xref: /openbmc/qemu/linux-user/elfload.c (revision 0e1d0245)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4 
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15 
16 #include "qemu.h"
17 #include "disas/disas.h"
18 
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_HWCAP2
24 #undef ELF_CLASS
25 #undef ELF_DATA
26 #undef ELF_ARCH
27 #endif
28 
29 #define ELF_OSABI   ELFOSABI_SYSV
30 
31 /* from personality.h */
32 
33 /*
34  * Flags for bug emulation.
35  *
36  * These occupy the top three bytes.
37  */
38 enum {
39     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
40     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
41                                            descriptors (signal handling) */
42     MMAP_PAGE_ZERO =    0x0100000,
43     ADDR_COMPAT_LAYOUT = 0x0200000,
44     READ_IMPLIES_EXEC = 0x0400000,
45     ADDR_LIMIT_32BIT =  0x0800000,
46     SHORT_INODE =       0x1000000,
47     WHOLE_SECONDS =     0x2000000,
48     STICKY_TIMEOUTS =   0x4000000,
49     ADDR_LIMIT_3GB =    0x8000000,
50 };
51 
52 /*
53  * Personality types.
54  *
55  * These go in the low byte.  Avoid using the top bit, it will
56  * conflict with error returns.
57  */
58 enum {
59     PER_LINUX =         0x0000,
60     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
61     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
62     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
68     PER_BSD =           0x0006,
69     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
70     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_LINUX32 =       0x0008,
72     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
73     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76     PER_RISCOS =        0x000c,
77     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
78     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
80     PER_HPUX =          0x0010,
81     PER_MASK =          0x00ff,
82 };
83 
84 /*
85  * Return the base personality without flags.
86  */
87 #define personality(pers)       (pers & PER_MASK)
88 
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93 
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98 
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA        ELFDATA2MSB
101 #else
102 #define ELF_DATA        ELFDATA2LSB
103 #endif
104 
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong      target_elf_greg_t;
107 #define tswapreg(ptr)   tswap64(ptr)
108 #else
109 typedef abi_ulong       target_elf_greg_t;
110 #define tswapreg(ptr)   tswapal(ptr)
111 #endif
112 
113 #ifdef USE_UID16
114 typedef abi_ushort      target_uid_t;
115 typedef abi_ushort      target_gid_t;
116 #else
117 typedef abi_uint        target_uid_t;
118 typedef abi_uint        target_gid_t;
119 #endif
120 typedef abi_int         target_pid_t;
121 
122 #ifdef TARGET_I386
123 
124 #define ELF_PLATFORM get_elf_platform()
125 
126 static const char *get_elf_platform(void)
127 {
128     static char elf_platform[] = "i386";
129     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130     if (family > 6)
131         family = 6;
132     if (family >= 3)
133         elf_platform[1] = '0' + family;
134     return elf_platform;
135 }
136 
137 #define ELF_HWCAP get_elf_hwcap()
138 
139 static uint32_t get_elf_hwcap(void)
140 {
141     X86CPU *cpu = X86_CPU(thread_cpu);
142 
143     return cpu->env.features[FEAT_1_EDX];
144 }
145 
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 
149 #define ELF_CLASS      ELFCLASS64
150 #define ELF_ARCH       EM_X86_64
151 
152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153 {
154     regs->rax = 0;
155     regs->rsp = infop->start_stack;
156     regs->rip = infop->entry;
157 }
158 
159 #define ELF_NREG    27
160 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
161 
162 /*
163  * Note that ELF_NREG should be 29 as there should be place for
164  * TRAPNO and ERR "registers" as well but linux doesn't dump
165  * those.
166  *
167  * See linux kernel: arch/x86/include/asm/elf.h
168  */
169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
170 {
171     (*regs)[0] = env->regs[15];
172     (*regs)[1] = env->regs[14];
173     (*regs)[2] = env->regs[13];
174     (*regs)[3] = env->regs[12];
175     (*regs)[4] = env->regs[R_EBP];
176     (*regs)[5] = env->regs[R_EBX];
177     (*regs)[6] = env->regs[11];
178     (*regs)[7] = env->regs[10];
179     (*regs)[8] = env->regs[9];
180     (*regs)[9] = env->regs[8];
181     (*regs)[10] = env->regs[R_EAX];
182     (*regs)[11] = env->regs[R_ECX];
183     (*regs)[12] = env->regs[R_EDX];
184     (*regs)[13] = env->regs[R_ESI];
185     (*regs)[14] = env->regs[R_EDI];
186     (*regs)[15] = env->regs[R_EAX]; /* XXX */
187     (*regs)[16] = env->eip;
188     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
189     (*regs)[18] = env->eflags;
190     (*regs)[19] = env->regs[R_ESP];
191     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
192     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
193     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
194     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
195     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
196     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
198 }
199 
200 #else
201 
202 #define ELF_START_MMAP 0x80000000
203 
204 /*
205  * This is used to ensure we don't load something for the wrong architecture.
206  */
207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
208 
209 /*
210  * These are used to set parameters in the core dumps.
211  */
212 #define ELF_CLASS       ELFCLASS32
213 #define ELF_ARCH        EM_386
214 
215 static inline void init_thread(struct target_pt_regs *regs,
216                                struct image_info *infop)
217 {
218     regs->esp = infop->start_stack;
219     regs->eip = infop->entry;
220 
221     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
222        starts %edx contains a pointer to a function which might be
223        registered using `atexit'.  This provides a mean for the
224        dynamic linker to call DT_FINI functions for shared libraries
225        that have been loaded before the code runs.
226 
227        A value of 0 tells we have no such handler.  */
228     regs->edx = 0;
229 }
230 
231 #define ELF_NREG    17
232 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
233 
234 /*
235  * Note that ELF_NREG should be 19 as there should be place for
236  * TRAPNO and ERR "registers" as well but linux doesn't dump
237  * those.
238  *
239  * See linux kernel: arch/x86/include/asm/elf.h
240  */
241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
242 {
243     (*regs)[0] = env->regs[R_EBX];
244     (*regs)[1] = env->regs[R_ECX];
245     (*regs)[2] = env->regs[R_EDX];
246     (*regs)[3] = env->regs[R_ESI];
247     (*regs)[4] = env->regs[R_EDI];
248     (*regs)[5] = env->regs[R_EBP];
249     (*regs)[6] = env->regs[R_EAX];
250     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
251     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
252     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
253     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
254     (*regs)[11] = env->regs[R_EAX]; /* XXX */
255     (*regs)[12] = env->eip;
256     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
257     (*regs)[14] = env->eflags;
258     (*regs)[15] = env->regs[R_ESP];
259     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
260 }
261 #endif
262 
263 #define USE_ELF_CORE_DUMP
264 #define ELF_EXEC_PAGESIZE       4096
265 
266 #endif
267 
268 #ifdef TARGET_ARM
269 
270 #ifndef TARGET_AARCH64
271 /* 32 bit ARM definitions */
272 
273 #define ELF_START_MMAP 0x80000000
274 
275 #define ELF_ARCH        EM_ARM
276 #define ELF_CLASS       ELFCLASS32
277 
278 static inline void init_thread(struct target_pt_regs *regs,
279                                struct image_info *infop)
280 {
281     abi_long stack = infop->start_stack;
282     memset(regs, 0, sizeof(*regs));
283 
284     regs->ARM_cpsr = 0x10;
285     if (infop->entry & 1)
286         regs->ARM_cpsr |= CPSR_T;
287     regs->ARM_pc = infop->entry & 0xfffffffe;
288     regs->ARM_sp = infop->start_stack;
289     /* FIXME - what to for failure of get_user()? */
290     get_user_ual(regs->ARM_r2, stack + 8); /* envp */
291     get_user_ual(regs->ARM_r1, stack + 4); /* envp */
292     /* XXX: it seems that r0 is zeroed after ! */
293     regs->ARM_r0 = 0;
294     /* For uClinux PIC binaries.  */
295     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
296     regs->ARM_r10 = infop->start_data;
297 }
298 
299 #define ELF_NREG    18
300 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
301 
302 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
303 {
304     (*regs)[0] = tswapreg(env->regs[0]);
305     (*regs)[1] = tswapreg(env->regs[1]);
306     (*regs)[2] = tswapreg(env->regs[2]);
307     (*regs)[3] = tswapreg(env->regs[3]);
308     (*regs)[4] = tswapreg(env->regs[4]);
309     (*regs)[5] = tswapreg(env->regs[5]);
310     (*regs)[6] = tswapreg(env->regs[6]);
311     (*regs)[7] = tswapreg(env->regs[7]);
312     (*regs)[8] = tswapreg(env->regs[8]);
313     (*regs)[9] = tswapreg(env->regs[9]);
314     (*regs)[10] = tswapreg(env->regs[10]);
315     (*regs)[11] = tswapreg(env->regs[11]);
316     (*regs)[12] = tswapreg(env->regs[12]);
317     (*regs)[13] = tswapreg(env->regs[13]);
318     (*regs)[14] = tswapreg(env->regs[14]);
319     (*regs)[15] = tswapreg(env->regs[15]);
320 
321     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
322     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
323 }
324 
325 #define USE_ELF_CORE_DUMP
326 #define ELF_EXEC_PAGESIZE       4096
327 
328 enum
329 {
330     ARM_HWCAP_ARM_SWP       = 1 << 0,
331     ARM_HWCAP_ARM_HALF      = 1 << 1,
332     ARM_HWCAP_ARM_THUMB     = 1 << 2,
333     ARM_HWCAP_ARM_26BIT     = 1 << 3,
334     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
335     ARM_HWCAP_ARM_FPA       = 1 << 5,
336     ARM_HWCAP_ARM_VFP       = 1 << 6,
337     ARM_HWCAP_ARM_EDSP      = 1 << 7,
338     ARM_HWCAP_ARM_JAVA      = 1 << 8,
339     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
340     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
341     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
342     ARM_HWCAP_ARM_NEON      = 1 << 12,
343     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
344     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
345     ARM_HWCAP_ARM_TLS       = 1 << 15,
346     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
347     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
348     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
349     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
350     ARM_HWCAP_ARM_LPAE      = 1 << 20,
351     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
352 };
353 
354 enum {
355     ARM_HWCAP2_ARM_AES      = 1 << 0,
356     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
357     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
358     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
359     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
360 };
361 
362 /* The commpage only exists for 32 bit kernels */
363 
364 #define TARGET_HAS_VALIDATE_GUEST_SPACE
365 /* Return 1 if the proposed guest space is suitable for the guest.
366  * Return 0 if the proposed guest space isn't suitable, but another
367  * address space should be tried.
368  * Return -1 if there is no way the proposed guest space can be
369  * valid regardless of the base.
370  * The guest code may leave a page mapped and populate it if the
371  * address is suitable.
372  */
373 static int validate_guest_space(unsigned long guest_base,
374                                 unsigned long guest_size)
375 {
376     unsigned long real_start, test_page_addr;
377 
378     /* We need to check that we can force a fault on access to the
379      * commpage at 0xffff0fxx
380      */
381     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
382 
383     /* If the commpage lies within the already allocated guest space,
384      * then there is no way we can allocate it.
