xref: /openbmc/qemu/linux-user/elfload.c (revision 0b2ff2ce)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4 
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15 
16 #include "qemu.h"
17 #include "disas/disas.h"
18 
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_HWCAP2
24 #undef ELF_CLASS
25 #undef ELF_DATA
26 #undef ELF_ARCH
27 #endif
28 
29 #define ELF_OSABI   ELFOSABI_SYSV
30 
31 /* from personality.h */
32 
33 /*
34  * Flags for bug emulation.
35  *
36  * These occupy the top three bytes.
37  */
38 enum {
39     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
40     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
41                                            descriptors (signal handling) */
42     MMAP_PAGE_ZERO =    0x0100000,
43     ADDR_COMPAT_LAYOUT = 0x0200000,
44     READ_IMPLIES_EXEC = 0x0400000,
45     ADDR_LIMIT_32BIT =  0x0800000,
46     SHORT_INODE =       0x1000000,
47     WHOLE_SECONDS =     0x2000000,
48     STICKY_TIMEOUTS =   0x4000000,
49     ADDR_LIMIT_3GB =    0x8000000,
50 };
51 
52 /*
53  * Personality types.
54  *
55  * These go in the low byte.  Avoid using the top bit, it will
56  * conflict with error returns.
57  */
58 enum {
59     PER_LINUX =         0x0000,
60     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
61     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
62     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
68     PER_BSD =           0x0006,
69     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
70     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_LINUX32 =       0x0008,
72     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
73     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76     PER_RISCOS =        0x000c,
77     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
78     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
80     PER_HPUX =          0x0010,
81     PER_MASK =          0x00ff,
82 };
83 
84 /*
85  * Return the base personality without flags.
86  */
87 #define personality(pers)       (pers & PER_MASK)
88 
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93 
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98 
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA        ELFDATA2MSB
101 #else
102 #define ELF_DATA        ELFDATA2LSB
103 #endif
104 
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong      target_elf_greg_t;
107 #define tswapreg(ptr)   tswap64(ptr)
108 #else
109 typedef abi_ulong       target_elf_greg_t;
110 #define tswapreg(ptr)   tswapal(ptr)
111 #endif
112 
113 #ifdef USE_UID16
114 typedef abi_ushort      target_uid_t;
115 typedef abi_ushort      target_gid_t;
116 #else
117 typedef abi_uint        target_uid_t;
118 typedef abi_uint        target_gid_t;
119 #endif
120 typedef abi_int         target_pid_t;
121 
122 #ifdef TARGET_I386
123 
124 #define ELF_PLATFORM get_elf_platform()
125 
126 static const char *get_elf_platform(void)
127 {
128     static char elf_platform[] = "i386";
129     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130     if (family > 6)
131         family = 6;
132     if (family >= 3)
133         elf_platform[1] = '0' + family;
134     return elf_platform;
135 }
136 
137 #define ELF_HWCAP get_elf_hwcap()
138 
139 static uint32_t get_elf_hwcap(void)
140 {
141     X86CPU *cpu = X86_CPU(thread_cpu);
142 
143     return cpu->env.features[FEAT_1_EDX];
144 }
145 
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
149 
150 #define ELF_CLASS      ELFCLASS64
151 #define ELF_ARCH       EM_X86_64
152 
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155     regs->rax = 0;
156     regs->rsp = infop->start_stack;
157     regs->rip = infop->entry;
158 }
159 
160 #define ELF_NREG    27
161 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
162 
163 /*
164  * Note that ELF_NREG should be 29 as there should be place for
165  * TRAPNO and ERR "registers" as well but linux doesn't dump
166  * those.
167  *
168  * See linux kernel: arch/x86/include/asm/elf.h
169  */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172     (*regs)[0] = env->regs[15];
173     (*regs)[1] = env->regs[14];
174     (*regs)[2] = env->regs[13];
175     (*regs)[3] = env->regs[12];
176     (*regs)[4] = env->regs[R_EBP];
177     (*regs)[5] = env->regs[R_EBX];
178     (*regs)[6] = env->regs[11];
179     (*regs)[7] = env->regs[10];
180     (*regs)[8] = env->regs[9];
181     (*regs)[9] = env->regs[8];
182     (*regs)[10] = env->regs[R_EAX];
183     (*regs)[11] = env->regs[R_ECX];
184     (*regs)[12] = env->regs[R_EDX];
185     (*regs)[13] = env->regs[R_ESI];
186     (*regs)[14] = env->regs[R_EDI];
187     (*regs)[15] = env->regs[R_EAX]; /* XXX */
188     (*regs)[16] = env->eip;
189     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190     (*regs)[18] = env->eflags;
191     (*regs)[19] = env->regs[R_ESP];
192     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199 }
200 
201 #else
202 
203 #define ELF_START_MMAP 0x80000000
204 
205 /*
206  * This is used to ensure we don't load something for the wrong architecture.
207  */
208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209 
210 /*
211  * These are used to set parameters in the core dumps.
212  */
213 #define ELF_CLASS       ELFCLASS32
214 #define ELF_ARCH        EM_386
215 
216 static inline void init_thread(struct target_pt_regs *regs,
217                                struct image_info *infop)
218 {
219     regs->esp = infop->start_stack;
220     regs->eip = infop->entry;
221 
222     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223        starts %edx contains a pointer to a function which might be
224        registered using `atexit'.  This provides a mean for the
225        dynamic linker to call DT_FINI functions for shared libraries
226        that have been loaded before the code runs.
227 
228        A value of 0 tells we have no such handler.  */
229     regs->edx = 0;
230 }
231 
232 #define ELF_NREG    17
233 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
234 
235 /*
236  * Note that ELF_NREG should be 19 as there should be place for
237  * TRAPNO and ERR "registers" as well but linux doesn't dump
238  * those.
