xref: /openbmc/qemu/linux-user/elfload.c (revision 0fbb5d2d)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qapi/error.h"
21 #include "target_signal.h"
22 
23 #ifdef _ARCH_PPC64
24 #undef ARCH_DLINFO
25 #undef ELF_PLATFORM
26 #undef ELF_HWCAP
27 #undef ELF_HWCAP2
28 #undef ELF_CLASS
29 #undef ELF_DATA
30 #undef ELF_ARCH
31 #endif
32 
33 #define ELF_OSABI   ELFOSABI_SYSV
34 
35 /* from personality.h */
36 
37 /*
38  * Flags for bug emulation.
39  *
40  * These occupy the top three bytes.
41  */
42 enum {
43     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
44     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
45                                            descriptors (signal handling) */
46     MMAP_PAGE_ZERO =    0x0100000,
47     ADDR_COMPAT_LAYOUT = 0x0200000,
48     READ_IMPLIES_EXEC = 0x0400000,
49     ADDR_LIMIT_32BIT =  0x0800000,
50     SHORT_INODE =       0x1000000,
51     WHOLE_SECONDS =     0x2000000,
52     STICKY_TIMEOUTS =   0x4000000,
53     ADDR_LIMIT_3GB =    0x8000000,
54 };
55 
56 /*
57  * Personality types.
58  *
59  * These go in the low byte.  Avoid using the top bit, it will
60  * conflict with error returns.
61  */
62 enum {
63     PER_LINUX =         0x0000,
64     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
65     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
66     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
67     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
68     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
69     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
70     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
72     PER_BSD =           0x0006,
73     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
74     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
75     PER_LINUX32 =       0x0008,
76     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
77     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
78     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
79     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
80     PER_RISCOS =        0x000c,
81     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
82     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
83     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
84     PER_HPUX =          0x0010,
85     PER_MASK =          0x00ff,
86 };
87 
88 /*
89  * Return the base personality without flags.
90  */
91 #define personality(pers)       (pers & PER_MASK)
92 
93 int info_is_fdpic(struct image_info *info)
94 {
95     return info->personality == PER_LINUX_FDPIC;
96 }
97 
98 /* this flag is uneffective under linux too, should be deleted */
99 #ifndef MAP_DENYWRITE
100 #define MAP_DENYWRITE 0
101 #endif
102 
103 /* should probably go in elf.h */
104 #ifndef ELIBBAD
105 #define ELIBBAD 80
106 #endif
107 
108 #ifdef TARGET_WORDS_BIGENDIAN
109 #define ELF_DATA        ELFDATA2MSB
110 #else
111 #define ELF_DATA        ELFDATA2LSB
112 #endif
113 
114 #ifdef TARGET_ABI_MIPSN32
115 typedef abi_ullong      target_elf_greg_t;
116 #define tswapreg(ptr)   tswap64(ptr)
117 #else
118 typedef abi_ulong       target_elf_greg_t;
119 #define tswapreg(ptr)   tswapal(ptr)
120 #endif
121 
122 #ifdef USE_UID16
123 typedef abi_ushort      target_uid_t;
124 typedef abi_ushort      target_gid_t;
125 #else
126 typedef abi_uint        target_uid_t;
127 typedef abi_uint        target_gid_t;
128 #endif
129 typedef abi_int         target_pid_t;
130 
131 #ifdef TARGET_I386
132 
133 #define ELF_PLATFORM get_elf_platform()
134 
135 static const char *get_elf_platform(void)
136 {
137     static char elf_platform[] = "i386";
138     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
139     if (family > 6)
140         family = 6;
141     if (family >= 3)
142         elf_platform[1] = '0' + family;
143     return elf_platform;
144 }
145 
146 #define ELF_HWCAP get_elf_hwcap()
147 
148 static uint32_t get_elf_hwcap(void)
149 {
150     X86CPU *cpu = X86_CPU(thread_cpu);
151 
152     return cpu->env.features[FEAT_1_EDX];
153 }
154 
155 #ifdef TARGET_X86_64
156 #define ELF_START_MMAP 0x2aaaaab000ULL
157 
158 #define ELF_CLASS      ELFCLASS64
159 #define ELF_ARCH       EM_X86_64
160 
161 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
162 {
163     regs->rax = 0;
164     regs->rsp = infop->start_stack;
165     regs->rip = infop->entry;
166 }
167 
168 #define ELF_NREG    27
169 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
170 
171 /*
172  * Note that ELF_NREG should be 29 as there should be place for
173  * TRAPNO and ERR "registers" as well but linux doesn't dump
174  * those.
175  *
176  * See linux kernel: arch/x86/include/asm/elf.h
177  */
178 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
179 {
180     (*regs)[0] = tswapreg(env->regs[15]);
181     (*regs)[1] = tswapreg(env->regs[14]);
182     (*regs)[2] = tswapreg(env->regs[13]);
183     (*regs)[3] = tswapreg(env->regs[12]);
184     (*regs)[4] = tswapreg(env->regs[R_EBP]);
185     (*regs)[5] = tswapreg(env->regs[R_EBX]);
186     (*regs)[6] = tswapreg(env->regs[11]);
187     (*regs)[7] = tswapreg(env->regs[10]);
188     (*regs)[8] = tswapreg(env->regs[9]);
189     (*regs)[9] = tswapreg(env->regs[8]);
190     (*regs)[10] = tswapreg(env->regs[R_EAX]);
191     (*regs)[11] = tswapreg(env->regs[R_ECX]);
192     (*regs)[12] = tswapreg(env->regs[R_EDX]);
193     (*regs)[13] = tswapreg(env->regs[R_ESI]);
194     (*regs)[14] = tswapreg(env->regs[R_EDI]);
195     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
196     (*regs)[16] = tswapreg(env->eip);
197     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
198     (*regs)[18] = tswapreg(env->eflags);
199     (*regs)[19] = tswapreg(env->regs[R_ESP]);
200     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
201     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
202     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
203     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
204     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
205     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
206     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
207 }
208 
209 #else
210 
211 #define ELF_START_MMAP 0x80000000
212 
213 /*
214  * This is used to ensure we don't load something for the wrong architecture.
215  */
216 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
217 
218 /*
219  * These are used to set parameters in the core dumps.
220  */
221 #define ELF_CLASS       ELFCLASS32
222 #define ELF_ARCH        EM_386
223 
224 static inline void init_thread(struct target_pt_regs *regs,
225                                struct image_info *infop)
226 {
227     regs->esp = infop->start_stack;
228     regs->eip = infop->entry;
229 
230     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
231        starts %edx contains a pointer to a function which might be
232        registered using `atexit'.  This provides a mean for the
233        dynamic linker to call DT_FINI functions for shared libraries
234        that have been loaded before the code runs.
235 
236        A value of 0 tells we have no such handler.  */
237     regs->edx = 0;
238 }
239 
240 #define ELF_NREG    17
241 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
242 
243 /*
244  * Note that ELF_NREG should be 19 as there should be place for
245  * TRAPNO and ERR "registers" as well but linux doesn't dump
246  * those.
247  *
248  * See linux kernel: arch/x86/include/asm/elf.h
249  */
250 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
251 {
252     (*regs)[0] = tswapreg(env->regs[R_EBX]);
253     (*regs)[1] = tswapreg(env->regs[R_ECX]);
254     (*regs)[2] = tswapreg(env->regs[R_EDX]);
255     (*regs)[3] = tswapreg(env->regs[R_ESI]);
256     (*regs)[4] = tswapreg(env->regs[R_EDI]);
257     (*regs)[5] = tswapreg(env->regs[R_EBP]);
258     (*regs)[6] = tswapreg(env->regs[R_EAX]);
259     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
260     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
261     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
262     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
263     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
264     (*regs)[12] = tswapreg(env->eip);
265     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
266     (*regs)[14] = tswapreg(env->eflags);
267     (*regs)[15] = tswapreg(env->regs[R_ESP]);
268     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
269 }
270 #endif
271 
272 #define USE_ELF_CORE_DUMP
273 #define ELF_EXEC_PAGESIZE       4096
274 
275 #endif
276 
277 #ifdef TARGET_ARM
278 
279 #ifndef TARGET_AARCH64
280 /* 32 bit ARM definitions */
281 
282 #define ELF_START_MMAP 0x80000000
283 
284 #define ELF_ARCH        EM_ARM
285 #define ELF_CLASS       ELFCLASS32
286 
287 static inline void init_thread(struct target_pt_regs *regs,
288                                struct image_info *infop)
289 {
290     abi_long stack = infop->start_stack;
291     memset(regs, 0, sizeof(*regs));
292 
293     regs->uregs[16] = ARM_CPU_MODE_USR;
294     if (infop->entry & 1) {
295         regs->uregs[16] |= CPSR_T;
296     }
297     regs->uregs[15] = infop->entry & 0xfffffffe;
298     regs->uregs[13] = infop->start_stack;
299     /* FIXME - what to for failure of get_user()? */
300     get_user_ual(regs->uregs[2], stack + 8); /* envp */
301     get_user_ual(regs->uregs[1], stack + 4); /* envp */
302     /* XXX: it seems that r0 is zeroed after ! */
303     regs->uregs[0] = 0;
304     /* For uClinux PIC binaries.  */
305     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
306     regs->uregs[10] = infop->start_data;
307 
308     /* Support ARM FDPIC.  */
309     if (info_is_fdpic(infop)) {
310         /* As described in the ABI document, r7 points to the loadmap info
311          * prepared by the kernel. If an interpreter is needed, r8 points
312          * to the interpreter loadmap and r9 points to the interpreter
313          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
314          * r9 points to the main program PT_DYNAMIC info.
315          */
316         regs->uregs[7] = infop->loadmap_addr;
317         if (infop->interpreter_loadmap_addr) {
318             /* Executable is dynamically loaded.  */
319             regs->uregs[8] = infop->interpreter_loadmap_addr;
320             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
321         } else {
322             regs->uregs[8] = 0;
323             regs->uregs[9] = infop->pt_dynamic_addr;
324         }
325     }
326 }
327 
328 #define ELF_NREG    18
329 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
330 
331 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
332 {
333     (*regs)[0] = tswapreg(env->regs[0]);
334     (*regs)[1] = tswapreg(env->regs[1]);
335     (*regs)[2] = tswapreg(env->regs[2]);
336     (*regs)[3] = tswapreg(env->regs[3]);
337     (*regs)[4] = tswapreg(env->regs[4]);
338     (*regs)[5] = tswapreg(env->regs[5]);
339     (*regs)[6] = tswapreg(env->regs[6]);
340     (*regs)[7] = tswapreg(env->regs[7]);
341     (*regs)[8] = tswapreg(env->regs[8]);
342     (*regs)[9] = tswapreg(env->regs[9]);
343     (*regs)[10] = tswapreg(env->regs[10]);
344     (*regs)[11] = tswapreg(env->regs[11]);
345     (*regs)[12] = tswapreg(env->regs[12]);
346     (*regs)[13] = tswapreg(env->regs[13]);
347     (*regs)[14] = tswapreg(env->regs[14]);
348     (*regs)[15] = tswapreg(env->regs[15]);
349 
350     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
351     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
352 }
353 
354 #define USE_ELF_CORE_DUMP
355 #define ELF_EXEC_PAGESIZE       4096
356 
357 enum
358 {
359     ARM_HWCAP_ARM_SWP       = 1 << 0,
360     ARM_HWCAP_ARM_HALF      = 1 << 1,
361     ARM_HWCAP_ARM_THUMB     = 1 << 2,
362     ARM_HWCAP_ARM_26BIT     = 1 << 3,
363     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
364     ARM_HWCAP_ARM_FPA       = 1 << 5,
365     ARM_HWCAP_ARM_VFP       = 1 << 6,
366     ARM_HWCAP_ARM_EDSP      = 1 << 7,
367     ARM_HWCAP_ARM_JAVA      = 1 << 8,
368     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
369     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
370     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
371     ARM_HWCAP_ARM_NEON      = 1 << 12,
372     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
373     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
374     ARM_HWCAP_ARM_TLS       = 1 << 15,
375     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
376     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
377     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
378     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
379     ARM_HWCAP_ARM_LPAE      = 1 << 20,
380     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
381 };
382 
383 enum {
384     ARM_HWCAP2_ARM_AES      = 1 << 0,
385     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
386     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
387     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
388     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
389 };
390 
391 /* The commpage only exists for 32 bit kernels */
392 
393 #define HI_COMMPAGE (intptr_t)0xffff0f00u
394 
395 static bool init_guest_commpage(void)
396 {
397     void *want = g2h_untagged(HI_COMMPAGE & -qemu_host_page_size);
398     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
399                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
400 
401     if (addr == MAP_FAILED) {
402         perror("Allocating guest commpage");
403         exit(EXIT_FAILURE);
404     }
405     if (addr != want) {
406         return false;
407     }
408 
409     /* Set kernel helper versions; rest of page is 0.  */
410     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
411 
412     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
413         perror("Protecting guest commpage");
414         exit(EXIT_FAILURE);
415     }
416     return true;
417 }
418 
419 #define ELF_HWCAP get_elf_hwcap()
420 #define ELF_HWCAP2 get_elf_hwcap2()
421 
422 static uint32_t get_elf_hwcap(void)
423 {
424     ARMCPU *cpu = ARM_CPU(thread_cpu);
425     uint32_t hwcaps = 0;
426 
427     hwcaps |= ARM_HWCAP_ARM_SWP;
428     hwcaps |= ARM_HWCAP_ARM_HALF;
429     hwcaps |= ARM_HWCAP_ARM_THUMB;
430     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
431 
432     /* probe for the extra features */
433 #define GET_FEATURE(feat, hwcap) \
434     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
435 
436 #define GET_FEATURE_ID(feat, hwcap) \
437     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
438 
439     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
440     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
441     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
442     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
443     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
444     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
445     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
446     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
447     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
448     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
449 
450     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
451         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
452         hwcaps |= ARM_HWCAP_ARM_VFPv3;
453         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
454             hwcaps |= ARM_HWCAP_ARM_VFPD32;
455         } else {
456             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
457         }
458     }
459     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
460 
461     return hwcaps;
462 }
463 
464 static uint32_t get_elf_hwcap2(void)
465 {
466     ARMCPU *cpu = ARM_CPU(thread_cpu);
467     uint32_t hwcaps = 0;
468 
469     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
470     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
471     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
472     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
473     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
474     return hwcaps;
475 }
476 
477 #undef GET_FEATURE
478 #undef GET_FEATURE_ID
479 
480 #define ELF_PLATFORM get_elf_platform()
481 
482 static const char *get_elf_platform(void)
483 {
484     CPUARMState *env = thread_cpu->env_ptr;
485 
486 #ifdef TARGET_WORDS_BIGENDIAN
487 # define END  "b"
488 #else
489 # define END  "l"
490 #endif
491 
492     if (arm_feature(env, ARM_FEATURE_V8)) {
493         return "v8" END;
494     } else if (arm_feature(env, ARM_FEATURE_V7)) {
495         if (arm_feature(env, ARM_FEATURE_M)) {
496             return "v7m" END;
497         } else {
498             return "v7" END;
499         }
500     } else if (arm_feature(env, ARM_FEATURE_V6)) {
501         return "v6" END;
502     } else if (arm_feature(env, ARM_FEATURE_V5)) {
503         return "v5" END;
504     } else {
505         return "v4" END;
506     }
507 
508 #undef END
509 }
510 
511 #else
512 /* 64 bit ARM definitions */
513 #define ELF_START_MMAP 0x80000000
514 
515 #define ELF_ARCH        EM_AARCH64
516 #define ELF_CLASS       ELFCLASS64
517 #ifdef TARGET_WORDS_BIGENDIAN
518 # define ELF_PLATFORM    "aarch64_be"
519 #else
520 # define ELF_PLATFORM    "aarch64"
521 #endif
522 
523 static inline void init_thread(struct target_pt_regs *regs,
524                                struct image_info *infop)
525 {
526     abi_long stack = infop->start_stack;
527     memset(regs, 0, sizeof(*regs));
528 
529     regs->pc = infop->entry & ~0x3ULL;
530     regs->sp = stack;
531 }
532 
533 #define ELF_NREG    34
534 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
535 
536 static void elf_core_copy_regs(target_elf_gregset_t *regs,
537                                const CPUARMState *env)
538 {
539     int i;
540 
541     for (i = 0; i < 32; i++) {
542         (*regs)[i] = tswapreg(env->xregs[i]);
543     }
544     (*regs)[32] = tswapreg(env->pc);
545     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
546 }
547 
548 #define USE_ELF_CORE_DUMP
549 #define ELF_EXEC_PAGESIZE       4096
550 
551 enum {
552     ARM_HWCAP_A64_FP            = 1 << 0,
553     ARM_HWCAP_A64_ASIMD         = 1 << 1,
554     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
555     ARM_HWCAP_A64_AES           = 1 << 3,
556     ARM_HWCAP_A64_PMULL         = 1 << 4,
557     ARM_HWCAP_A64_SHA1          = 1 << 5,
558     ARM_HWCAP_A64_SHA2          = 1 << 6,
559     ARM_HWCAP_A64_CRC32         = 1 << 7,