385      */
386     if (test_page_addr >= guest_base
387         && test_page_addr <= (guest_base + guest_size)) {
388         return -1;
389     }
390 
391     /* Note it needs to be writeable to let us initialise it */
392     real_start = (unsigned long)
393                  mmap((void *)test_page_addr, qemu_host_page_size,
394                      PROT_READ | PROT_WRITE,
395                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
396 
397     /* If we can't map it then try another address */
398     if (real_start == -1ul) {
399         return 0;
400     }
401 
402     if (real_start != test_page_addr) {
403         /* OS didn't put the page where we asked - unmap and reject */
404         munmap((void *)real_start, qemu_host_page_size);
405         return 0;
406     }
407 
408     /* Leave the page mapped
409      * Populate it (mmap should have left it all 0'd)
410      */
411 
412     /* Kernel helper versions */
413     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
414 
415     /* Now it's populated make it RO */
416     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
417         perror("Protecting guest commpage");
418         exit(-1);
419     }
420 
421     return 1; /* All good */
422 }
423 
424 #define ELF_HWCAP get_elf_hwcap()
425 #define ELF_HWCAP2 get_elf_hwcap2()
426 
427 static uint32_t get_elf_hwcap(void)
428 {
429     ARMCPU *cpu = ARM_CPU(thread_cpu);
430     uint32_t hwcaps = 0;
431 
432     hwcaps |= ARM_HWCAP_ARM_SWP;
433     hwcaps |= ARM_HWCAP_ARM_HALF;
434     hwcaps |= ARM_HWCAP_ARM_THUMB;
435     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
436 
437     /* probe for the extra features */
438 #define GET_FEATURE(feat, hwcap) \
439     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
440     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
441     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
442     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
443     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
444     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
445     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
446     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
447     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
448     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
449     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
450     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
451     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
452      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
453      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
454      * to our VFP_FP16 feature bit.
455      */
456     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
457     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
458 
459     return hwcaps;
460 }
461 
462 static uint32_t get_elf_hwcap2(void)
463 {
464     ARMCPU *cpu = ARM_CPU(thread_cpu);
465     uint32_t hwcaps = 0;
466 
467     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
468     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
469     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
470     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
471     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
472     return hwcaps;
473 }
474 
475 #undef GET_FEATURE
476 
477 #else
478 /* 64 bit ARM definitions */
479 #define ELF_START_MMAP 0x80000000
480 
481 #define ELF_ARCH        EM_AARCH64
482 #define ELF_CLASS       ELFCLASS64
483 #define ELF_PLATFORM    "aarch64"
484 
485 static inline void init_thread(struct target_pt_regs *regs,
486                                struct image_info *infop)
487 {
488     abi_long stack = infop->start_stack;
489     memset(regs, 0, sizeof(*regs));
490 
491     regs->pc = infop->entry & ~0x3ULL;
492     regs->sp = stack;
493 }
494 
495 #define ELF_NREG    34
496 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
497 
498 static void elf_core_copy_regs(target_elf_gregset_t *regs,
499                                const CPUARMState *env)
500 {
501     int i;
502 
503     for (i = 0; i < 32; i++) {
504         (*regs)[i] = tswapreg(env->xregs[i]);
505     }
506     (*regs)[32] = tswapreg(env->pc);
507     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
508 }
509 
510 #define USE_ELF_CORE_DUMP
511 #define ELF_EXEC_PAGESIZE       4096
512 
513 enum {
514     ARM_HWCAP_A64_FP            = 1 << 0,
515     ARM_HWCAP_A64_ASIMD         = 1 << 1,
516     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
517     ARM_HWCAP_A64_AES           = 1 << 3,
518     ARM_HWCAP_A64_PMULL         = 1 << 4,
519     ARM_HWCAP_A64_SHA1          = 1 << 5,
520     ARM_HWCAP_A64_SHA2          = 1 << 6,
521     ARM_HWCAP_A64_CRC32         = 1 << 7,
522 };
523 
524 #define ELF_HWCAP get_elf_hwcap()
525 
526 static uint32_t get_elf_hwcap(void)
527 {
528     ARMCPU *cpu = ARM_CPU(thread_cpu);
529     uint32_t hwcaps = 0;
530 
531     hwcaps |= ARM_HWCAP_A64_FP;
532     hwcaps |= ARM_HWCAP_A64_ASIMD;
533 
534     /* probe for the extra features */
535 #define GET_FEATURE(feat, hwcap) \
536     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
537     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
538     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
539     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
540     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
541     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
542 #undef GET_FEATURE
543 
544     return hwcaps;
545 }
546 
547 #endif /* not TARGET_AARCH64 */
548 #endif /* TARGET_ARM */
549 
550 #ifdef TARGET_UNICORE32
551 
552 #define ELF_START_MMAP          0x80000000
553 
554 #define ELF_CLASS               ELFCLASS32
555 #define ELF_DATA                ELFDATA2LSB
556 #define ELF_ARCH                EM_UNICORE32
557 
558 static inline void init_thread(struct target_pt_regs *regs,
559         struct image_info *infop)
560 {
561     abi_long stack = infop->start_stack;
562     memset(regs, 0, sizeof(*regs));
563     regs->UC32_REG_asr = 0x10;
564     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
565     regs->UC32_REG_sp = infop->start_stack;
566     /* FIXME - what to for failure of get_user()? */
567     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
568     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
569     /* XXX: it seems that r0 is zeroed after ! */
570     regs->UC32_REG_00 = 0;
571 }
572 
573 #define ELF_NREG    34
574 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
575 
576 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
577 {
578     (*regs)[0] = env->regs[0];
579     (*regs)[1] = env->regs[1];
580     (*regs)[2] = env->regs[2];
581     (*regs)[3] = env->regs[3];
582     (*regs)[4] = env->regs[4];
583     (*regs)[5] = env->regs[5];
584     (*regs)[6] = env->regs[6];
585     (*regs)[7] = env->regs[7];
586     (*regs)[8] = env->regs[8];
587     (*regs)[9] = env->regs[9];
588     (*regs)[10] = env->regs[10];
589     (*regs)[11] = env->regs[11];
590     (*regs)[12] = env->regs[12];
591     (*regs)[13] = env->regs[13];
592     (*regs)[14] = env->regs[14];
593     (*regs)[15] = env->regs[15];
594     (*regs)[16] = env->regs[16];
595     (*regs)[17] = env->regs[17];
596     (*regs)[18] = env->regs[18];
597     (*regs)[19] = env->regs[19];
598     (*regs)[20] = env->regs[20];
599     (*regs)[21] = env->regs[21];
600     (*regs)[22] = env->regs[22];
601     (*regs)[23] = env->regs[23];
602     (*regs)[24] = env->regs[24];
603     (*regs)[25] = env->regs[25];
604     (*regs)[26] = env->regs[26];
605     (*regs)[27] = env->regs[27];
606     (*regs)[28] = env->regs[28];
607     (*regs)[29] = env->regs[29];
608     (*regs)[30] = env->regs[30];
609     (*regs)[31] = env->regs[31];
610 
611     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
612     (*regs)[33] = env->regs[0]; /* XXX */
613 }
614 
615 #define USE_ELF_CORE_DUMP
616 #define ELF_EXEC_PAGESIZE               4096
617 
618 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
619 
620 #endif
621 
622 #ifdef TARGET_SPARC
623 #ifdef TARGET_SPARC64
624 
625 #define ELF_START_MMAP 0x80000000
626 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
627                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
628 #ifndef TARGET_ABI32
629 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
630 #else
631 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
632 #endif
633 
634 #define ELF_CLASS   ELFCLASS64
635 #define ELF_ARCH    EM_SPARCV9
636 
637 #define STACK_BIAS              2047
638 
639 static inline void init_thread(struct target_pt_regs *regs,
640                                struct image_info *infop)
641 {
642 #ifndef TARGET_ABI32
643     regs->tstate = 0;
644 #endif
645     regs->pc = infop->entry;
646     regs->npc = regs->pc + 4;
647     regs->y = 0;
648 #ifdef TARGET_ABI32
649     regs->u_regs[14] = infop->start_stack - 16 * 4;
650 #else
651     if (personality(infop->personality) == PER_LINUX32)
652         regs->u_regs[14] = infop->start_stack - 16 * 4;
653     else
654         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
655 #endif
656 }
657 
658 #else
659 #define ELF_START_MMAP 0x80000000
660 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
661                     | HWCAP_SPARC_MULDIV)
662 
663 #define ELF_CLASS   ELFCLASS32
664 #define ELF_ARCH    EM_SPARC
665 
666 static inline void init_thread(struct target_pt_regs *regs,
667                                struct image_info *infop)
668 {
669     regs->psr = 0;
670     regs->pc = infop->entry;
671     regs->npc = regs->pc + 4;
672     regs->y = 0;
673     regs->u_regs[14] = infop->start_stack - 16 * 4;
674 }
675 
676 #endif
677 #endif
678 
679 #ifdef TARGET_PPC
680 
681 #define ELF_MACHINE    PPC_ELF_MACHINE
682 #define ELF_START_MMAP 0x80000000
683 
684 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
685 
686 #define elf_check_arch(x) ( (x) == EM_PPC64 )
687 
688 #define ELF_CLASS       ELFCLASS64
689 
690 #else
691 
692 #define ELF_CLASS       ELFCLASS32
693 
694 #endif
695 
696 #define ELF_ARCH        EM_PPC
697 
698 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
699    See arch/powerpc/include/asm/cputable.h.  */
700 enum {
701     QEMU_PPC_FEATURE_32 = 0x80000000,
702     QEMU_PPC_FEATURE_64 = 0x40000000,
703     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
704     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
705     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
706     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
707     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
708     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
709     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
710     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
711     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
712     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
713     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
714     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
715     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
716     QEMU_PPC_FEATURE_CELL = 0x00010000,
717     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
718     QEMU_PPC_FEATURE_SMT = 0x00004000,
719     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
720     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
721     QEMU_PPC_FEATURE_PA6T = 0x00000800,
722     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
723     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
724     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
725     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
726     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
727 
728     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
729     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
730 
731     /* Feature definitions in AT_HWCAP2.  */
732     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
733     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
734     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
735     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
736     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
737     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
738 };
739 
740 #define ELF_HWCAP get_elf_hwcap()
741 
742 static uint32_t get_elf_hwcap(void)
743 {
744     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
745     uint32_t features = 0;
746 
747     /* We don't have to be terribly complete here; the high points are
748        Altivec/FP/SPE support.  Anything else is just a bonus.  */
749 #define GET_FEATURE(flag, feature)                                      \
750     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
751 #define GET_FEATURE2(flag, feature)                                      \
752     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
753     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
754     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
755     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
756     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
757     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
758     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
759     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
760     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
761     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
762     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
763     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
764                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
765                   QEMU_PPC_FEATURE_ARCH_2_06);
766 #undef GET_FEATURE
767 #undef GET_FEATURE2
768 
769     return features;
770 }
771 
772 #define ELF_HWCAP2 get_elf_hwcap2()
773 
774 static uint32_t get_elf_hwcap2(void)
775 {
776     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
777     uint32_t features = 0;
778 
779 #define GET_FEATURE(flag, feature)                                      \
780     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
781 #define GET_FEATURE2(flag, feature)                                      \
782     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
783 
784     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
785     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
786     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
787                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
788 
789 #undef GET_FEATURE
790 #undef GET_FEATURE2
791 
792     return features;
793 }
794 
795 /*
796  * The requirements here are:
797  * - keep the final alignment of sp (sp & 0xf)
798  * - make sure the 32-bit value at the first 16 byte aligned position of
799  *   AUXV is greater than 16 for glibc compatibility.
800  *   AT_IGNOREPPC is used for that.