239  *
240  * See linux kernel: arch/x86/include/asm/elf.h
241  */
242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
243 {
244     (*regs)[0] = env->regs[R_EBX];
245     (*regs)[1] = env->regs[R_ECX];
246     (*regs)[2] = env->regs[R_EDX];
247     (*regs)[3] = env->regs[R_ESI];
248     (*regs)[4] = env->regs[R_EDI];
249     (*regs)[5] = env->regs[R_EBP];
250     (*regs)[6] = env->regs[R_EAX];
251     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255     (*regs)[11] = env->regs[R_EAX]; /* XXX */
256     (*regs)[12] = env->eip;
257     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258     (*regs)[14] = env->eflags;
259     (*regs)[15] = env->regs[R_ESP];
260     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261 }
262 #endif
263 
264 #define USE_ELF_CORE_DUMP
265 #define ELF_EXEC_PAGESIZE       4096
266 
267 #endif
268 
269 #ifdef TARGET_ARM
270 
271 #ifndef TARGET_AARCH64
272 /* 32 bit ARM definitions */
273 
274 #define ELF_START_MMAP 0x80000000
275 
276 #define elf_check_arch(x) ((x) == ELF_MACHINE)
277 
278 #define ELF_ARCH        ELF_MACHINE
279 #define ELF_CLASS       ELFCLASS32
280 
281 static inline void init_thread(struct target_pt_regs *regs,
282                                struct image_info *infop)
283 {
284     abi_long stack = infop->start_stack;
285     memset(regs, 0, sizeof(*regs));
286 
287     regs->ARM_cpsr = 0x10;
288     if (infop->entry & 1)
289         regs->ARM_cpsr |= CPSR_T;
290     regs->ARM_pc = infop->entry & 0xfffffffe;
291     regs->ARM_sp = infop->start_stack;
292     /* FIXME - what to for failure of get_user()? */
293     get_user_ual(regs->ARM_r2, stack + 8); /* envp */
294     get_user_ual(regs->ARM_r1, stack + 4); /* envp */
295     /* XXX: it seems that r0 is zeroed after ! */
296     regs->ARM_r0 = 0;
297     /* For uClinux PIC binaries.  */
298     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299     regs->ARM_r10 = infop->start_data;
300 }
301 
302 #define ELF_NREG    18
303 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
304 
305 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
306 {
307     (*regs)[0] = tswapreg(env->regs[0]);
308     (*regs)[1] = tswapreg(env->regs[1]);
309     (*regs)[2] = tswapreg(env->regs[2]);
310     (*regs)[3] = tswapreg(env->regs[3]);
311     (*regs)[4] = tswapreg(env->regs[4]);
312     (*regs)[5] = tswapreg(env->regs[5]);
313     (*regs)[6] = tswapreg(env->regs[6]);
314     (*regs)[7] = tswapreg(env->regs[7]);
315     (*regs)[8] = tswapreg(env->regs[8]);
316     (*regs)[9] = tswapreg(env->regs[9]);
317     (*regs)[10] = tswapreg(env->regs[10]);
318     (*regs)[11] = tswapreg(env->regs[11]);
319     (*regs)[12] = tswapreg(env->regs[12]);
320     (*regs)[13] = tswapreg(env->regs[13]);
321     (*regs)[14] = tswapreg(env->regs[14]);
322     (*regs)[15] = tswapreg(env->regs[15]);
323 
324     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
325     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
326 }
327 
328 #define USE_ELF_CORE_DUMP
329 #define ELF_EXEC_PAGESIZE       4096
330 
331 enum
332 {
333     ARM_HWCAP_ARM_SWP       = 1 << 0,
334     ARM_HWCAP_ARM_HALF      = 1 << 1,
335     ARM_HWCAP_ARM_THUMB     = 1 << 2,
336     ARM_HWCAP_ARM_26BIT     = 1 << 3,
337     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
338     ARM_HWCAP_ARM_FPA       = 1 << 5,
339     ARM_HWCAP_ARM_VFP       = 1 << 6,
340     ARM_HWCAP_ARM_EDSP      = 1 << 7,
341     ARM_HWCAP_ARM_JAVA      = 1 << 8,
342     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
343     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
344     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
345     ARM_HWCAP_ARM_NEON      = 1 << 12,
346     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
347     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
348     ARM_HWCAP_ARM_TLS       = 1 << 15,
349     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
350     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
351     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
352     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
353     ARM_HWCAP_ARM_LPAE      = 1 << 20,
354     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
355 };
356 
357 enum {
358     ARM_HWCAP2_ARM_AES      = 1 << 0,
359     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
360     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
361     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
362     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
363 };
364 
365 /* The commpage only exists for 32 bit kernels */
366 
367 #define TARGET_HAS_VALIDATE_GUEST_SPACE
368 /* Return 1 if the proposed guest space is suitable for the guest.
369  * Return 0 if the proposed guest space isn't suitable, but another
370  * address space should be tried.
371  * Return -1 if there is no way the proposed guest space can be
372  * valid regardless of the base.
373  * The guest code may leave a page mapped and populate it if the
374  * address is suitable.
375  */
376 static int validate_guest_space(unsigned long guest_base,
377                                 unsigned long guest_size)
378 {
379     unsigned long real_start, test_page_addr;
380 
381     /* We need to check that we can force a fault on access to the
382      * commpage at 0xffff0fxx
383      */
384     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
385 
386     /* If the commpage lies within the already allocated guest space,
387      * then there is no way we can allocate it.
388      */
389     if (test_page_addr >= guest_base
390         && test_page_addr <= (guest_base + guest_size)) {
391         return -1;
392     }
393 
394     /* Note it needs to be writeable to let us initialise it */
395     real_start = (unsigned long)
396                  mmap((void *)test_page_addr, qemu_host_page_size,
397                      PROT_READ | PROT_WRITE,
398                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
399 
400     /* If we can't map it then try another address */
401     if (real_start == -1ul) {
402         return 0;
403     }
404 
405     if (real_start != test_page_addr) {
406         /* OS didn't put the page where we asked - unmap and reject */
407         munmap((void *)real_start, qemu_host_page_size);
408         return 0;
409     }
410 
411     /* Leave the page mapped
412      * Populate it (mmap should have left it all 0'd)
413      */
414 
415     /* Kernel helper versions */
416     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
417 
418     /* Now it's populated make it RO */
419     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
420         perror("Protecting guest commpage");
421         exit(-1);
422     }
423 
424     return 1; /* All good */
425 }
426 
427 #define ELF_HWCAP get_elf_hwcap()
428 #define ELF_HWCAP2 get_elf_hwcap2()
429 
430 static uint32_t get_elf_hwcap(void)
431 {
432     ARMCPU *cpu = ARM_CPU(thread_cpu);
433     uint32_t hwcaps = 0;
434 
435     hwcaps |= ARM_HWCAP_ARM_SWP;
436     hwcaps |= ARM_HWCAP_ARM_HALF;
437     hwcaps |= ARM_HWCAP_ARM_THUMB;
438     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
439 
440     /* probe for the extra features */
441 #define GET_FEATURE(feat, hwcap) \
442     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
443     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
445     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
446     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
447     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
448     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
449     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
450     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
451     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
452     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
453     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
454     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457      * to our VFP_FP16 feature bit.
