
757     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
758     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
759     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
760 #undef GET_FEATURE
761 
762     return features;
763 }
764 
765 /*
766  * The requirements here are:
767  * - keep the final alignment of sp (sp & 0xf)
768  * - make sure the 32-bit value at the first 16 byte aligned position of
769  *   AUXV is greater than 16 for glibc compatibility.
770  *   AT_IGNOREPPC is used for that.
771  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
772  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
773  */
774 #define DLINFO_ARCH_ITEMS       5
775 #define ARCH_DLINFO                                     \
776     do {                                                \
777         NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20);              \
778         NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20);              \
779         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
780         /*                                              \
781          * Now handle glibc compatibility.              \
782          */                                             \
783         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
784         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
785     } while (0)
786 
787 static inline uint32_t get_ppc64_abi(struct image_info *infop);
788 
789 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
790 {
791     _regs->gpr[1] = infop->start_stack;
792 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
793     if (get_ppc64_abi(infop) < 2) {
794         _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
795         infop->entry = ldq_raw(infop->entry) + infop->load_bias;
796     } else {
797         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
798     }
799 #endif
800     _regs->nip = infop->entry;
801 }
802 
803 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
804 #define ELF_NREG 48
805 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
806 
807 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
808 {
809     int i;
810     target_ulong ccr = 0;
811 
812     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
813         (*regs)[i] = tswapreg(env->gpr[i]);
814     }
815 
816     (*regs)[32] = tswapreg(env->nip);
817     (*regs)[33] = tswapreg(env->msr);
818     (*regs)[35] = tswapreg(env->ctr);
819     (*regs)[36] = tswapreg(env->lr);
820     (*regs)[37] = tswapreg(env->xer);
821 
822     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
823         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
824     }
825     (*regs)[38] = tswapreg(ccr);
826 }
827 
828 #define USE_ELF_CORE_DUMP
829 #define ELF_EXEC_PAGESIZE       4096
830 
831 #endif
832 
833 #ifdef TARGET_MIPS
834 
835 #define ELF_START_MMAP 0x80000000
836 
837 #define elf_check_arch(x) ( (x) == EM_MIPS )
838 
839 #ifdef TARGET_MIPS64
840 #define ELF_CLASS   ELFCLASS64
841 #else
842 #define ELF_CLASS   ELFCLASS32
843 #endif
844 #define ELF_ARCH    EM_MIPS
845 
846 static inline void init_thread(struct target_pt_regs *regs,
847                                struct image_info *infop)
848 {
849     regs->cp0_status = 2 << CP0St_KSU;
850     regs->cp0_epc = infop->entry;
851     regs->regs[29] = infop->start_stack;
852 }
853 
854 /* See linux kernel: arch/mips/include/asm/elf.h.  */
855 #define ELF_NREG 45
856 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
857 
858 /* See linux kernel: arch/mips/include/asm/reg.h.  */
859 enum {
860 #ifdef TARGET_MIPS64
861     TARGET_EF_R0 = 0,
862 #else
863     TARGET_EF_R0 = 6,
864 #endif
865     TARGET_EF_R26 = TARGET_EF_R0 + 26,
866     TARGET_EF_R27 = TARGET_EF_R0 + 27,
867     TARGET_EF_LO = TARGET_EF_R0 + 32,
868     TARGET_EF_HI = TARGET_EF_R0 + 33,
869     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
870     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
871     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
872     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
873 };
874 
875 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
876 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
877 {
878     int i;
879 
880     for (i = 0; i < TARGET_EF_R0; i++) {
881         (*regs)[i] = 0;
882     }
883     (*regs)[TARGET_EF_R0] = 0;
884 
885     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
886         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
887     }
888 
889     (*regs)[TARGET_EF_R26] = 0;
890     (*regs)[TARGET_EF_R27] = 0;
891     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
892     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
893     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
894     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
895     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
896     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
897 }
898 
899 #define USE_ELF_CORE_DUMP
900 #define ELF_EXEC_PAGESIZE        4096
901 
902 #endif /* TARGET_MIPS */
903 
904 #ifdef TARGET_MICROBLAZE
905 
906 #define ELF_START_MMAP 0x80000000
907 
908 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
909 
910 #define ELF_CLASS   ELFCLASS32
911 #define ELF_ARCH    EM_MICROBLAZE
912 
913 static inline void init_thread(struct target_pt_regs *regs,
914                                struct image_info *infop)
915 {
916     regs->pc = infop->entry;
917     regs->r1 = infop->start_stack;
918 
919 }
920 
921 #define ELF_EXEC_PAGESIZE        4096
922 
923 #define USE_ELF_CORE_DUMP
924 #define ELF_NREG 38
925 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
926 
927 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
928 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
929 {
930     int i, pos = 0;
931 
932     for (i = 0; i < 32; i++) {
933         (*regs)[pos++] = tswapreg(env->regs[i]);
934     }
935 
936     for (i = 0; i < 6; i++) {
937         (*regs)[pos++] = tswapreg(env->sregs[i]);
938     }
939 }
940 
941 #endif /* TARGET_MICROBLAZE */
942 
943 #ifdef TARGET_OPENRISC
944 
945 #define ELF_START_MMAP 0x08000000
946 
947 #define elf_check_arch(x) ((x) == EM_OPENRISC)
948 
949 #define ELF_ARCH EM_OPENRISC
950 #define ELF_CLASS ELFCLASS32
951 #define ELF_DATA  ELFDATA2MSB
952 
953 static inline void init_thread(struct target_pt_regs *regs,
954                                struct image_info *infop)
955 {
956     regs->pc = infop->entry;
957     regs->gpr[1] = infop->start_stack;
958 }
959 
960 #define USE_ELF_CORE_DUMP
961 #define ELF_EXEC_PAGESIZE 8192
962 
963 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
964 #define ELF_NREG 34 /* gprs and pc, sr */
965 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
966 
967 static void elf_core_copy_regs(target_elf_gregset_t *regs,
968                                const CPUOpenRISCState *env)
969 {
970     int i;
971 
972     for (i = 0; i < 32; i++) {
973         (*regs)[i] = tswapreg(env->gpr[i]);
974     }
975 
976     (*regs)[32] = tswapreg(env->pc);
977     (*regs)[33] = tswapreg(env->sr);
978 }
979 #define ELF_HWCAP 0
980 #define ELF_PLATFORM NULL
981 
982 #endif /* TARGET_OPENRISC */
983 
984 #ifdef TARGET_SH4
985 
986 #define ELF_START_MMAP 0x80000000
987 
988 #define elf_check_arch(x) ( (x) == EM_SH )
989 
990 #define ELF_CLASS ELFCLASS32
991 #define ELF_ARCH  EM_SH
992 
993 static inline void init_thread(struct target_pt_regs *regs,
994                                struct image_info *infop)
995 {
996     /* Check other registers XXXXX */
997     regs->pc = infop->entry;
998     regs->regs[15] = infop->start_stack;
999 }
1000 
1001 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1002 #define ELF_NREG 23
1003 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1004 
1005 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1006 enum {
1007     TARGET_REG_PC = 16,
1008     TARGET_REG_PR = 17,
1009     TARGET_REG_SR = 18,
1010     TARGET_REG_GBR = 19,
1011     TARGET_REG_MACH = 20,
1012     TARGET_REG_MACL = 21,
1013     TARGET_REG_SYSCALL = 22
1014 };
1015 
1016 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1017                                       const CPUSH4State *env)
1018 {
1019     int i;
1020 
1021     for (i = 0; i < 16; i++) {
1022         (*regs[i]) = tswapreg(env->gregs[i]);
1023     }
1024 
1025     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1026     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1027     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1028     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1029     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1030     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1031     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1032 }
1033 
1034 #define USE_ELF_CORE_DUMP
1035 #define ELF_EXEC_PAGESIZE        4096
1036 
1037 #endif
1038 
1039 #ifdef TARGET_CRIS
1040 
1041 #define ELF_START_MMAP 0x80000000
1042 
1043 #define elf_check_arch(x) ( (x) == EM_CRIS )
1044 
1045 #define ELF_CLASS ELFCLASS32
1046 #define ELF_ARCH  EM_CRIS
1047 
1048 static inline void init_thread(struct target_pt_regs *regs,
1049                                struct image_info *infop)
1050 {
1051     regs->erp = infop->entry;
1052 }
1053 
1054 #define ELF_EXEC_PAGESIZE        8192
1055 
1056 #endif
1057 
1058 #ifdef TARGET_M68K
1059 
1060 #define ELF_START_MMAP 0x80000000
1061 
1062 #define elf_check_arch(x) ( (x) == EM_68K )
1063 
1064 #define ELF_CLASS       ELFCLASS32
1065 #define ELF_ARCH        EM_68K
1066 
1067 /* ??? Does this need to do anything?