801  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
802  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
803  */
804 #define DLINFO_ARCH_ITEMS       5
805 #define ARCH_DLINFO                                     \
806     do {                                                \
807         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
808         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
809         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
810         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
811         /*                                              \
812          * Now handle glibc compatibility.              \
813          */                                             \
814         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
815         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
816     } while (0)
817 
818 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
819 {
820     _regs->gpr[1] = infop->start_stack;
821 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
822     if (get_ppc64_abi(infop) < 2) {
823         uint64_t val;
824         get_user_u64(val, infop->entry + 8);
825         _regs->gpr[2] = val + infop->load_bias;
826         get_user_u64(val, infop->entry);
827         infop->entry = val + infop->load_bias;
828     } else {
829         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
830     }
831 #endif
832     _regs->nip = infop->entry;
833 }
834 
835 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
836 #define ELF_NREG 48
837 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
838 
839 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
840 {
841     int i;
842     target_ulong ccr = 0;
843 
844     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
845         (*regs)[i] = tswapreg(env->gpr[i]);
846     }
847 
848     (*regs)[32] = tswapreg(env->nip);
849     (*regs)[33] = tswapreg(env->msr);
850     (*regs)[35] = tswapreg(env->ctr);
851     (*regs)[36] = tswapreg(env->lr);
852     (*regs)[37] = tswapreg(env->xer);
853 
854     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
855         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
856     }
857     (*regs)[38] = tswapreg(ccr);
858 }
859 
860 #define USE_ELF_CORE_DUMP
861 #define ELF_EXEC_PAGESIZE       4096
862 
863 #endif
864 
865 #ifdef TARGET_MIPS
866 
867 #define ELF_START_MMAP 0x80000000
868 
869 #ifdef TARGET_MIPS64
870 #define ELF_CLASS   ELFCLASS64
871 #else
872 #define ELF_CLASS   ELFCLASS32
873 #endif
874 #define ELF_ARCH    EM_MIPS
875 
876 static inline void init_thread(struct target_pt_regs *regs,
877                                struct image_info *infop)
878 {
879     regs->cp0_status = 2 << CP0St_KSU;
880     regs->cp0_epc = infop->entry;
881     regs->regs[29] = infop->start_stack;
882 }
883 
884 /* See linux kernel: arch/mips/include/asm/elf.h.  */
885 #define ELF_NREG 45
886 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
887 
888 /* See linux kernel: arch/mips/include/asm/reg.h.  */
889 enum {
890 #ifdef TARGET_MIPS64
891     TARGET_EF_R0 = 0,
892 #else
893     TARGET_EF_R0 = 6,
894 #endif
895     TARGET_EF_R26 = TARGET_EF_R0 + 26,
896     TARGET_EF_R27 = TARGET_EF_R0 + 27,
897     TARGET_EF_LO = TARGET_EF_R0 + 32,
898     TARGET_EF_HI = TARGET_EF_R0 + 33,
899     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
900     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
901     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
902     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
903 };
904 
905 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
906 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
907 {
908     int i;
909 
910     for (i = 0; i < TARGET_EF_R0; i++) {
911         (*regs)[i] = 0;
912     }
913     (*regs)[TARGET_EF_R0] = 0;
914 
915     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
916         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
917     }
918 
919     (*regs)[TARGET_EF_R26] = 0;
920     (*regs)[TARGET_EF_R27] = 0;
921     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
922     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
923     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
924     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
925     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
926     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
927 }
928 
929 #define USE_ELF_CORE_DUMP
930 #define ELF_EXEC_PAGESIZE        4096
931 
932 #endif /* TARGET_MIPS */
933 
934 #ifdef TARGET_MICROBLAZE
935 
936 #define ELF_START_MMAP 0x80000000
937 
938 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
939 
940 #define ELF_CLASS   ELFCLASS32
941 #define ELF_ARCH    EM_MICROBLAZE
942 
943 static inline void init_thread(struct target_pt_regs *regs,
944                                struct image_info *infop)
945 {
946     regs->pc = infop->entry;
947     regs->r1 = infop->start_stack;
948 
949 }
950 
951 #define ELF_EXEC_PAGESIZE        4096
952 
953 #define USE_ELF_CORE_DUMP
954 #define ELF_NREG 38
955 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
956 
957 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
958 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
959 {
960     int i, pos = 0;
961 
962     for (i = 0; i < 32; i++) {
963         (*regs)[pos++] = tswapreg(env->regs[i]);
964     }
965 
966     for (i = 0; i < 6; i++) {
967         (*regs)[pos++] = tswapreg(env->sregs[i]);
968     }
969 }
970 
971 #endif /* TARGET_MICROBLAZE */
972 
973 #ifdef TARGET_OPENRISC
974 
975 #define ELF_START_MMAP 0x08000000
976 
977 #define ELF_ARCH EM_OPENRISC
978 #define ELF_CLASS ELFCLASS32
979 #define ELF_DATA  ELFDATA2MSB
980 
981 static inline void init_thread(struct target_pt_regs *regs,
982                                struct image_info *infop)
983 {
984     regs->pc = infop->entry;
985     regs->gpr[1] = infop->start_stack;
986 }
987 
988 #define USE_ELF_CORE_DUMP
989 #define ELF_EXEC_PAGESIZE 8192
990 
991 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
992 #define ELF_NREG 34 /* gprs and pc, sr */
993 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
994 
995 static void elf_core_copy_regs(target_elf_gregset_t *regs,
996                                const CPUOpenRISCState *env)
997 {
998     int i;
999 
1000     for (i = 0; i < 32; i++) {
1001         (*regs)[i] = tswapreg(env->gpr[i]);
1002     }
1003 
1004     (*regs)[32] = tswapreg(env->pc);
1005     (*regs)[33] = tswapreg(env->sr);
1006 }
1007 #define ELF_HWCAP 0
1008 #define ELF_PLATFORM NULL
1009 
1010 #endif /* TARGET_OPENRISC */
1011 
1012 #ifdef TARGET_SH4
1013 
1014 #define ELF_START_MMAP 0x80000000
1015 
1016 #define ELF_CLASS ELFCLASS32
1017 #define ELF_ARCH  EM_SH
1018 
1019 static inline void init_thread(struct target_pt_regs *regs,
1020                                struct image_info *infop)
1021 {
1022     /* Check other registers XXXXX */
1023     regs->pc = infop->entry;
1024     regs->regs[15] = infop->start_stack;
1025 }
1026 
1027 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1028 #define ELF_NREG 23
1029 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1030 
1031 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1032 enum {
1033     TARGET_REG_PC = 16,
1034     TARGET_REG_PR = 17,
1035     TARGET_REG_SR = 18,
1036     TARGET_REG_GBR = 19,
1037     TARGET_REG_MACH = 20,
1038     TARGET_REG_MACL = 21,
1039     TARGET_REG_SYSCALL = 22
1040 };
1041 
1042 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1043                                       const CPUSH4State *env)
1044 {
1045     int i;
1046 
1047     for (i = 0; i < 16; i++) {
1048         (*regs[i]) = tswapreg(env->gregs[i]);
1049     }
1050 
1051     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1052     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1053     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1054     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1055     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1056     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1057     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1058 }
1059 
1060 #define USE_ELF_CORE_DUMP
1061 #define ELF_EXEC_PAGESIZE        4096
1062 
1063 enum {
1064     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1065     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1066     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1067     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1068     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1069     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1070     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1071     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1072     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1073     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1074 };
1075 
1076 #define ELF_HWCAP get_elf_hwcap()
1077 
1078 static uint32_t get_elf_hwcap(void)
1079 {
1080     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1081     uint32_t hwcap = 0;
1082 
1083     hwcap |= SH_CPU_HAS_FPU;
1084 
1085     if (cpu->env.features & SH_FEATURE_SH4A) {
1086         hwcap |= SH_CPU_HAS_LLSC;
1087     }
1088 
1089     return hwcap;
1090 }
1091 
1092 #endif
1093 
1094 #ifdef TARGET_CRIS
1095 
1096 #define ELF_START_MMAP 0x80000000
1097 
1098 #define ELF_CLASS ELFCLASS32
1099 #define ELF_ARCH  EM_CRIS
1100 
1101 static inline void init_thread(struct target_pt_regs *regs,
1102                                struct image_info *infop)
1103 {
1104     regs->erp = infop->entry;
1105 }
1106 
1107 #define ELF_EXEC_PAGESIZE        8192
1108 
1109 #endif
1110 
1111 #ifdef TARGET_M68K
1112 
1113 #define ELF_START_MMAP 0x80000000
1114 
1115 #define ELF_CLASS       ELFCLASS32
1116 #define ELF_ARCH        EM_68K
1117 
1118 /* ??? Does this need to do anything?
1119    #define ELF_PLAT_INIT(_r) */
1120 
1121 static inline void init_thread(struct target_pt_regs *regs,
1122                                struct image_info *infop)
1123 {
1124     regs->usp = infop->start_stack;
1125     regs->sr = 0;
1126     regs->pc = infop->entry;
1127 }
1128 
1129 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1130 #define ELF_NREG 20
1131 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1132 
1133 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1134 {
1135     (*regs)[0] = tswapreg(env->dregs[1]);
1136     (*regs)[1] = tswapreg(env->dregs[2]);
1137     (*regs)[2] = tswapreg(env->dregs[3]);
1138     (*regs)[3] = tswapreg(env->dregs[4]);
1139     (*regs)[4] = tswapreg(env->dregs[5]);
1140     (*regs)[5] = tswapreg(env->dregs[6]);
1141     (*regs)[6] = tswapreg(env->dregs[7]);
1142     (*regs)[7] = tswapreg(env->aregs[0]);
1143     (*regs)[8] = tswapreg(env->aregs[1]);
1144     (*regs)[9] = tswapreg(env->aregs[2]);
1145     (*regs)[10] = tswapreg(env->aregs[3]);
1146     (*regs)[11] = tswapreg(env->aregs[4]);
1147     (*regs)[12] = tswapreg(env->aregs[5]);
1148     (*regs)[13] = tswapreg(env->aregs[6]);
1149     (*regs)[14] = tswapreg(env->dregs[0]);
1150     (*regs)[15] = tswapreg(env->aregs[7]);
1151     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1152     (*regs)[17] = tswapreg(env->sr);
1153     (*regs)[18] = tswapreg(env->pc);
1154     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1155 }
1156 
1157 #define USE_ELF_CORE_DUMP
1158 #define ELF_EXEC_PAGESIZE       8192
1159 
1160 #endif
1161 
1162 #ifdef TARGET_ALPHA
1163 
1164 #define ELF_START_MMAP (0x30000000000ULL)
1165 
1166 #define ELF_CLASS      ELFCLASS64
1167 #define ELF_ARCH       EM_ALPHA
1168 
1169 static inline void init_thread(struct target_pt_regs *regs,
1170                                struct image_info *infop)
1171 {
1172     regs->pc = infop->entry;
1173     regs->ps = 8;
1174     regs->usp = infop->start_stack;
1175 }
1176 
1177 #define ELF_EXEC_PAGESIZE        8192
1178 
1179 #endif /* TARGET_ALPHA */
1180 
1181 #ifdef TARGET_S390X
1182 
1183 #define ELF_START_MMAP (0x20000000000ULL)
1184 
1185 #define ELF_CLASS	ELFCLASS64
1186 #define ELF_DATA	ELFDATA2MSB
1187 #define ELF_ARCH	EM_S390
1188 
1189 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1190 {
1191     regs->psw.addr = infop->entry;
1192     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1193     regs->gprs[15] = infop->start_stack;
1194 }
1195 
1196 #endif /* TARGET_S390X */
1197 
1198 #ifdef TARGET_TILEGX
1199 
1200 /* 42 bits real used address, a half for user mode */
1201 #define ELF_START_MMAP (0x00000020000000000ULL)
1202 
1203 #define elf_check_arch(x) ((x) == EM_TILEGX)
1204 
1205 #define ELF_CLASS   ELFCLASS64
1206 #define ELF_DATA    ELFDATA2LSB
1207 #define ELF_ARCH    EM_TILEGX
1208 
1209 static inline void init_thread(struct target_pt_regs *regs,
1210                                struct image_info *infop)
1211 {
1212     regs->pc = infop->entry;
1213     regs->sp = infop->start_stack;
1214 
1215 }
1216 
1217 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1218 