458      */
459     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
460     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
461 
462     return hwcaps;
463 }
464 
465 static uint32_t get_elf_hwcap2(void)
466 {
467     ARMCPU *cpu = ARM_CPU(thread_cpu);
468     uint32_t hwcaps = 0;
469 
470     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
471     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
472     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
473     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
474     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
475     return hwcaps;
476 }
477 
478 #undef GET_FEATURE
479 
480 #else
481 /* 64 bit ARM definitions */
482 #define ELF_START_MMAP 0x80000000
483 
484 #define elf_check_arch(x) ((x) == ELF_MACHINE)
485 
486 #define ELF_ARCH        ELF_MACHINE
487 #define ELF_CLASS       ELFCLASS64
488 #define ELF_PLATFORM    "aarch64"
489 
490 static inline void init_thread(struct target_pt_regs *regs,
491                                struct image_info *infop)
492 {
493     abi_long stack = infop->start_stack;
494     memset(regs, 0, sizeof(*regs));
495 
496     regs->pc = infop->entry & ~0x3ULL;
497     regs->sp = stack;
498 }
499 
500 #define ELF_NREG    34
501 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
502 
503 static void elf_core_copy_regs(target_elf_gregset_t *regs,
504                                const CPUARMState *env)
505 {
506     int i;
507 
508     for (i = 0; i < 32; i++) {
509         (*regs)[i] = tswapreg(env->xregs[i]);
510     }
511     (*regs)[32] = tswapreg(env->pc);
512     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
513 }
514 
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE       4096
517 
518 enum {
519     ARM_HWCAP_A64_FP            = 1 << 0,
520     ARM_HWCAP_A64_ASIMD         = 1 << 1,
521     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
522     ARM_HWCAP_A64_AES           = 1 << 3,
523     ARM_HWCAP_A64_PMULL         = 1 << 4,
524     ARM_HWCAP_A64_SHA1          = 1 << 5,
525     ARM_HWCAP_A64_SHA2          = 1 << 6,
526     ARM_HWCAP_A64_CRC32         = 1 << 7,
527 };
528 
529 #define ELF_HWCAP get_elf_hwcap()
530 
531 static uint32_t get_elf_hwcap(void)
532 {
533     ARMCPU *cpu = ARM_CPU(thread_cpu);
534     uint32_t hwcaps = 0;
535 
536     hwcaps |= ARM_HWCAP_A64_FP;
537     hwcaps |= ARM_HWCAP_A64_ASIMD;
538 
539     /* probe for the extra features */
540 #define GET_FEATURE(feat, hwcap) \
541     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
542     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
543     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
544     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
545     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
546     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
547 #undef GET_FEATURE
548 
549     return hwcaps;
550 }
551 
552 #endif /* not TARGET_AARCH64 */
553 #endif /* TARGET_ARM */
554 
555 #ifdef TARGET_UNICORE32
556 
557 #define ELF_START_MMAP          0x80000000
558 
559 #define elf_check_arch(x)       ((x) == EM_UNICORE32)
560 
561 #define ELF_CLASS               ELFCLASS32
562 #define ELF_DATA                ELFDATA2LSB
563 #define ELF_ARCH                EM_UNICORE32
564 
565 static inline void init_thread(struct target_pt_regs *regs,
566         struct image_info *infop)
567 {
568     abi_long stack = infop->start_stack;
569     memset(regs, 0, sizeof(*regs));
570     regs->UC32_REG_asr = 0x10;
571     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
572     regs->UC32_REG_sp = infop->start_stack;
573     /* FIXME - what to for failure of get_user()? */
574     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
575     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
576     /* XXX: it seems that r0 is zeroed after ! */
577     regs->UC32_REG_00 = 0;
578 }
579 
580 #define ELF_NREG    34
581 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
582 
583 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
584 {
585     (*regs)[0] = env->regs[0];
586     (*regs)[1] = env->regs[1];
587     (*regs)[2] = env->regs[2];
588     (*regs)[3] = env->regs[3];
589     (*regs)[4] = env->regs[4];
590     (*regs)[5] = env->regs[5];
591     (*regs)[6] = env->regs[6];
592     (*regs)[7] = env->regs[7];
593     (*regs)[8] = env->regs[8];
594     (*regs)[9] = env->regs[9];
595     (*regs)[10] = env->regs[10];
596     (*regs)[11] = env->regs[11];
597     (*regs)[12] = env->regs[12];
598     (*regs)[13] = env->regs[13];
599     (*regs)[14] = env->regs[14];
600     (*regs)[15] = env->regs[15];
601     (*regs)[16] = env->regs[16];
602     (*regs)[17] = env->regs[17];
603     (*regs)[18] = env->regs[18];
604     (*regs)[19] = env->regs[19];
605     (*regs)[20] = env->regs[20];
606     (*regs)[21] = env->regs[21];
607     (*regs)[22] = env->regs[22];
608     (*regs)[23] = env->regs[23];
609     (*regs)[24] = env->regs[24];
610     (*regs)[25] = env->regs[25];
611     (*regs)[26] = env->regs[26];
612     (*regs)[27] = env->regs[27];
613     (*regs)[28] = env->regs[28];
614     (*regs)[29] = env->regs[29];
615     (*regs)[30] = env->regs[30];
616     (*regs)[31] = env->regs[31];
617 
618     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
619     (*regs)[33] = env->regs[0]; /* XXX */
620 }
621 
622 #define USE_ELF_CORE_DUMP
623 #define ELF_EXEC_PAGESIZE               4096
624 
625 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
626 
627 #endif
628 
629 #ifdef TARGET_SPARC
630 #ifdef TARGET_SPARC64
631 
632 #define ELF_START_MMAP 0x80000000
633 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
635 #ifndef TARGET_ABI32
636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
637 #else
638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
639 #endif
640 
641 #define ELF_CLASS   ELFCLASS64
642 #define ELF_ARCH    EM_SPARCV9
643 
644 #define STACK_BIAS              2047
645 
646 static inline void init_thread(struct target_pt_regs *regs,
647                                struct image_info *infop)
648 {
649 #ifndef TARGET_ABI32
650     regs->tstate = 0;
651 #endif
652     regs->pc = infop->entry;
653     regs->npc = regs->pc + 4;
654     regs->y = 0;
655 #ifdef TARGET_ABI32
656     regs->u_regs[14] = infop->start_stack - 16 * 4;
657 #else
658     if (personality(infop->personality) == PER_LINUX32)
659         regs->u_regs[14] = infop->start_stack - 16 * 4;
660     else
661         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
662 #endif
663 }
664 
665 #else
666 #define ELF_START_MMAP 0x80000000
667 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668                     | HWCAP_SPARC_MULDIV)
669 #define elf_check_arch(x) ( (x) == EM_SPARC )
670 
671 #define ELF_CLASS   ELFCLASS32
672 #define ELF_ARCH    EM_SPARC
673 
674 static inline void init_thread(struct target_pt_regs *regs,
675                                struct image_info *infop)
676 {
677     regs->psr = 0;
678     regs->pc = infop->entry;
679     regs->npc = regs->pc + 4;
680     regs->y = 0;
681     regs->u_regs[14] = infop->start_stack - 16 * 4;
682 }
683 
684 #endif
685 #endif
686 
687 #ifdef TARGET_PPC
688 
689 #define ELF_START_MMAP 0x80000000
690 
691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
692 
693 #define elf_check_arch(x) ( (x) == EM_PPC64 )
694 
695 #define ELF_CLASS       ELFCLASS64
696 
697 #else
698 
699 #define elf_check_arch(x) ( (x) == EM_PPC )
700 
701 #define ELF_CLASS       ELFCLASS32
702 
703 #endif
704 
705 #define ELF_ARCH        EM_PPC
706 
707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708    See arch/powerpc/include/asm/cputable.h.  */
709 enum {
710     QEMU_PPC_FEATURE_32 = 0x80000000,
711     QEMU_PPC_FEATURE_64 = 0x40000000,
712     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
713     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
714     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
715     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
716     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
717     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
718     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
719     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
720     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
721     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
722     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
723     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
724     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
725     QEMU_PPC_FEATURE_CELL = 0x00010000,
726     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
727     QEMU_PPC_FEATURE_SMT = 0x00004000,
728     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
729     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
730     QEMU_PPC_FEATURE_PA6T = 0x00000800,
731     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
732     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
733     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
734     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
735     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
736 
737     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
738     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
739 
740     /* Feature definitions in AT_HWCAP2.  */
741     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
742     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
743     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
744     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
745     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
746     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
747 };
748 
749 #define ELF_HWCAP get_elf_hwcap()
750 
751 static uint32_t get_elf_hwcap(void)
752 {
753     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
754     uint32_t features = 0;
755 
756     /* We don't have to be terribly complete here; the high points are
757        Altivec/FP/SPE support.  Anything else is just a bonus.  */
758 #define GET_FEATURE(flag, feature)                                      \
759     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature)                                      \
761     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
763     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
764     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
765     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
766     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
767     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
768     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
769     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
770     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
771     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
772     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
773                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
774                   QEMU_PPC_FEATURE_ARCH_2_06);
775 #undef GET_FEATURE
776 #undef GET_FEATURE2
777 
778     return features;
779 }
780 
781 #define ELF_HWCAP2 get_elf_hwcap2()
782 
783 static uint32_t get_elf_hwcap2(void)
784 {
785     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
786     uint32_t features = 0;
787 
788 #define GET_FEATURE(flag, feature)                                      \
789     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790 #define GET_FEATURE2(flag, feature)                                      \
791     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
792 
793     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
794     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
795     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
796                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
797 
798 #undef GET_FEATURE
799 #undef GET_FEATURE2
800 
801     return features;
802 }
803 
804 /*
805  * The requirements here are:
806  * - keep the final alignment of sp (sp & 0xf)
807  * - make sure the 32-bit value at the first 16 byte aligned position of
808  *   AUXV is greater than 16 for glibc compatibility.