1068    #define ELF_PLAT_INIT(_r) */
1069 
1070 static inline void init_thread(struct target_pt_regs *regs,
1071                                struct image_info *infop)
1072 {
1073     regs->usp = infop->start_stack;
1074     regs->sr = 0;
1075     regs->pc = infop->entry;
1076 }
1077 
1078 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1079 #define ELF_NREG 20
1080 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1081 
1082 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1083 {
1084     (*regs)[0] = tswapreg(env->dregs[1]);
1085     (*regs)[1] = tswapreg(env->dregs[2]);
1086     (*regs)[2] = tswapreg(env->dregs[3]);
1087     (*regs)[3] = tswapreg(env->dregs[4]);
1088     (*regs)[4] = tswapreg(env->dregs[5]);
1089     (*regs)[5] = tswapreg(env->dregs[6]);
1090     (*regs)[6] = tswapreg(env->dregs[7]);
1091     (*regs)[7] = tswapreg(env->aregs[0]);
1092     (*regs)[8] = tswapreg(env->aregs[1]);
1093     (*regs)[9] = tswapreg(env->aregs[2]);
1094     (*regs)[10] = tswapreg(env->aregs[3]);
1095     (*regs)[11] = tswapreg(env->aregs[4]);
1096     (*regs)[12] = tswapreg(env->aregs[5]);
1097     (*regs)[13] = tswapreg(env->aregs[6]);
1098     (*regs)[14] = tswapreg(env->dregs[0]);
1099     (*regs)[15] = tswapreg(env->aregs[7]);
1100     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1101     (*regs)[17] = tswapreg(env->sr);
1102     (*regs)[18] = tswapreg(env->pc);
1103     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1104 }
1105 
1106 #define USE_ELF_CORE_DUMP
1107 #define ELF_EXEC_PAGESIZE       8192
1108 
1109 #endif
1110 
1111 #ifdef TARGET_ALPHA
1112 
1113 #define ELF_START_MMAP (0x30000000000ULL)
1114 
1115 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1116 
1117 #define ELF_CLASS      ELFCLASS64
1118 #define ELF_ARCH       EM_ALPHA
1119 
1120 static inline void init_thread(struct target_pt_regs *regs,
1121                                struct image_info *infop)
1122 {
1123     regs->pc = infop->entry;
1124     regs->ps = 8;
1125     regs->usp = infop->start_stack;
1126 }
1127 
1128 #define ELF_EXEC_PAGESIZE        8192
1129 
1130 #endif /* TARGET_ALPHA */
1131 
1132 #ifdef TARGET_S390X
1133 
1134 #define ELF_START_MMAP (0x20000000000ULL)
1135 
1136 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1137 
1138 #define ELF_CLASS	ELFCLASS64
1139 #define ELF_DATA	ELFDATA2MSB
1140 #define ELF_ARCH	EM_S390
1141 
1142 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1143 {
1144     regs->psw.addr = infop->entry;
1145     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1146     regs->gprs[15] = infop->start_stack;
1147 }
1148 
1149 #endif /* TARGET_S390X */
1150 
1151 #ifndef ELF_PLATFORM
1152 #define ELF_PLATFORM (NULL)
1153 #endif
1154 
1155 #ifndef ELF_HWCAP
1156 #define ELF_HWCAP 0
1157 #endif
1158 
1159 #ifdef TARGET_ABI32
1160 #undef ELF_CLASS
1161 #define ELF_CLASS ELFCLASS32
1162 #undef bswaptls
1163 #define bswaptls(ptr) bswap32s(ptr)
1164 #endif
1165 
1166 #include "elf.h"
1167 
1168 #ifdef TARGET_PPC
1169 static inline uint32_t get_ppc64_abi(struct image_info *infop)
1170 {
1171   return infop->elf_flags & EF_PPC64_ABI;
1172 }
1173 #endif
1174 
1175 struct exec
1176 {
1177     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1178     unsigned int a_text;   /* length of text, in bytes */
1179     unsigned int a_data;   /* length of data, in bytes */
1180     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1181     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1182     unsigned int a_entry;  /* start address */
1183     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1184     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1185 };
1186 
1187 
1188 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1189 #define OMAGIC 0407
1190 #define NMAGIC 0410
1191 #define ZMAGIC 0413
1192 #define QMAGIC 0314
1193 
1194 /* Necessary parameters */
1195 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1196 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1197 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1198 
1199 #define DLINFO_ITEMS 14
1200 
1201 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1202 {
1203     memcpy(to, from, n);
1204 }
1205 
1206 #ifdef BSWAP_NEEDED
1207 static void bswap_ehdr(struct elfhdr *ehdr)
1208 {
1209     bswap16s(&ehdr->e_type);            /* Object file type */
1210     bswap16s(&ehdr->e_machine);         /* Architecture */
1211     bswap32s(&ehdr->e_version);         /* Object file version */
1212     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1213     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1214     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1215     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1216     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1217     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1218     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1219     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1220     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1221     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1222 }
1223 
1224 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1225 {
1226     int i;
1227     for (i = 0; i < phnum; ++i, ++phdr) {
1228         bswap32s(&phdr->p_type);        /* Segment type */
1229         bswap32s(&phdr->p_flags);       /* Segment flags */
1230         bswaptls(&phdr->p_offset);      /* Segment file offset */
1231         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1232         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1233         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1234         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1235         bswaptls(&phdr->p_align);       /* Segment alignment */
1236     }
1237 }
1238 
1239 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1240 {
1241     int i;
1242     for (i = 0; i < shnum; ++i, ++shdr) {
1243         bswap32s(&shdr->sh_name);
1244         bswap32s(&shdr->sh_type);
1245         bswaptls(&shdr->sh_flags);
1246         bswaptls(&shdr->sh_addr);
1247         bswaptls(&shdr->sh_offset);
1248         bswaptls(&shdr->sh_size);
1249         bswap32s(&shdr->sh_link);
1250         bswap32s(&shdr->sh_info);
1251         bswaptls(&shdr->sh_addralign);
1252         bswaptls(&shdr->sh_entsize);
1253     }
1254 }
1255 
1256 static void bswap_sym(struct elf_sym *sym)
1257 {
1258     bswap32s(&sym->st_name);
1259     bswaptls(&sym->st_value);
1260     bswaptls(&sym->st_size);
1261     bswap16s(&sym->st_shndx);
1262 }
1263 #else
1264 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1265 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1266 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1267 static inline void bswap_sym(struct elf_sym *sym) { }
1268 #endif
1269 
1270 #ifdef USE_ELF_CORE_DUMP
1271 static int elf_core_dump(int, const CPUArchState *);
1272 #endif /* USE_ELF_CORE_DUMP */
1273 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1274 
1275 /* Verify the portions of EHDR within E_IDENT for the target.
1276    This can be performed before bswapping the entire header.  */
1277 static bool elf_check_ident(struct elfhdr *ehdr)
1278 {
1279     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1280             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1281             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1282             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1283             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1284             && ehdr->e_ident[EI_DATA] == ELF_DATA
1285             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1286 }
1287 
1288 /* Verify the portions of EHDR outside of E_IDENT for the target.
1289    This has to wait until after bswapping the header.  */
1290 static bool elf_check_ehdr(struct elfhdr *ehdr)
1291 {
1292     return (elf_check_arch(ehdr->e_machine)
1293             && ehdr->e_ehsize == sizeof(struct elfhdr)
1294             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1295             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1296 }
1297 
1298 /*
1299  * 'copy_elf_strings()' copies argument/envelope strings from user
1300  * memory to free pages in kernel mem. These are in a format ready
1301  * to be put directly into the top of new user memory.