1219 #endif /* TARGET_TILEGX */
1220 
1221 #ifndef ELF_PLATFORM
1222 #define ELF_PLATFORM (NULL)
1223 #endif
1224 
1225 #ifndef ELF_MACHINE
1226 #define ELF_MACHINE ELF_ARCH
1227 #endif
1228 
1229 #ifndef elf_check_arch
1230 #define elf_check_arch(x) ((x) == ELF_ARCH)
1231 #endif
1232 
1233 #ifndef ELF_HWCAP
1234 #define ELF_HWCAP 0
1235 #endif
1236 
1237 #ifdef TARGET_ABI32
1238 #undef ELF_CLASS
1239 #define ELF_CLASS ELFCLASS32
1240 #undef bswaptls
1241 #define bswaptls(ptr) bswap32s(ptr)
1242 #endif
1243 
1244 #include "elf.h"
1245 
1246 struct exec
1247 {
1248     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1249     unsigned int a_text;   /* length of text, in bytes */
1250     unsigned int a_data;   /* length of data, in bytes */
1251     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1252     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1253     unsigned int a_entry;  /* start address */
1254     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1255     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1256 };
1257 
1258 
1259 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1260 #define OMAGIC 0407
1261 #define NMAGIC 0410
1262 #define ZMAGIC 0413
1263 #define QMAGIC 0314
1264 
1265 /* Necessary parameters */
1266 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1267 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1268                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1269 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1270 
1271 #define DLINFO_ITEMS 14
1272 
1273 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1274 {
1275     memcpy(to, from, n);
1276 }
1277 
1278 #ifdef BSWAP_NEEDED
1279 static void bswap_ehdr(struct elfhdr *ehdr)
1280 {
1281     bswap16s(&ehdr->e_type);            /* Object file type */
1282     bswap16s(&ehdr->e_machine);         /* Architecture */
1283     bswap32s(&ehdr->e_version);         /* Object file version */
1284     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1285     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1286     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1287     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1288     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1289     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1290     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1291     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1292     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1293     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1294 }
1295 
1296 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1297 {
1298     int i;
1299     for (i = 0; i < phnum; ++i, ++phdr) {
1300         bswap32s(&phdr->p_type);        /* Segment type */
1301         bswap32s(&phdr->p_flags);       /* Segment flags */
1302         bswaptls(&phdr->p_offset);      /* Segment file offset */
1303         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1304         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1305         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1306         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1307         bswaptls(&phdr->p_align);       /* Segment alignment */
1308     }
1309 }
1310 
1311 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1312 {
1313     int i;
1314     for (i = 0; i < shnum; ++i, ++shdr) {
1315         bswap32s(&shdr->sh_name);
1316         bswap32s(&shdr->sh_type);
1317         bswaptls(&shdr->sh_flags);
1318         bswaptls(&shdr->sh_addr);
1319         bswaptls(&shdr->sh_offset);
1320         bswaptls(&shdr->sh_size);
1321         bswap32s(&shdr->sh_link);
1322         bswap32s(&shdr->sh_info);
1323         bswaptls(&shdr->sh_addralign);
1324         bswaptls(&shdr->sh_entsize);
1325     }
1326 }
1327 
1328 static void bswap_sym(struct elf_sym *sym)
1329 {
1330     bswap32s(&sym->st_name);
1331     bswaptls(&sym->st_value);
1332     bswaptls(&sym->st_size);
1333     bswap16s(&sym->st_shndx);
1334 }
1335 #else
1336 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1337 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1338 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1339 static inline void bswap_sym(struct elf_sym *sym) { }
1340 #endif
1341 
1342 #ifdef USE_ELF_CORE_DUMP
1343 static int elf_core_dump(int, const CPUArchState *);
1344 #endif /* USE_ELF_CORE_DUMP */
1345 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1346 
1347 /* Verify the portions of EHDR within E_IDENT for the target.
1348    This can be performed before bswapping the entire header.  */
1349 static bool elf_check_ident(struct elfhdr *ehdr)
1350 {
1351     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1352             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1353             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1354             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1355             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1356             && ehdr->e_ident[EI_DATA] == ELF_DATA
1357             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1358 }
1359 
1360 /* Verify the portions of EHDR outside of E_IDENT for the target.
1361    This has to wait until after bswapping the header.  */
1362 static bool elf_check_ehdr(struct elfhdr *ehdr)
1363 {
1364     return (elf_check_arch(ehdr->e_machine)
1365             && ehdr->e_ehsize == sizeof(struct elfhdr)
1366             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1367             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1368 }
1369 
1370 /*
1371  * 'copy_elf_strings()' copies argument/envelope strings from user
1372  * memory to free pages in kernel mem. These are in a format ready
1373  * to be put directly into the top of new user memory.
1374  *
1375  */
1376 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1377                                   abi_ulong p, abi_ulong stack_limit)
1378 {
1379     char *tmp;
1380     int len, offset;
1381     abi_ulong top = p;
1382 
1383     if (!p) {
1384         return 0;       /* bullet-proofing */
1385     }
1386 
1387     offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1388 
1389     while (argc-- > 0) {
1390         tmp = argv[argc];
1391         if (!tmp) {
1392             fprintf(stderr, "VFS: argc is wrong");
1393             exit(-1);
1394         }
1395         len = strlen(tmp) + 1;
1396         tmp += len;
1397 
1398         if (len > (p - stack_limit)) {
1399             return 0;
1400         }
1401         while (len) {
1402             int bytes_to_copy = (len > offset) ? offset : len;
1403             tmp -= bytes_to_copy;
1404             p -= bytes_to_copy;
1405             offset -= bytes_to_copy;
1406             len -= bytes_to_copy;
1407 
1408             memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1409 
1410             if (offset == 0) {
1411                 memcpy_to_target(p, scratch, top - p);
1412                 top = p;
1413                 offset = TARGET_PAGE_SIZE;
1414             }
1415         }
1416     }
1417     if (offset) {
1418         memcpy_to_target(p, scratch + offset, top - p);
1419     }
1420 
1421     return p;
1422 }
1423 
1424 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1425  * argument/environment space. Newer kernels (>2.6.33) allow more,
1426  * dependent on stack size, but guarantee at least 32 pages for
1427  * backwards compatibility.
1428  */
1429 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1430 
1431 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1432                                  struct image_info *info)
1433 {
1434     abi_ulong size, error, guard;
1435 
1436     size = guest_stack_size;
1437     if (size < STACK_LOWER_LIMIT) {
1438         size = STACK_LOWER_LIMIT;
1439     }
1440     guard = TARGET_PAGE_SIZE;
1441     if (guard < qemu_real_host_page_size) {
1442         guard = qemu_real_host_page_size;
1443     }
1444 
1445     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1446                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1447     if (error == -1) {
1448         perror("mmap stack");
1449         exit(-1);
1450     }
1451 
1452     /* We reserve one extra page at the top of the stack as guard.  */
1453     target_mprotect(error, guard, PROT_NONE);
1454 
1455     info->stack_limit = error + guard;
1456 
1457     return info->stack_limit + size - sizeof(void *);
1458 }
1459 
1460 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1461    after the data section (i.e. bss).  */
1462 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1463 {
1464     uintptr_t host_start, host_map_start, host_end;
1465 
1466     last_bss = TARGET_PAGE_ALIGN(last_bss);
1467 
1468     /* ??? There is confusion between qemu_real_host_page_size and
1469        qemu_host_page_size here and elsewhere in target_mmap, which
1470        may lead to the end of the data section mapping from the file
1471        not being mapped.  At least there was an explicit test and
1472        comment for that here, suggesting that "the file size must
1473        be known".  The comment probably pre-dates the introduction
1474        of the fstat system call in target_mmap which does in fact
1475        find out the size.  What isn't clear is if the workaround
1476        here is still actually needed.  For now, continue with it,
1477        but merge it with the "normal" mmap that would allocate the bss.  */
1478 
1479     host_start = (uintptr_t) g2h(elf_bss);
1480     host_end = (uintptr_t) g2h(last_bss);
1481     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1482 
1483     if (host_map_start < host_end) {
1484         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1485                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1486         if (p == MAP_FAILED) {
1487             perror("cannot mmap brk");
1488             exit(-1);
1489         }
1490     }
1491 
1492     /* Ensure that the bss page(s) are valid */
1493     if ((page_get_flags(last_bss-1) & prot) != prot) {
1494         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1495     }
1496 
1497     if (host_start < host_map_start) {
1498         memset((void *)host_start, 0, host_map_start - host_start);
1499     }
1500 }
1501 
1502 #ifdef CONFIG_USE_FDPIC
1503 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1504 {
1505     uint16_t n;
1506     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1507 
1508     /* elf32_fdpic_loadseg */
1509     n = info->nsegs;
1510     while (n--) {
1511         sp -= 12;
1512         put_user_u32(loadsegs[n].addr, sp+0);
1513         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1514         put_user_u32(loadsegs[n].p_memsz, sp+8);
1515     }
1516 
1517     /* elf32_fdpic_loadmap */
1518     sp -= 4;
1519     put_user_u16(0, sp+0); /* version */
1520     put_user_u16(info->nsegs, sp+2); /* nsegs */
1521 
1522     info->personality = PER_LINUX_FDPIC;
1523     info->loadmap_addr = sp;
1524 
1525     return sp;
1526 }
1527 #endif
1528 
1529 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1530                                    struct elfhdr *exec,
1531                                    struct image_info *info,
1532                                    struct image_info *interp_info)
1533 {
1534     abi_ulong sp;
1535     abi_ulong sp_auxv;
1536     int size;
1537     int i;
1538     abi_ulong u_rand_bytes;
1539     uint8_t k_rand_bytes[16];
1540     abi_ulong u_platform;
1541     const char *k_platform;
1542     const int n = sizeof(elf_addr_t);
1543 
1544     sp = p;
1545 
1546 #ifdef CONFIG_USE_FDPIC
1547     /* Needs to be before we load the env/argc/... */
1548     if (elf_is_fdpic(exec)) {
1549         /* Need 4 byte alignment for these structs */
1550         sp &= ~3;
1551         sp = loader_build_fdpic_loadmap(info, sp);
1552         info->other_info = interp_info;
1553         if (interp_info) {
1554             interp_info->other_info = info;
1555             sp = loader_build_fdpic_loadmap(interp_info, sp);
1556         }
1557     }
1558 #endif
1559 
1560     u_platform = 0;
1561     k_platform = ELF_PLATFORM;
1562     if (k_platform) {
1563         size_t len = strlen(k_platform) + 1;
1564         sp -= (len + n - 1) & ~(n - 1);
1565         u_platform = sp;
1566         /* FIXME - check return value of memcpy_to_target() for failure */
1567         memcpy_to_target(sp, k_platform, len);
1568     }
1569 
1570     /*
1571      * Generate 16 random bytes for userspace PRNG seeding (not
1572      * cryptically secure but it's not the aim of QEMU).
1573      */
1574     for (i = 0; i < 16; i++) {
1575         k_rand_bytes[i] = rand();
1576     }
1577     sp -= 16;
1578     u_rand_bytes = sp;
1579     /* FIXME - check return value of memcpy_to_target() for failure */
1580     memcpy_to_target(sp, k_rand_bytes, 16);
1581 
1582     /*
1583      * Force 16 byte _final_ alignment here for generality.