809  *   AT_IGNOREPPC is used for that.
810  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
811  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
812  */
813 #define DLINFO_ARCH_ITEMS       5
814 #define ARCH_DLINFO                                     \
815     do {                                                \
816         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
817         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
818         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
819         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
820         /*                                              \
821          * Now handle glibc compatibility.              \
822          */                                             \
823         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
824         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
825     } while (0)
826 
827 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
828 {
829     _regs->gpr[1] = infop->start_stack;
830 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
831     if (get_ppc64_abi(infop) < 2) {
832         uint64_t val;
833         get_user_u64(val, infop->entry + 8);
834         _regs->gpr[2] = val + infop->load_bias;
835         get_user_u64(val, infop->entry);
836         infop->entry = val + infop->load_bias;
837     } else {
838         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
839     }
840 #endif
841     _regs->nip = infop->entry;
842 }
843 
844 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
845 #define ELF_NREG 48
846 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
847 
848 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
849 {
850     int i;
851     target_ulong ccr = 0;
852 
853     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
854         (*regs)[i] = tswapreg(env->gpr[i]);
855     }
856 
857     (*regs)[32] = tswapreg(env->nip);
858     (*regs)[33] = tswapreg(env->msr);
859     (*regs)[35] = tswapreg(env->ctr);
860     (*regs)[36] = tswapreg(env->lr);
861     (*regs)[37] = tswapreg(env->xer);
862 
863     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
864         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
865     }
866     (*regs)[38] = tswapreg(ccr);
867 }
868 
869 #define USE_ELF_CORE_DUMP
870 #define ELF_EXEC_PAGESIZE       4096
871 
872 #endif
873 
874 #ifdef TARGET_MIPS
875 
876 #define ELF_START_MMAP 0x80000000
877 
878 #define elf_check_arch(x) ( (x) == EM_MIPS )
879 
880 #ifdef TARGET_MIPS64
881 #define ELF_CLASS   ELFCLASS64
882 #else
883 #define ELF_CLASS   ELFCLASS32
884 #endif
885 #define ELF_ARCH    EM_MIPS
886 
887 static inline void init_thread(struct target_pt_regs *regs,
888                                struct image_info *infop)
889 {
890     regs->cp0_status = 2 << CP0St_KSU;
891     regs->cp0_epc = infop->entry;
892     regs->regs[29] = infop->start_stack;
893 }
894 
895 /* See linux kernel: arch/mips/include/asm/elf.h.  */
896 #define ELF_NREG 45
897 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
898 
899 /* See linux kernel: arch/mips/include/asm/reg.h.  */
900 enum {
901 #ifdef TARGET_MIPS64
902     TARGET_EF_R0 = 0,
903 #else
904     TARGET_EF_R0 = 6,
905 #endif
906     TARGET_EF_R26 = TARGET_EF_R0 + 26,
907     TARGET_EF_R27 = TARGET_EF_R0 + 27,
908     TARGET_EF_LO = TARGET_EF_R0 + 32,
909     TARGET_EF_HI = TARGET_EF_R0 + 33,
910     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
911     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
912     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
913     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
914 };
915 
916 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
917 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
918 {
919     int i;
920 
921     for (i = 0; i < TARGET_EF_R0; i++) {
922         (*regs)[i] = 0;
923     }
924     (*regs)[TARGET_EF_R0] = 0;
925 
926     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
927         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
928     }
929 
930     (*regs)[TARGET_EF_R26] = 0;
931     (*regs)[TARGET_EF_R27] = 0;
932     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
933     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
934     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
935     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
936     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
937     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
938 }
939 
940 #define USE_ELF_CORE_DUMP
941 #define ELF_EXEC_PAGESIZE        4096
942 
943 #endif /* TARGET_MIPS */
944 
945 #ifdef TARGET_MICROBLAZE
946 
947 #define ELF_START_MMAP 0x80000000
948 
949 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
950 
951 #define ELF_CLASS   ELFCLASS32
952 #define ELF_ARCH    EM_MICROBLAZE
953 
954 static inline void init_thread(struct target_pt_regs *regs,
955                                struct image_info *infop)
956 {
957     regs->pc = infop->entry;
958     regs->r1 = infop->start_stack;
959 
960 }
961 
962 #define ELF_EXEC_PAGESIZE        4096
963 
964 #define USE_ELF_CORE_DUMP
965 #define ELF_NREG 38
966 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
967 
968 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
969 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
970 {
971     int i, pos = 0;
972 
973     for (i = 0; i < 32; i++) {
974         (*regs)[pos++] = tswapreg(env->regs[i]);
975     }
976 
977     for (i = 0; i < 6; i++) {
978         (*regs)[pos++] = tswapreg(env->sregs[i]);
979     }
980 }
981 
982 #endif /* TARGET_MICROBLAZE */
983 
984 #ifdef TARGET_OPENRISC
985 
986 #define ELF_START_MMAP 0x08000000
987 
988 #define elf_check_arch(x) ((x) == EM_OPENRISC)
989 
990 #define ELF_ARCH EM_OPENRISC
991 #define ELF_CLASS ELFCLASS32
992 #define ELF_DATA  ELFDATA2MSB
993 
994 static inline void init_thread(struct target_pt_regs *regs,
995                                struct image_info *infop)
996 {
997     regs->pc = infop->entry;
998     regs->gpr[1] = infop->start_stack;
999 }
1000 
1001 #define USE_ELF_CORE_DUMP
1002 #define ELF_EXEC_PAGESIZE 8192
1003 
1004 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1005 #define ELF_NREG 34 /* gprs and pc, sr */
1006 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1007 
1008 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1009                                const CPUOpenRISCState *env)
1010 {
1011     int i;
1012 
1013     for (i = 0; i < 32; i++) {
1014         (*regs)[i] = tswapreg(env->gpr[i]);
1015     }
1016 
1017     (*regs)[32] = tswapreg(env->pc);
1018     (*regs)[33] = tswapreg(env->sr);
1019 }
1020 #define ELF_HWCAP 0
1021 #define ELF_PLATFORM NULL
1022 
1023 #endif /* TARGET_OPENRISC */
1024 
1025 #ifdef TARGET_SH4
1026 
1027 #define ELF_START_MMAP 0x80000000
1028 
1029 #define elf_check_arch(x) ( (x) == EM_SH )
1030 
1031 #define ELF_CLASS ELFCLASS32
1032 #define ELF_ARCH  EM_SH
1033 
1034 static inline void init_thread(struct target_pt_regs *regs,
1035                                struct image_info *infop)
1036 {
1037     /* Check other registers XXXXX */
1038     regs->pc = infop->entry;
1039     regs->regs[15] = infop->start_stack;
1040 }
1041 
1042 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1043 #define ELF_NREG 23