560     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
561     ARM_HWCAP_A64_FPHP          = 1 << 9,
562     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
563     ARM_HWCAP_A64_CPUID         = 1 << 11,
564     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
565     ARM_HWCAP_A64_JSCVT         = 1 << 13,
566     ARM_HWCAP_A64_FCMA          = 1 << 14,
567     ARM_HWCAP_A64_LRCPC         = 1 << 15,
568     ARM_HWCAP_A64_DCPOP         = 1 << 16,
569     ARM_HWCAP_A64_SHA3          = 1 << 17,
570     ARM_HWCAP_A64_SM3           = 1 << 18,
571     ARM_HWCAP_A64_SM4           = 1 << 19,
572     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
573     ARM_HWCAP_A64_SHA512        = 1 << 21,
574     ARM_HWCAP_A64_SVE           = 1 << 22,
575     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
576     ARM_HWCAP_A64_DIT           = 1 << 24,
577     ARM_HWCAP_A64_USCAT         = 1 << 25,
578     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
579     ARM_HWCAP_A64_FLAGM         = 1 << 27,
580     ARM_HWCAP_A64_SSBS          = 1 << 28,
581     ARM_HWCAP_A64_SB            = 1 << 29,
582     ARM_HWCAP_A64_PACA          = 1 << 30,
583     ARM_HWCAP_A64_PACG          = 1UL << 31,
584 
585     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
586     ARM_HWCAP2_A64_SVE2         = 1 << 1,
587     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
588     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
589     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
590     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
591     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
592     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
593     ARM_HWCAP2_A64_FRINT        = 1 << 8,
594     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
595     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
596     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
597     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
598     ARM_HWCAP2_A64_I8MM         = 1 << 13,
599     ARM_HWCAP2_A64_BF16         = 1 << 14,
600     ARM_HWCAP2_A64_DGH          = 1 << 15,
601     ARM_HWCAP2_A64_RNG          = 1 << 16,
602     ARM_HWCAP2_A64_BTI          = 1 << 17,
603     ARM_HWCAP2_A64_MTE          = 1 << 18,
604 };
605 
606 #define ELF_HWCAP   get_elf_hwcap()
607 #define ELF_HWCAP2  get_elf_hwcap2()
608 
609 #define GET_FEATURE_ID(feat, hwcap) \
610     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
611 
612 static uint32_t get_elf_hwcap(void)
613 {
614     ARMCPU *cpu = ARM_CPU(thread_cpu);
615     uint32_t hwcaps = 0;
616 
617     hwcaps |= ARM_HWCAP_A64_FP;
618     hwcaps |= ARM_HWCAP_A64_ASIMD;
619     hwcaps |= ARM_HWCAP_A64_CPUID;
620 
621     /* probe for the extra features */
622 
623     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
624     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
625     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
626     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
627     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
628     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
629     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
630     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
631     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
632     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
633     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
634     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
635     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
636     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
637     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
638     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
639     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
640     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
641     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
642     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
643     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
644     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
645     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
646 
647     return hwcaps;
648 }
649 
650 static uint32_t get_elf_hwcap2(void)
651 {
652     ARMCPU *cpu = ARM_CPU(thread_cpu);
653     uint32_t hwcaps = 0;
654 
655     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
656     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
657     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
658     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
659     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
660     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
661     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
662     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
663     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
664     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
665     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
666     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
667     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
668     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
669     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
670     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
671     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
672     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
673 
674     return hwcaps;
675 }
676 
677 #undef GET_FEATURE_ID
678 
679 #endif /* not TARGET_AARCH64 */
680 #endif /* TARGET_ARM */
681 
682 #ifdef TARGET_SPARC
683 #ifdef TARGET_SPARC64
684 
685 #define ELF_START_MMAP 0x80000000
686 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
687                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
688 #ifndef TARGET_ABI32
689 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
690 #else
691 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
692 #endif
693 
694 #define ELF_CLASS   ELFCLASS64
695 #define ELF_ARCH    EM_SPARCV9
696 #else
697 #define ELF_START_MMAP 0x80000000
698 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
699                     | HWCAP_SPARC_MULDIV)
700 #define ELF_CLASS   ELFCLASS32
701 #define ELF_ARCH    EM_SPARC
702 #endif /* TARGET_SPARC64 */
703 
704 static inline void init_thread(struct target_pt_regs *regs,
705                                struct image_info *infop)
706 {
707     /* Note that target_cpu_copy_regs does not read psr/tstate. */
708     regs->pc = infop->entry;
709     regs->npc = regs->pc + 4;
710     regs->y = 0;
711     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
712                         - TARGET_STACK_BIAS);
713 }
714 #endif /* TARGET_SPARC */
715 
716 #ifdef TARGET_PPC
717 
718 #define ELF_MACHINE    PPC_ELF_MACHINE
719 #define ELF_START_MMAP 0x80000000
720 
721 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
722 
723 #define elf_check_arch(x) ( (x) == EM_PPC64 )
724 
725 #define ELF_CLASS       ELFCLASS64
726 
727 #else
728 
729 #define ELF_CLASS       ELFCLASS32
730 
731 #endif
732 
733 #define ELF_ARCH        EM_PPC
734 
735 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
736    See arch/powerpc/include/asm/cputable.h.  */
737 enum {
738     QEMU_PPC_FEATURE_32 = 0x80000000,
739     QEMU_PPC_FEATURE_64 = 0x40000000,
740     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
741     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
742     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
743     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
744     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
745     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
746     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
747     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
748     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
749     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
750     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
751     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
752     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
753     QEMU_PPC_FEATURE_CELL = 0x00010000,
754     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
755     QEMU_PPC_FEATURE_SMT = 0x00004000,
756     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
757     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
758     QEMU_PPC_FEATURE_PA6T = 0x00000800,
759     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
760     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
761     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
762     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
763     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
764 
765     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
766     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
767 
768     /* Feature definitions in AT_HWCAP2.  */
769     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
770     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
771     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
772     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
773     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
774     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
775     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
776     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
777     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
778     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
779     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
780     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
781     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
782 };
783 
784 #define ELF_HWCAP get_elf_hwcap()
785 
786 static uint32_t get_elf_hwcap(void)
787 {
788     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
789     uint32_t features = 0;
790 
791     /* We don't have to be terribly complete here; the high points are
792        Altivec/FP/SPE support.  Anything else is just a bonus.  */
793 #define GET_FEATURE(flag, feature)                                      \
794     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
795 #define GET_FEATURE2(flags, feature) \
796     do { \
797         if ((cpu->env.insns_flags2 & flags) == flags) { \
798             features |= feature; \
799         } \
800     } while (0)
801     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
802     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
803     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
804     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
805     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
806     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
807     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
808     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
809     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
810     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
811     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
812                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
813                   QEMU_PPC_FEATURE_ARCH_2_06);
814 #undef GET_FEATURE
815 #undef GET_FEATURE2
816 
817     return features;
818 }
819 
820 #define ELF_HWCAP2 get_elf_hwcap2()
821 
822 static uint32_t get_elf_hwcap2(void)
823 {
824     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
825     uint32_t features = 0;
826 
827 #define GET_FEATURE(flag, feature)                                      \
828     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
829 #define GET_FEATURE2(flag, feature)                                      \
830     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
831 
832     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
833     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
834     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
835                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
836                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
837     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
838                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
839 
840 #undef GET_FEATURE
841 #undef GET_FEATURE2
842 
843     return features;
844 }
845 
846 /*
847  * The requirements here are:
848  * - keep the final alignment of sp (sp & 0xf)
849  * - make sure the 32-bit value at the first 16 byte aligned position of
850  *   AUXV is greater than 16 for glibc compatibility.
851  *   AT_IGNOREPPC is used for that.
852  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
853  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
854  */
855 #define DLINFO_ARCH_ITEMS       5
856 #define ARCH_DLINFO                                     \
857     do {                                                \
858         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
859         /*                                              \
860          * Handle glibc compatibility: these magic entries must \
861          * be at the lowest addresses in the final auxv.        \
862          */                                             \
863         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
864         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
865         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
866         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
867         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
868     } while (0)
869 
870 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
871 {
872     _regs->gpr[1] = infop->start_stack;
873 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
874     if (get_ppc64_abi(infop) < 2) {
875         uint64_t val;
876         get_user_u64(val, infop->entry + 8);
877         _regs->gpr[2] = val + infop->load_bias;
878         get_user_u64(val, infop->entry);
879         infop->entry = val + infop->load_bias;
880     } else {
881         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
882     }
883 #endif
884     _regs->nip = infop->entry;
885 }
886 
887 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
888 #define ELF_NREG 48
889 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
890 
891 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
892 {
893     int i;
894     target_ulong ccr = 0;
895 
896     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
897         (*regs)[i] = tswapreg(env->gpr[i]);
898     }
899 
900     (*regs)[32] = tswapreg(env->nip);
901     (*regs)[33] = tswapreg(env->msr);
902     (*regs)[35] = tswapreg(env->ctr);
903     (*regs)[36] = tswapreg(env->lr);
904     (*regs)[37] = tswapreg(cpu_read_xer(env));
905 
906     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
907         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
908     }
909     (*regs)[38] = tswapreg(ccr);
910 }
911 
912 #define USE_ELF_CORE_DUMP
913 #define ELF_EXEC_PAGESIZE       4096
914 
915 #endif
916 
917 #ifdef TARGET_MIPS
918 
919 #define ELF_START_MMAP 0x80000000
920 
921 #ifdef TARGET_MIPS64
922 #define ELF_CLASS   ELFCLASS64
923 #else
924 #define ELF_CLASS   ELFCLASS32
925 #endif
926 #define ELF_ARCH    EM_MIPS
927 
928 #ifdef TARGET_ABI_MIPSN32
929 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
930 #else
931 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
932 #endif
933 
934 static inline void init_thread(struct target_pt_regs *regs,
935                                struct image_info *infop)
936 {
937     regs->cp0_status = 2 << CP0St_KSU;
938     regs->cp0_epc = infop->entry;
939     regs->regs[29] = infop->start_stack;
940 }
941 
942 /* See linux kernel: arch/mips/include/asm/elf.h.  */
943 #define ELF_NREG 45
944 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
945 
946 /* See linux kernel: arch/mips/include/asm/reg.h.  */
947 enum {
948 #ifdef TARGET_MIPS64
949     TARGET_EF_R0 = 0,
950 #else
951     TARGET_EF_R0 = 6,
952 #endif
953     TARGET_EF_R26 = TARGET_EF_R0 + 26,
954     TARGET_EF_R27 = TARGET_EF_R0 + 27,
955     TARGET_EF_LO = TARGET_EF_R0 + 32,
956     TARGET_EF_HI = TARGET_EF_R0 + 33,
957     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
958     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
959     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
960     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
961 };
962 
963 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
964 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
965 {
966     int i;
967 
968     for (i = 0; i < TARGET_EF_R0; i++) {
969         (*regs)[i] = 0;
970     }
971     (*regs)[TARGET_EF_R0] = 0;
972 
973     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
974         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
975     }
976 
977     (*regs)[TARGET_EF_R26] = 0;
978     (*regs)[TARGET_EF_R27] = 0;
979     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
980     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
981     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
982     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
983     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
984     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
985 }
986 
987 #define USE_ELF_CORE_DUMP
988 #define ELF_EXEC_PAGESIZE        4096
989 
990 /* See arch/mips/include/uapi/asm/hwcap.h.  */
991 enum {
992     HWCAP_MIPS_R6           = (1 << 0),
993     HWCAP_MIPS_MSA          = (1 << 1),
994     HWCAP_MIPS_CRC32        = (1 << 2),
995     HWCAP_MIPS_MIPS16       = (1 << 3),
996     HWCAP_MIPS_MDMX         = (1 << 4),
997     HWCAP_MIPS_MIPS3D       = (1 << 5),
998     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
999     HWCAP_MIPS_DSP          = (1 << 7),
1000     HWCAP_MIPS_DSP2         = (1 << 8),
1001     HWCAP_MIPS_DSP3         = (1 << 9),
1002     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1003     HWCAP_LOONGSON_MMI      = (1 << 11),
1004     HWCAP_LOONGSON_EXT      = (1 << 12),
1005     HWCAP_LOONGSON_EXT2     = (1 << 13),
1006     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1007 };
1008 
1009 #define ELF_HWCAP get_elf_hwcap()
1010 
1011 #define GET_FEATURE_INSN(_flag, _hwcap) \
1012     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1013 
1014 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1015     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1016 
1017 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1018     do { \