1302  *
1303  */
1304 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1305                                   abi_ulong p)
1306 {
1307     char *tmp, *tmp1, *pag = NULL;
1308     int len, offset = 0;
1309 
1310     if (!p) {
1311         return 0;       /* bullet-proofing */
1312     }
1313     while (argc-- > 0) {
1314         tmp = argv[argc];
1315         if (!tmp) {
1316             fprintf(stderr, "VFS: argc is wrong");
1317             exit(-1);
1318         }
1319         tmp1 = tmp;
1320         while (*tmp++);
1321         len = tmp - tmp1;
1322         if (p < len) {  /* this shouldn't happen - 128kB */
1323             return 0;
1324         }
1325         while (len) {
1326             --p; --tmp; --len;
1327             if (--offset < 0) {
1328                 offset = p % TARGET_PAGE_SIZE;
1329                 pag = (char *)page[p/TARGET_PAGE_SIZE];
1330                 if (!pag) {
1331                     pag = g_try_malloc0(TARGET_PAGE_SIZE);
1332                     page[p/TARGET_PAGE_SIZE] = pag;
1333                     if (!pag)
1334                         return 0;
1335                 }
1336             }
1337             if (len == 0 || offset == 0) {
1338                 *(pag + offset) = *tmp;
1339             }
1340             else {
1341                 int bytes_to_copy = (len > offset) ? offset : len;
1342                 tmp -= bytes_to_copy;
1343                 p -= bytes_to_copy;
1344                 offset -= bytes_to_copy;
1345                 len -= bytes_to_copy;
1346                 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1347             }
1348         }
1349     }
1350     return p;
1351 }
1352 
1353 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1354                                  struct image_info *info)
1355 {
1356     abi_ulong stack_base, size, error, guard;
1357     int i;
1358 
1359     /* Create enough stack to hold everything.  If we don't use
1360        it for args, we'll use it for something else.  */
1361     size = guest_stack_size;
1362     if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1363         size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1364     }
1365     guard = TARGET_PAGE_SIZE;
1366     if (guard < qemu_real_host_page_size) {
1367         guard = qemu_real_host_page_size;
1368     }
1369 
1370     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1371                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1372     if (error == -1) {
1373         perror("mmap stack");
1374         exit(-1);
1375     }
1376 
1377     /* We reserve one extra page at the top of the stack as guard.  */
1378     target_mprotect(error, guard, PROT_NONE);
1379 
1380     info->stack_limit = error + guard;
1381     stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1382     p += stack_base;
1383 
1384     for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1385         if (bprm->page[i]) {
1386             info->rss++;
1387             /* FIXME - check return value of memcpy_to_target() for failure */
1388             memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1389             g_free(bprm->page[i]);
1390         }
1391         stack_base += TARGET_PAGE_SIZE;
1392     }
1393     return p;
1394 }
1395 
1396 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1397    after the data section (i.e. bss).  */
1398 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1399 {
1400     uintptr_t host_start, host_map_start, host_end;
1401 
1402     last_bss = TARGET_PAGE_ALIGN(last_bss);
1403 
1404     /* ??? There is confusion between qemu_real_host_page_size and
1405        qemu_host_page_size here and elsewhere in target_mmap, which
1406        may lead to the end of the data section mapping from the file
1407        not being mapped.  At least there was an explicit test and
1408        comment for that here, suggesting that "the file size must
1409        be known".  The comment probably pre-dates the introduction
1410        of the fstat system call in target_mmap which does in fact
1411        find out the size.  What isn't clear is if the workaround
1412        here is still actually needed.  For now, continue with it,
1413        but merge it with the "normal" mmap that would allocate the bss.  */
1414 
1415     host_start = (uintptr_t) g2h(elf_bss);
1416     host_end = (uintptr_t) g2h(last_bss);
1417     host_map_start = (host_start + qemu_real_host_page_size - 1);
1418     host_map_start &= -qemu_real_host_page_size;
1419 
1420     if (host_map_start < host_end) {
1421         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1422                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1423         if (p == MAP_FAILED) {
1424             perror("cannot mmap brk");
1425             exit(-1);
1426         }
1427     }
1428 
1429     /* Ensure that the bss page(s) are valid */
1430     if ((page_get_flags(last_bss-1) & prot) != prot) {
1431         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1432     }
1433 
1434     if (host_start < host_map_start) {
1435         memset((void *)host_start, 0, host_map_start - host_start);
1436     }
1437 }
1438 
1439 #ifdef CONFIG_USE_FDPIC
1440 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1441 {
1442     uint16_t n;
1443     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1444 
1445     /* elf32_fdpic_loadseg */
1446     n = info->nsegs;
1447     while (n--) {
1448         sp -= 12;
1449         put_user_u32(loadsegs[n].addr, sp+0);
1450         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1451         put_user_u32(loadsegs[n].p_memsz, sp+8);
1452     }
1453 
1454     /* elf32_fdpic_loadmap */
1455     sp -= 4;
1456     put_user_u16(0, sp+0); /* version */
1457     put_user_u16(info->nsegs, sp+2); /* nsegs */
1458 
1459     info->personality = PER_LINUX_FDPIC;
1460     info->loadmap_addr = sp;
1461 
1462     return sp;
1463 }
1464 #endif
1465 
1466 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1467                                    struct elfhdr *exec,
1468                                    struct image_info *info,
1469                                    struct image_info *interp_info)
1470 {
1471     abi_ulong sp;
1472     abi_ulong sp_auxv;
1473     int size;
1474     int i;
1475     abi_ulong u_rand_bytes;
1476     uint8_t k_rand_bytes[16];
1477     abi_ulong u_platform;
1478     const char *k_platform;
1479     const int n = sizeof(elf_addr_t);
1480 
1481     sp = p;
1482 
1483 #ifdef CONFIG_USE_FDPIC
1484     /* Needs to be before we load the env/argc/... */
1485     if (elf_is_fdpic(exec)) {
1486         /* Need 4 byte alignment for these structs */
1487         sp &= ~3;
1488         sp = loader_build_fdpic_loadmap(info, sp);
1489         info->other_info = interp_info;
1490         if (interp_info) {
1491             interp_info->other_info = info;
1492             sp = loader_build_fdpic_loadmap(interp_info, sp);
1493         }
1494     }
1495 #endif
1496 
1497     u_platform = 0;
1498     k_platform = ELF_PLATFORM;
1499     if (k_platform) {
1500         size_t len = strlen(k_platform) + 1;
1501         sp -= (len + n - 1) & ~(n - 1);
1502         u_platform = sp;
1503         /* FIXME - check return value of memcpy_to_target() for failure */
1504         memcpy_to_target(sp, k_platform, len);
1505     }
1506 
1507     /*
1508      * Generate 16 random bytes for userspace PRNG seeding (not
1509      * cryptically secure but it's not the aim of QEMU).
1510      */
1511     srand((unsigned int) time(NULL));
1512     for (i = 0; i < 16; i++) {
1513         k_rand_bytes[i] = rand();
1514     }
1515     sp -= 16;
1516     u_rand_bytes = sp;
1517     /* FIXME - check return value of memcpy_to_target() for failure */
1518     memcpy_to_target(sp, k_rand_bytes, 16);
1519 
1520     /*
1521      * Force 16 byte _final_ alignment here for generality.
1522      */
1523     sp = sp &~ (abi_ulong)15;
1524     size = (DLINFO_ITEMS + 1) * 2;
1525     if (k_platform)
1526         size += 2;
1527 #ifdef DLINFO_ARCH_ITEMS
1528     size += DLINFO_ARCH_ITEMS * 2;
1529 #endif
1530 #ifdef ELF_HWCAP2
1531     size += 2;
1532 #endif
1533     size += envc + argc + 2;
1534     size += 1;  /* argc itself */
1535     size *= n;
1536     if (size & 15)
1537         sp -= 16 - (size & 15);
1538 
1539     /* This is correct because Linux defines
1540      * elf_addr_t as Elf32_Off / Elf64_Off
1541      */
1542 #define NEW_AUX_ENT(id, val) do {               \
1543         sp -= n; put_user_ual(val, sp);         \
1544         sp -= n; put_user_ual(id, sp);          \
1545     } while(0)
1546 
1547     sp_auxv = sp;
1548     NEW_AUX_ENT (AT_NULL, 0);
1549 
1550     /* There must be exactly DLINFO_ITEMS entries here.  */
1551     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1552     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1553     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1554     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1555     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1556     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1557     NEW_AUX_ENT(AT_ENTRY, info->entry);
1558     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1559     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1560     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1561     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1562     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1563     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1564     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1565 
1566 #ifdef ELF_HWCAP2
1567     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1568 #endif
1569 
1570     if (k_platform)
1571         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1572 #ifdef ARCH_DLINFO
1573     /*
1574      * ARCH_DLINFO must come last so platform specific code can enforce
1575      * special alignment requirements on the AUXV if necessary (eg. PPC).
1576      */
1577     ARCH_DLINFO;
1578 #endif
1579 #undef NEW_AUX_ENT
1580 
1581     info->saved_auxv = sp;
1582     info->auxv_len = sp_auxv - sp;
1583 
1584     sp = loader_build_argptr(envc, argc, sp, p, 0);
1585     /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1586     assert(sp_auxv - sp == size);
1587     return sp;
1588 }
1589 
1590 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1591 /* If the guest doesn't have a validation function just agree */
1592 static int validate_guest_space(unsigned long guest_base,
1593                                 unsigned long guest_size)
1594 {
1595     return 1;
1596 }
1597 #endif
1598 
1599 unsigned long init_guest_space(unsigned long host_start,
1600                                unsigned long host_size,
1601                                unsigned long guest_start,
1602                                bool fixed)
1603 {
1604     unsigned long current_start, real_start;
1605     int flags;
1606 
1607     assert(host_start || host_size);
1608 
1609     /* If just a starting address is given, then just verify that
1610      * address.  */
1611     if (host_start && !host_size) {
1612         if (validate_guest_space(host_start, host_size) == 1) {
1613             return host_start;
1614         } else {
1615             return (unsigned long)-1;
1616         }
1617     }
1618 
1619     /* Setup the initial flags and start address.  */
1620     current_start = host_start & qemu_host_page_mask;
1621     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1622     if (fixed) {
1623         flags |= MAP_FIXED;
1624     }
1625 
1626     /* Otherwise, a non-zero size region of memory needs to be mapped
1627      * and validated.  */
1628     while (1) {
1629         unsigned long real_size = host_size;
1630 
1631         /* Do not use mmap_find_vma here because that is limited to the
1632          * guest address space.  We are going to make the
1633          * guest address space fit whatever we're given.