1584      */
1585     sp = sp &~ (abi_ulong)15;
1586     size = (DLINFO_ITEMS + 1) * 2;
1587     if (k_platform)
1588         size += 2;
1589 #ifdef DLINFO_ARCH_ITEMS
1590     size += DLINFO_ARCH_ITEMS * 2;
1591 #endif
1592 #ifdef ELF_HWCAP2
1593     size += 2;
1594 #endif
1595     size += envc + argc + 2;
1596     size += 1;  /* argc itself */
1597     size *= n;
1598     if (size & 15)
1599         sp -= 16 - (size & 15);
1600 
1601     /* This is correct because Linux defines
1602      * elf_addr_t as Elf32_Off / Elf64_Off
1603      */
1604 #define NEW_AUX_ENT(id, val) do {               \
1605         sp -= n; put_user_ual(val, sp);         \
1606         sp -= n; put_user_ual(id, sp);          \
1607     } while(0)
1608 
1609     sp_auxv = sp;
1610     NEW_AUX_ENT (AT_NULL, 0);
1611 
1612     /* There must be exactly DLINFO_ITEMS entries here.  */
1613     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1614     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1615     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1616     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1617     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1618     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1619     NEW_AUX_ENT(AT_ENTRY, info->entry);
1620     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1621     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1622     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1623     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1624     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1625     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1626     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1627 
1628 #ifdef ELF_HWCAP2
1629     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1630 #endif
1631 
1632     if (k_platform)
1633         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1634 #ifdef ARCH_DLINFO
1635     /*
1636      * ARCH_DLINFO must come last so platform specific code can enforce
1637      * special alignment requirements on the AUXV if necessary (eg. PPC).
1638      */
1639     ARCH_DLINFO;
1640 #endif
1641 #undef NEW_AUX_ENT
1642 
1643     info->saved_auxv = sp;
1644     info->auxv_len = sp_auxv - sp;
1645 
1646     sp = loader_build_argptr(envc, argc, sp, p, 0);
1647     /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1648     assert(sp_auxv - sp == size);
1649     return sp;
1650 }
1651 
1652 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1653 /* If the guest doesn't have a validation function just agree */
1654 static int validate_guest_space(unsigned long guest_base,
1655                                 unsigned long guest_size)
1656 {
1657     return 1;
1658 }
1659 #endif
1660 
1661 unsigned long init_guest_space(unsigned long host_start,
1662                                unsigned long host_size,
1663                                unsigned long guest_start,
1664                                bool fixed)
1665 {
1666     unsigned long current_start, real_start;
1667     int flags;
1668 
1669     assert(host_start || host_size);
1670 
1671     /* If just a starting address is given, then just verify that
1672      * address.  */
1673     if (host_start && !host_size) {
1674         if (validate_guest_space(host_start, host_size) == 1) {
1675             return host_start;
1676         } else {
1677             return (unsigned long)-1;
1678         }
1679     }
1680 
1681     /* Setup the initial flags and start address.  */
1682     current_start = host_start & qemu_host_page_mask;
1683     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1684     if (fixed) {
1685         flags |= MAP_FIXED;
1686     }
1687 
1688     /* Otherwise, a non-zero size region of memory needs to be mapped
1689      * and validated.  */
1690     while (1) {
1691         unsigned long real_size = host_size;
1692 
1693         /* Do not use mmap_find_vma here because that is limited to the
1694          * guest address space.  We are going to make the
1695          * guest address space fit whatever we're given.
1696          */
1697         real_start = (unsigned long)
1698             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1699         if (real_start == (unsigned long)-1) {
1700             return (unsigned long)-1;
1701         }
1702 
1703         /* Ensure the address is properly aligned.  */
1704         if (real_start & ~qemu_host_page_mask) {
1705             munmap((void *)real_start, host_size);
1706             real_size = host_size + qemu_host_page_size;
1707             real_start = (unsigned long)
1708                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1709             if (real_start == (unsigned long)-1) {
1710                 return (unsigned long)-1;
1711             }
1712             real_start = HOST_PAGE_ALIGN(real_start);
1713         }
1714 
1715         /* Check to see if the address is valid.  */
1716         if (!host_start || real_start == current_start) {
1717             int valid = validate_guest_space(real_start - guest_start,
1718                                              real_size);
1719             if (valid == 1) {
1720                 break;
1721             } else if (valid == -1) {
1722                 return (unsigned long)-1;
1723             }
1724             /* valid == 0, so try again. */
1725         }
1726 
1727         /* That address didn't work.  Unmap and try a different one.
1728          * The address the host picked because is typically right at
1729          * the top of the host address space and leaves the guest with
1730          * no usable address space.  Resort to a linear search.  We
1731          * already compensated for mmap_min_addr, so this should not
1732          * happen often.  Probably means we got unlucky and host
1733          * address space randomization put a shared library somewhere
1734          * inconvenient.
1735          */
1736         munmap((void *)real_start, host_size);
1737         current_start += qemu_host_page_size;
1738         if (host_start == current_start) {
1739             /* Theoretically possible if host doesn't have any suitably
1740              * aligned areas.  Normally the first mmap will fail.
1741              */
1742             return (unsigned long)-1;
1743         }
1744     }
1745 
1746     qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1747 
1748     return real_start;
1749 }
1750 
1751 static void probe_guest_base(const char *image_name,
1752                              abi_ulong loaddr, abi_ulong hiaddr)
1753 {
1754     /* Probe for a suitable guest base address, if the user has not set
1755      * it explicitly, and set guest_base appropriately.
1756      * In case of error we will print a suitable message and exit.
1757      */
1758     const char *errmsg;
1759     if (!have_guest_base && !reserved_va) {
1760         unsigned long host_start, real_start, host_size;
1761 
1762         /* Round addresses to page boundaries.  */
1763         loaddr &= qemu_host_page_mask;
1764         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1765 
1766         if (loaddr < mmap_min_addr) {
1767             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1768         } else {
1769             host_start = loaddr;
1770             if (host_start != loaddr) {
1771                 errmsg = "Address overflow loading ELF binary";
1772                 goto exit_errmsg;
1773             }
1774         }
1775         host_size = hiaddr - loaddr;
1776 
1777         /* Setup the initial guest memory space with ranges gleaned from
1778          * the ELF image that is being loaded.
1779          */
1780         real_start = init_guest_space(host_start, host_size, loaddr, false);
1781         if (real_start == (unsigned long)-1) {
1782             errmsg = "Unable to find space for application";
1783             goto exit_errmsg;
1784         }
1785         guest_base = real_start - loaddr;
1786 
1787         qemu_log("Relocating guest address space from 0x"
1788                  TARGET_ABI_FMT_lx " to 0x%lx\n",
1789                  loaddr, real_start);
1790     }
1791     return;
1792 
1793 exit_errmsg:
1794     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1795     exit(-1);
1796 }
1797 
1798 
1799 /* Load an ELF image into the address space.
1800 
1801    IMAGE_NAME is the filename of the image, to use in error messages.
1802    IMAGE_FD is the open file descriptor for the image.
1803 
1804    BPRM_BUF is a copy of the beginning of the file; this of course
1805    contains the elf file header at offset 0.  It is assumed that this
1806    buffer is sufficiently aligned to present no problems to the host
1807    in accessing data at aligned offsets within the buffer.
1808 
1809    On return: INFO values will be filled in, as necessary or available.  */
1810 
1811 static void load_elf_image(const char *image_name, int image_fd,
1812                            struct image_info *info, char **pinterp_name,
1813                            char bprm_buf[BPRM_BUF_SIZE])
1814 {
1815     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1816     struct elf_phdr *phdr;
1817     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1818     int i, retval;
1819     const char *errmsg;
1820 
1821     /* First of all, some simple consistency checks */
1822     errmsg = "Invalid ELF image for this architecture";
1823     if (!elf_check_ident(ehdr)) {
1824         goto exit_errmsg;
1825     }
1826     bswap_ehdr(ehdr);
1827     if (!elf_check_ehdr(ehdr)) {
1828         goto exit_errmsg;
1829     }
1830 
1831     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1832     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1833         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1834     } else {
1835         phdr = (struct elf_phdr *) alloca(i);
1836         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1837         if (retval != i) {
1838             goto exit_read;
1839         }
1840     }
1841     bswap_phdr(phdr, ehdr->e_phnum);
1842 
1843 #ifdef CONFIG_USE_FDPIC
1844     info->nsegs = 0;
1845     info->pt_dynamic_addr = 0;
1846 #endif
1847 
1848     /* Find the maximum size of the image and allocate an appropriate
1849        amount of memory to handle that.  */
1850     loaddr = -1, hiaddr = 0;
1851     for (i = 0; i < ehdr->e_phnum; ++i) {
1852         if (phdr[i].p_type == PT_LOAD) {
1853             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1854             if (a < loaddr) {
1855                 loaddr = a;
1856             }
1857             a = phdr[i].p_vaddr + phdr[i].p_memsz;
1858             if (a > hiaddr) {
1859                 hiaddr = a;
1860             }
1861 #ifdef CONFIG_USE_FDPIC
1862             ++info->nsegs;
1863 #endif
1864         }
1865     }
1866 
1867     load_addr = loaddr;
1868     if (ehdr->e_type == ET_DYN) {
1869         /* The image indicates that it can be loaded anywhere.  Find a
1870            location that can hold the memory space required.  If the
1871            image is pre-linked, LOADDR will be non-zero.  Since we do
1872            not supply MAP_FIXED here we'll use that address if and
1873            only if it remains available.  */
1874         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1875                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1876                                 -1, 0);
1877         if (load_addr == -1) {
1878             goto exit_perror;
1879         }
1880     } else if (pinterp_name != NULL) {
1881         /* This is the main executable.  Make sure that the low
1882            address does not conflict with MMAP_MIN_ADDR or the
1883            QEMU application itself.  */
1884         probe_guest_base(image_name, loaddr, hiaddr);
1885     }
1886     load_bias = load_addr - loaddr;
1887 
1888 #ifdef CONFIG_USE_FDPIC
1889     {
1890         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1891             g_malloc(sizeof(*loadsegs) * info->nsegs);
1892 
1893         for (i = 0; i < ehdr->e_phnum; ++i) {
1894             switch (phdr[i].p_type) {
1895             case PT_DYNAMIC:
1896                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1897                 break;
1898             case PT_LOAD:
1899                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1900                 loadsegs->p_vaddr = phdr[i].p_vaddr;
1901                 loadsegs->p_memsz = phdr[i].p_memsz;
1902                 ++loadsegs;
1903                 break;
1904             }
1905         }
1906     }
1907 #endif
1908 
1909     info->load_bias = load_bias;
1910     info->load_addr = load_addr;
1911     info->entry = ehdr->e_entry + load_bias;
1912     info->start_code = -1;
1913     info->end_code = 0;
1914     info->start_data = -1;
1915     info->end_data = 0;
1916     info->brk = 0;
1917     info->elf_flags = ehdr->e_flags;
1918 
1919     for (i = 0; i < ehdr->e_phnum; i++) {
1920         struct elf_phdr *eppnt = phdr + i;
1921         if (eppnt->p_type == PT_LOAD) {
1922             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1923             int elf_prot = 0;
1924 
1925             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1926             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1927             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1928 
1929             vaddr = load_bias + eppnt->p_vaddr;
1930             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1931             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1932 
1933             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1934                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
1935                                 image_fd, eppnt->p_offset - vaddr_po);
1936             if (error == -1) {
1937                 goto exit_perror;
1938             }
1939 
1940             vaddr_ef = vaddr + eppnt->p_filesz;
1941             vaddr_em = vaddr + eppnt->p_memsz;
1942 
1943             /* If the load segment requests extra zeros (e.g. bss), map it.  */
1944             if (vaddr_ef < vaddr_em) {
1945                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1946             }
1947 
1948             /* Find the full program boundaries.  */
1949             if (elf_prot & PROT_EXEC) {
1950                 if (vaddr < info->start_code) {
1951                     info->start_code = vaddr;
1952                 }
1953                 if (vaddr_ef > info->end_code) {
1954                     info->end_code = vaddr_ef;
1955                 }
1956             }
1957             if (elf_prot & PROT_WRITE) {
1958                 if (vaddr < info->start_data) {
1959                     info->start_data = vaddr;
1960                 }