1019         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1020             hwcaps |= _hwcap; \
1021         } \
1022     } while (0)
1023 
1024 static uint32_t get_elf_hwcap(void)
1025 {
1026     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1027     uint32_t hwcaps = 0;
1028 
1029     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1030                         2, HWCAP_MIPS_R6);
1031     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1032     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1033     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1034 
1035     return hwcaps;
1036 }
1037 
1038 #undef GET_FEATURE_REG_EQU
1039 #undef GET_FEATURE_REG_SET
1040 #undef GET_FEATURE_INSN
1041 
1042 #endif /* TARGET_MIPS */
1043 
1044 #ifdef TARGET_MICROBLAZE
1045 
1046 #define ELF_START_MMAP 0x80000000
1047 
1048 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1049 
1050 #define ELF_CLASS   ELFCLASS32
1051 #define ELF_ARCH    EM_MICROBLAZE
1052 
1053 static inline void init_thread(struct target_pt_regs *regs,
1054                                struct image_info *infop)
1055 {
1056     regs->pc = infop->entry;
1057     regs->r1 = infop->start_stack;
1058 
1059 }
1060 
1061 #define ELF_EXEC_PAGESIZE        4096
1062 
1063 #define USE_ELF_CORE_DUMP
1064 #define ELF_NREG 38
1065 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1066 
1067 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1068 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1069 {
1070     int i, pos = 0;
1071 
1072     for (i = 0; i < 32; i++) {
1073         (*regs)[pos++] = tswapreg(env->regs[i]);
1074     }
1075 
1076     (*regs)[pos++] = tswapreg(env->pc);
1077     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1078     (*regs)[pos++] = 0;
1079     (*regs)[pos++] = tswapreg(env->ear);
1080     (*regs)[pos++] = 0;
1081     (*regs)[pos++] = tswapreg(env->esr);
1082 }
1083 
1084 #endif /* TARGET_MICROBLAZE */
1085 
1086 #ifdef TARGET_NIOS2
1087 
1088 #define ELF_START_MMAP 0x80000000
1089 
1090 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1091 
1092 #define ELF_CLASS   ELFCLASS32
1093 #define ELF_ARCH    EM_ALTERA_NIOS2
1094 
1095 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1096 {
1097     regs->ea = infop->entry;
1098     regs->sp = infop->start_stack;
1099     regs->estatus = 0x3;
1100 }
1101 
1102 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1103 
1104 static bool init_guest_commpage(void)
1105 {
1106     static const uint8_t kuser_page[4 + 2 * 64] = {
1107         /* __kuser_helper_version */
1108         [0x00] = 0x02, 0x00, 0x00, 0x00,
1109 
1110         /* __kuser_cmpxchg */
1111         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1112                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1113 
1114         /* __kuser_sigtramp */
1115         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1116                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1117     };
1118 
1119     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1120     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1121                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1122 
1123     if (addr == MAP_FAILED) {
1124         perror("Allocating guest commpage");
1125         exit(EXIT_FAILURE);
1126     }
1127     if (addr != want) {
1128         return false;
1129     }
1130 
1131     memcpy(addr, kuser_page, sizeof(kuser_page));
1132 
1133     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1134         perror("Protecting guest commpage");
1135         exit(EXIT_FAILURE);
1136     }
1137 
1138     page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE,
1139                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1140     return true;
1141 }
1142 
1143 #define ELF_EXEC_PAGESIZE        4096
1144 
1145 #define USE_ELF_CORE_DUMP
1146 #define ELF_NREG 49
1147 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1148 
1149 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1150 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1151                                const CPUNios2State *env)
1152 {
1153     int i;
1154 
1155     (*regs)[0] = -1;
1156     for (i = 1; i < 8; i++)    /* r0-r7 */
1157         (*regs)[i] = tswapreg(env->regs[i + 7]);
1158 
1159     for (i = 8; i < 16; i++)   /* r8-r15 */
1160         (*regs)[i] = tswapreg(env->regs[i - 8]);
1161 
1162     for (i = 16; i < 24; i++)  /* r16-r23 */
1163         (*regs)[i] = tswapreg(env->regs[i + 7]);
1164     (*regs)[24] = -1;    /* R_ET */
1165     (*regs)[25] = -1;    /* R_BT */
1166     (*regs)[26] = tswapreg(env->regs[R_GP]);
1167     (*regs)[27] = tswapreg(env->regs[R_SP]);
1168     (*regs)[28] = tswapreg(env->regs[R_FP]);
1169     (*regs)[29] = tswapreg(env->regs[R_EA]);
1170     (*regs)[30] = -1;    /* R_SSTATUS */
1171     (*regs)[31] = tswapreg(env->regs[R_RA]);
1172 
1173     (*regs)[32] = tswapreg(env->regs[R_PC]);
1174 
1175     (*regs)[33] = -1; /* R_STATUS */
1176     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1177 
1178     for (i = 35; i < 49; i++)    /* ... */
1179         (*regs)[i] = -1;
1180 }
1181 
1182 #endif /* TARGET_NIOS2 */
1183 
1184 #ifdef TARGET_OPENRISC
1185 
1186 #define ELF_START_MMAP 0x08000000
1187 
1188 #define ELF_ARCH EM_OPENRISC
1189 #define ELF_CLASS ELFCLASS32
1190 #define ELF_DATA  ELFDATA2MSB
1191 
1192 static inline void init_thread(struct target_pt_regs *regs,
1193                                struct image_info *infop)
1194 {
1195     regs->pc = infop->entry;
1196     regs->gpr[1] = infop->start_stack;
1197 }
1198 
1199 #define USE_ELF_CORE_DUMP
1200 #define ELF_EXEC_PAGESIZE 8192
1201 
1202 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1203 #define ELF_NREG 34 /* gprs and pc, sr */
1204 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1205 
1206 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1207                                const CPUOpenRISCState *env)
1208 {
1209     int i;
1210 
1211     for (i = 0; i < 32; i++) {
1212         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1213     }
1214     (*regs)[32] = tswapreg(env->pc);
1215     (*regs)[33] = tswapreg(cpu_get_sr(env));
1216 }
1217 #define ELF_HWCAP 0
1218 #define ELF_PLATFORM NULL
1219 
1220 #endif /* TARGET_OPENRISC */
1221 
1222 #ifdef TARGET_SH4
1223 
1224 #define ELF_START_MMAP 0x80000000
1225 
1226 #define ELF_CLASS ELFCLASS32
1227 #define ELF_ARCH  EM_SH
1228 
1229 static inline void init_thread(struct target_pt_regs *regs,
1230                                struct image_info *infop)
1231 {
1232     /* Check other registers XXXXX */
1233     regs->pc = infop->entry;
1234     regs->regs[15] = infop->start_stack;
1235 }
1236 
1237 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1238 #define ELF_NREG 23
1239 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1240 
1241 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1242 enum {
1243     TARGET_REG_PC = 16,
1244     TARGET_REG_PR = 17,
1245     TARGET_REG_SR = 18,
1246     TARGET_REG_GBR = 19,
1247     TARGET_REG_MACH = 20,
1248     TARGET_REG_MACL = 21,
1249     TARGET_REG_SYSCALL = 22
1250 };
1251 
1252 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1253                                       const CPUSH4State *env)
1254 {
1255     int i;
1256 
1257     for (i = 0; i < 16; i++) {
1258         (*regs)[i] = tswapreg(env->gregs[i]);
1259     }
1260 
1261     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1262     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1263     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1264     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1265     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1266     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1267     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1268 }
1269 
1270 #define USE_ELF_CORE_DUMP
1271 #define ELF_EXEC_PAGESIZE        4096
1272 
1273 enum {
1274     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1275     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1276     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1277     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1278     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1279     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1280     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1281     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1282     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1283     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1284 };
1285 
1286 #define ELF_HWCAP get_elf_hwcap()
1287 
1288 static uint32_t get_elf_hwcap(void)
1289 {
1290     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1291     uint32_t hwcap = 0;
1292 
1293     hwcap |= SH_CPU_HAS_FPU;
1294 
1295     if (cpu->env.features & SH_FEATURE_SH4A) {
1296         hwcap |= SH_CPU_HAS_LLSC;
1297     }
1298 
1299     return hwcap;
1300 }
1301 
1302 #endif
1303 
1304 #ifdef TARGET_CRIS
1305 
1306 #define ELF_START_MMAP 0x80000000
1307 
1308 #define ELF_CLASS ELFCLASS32
1309 #define ELF_ARCH  EM_CRIS
1310 
1311 static inline void init_thread(struct target_pt_regs *regs,
1312                                struct image_info *infop)
1313 {
1314     regs->erp = infop->entry;
1315 }
1316 
1317 #define ELF_EXEC_PAGESIZE        8192
1318 
1319 #endif
1320 
1321 #ifdef TARGET_M68K
1322 
1323 #define ELF_START_MMAP 0x80000000
1324 
1325 #define ELF_CLASS       ELFCLASS32
1326 #define ELF_ARCH        EM_68K
1327 
1328 /* ??? Does this need to do anything?
1329    #define ELF_PLAT_INIT(_r) */
1330 
1331 static inline void init_thread(struct target_pt_regs *regs,
1332                                struct image_info *infop)
1333 {
1334     regs->usp = infop->start_stack;
1335     regs->sr = 0;
1336     regs->pc = infop->entry;
1337 }
1338 
1339 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1340 #define ELF_NREG 20
1341 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1342 
1343 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1344 {
1345     (*regs)[0] = tswapreg(env->dregs[1]);
1346     (*regs)[1] = tswapreg(env->dregs[2]);
1347     (*regs)[2] = tswapreg(env->dregs[3]);
1348     (*regs)[3] = tswapreg(env->dregs[4]);
1349     (*regs)[4] = tswapreg(env->dregs[5]);
1350     (*regs)[5] = tswapreg(env->dregs[6]);
1351     (*regs)[6] = tswapreg(env->dregs[7]);
1352     (*regs)[7] = tswapreg(env->aregs[0]);
1353     (*regs)[8] = tswapreg(env->aregs[1]);
1354     (*regs)[9] = tswapreg(env->aregs[2]);
1355     (*regs)[10] = tswapreg(env->aregs[3]);
1356     (*regs)[11] = tswapreg(env->aregs[4]);
1357     (*regs)[12] = tswapreg(env->aregs[5]);
1358     (*regs)[13] = tswapreg(env->aregs[6]);
1359     (*regs)[14] = tswapreg(env->dregs[0]);
1360     (*regs)[15] = tswapreg(env->aregs[7]);
1361     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1362     (*regs)[17] = tswapreg(env->sr);
1363     (*regs)[18] = tswapreg(env->pc);
1364     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1365 }
1366 
1367 #define USE_ELF_CORE_DUMP
1368 #define ELF_EXEC_PAGESIZE       8192
1369 
1370 #endif
1371 
1372 #ifdef TARGET_ALPHA
1373 
1374 #define ELF_START_MMAP (0x30000000000ULL)
1375 
1376 #define ELF_CLASS      ELFCLASS64
1377 #define ELF_ARCH       EM_ALPHA
1378 
1379 static inline void init_thread(struct target_pt_regs *regs,
1380                                struct image_info *infop)
1381 {
1382     regs->pc = infop->entry;
1383     regs->ps = 8;
1384     regs->usp = infop->start_stack;
1385 }
1386 
1387 #define ELF_EXEC_PAGESIZE        8192
1388 
1389 #endif /* TARGET_ALPHA */
1390 
1391 #ifdef TARGET_S390X
1392 
1393 #define ELF_START_MMAP (0x20000000000ULL)
1394 
1395 #define ELF_CLASS	ELFCLASS64
1396 #define ELF_DATA	ELFDATA2MSB
1397 #define ELF_ARCH	EM_S390
1398 
1399 #include "elf.h"
1400 
1401 #define ELF_HWCAP get_elf_hwcap()
1402 
1403 #define GET_FEATURE(_feat, _hwcap) \
1404     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1405 
1406 static uint32_t get_elf_hwcap(void)
1407 {
1408     /*
1409      * Let's assume we always have esan3 and zarch.
1410      * 31-bit processes can use 64-bit registers (high gprs).
1411      */
1412     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1413 
1414     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1415     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1416     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1417     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1418     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1419         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1420         hwcap |= HWCAP_S390_ETF3EH;
1421     }
1422     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1423     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1424 
1425     return hwcap;
1426 }
1427 
1428 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1429 {
1430     regs->psw.addr = infop->entry;
1431     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1432     regs->gprs[15] = infop->start_stack;
1433 }
1434 
1435 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1436 #define ELF_NREG 27
1437 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1438 
1439 enum {
1440     TARGET_REG_PSWM = 0,
1441     TARGET_REG_PSWA = 1,
1442     TARGET_REG_GPRS = 2,
1443     TARGET_REG_ARS = 18,
1444     TARGET_REG_ORIG_R2 = 26,
1445 };
1446 
1447 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1448                                const CPUS390XState *env)
1449 {
1450     int i;
1451     uint32_t *aregs;
1452 
1453     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1454     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1455     for (i = 0; i < 16; i++) {
1456         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1457     }
1458     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1459     for (i = 0; i < 16; i++) {
1460         aregs[i] = tswap32(env->aregs[i]);
1461     }
1462     (*regs)[TARGET_REG_ORIG_R2] = 0;
1463 }
1464 
1465 #define USE_ELF_CORE_DUMP
1466 #define ELF_EXEC_PAGESIZE 4096
1467 
1468 #endif /* TARGET_S390X */
1469 
1470 #ifdef TARGET_RISCV
1471 
1472 #define ELF_START_MMAP 0x80000000
1473 #define ELF_ARCH  EM_RISCV
1474 
1475 #ifdef TARGET_RISCV32
1476 #define ELF_CLASS ELFCLASS32
1477 #else
1478 #define ELF_CLASS ELFCLASS64
1479 #endif
1480 
1481 #define ELF_HWCAP get_elf_hwcap()
1482 
1483 static uint32_t get_elf_hwcap(void)
1484 {
1485 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1486     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1487     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1488                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1489 
1490     return cpu->env.misa_ext & mask;
1491 #undef MISA_BIT
1492 }
1493 
1494 static inline void init_thread(struct target_pt_regs *regs,
1495                                struct image_info *infop)
1496 {
1497     regs->sepc = infop->entry;
1498     regs->sp = infop->start_stack;
1499 }
1500 
1501 #define ELF_EXEC_PAGESIZE 4096
1502 
1503 #endif /* TARGET_RISCV */
1504 
1505 #ifdef TARGET_HPPA
1506 
1507 #define ELF_START_MMAP  0x80000000
1508 #define ELF_CLASS       ELFCLASS32
1509 #define ELF_ARCH        EM_PARISC
1510 #define ELF_PLATFORM    "PARISC"
1511 #define STACK_GROWS_DOWN 0
1512 #define STACK_ALIGNMENT  64
1513 
1514 static inline void init_thread(struct target_pt_regs *regs,
1515                                struct image_info *infop)
1516 {
1517     regs->iaoq[0] = infop->entry;
1518     regs->iaoq[1] = infop->entry + 4;
1519     regs->gr[23] = 0;
1520     regs->gr[24] = infop->arg_start;
1521     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1522     /* The top-of-stack contains a linkage buffer.  */
1523     regs->gr[30] = infop->start_stack + 64;
1524     regs->gr[31] = infop->entry;
1525 }
1526 
1527 #endif /* TARGET_HPPA */
1528 
1529 #ifdef TARGET_XTENSA
1530 
1531 #define ELF_START_MMAP 0x20000000
1532 
1533 #define ELF_CLASS       ELFCLASS32
1534 #define ELF_ARCH        EM_XTENSA
1535 
1536 static inline void init_thread(struct target_pt_regs *regs,
1537                                struct image_info *infop)
1538 {
1539     regs->windowbase = 0;
1540     regs->windowstart = 1;
1541     regs->areg[1] = infop->start_stack;
1542     regs->pc = infop->entry;
1543 }
1544 
1545 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1546 #define ELF_NREG 128
1547 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1548 
1549 enum {
1550     TARGET_REG_PC,
1551     TARGET_REG_PS,
1552     TARGET_REG_LBEG,
1553     TARGET_REG_LEND,
1554     TARGET_REG_LCOUNT,
1555     TARGET_REG_SAR,
1556     TARGET_REG_WINDOWSTART,
1557     TARGET_REG_WINDOWBASE,
1558     TARGET_REG_THREADPTR,
1559     TARGET_REG_AR0 = 64,
1560 };
1561 
1562 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1563                                const CPUXtensaState *env)
1564 {
1565     unsigned i;
1566 
1567     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1568     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1569     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1570     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1571     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1572     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1573     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1574     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1575     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1576     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1577     for (i = 0; i < env->config->nareg; ++i) {
1578         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1579     }
1580 }
1581 
1582 #define USE_ELF_CORE_DUMP
1583 #define ELF_EXEC_PAGESIZE       4096
1584 
1585 #endif /* TARGET_XTENSA */
1586 
1587 #ifdef TARGET_HEXAGON
1588 
1589 #define ELF_START_MMAP 0x20000000
1590 
1591 #define ELF_CLASS       ELFCLASS32
1592 #define ELF_ARCH        EM_HEXAGON
1593 
1594 static inline void init_thread(struct target_pt_regs *regs,
1595                                struct image_info *infop)
1596 {
1597     regs->sepc = infop->entry;
1598     regs->sp = infop->start_stack;
1599 }
1600 
1601 #endif /* TARGET_HEXAGON */
1602 
1603 #ifndef ELF_PLATFORM
1604 #define ELF_PLATFORM (NULL)
1605 #endif
1606 
1607 #ifndef ELF_MACHINE
1608 #define ELF_MACHINE ELF_ARCH
1609 #endif
1610 
1611 #ifndef elf_check_arch
1612 #define elf_check_arch(x) ((x) == ELF_ARCH)
1613 #endif
1614 
1615 #ifndef elf_check_abi
1616 #define elf_check_abi(x) (1)
1617 #endif