1634          */
1635         real_start = (unsigned long)
1636             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1637         if (real_start == (unsigned long)-1) {
1638             return (unsigned long)-1;
1639         }
1640 
1641         /* Ensure the address is properly aligned.  */
1642         if (real_start & ~qemu_host_page_mask) {
1643             munmap((void *)real_start, host_size);
1644             real_size = host_size + qemu_host_page_size;
1645             real_start = (unsigned long)
1646                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1647             if (real_start == (unsigned long)-1) {
1648                 return (unsigned long)-1;
1649             }
1650             real_start = HOST_PAGE_ALIGN(real_start);
1651         }
1652 
1653         /* Check to see if the address is valid.  */
1654         if (!host_start || real_start == current_start) {
1655             int valid = validate_guest_space(real_start - guest_start,
1656                                              real_size);
1657             if (valid == 1) {
1658                 break;
1659             } else if (valid == -1) {
1660                 return (unsigned long)-1;
1661             }
1662             /* valid == 0, so try again. */
1663         }
1664 
1665         /* That address didn't work.  Unmap and try a different one.
1666          * The address the host picked because is typically right at
1667          * the top of the host address space and leaves the guest with
1668          * no usable address space.  Resort to a linear search.  We
1669          * already compensated for mmap_min_addr, so this should not
1670          * happen often.  Probably means we got unlucky and host
1671          * address space randomization put a shared library somewhere
1672          * inconvenient.
1673          */
1674         munmap((void *)real_start, host_size);
1675         current_start += qemu_host_page_size;
1676         if (host_start == current_start) {
1677             /* Theoretically possible if host doesn't have any suitably
1678              * aligned areas.  Normally the first mmap will fail.
1679              */
1680             return (unsigned long)-1;
1681         }
1682     }
1683 
1684     qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1685 
1686     return real_start;
1687 }
1688 
1689 static void probe_guest_base(const char *image_name,
1690                              abi_ulong loaddr, abi_ulong hiaddr)
1691 {
1692     /* Probe for a suitable guest base address, if the user has not set
1693      * it explicitly, and set guest_base appropriately.
1694      * In case of error we will print a suitable message and exit.
1695      */
1696 #if defined(CONFIG_USE_GUEST_BASE)
1697     const char *errmsg;
1698     if (!have_guest_base && !reserved_va) {
1699         unsigned long host_start, real_start, host_size;
1700 
1701         /* Round addresses to page boundaries.  */
1702         loaddr &= qemu_host_page_mask;
1703         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1704 
1705         if (loaddr < mmap_min_addr) {
1706             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1707         } else {
1708             host_start = loaddr;
1709             if (host_start != loaddr) {
1710                 errmsg = "Address overflow loading ELF binary";
1711                 goto exit_errmsg;
1712             }
1713         }
1714         host_size = hiaddr - loaddr;
1715 
1716         /* Setup the initial guest memory space with ranges gleaned from
1717          * the ELF image that is being loaded.
1718          */
1719         real_start = init_guest_space(host_start, host_size, loaddr, false);
1720         if (real_start == (unsigned long)-1) {
1721             errmsg = "Unable to find space for application";
1722             goto exit_errmsg;
1723         }
1724         guest_base = real_start - loaddr;
1725 
1726         qemu_log("Relocating guest address space from 0x"
1727                  TARGET_ABI_FMT_lx " to 0x%lx\n",
1728                  loaddr, real_start);
1729     }
1730     return;
1731 
1732 exit_errmsg:
1733     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1734     exit(-1);
1735 #endif
1736 }
1737 
1738 
1739 /* Load an ELF image into the address space.
1740 
1741    IMAGE_NAME is the filename of the image, to use in error messages.
1742    IMAGE_FD is the open file descriptor for the image.
1743 
1744    BPRM_BUF is a copy of the beginning of the file; this of course
1745    contains the elf file header at offset 0.  It is assumed that this
1746    buffer is sufficiently aligned to present no problems to the host
1747    in accessing data at aligned offsets within the buffer.
1748 
1749    On return: INFO values will be filled in, as necessary or available.  */
1750 
1751 static void load_elf_image(const char *image_name, int image_fd,
1752                            struct image_info *info, char **pinterp_name,
1753                            char bprm_buf[BPRM_BUF_SIZE])
1754 {
1755     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1756     struct elf_phdr *phdr;
1757     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1758     int i, retval;
1759     const char *errmsg;
1760 
1761     /* First of all, some simple consistency checks */
1762     errmsg = "Invalid ELF image for this architecture";
1763     if (!elf_check_ident(ehdr)) {
1764         goto exit_errmsg;
1765     }
1766     bswap_ehdr(ehdr);
1767     if (!elf_check_ehdr(ehdr)) {
1768         goto exit_errmsg;
1769     }
1770 
1771     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1772     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1773         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1774     } else {
1775         phdr = (struct elf_phdr *) alloca(i);
1776         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1777         if (retval != i) {
1778             goto exit_read;
1779         }
1780     }
1781     bswap_phdr(phdr, ehdr->e_phnum);
1782 
1783 #ifdef CONFIG_USE_FDPIC
1784     info->nsegs = 0;
1785     info->pt_dynamic_addr = 0;
1786 #endif
1787 
1788     /* Find the maximum size of the image and allocate an appropriate
1789        amount of memory to handle that.  */
1790     loaddr = -1, hiaddr = 0;
1791     for (i = 0; i < ehdr->e_phnum; ++i) {
1792         if (phdr[i].p_type == PT_LOAD) {
1793             abi_ulong a = phdr[i].p_vaddr;
1794             if (a < loaddr) {
1795                 loaddr = a;
1796             }
1797             a += phdr[i].p_memsz;
1798             if (a > hiaddr) {
1799                 hiaddr = a;
1800             }
1801 #ifdef CONFIG_USE_FDPIC
1802             ++info->nsegs;
1803 #endif
1804         }
1805     }
1806 
1807     load_addr = loaddr;
1808     if (ehdr->e_type == ET_DYN) {
1809         /* The image indicates that it can be loaded anywhere.  Find a
1810            location that can hold the memory space required.  If the
1811            image is pre-linked, LOADDR will be non-zero.  Since we do
1812            not supply MAP_FIXED here we'll use that address if and
1813            only if it remains available.  */
1814         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1815                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1816                                 -1, 0);
1817         if (load_addr == -1) {
1818             goto exit_perror;
1819         }
1820     } else if (pinterp_name != NULL) {
1821         /* This is the main executable.  Make sure that the low
1822            address does not conflict with MMAP_MIN_ADDR or the
1823            QEMU application itself.  */
1824         probe_guest_base(image_name, loaddr, hiaddr);
1825     }
1826     load_bias = load_addr - loaddr;
1827 
1828 #ifdef CONFIG_USE_FDPIC
1829     {
1830         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1831             g_malloc(sizeof(*loadsegs) * info->nsegs);
1832 
1833         for (i = 0; i < ehdr->e_phnum; ++i) {
1834             switch (phdr[i].p_type) {
1835             case PT_DYNAMIC:
1836                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1837                 break;
1838             case PT_LOAD:
1839                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1840                 loadsegs->p_vaddr = phdr[i].p_vaddr;
1841                 loadsegs->p_memsz = phdr[i].p_memsz;
1842                 ++loadsegs;
1843                 break;
1844             }
1845         }
1846     }
1847 #endif
1848 
1849     info->load_bias = load_bias;
1850     info->load_addr = load_addr;
1851     info->entry = ehdr->e_entry + load_bias;
1852     info->start_code = -1;
1853     info->end_code = 0;
1854     info->start_data = -1;
1855     info->end_data = 0;
1856     info->brk = 0;
1857     info->elf_flags = ehdr->e_flags;
1858 
1859     for (i = 0; i < ehdr->e_phnum; i++) {
1860         struct elf_phdr *eppnt = phdr + i;
1861         if (eppnt->p_type == PT_LOAD) {
1862             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1863             int elf_prot = 0;
1864 
1865             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1866             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1867             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1868 
1869             vaddr = load_bias + eppnt->p_vaddr;
1870             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1871             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1872 
1873             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1874                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
1875                                 image_fd, eppnt->p_offset - vaddr_po);
1876             if (error == -1) {
1877                 goto exit_perror;
1878             }
1879 
1880             vaddr_ef = vaddr + eppnt->p_filesz;
1881             vaddr_em = vaddr + eppnt->p_memsz;
1882 
1883             /* If the load segment requests extra zeros (e.g. bss), map it.  */
1884             if (vaddr_ef < vaddr_em) {
1885                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1886             }