1044 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1045 
1046 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1047 enum {
1048     TARGET_REG_PC = 16,
1049     TARGET_REG_PR = 17,
1050     TARGET_REG_SR = 18,
1051     TARGET_REG_GBR = 19,
1052     TARGET_REG_MACH = 20,
1053     TARGET_REG_MACL = 21,
1054     TARGET_REG_SYSCALL = 22
1055 };
1056 
1057 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1058                                       const CPUSH4State *env)
1059 {
1060     int i;
1061 
1062     for (i = 0; i < 16; i++) {
1063         (*regs[i]) = tswapreg(env->gregs[i]);
1064     }
1065 
1066     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1067     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1068     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1069     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1070     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1071     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1072     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1073 }
1074 
1075 #define USE_ELF_CORE_DUMP
1076 #define ELF_EXEC_PAGESIZE        4096
1077 
1078 #endif
1079 
1080 #ifdef TARGET_CRIS
1081 
1082 #define ELF_START_MMAP 0x80000000
1083 
1084 #define elf_check_arch(x) ( (x) == EM_CRIS )
1085 
1086 #define ELF_CLASS ELFCLASS32
1087 #define ELF_ARCH  EM_CRIS
1088 
1089 static inline void init_thread(struct target_pt_regs *regs,
1090                                struct image_info *infop)
1091 {
1092     regs->erp = infop->entry;
1093 }
1094 
1095 #define ELF_EXEC_PAGESIZE        8192
1096 
1097 #endif
1098 
1099 #ifdef TARGET_M68K
1100 
1101 #define ELF_START_MMAP 0x80000000
1102 
1103 #define elf_check_arch(x) ( (x) == EM_68K )
1104 
1105 #define ELF_CLASS       ELFCLASS32
1106 #define ELF_ARCH        EM_68K
1107 
1108 /* ??? Does this need to do anything?
1109    #define ELF_PLAT_INIT(_r) */
1110 
1111 static inline void init_thread(struct target_pt_regs *regs,
1112                                struct image_info *infop)
1113 {
1114     regs->usp = infop->start_stack;
1115     regs->sr = 0;
1116     regs->pc = infop->entry;
1117 }
1118 
1119 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1120 #define ELF_NREG 20
1121 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1122 
1123 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1124 {
1125     (*regs)[0] = tswapreg(env->dregs[1]);
1126     (*regs)[1] = tswapreg(env->dregs[2]);
1127     (*regs)[2] = tswapreg(env->dregs[3]);
1128     (*regs)[3] = tswapreg(env->dregs[4]);
1129     (*regs)[4] = tswapreg(env->dregs[5]);
1130     (*regs)[5] = tswapreg(env->dregs[6]);
1131     (*regs)[6] = tswapreg(env->dregs[7]);
1132     (*regs)[7] = tswapreg(env->aregs[0]);
1133     (*regs)[8] = tswapreg(env->aregs[1]);
1134     (*regs)[9] = tswapreg(env->aregs[2]);
1135     (*regs)[10] = tswapreg(env->aregs[3]);
1136     (*regs)[11] = tswapreg(env->aregs[4]);
1137     (*regs)[12] = tswapreg(env->aregs[5]);
1138     (*regs)[13] = tswapreg(env->aregs[6]);
1139     (*regs)[14] = tswapreg(env->dregs[0]);
1140     (*regs)[15] = tswapreg(env->aregs[7]);
1141     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1142     (*regs)[17] = tswapreg(env->sr);
1143     (*regs)[18] = tswapreg(env->pc);
1144     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1145 }
1146 
1147 #define USE_ELF_CORE_DUMP
1148 #define ELF_EXEC_PAGESIZE       8192
1149 
1150 #endif
1151 
1152 #ifdef TARGET_ALPHA
1153 
1154 #define ELF_START_MMAP (0x30000000000ULL)
1155 
1156 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1157 
1158 #define ELF_CLASS      ELFCLASS64
1159 #define ELF_ARCH       EM_ALPHA
1160 
1161 static inline void init_thread(struct target_pt_regs *regs,
1162                                struct image_info *infop)
1163 {
1164     regs->pc = infop->entry;
1165     regs->ps = 8;
1166     regs->usp = infop->start_stack;
1167 }
1168 
1169 #define ELF_EXEC_PAGESIZE        8192
1170 
1171 #endif /* TARGET_ALPHA */
1172 
1173 #ifdef TARGET_S390X
1174 
1175 #define ELF_START_MMAP (0x20000000000ULL)
1176 
1177 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1178 
1179 #define ELF_CLASS	ELFCLASS64
1180 #define ELF_DATA	ELFDATA2MSB
1181 #define ELF_ARCH	EM_S390
1182 
1183 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1184 {
1185     regs->psw.addr = infop->entry;
1186     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1187     regs->gprs[15] = infop->start_stack;
1188 }
1189 
1190 #endif /* TARGET_S390X */
1191 
1192 #ifndef ELF_PLATFORM
1193 #define ELF_PLATFORM (NULL)
1194 #endif
1195 
1196 #ifndef ELF_HWCAP
1197 #define ELF_HWCAP 0
1198 #endif
1199 
1200 #ifdef TARGET_ABI32
1201 #undef ELF_CLASS
1202 #define ELF_CLASS ELFCLASS32
1203 #undef bswaptls
1204 #define bswaptls(ptr) bswap32s(ptr)
1205 #endif
1206 
1207 #include "elf.h"
1208 
1209 struct exec
1210 {
1211     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1212     unsigned int a_text;   /* length of text, in bytes */
1213     unsigned int a_data;   /* length of data, in bytes */
1214     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1215     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1216     unsigned int a_entry;  /* start address */
1217     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1218     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1219 };
1220 
1221 
1222 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1223 #define OMAGIC 0407
1224 #define NMAGIC 0410
1225 #define ZMAGIC 0413
1226 #define QMAGIC 0314
1227 
1228 /* Necessary parameters */
1229 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1230 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1231 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1232 
1233 #define DLINFO_ITEMS 14
1234 
1235 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1236 {
1237     memcpy(to, from, n);
1238 }
1239 
1240 #ifdef BSWAP_NEEDED
1241 static void bswap_ehdr(struct elfhdr *ehdr)
1242 {
1243     bswap16s(&ehdr->e_type);            /* Object file type */
1244     bswap16s(&ehdr->e_machine);         /* Architecture */
1245     bswap32s(&ehdr->e_version);         /* Object file version */
1246     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1247     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1248     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1249     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1250     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1251     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1252     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1253     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1254     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1255     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1256 }
1257 
1258 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1259 {
1260     int i;
1261     for (i = 0; i < phnum; ++i, ++phdr) {
1262         bswap32s(&phdr->p_type);        /* Segment type */
1263         bswap32s(&phdr->p_flags);       /* Segment flags */
1264         bswaptls(&phdr->p_offset);      /* Segment file offset */
1265         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1266         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1267         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1268         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1269         bswaptls(&phdr->p_align);       /* Segment alignment */