1618 
1619 #ifndef ELF_HWCAP
1620 #define ELF_HWCAP 0
1621 #endif
1622 
1623 #ifndef STACK_GROWS_DOWN
1624 #define STACK_GROWS_DOWN 1
1625 #endif
1626 
1627 #ifndef STACK_ALIGNMENT
1628 #define STACK_ALIGNMENT 16
1629 #endif
1630 
1631 #ifdef TARGET_ABI32
1632 #undef ELF_CLASS
1633 #define ELF_CLASS ELFCLASS32
1634 #undef bswaptls
1635 #define bswaptls(ptr) bswap32s(ptr)
1636 #endif
1637 
1638 #include "elf.h"
1639 
1640 /* We must delay the following stanzas until after "elf.h". */
1641 #if defined(TARGET_AARCH64)
1642 
1643 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1644                                     const uint32_t *data,
1645                                     struct image_info *info,
1646                                     Error **errp)
1647 {
1648     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1649         if (pr_datasz != sizeof(uint32_t)) {
1650             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1651             return false;
1652         }
1653         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1654         info->note_flags = *data;
1655     }
1656     return true;
1657 }
1658 #define ARCH_USE_GNU_PROPERTY 1
1659 
1660 #else
1661 
1662 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1663                                     const uint32_t *data,
1664                                     struct image_info *info,
1665                                     Error **errp)
1666 {
1667     g_assert_not_reached();
1668 }
1669 #define ARCH_USE_GNU_PROPERTY 0
1670 
1671 #endif
1672 
1673 struct exec
1674 {
1675     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1676     unsigned int a_text;   /* length of text, in bytes */
1677     unsigned int a_data;   /* length of data, in bytes */
1678     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1679     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1680     unsigned int a_entry;  /* start address */
1681     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1682     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1683 };
1684 
1685 
1686 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1687 #define OMAGIC 0407
1688 #define NMAGIC 0410
1689 #define ZMAGIC 0413
1690 #define QMAGIC 0314
1691 
1692 /* Necessary parameters */
1693 #define TARGET_ELF_EXEC_PAGESIZE \
1694         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1695          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1696 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1697 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1698                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1699 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1700 
1701 #define DLINFO_ITEMS 16
1702 
1703 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1704 {
1705     memcpy(to, from, n);
1706 }
1707 
1708 #ifdef BSWAP_NEEDED
1709 static void bswap_ehdr(struct elfhdr *ehdr)
1710 {
1711     bswap16s(&ehdr->e_type);            /* Object file type */
1712     bswap16s(&ehdr->e_machine);         /* Architecture */
1713     bswap32s(&ehdr->e_version);         /* Object file version */
1714     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1715     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1716     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1717     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1718     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1719     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1720     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1721     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1722     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1723     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1724 }
1725 
1726 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1727 {
1728     int i;
1729     for (i = 0; i < phnum; ++i, ++phdr) {
1730         bswap32s(&phdr->p_type);        /* Segment type */
1731         bswap32s(&phdr->p_flags);       /* Segment flags */
1732         bswaptls(&phdr->p_offset);      /* Segment file offset */
1733         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1734         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1735         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1736         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1737         bswaptls(&phdr->p_align);       /* Segment alignment */
1738     }
1739 }
1740 
1741 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1742 {
1743     int i;
1744     for (i = 0; i < shnum; ++i, ++shdr) {
1745         bswap32s(&shdr->sh_name);
1746         bswap32s(&shdr->sh_type);
1747         bswaptls(&shdr->sh_flags);
1748         bswaptls(&shdr->sh_addr);
1749         bswaptls(&shdr->sh_offset);
1750         bswaptls(&shdr->sh_size);
1751         bswap32s(&shdr->sh_link);
1752         bswap32s(&shdr->sh_info);
1753         bswaptls(&shdr->sh_addralign);
1754         bswaptls(&shdr->sh_entsize);
1755     }
1756 }
1757 
1758 static void bswap_sym(struct elf_sym *sym)
1759 {
1760     bswap32s(&sym->st_name);
1761     bswaptls(&sym->st_value);
1762     bswaptls(&sym->st_size);
1763     bswap16s(&sym->st_shndx);
1764 }
1765 
1766 #ifdef TARGET_MIPS
1767 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1768 {
1769     bswap16s(&abiflags->version);
1770     bswap32s(&abiflags->ases);
1771     bswap32s(&abiflags->isa_ext);
1772     bswap32s(&abiflags->flags1);
1773     bswap32s(&abiflags->flags2);
1774 }
1775 #endif
1776 #else
1777 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1778 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1779 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1780 static inline void bswap_sym(struct elf_sym *sym) { }
1781 #ifdef TARGET_MIPS
1782 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1783 #endif
1784 #endif
1785 
1786 #ifdef USE_ELF_CORE_DUMP
1787 static int elf_core_dump(int, const CPUArchState *);
1788 #endif /* USE_ELF_CORE_DUMP */
1789 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1790 
1791 /* Verify the portions of EHDR within E_IDENT for the target.
1792    This can be performed before bswapping the entire header.  */
1793 static bool elf_check_ident(struct elfhdr *ehdr)
1794 {
1795     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1796             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1797             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1798             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1799             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1800             && ehdr->e_ident[EI_DATA] == ELF_DATA
1801             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1802 }
1803 
1804 /* Verify the portions of EHDR outside of E_IDENT for the target.
1805    This has to wait until after bswapping the header.  */
1806 static bool elf_check_ehdr(struct elfhdr *ehdr)
1807 {
1808     return (elf_check_arch(ehdr->e_machine)
1809             && elf_check_abi(ehdr->e_flags)
1810             && ehdr->e_ehsize == sizeof(struct elfhdr)
1811             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1812             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1813 }
1814 
1815 /*
1816  * 'copy_elf_strings()' copies argument/envelope strings from user
1817  * memory to free pages in kernel mem. These are in a format ready
1818  * to be put directly into the top of new user memory.
1819  *
1820  */
1821 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1822                                   abi_ulong p, abi_ulong stack_limit)
1823 {
1824     char *tmp;
1825     int len, i;
1826     abi_ulong top = p;
1827 
1828     if (!p) {
1829         return 0;       /* bullet-proofing */
1830     }
1831 
1832     if (STACK_GROWS_DOWN) {
1833         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1834         for (i = argc - 1; i >= 0; --i) {
1835             tmp = argv[i];
1836             if (!tmp) {
1837                 fprintf(stderr, "VFS: argc is wrong");
1838                 exit(-1);
1839             }
1840             len = strlen(tmp) + 1;
1841             tmp += len;
1842 
1843             if (len > (p - stack_limit)) {
1844                 return 0;
1845             }
1846             while (len) {
1847                 int bytes_to_copy = (len > offset) ? offset : len;
1848                 tmp -= bytes_to_copy;
1849                 p -= bytes_to_copy;
1850                 offset -= bytes_to_copy;
1851                 len -= bytes_to_copy;
1852 
1853                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1854 
1855                 if (offset == 0) {
1856                     memcpy_to_target(p, scratch, top - p);
1857                     top = p;
1858                     offset = TARGET_PAGE_SIZE;
1859                 }
1860             }
1861         }
1862         if (p != top) {
1863             memcpy_to_target(p, scratch + offset, top - p);
1864         }
1865     } else {
1866         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1867         for (i = 0; i < argc; ++i) {
1868             tmp = argv[i];
1869             if (!tmp) {
1870                 fprintf(stderr, "VFS: argc is wrong");
1871                 exit(-1);
1872             }
1873             len = strlen(tmp) + 1;
1874             if (len > (stack_limit - p)) {
1875                 return 0;
1876             }
1877             while (len) {
1878                 int bytes_to_copy = (len > remaining) ? remaining : len;
1879 
1880                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1881 
1882                 tmp += bytes_to_copy;
1883                 remaining -= bytes_to_copy;
1884                 p += bytes_to_copy;
1885                 len -= bytes_to_copy;
1886 
1887                 if (remaining == 0) {
1888                     memcpy_to_target(top, scratch, p - top);
1889                     top = p;
1890                     remaining = TARGET_PAGE_SIZE;
1891                 }
1892             }
1893         }
1894         if (p != top) {
1895             memcpy_to_target(top, scratch, p - top);
1896         }
1897     }
1898 
1899     return p;
1900 }
1901 
1902 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1903  * argument/environment space. Newer kernels (>2.6.33) allow more,
1904  * dependent on stack size, but guarantee at least 32 pages for
1905  * backwards compatibility.
1906  */
1907 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1908 
1909 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1910                                  struct image_info *info)
1911 {
1912     abi_ulong size, error, guard;
1913 
1914     size = guest_stack_size;
1915     if (size < STACK_LOWER_LIMIT) {
1916         size = STACK_LOWER_LIMIT;
1917     }
1918     guard = TARGET_PAGE_SIZE;
1919     if (guard < qemu_real_host_page_size) {
1920         guard = qemu_real_host_page_size;
1921     }
1922 
1923     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1924                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1925     if (error == -1) {
1926         perror("mmap stack");
1927         exit(-1);
1928     }
1929 
1930     /* We reserve one extra page at the top of the stack as guard.  */
1931     if (STACK_GROWS_DOWN) {
1932         target_mprotect(error, guard, PROT_NONE);
1933         info->stack_limit = error + guard;
1934         return info->stack_limit + size - sizeof(void *);
1935     } else {
1936         target_mprotect(error + size, guard, PROT_NONE);
1937         info->stack_limit = error + size;
1938         return error;
1939     }
1940 }
1941 
1942 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1943    after the data section (i.e. bss).  */
1944 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1945 {
1946     uintptr_t host_start, host_map_start, host_end;
1947 
1948     last_bss = TARGET_PAGE_ALIGN(last_bss);
1949 
1950     /* ??? There is confusion between qemu_real_host_page_size and
1951        qemu_host_page_size here and elsewhere in target_mmap, which
1952        may lead to the end of the data section mapping from the file
1953        not being mapped.  At least there was an explicit test and
1954        comment for that here, suggesting that "the file size must
1955        be known".  The comment probably pre-dates the introduction
1956        of the fstat system call in target_mmap which does in fact
1957        find out the size.  What isn't clear is if the workaround
1958        here is still actually needed.  For now, continue with it,
1959        but merge it with the "normal" mmap that would allocate the bss.  */
1960 
1961     host_start = (uintptr_t) g2h_untagged(elf_bss);
1962     host_end = (uintptr_t) g2h_untagged(last_bss);
1963     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1964 
1965     if (host_map_start < host_end) {
1966         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1967                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1968         if (p == MAP_FAILED) {
1969             perror("cannot mmap brk");
1970             exit(-1);
1971         }
1972     }
1973 
1974     /* Ensure that the bss page(s) are valid */
1975     if ((page_get_flags(last_bss-1) & prot) != prot) {
1976         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1977     }
1978 
1979     if (host_start < host_map_start) {
1980         memset((void *)host_start, 0, host_map_start - host_start);
1981     }
1982 }
1983 
1984 #ifdef TARGET_ARM
1985 static int elf_is_fdpic(struct elfhdr *exec)
1986 {
1987     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1988 }
1989 #else
1990 /* Default implementation, always false.  */
1991 static int elf_is_fdpic(struct elfhdr *exec)
1992 {
1993     return 0;
1994 }
1995 #endif
1996 
1997 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1998 {
1999     uint16_t n;
2000     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2001 
2002     /* elf32_fdpic_loadseg */
2003     n = info->nsegs;
2004     while (n--) {
2005         sp -= 12;
2006         put_user_u32(loadsegs[n].addr, sp+0);
2007         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2008         put_user_u32(loadsegs[n].p_memsz, sp+8);
2009     }
2010 
2011     /* elf32_fdpic_loadmap */
2012     sp -= 4;
2013     put_user_u16(0, sp+0); /* version */
2014     put_user_u16(info->nsegs, sp+2); /* nsegs */
2015 
2016     info->personality = PER_LINUX_FDPIC;
2017     info->loadmap_addr = sp;
2018 
2019     return sp;
2020 }
2021 
2022 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2023                                    struct elfhdr *exec,
2024                                    struct image_info *info,
2025                                    struct image_info *interp_info)
2026 {
2027     abi_ulong sp;
2028     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2029     int size;
2030     int i;
2031     abi_ulong u_rand_bytes;
2032     uint8_t k_rand_bytes[16];
2033     abi_ulong u_platform;
2034     const char *k_platform;
2035     const int n = sizeof(elf_addr_t);
2036 
2037     sp = p;
2038 
2039     /* Needs to be before we load the env/argc/... */
2040     if (elf_is_fdpic(exec)) {
2041         /* Need 4 byte alignment for these structs */
2042         sp &= ~3;
2043         sp = loader_build_fdpic_loadmap(info, sp);
2044         info->other_info = interp_info;
2045         if (interp_info) {
2046             interp_info->other_info = info;
2047             sp = loader_build_fdpic_loadmap(interp_info, sp);
2048             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2049             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2050         } else {
2051             info->interpreter_loadmap_addr = 0;
2052             info->interpreter_pt_dynamic_addr = 0;
2053         }
2054     }
2055 
2056     u_platform = 0;
2057     k_platform = ELF_PLATFORM;
2058     if (k_platform) {
2059         size_t len = strlen(k_platform) + 1;
2060         if (STACK_GROWS_DOWN) {
2061             sp -= (len + n - 1) & ~(n - 1);
2062             u_platform = sp;
2063             /* FIXME - check return value of memcpy_to_target() for failure */
2064             memcpy_to_target(sp, k_platform, len);
2065         } else {
2066             memcpy_to_target(sp, k_platform, len);
2067             u_platform = sp;
2068             sp += len + 1;
2069         }
2070     }
2071 
2072     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2073      * the argv and envp pointers.
2074      */
2075     if (STACK_GROWS_DOWN) {
2076         sp = QEMU_ALIGN_DOWN(sp, 16);
2077     } else {
2078         sp = QEMU_ALIGN_UP(sp, 16);
2079     }
2080 
2081     /*
2082      * Generate 16 random bytes for userspace PRNG seeding.
2083      */
2084     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2085     if (STACK_GROWS_DOWN) {
2086         sp -= 16;
2087         u_rand_bytes = sp;
2088         /* FIXME - check return value of memcpy_to_target() for failure */
2089         memcpy_to_target(sp, k_rand_bytes, 16);
2090     } else {
2091         memcpy_to_target(sp, k_rand_bytes, 16);
2092         u_rand_bytes = sp;
2093         sp += 16;
2094     }
2095 
2096     size = (DLINFO_ITEMS + 1) * 2;
2097     if (k_platform)
2098         size += 2;
2099 #ifdef DLINFO_ARCH_ITEMS
2100     size += DLINFO_ARCH_ITEMS * 2;
2101 #endif
2102 #ifdef ELF_HWCAP2
2103     size += 2;
2104 #endif
2105     info->auxv_len = size * n;
2106 
2107     size += envc + argc + 2;
2108     size += 1;  /* argc itself */
2109     size *= n;
2110 
2111     /* Allocate space and finalize stack alignment for entry now.  */
2112     if (STACK_GROWS_DOWN) {
2113         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2114         sp = u_argc;
2115     } else {
2116         u_argc = sp;
2117         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2118     }
2119 
2120     u_argv = u_argc + n;
2121     u_envp = u_argv + (argc + 1) * n;
2122     u_auxv = u_envp + (envc + 1) * n;
2123     info->saved_auxv = u_auxv;
2124     info->arg_start = u_argv;
2125     info->arg_end = u_argv + argc * n;
2126 
2127     /* This is correct because Linux defines
2128      * elf_addr_t as Elf32_Off / Elf64_Off
2129      */
2130 #define NEW_AUX_ENT(id, val) do {               \
2131         put_user_ual(id, u_auxv);  u_auxv += n; \
2132         put_user_ual(val, u_auxv); u_auxv += n; \
2133     } while(0)
2134 
2135 #ifdef ARCH_DLINFO
2136     /*
2137      * ARCH_DLINFO must come first so platform specific code can enforce
2138      * special alignment requirements on the AUXV if necessary (eg. PPC).