1887 
1888             /* Find the full program boundaries.  */
1889             if (elf_prot & PROT_EXEC) {
1890                 if (vaddr < info->start_code) {
1891                     info->start_code = vaddr;
1892                 }
1893                 if (vaddr_ef > info->end_code) {
1894                     info->end_code = vaddr_ef;
1895                 }
1896             }
1897             if (elf_prot & PROT_WRITE) {
1898                 if (vaddr < info->start_data) {
1899                     info->start_data = vaddr;
1900                 }
1901                 if (vaddr_ef > info->end_data) {
1902                     info->end_data = vaddr_ef;
1903                 }
1904                 if (vaddr_em > info->brk) {
1905                     info->brk = vaddr_em;
1906                 }
1907             }
1908         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1909             char *interp_name;
1910 
1911             if (*pinterp_name) {
1912                 errmsg = "Multiple PT_INTERP entries";
1913                 goto exit_errmsg;
1914             }
1915             interp_name = malloc(eppnt->p_filesz);
1916             if (!interp_name) {
1917                 goto exit_perror;
1918             }
1919 
1920             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1921                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1922                        eppnt->p_filesz);
1923             } else {
1924                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1925                                eppnt->p_offset);
1926                 if (retval != eppnt->p_filesz) {
1927                     goto exit_perror;
1928                 }
1929             }
1930             if (interp_name[eppnt->p_filesz - 1] != 0) {
1931                 errmsg = "Invalid PT_INTERP entry";
1932                 goto exit_errmsg;
1933             }
1934             *pinterp_name = interp_name;
1935         }
1936     }
1937 
1938     if (info->end_data == 0) {
1939         info->start_data = info->end_code;
1940         info->end_data = info->end_code;
1941         info->brk = info->end_code;
1942     }
1943 
1944     if (qemu_log_enabled()) {
1945         load_symbols(ehdr, image_fd, load_bias);
1946     }
1947 
1948     close(image_fd);
1949     return;
1950 
1951  exit_read:
1952     if (retval >= 0) {
1953         errmsg = "Incomplete read of file header";
1954         goto exit_errmsg;
1955     }
1956  exit_perror:
1957     errmsg = strerror(errno);
1958  exit_errmsg:
1959     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1960     exit(-1);
1961 }
1962 
1963 static void load_elf_interp(const char *filename, struct image_info *info,
1964                             char bprm_buf[BPRM_BUF_SIZE])
1965 {
1966     int fd, retval;
1967 
1968     fd = open(path(filename), O_RDONLY);
1969     if (fd < 0) {
1970         goto exit_perror;
1971     }
1972 
1973     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1974     if (retval < 0) {
1975         goto exit_perror;
1976     }
1977     if (retval < BPRM_BUF_SIZE) {
1978         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1979     }
1980 
1981     load_elf_image(filename, fd, info, NULL, bprm_buf);
1982     return;
1983 
1984  exit_perror:
1985     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1986     exit(-1);
1987 }
1988 
1989 static int symfind(const void *s0, const void *s1)
1990 {
1991     target_ulong addr = *(target_ulong *)s0;
1992     struct elf_sym *sym = (struct elf_sym *)s1;
1993     int result = 0;
1994     if (addr < sym->st_value) {
1995         result = -1;
1996     } else if (addr >= sym->st_value + sym->st_size) {
1997         result = 1;
1998     }
1999     return result;
2000 }
2001 
2002 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2003 {
2004 #if ELF_CLASS == ELFCLASS32
2005     struct elf_sym *syms = s->disas_symtab.elf32;
2006 #else
2007     struct elf_sym *syms = s->disas_symtab.elf64;
2008 #endif
2009 
2010     // binary search
2011     struct elf_sym *sym;
2012 
2013     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2014     if (sym != NULL) {
2015         return s->disas_strtab + sym->st_name;
2016     }
2017 
2018     return "";
2019 }
2020 
2021 /* FIXME: This should use elf_ops.h  */
2022 static int symcmp(const void *s0, const void *s1)
2023 {
2024     struct elf_sym *sym0 = (struct elf_sym *)s0;
2025     struct elf_sym *sym1 = (struct elf_sym *)s1;
2026     return (sym0->st_value < sym1->st_value)
2027         ? -1
2028         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2029 }
2030 
2031 /* Best attempt to load symbols from this ELF object. */
2032 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2033 {
2034     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2035     struct elf_shdr *shdr;
2036     char *strings = NULL;
2037     struct syminfo *s = NULL;
2038     struct elf_sym *new_syms, *syms = NULL;
2039 
2040     shnum = hdr->e_shnum;
2041     i = shnum * sizeof(struct elf_shdr);
2042     shdr = (struct elf_shdr *)alloca(i);
2043     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2044         return;
2045     }
2046 
2047     bswap_shdr(shdr, shnum);
2048     for (i = 0; i < shnum; ++i) {
2049         if (shdr[i].sh_type == SHT_SYMTAB) {
2050             sym_idx = i;
2051             str_idx = shdr[i].sh_link;
2052             goto found;
2053         }
2054     }
2055 
2056     /* There will be no symbol table if the file was stripped.  */
2057     return;
2058 
2059  found:
2060     /* Now know where the strtab and symtab are.  Snarf them.  */
2061     s = malloc(sizeof(*s));
2062     if (!s) {
2063         goto give_up;
2064     }
2065 
2066     i = shdr[str_idx].sh_size;
2067     s->disas_strtab = strings = malloc(i);
2068     if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2069         goto give_up;
2070     }
2071 
2072     i = shdr[sym_idx].sh_size;
2073     syms = malloc(i);
2074     if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2075         goto give_up;
2076     }
2077 
2078     nsyms = i / sizeof(struct elf_sym);
2079     for (i = 0; i < nsyms; ) {
2080         bswap_sym(syms + i);
2081         /* Throw away entries which we do not need.  */
2082         if (syms[i].st_shndx == SHN_UNDEF
2083             || syms[i].st_shndx >= SHN_LORESERVE
2084             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2085             if (i < --nsyms) {
2086                 syms[i] = syms[nsyms];
2087             }
2088         } else {
2089 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2090             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2091             syms[i].st_value &= ~(target_ulong)1;
2092 #endif
2093             syms[i].st_value += load_bias;
2094             i++;
2095         }
2096     }
2097 
2098     /* No "useful" symbol.  */
2099     if (nsyms == 0) {
2100         goto give_up;
2101     }
2102 
2103     /* Attempt to free the storage associated with the local symbols
2104        that we threw away.  Whether or not this has any effect on the
2105        memory allocation depends on the malloc implementation and how
2106        many symbols we managed to discard.  */
2107     new_syms = realloc(syms, nsyms * sizeof(*syms));
2108     if (new_syms == NULL) {
2109         goto give_up;
2110     }
2111     syms = new_syms;
2112 
2113     qsort(syms, nsyms, sizeof(*syms), symcmp);
2114 
2115     s->disas_num_syms = nsyms;
2116 #if ELF_CLASS == ELFCLASS32
2117     s->disas_symtab.elf32 = syms;
2118 #else
2119     s->disas_symtab.elf64 = syms;
2120 #endif
2121     s->lookup_symbol = lookup_symbolxx;
2122     s->next = syminfos;
2123     syminfos = s;
2124 
2125     return;
2126 
2127 give_up:
2128     free(s);
2129     free(strings);
2130     free(syms);
2131 }
2132 
2133 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2134 {
2135     struct image_info interp_info;
2136     struct elfhdr elf_ex;
2137     char *elf_interpreter = NULL;
2138 
2139     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2140     info->mmap = 0;
2141     info->rss = 0;
2142 
2143     load_elf_image(bprm->filename, bprm->fd, info,
2144                    &elf_interpreter, bprm->buf);
2145 
2146     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2147        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2148        when we load the interpreter.  */
2149     elf_ex = *(struct elfhdr *)bprm->buf;
2150 
2151     bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2152     bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2153     bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2154     if (!bprm->p) {
2155         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2156         exit(-1);
2157     }
2158 
2159     /* Do this so that we can load the interpreter, if need be.  We will
2160        change some of these later */
2161     bprm->p = setup_arg_pages(bprm->p, bprm, info);
2162 
2163     if (elf_interpreter) {
2164         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2165 
2166         /* If the program interpreter is one of these two, then assume
2167            an iBCS2 image.  Otherwise assume a native linux image.  */
2168 
2169         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2170             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2171             info->personality = PER_SVR4;
2172 
2173             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2174                and some applications "depend" upon this behavior.  Since
2175                we do not have the power to recompile these, we emulate
2176                the SVr4 behavior.  Sigh.  */
2177             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2178                         MAP_FIXED | MAP_PRIVATE, -1, 0);
2179         }
2180     }
2181 
2182     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2183                                 info, (elf_interpreter ? &interp_info : NULL));
2184     info->start_stack = bprm->p;
2185 
2186     /* If we have an interpreter, set that as the program's entry point.