1270     }
1271 }
1272 
1273 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1274 {
1275     int i;
1276     for (i = 0; i < shnum; ++i, ++shdr) {
1277         bswap32s(&shdr->sh_name);
1278         bswap32s(&shdr->sh_type);
1279         bswaptls(&shdr->sh_flags);
1280         bswaptls(&shdr->sh_addr);
1281         bswaptls(&shdr->sh_offset);
1282         bswaptls(&shdr->sh_size);
1283         bswap32s(&shdr->sh_link);
1284         bswap32s(&shdr->sh_info);
1285         bswaptls(&shdr->sh_addralign);
1286         bswaptls(&shdr->sh_entsize);
1287     }
1288 }
1289 
1290 static void bswap_sym(struct elf_sym *sym)
1291 {
1292     bswap32s(&sym->st_name);
1293     bswaptls(&sym->st_value);
1294     bswaptls(&sym->st_size);
1295     bswap16s(&sym->st_shndx);
1296 }
1297 #else
1298 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1299 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1300 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1301 static inline void bswap_sym(struct elf_sym *sym) { }
1302 #endif
1303 
1304 #ifdef USE_ELF_CORE_DUMP
1305 static int elf_core_dump(int, const CPUArchState *);
1306 #endif /* USE_ELF_CORE_DUMP */
1307 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1308 
1309 /* Verify the portions of EHDR within E_IDENT for the target.
1310    This can be performed before bswapping the entire header.  */
1311 static bool elf_check_ident(struct elfhdr *ehdr)
1312 {
1313     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1314             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1315             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1316             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1317             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1318             && ehdr->e_ident[EI_DATA] == ELF_DATA
1319             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1320 }
1321 
1322 /* Verify the portions of EHDR outside of E_IDENT for the target.
1323    This has to wait until after bswapping the header.  */
1324 static bool elf_check_ehdr(struct elfhdr *ehdr)
1325 {
1326     return (elf_check_arch(ehdr->e_machine)
1327             && ehdr->e_ehsize == sizeof(struct elfhdr)
1328             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1329             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1330 }
1331 
1332 /*
1333  * 'copy_elf_strings()' copies argument/envelope strings from user
1334  * memory to free pages in kernel mem. These are in a format ready
1335  * to be put directly into the top of new user memory.
1336  *
1337  */
1338 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1339                                   abi_ulong p)
1340 {
1341     char *tmp, *tmp1, *pag = NULL;
1342     int len, offset = 0;
1343 
1344     if (!p) {
1345         return 0;       /* bullet-proofing */
1346     }
1347     while (argc-- > 0) {
1348         tmp = argv[argc];
1349         if (!tmp) {
1350             fprintf(stderr, "VFS: argc is wrong");
1351             exit(-1);
1352         }
1353         tmp1 = tmp;
1354         while (*tmp++);
1355         len = tmp - tmp1;
1356         if (p < len) {  /* this shouldn't happen - 128kB */
1357             return 0;
1358         }
1359         while (len) {
1360             --p; --tmp; --len;
1361             if (--offset < 0) {
1362                 offset = p % TARGET_PAGE_SIZE;
1363                 pag = (char *)page[p/TARGET_PAGE_SIZE];
1364                 if (!pag) {
1365                     pag = g_try_malloc0(TARGET_PAGE_SIZE);
1366                     page[p/TARGET_PAGE_SIZE] = pag;
1367                     if (!pag)
1368                         return 0;
1369                 }
1370             }
1371             if (len == 0 || offset == 0) {
1372                 *(pag + offset) = *tmp;
1373             }
1374             else {
1375                 int bytes_to_copy = (len > offset) ? offset : len;
1376                 tmp -= bytes_to_copy;
1377                 p -= bytes_to_copy;
1378                 offset -= bytes_to_copy;
1379                 len -= bytes_to_copy;
1380                 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1381             }
1382         }
1383     }
1384     return p;
1385 }
1386 
1387 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1388                                  struct image_info *info)
1389 {
1390     abi_ulong stack_base, size, error, guard;
1391     int i;
1392 
1393     /* Create enough stack to hold everything.  If we don't use
1394        it for args, we'll use it for something else.  */
1395     size = guest_stack_size;
1396     if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1397         size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1398     }
1399     guard = TARGET_PAGE_SIZE;
1400     if (guard < qemu_real_host_page_size) {
1401         guard = qemu_real_host_page_size;
1402     }
1403 
1404     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1405                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1406     if (error == -1) {
1407         perror("mmap stack");
1408         exit(-1);
1409     }
1410 
1411     /* We reserve one extra page at the top of the stack as guard.  */
1412     target_mprotect(error, guard, PROT_NONE);
1413 
1414     info->stack_limit = error + guard;
1415     stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1416     p += stack_base;
1417 
1418     for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1419         if (bprm->page[i]) {
1420             info->rss++;
1421             /* FIXME - check return value of memcpy_to_target() for failure */
1422             memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1423             g_free(bprm->page[i]);
1424         }
1425         stack_base += TARGET_PAGE_SIZE;
1426     }
1427     return p;
1428 }
1429 
1430 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1431    after the data section (i.e. bss).  */
1432 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1433 {
1434     uintptr_t host_start, host_map_start, host_end;
1435 
1436     last_bss = TARGET_PAGE_ALIGN(last_bss);
1437 
1438     /* ??? There is confusion between qemu_real_host_page_size and
1439        qemu_host_page_size here and elsewhere in target_mmap, which
1440        may lead to the end of the data section mapping from the file
1441        not being mapped.  At least there was an explicit test and
1442        comment for that here, suggesting that "the file size must
1443        be known".  The comment probably pre-dates the introduction
1444        of the fstat system call in target_mmap which does in fact
1445        find out the size.  What isn't clear is if the workaround
1446        here is still actually needed.  For now, continue with it,
1447        but merge it with the "normal" mmap that would allocate the bss.  */
1448 
1449     host_start = (uintptr_t) g2h(elf_bss);
1450     host_end = (uintptr_t) g2h(last_bss);
1451     host_map_start = (host_start + qemu_real_host_page_size - 1);
1452     host_map_start &= -qemu_real_host_page_size;
1453 
1454     if (host_map_start < host_end) {