2139      */
2140     ARCH_DLINFO;
2141 #endif
2142     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2143      * on info->auxv_len will trigger.
2144      */
2145     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2146     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2147     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2148     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2149         /* Target doesn't support host page size alignment */
2150         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2151     } else {
2152         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2153                                                qemu_host_page_size)));
2154     }
2155     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2156     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2157     NEW_AUX_ENT(AT_ENTRY, info->entry);
2158     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2159     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2160     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2161     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2162     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2163     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2164     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2165     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2166     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2167 
2168 #ifdef ELF_HWCAP2
2169     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2170 #endif
2171 
2172     if (u_platform) {
2173         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2174     }
2175     NEW_AUX_ENT (AT_NULL, 0);
2176 #undef NEW_AUX_ENT
2177 
2178     /* Check that our initial calculation of the auxv length matches how much
2179      * we actually put into it.
2180      */
2181     assert(info->auxv_len == u_auxv - info->saved_auxv);
2182 
2183     put_user_ual(argc, u_argc);
2184 
2185     p = info->arg_strings;
2186     for (i = 0; i < argc; ++i) {
2187         put_user_ual(p, u_argv);
2188         u_argv += n;
2189         p += target_strlen(p) + 1;
2190     }
2191     put_user_ual(0, u_argv);
2192 
2193     p = info->env_strings;
2194     for (i = 0; i < envc; ++i) {
2195         put_user_ual(p, u_envp);
2196         u_envp += n;
2197         p += target_strlen(p) + 1;
2198     }
2199     put_user_ual(0, u_envp);
2200 
2201     return sp;
2202 }
2203 
2204 #if defined(HI_COMMPAGE)
2205 #define LO_COMMPAGE 0
2206 #elif defined(LO_COMMPAGE)
2207 #define HI_COMMPAGE 0
2208 #else
2209 #define HI_COMMPAGE 0
2210 #define LO_COMMPAGE 0
2211 #define init_guest_commpage() true
2212 #endif
2213 
2214 static void pgb_fail_in_use(const char *image_name)
2215 {
2216     error_report("%s: requires virtual address space that is in use "
2217                  "(omit the -B option or choose a different value)",
2218                  image_name);
2219     exit(EXIT_FAILURE);
2220 }
2221 
2222 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2223                                 abi_ulong guest_hiaddr, long align)
2224 {
2225     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2226     void *addr, *test;
2227 
2228     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2229         fprintf(stderr, "Requested guest base %p does not satisfy "
2230                 "host minimum alignment (0x%lx)\n",
2231                 (void *)guest_base, align);
2232         exit(EXIT_FAILURE);
2233     }
2234 
2235     /* Sanity check the guest binary. */
2236     if (reserved_va) {
2237         if (guest_hiaddr > reserved_va) {
2238             error_report("%s: requires more than reserved virtual "
2239                          "address space (0x%" PRIx64 " > 0x%lx)",
2240                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2241             exit(EXIT_FAILURE);
2242         }
2243     } else {
2244 #if HOST_LONG_BITS < TARGET_ABI_BITS
2245         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2246             error_report("%s: requires more virtual address space "
2247                          "than the host can provide (0x%" PRIx64 ")",
2248                          image_name, (uint64_t)guest_hiaddr - guest_base);
2249             exit(EXIT_FAILURE);
2250         }
2251 #endif
2252     }
2253 
2254     /*
2255      * Expand the allocation to the entire reserved_va.
2256      * Exclude the mmap_min_addr hole.
2257      */
2258     if (reserved_va) {
2259         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2260                         : mmap_min_addr - guest_base);
2261         guest_hiaddr = reserved_va;
2262     }
2263 
2264     /* Reserve the address space for the binary, or reserved_va. */
2265     test = g2h_untagged(guest_loaddr);
2266     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2267     if (test != addr) {
2268         pgb_fail_in_use(image_name);
2269     }
2270 }
2271 
2272 /**
2273  * pgd_find_hole_fallback: potential mmap address
2274  * @guest_size: size of available space
2275  * @brk: location of break
2276  * @align: memory alignment
2277  *
2278  * This is a fallback method for finding a hole in the host address
2279  * space if we don't have the benefit of being able to access
2280  * /proc/self/map. It can potentially take a very long time as we can
2281  * only dumbly iterate up the host address space seeing if the
2282  * allocation would work.
2283  */
2284 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2285                                         long align, uintptr_t offset)
2286 {
2287     uintptr_t base;
2288 
2289     /* Start (aligned) at the bottom and work our way up */
2290     base = ROUND_UP(mmap_min_addr, align);
2291 
2292     while (true) {
2293         uintptr_t align_start, end;
2294         align_start = ROUND_UP(base, align);
2295         end = align_start + guest_size + offset;
2296 
2297         /* if brk is anywhere in the range give ourselves some room to grow. */
2298         if (align_start <= brk && brk < end) {
2299             base = brk + (16 * MiB);
2300             continue;
2301         } else if (align_start + guest_size < align_start) {
2302             /* we have run out of space */
2303             return -1;
2304         } else {
2305             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2306                 MAP_FIXED_NOREPLACE;
2307             void * mmap_start = mmap((void *) align_start, guest_size,
2308                                      PROT_NONE, flags, -1, 0);
2309             if (mmap_start != MAP_FAILED) {
2310                 munmap(mmap_start, guest_size);
2311                 if (mmap_start == (void *) align_start) {
2312                     return (uintptr_t) mmap_start + offset;
2313                 }
2314             }
2315             base += qemu_host_page_size;
2316         }
2317     }
2318 }
2319 
2320 /* Return value for guest_base, or -1 if no hole found. */
2321 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2322                                long align, uintptr_t offset)
2323 {
2324     GSList *maps, *iter;
2325     uintptr_t this_start, this_end, next_start, brk;
2326     intptr_t ret = -1;
2327 
2328     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2329 
2330     maps = read_self_maps();
2331 
2332     /* Read brk after we've read the maps, which will malloc. */
2333     brk = (uintptr_t)sbrk(0);
2334 
2335     if (!maps) {
2336         ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2337         return ret == -1 ? -1 : ret - guest_loaddr;
2338     }
2339 
2340     /* The first hole is before the first map entry. */
2341     this_start = mmap_min_addr;
2342 
2343     for (iter = maps; iter;
2344          this_start = next_start, iter = g_slist_next(iter)) {
2345         uintptr_t align_start, hole_size;
2346 
2347         this_end = ((MapInfo *)iter->data)->start;
2348         next_start = ((MapInfo *)iter->data)->end;
2349         align_start = ROUND_UP(this_start + offset, align);
2350 
2351         /* Skip holes that are too small. */
2352         if (align_start >= this_end) {
2353             continue;
2354         }
2355         hole_size = this_end - align_start;
2356         if (hole_size < guest_size) {
2357             continue;
2358         }
2359 
2360         /* If this hole contains brk, give ourselves some room to grow. */
2361         if (this_start <= brk && brk < this_end) {
2362             hole_size -= guest_size;
2363             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2364                 align_start += 1 * GiB;
2365             } else if (hole_size >= 16 * MiB) {
2366                 align_start += 16 * MiB;
2367             } else {
2368                 align_start = (this_end - guest_size) & -align;
2369                 if (align_start < this_start) {
2370                     continue;
2371                 }
2372             }
2373         }
2374 
2375         /* Record the lowest successful match. */
2376         if (ret < 0) {
2377             ret = align_start - guest_loaddr;
2378         }
2379         /* If this hole contains the identity map, select it. */
2380         if (align_start <= guest_loaddr &&
2381             guest_loaddr + guest_size <= this_end) {
2382             ret = 0;
2383         }
2384         /* If this hole ends above the identity map, stop looking. */
2385         if (this_end >= guest_loaddr) {
2386             break;
2387         }
2388     }
2389     free_self_maps(maps);
2390 
2391     return ret;
2392 }
2393 
2394 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2395                        abi_ulong orig_hiaddr, long align)
2396 {
2397     uintptr_t loaddr = orig_loaddr;
2398     uintptr_t hiaddr = orig_hiaddr;
2399     uintptr_t offset = 0;
2400     uintptr_t addr;
2401 
2402     if (hiaddr != orig_hiaddr) {
2403         error_report("%s: requires virtual address space that the "
2404                      "host cannot provide (0x%" PRIx64 ")",
2405                      image_name, (uint64_t)orig_hiaddr);
2406         exit(EXIT_FAILURE);
2407     }
2408 
2409     loaddr &= -align;
2410     if (HI_COMMPAGE) {
2411         /*
2412          * Extend the allocation to include the commpage.
2413          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2414          * need to ensure there is space bellow the guest_base so we
2415          * can map the commpage in the place needed when the address
2416          * arithmetic wraps around.
2417          */
2418         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2419             hiaddr = (uintptr_t) 4 << 30;
2420         } else {
2421             offset = -(HI_COMMPAGE & -align);
2422         }
2423     } else if (LO_COMMPAGE) {
2424         loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2425     }
2426 
2427     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2428     if (addr == -1) {
2429         /*
2430          * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2431          * that can satisfy both.  But as the normal arm32 link base address
2432          * is ~32k, and we extend down to include the commpage, making the
2433          * overhead only ~96k, this is unlikely.
2434          */
2435         error_report("%s: Unable to allocate %#zx bytes of "
2436                      "virtual address space", image_name,
2437                      (size_t)(hiaddr - loaddr));
2438         exit(EXIT_FAILURE);
2439     }
2440 
2441     guest_base = addr;
2442 }
2443 
2444 static void pgb_dynamic(const char *image_name, long align)
2445 {
2446     /*
2447      * The executable is dynamic and does not require a fixed address.
2448      * All we need is a commpage that satisfies align.
2449      * If we do not need a commpage, leave guest_base == 0.
2450      */
2451     if (HI_COMMPAGE) {
2452         uintptr_t addr, commpage;
2453 
2454         /* 64-bit hosts should have used reserved_va. */
2455         assert(sizeof(uintptr_t) == 4);
2456 
2457         /*
2458          * By putting the commpage at the first hole, that puts guest_base
2459          * just above that, and maximises the positive guest addresses.
2460          */
2461         commpage = HI_COMMPAGE & -align;
2462         addr = pgb_find_hole(commpage, -commpage, align, 0);
2463         assert(addr != -1);
2464         guest_base = addr;
2465     }
2466 }
2467 
2468 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2469                             abi_ulong guest_hiaddr, long align)
2470 {
2471     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2472     void *addr, *test;
2473 
2474     if (guest_hiaddr > reserved_va) {
2475         error_report("%s: requires more than reserved virtual "
2476                      "address space (0x%" PRIx64 " > 0x%lx)",
2477                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2478         exit(EXIT_FAILURE);
2479     }
2480 
2481     /* Widen the "image" to the entire reserved address space. */
2482     pgb_static(image_name, 0, reserved_va, align);
2483 
2484     /* osdep.h defines this as 0 if it's missing */
2485     flags |= MAP_FIXED_NOREPLACE;
2486 
2487     /* Reserve the memory on the host. */
2488     assert(guest_base != 0);
2489     test = g2h_untagged(0);
2490     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2491     if (addr == MAP_FAILED || addr != test) {
2492         error_report("Unable to reserve 0x%lx bytes of virtual address "
2493                      "space at %p (%s) for use as guest address space (check your"
2494                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2495                      "using -R option)", reserved_va, test, strerror(errno));
2496         exit(EXIT_FAILURE);
2497     }
2498 }
2499 
2500 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2501                       abi_ulong guest_hiaddr)
2502 {
2503     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2504     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2505 
2506     if (have_guest_base) {
2507         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2508     } else if (reserved_va) {
2509         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2510     } else if (guest_loaddr) {
2511         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2512     } else {
2513         pgb_dynamic(image_name, align);
2514     }
2515 
2516     /* Reserve and initialize the commpage. */
2517     if (!init_guest_commpage()) {
2518         /*
2519          * With have_guest_base, the user has selected the address and
2520          * we are trying to work with that.  Otherwise, we have selected
2521          * free space and init_guest_commpage must succeeded.
2522          */
2523         assert(have_guest_base);
2524         pgb_fail_in_use(image_name);
2525     }
2526 
2527     assert(QEMU_IS_ALIGNED(guest_base, align));
2528     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2529                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2530 }
2531 
2532 enum {
2533     /* The string "GNU\0" as a magic number. */
2534     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2535     NOTE_DATA_SZ = 1 * KiB,
2536     NOTE_NAME_SZ = 4,
2537     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2538 };
2539 
2540 /*
2541  * Process a single gnu_property entry.
2542  * Return false for error.
2543  */
2544 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2545                                struct image_info *info, bool have_prev_type,
2546                                uint32_t *prev_type, Error **errp)
2547 {
2548     uint32_t pr_type, pr_datasz, step;
2549 
2550     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2551         goto error_data;
2552     }
2553     datasz -= *off;
2554     data += *off / sizeof(uint32_t);
2555 
2556     if (datasz < 2 * sizeof(uint32_t)) {
2557         goto error_data;
2558     }
2559     pr_type = data[0];
2560     pr_datasz = data[1];
2561     data += 2;
2562     datasz -= 2 * sizeof(uint32_t);
2563     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2564     if (step > datasz) {
2565         goto error_data;
2566     }
2567 
2568     /* Properties are supposed to be unique and sorted on pr_type. */
2569     if (have_prev_type && pr_type <= *prev_type) {
2570         if (pr_type == *prev_type) {
2571             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2572         } else {
2573             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2574         }
2575         return false;
2576     }
2577     *prev_type = pr_type;
2578 
2579     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2580         return false;
2581     }
2582 
2583     *off += 2 * sizeof(uint32_t) + step;
2584     return true;
2585 
2586  error_data:
2587     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2588     return false;
2589 }
2590 
2591 /* Process NT_GNU_PROPERTY_TYPE_0. */
2592 static bool parse_elf_properties(int image_fd,
2593                                  struct image_info *info,
2594                                  const struct elf_phdr *phdr,
2595                                  char bprm_buf[BPRM_BUF_SIZE],
2596                                  Error **errp)
2597 {
2598     union {
2599         struct elf_note nhdr;
2600         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2601     } note;
2602 
2603     int n, off, datasz;
2604     bool have_prev_type;
2605     uint32_t prev_type;
2606 
2607     /* Unless the arch requires properties, ignore them. */
2608     if (!ARCH_USE_GNU_PROPERTY) {
2609         return true;
2610     }
2611 
2612     /* If the properties are crazy large, that's too bad. */
2613     n = phdr->p_filesz;
2614     if (n > sizeof(note)) {
2615         error_setg(errp, "PT_GNU_PROPERTY too large");
2616         return false;
2617     }
2618     if (n < sizeof(note.nhdr)) {
2619         error_setg(errp, "PT_GNU_PROPERTY too small");
2620         return false;
2621     }
2622 
2623     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2624         memcpy(&note, bprm_buf + phdr->p_offset, n);
2625     } else {
2626         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2627         if (len != n) {
2628             error_setg_errno(errp, errno, "Error reading file header");
2629             return false;
2630         }
2631     }
2632 
2633     /*
2634      * The contents of a valid PT_GNU_PROPERTY is a sequence
2635      * of uint32_t -- swap them all now.