2187        Copy the load_bias as well, to help PPC64 interpret the entry
2188        point as a function descriptor.  Do this after creating elf tables
2189        so that we copy the original program entry point into the AUXV.  */
2190     if (elf_interpreter) {
2191         info->load_bias = interp_info.load_bias;
2192         info->entry = interp_info.entry;
2193         free(elf_interpreter);
2194     }
2195 
2196 #ifdef USE_ELF_CORE_DUMP
2197     bprm->core_dump = &elf_core_dump;
2198 #endif
2199 
2200     return 0;
2201 }
2202 
2203 #ifdef USE_ELF_CORE_DUMP
2204 /*
2205  * Definitions to generate Intel SVR4-like core files.
2206  * These mostly have the same names as the SVR4 types with "target_elf_"
2207  * tacked on the front to prevent clashes with linux definitions,
2208  * and the typedef forms have been avoided.  This is mostly like
2209  * the SVR4 structure, but more Linuxy, with things that Linux does
2210  * not support and which gdb doesn't really use excluded.
2211  *
2212  * Fields we don't dump (their contents is zero) in linux-user qemu
2213  * are marked with XXX.
2214  *
2215  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2216  *
2217  * Porting ELF coredump for target is (quite) simple process.  First you
2218  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2219  * the target resides):
2220  *
2221  * #define USE_ELF_CORE_DUMP
2222  *
2223  * Next you define type of register set used for dumping.  ELF specification
2224  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2225  *
2226  * typedef <target_regtype> target_elf_greg_t;
2227  * #define ELF_NREG <number of registers>
2228  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2229  *
2230  * Last step is to implement target specific function that copies registers
2231  * from given cpu into just specified register set.  Prototype is:
2232  *
2233  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2234  *                                const CPUArchState *env);
2235  *
2236  * Parameters:
2237  *     regs - copy register values into here (allocated and zeroed by caller)
2238  *     env - copy registers from here
2239  *
2240  * Example for ARM target is provided in this file.
2241  */
2242 
2243 /* An ELF note in memory */
2244 struct memelfnote {
2245     const char *name;
2246     size_t     namesz;
2247     size_t     namesz_rounded;
2248     int        type;
2249     size_t     datasz;
2250     size_t     datasz_rounded;
2251     void       *data;
2252     size_t     notesz;
2253 };
2254 
2255 struct target_elf_siginfo {
2256     abi_int    si_signo; /* signal number */
2257     abi_int    si_code;  /* extra code */
2258     abi_int    si_errno; /* errno */
2259 };
2260 
2261 struct target_elf_prstatus {
2262     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2263     abi_short          pr_cursig;    /* Current signal */
2264     abi_ulong          pr_sigpend;   /* XXX */
2265     abi_ulong          pr_sighold;   /* XXX */
2266     target_pid_t       pr_pid;
2267     target_pid_t       pr_ppid;
2268     target_pid_t       pr_pgrp;
2269     target_pid_t       pr_sid;
2270     struct target_timeval pr_utime;  /* XXX User time */
2271     struct target_timeval pr_stime;  /* XXX System time */
2272     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2273     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2274     target_elf_gregset_t      pr_reg;       /* GP registers */
2275     abi_int            pr_fpvalid;   /* XXX */
2276 };
2277 
2278 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2279 
2280 struct target_elf_prpsinfo {
2281     char         pr_state;       /* numeric process state */
2282     char         pr_sname;       /* char for pr_state */
2283     char         pr_zomb;        /* zombie */
2284     char         pr_nice;        /* nice val */
2285     abi_ulong    pr_flag;        /* flags */
2286     target_uid_t pr_uid;
2287     target_gid_t pr_gid;
2288     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2289     /* Lots missing */
2290     char    pr_fname[16];           /* filename of executable */
2291     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2292 };
2293 
2294 /* Here is the structure in which status of each thread is captured. */
2295 struct elf_thread_status {
2296     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2297     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2298 #if 0
2299     elf_fpregset_t fpu;             /* NT_PRFPREG */
2300     struct task_struct *thread;
2301     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2302 #endif
2303     struct memelfnote notes[1];
2304     int num_notes;
2305 };
2306 
2307 struct elf_note_info {
2308     struct memelfnote   *notes;
2309     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2310     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2311 
2312     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2313 #if 0
2314     /*
2315      * Current version of ELF coredump doesn't support
2316      * dumping fp regs etc.
2317      */
2318     elf_fpregset_t *fpu;
2319     elf_fpxregset_t *xfpu;
2320     int thread_status_size;
2321 #endif
2322     int notes_size;
2323     int numnote;
2324 };
2325 
2326 struct vm_area_struct {
2327     abi_ulong   vma_start;  /* start vaddr of memory region */
2328     abi_ulong   vma_end;    /* end vaddr of memory region */
2329     abi_ulong   vma_flags;  /* protection etc. flags for the region */
2330     QTAILQ_ENTRY(vm_area_struct) vma_link;
2331 };
2332 
2333 struct mm_struct {
2334     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2335     int mm_count;           /* number of mappings */
2336 };
2337 
2338 static struct mm_struct *vma_init(void);
2339 static void vma_delete(struct mm_struct *);
2340 static int vma_add_mapping(struct mm_struct *, abi_ulong,
2341                            abi_ulong, abi_ulong);
2342 static int vma_get_mapping_count(const struct mm_struct *);
2343 static struct vm_area_struct *vma_first(const struct mm_struct *);
2344 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2345 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2346 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2347                       unsigned long flags);
2348 
2349 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2350 static void fill_note(struct memelfnote *, const char *, int,
2351                       unsigned int, void *);
2352 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2353 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2354 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2355 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2356 static size_t note_size(const struct memelfnote *);
2357 static void free_note_info(struct elf_note_info *);
2358 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2359 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2360 static int core_dump_filename(const TaskState *, char *, size_t);
2361 
2362 static int dump_write(int, const void *, size_t);
2363 static int write_note(struct memelfnote *, int);
2364 static int write_note_info(struct elf_note_info *, int);
2365 
2366 #ifdef BSWAP_NEEDED
2367 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2368 {
2369     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2370     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2371     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2372     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2373     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2374     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2375     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2376     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2377     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2378     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2379     /* cpu times are not filled, so we skip them */
2380     /* regs should be in correct format already */
2381     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2382 }
2383 
2384 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2385 {
2386     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2387     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2388     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2389     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2390     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2391     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2392     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2393 }
2394 
2395 static void bswap_note(struct elf_note *en)
2396 {
2397     bswap32s(&en->n_namesz);
2398     bswap32s(&en->n_descsz);
2399     bswap32s(&en->n_type);
2400 }
2401 #else
2402 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2403 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2404 static inline void bswap_note(struct elf_note *en) { }
2405 #endif /* BSWAP_NEEDED */
2406 
2407 /*
2408  * Minimal support for linux memory regions.  These are needed
2409  * when we are finding out what memory exactly belongs to
2410  * emulated process.  No locks needed here, as long as
2411  * thread that received the signal is stopped.
2412  */
2413 
2414 static struct mm_struct *vma_init(void)
2415 {
2416     struct mm_struct *mm;
2417 
2418     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2419         return (NULL);
2420 
2421     mm->mm_count = 0;
2422     QTAILQ_INIT(&mm->mm_mmap);
2423 
2424     return (mm);
2425 }
2426 
2427 static void vma_delete(struct mm_struct *mm)
2428 {
2429     struct vm_area_struct *vma;
2430 
2431     while ((vma = vma_first(mm)) != NULL) {
2432         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2433         g_free(vma);
2434     }
2435     g_free(mm);
2436 }
2437 
2438 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
2439                            abi_ulong end, abi_ulong flags)
2440 {
2441     struct vm_area_struct *vma;
2442 
2443     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2444         return (-1);
2445 
2446     vma->vma_start = start;
2447     vma->vma_end = end;
2448     vma->vma_flags = flags;
2449 
2450     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2451     mm->mm_count++;
2452 
2453     return (0);
2454 }
2455 
2456 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2457 {
2458     return (QTAILQ_FIRST(&mm->mm_mmap));
2459 }
2460 
2461 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2462 {
2463     return (QTAILQ_NEXT(vma, vma_link));
2464 }
2465 
2466 static int vma_get_mapping_count(const struct mm_struct *mm)
2467 {
2468     return (mm->mm_count);
2469 }
2470 
2471 /*
2472  * Calculate file (dump) size of given memory region.
2473  */
2474 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2475 {
2476     /* if we cannot even read the first page, skip it */
2477     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2478         return (0);
2479 
2480     /*
2481      * Usually we don't dump executable pages as they contain
2482      * non-writable code that debugger can read directly from
2483      * target library etc.  However, thread stacks are marked
2484      * also executable so we read in first page of given region
2485      * and check whether it contains elf header.  If there is
2486      * no elf header, we dump it.
2487      */
2488     if (vma->vma_flags & PROT_EXEC) {
2489         char page[TARGET_PAGE_SIZE];
2490 
2491         copy_from_user(page, vma->vma_start, sizeof (page));
2492         if ((page[EI_MAG0] == ELFMAG0) &&
2493             (page[EI_MAG1] == ELFMAG1) &&
2494             (page[EI_MAG2] == ELFMAG2) &&
2495             (page[EI_MAG3] == ELFMAG3)) {
2496             /*
2497              * Mappings are possibly from ELF binary.  Don't dump
2498              * them.