1455         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1456                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1457         if (p == MAP_FAILED) {
1458             perror("cannot mmap brk");
1459             exit(-1);
1460         }
1461     }
1462 
1463     /* Ensure that the bss page(s) are valid */
1464     if ((page_get_flags(last_bss-1) & prot) != prot) {
1465         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1466     }
1467 
1468     if (host_start < host_map_start) {
1469         memset((void *)host_start, 0, host_map_start - host_start);
1470     }
1471 }
1472 
1473 #ifdef CONFIG_USE_FDPIC
1474 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1475 {
1476     uint16_t n;
1477     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1478 
1479     /* elf32_fdpic_loadseg */
1480     n = info->nsegs;
1481     while (n--) {
1482         sp -= 12;
1483         put_user_u32(loadsegs[n].addr, sp+0);
1484         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1485         put_user_u32(loadsegs[n].p_memsz, sp+8);
1486     }
1487 
1488     /* elf32_fdpic_loadmap */
1489     sp -= 4;
1490     put_user_u16(0, sp+0); /* version */
1491     put_user_u16(info->nsegs, sp+2); /* nsegs */
1492 
1493     info->personality = PER_LINUX_FDPIC;
1494     info->loadmap_addr = sp;
1495 
1496     return sp;
1497 }
1498 #endif
1499 
1500 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1501                                    struct elfhdr *exec,
1502                                    struct image_info *info,
1503                                    struct image_info *interp_info)
1504 {
1505     abi_ulong sp;
1506     abi_ulong sp_auxv;
1507     int size;
1508     int i;
1509     abi_ulong u_rand_bytes;
1510     uint8_t k_rand_bytes[16];
1511     abi_ulong u_platform;
1512     const char *k_platform;
1513     const int n = sizeof(elf_addr_t);
1514 
1515     sp = p;
1516 
1517 #ifdef CONFIG_USE_FDPIC
1518     /* Needs to be before we load the env/argc/... */
1519     if (elf_is_fdpic(exec)) {
1520         /* Need 4 byte alignment for these structs */
1521         sp &= ~3;
1522         sp = loader_build_fdpic_loadmap(info, sp);
1523         info->other_info = interp_info;
1524         if (interp_info) {
1525             interp_info->other_info = info;
1526             sp = loader_build_fdpic_loadmap(interp_info, sp);
1527         }
1528     }
1529 #endif
1530 
1531     u_platform = 0;
1532     k_platform = ELF_PLATFORM;
1533     if (k_platform) {
1534         size_t len = strlen(k_platform) + 1;
1535         sp -= (len + n - 1) & ~(n - 1);
1536         u_platform = sp;
1537         /* FIXME - check return value of memcpy_to_target() for failure */
1538         memcpy_to_target(sp, k_platform, len);
1539     }
1540 
1541     /*
1542      * Generate 16 random bytes for userspace PRNG seeding (not
1543      * cryptically secure but it's not the aim of QEMU).
1544      */
1545     for (i = 0; i < 16; i++) {
1546         k_rand_bytes[i] = rand();
1547     }
1548     sp -= 16;
1549     u_rand_bytes = sp;
1550     /* FIXME - check return value of memcpy_to_target() for failure */
1551     memcpy_to_target(sp, k_rand_bytes, 16);
1552 
1553     /*
1554      * Force 16 byte _final_ alignment here for generality.
1555      */
1556     sp = sp &~ (abi_ulong)15;
1557     size = (DLINFO_ITEMS + 1) * 2;
1558     if (k_platform)
1559         size += 2;
1560 #ifdef DLINFO_ARCH_ITEMS
1561     size += DLINFO_ARCH_ITEMS * 2;
1562 #endif
1563 #ifdef ELF_HWCAP2
1564     size += 2;
1565 #endif
1566     size += envc + argc + 2;
1567     size += 1;  /* argc itself */
1568     size *= n;
1569     if (size & 15)
1570         sp -= 16 - (size & 15);
1571 
1572     /* This is correct because Linux defines
1573      * elf_addr_t as Elf32_Off / Elf64_Off
1574      */
1575 #define NEW_AUX_ENT(id, val) do {               \
1576         sp -= n; put_user_ual(val, sp);         \
1577         sp -= n; put_user_ual(id, sp);          \
1578     } while(0)
1579 
1580     sp_auxv = sp;
1581     NEW_AUX_ENT (AT_NULL, 0);
1582 
1583     /* There must be exactly DLINFO_ITEMS entries here.  */
1584     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1585     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1586     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1587     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1588     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1589     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1590     NEW_AUX_ENT(AT_ENTRY, info->entry);
1591     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1592     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1593     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1594     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1595     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1596     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1597     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1598 
1599 #ifdef ELF_HWCAP2
1600     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1601 #endif
1602 
1603     if (k_platform)
1604         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1605 #ifdef ARCH_DLINFO
1606     /*
1607      * ARCH_DLINFO must come last so platform specific code can enforce
1608      * special alignment requirements on the AUXV if necessary (eg. PPC).
1609      */
1610     ARCH_DLINFO;
1611 #endif
1612 #undef NEW_AUX_ENT
1613 
1614     info->saved_auxv = sp;
1615     info->auxv_len = sp_auxv - sp;
1616 
1617     sp = loader_build_argptr(envc, argc, sp, p, 0);
1618     /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1619     assert(sp_auxv - sp == size);
1620     return sp;
1621 }
1622 
1623 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1624 /* If the guest doesn't have a validation function just agree */
1625 static int validate_guest_space(unsigned long guest_base,
1626                                 unsigned long guest_size)
1627 {
1628     return 1;
1629 }
1630 #endif
1631 
1632 unsigned long init_guest_space(unsigned long host_start,
1633                                unsigned long host_size,
1634                                unsigned long guest_start,
1635                                bool fixed)
1636 {
1637     unsigned long current_start, real_start;
1638     int flags;
1639 
1640     assert(host_start || host_size);
1641 
1642     /* If just a starting address is given, then just verify that
1643      * address.  */
1644     if (host_start && !host_size) {
1645         if (validate_guest_space(host_start, host_size) == 1) {
1646             return host_start;
1647         } else {
1648             return (unsigned long)-1;
1649         }
1650     }
1651 
1652     /* Setup the initial flags and start address.  */
1653     current_start = host_start & qemu_host_page_mask;
1654     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1655     if (fixed) {
1656         flags |= MAP_FIXED;
1657     }
1658 
1659     /* Otherwise, a non-zero size region of memory needs to be mapped
1660      * and validated.  */
1661     while (1) {
1662         unsigned long real_size = host_size;
1663 
1664         /* Do not use mmap_find_vma here because that is limited to the
1665          * guest address space.  We are going to make the
1666          * guest address space fit whatever we're given.