2636      */
2637 #ifdef BSWAP_NEEDED
2638     for (int i = 0; i < n / 4; i++) {
2639         bswap32s(note.data + i);
2640     }
2641 #endif
2642 
2643     /*
2644      * Note that nhdr is 3 words, and that the "name" described by namesz
2645      * immediately follows nhdr and is thus at the 4th word.  Further, all
2646      * of the inputs to the kernel's round_up are multiples of 4.
2647      */
2648     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2649         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2650         note.data[3] != GNU0_MAGIC) {
2651         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2652         return false;
2653     }
2654     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2655 
2656     datasz = note.nhdr.n_descsz + off;
2657     if (datasz > n) {
2658         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2659         return false;
2660     }
2661 
2662     have_prev_type = false;
2663     prev_type = 0;
2664     while (1) {
2665         if (off == datasz) {
2666             return true;  /* end, exit ok */
2667         }
2668         if (!parse_elf_property(note.data, &off, datasz, info,
2669                                 have_prev_type, &prev_type, errp)) {
2670             return false;
2671         }
2672         have_prev_type = true;
2673     }
2674 }
2675 
2676 /* Load an ELF image into the address space.
2677 
2678    IMAGE_NAME is the filename of the image, to use in error messages.
2679    IMAGE_FD is the open file descriptor for the image.
2680 
2681    BPRM_BUF is a copy of the beginning of the file; this of course
2682    contains the elf file header at offset 0.  It is assumed that this
2683    buffer is sufficiently aligned to present no problems to the host
2684    in accessing data at aligned offsets within the buffer.
2685 
2686    On return: INFO values will be filled in, as necessary or available.  */
2687 
2688 static void load_elf_image(const char *image_name, int image_fd,
2689                            struct image_info *info, char **pinterp_name,
2690                            char bprm_buf[BPRM_BUF_SIZE])
2691 {
2692     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2693     struct elf_phdr *phdr;
2694     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2695     int i, retval, prot_exec;
2696     Error *err = NULL;
2697 
2698     /* First of all, some simple consistency checks */
2699     if (!elf_check_ident(ehdr)) {
2700         error_setg(&err, "Invalid ELF image for this architecture");
2701         goto exit_errmsg;
2702     }
2703     bswap_ehdr(ehdr);
2704     if (!elf_check_ehdr(ehdr)) {
2705         error_setg(&err, "Invalid ELF image for this architecture");
2706         goto exit_errmsg;
2707     }
2708 
2709     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2710     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2711         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2712     } else {
2713         phdr = (struct elf_phdr *) alloca(i);
2714         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2715         if (retval != i) {
2716             goto exit_read;
2717         }
2718     }
2719     bswap_phdr(phdr, ehdr->e_phnum);
2720 
2721     info->nsegs = 0;
2722     info->pt_dynamic_addr = 0;
2723 
2724     mmap_lock();
2725 
2726     /*
2727      * Find the maximum size of the image and allocate an appropriate
2728      * amount of memory to handle that.  Locate the interpreter, if any.
2729      */
2730     loaddr = -1, hiaddr = 0;
2731     info->alignment = 0;
2732     for (i = 0; i < ehdr->e_phnum; ++i) {
2733         struct elf_phdr *eppnt = phdr + i;
2734         if (eppnt->p_type == PT_LOAD) {
2735             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2736             if (a < loaddr) {
2737                 loaddr = a;
2738             }
2739             a = eppnt->p_vaddr + eppnt->p_memsz;
2740             if (a > hiaddr) {
2741                 hiaddr = a;
2742             }
2743             ++info->nsegs;
2744             info->alignment |= eppnt->p_align;
2745         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2746             g_autofree char *interp_name = NULL;
2747 
2748             if (*pinterp_name) {
2749                 error_setg(&err, "Multiple PT_INTERP entries");
2750                 goto exit_errmsg;
2751             }
2752 
2753             interp_name = g_malloc(eppnt->p_filesz);
2754 
2755             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2756                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2757                        eppnt->p_filesz);
2758             } else {
2759                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2760                                eppnt->p_offset);
2761                 if (retval != eppnt->p_filesz) {
2762                     goto exit_read;
2763                 }
2764             }
2765             if (interp_name[eppnt->p_filesz - 1] != 0) {
2766                 error_setg(&err, "Invalid PT_INTERP entry");
2767                 goto exit_errmsg;
2768             }
2769             *pinterp_name = g_steal_pointer(&interp_name);
2770         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2771             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2772                 goto exit_errmsg;
2773             }
2774         }
2775     }
2776 
2777     if (pinterp_name != NULL) {
2778         /*
2779          * This is the main executable.
2780          *
2781          * Reserve extra space for brk.
2782          * We hold on to this space while placing the interpreter
2783          * and the stack, lest they be placed immediately after
2784          * the data segment and block allocation from the brk.
2785          *
2786          * 16MB is chosen as "large enough" without being so large
2787          * as to allow the result to not fit with a 32-bit guest on
2788          * a 32-bit host.
2789          */
2790         info->reserve_brk = 16 * MiB;
2791         hiaddr += info->reserve_brk;
2792 
2793         if (ehdr->e_type == ET_EXEC) {
2794             /*
2795              * Make sure that the low address does not conflict with
2796              * MMAP_MIN_ADDR or the QEMU application itself.
2797              */
2798             probe_guest_base(image_name, loaddr, hiaddr);
2799         } else {
2800             /*
2801              * The binary is dynamic, but we still need to
2802              * select guest_base.  In this case we pass a size.
2803              */
2804             probe_guest_base(image_name, 0, hiaddr - loaddr);
2805         }
2806     }
2807 
2808     /*
2809      * Reserve address space for all of this.
2810      *
2811      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2812      * exactly the address range that is required.
2813      *
2814      * Otherwise this is ET_DYN, and we are searching for a location
2815      * that can hold the memory space required.  If the image is
2816      * pre-linked, LOADDR will be non-zero, and the kernel should
2817      * honor that address if it happens to be free.
2818      *
2819      * In both cases, we will overwrite pages in this range with mappings
2820      * from the executable.
2821      */
2822     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2823                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2824                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2825                             -1, 0);
2826     if (load_addr == -1) {
2827         goto exit_mmap;
2828     }
2829     load_bias = load_addr - loaddr;
2830 
2831     if (elf_is_fdpic(ehdr)) {
2832         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2833             g_malloc(sizeof(*loadsegs) * info->nsegs);
2834 
2835         for (i = 0; i < ehdr->e_phnum; ++i) {
2836             switch (phdr[i].p_type) {
2837             case PT_DYNAMIC:
2838                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2839                 break;
2840             case PT_LOAD:
2841                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2842                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2843                 loadsegs->p_memsz = phdr[i].p_memsz;
2844                 ++loadsegs;
2845                 break;
2846             }
2847         }
2848     }
2849 
2850     info->load_bias = load_bias;
2851     info->code_offset = load_bias;
2852     info->data_offset = load_bias;
2853     info->load_addr = load_addr;
2854     info->entry = ehdr->e_entry + load_bias;
2855     info->start_code = -1;
2856     info->end_code = 0;
2857     info->start_data = -1;
2858     info->end_data = 0;
2859     info->brk = 0;
2860     info->elf_flags = ehdr->e_flags;
2861 
2862     prot_exec = PROT_EXEC;
2863 #ifdef TARGET_AARCH64
2864     /*
2865      * If the BTI feature is present, this indicates that the executable
2866      * pages of the startup binary should be mapped with PROT_BTI, so that
2867      * branch targets are enforced.
2868      *
2869      * The startup binary is either the interpreter or the static executable.
2870      * The interpreter is responsible for all pages of a dynamic executable.
2871      *
2872      * Elf notes are backward compatible to older cpus.
2873      * Do not enable BTI unless it is supported.
2874      */
2875     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2876         && (pinterp_name == NULL || *pinterp_name == 0)
2877         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2878         prot_exec |= TARGET_PROT_BTI;
2879     }
2880 #endif
2881 
2882     for (i = 0; i < ehdr->e_phnum; i++) {
2883         struct elf_phdr *eppnt = phdr + i;
2884         if (eppnt->p_type == PT_LOAD) {
2885             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2886             int elf_prot = 0;
2887 
2888             if (eppnt->p_flags & PF_R) {
2889                 elf_prot |= PROT_READ;
2890             }
2891             if (eppnt->p_flags & PF_W) {
2892                 elf_prot |= PROT_WRITE;
2893             }
2894             if (eppnt->p_flags & PF_X) {
2895                 elf_prot |= prot_exec;
2896             }
2897 
2898             vaddr = load_bias + eppnt->p_vaddr;
2899             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2900             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2901 
2902             vaddr_ef = vaddr + eppnt->p_filesz;
2903             vaddr_em = vaddr + eppnt->p_memsz;
2904 
2905             /*
2906              * Some segments may be completely empty, with a non-zero p_memsz
2907              * but no backing file segment.
2908              */
2909             if (eppnt->p_filesz != 0) {
2910                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2911                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2912                                     MAP_PRIVATE | MAP_FIXED,
2913                                     image_fd, eppnt->p_offset - vaddr_po);
2914 
2915                 if (error == -1) {
2916                     goto exit_mmap;
2917                 }
2918 
2919                 /*
2920                  * If the load segment requests extra zeros (e.g. bss), map it.
2921                  */
2922                 if (eppnt->p_filesz < eppnt->p_memsz) {
2923                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2924                 }
2925             } else if (eppnt->p_memsz != 0) {
2926                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2927                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2928                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2929                                     -1, 0);
2930 
2931                 if (error == -1) {
2932                     goto exit_mmap;
2933                 }
2934             }
2935 
2936             /* Find the full program boundaries.  */
2937             if (elf_prot & PROT_EXEC) {
2938                 if (vaddr < info->start_code) {
2939                     info->start_code = vaddr;
2940                 }
2941                 if (vaddr_ef > info->end_code) {
2942                     info->end_code = vaddr_ef;
2943                 }
2944             }
2945             if (elf_prot & PROT_WRITE) {
2946                 if (vaddr < info->start_data) {
2947                     info->start_data = vaddr;
2948                 }
2949                 if (vaddr_ef > info->end_data) {
2950                     info->end_data = vaddr_ef;
2951                 }
2952             }
2953             if (vaddr_em > info->brk) {
2954                 info->brk = vaddr_em;
2955             }
2956 #ifdef TARGET_MIPS
2957         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2958             Mips_elf_abiflags_v0 abiflags;
2959             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2960                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2961                 goto exit_errmsg;
2962             }
2963             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2964                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2965                        sizeof(Mips_elf_abiflags_v0));
2966             } else {
2967                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2968                                eppnt->p_offset);
2969                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2970                     goto exit_read;
2971                 }
2972             }
2973             bswap_mips_abiflags(&abiflags);
2974             info->fp_abi = abiflags.fp_abi;
2975 #endif
2976         }
2977     }
2978 
2979     if (info->end_data == 0) {
2980         info->start_data = info->end_code;
2981         info->end_data = info->end_code;
2982     }
2983 
2984     if (qemu_log_enabled()) {
2985         load_symbols(ehdr, image_fd, load_bias);
2986     }
2987 
2988     mmap_unlock();
2989 
2990     close(image_fd);
2991     return;
2992 
2993  exit_read:
2994     if (retval >= 0) {
2995         error_setg(&err, "Incomplete read of file header");
2996     } else {
2997         error_setg_errno(&err, errno, "Error reading file header");
2998     }
2999     goto exit_errmsg;
3000  exit_mmap:
3001     error_setg_errno(&err, errno, "Error mapping file");
3002     goto exit_errmsg;
3003  exit_errmsg:
3004     error_reportf_err(err, "%s: ", image_name);
3005     exit(-1);
3006 }
3007 
3008 static void load_elf_interp(const char *filename, struct image_info *info,
3009                             char bprm_buf[BPRM_BUF_SIZE])
3010 {
3011     int fd, retval;
3012     Error *err = NULL;
3013 
3014     fd = open(path(filename), O_RDONLY);
3015     if (fd < 0) {
3016         error_setg_file_open(&err, errno, filename);
3017         error_report_err(err);
3018         exit(-1);
3019     }
3020 
3021     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3022     if (retval < 0) {
3023         error_setg_errno(&err, errno, "Error reading file header");
3024         error_reportf_err(err, "%s: ", filename);
3025         exit(-1);
3026     }
3027 
3028     if (retval < BPRM_BUF_SIZE) {
3029         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3030     }
3031 
3032     load_elf_image(filename, fd, info, NULL, bprm_buf);
3033 }
3034 
3035 static int symfind(const void *s0, const void *s1)
3036 {
3037     target_ulong addr = *(target_ulong *)s0;
3038     struct elf_sym *sym = (struct elf_sym *)s1;
3039     int result = 0;
3040     if (addr < sym->st_value) {
3041         result = -1;
3042     } else if (addr >= sym->st_value + sym->st_size) {
3043         result = 1;
3044     }
3045     return result;
3046 }
3047 
3048 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3049 {
3050 #if ELF_CLASS == ELFCLASS32
3051     struct elf_sym *syms = s->disas_symtab.elf32;
3052 #else
3053     struct elf_sym *syms = s->disas_symtab.elf64;
3054 #endif
3055 
3056     // binary search
3057     struct elf_sym *sym;
3058 
3059     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3060     if (sym != NULL) {
3061         return s->disas_strtab + sym->st_name;
3062     }
3063 
3064     return "";
3065 }
3066 
3067 /* FIXME: This should use elf_ops.h  */
3068 static int symcmp(const void *s0, const void *s1)
3069 {
3070     struct elf_sym *sym0 = (struct elf_sym *)s0;
3071     struct elf_sym *sym1 = (struct elf_sym *)s1;
3072     return (sym0->st_value < sym1->st_value)
3073         ? -1
3074         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3075 }
3076 
3077 /* Best attempt to load symbols from this ELF object. */
3078 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3079 {
3080     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3081     uint64_t segsz;
3082     struct elf_shdr *shdr;
3083     char *strings = NULL;
3084     struct syminfo *s = NULL;
3085     struct elf_sym *new_syms, *syms = NULL;
3086 
3087     shnum = hdr->e_shnum;
3088     i = shnum * sizeof(struct elf_shdr);
3089     shdr = (struct elf_shdr *)alloca(i);
3090     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3091         return;
3092     }
3093 
3094     bswap_shdr(shdr, shnum);
3095     for (i = 0; i < shnum; ++i) {
3096         if (shdr[i].sh_type == SHT_SYMTAB) {
3097             sym_idx = i;
3098             str_idx = shdr[i].sh_link;
3099             goto found;
3100         }
3101     }
3102 
3103     /* There will be no symbol table if the file was stripped.  */
3104     return;
3105 
3106  found:
3107     /* Now know where the strtab and symtab are.  Snarf them.  */
3108     s = g_try_new(struct syminfo, 1);
3109     if (!s) {
3110         goto give_up;
3111     }
3112 
3113     segsz = shdr[str_idx].sh_size;
3114     s->disas_strtab = strings = g_try_malloc(segsz);
3115     if (!strings ||
3116         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3117         goto give_up;
3118     }
3119 
3120     segsz = shdr[sym_idx].sh_size;
3121     syms = g_try_malloc(segsz);
3122     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3123         goto give_up;
3124     }
3125 
3126     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3127         /* Implausibly large symbol table: give up rather than ploughing
3128          * on with the number of symbols calculation overflowing
3129          */
3130         goto give_up;
3131     }
3132     nsyms = segsz / sizeof(struct elf_sym);
3133     for (i = 0; i < nsyms; ) {
3134         bswap_sym(syms + i);
3135         /* Throw away entries which we do not need.  */
3136         if (syms[i].st_shndx == SHN_UNDEF
3137             || syms[i].st_shndx >= SHN_LORESERVE
3138             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3139             if (i < --nsyms) {
3140                 syms[i] = syms[nsyms];
3141             }
3142         } else {
3143 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3144             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3145             syms[i].st_value &= ~(target_ulong)1;
3146 #endif
3147             syms[i].st_value += load_bias;
3148             i++;
3149         }
3150     }
3151 
3152     /* No "useful" symbol.  */