2499              */
2500             return (0);
2501         }
2502     }
2503 
2504     return (vma->vma_end - vma->vma_start);
2505 }
2506 
2507 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2508                       unsigned long flags)
2509 {
2510     struct mm_struct *mm = (struct mm_struct *)priv;
2511 
2512     vma_add_mapping(mm, start, end, flags);
2513     return (0);
2514 }
2515 
2516 static void fill_note(struct memelfnote *note, const char *name, int type,
2517                       unsigned int sz, void *data)
2518 {
2519     unsigned int namesz;
2520 
2521     namesz = strlen(name) + 1;
2522     note->name = name;
2523     note->namesz = namesz;
2524     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2525     note->type = type;
2526     note->datasz = sz;
2527     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2528 
2529     note->data = data;
2530 
2531     /*
2532      * We calculate rounded up note size here as specified by
2533      * ELF document.
2534      */
2535     note->notesz = sizeof (struct elf_note) +
2536         note->namesz_rounded + note->datasz_rounded;
2537 }
2538 
2539 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2540                             uint32_t flags)
2541 {
2542     (void) memset(elf, 0, sizeof(*elf));
2543 
2544     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2545     elf->e_ident[EI_CLASS] = ELF_CLASS;
2546     elf->e_ident[EI_DATA] = ELF_DATA;
2547     elf->e_ident[EI_VERSION] = EV_CURRENT;
2548     elf->e_ident[EI_OSABI] = ELF_OSABI;
2549 
2550     elf->e_type = ET_CORE;
2551     elf->e_machine = machine;
2552     elf->e_version = EV_CURRENT;
2553     elf->e_phoff = sizeof(struct elfhdr);
2554     elf->e_flags = flags;
2555     elf->e_ehsize = sizeof(struct elfhdr);
2556     elf->e_phentsize = sizeof(struct elf_phdr);
2557     elf->e_phnum = segs;
2558 
2559     bswap_ehdr(elf);
2560 }
2561 
2562 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2563 {
2564     phdr->p_type = PT_NOTE;
2565     phdr->p_offset = offset;
2566     phdr->p_vaddr = 0;
2567     phdr->p_paddr = 0;
2568     phdr->p_filesz = sz;
2569     phdr->p_memsz = 0;
2570     phdr->p_flags = 0;
2571     phdr->p_align = 0;
2572 
2573     bswap_phdr(phdr, 1);
2574 }
2575 
2576 static size_t note_size(const struct memelfnote *note)
2577 {
2578     return (note->notesz);
2579 }
2580 
2581 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2582                           const TaskState *ts, int signr)
2583 {
2584     (void) memset(prstatus, 0, sizeof (*prstatus));
2585     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2586     prstatus->pr_pid = ts->ts_tid;
2587     prstatus->pr_ppid = getppid();
2588     prstatus->pr_pgrp = getpgrp();
2589     prstatus->pr_sid = getsid(0);
2590 
2591     bswap_prstatus(prstatus);
2592 }
2593 
2594 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2595 {
2596     char *base_filename;
2597     unsigned int i, len;
2598 
2599     (void) memset(psinfo, 0, sizeof (*psinfo));
2600 
2601     len = ts->info->arg_end - ts->info->arg_start;
2602     if (len >= ELF_PRARGSZ)
2603         len = ELF_PRARGSZ - 1;
2604     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2605         return -EFAULT;
2606     for (i = 0; i < len; i++)
2607         if (psinfo->pr_psargs[i] == 0)
2608             psinfo->pr_psargs[i] = ' ';
2609     psinfo->pr_psargs[len] = 0;
2610 
2611     psinfo->pr_pid = getpid();
2612     psinfo->pr_ppid = getppid();
2613     psinfo->pr_pgrp = getpgrp();
2614     psinfo->pr_sid = getsid(0);
2615     psinfo->pr_uid = getuid();
2616     psinfo->pr_gid = getgid();
2617 
2618     base_filename = g_path_get_basename(ts->bprm->filename);
2619     /*
2620      * Using strncpy here is fine: at max-length,
2621      * this field is not NUL-terminated.
2622      */
2623     (void) strncpy(psinfo->pr_fname, base_filename,
2624                    sizeof(psinfo->pr_fname));
2625 
2626     g_free(base_filename);
2627     bswap_psinfo(psinfo);
2628     return (0);
2629 }
2630 
2631 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2632 {
2633     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2634     elf_addr_t orig_auxv = auxv;
2635     void *ptr;
2636     int len = ts->info->auxv_len;
2637 
2638     /*
2639      * Auxiliary vector is stored in target process stack.  It contains
2640      * {type, value} pairs that we need to dump into note.  This is not
2641      * strictly necessary but we do it here for sake of completeness.
2642      */
2643 
2644     /* read in whole auxv vector and copy it to memelfnote */
2645     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2646     if (ptr != NULL) {
2647         fill_note(note, "CORE", NT_AUXV, len, ptr);
2648         unlock_user(ptr, auxv, len);
2649     }
2650 }
2651 
2652 /*
2653  * Constructs name of coredump file.  We have following convention
2654  * for the name:
2655  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2656  *
2657  * Returns 0 in case of success, -1 otherwise (errno is set).
2658  */
2659 static int core_dump_filename(const TaskState *ts, char *buf,
2660                               size_t bufsize)
2661 {
2662     char timestamp[64];
2663     char *filename = NULL;
2664     char *base_filename = NULL;
2665     struct timeval tv;
2666     struct tm tm;
2667 
2668     assert(bufsize >= PATH_MAX);
2669 
2670     if (gettimeofday(&tv, NULL) < 0) {
2671         (void) fprintf(stderr, "unable to get current timestamp: %s",
2672                        strerror(errno));
2673         return (-1);
2674     }
2675 
2676     filename = strdup(ts->bprm->filename);
2677     base_filename = strdup(basename(filename));
2678     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2679                     localtime_r(&tv.tv_sec, &tm));
2680     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2681                     base_filename, timestamp, (int)getpid());
2682     free(base_filename);
2683     free(filename);
2684 
2685     return (0);
2686 }
2687 
2688 static int dump_write(int fd, const void *ptr, size_t size)
2689 {
2690     const char *bufp = (const char *)ptr;
2691     ssize_t bytes_written, bytes_left;
2692     struct rlimit dumpsize;
2693     off_t pos;
2694 
2695     bytes_written = 0;
2696     getrlimit(RLIMIT_CORE, &dumpsize);
2697     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2698         if (errno == ESPIPE) { /* not a seekable stream */
2699             bytes_left = size;
2700         } else {
2701             return pos;
2702         }
2703     } else {
2704         if (dumpsize.rlim_cur <= pos) {
2705             return -1;
2706         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2707             bytes_left = size;
2708         } else {
2709             size_t limit_left=dumpsize.rlim_cur - pos;
2710             bytes_left = limit_left >= size ? size : limit_left ;
2711         }
2712     }
2713 
2714     /*
2715      * In normal conditions, single write(2) should do but
2716      * in case of socket etc. this mechanism is more portable.
2717      */
2718     do {
2719         bytes_written = write(fd, bufp, bytes_left);
2720         if (bytes_written < 0) {
2721             if (errno == EINTR)
2722                 continue;
2723             return (-1);
2724         } else if (bytes_written == 0) { /* eof */
2725             return (-1);
2726         }
2727         bufp += bytes_written;
2728         bytes_left -= bytes_written;
2729     } while (bytes_left > 0);
2730 
2731     return (0);
2732 }
2733 
2734 static int write_note(struct memelfnote *men, int fd)
2735 {
2736     struct elf_note en;
2737 
2738     en.n_namesz = men->namesz;
2739     en.n_type = men->type;
2740     en.n_descsz = men->datasz;
2741 
2742     bswap_note(&en);
2743 
2744     if (dump_write(fd, &en, sizeof(en)) != 0)
2745         return (-1);
2746     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2747         return (-1);
2748     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2749         return (-1);
2750 
2751     return (0);
2752 }
2753 
2754 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2755 {
2756     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2757     TaskState *ts = (TaskState *)cpu->opaque;
2758     struct elf_thread_status *ets;
2759 
2760     ets = g_malloc0(sizeof (*ets));
2761     ets->num_notes = 1; /* only prstatus is dumped */
2762     fill_prstatus(&ets->prstatus, ts, 0);
2763     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2764     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2765               &ets->prstatus);
2766 
2767     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2768 
2769     info->notes_size += note_size(&ets->notes[0]);
2770 }
2771 
2772 static void init_note_info(struct elf_note_info *info)
2773 {
2774     /* Initialize the elf_note_info structure so that it is at
2775      * least safe to call free_note_info() on it. Must be
2776      * called before calling fill_note_info().