1961                 if (vaddr_ef > info->end_data) {
1962                     info->end_data = vaddr_ef;
1963                 }
1964                 if (vaddr_em > info->brk) {
1965                     info->brk = vaddr_em;
1966                 }
1967             }
1968         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1969             char *interp_name;
1970 
1971             if (*pinterp_name) {
1972                 errmsg = "Multiple PT_INTERP entries";
1973                 goto exit_errmsg;
1974             }
1975             interp_name = malloc(eppnt->p_filesz);
1976             if (!interp_name) {
1977                 goto exit_perror;
1978             }
1979 
1980             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1981                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1982                        eppnt->p_filesz);
1983             } else {
1984                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1985                                eppnt->p_offset);
1986                 if (retval != eppnt->p_filesz) {
1987                     goto exit_perror;
1988                 }
1989             }
1990             if (interp_name[eppnt->p_filesz - 1] != 0) {
1991                 errmsg = "Invalid PT_INTERP entry";
1992                 goto exit_errmsg;
1993             }
1994             *pinterp_name = interp_name;
1995         }
1996     }
1997 
1998     if (info->end_data == 0) {
1999         info->start_data = info->end_code;
2000         info->end_data = info->end_code;
2001         info->brk = info->end_code;
2002     }
2003 
2004     if (qemu_log_enabled()) {
2005         load_symbols(ehdr, image_fd, load_bias);
2006     }
2007 
2008     close(image_fd);
2009     return;
2010 
2011  exit_read:
2012     if (retval >= 0) {
2013         errmsg = "Incomplete read of file header";
2014         goto exit_errmsg;
2015     }
2016  exit_perror:
2017     errmsg = strerror(errno);
2018  exit_errmsg:
2019     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2020     exit(-1);
2021 }
2022 
2023 static void load_elf_interp(const char *filename, struct image_info *info,
2024                             char bprm_buf[BPRM_BUF_SIZE])
2025 {
2026     int fd, retval;
2027 
2028     fd = open(path(filename), O_RDONLY);
2029     if (fd < 0) {
2030         goto exit_perror;
2031     }
2032 
2033     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2034     if (retval < 0) {
2035         goto exit_perror;
2036     }
2037     if (retval < BPRM_BUF_SIZE) {
2038         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2039     }
2040 
2041     load_elf_image(filename, fd, info, NULL, bprm_buf);
2042     return;
2043 
2044  exit_perror:
2045     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2046     exit(-1);
2047 }
2048 
2049 static int symfind(const void *s0, const void *s1)
2050 {
2051     target_ulong addr = *(target_ulong *)s0;
2052     struct elf_sym *sym = (struct elf_sym *)s1;
2053     int result = 0;
2054     if (addr < sym->st_value) {
2055         result = -1;
2056     } else if (addr >= sym->st_value + sym->st_size) {
2057         result = 1;
2058     }
2059     return result;
2060 }
2061 
2062 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2063 {
2064 #if ELF_CLASS == ELFCLASS32
2065     struct elf_sym *syms = s->disas_symtab.elf32;
2066 #else
2067     struct elf_sym *syms = s->disas_symtab.elf64;
2068 #endif
2069 
2070     // binary search
2071     struct elf_sym *sym;
2072 
2073     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2074     if (sym != NULL) {
2075         return s->disas_strtab + sym->st_name;
2076     }
2077 
2078     return "";
2079 }
2080 
2081 /* FIXME: This should use elf_ops.h  */
2082 static int symcmp(const void *s0, const void *s1)
2083 {
2084     struct elf_sym *sym0 = (struct elf_sym *)s0;
2085     struct elf_sym *sym1 = (struct elf_sym *)s1;
2086     return (sym0->st_value < sym1->st_value)
2087         ? -1
2088         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2089 }
2090 
2091 /* Best attempt to load symbols from this ELF object. */
2092 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2093 {
2094     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2095     struct elf_shdr *shdr;
2096     char *strings = NULL;
2097     struct syminfo *s = NULL;
2098     struct elf_sym *new_syms, *syms = NULL;
2099 
2100     shnum = hdr->e_shnum;
2101     i = shnum * sizeof(struct elf_shdr);
2102     shdr = (struct elf_shdr *)alloca(i);
2103     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2104         return;
2105     }
2106 
2107     bswap_shdr(shdr, shnum);
2108     for (i = 0; i < shnum; ++i) {
2109         if (shdr[i].sh_type == SHT_SYMTAB) {
2110             sym_idx = i;
2111             str_idx = shdr[i].sh_link;
2112             goto found;
2113         }
2114     }
2115 
2116     /* There will be no symbol table if the file was stripped.  */
2117     return;
2118 
2119  found:
2120     /* Now know where the strtab and symtab are.  Snarf them.  */
2121     s = malloc(sizeof(*s));
2122     if (!s) {
2123         goto give_up;
2124     }
2125 
2126     i = shdr[str_idx].sh_size;
2127     s->disas_strtab = strings = malloc(i);
2128     if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2129         goto give_up;
2130     }
2131 
2132     i = shdr[sym_idx].sh_size;
2133     syms = malloc(i);
2134     if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2135         goto give_up;
2136     }
2137 
2138     nsyms = i / sizeof(struct elf_sym);
2139     for (i = 0; i < nsyms; ) {
2140         bswap_sym(syms + i);
2141         /* Throw away entries which we do not need.  */
2142         if (syms[i].st_shndx == SHN_UNDEF
2143             || syms[i].st_shndx >= SHN_LORESERVE
2144             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2145             if (i < --nsyms) {
2146                 syms[i] = syms[nsyms];
2147             }
2148         } else {
2149 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2150             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2151             syms[i].st_value &= ~(target_ulong)1;
2152 #endif
2153             syms[i].st_value += load_bias;
2154             i++;
2155         }
2156     }
2157 
2158     /* No "useful" symbol.  */
2159     if (nsyms == 0) {
2160         goto give_up;
2161     }
2162 
2163     /* Attempt to free the storage associated with the local symbols
2164        that we threw away.  Whether or not this has any effect on the
2165        memory allocation depends on the malloc implementation and how
2166        many symbols we managed to discard.  */
2167     new_syms = realloc(syms, nsyms * sizeof(*syms));
2168     if (new_syms == NULL) {
2169         goto give_up;
2170     }
2171     syms = new_syms;
2172 
2173     qsort(syms, nsyms, sizeof(*syms), symcmp);
2174 
2175     s->disas_num_syms = nsyms;
2176 #if ELF_CLASS == ELFCLASS32
2177     s->disas_symtab.elf32 = syms;
2178 #else
2179     s->disas_symtab.elf64 = syms;
2180 #endif
2181     s->lookup_symbol = lookup_symbolxx;
2182     s->next = syminfos;
2183     syminfos = s;
2184 
2185     return;
2186 
2187 give_up:
2188     free(s);
2189     free(strings);
2190     free(syms);
2191 }
2192 
2193 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2194 {
2195     struct image_info interp_info;
2196     struct elfhdr elf_ex;
2197     char *elf_interpreter = NULL;
2198     char *scratch;
2199 
2200     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2201 
2202     load_elf_image(bprm->filename, bprm->fd, info,
2203                    &elf_interpreter, bprm->buf);
2204 
2205     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2206        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2207        when we load the interpreter.  */
2208     elf_ex = *(struct elfhdr *)bprm->buf;
2209 
2210     /* Do this so that we can load the interpreter, if need be.  We will
2211        change some of these later */
2212     bprm->p = setup_arg_pages(bprm, info);
2213 
2214     scratch = g_new0(char, TARGET_PAGE_SIZE);
2215     bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2216                                bprm->p, info->stack_limit);
2217     bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2218                                bprm->p, info->stack_limit);
2219     bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2220                                bprm->p, info->stack_limit);
2221     g_free(scratch);
2222 
2223     if (!bprm->p) {
2224         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2225         exit(-1);
2226     }
2227 
2228     if (elf_interpreter) {
2229         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2230 
2231         /* If the program interpreter is one of these two, then assume
2232            an iBCS2 image.  Otherwise assume a native linux image.  */
2233 
2234         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2235             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2236             info->personality = PER_SVR4;
2237 
2238             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2239                and some applications "depend" upon this behavior.  Since
2240                we do not have the power to recompile these, we emulate
2241                the SVr4 behavior.  Sigh.  */
2242             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2243                         MAP_FIXED | MAP_PRIVATE, -1, 0);
2244         }
2245     }
2246 
2247     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2248                                 info, (elf_interpreter ? &interp_info : NULL));
2249     info->start_stack = bprm->p;
2250 
2251     /* If we have an interpreter, set that as the program's entry point.
2252        Copy the load_bias as well, to help PPC64 interpret the entry
2253        point as a function descriptor.  Do this after creating elf tables
2254        so that we copy the original program entry point into the AUXV.  */
2255     if (elf_interpreter) {
2256         info->load_bias = interp_info.load_bias;
2257         info->entry = interp_info.entry;
2258         free(elf_interpreter);
2259     }
2260 
2261 #ifdef USE_ELF_CORE_DUMP
2262     bprm->core_dump = &elf_core_dump;
2263 #endif
2264 
2265     return 0;
2266 }
2267 
2268 #ifdef USE_ELF_CORE_DUMP
2269 /*
2270  * Definitions to generate Intel SVR4-like core files.
2271  * These mostly have the same names as the SVR4 types with "target_elf_"
2272  * tacked on the front to prevent clashes with linux definitions,
2273  * and the typedef forms have been avoided.  This is mostly like
2274  * the SVR4 structure, but more Linuxy, with things that Linux does
2275  * not support and which gdb doesn't really use excluded.
2276  *
2277  * Fields we don't dump (their contents is zero) in linux-user qemu
2278  * are marked with XXX.
2279  *
2280  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2281  *
2282  * Porting ELF coredump for target is (quite) simple process.  First you
2283  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2284  * the target resides):
2285  *
2286  * #define USE_ELF_CORE_DUMP
2287  *
2288  * Next you define type of register set used for dumping.  ELF specification
2289  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2290  *
2291  * typedef <target_regtype> target_elf_greg_t;
2292  * #define ELF_NREG <number of registers>
2293  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2294  *
2295  * Last step is to implement target specific function that copies registers
2296  * from given cpu into just specified register set.  Prototype is:
2297  *
2298  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2299  *                                const CPUArchState *env);
2300  *
2301  * Parameters:
2302  *     regs - copy register values into here (allocated and zeroed by caller)
2303  *     env - copy registers from here
2304  *
2305  * Example for ARM target is provided in this file.
2306  */
2307 
2308 /* An ELF note in memory */
2309 struct memelfnote {
2310     const char *name;
2311     size_t     namesz;
2312     size_t     namesz_rounded;
2313     int        type;
2314     size_t     datasz;
2315     size_t     datasz_rounded;
2316     void       *data;
2317     size_t     notesz;
2318 };
2319 
2320 struct target_elf_siginfo {
2321     abi_int    si_signo; /* signal number */
2322     abi_int    si_code;  /* extra code */
2323     abi_int    si_errno; /* errno */
2324 };
2325 
2326 struct target_elf_prstatus {
2327     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2328     abi_short          pr_cursig;    /* Current signal */
2329     abi_ulong          pr_sigpend;   /* XXX */
2330     abi_ulong          pr_sighold;   /* XXX */
2331     target_pid_t       pr_pid;
2332     target_pid_t       pr_ppid;
2333     target_pid_t       pr_pgrp;
2334     target_pid_t       pr_sid;
2335     struct target_timeval pr_utime;  /* XXX User time */
2336     struct target_timeval pr_stime;  /* XXX System time */
2337     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2338     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2339     target_elf_gregset_t      pr_reg;       /* GP registers */
2340     abi_int            pr_fpvalid;   /* XXX */
2341 };
2342 
2343 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2344 
2345 struct target_elf_prpsinfo {
2346     char         pr_state;       /* numeric process state */
2347     char         pr_sname;       /* char for pr_state */
2348     char         pr_zomb;        /* zombie */
2349     char         pr_nice;        /* nice val */
2350     abi_ulong    pr_flag;        /* flags */
2351     target_uid_t pr_uid;
2352     target_gid_t pr_gid;
2353     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2354     /* Lots missing */
2355     char    pr_fname[16];           /* filename of executable */
2356     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2357 };
2358 
2359 /* Here is the structure in which status of each thread is captured. */
2360 struct elf_thread_status {
2361     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2362     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2363 #if 0
2364     elf_fpregset_t fpu;             /* NT_PRFPREG */
2365     struct task_struct *thread;
2366     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2367 #endif
2368     struct memelfnote notes[1];
2369     int num_notes;
2370 };
2371 
2372 struct elf_note_info {
2373     struct memelfnote   *notes;
2374     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2375     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2376 
2377     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2378 #if 0
2379     /*
2380      * Current version of ELF coredump doesn't support
2381      * dumping fp regs etc.