3153     if (nsyms == 0) {
3154         goto give_up;
3155     }
3156 
3157     /* Attempt to free the storage associated with the local symbols
3158        that we threw away.  Whether or not this has any effect on the
3159        memory allocation depends on the malloc implementation and how
3160        many symbols we managed to discard.  */
3161     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3162     if (new_syms == NULL) {
3163         goto give_up;
3164     }
3165     syms = new_syms;
3166 
3167     qsort(syms, nsyms, sizeof(*syms), symcmp);
3168 
3169     s->disas_num_syms = nsyms;
3170 #if ELF_CLASS == ELFCLASS32
3171     s->disas_symtab.elf32 = syms;
3172 #else
3173     s->disas_symtab.elf64 = syms;
3174 #endif
3175     s->lookup_symbol = lookup_symbolxx;
3176     s->next = syminfos;
3177     syminfos = s;
3178 
3179     return;
3180 
3181 give_up:
3182     g_free(s);
3183     g_free(strings);
3184     g_free(syms);
3185 }
3186 
3187 uint32_t get_elf_eflags(int fd)
3188 {
3189     struct elfhdr ehdr;
3190     off_t offset;
3191     int ret;
3192 
3193     /* Read ELF header */
3194     offset = lseek(fd, 0, SEEK_SET);
3195     if (offset == (off_t) -1) {
3196         return 0;
3197     }
3198     ret = read(fd, &ehdr, sizeof(ehdr));
3199     if (ret < sizeof(ehdr)) {
3200         return 0;
3201     }
3202     offset = lseek(fd, offset, SEEK_SET);
3203     if (offset == (off_t) -1) {
3204         return 0;
3205     }
3206 
3207     /* Check ELF signature */
3208     if (!elf_check_ident(&ehdr)) {
3209         return 0;
3210     }
3211 
3212     /* check header */
3213     bswap_ehdr(&ehdr);
3214     if (!elf_check_ehdr(&ehdr)) {
3215         return 0;
3216     }
3217 
3218     /* return architecture id */
3219     return ehdr.e_flags;
3220 }
3221 
3222 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3223 {
3224     struct image_info interp_info;
3225     struct elfhdr elf_ex;
3226     char *elf_interpreter = NULL;
3227     char *scratch;
3228 
3229     memset(&interp_info, 0, sizeof(interp_info));
3230 #ifdef TARGET_MIPS
3231     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3232 #endif
3233 
3234     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3235 
3236     load_elf_image(bprm->filename, bprm->fd, info,
3237                    &elf_interpreter, bprm->buf);
3238 
3239     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3240        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3241        when we load the interpreter.  */
3242     elf_ex = *(struct elfhdr *)bprm->buf;
3243 
3244     /* Do this so that we can load the interpreter, if need be.  We will
3245        change some of these later */
3246     bprm->p = setup_arg_pages(bprm, info);
3247 
3248     scratch = g_new0(char, TARGET_PAGE_SIZE);
3249     if (STACK_GROWS_DOWN) {
3250         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3251                                    bprm->p, info->stack_limit);
3252         info->file_string = bprm->p;
3253         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3254                                    bprm->p, info->stack_limit);
3255         info->env_strings = bprm->p;
3256         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3257                                    bprm->p, info->stack_limit);
3258         info->arg_strings = bprm->p;
3259     } else {
3260         info->arg_strings = bprm->p;
3261         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3262                                    bprm->p, info->stack_limit);
3263         info->env_strings = bprm->p;
3264         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3265                                    bprm->p, info->stack_limit);
3266         info->file_string = bprm->p;
3267         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3268                                    bprm->p, info->stack_limit);
3269     }
3270 
3271     g_free(scratch);
3272 
3273     if (!bprm->p) {
3274         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3275         exit(-1);
3276     }
3277 
3278     if (elf_interpreter) {
3279         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3280 
3281         /* If the program interpreter is one of these two, then assume
3282            an iBCS2 image.  Otherwise assume a native linux image.  */
3283 
3284         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3285             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3286             info->personality = PER_SVR4;
3287 
3288             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3289                and some applications "depend" upon this behavior.  Since
3290                we do not have the power to recompile these, we emulate
3291                the SVr4 behavior.  Sigh.  */
3292             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3293                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3294         }
3295 #ifdef TARGET_MIPS
3296         info->interp_fp_abi = interp_info.fp_abi;
3297 #endif
3298     }
3299 
3300     /*
3301      * TODO: load a vdso, which would also contain the signal trampolines.
3302      * Otherwise, allocate a private page to hold them.
3303      */
3304     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3305         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3306                                           PROT_READ | PROT_WRITE,
3307                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3308         if (tramp_page == -1) {
3309             return -errno;
3310         }
3311 
3312         setup_sigtramp(tramp_page);
3313         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3314     }
3315 
3316     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3317                                 info, (elf_interpreter ? &interp_info : NULL));
3318     info->start_stack = bprm->p;
3319 
3320     /* If we have an interpreter, set that as the program's entry point.
3321        Copy the load_bias as well, to help PPC64 interpret the entry
3322        point as a function descriptor.  Do this after creating elf tables
3323        so that we copy the original program entry point into the AUXV.  */
3324     if (elf_interpreter) {
3325         info->load_bias = interp_info.load_bias;
3326         info->entry = interp_info.entry;
3327         g_free(elf_interpreter);
3328     }
3329 
3330 #ifdef USE_ELF_CORE_DUMP
3331     bprm->core_dump = &elf_core_dump;
3332 #endif
3333 
3334     /*
3335      * If we reserved extra space for brk, release it now.
3336      * The implementation of do_brk in syscalls.c expects to be able
3337      * to mmap pages in this space.
3338      */
3339     if (info->reserve_brk) {
3340         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3341         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3342         target_munmap(start_brk, end_brk - start_brk);
3343     }
3344 
3345     return 0;
3346 }
3347 
3348 #ifdef USE_ELF_CORE_DUMP
3349 /*
3350  * Definitions to generate Intel SVR4-like core files.
3351  * These mostly have the same names as the SVR4 types with "target_elf_"
3352  * tacked on the front to prevent clashes with linux definitions,
3353  * and the typedef forms have been avoided.  This is mostly like
3354  * the SVR4 structure, but more Linuxy, with things that Linux does
3355  * not support and which gdb doesn't really use excluded.
3356  *
3357  * Fields we don't dump (their contents is zero) in linux-user qemu
3358  * are marked with XXX.
3359  *
3360  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3361  *
3362  * Porting ELF coredump for target is (quite) simple process.  First you
3363  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3364  * the target resides):
3365  *
3366  * #define USE_ELF_CORE_DUMP
3367  *
3368  * Next you define type of register set used for dumping.  ELF specification
3369  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3370  *
3371  * typedef <target_regtype> target_elf_greg_t;
3372  * #define ELF_NREG <number of registers>
3373  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3374  *
3375  * Last step is to implement target specific function that copies registers
3376  * from given cpu into just specified register set.  Prototype is:
3377  *
3378  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3379  *                                const CPUArchState *env);
3380  *
3381  * Parameters:
3382  *     regs - copy register values into here (allocated and zeroed by caller)
3383  *     env - copy registers from here
3384  *
3385  * Example for ARM target is provided in this file.
3386  */
3387 
3388 /* An ELF note in memory */
3389 struct memelfnote {
3390     const char *name;
3391     size_t     namesz;
3392     size_t     namesz_rounded;
3393     int        type;
3394     size_t     datasz;
3395     size_t     datasz_rounded;
3396     void       *data;
3397     size_t     notesz;
3398 };
3399 
3400 struct target_elf_siginfo {
3401     abi_int    si_signo; /* signal number */
3402     abi_int    si_code;  /* extra code */
3403     abi_int    si_errno; /* errno */
3404 };
3405 
3406 struct target_elf_prstatus {
3407     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3408     abi_short          pr_cursig;    /* Current signal */
3409     abi_ulong          pr_sigpend;   /* XXX */
3410     abi_ulong          pr_sighold;   /* XXX */
3411     target_pid_t       pr_pid;
3412     target_pid_t       pr_ppid;
3413     target_pid_t       pr_pgrp;
3414     target_pid_t       pr_sid;
3415     struct target_timeval pr_utime;  /* XXX User time */
3416     struct target_timeval pr_stime;  /* XXX System time */
3417     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3418     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3419     target_elf_gregset_t      pr_reg;       /* GP registers */
3420     abi_int            pr_fpvalid;   /* XXX */
3421 };
3422 
3423 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3424 
3425 struct target_elf_prpsinfo {
3426     char         pr_state;       /* numeric process state */
3427     char         pr_sname;       /* char for pr_state */
3428     char         pr_zomb;        /* zombie */
3429     char         pr_nice;        /* nice val */
3430     abi_ulong    pr_flag;        /* flags */
3431     target_uid_t pr_uid;
3432     target_gid_t pr_gid;
3433     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3434     /* Lots missing */
3435     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3436     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3437 };
3438 
3439 /* Here is the structure in which status of each thread is captured. */
3440 struct elf_thread_status {
3441     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3442     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3443 #if 0
3444     elf_fpregset_t fpu;             /* NT_PRFPREG */
3445     struct task_struct *thread;
3446     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3447 #endif
3448     struct memelfnote notes[1];
3449     int num_notes;
3450 };
3451 
3452 struct elf_note_info {
3453     struct memelfnote   *notes;
3454     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3455     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3456 
3457     QTAILQ_HEAD(, elf_thread_status) thread_list;
3458 #if 0
3459     /*
3460      * Current version of ELF coredump doesn't support
3461      * dumping fp regs etc.
3462      */
3463     elf_fpregset_t *fpu;
3464     elf_fpxregset_t *xfpu;
3465     int thread_status_size;
3466 #endif
3467     int notes_size;
3468     int numnote;
3469 };
3470 
3471 struct vm_area_struct {
3472     target_ulong   vma_start;  /* start vaddr of memory region */
3473     target_ulong   vma_end;    /* end vaddr of memory region */
3474     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3475     QTAILQ_ENTRY(vm_area_struct) vma_link;
3476 };
3477 
3478 struct mm_struct {
3479     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3480     int mm_count;           /* number of mappings */
3481 };
3482 
3483 static struct mm_struct *vma_init(void);
3484 static void vma_delete(struct mm_struct *);
3485 static int vma_add_mapping(struct mm_struct *, target_ulong,
3486                            target_ulong, abi_ulong);
3487 static int vma_get_mapping_count(const struct mm_struct *);
3488 static struct vm_area_struct *vma_first(const struct mm_struct *);
3489 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3490 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3491 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3492                       unsigned long flags);
3493 
3494 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3495 static void fill_note(struct memelfnote *, const char *, int,
3496                       unsigned int, void *);
3497 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3498 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3499 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3500 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3501 static size_t note_size(const struct memelfnote *);
3502 static void free_note_info(struct elf_note_info *);
3503 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3504 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3505 
3506 static int dump_write(int, const void *, size_t);
3507 static int write_note(struct memelfnote *, int);
3508 static int write_note_info(struct elf_note_info *, int);
3509 
3510 #ifdef BSWAP_NEEDED
3511 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3512 {
3513     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3514     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3515     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3516     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3517     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3518     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3519     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3520     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3521     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3522     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3523     /* cpu times are not filled, so we skip them */
3524     /* regs should be in correct format already */
3525     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3526 }
3527 
3528 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3529 {
3530     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3531     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3532     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3533     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3534     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3535     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3536     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3537 }
3538 
3539 static void bswap_note(struct elf_note *en)
3540 {
3541     bswap32s(&en->n_namesz);
3542     bswap32s(&en->n_descsz);
3543     bswap32s(&en->n_type);
3544 }
3545 #else
3546 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3547 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3548 static inline void bswap_note(struct elf_note *en) { }
3549 #endif /* BSWAP_NEEDED */
3550 
3551 /*
3552  * Minimal support for linux memory regions.  These are needed
3553  * when we are finding out what memory exactly belongs to
3554  * emulated process.  No locks needed here, as long as
3555  * thread that received the signal is stopped.
3556  */
3557 
3558 static struct mm_struct *vma_init(void)
3559 {
3560     struct mm_struct *mm;
3561 
3562     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3563         return (NULL);
3564 
3565     mm->mm_count = 0;
3566     QTAILQ_INIT(&mm->mm_mmap);
3567 
3568     return (mm);
3569 }
3570 
3571 static void vma_delete(struct mm_struct *mm)
3572 {
3573     struct vm_area_struct *vma;
3574 
3575     while ((vma = vma_first(mm)) != NULL) {
3576         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3577         g_free(vma);
3578     }
3579     g_free(mm);
3580 }
3581 
3582 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3583                            target_ulong end, abi_ulong flags)
3584 {
3585     struct vm_area_struct *vma;
3586 
3587     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3588         return (-1);
3589 
3590     vma->vma_start = start;
3591     vma->vma_end = end;
3592     vma->vma_flags = flags;
3593 
3594     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3595     mm->mm_count++;
3596 
3597     return (0);
3598 }
3599 
3600 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3601 {
3602     return (QTAILQ_FIRST(&mm->mm_mmap));
3603 }
3604 
3605 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3606 {
3607     return (QTAILQ_NEXT(vma, vma_link));
3608 }
3609 
3610 static int vma_get_mapping_count(const struct mm_struct *mm)
3611 {
3612     return (mm->mm_count);
3613 }
3614 
3615 /*
3616  * Calculate file (dump) size of given memory region.
3617  */
3618 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3619 {
3620     /* if we cannot even read the first page, skip it */
3621     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3622         return (0);
3623 
3624     /*
3625      * Usually we don't dump executable pages as they contain
3626      * non-writable code that debugger can read directly from
3627      * target library etc.  However, thread stacks are marked
3628      * also executable so we read in first page of given region
3629      * and check whether it contains elf header.  If there is
3630      * no elf header, we dump it.
3631      */
3632     if (vma->vma_flags & PROT_EXEC) {
3633         char page[TARGET_PAGE_SIZE];
3634 
3635         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3636             return 0;
3637         }
3638         if ((page[EI_MAG0] == ELFMAG0) &&
3639             (page[EI_MAG1] == ELFMAG1) &&
3640             (page[EI_MAG2] == ELFMAG2) &&
3641             (page[EI_MAG3] == ELFMAG3)) {
3642             /*
3643              * Mappings are possibly from ELF binary.  Don't dump
3644              * them.
3645              */
3646             return (0);
3647         }
3648     }
3649 
3650     return (vma->vma_end - vma->vma_start);
3651 }
3652 
3653 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3654                       unsigned long flags)
3655 {
3656     struct mm_struct *mm = (struct mm_struct *)priv;
3657 
3658     vma_add_mapping(mm, start, end, flags);
3659     return (0);
3660 }
3661 
3662 static void fill_note(struct memelfnote *note, const char *name, int type,
3663                       unsigned int sz, void *data)
3664 {
3665     unsigned int namesz;
3666 
3667     namesz = strlen(name) + 1;
3668     note->name = name;
3669     note->namesz = namesz;
3670     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3671     note->type = type;
3672     note->datasz = sz;
3673     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3674 
3675     note->data = data;
3676 
3677     /*
3678      * We calculate rounded up note size here as specified by
3679      * ELF document.