2777      */
2778     memset(info, 0, sizeof (*info));
2779     QTAILQ_INIT(&info->thread_list);
2780 }
2781 
2782 static int fill_note_info(struct elf_note_info *info,
2783                           long signr, const CPUArchState *env)
2784 {
2785 #define NUMNOTES 3
2786     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2787     TaskState *ts = (TaskState *)cpu->opaque;
2788     int i;
2789 
2790     info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2791     if (info->notes == NULL)
2792         return (-ENOMEM);
2793     info->prstatus = g_malloc0(sizeof (*info->prstatus));
2794     if (info->prstatus == NULL)
2795         return (-ENOMEM);
2796     info->psinfo = g_malloc0(sizeof (*info->psinfo));
2797     if (info->prstatus == NULL)
2798         return (-ENOMEM);
2799 
2800     /*
2801      * First fill in status (and registers) of current thread
2802      * including process info & aux vector.
2803      */
2804     fill_prstatus(info->prstatus, ts, signr);
2805     elf_core_copy_regs(&info->prstatus->pr_reg, env);
2806     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2807               sizeof (*info->prstatus), info->prstatus);
2808     fill_psinfo(info->psinfo, ts);
2809     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2810               sizeof (*info->psinfo), info->psinfo);
2811     fill_auxv_note(&info->notes[2], ts);
2812     info->numnote = 3;
2813 
2814     info->notes_size = 0;
2815     for (i = 0; i < info->numnote; i++)
2816         info->notes_size += note_size(&info->notes[i]);
2817 
2818     /* read and fill status of all threads */
2819     cpu_list_lock();
2820     CPU_FOREACH(cpu) {
2821         if (cpu == thread_cpu) {
2822             continue;
2823         }
2824         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2825     }
2826     cpu_list_unlock();
2827 
2828     return (0);
2829 }
2830 
2831 static void free_note_info(struct elf_note_info *info)
2832 {
2833     struct elf_thread_status *ets;
2834 
2835     while (!QTAILQ_EMPTY(&info->thread_list)) {
2836         ets = QTAILQ_FIRST(&info->thread_list);
2837         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2838         g_free(ets);
2839     }
2840 
2841     g_free(info->prstatus);
2842     g_free(info->psinfo);
2843     g_free(info->notes);
2844 }
2845 
2846 static int write_note_info(struct elf_note_info *info, int fd)
2847 {
2848     struct elf_thread_status *ets;
2849     int i, error = 0;
2850 
2851     /* write prstatus, psinfo and auxv for current thread */
2852     for (i = 0; i < info->numnote; i++)
2853         if ((error = write_note(&info->notes[i], fd)) != 0)
2854             return (error);
2855 
2856     /* write prstatus for each thread */
2857     for (ets = info->thread_list.tqh_first; ets != NULL;
2858          ets = ets->ets_link.tqe_next) {
2859         if ((error = write_note(&ets->notes[0], fd)) != 0)
2860             return (error);
2861     }
2862 
2863     return (0);
2864 }
2865 
2866 /*
2867  * Write out ELF coredump.
2868  *
2869  * See documentation of ELF object file format in:
2870  * http://www.caldera.com/developers/devspecs/gabi41.pdf
2871  *
2872  * Coredump format in linux is following:
2873  *
2874  * 0   +----------------------+         \
2875  *     | ELF header           | ET_CORE  |
2876  *     +----------------------+          |
2877  *     | ELF program headers  |          |--- headers
2878  *     | - NOTE section       |          |
2879  *     | - PT_LOAD sections   |          |
2880  *     +----------------------+         /
2881  *     | NOTEs:               |
2882  *     | - NT_PRSTATUS        |
2883  *     | - NT_PRSINFO         |
2884  *     | - NT_AUXV            |
2885  *     +----------------------+ <-- aligned to target page
2886  *     | Process memory dump  |
2887  *     :                      :
2888  *     .                      .
2889  *     :                      :
2890  *     |                      |
2891  *     +----------------------+
2892  *
2893  * NT_PRSTATUS -> struct elf_prstatus (per thread)
2894  * NT_PRSINFO  -> struct elf_prpsinfo
2895  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2896  *
2897  * Format follows System V format as close as possible.  Current
2898  * version limitations are as follows:
2899  *     - no floating point registers are dumped
2900  *
2901  * Function returns 0 in case of success, negative errno otherwise.
2902  *
2903  * TODO: make this work also during runtime: it should be
2904  * possible to force coredump from running process and then
2905  * continue processing.  For example qemu could set up SIGUSR2
2906  * handler (provided that target process haven't registered
2907  * handler for that) that does the dump when signal is received.
2908  */
2909 static int elf_core_dump(int signr, const CPUArchState *env)
2910 {
2911     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2912     const TaskState *ts = (const TaskState *)cpu->opaque;
2913     struct vm_area_struct *vma = NULL;
2914     char corefile[PATH_MAX];
2915     struct elf_note_info info;
2916     struct elfhdr elf;
2917     struct elf_phdr phdr;
2918     struct rlimit dumpsize;
2919     struct mm_struct *mm = NULL;
2920     off_t offset = 0, data_offset = 0;
2921     int segs = 0;
2922     int fd = -1;
2923 
2924     init_note_info(&info);
2925 
2926     errno = 0;
2927     getrlimit(RLIMIT_CORE, &dumpsize);
2928     if (dumpsize.rlim_cur == 0)
2929         return 0;
2930 
2931     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2932         return (-errno);
2933 
2934     if ((fd = open(corefile, O_WRONLY | O_CREAT,
2935                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2936         return (-errno);
2937 
2938     /*
2939      * Walk through target process memory mappings and
2940      * set up structure containing this information.  After
2941      * this point vma_xxx functions can be used.
2942      */
2943     if ((mm = vma_init()) == NULL)
2944         goto out;
2945 
2946     walk_memory_regions(mm, vma_walker);
2947     segs = vma_get_mapping_count(mm);
2948 
2949     /*
2950      * Construct valid coredump ELF header.  We also
2951      * add one more segment for notes.
2952      */
2953     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2954     if (dump_write(fd, &elf, sizeof (elf)) != 0)
2955         goto out;
2956 
2957     /* fill in in-memory version of notes */
2958     if (fill_note_info(&info, signr, env) < 0)
2959         goto out;
2960 
2961     offset += sizeof (elf);                             /* elf header */
2962     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
2963 
2964     /* write out notes program header */
2965     fill_elf_note_phdr(&phdr, info.notes_size, offset);
2966 
2967     offset += info.notes_size;
2968     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2969         goto out;
2970 
2971     /*
2972      * ELF specification wants data to start at page boundary so
2973      * we align it here.
2974      */
2975     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2976 
2977     /*
2978      * Write program headers for memory regions mapped in
2979      * the target process.
2980      */
2981     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2982         (void) memset(&phdr, 0, sizeof (phdr));
2983 
2984         phdr.p_type = PT_LOAD;
2985         phdr.p_offset = offset;
2986         phdr.p_vaddr = vma->vma_start;
2987         phdr.p_paddr = 0;
2988         phdr.p_filesz = vma_dump_size(vma);
2989         offset += phdr.p_filesz;
2990         phdr.p_memsz = vma->vma_end - vma->vma_start;
2991         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2992         if (vma->vma_flags & PROT_WRITE)
2993             phdr.p_flags |= PF_W;
2994         if (vma->vma_flags & PROT_EXEC)
2995             phdr.p_flags |= PF_X;
2996         phdr.p_align = ELF_EXEC_PAGESIZE;
2997 
2998         bswap_phdr(&phdr, 1);
2999         dump_write(fd, &phdr, sizeof (phdr));
3000     }
3001 
3002     /*
3003      * Next we write notes just after program headers.  No
3004      * alignment needed here.
3005      */
3006     if (write_note_info(&info, fd) < 0)
3007         goto out;
3008 
3009     /* align data to page boundary */
3010     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3011         goto out;
3012 
3013     /*
3014      * Finally we can dump process memory into corefile as well.
3015      */
3016     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3017         abi_ulong addr;
3018         abi_ulong end;
3019 
3020         end = vma->vma_start + vma_dump_size(vma);
3021 
3022         for (addr = vma->vma_start; addr < end;
3023              addr += TARGET_PAGE_SIZE) {
3024             char page[TARGET_PAGE_SIZE];
3025             int error;
3026 
3027             /*
3028              *  Read in page from target process memory and
3029              *  write it to coredump file.
3030              */
3031             error = copy_from_user(page, addr, sizeof (page));
3032             if (error != 0) {
3033                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3034                                addr);
3035                 errno = -error;
3036                 goto out;
3037             }
3038             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3039                 goto out;
3040         }
3041     }
3042 
3043  out:
3044     free_note_info(&info);
3045     if (mm != NULL)
3046         vma_delete(mm);
3047     (void) close(fd);
3048 
3049     if (errno != 0)
3050         return (-errno);
3051     return (0);
3052 }
3053 #endif /* USE_ELF_CORE_DUMP */
3054 
3055 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3056 {
3057     init_thread(regs, infop);
3058 }
3059