2382      */
2383     elf_fpregset_t *fpu;
2384     elf_fpxregset_t *xfpu;
2385     int thread_status_size;
2386 #endif
2387     int notes_size;
2388     int numnote;
2389 };
2390 
2391 struct vm_area_struct {
2392     target_ulong   vma_start;  /* start vaddr of memory region */
2393     target_ulong   vma_end;    /* end vaddr of memory region */
2394     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2395     QTAILQ_ENTRY(vm_area_struct) vma_link;
2396 };
2397 
2398 struct mm_struct {
2399     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2400     int mm_count;           /* number of mappings */
2401 };
2402 
2403 static struct mm_struct *vma_init(void);
2404 static void vma_delete(struct mm_struct *);
2405 static int vma_add_mapping(struct mm_struct *, target_ulong,
2406                            target_ulong, abi_ulong);
2407 static int vma_get_mapping_count(const struct mm_struct *);
2408 static struct vm_area_struct *vma_first(const struct mm_struct *);
2409 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2410 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2411 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2412                       unsigned long flags);
2413 
2414 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2415 static void fill_note(struct memelfnote *, const char *, int,
2416                       unsigned int, void *);
2417 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2418 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2419 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2420 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2421 static size_t note_size(const struct memelfnote *);
2422 static void free_note_info(struct elf_note_info *);
2423 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2424 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2425 static int core_dump_filename(const TaskState *, char *, size_t);
2426 
2427 static int dump_write(int, const void *, size_t);
2428 static int write_note(struct memelfnote *, int);
2429 static int write_note_info(struct elf_note_info *, int);
2430 
2431 #ifdef BSWAP_NEEDED
2432 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2433 {
2434     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2435     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2436     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2437     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2438     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2439     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2440     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2441     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2442     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2443     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2444     /* cpu times are not filled, so we skip them */
2445     /* regs should be in correct format already */
2446     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2447 }
2448 
2449 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2450 {
2451     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2452     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2453     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2454     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2455     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2456     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2457     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2458 }
2459 
2460 static void bswap_note(struct elf_note *en)
2461 {
2462     bswap32s(&en->n_namesz);
2463     bswap32s(&en->n_descsz);
2464     bswap32s(&en->n_type);
2465 }
2466 #else
2467 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2468 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2469 static inline void bswap_note(struct elf_note *en) { }
2470 #endif /* BSWAP_NEEDED */
2471 
2472 /*
2473  * Minimal support for linux memory regions.  These are needed
2474  * when we are finding out what memory exactly belongs to
2475  * emulated process.  No locks needed here, as long as
2476  * thread that received the signal is stopped.
2477  */
2478 
2479 static struct mm_struct *vma_init(void)
2480 {
2481     struct mm_struct *mm;
2482 
2483     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2484         return (NULL);
2485 
2486     mm->mm_count = 0;
2487     QTAILQ_INIT(&mm->mm_mmap);
2488 
2489     return (mm);
2490 }
2491 
2492 static void vma_delete(struct mm_struct *mm)
2493 {
2494     struct vm_area_struct *vma;
2495 
2496     while ((vma = vma_first(mm)) != NULL) {
2497         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2498         g_free(vma);
2499     }
2500     g_free(mm);
2501 }
2502 
2503 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2504                            target_ulong end, abi_ulong flags)
2505 {
2506     struct vm_area_struct *vma;
2507 
2508     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2509         return (-1);
2510 
2511     vma->vma_start = start;
2512     vma->vma_end = end;
2513     vma->vma_flags = flags;
2514 
2515     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2516     mm->mm_count++;
2517 
2518     return (0);
2519 }
2520 
2521 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2522 {
2523     return (QTAILQ_FIRST(&mm->mm_mmap));
2524 }
2525 
2526 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2527 {
2528     return (QTAILQ_NEXT(vma, vma_link));
2529 }
2530 
2531 static int vma_get_mapping_count(const struct mm_struct *mm)
2532 {
2533     return (mm->mm_count);
2534 }
2535 
2536 /*
2537  * Calculate file (dump) size of given memory region.
2538  */
2539 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2540 {
2541     /* if we cannot even read the first page, skip it */
2542     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2543         return (0);
2544 
2545     /*
2546      * Usually we don't dump executable pages as they contain
2547      * non-writable code that debugger can read directly from
2548      * target library etc.  However, thread stacks are marked
2549      * also executable so we read in first page of given region
2550      * and check whether it contains elf header.  If there is
2551      * no elf header, we dump it.
2552      */
2553     if (vma->vma_flags & PROT_EXEC) {
2554         char page[TARGET_PAGE_SIZE];
2555 
2556         copy_from_user(page, vma->vma_start, sizeof (page));
2557         if ((page[EI_MAG0] == ELFMAG0) &&
2558             (page[EI_MAG1] == ELFMAG1) &&
2559             (page[EI_MAG2] == ELFMAG2) &&
2560             (page[EI_MAG3] == ELFMAG3)) {
2561             /*
2562              * Mappings are possibly from ELF binary.  Don't dump
2563              * them.
2564              */
2565             return (0);
2566         }
2567     }
2568 
2569     return (vma->vma_end - vma->vma_start);
2570 }
2571 
2572 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2573                       unsigned long flags)
2574 {
2575     struct mm_struct *mm = (struct mm_struct *)priv;
2576 
2577     vma_add_mapping(mm, start, end, flags);
2578     return (0);
2579 }
2580 
2581 static void fill_note(struct memelfnote *note, const char *name, int type,
2582                       unsigned int sz, void *data)
2583 {
2584     unsigned int namesz;
2585 
2586     namesz = strlen(name) + 1;
2587     note->name = name;
2588     note->namesz = namesz;
2589     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2590     note->type = type;
2591     note->datasz = sz;
2592     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2593 
2594     note->data = data;
2595 
2596     /*
2597      * We calculate rounded up note size here as specified by
2598      * ELF document.
2599      */
2600     note->notesz = sizeof (struct elf_note) +
2601         note->namesz_rounded + note->datasz_rounded;
2602 }
2603 
2604 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2605                             uint32_t flags)
2606 {
2607     (void) memset(elf, 0, sizeof(*elf));
2608 
2609     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2610     elf->e_ident[EI_CLASS] = ELF_CLASS;
2611     elf->e_ident[EI_DATA] = ELF_DATA;
2612     elf->e_ident[EI_VERSION] = EV_CURRENT;
2613     elf->e_ident[EI_OSABI] = ELF_OSABI;
2614 
2615     elf->e_type = ET_CORE;
2616     elf->e_machine = machine;
2617     elf->e_version = EV_CURRENT;
2618     elf->e_phoff = sizeof(struct elfhdr);
2619     elf->e_flags = flags;
2620     elf->e_ehsize = sizeof(struct elfhdr);
2621     elf->e_phentsize = sizeof(struct elf_phdr);
2622     elf->e_phnum = segs;
2623 
2624     bswap_ehdr(elf);
2625 }
2626 
2627 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2628 {
2629     phdr->p_type = PT_NOTE;
2630     phdr->p_offset = offset;
2631     phdr->p_vaddr = 0;
2632     phdr->p_paddr = 0;
2633     phdr->p_filesz = sz;
2634     phdr->p_memsz = 0;
2635     phdr->p_flags = 0;
2636     phdr->p_align = 0;
2637 
2638     bswap_phdr(phdr, 1);
2639 }
2640 
2641 static size_t note_size(const struct memelfnote *note)
2642 {
2643     return (note->notesz);
2644 }
2645 
2646 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2647                           const TaskState *ts, int signr)
2648 {
2649     (void) memset(prstatus, 0, sizeof (*prstatus));
2650     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2651     prstatus->pr_pid = ts->ts_tid;
2652     prstatus->pr_ppid = getppid();
2653     prstatus->pr_pgrp = getpgrp();
2654     prstatus->pr_sid = getsid(0);
2655 
2656     bswap_prstatus(prstatus);
2657 }
2658 
2659 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2660 {
2661     char *base_filename;
2662     unsigned int i, len;
2663 
2664     (void) memset(psinfo, 0, sizeof (*psinfo));
2665 
2666     len = ts->info->arg_end - ts->info->arg_start;
2667     if (len >= ELF_PRARGSZ)
2668         len = ELF_PRARGSZ - 1;
2669     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2670         return -EFAULT;
2671     for (i = 0; i < len; i++)
2672         if (psinfo->pr_psargs[i] == 0)
2673             psinfo->pr_psargs[i] = ' ';
2674     psinfo->pr_psargs[len] = 0;
2675 
2676     psinfo->pr_pid = getpid();
2677     psinfo->pr_ppid = getppid();
2678     psinfo->pr_pgrp = getpgrp();
2679     psinfo->pr_sid = getsid(0);
2680     psinfo->pr_uid = getuid();
2681     psinfo->pr_gid = getgid();
2682 
2683     base_filename = g_path_get_basename(ts->bprm->filename);
2684     /*
2685      * Using strncpy here is fine: at max-length,
2686      * this field is not NUL-terminated.
2687      */
2688     (void) strncpy(psinfo->pr_fname, base_filename,
2689                    sizeof(psinfo->pr_fname));
2690 
2691     g_free(base_filename);
2692     bswap_psinfo(psinfo);
2693     return (0);
2694 }
2695 
2696 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2697 {
2698     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2699     elf_addr_t orig_auxv = auxv;
2700     void *ptr;
2701     int len = ts->info->auxv_len;
2702 
2703     /*
2704      * Auxiliary vector is stored in target process stack.  It contains
2705      * {type, value} pairs that we need to dump into note.  This is not
2706      * strictly necessary but we do it here for sake of completeness.
2707      */
2708 
2709     /* read in whole auxv vector and copy it to memelfnote */
2710     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2711     if (ptr != NULL) {
2712         fill_note(note, "CORE", NT_AUXV, len, ptr);
2713         unlock_user(ptr, auxv, len);
2714     }
2715 }
2716 
2717 /*
2718  * Constructs name of coredump file.  We have following convention
2719  * for the name:
2720  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2721  *
2722  * Returns 0 in case of success, -1 otherwise (errno is set).