3680      */
3681     note->notesz = sizeof (struct elf_note) +
3682         note->namesz_rounded + note->datasz_rounded;
3683 }
3684 
3685 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3686                             uint32_t flags)
3687 {
3688     (void) memset(elf, 0, sizeof(*elf));
3689 
3690     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3691     elf->e_ident[EI_CLASS] = ELF_CLASS;
3692     elf->e_ident[EI_DATA] = ELF_DATA;
3693     elf->e_ident[EI_VERSION] = EV_CURRENT;
3694     elf->e_ident[EI_OSABI] = ELF_OSABI;
3695 
3696     elf->e_type = ET_CORE;
3697     elf->e_machine = machine;
3698     elf->e_version = EV_CURRENT;
3699     elf->e_phoff = sizeof(struct elfhdr);
3700     elf->e_flags = flags;
3701     elf->e_ehsize = sizeof(struct elfhdr);
3702     elf->e_phentsize = sizeof(struct elf_phdr);
3703     elf->e_phnum = segs;
3704 
3705     bswap_ehdr(elf);
3706 }
3707 
3708 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3709 {
3710     phdr->p_type = PT_NOTE;
3711     phdr->p_offset = offset;
3712     phdr->p_vaddr = 0;
3713     phdr->p_paddr = 0;
3714     phdr->p_filesz = sz;
3715     phdr->p_memsz = 0;
3716     phdr->p_flags = 0;
3717     phdr->p_align = 0;
3718 
3719     bswap_phdr(phdr, 1);
3720 }
3721 
3722 static size_t note_size(const struct memelfnote *note)
3723 {
3724     return (note->notesz);
3725 }
3726 
3727 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3728                           const TaskState *ts, int signr)
3729 {
3730     (void) memset(prstatus, 0, sizeof (*prstatus));
3731     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3732     prstatus->pr_pid = ts->ts_tid;
3733     prstatus->pr_ppid = getppid();
3734     prstatus->pr_pgrp = getpgrp();
3735     prstatus->pr_sid = getsid(0);
3736 
3737     bswap_prstatus(prstatus);
3738 }
3739 
3740 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3741 {
3742     char *base_filename;
3743     unsigned int i, len;
3744 
3745     (void) memset(psinfo, 0, sizeof (*psinfo));
3746 
3747     len = ts->info->env_strings - ts->info->arg_strings;
3748     if (len >= ELF_PRARGSZ)
3749         len = ELF_PRARGSZ - 1;
3750     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3751         return -EFAULT;
3752     }
3753     for (i = 0; i < len; i++)
3754         if (psinfo->pr_psargs[i] == 0)
3755             psinfo->pr_psargs[i] = ' ';
3756     psinfo->pr_psargs[len] = 0;
3757 
3758     psinfo->pr_pid = getpid();
3759     psinfo->pr_ppid = getppid();
3760     psinfo->pr_pgrp = getpgrp();
3761     psinfo->pr_sid = getsid(0);
3762     psinfo->pr_uid = getuid();
3763     psinfo->pr_gid = getgid();
3764 
3765     base_filename = g_path_get_basename(ts->bprm->filename);
3766     /*
3767      * Using strncpy here is fine: at max-length,
3768      * this field is not NUL-terminated.
3769      */
3770     (void) strncpy(psinfo->pr_fname, base_filename,
3771                    sizeof(psinfo->pr_fname));
3772 
3773     g_free(base_filename);
3774     bswap_psinfo(psinfo);
3775     return (0);
3776 }
3777 
3778 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3779 {
3780     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3781     elf_addr_t orig_auxv = auxv;
3782     void *ptr;
3783     int len = ts->info->auxv_len;
3784 
3785     /*
3786      * Auxiliary vector is stored in target process stack.  It contains
3787      * {type, value} pairs that we need to dump into note.  This is not
3788      * strictly necessary but we do it here for sake of completeness.
3789      */
3790 
3791     /* read in whole auxv vector and copy it to memelfnote */
3792     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3793     if (ptr != NULL) {
3794         fill_note(note, "CORE", NT_AUXV, len, ptr);
3795         unlock_user(ptr, auxv, len);
3796     }
3797 }
3798 
3799 /*
3800  * Constructs name of coredump file.  We have following convention
3801  * for the name:
3802  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3803  *
3804  * Returns the filename
3805  */
3806 static char *core_dump_filename(const TaskState *ts)
3807 {
3808     g_autoptr(GDateTime) now = g_date_time_new_now_local();
3809     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3810     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3811 
3812     return g_strdup_printf("qemu_%s_%s_%d.core",
3813                            base_filename, nowstr, (int)getpid());
3814 }
3815 
3816 static int dump_write(int fd, const void *ptr, size_t size)
3817 {
3818     const char *bufp = (const char *)ptr;
3819     ssize_t bytes_written, bytes_left;
3820     struct rlimit dumpsize;
3821     off_t pos;
3822 
3823     bytes_written = 0;
3824     getrlimit(RLIMIT_CORE, &dumpsize);
3825     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3826         if (errno == ESPIPE) { /* not a seekable stream */
3827             bytes_left = size;
3828         } else {
3829             return pos;
3830         }
3831     } else {
3832         if (dumpsize.rlim_cur <= pos) {
3833             return -1;
3834         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3835             bytes_left = size;
3836         } else {
3837             size_t limit_left=dumpsize.rlim_cur - pos;
3838             bytes_left = limit_left >= size ? size : limit_left ;
3839         }
3840     }
3841 
3842     /*
3843      * In normal conditions, single write(2) should do but
3844      * in case of socket etc. this mechanism is more portable.
3845      */
3846     do {
3847         bytes_written = write(fd, bufp, bytes_left);
3848         if (bytes_written < 0) {
3849             if (errno == EINTR)
3850                 continue;
3851             return (-1);
3852         } else if (bytes_written == 0) { /* eof */
3853             return (-1);
3854         }
3855         bufp += bytes_written;
3856         bytes_left -= bytes_written;
3857     } while (bytes_left > 0);
3858 
3859     return (0);
3860 }
3861 
3862 static int write_note(struct memelfnote *men, int fd)
3863 {
3864     struct elf_note en;
3865 
3866     en.n_namesz = men->namesz;
3867     en.n_type = men->type;
3868     en.n_descsz = men->datasz;
3869 
3870     bswap_note(&en);
3871 
3872     if (dump_write(fd, &en, sizeof(en)) != 0)
3873         return (-1);
3874     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3875         return (-1);
3876     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3877         return (-1);
3878 
3879     return (0);
3880 }
3881 
3882 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3883 {
3884     CPUState *cpu = env_cpu((CPUArchState *)env);
3885     TaskState *ts = (TaskState *)cpu->opaque;
3886     struct elf_thread_status *ets;
3887 
3888     ets = g_malloc0(sizeof (*ets));
3889     ets->num_notes = 1; /* only prstatus is dumped */
3890     fill_prstatus(&ets->prstatus, ts, 0);
3891     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3892     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3893               &ets->prstatus);
3894 
3895     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3896 
3897     info->notes_size += note_size(&ets->notes[0]);
3898 }
3899 
3900 static void init_note_info(struct elf_note_info *info)
3901 {
3902     /* Initialize the elf_note_info structure so that it is at
3903      * least safe to call free_note_info() on it. Must be
3904      * called before calling fill_note_info().
3905      */
3906     memset(info, 0, sizeof (*info));
3907     QTAILQ_INIT(&info->thread_list);
3908 }
3909 
3910 static int fill_note_info(struct elf_note_info *info,
3911                           long signr, const CPUArchState *env)
3912 {
3913 #define NUMNOTES 3
3914     CPUState *cpu = env_cpu((CPUArchState *)env);
3915     TaskState *ts = (TaskState *)cpu->opaque;
3916     int i;
3917 
3918     info->notes = g_new0(struct memelfnote, NUMNOTES);
3919     if (info->notes == NULL)
3920         return (-ENOMEM);
3921     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3922     if (info->prstatus == NULL)
3923         return (-ENOMEM);
3924     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3925     if (info->prstatus == NULL)
3926         return (-ENOMEM);
3927 
3928     /*
3929      * First fill in status (and registers) of current thread
3930      * including process info & aux vector.
3931      */
3932     fill_prstatus(info->prstatus, ts, signr);
3933     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3934     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3935               sizeof (*info->prstatus), info->prstatus);
3936     fill_psinfo(info->psinfo, ts);
3937     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3938               sizeof (*info->psinfo), info->psinfo);
3939     fill_auxv_note(&info->notes[2], ts);
3940     info->numnote = 3;
3941 
3942     info->notes_size = 0;
3943     for (i = 0; i < info->numnote; i++)
3944         info->notes_size += note_size(&info->notes[i]);
3945 
3946     /* read and fill status of all threads */
3947     cpu_list_lock();
3948     CPU_FOREACH(cpu) {
3949         if (cpu == thread_cpu) {
3950             continue;
3951         }
3952         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3953     }
3954     cpu_list_unlock();
3955 
3956     return (0);
3957 }
3958 
3959 static void free_note_info(struct elf_note_info *info)
3960 {
3961     struct elf_thread_status *ets;
3962 
3963     while (!QTAILQ_EMPTY(&info->thread_list)) {
3964         ets = QTAILQ_FIRST(&info->thread_list);
3965         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3966         g_free(ets);
3967     }
3968 
3969     g_free(info->prstatus);
3970     g_free(info->psinfo);
3971     g_free(info->notes);
3972 }
3973 
3974 static int write_note_info(struct elf_note_info *info, int fd)
3975 {
3976     struct elf_thread_status *ets;
3977     int i, error = 0;
3978 
3979     /* write prstatus, psinfo and auxv for current thread */
3980     for (i = 0; i < info->numnote; i++)
3981         if ((error = write_note(&info->notes[i], fd)) != 0)
3982             return (error);
3983 
3984     /* write prstatus for each thread */
3985     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3986         if ((error = write_note(&ets->notes[0], fd)) != 0)
3987             return (error);
3988     }
3989 
3990     return (0);
3991 }
3992 
3993 /*
3994  * Write out ELF coredump.
3995  *
3996  * See documentation of ELF object file format in:
3997  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3998  *
3999  * Coredump format in linux is following:
4000  *
4001  * 0   +----------------------+         \
4002  *     | ELF header           | ET_CORE  |
4003  *     +----------------------+          |
4004  *     | ELF program headers  |          |--- headers
4005  *     | - NOTE section       |          |
4006  *     | - PT_LOAD sections   |          |
4007  *     +----------------------+         /
4008  *     | NOTEs:               |
4009  *     | - NT_PRSTATUS        |
4010  *     | - NT_PRSINFO         |
4011  *     | - NT_AUXV            |
4012  *     +----------------------+ <-- aligned to target page
4013  *     | Process memory dump  |
4014  *     :                      :
4015  *     .                      .
4016  *     :                      :
4017  *     |                      |
4018  *     +----------------------+
4019  *
4020  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4021  * NT_PRSINFO  -> struct elf_prpsinfo
4022  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4023  *
4024  * Format follows System V format as close as possible.  Current
4025  * version limitations are as follows:
4026  *     - no floating point registers are dumped
4027  *
4028  * Function returns 0 in case of success, negative errno otherwise.
4029  *
4030  * TODO: make this work also during runtime: it should be
4031  * possible to force coredump from running process and then
4032  * continue processing.  For example qemu could set up SIGUSR2
4033  * handler (provided that target process haven't registered
4034  * handler for that) that does the dump when signal is received.
4035  */
4036 static int elf_core_dump(int signr, const CPUArchState *env)
4037 {
4038     const CPUState *cpu = env_cpu((CPUArchState *)env);
4039     const TaskState *ts = (const TaskState *)cpu->opaque;
4040     struct vm_area_struct *vma = NULL;
4041     g_autofree char *corefile = NULL;
4042     struct elf_note_info info;
4043     struct elfhdr elf;
4044     struct elf_phdr phdr;
4045     struct rlimit dumpsize;
4046     struct mm_struct *mm = NULL;
4047     off_t offset = 0, data_offset = 0;
4048     int segs = 0;
4049     int fd = -1;
4050 
4051     init_note_info(&info);
4052 
4053     errno = 0;
4054     getrlimit(RLIMIT_CORE, &dumpsize);
4055     if (dumpsize.rlim_cur == 0)
4056         return 0;
4057 
4058     corefile = core_dump_filename(ts);
4059 
4060     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4061                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4062         return (-errno);
4063 
4064     /*
4065      * Walk through target process memory mappings and
4066      * set up structure containing this information.  After
4067      * this point vma_xxx functions can be used.
4068      */
4069     if ((mm = vma_init()) == NULL)
4070         goto out;
4071 
4072     walk_memory_regions(mm, vma_walker);
4073     segs = vma_get_mapping_count(mm);
4074 
4075     /*
4076      * Construct valid coredump ELF header.  We also
4077      * add one more segment for notes.
4078      */
4079     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4080     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4081         goto out;
4082 
4083     /* fill in the in-memory version of notes */
4084     if (fill_note_info(&info, signr, env) < 0)
4085         goto out;
4086 
4087     offset += sizeof (elf);                             /* elf header */
4088     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4089 
4090     /* write out notes program header */
4091     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4092 
4093     offset += info.notes_size;
4094     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4095         goto out;
4096 
4097     /*
4098      * ELF specification wants data to start at page boundary so
4099      * we align it here.
4100      */
4101     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4102 
4103     /*
4104      * Write program headers for memory regions mapped in
4105      * the target process.
4106      */
4107     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4108         (void) memset(&phdr, 0, sizeof (phdr));
4109 
4110         phdr.p_type = PT_LOAD;
4111         phdr.p_offset = offset;
4112         phdr.p_vaddr = vma->vma_start;
4113         phdr.p_paddr = 0;
4114         phdr.p_filesz = vma_dump_size(vma);
4115         offset += phdr.p_filesz;
4116         phdr.p_memsz = vma->vma_end - vma->vma_start;
4117         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4118         if (vma->vma_flags & PROT_WRITE)
4119             phdr.p_flags |= PF_W;
4120         if (vma->vma_flags & PROT_EXEC)
4121             phdr.p_flags |= PF_X;
4122         phdr.p_align = ELF_EXEC_PAGESIZE;
4123 
4124         bswap_phdr(&phdr, 1);
4125         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4126             goto out;
4127         }
4128     }
4129 
4130     /*
4131      * Next we write notes just after program headers.  No
4132      * alignment needed here.
4133      */
4134     if (write_note_info(&info, fd) < 0)
4135         goto out;
4136 
4137     /* align data to page boundary */
4138     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4139         goto out;
4140 
4141     /*
4142      * Finally we can dump process memory into corefile as well.
4143      */
4144     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4145         abi_ulong addr;
4146         abi_ulong end;
4147 
4148         end = vma->vma_start + vma_dump_size(vma);
4149 
4150         for (addr = vma->vma_start; addr < end;
4151              addr += TARGET_PAGE_SIZE) {
4152             char page[TARGET_PAGE_SIZE];
4153             int error;
4154 
4155             /*
4156              *  Read in page from target process memory and
4157              *  write it to coredump file.
4158              */
4159             error = copy_from_user(page, addr, sizeof (page));
4160             if (error != 0) {
4161                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4162                                addr);
4163                 errno = -error;
4164                 goto out;
4165             }
4166             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4167                 goto out;
4168         }
4169     }
4170 
4171  out:
4172     free_note_info(&info);
4173     if (mm != NULL)
4174         vma_delete(mm);
4175     (void) close(fd);
4176 
4177     if (errno != 0)
4178         return (-errno);
4179     return (0);
4180 }
4181 #endif /* USE_ELF_CORE_DUMP */
4182 
4183 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4184 {
4185     init_thread(regs, infop);
4186 }
4187