2723  */
2724 static int core_dump_filename(const TaskState *ts, char *buf,
2725                               size_t bufsize)
2726 {
2727     char timestamp[64];
2728     char *filename = NULL;
2729     char *base_filename = NULL;
2730     struct timeval tv;
2731     struct tm tm;
2732 
2733     assert(bufsize >= PATH_MAX);
2734 
2735     if (gettimeofday(&tv, NULL) < 0) {
2736         (void) fprintf(stderr, "unable to get current timestamp: %s",
2737                        strerror(errno));
2738         return (-1);
2739     }
2740 
2741     filename = strdup(ts->bprm->filename);
2742     base_filename = strdup(basename(filename));
2743     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2744                     localtime_r(&tv.tv_sec, &tm));
2745     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2746                     base_filename, timestamp, (int)getpid());
2747     free(base_filename);
2748     free(filename);
2749 
2750     return (0);
2751 }
2752 
2753 static int dump_write(int fd, const void *ptr, size_t size)
2754 {
2755     const char *bufp = (const char *)ptr;
2756     ssize_t bytes_written, bytes_left;
2757     struct rlimit dumpsize;
2758     off_t pos;
2759 
2760     bytes_written = 0;
2761     getrlimit(RLIMIT_CORE, &dumpsize);
2762     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2763         if (errno == ESPIPE) { /* not a seekable stream */
2764             bytes_left = size;
2765         } else {
2766             return pos;
2767         }
2768     } else {
2769         if (dumpsize.rlim_cur <= pos) {
2770             return -1;
2771         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2772             bytes_left = size;
2773         } else {
2774             size_t limit_left=dumpsize.rlim_cur - pos;
2775             bytes_left = limit_left >= size ? size : limit_left ;
2776         }
2777     }
2778 
2779     /*
2780      * In normal conditions, single write(2) should do but
2781      * in case of socket etc. this mechanism is more portable.
2782      */
2783     do {
2784         bytes_written = write(fd, bufp, bytes_left);
2785         if (bytes_written < 0) {
2786             if (errno == EINTR)
2787                 continue;
2788             return (-1);
2789         } else if (bytes_written == 0) { /* eof */
2790             return (-1);
2791         }
2792         bufp += bytes_written;
2793         bytes_left -= bytes_written;
2794     } while (bytes_left > 0);
2795 
2796     return (0);
2797 }
2798 
2799 static int write_note(struct memelfnote *men, int fd)
2800 {
2801     struct elf_note en;
2802 
2803     en.n_namesz = men->namesz;
2804     en.n_type = men->type;
2805     en.n_descsz = men->datasz;
2806 
2807     bswap_note(&en);
2808 
2809     if (dump_write(fd, &en, sizeof(en)) != 0)
2810         return (-1);
2811     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2812         return (-1);
2813     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2814         return (-1);
2815 
2816     return (0);
2817 }
2818 
2819 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2820 {
2821     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2822     TaskState *ts = (TaskState *)cpu->opaque;
2823     struct elf_thread_status *ets;
2824 
2825     ets = g_malloc0(sizeof (*ets));
2826     ets->num_notes = 1; /* only prstatus is dumped */
2827     fill_prstatus(&ets->prstatus, ts, 0);
2828     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2829     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2830               &ets->prstatus);
2831 
2832     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2833 
2834     info->notes_size += note_size(&ets->notes[0]);
2835 }
2836 
2837 static void init_note_info(struct elf_note_info *info)
2838 {
2839     /* Initialize the elf_note_info structure so that it is at
2840      * least safe to call free_note_info() on it. Must be
2841      * called before calling fill_note_info().
2842      */
2843     memset(info, 0, sizeof (*info));
2844     QTAILQ_INIT(&info->thread_list);
2845 }
2846 
2847 static int fill_note_info(struct elf_note_info *info,
2848                           long signr, const CPUArchState *env)
2849 {
2850 #define NUMNOTES 3
2851     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2852     TaskState *ts = (TaskState *)cpu->opaque;
2853     int i;
2854 
2855     info->notes = g_new0(struct memelfnote, NUMNOTES);
2856     if (info->notes == NULL)
2857         return (-ENOMEM);
2858     info->prstatus = g_malloc0(sizeof (*info->prstatus));
2859     if (info->prstatus == NULL)
2860         return (-ENOMEM);
2861     info->psinfo = g_malloc0(sizeof (*info->psinfo));
2862     if (info->prstatus == NULL)
2863         return (-ENOMEM);
2864 
2865     /*
2866      * First fill in status (and registers) of current thread
2867      * including process info & aux vector.
2868      */
2869     fill_prstatus(info->prstatus, ts, signr);
2870     elf_core_copy_regs(&info->prstatus->pr_reg, env);
2871     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2872               sizeof (*info->prstatus), info->prstatus);
2873     fill_psinfo(info->psinfo, ts);
2874     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2875               sizeof (*info->psinfo), info->psinfo);
2876     fill_auxv_note(&info->notes[2], ts);
2877     info->numnote = 3;
2878 
2879     info->notes_size = 0;
2880     for (i = 0; i < info->numnote; i++)
2881         info->notes_size += note_size(&info->notes[i]);
2882 
2883     /* read and fill status of all threads */
2884     cpu_list_lock();
2885     CPU_FOREACH(cpu) {
2886         if (cpu == thread_cpu) {
2887             continue;
2888         }
2889         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2890     }
2891     cpu_list_unlock();
2892 
2893     return (0);
2894 }
2895 
2896 static void free_note_info(struct elf_note_info *info)
2897 {
2898     struct elf_thread_status *ets;
2899 
2900     while (!QTAILQ_EMPTY(&info->thread_list)) {
2901         ets = QTAILQ_FIRST(&info->thread_list);
2902         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2903         g_free(ets);
2904     }
2905 
2906     g_free(info->prstatus);
2907     g_free(info->psinfo);
2908     g_free(info->notes);
2909 }
2910 
2911 static int write_note_info(struct elf_note_info *info, int fd)
2912 {
2913     struct elf_thread_status *ets;
2914     int i, error = 0;
2915 
2916     /* write prstatus, psinfo and auxv for current thread */
2917     for (i = 0; i < info->numnote; i++)
2918         if ((error = write_note(&info->notes[i], fd)) != 0)
2919             return (error);
2920 
2921     /* write prstatus for each thread */
2922     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
2923         if ((error = write_note(&ets->notes[0], fd)) != 0)
2924             return (error);
2925     }
2926 
2927     return (0);
2928 }
2929 
2930 /*
2931  * Write out ELF coredump.
2932  *
2933  * See documentation of ELF object file format in:
2934  * http://www.caldera.com/developers/devspecs/gabi41.pdf
2935  *
2936  * Coredump format in linux is following:
2937  *
2938  * 0   +----------------------+         \
2939  *     | ELF header           | ET_CORE  |
2940  *     +----------------------+          |
2941  *     | ELF program headers  |          |--- headers
2942  *     | - NOTE section       |          |
2943  *     | - PT_LOAD sections   |          |
2944  *     +----------------------+         /
2945  *     | NOTEs:               |
2946  *     | - NT_PRSTATUS        |
2947  *     | - NT_PRSINFO         |
2948  *     | - NT_AUXV            |
2949  *     +----------------------+ <-- aligned to target page
2950  *     | Process memory dump  |
2951  *     :                      :
2952  *     .                      .
2953  *     :                      :
2954  *     |                      |
2955  *     +----------------------+
2956  *
2957  * NT_PRSTATUS -> struct elf_prstatus (per thread)
2958  * NT_PRSINFO  -> struct elf_prpsinfo
2959  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2960  *
2961  * Format follows System V format as close as possible.  Current
2962  * version limitations are as follows:
2963  *     - no floating point registers are dumped
2964  *
2965  * Function returns 0 in case of success, negative errno otherwise.
2966  *
2967  * TODO: make this work also during runtime: it should be
2968  * possible to force coredump from running process and then
2969  * continue processing.  For example qemu could set up SIGUSR2
2970  * handler (provided that target process haven't registered
2971  * handler for that) that does the dump when signal is received.
2972  */
2973 static int elf_core_dump(int signr, const CPUArchState *env)
2974 {
2975     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2976     const TaskState *ts = (const TaskState *)cpu->opaque;
2977     struct vm_area_struct *vma = NULL;
2978     char corefile[PATH_MAX];
2979     struct elf_note_info info;
2980     struct elfhdr elf;
2981     struct elf_phdr phdr;
2982     struct rlimit dumpsize;
2983     struct mm_struct *mm = NULL;
2984     off_t offset = 0, data_offset = 0;
2985     int segs = 0;
2986     int fd = -1;
2987 
2988     init_note_info(&info);
2989 
2990     errno = 0;
2991     getrlimit(RLIMIT_CORE, &dumpsize);
2992     if (dumpsize.rlim_cur == 0)
2993         return 0;
2994 
2995     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2996         return (-errno);
2997 
2998     if ((fd = open(corefile, O_WRONLY | O_CREAT,
2999                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3000         return (-errno);
3001 
3002     /*
3003      * Walk through target process memory mappings and
3004      * set up structure containing this information.  After
3005      * this point vma_xxx functions can be used.
3006      */
3007     if ((mm = vma_init()) == NULL)
3008         goto out;
3009 
3010     walk_memory_regions(mm, vma_walker);
3011     segs = vma_get_mapping_count(mm);
3012 
3013     /*
3014      * Construct valid coredump ELF header.  We also
3015      * add one more segment for notes.
3016      */
3017     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3018     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3019         goto out;
3020 
3021     /* fill in the in-memory version of notes */
3022     if (fill_note_info(&info, signr, env) < 0)
3023         goto out;
3024 
3025     offset += sizeof (elf);                             /* elf header */
3026     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3027 
3028     /* write out notes program header */
3029     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3030 
3031     offset += info.notes_size;
3032     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3033         goto out;
3034 
3035     /*
3036      * ELF specification wants data to start at page boundary so
3037      * we align it here.
3038      */
3039     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3040 
3041     /*
3042      * Write program headers for memory regions mapped in
3043      * the target process.
3044      */
3045     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3046         (void) memset(&phdr, 0, sizeof (phdr));
3047 
3048         phdr.p_type = PT_LOAD;
3049         phdr.p_offset = offset;
3050         phdr.p_vaddr = vma->vma_start;
3051         phdr.p_paddr = 0;
3052         phdr.p_filesz = vma_dump_size(vma);
3053         offset += phdr.p_filesz;
3054         phdr.p_memsz = vma->vma_end - vma->vma_start;
3055         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3056         if (vma->vma_flags & PROT_WRITE)
3057             phdr.p_flags |= PF_W;
3058         if (vma->vma_flags & PROT_EXEC)
3059             phdr.p_flags |= PF_X;
3060         phdr.p_align = ELF_EXEC_PAGESIZE;
3061 
3062         bswap_phdr(&phdr, 1);
3063         dump_write(fd, &phdr, sizeof (phdr));
3064     }
3065 
3066     /*
3067      * Next we write notes just after program headers.  No
3068      * alignment needed here.
3069      */
3070     if (write_note_info(&info, fd) < 0)
3071         goto out;
3072 
3073     /* align data to page boundary */
3074     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3075         goto out;
3076 
3077     /*
3078      * Finally we can dump process memory into corefile as well.
3079      */
3080     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3081         abi_ulong addr;
3082         abi_ulong end;
3083 
3084         end = vma->vma_start + vma_dump_size(vma);
3085 
3086         for (addr = vma->vma_start; addr < end;
3087              addr += TARGET_PAGE_SIZE) {
3088             char page[TARGET_PAGE_SIZE];
3089             int error;
3090 
3091             /*
3092              *  Read in page from target process memory and
3093              *  write it to coredump file.
3094              */
3095             error = copy_from_user(page, addr, sizeof (page));
3096             if (error != 0) {
3097                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3098                                addr);
3099                 errno = -error;
3100                 goto out;
3101             }
3102             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3103                 goto out;
3104         }
3105     }
3106 
3107  out:
3108     free_note_info(&info);
3109     if (mm != NULL)
3110         vma_delete(mm);
3111     (void) close(fd);
3112 
3113     if (errno != 0)
3114         return (-errno);
3115     return (0);
3116 }
3117 #endif /* USE_ELF_CORE_DUMP */
3118 
3119 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3120 {
3121     init_thread(regs, infop);
3122 }
3123