1667          */
1668         real_start = (unsigned long)
1669             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1670         if (real_start == (unsigned long)-1) {
1671             return (unsigned long)-1;
1672         }
1673 
1674         /* Ensure the address is properly aligned.  */
1675         if (real_start & ~qemu_host_page_mask) {
1676             munmap((void *)real_start, host_size);
1677             real_size = host_size + qemu_host_page_size;
1678             real_start = (unsigned long)
1679                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1680             if (real_start == (unsigned long)-1) {
1681                 return (unsigned long)-1;
1682             }
1683             real_start = HOST_PAGE_ALIGN(real_start);
1684         }
1685 
1686         /* Check to see if the address is valid.  */
1687         if (!host_start || real_start == current_start) {
1688             int valid = validate_guest_space(real_start - guest_start,
1689                                              real_size);
1690             if (valid == 1) {
1691                 break;
1692             } else if (valid == -1) {
1693                 return (unsigned long)-1;
1694             }
1695             /* valid == 0, so try again. */
1696         }
1697 
1698         /* That address didn't work.  Unmap and try a different one.
1699          * The address the host picked because is typically right at
1700          * the top of the host address space and leaves the guest with
1701          * no usable address space.  Resort to a linear search.  We
1702          * already compensated for mmap_min_addr, so this should not
1703          * happen often.  Probably means we got unlucky and host
1704          * address space randomization put a shared library somewhere
1705          * inconvenient.
1706          */
1707         munmap((void *)real_start, host_size);
1708         current_start += qemu_host_page_size;
1709         if (host_start == current_start) {
1710             /* Theoretically possible if host doesn't have any suitably
1711              * aligned areas.  Normally the first mmap will fail.
1712              */
1713             return (unsigned long)-1;
1714         }
1715     }
1716 
1717     qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1718 
1719     return real_start;
1720 }
1721 
1722 static void probe_guest_base(const char *image_name,
1723                              abi_ulong loaddr, abi_ulong hiaddr)
1724 {
1725     /* Probe for a suitable guest base address, if the user has not set
1726      * it explicitly, and set guest_base appropriately.
1727      * In case of error we will print a suitable message and exit.
1728      */
1729 #if defined(CONFIG_USE_GUEST_BASE)
1730     const char *errmsg;
1731     if (!have_guest_base && !reserved_va) {
1732         unsigned long host_start, real_start, host_size;
1733 
1734         /* Round addresses to page boundaries.  */
1735         loaddr &= qemu_host_page_mask;
1736         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1737 
1738         if (loaddr < mmap_min_addr) {
1739             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1740         } else {
1741             host_start = loaddr;
1742             if (host_start != loaddr) {
1743                 errmsg = "Address overflow loading ELF binary";
1744                 goto exit_errmsg;
1745             }
1746         }
1747         host_size = hiaddr - loaddr;
1748 
1749         /* Setup the initial guest memory space with ranges gleaned from
1750          * the ELF image that is being loaded.
1751          */
1752         real_start = init_guest_space(host_start, host_size, loaddr, false);
1753         if (real_start == (unsigned long)-1) {
1754             errmsg = "Unable to find space for application";
1755             goto exit_errmsg;
1756         }
1757         guest_base = real_start - loaddr;
1758 
1759         qemu_log("Relocating guest address space from 0x"
1760                  TARGET_ABI_FMT_lx " to 0x%lx\n",
1761                  loaddr, real_start);
1762     }
1763     return;
1764 
1765 exit_errmsg:
1766     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1767     exit(-1);
1768 #endif
1769 }
1770 
1771 
1772 /* Load an ELF image into the address space.
1773 
1774    IMAGE_NAME is the filename of the image, to use in error messages.
1775    IMAGE_FD is the open file descriptor for the image.
1776 
1777    BPRM_BUF is a copy of the beginning of the file; this of course
1778    contains the elf file header at offset 0.  It is assumed that this
1779    buffer is sufficiently aligned to present no problems to the host
1780    in accessing data at aligned offsets within the buffer.
1781 
1782    On return: INFO values will be filled in, as necessary or available.  */
1783 
1784 static void load_elf_image(const char *image_name, int image_fd,
1785                            struct image_info *info, char **pinterp_name,
1786                            char bprm_buf[BPRM_BUF_SIZE])
1787 {
1788     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1789     struct elf_phdr *phdr;
1790     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1791     int i, retval;
1792     const char *errmsg;
1793 
1794     /* First of all, some simple consistency checks */
1795     errmsg = "Invalid ELF image for this architecture";
1796     if (!elf_check_ident(ehdr)) {
1797         goto exit_errmsg;
1798     }
1799     bswap_ehdr(ehdr);
1800     if (!elf_check_ehdr(ehdr)) {
1801         goto exit_errmsg;
1802     }
1803 
1804     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1805     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1806         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1807     } else {
1808         phdr = (struct elf_phdr *) alloca(i);
1809         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1810         if (retval != i) {
1811             goto exit_read;
1812         }
1813     }
1814     bswap_phdr(phdr, ehdr->e_phnum);
1815 
1816 #ifdef CONFIG_USE_FDPIC
1817     info->nsegs = 0;
1818     info->pt_dynamic_addr = 0;
1819 #endif
1820 
1821     /* Find the maximum size of the image and allocate an appropriate
1822        amount of memory to handle that.  */
1823     loaddr = -1, hiaddr = 0;
1824     for (i = 0; i < ehdr->e_phnum; ++i) {
1825         if (phdr[i].p_type == PT_LOAD) {
1826             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1827             if (a < loaddr) {
1828                 loaddr = a;
1829             }
1830             a = phdr[i].p_vaddr + phdr[i].p_memsz;
1831             if (a > hiaddr) {
1832                 hiaddr = a;
1833             }
1834 #ifdef CONFIG_USE_FDPIC
1835             ++info->nsegs;
1836 #endif
1837         }
1838     }
1839 
1840     load_addr = loaddr;
1841     if (ehdr->e_type == ET_DYN) {
1842         /* The image indicates that it can be loaded anywhere.  Find a
1843            location that can hold the memory space required.  If the
1844            image is pre-linked, LOADDR will be non-zero.  Since we do
1845            not supply MAP_FIXED here we'll use that address if and
1846            only if it remains available.  */
1847         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1848                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1849                                 -1, 0);
1850         if (load_addr == -1) {
1851             goto exit_perror;
1852         }
1853     } else if (pinterp_name != NULL) {
1854         /* This is the main executable.  Make sure that the low
1855            address does not conflict with MMAP_MIN_ADDR or the
1856            QEMU application itself.  */
1857         probe_guest_base(image_name, loaddr, hiaddr);
1858     }
1859     load_bias = load_addr - loaddr;
1860 
1861 #ifdef CONFIG_USE_FDPIC
1862     {
1863         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1864             g_malloc(sizeof(*loadsegs) * info->nsegs);
1865 
1866         for (i = 0; i < ehdr->e_phnum; ++i) {
1867             switch (phdr[i].p_type) {
1868             case PT_DYNAMIC:
1869                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1870                 break;
1871             case PT_LOAD:
1872                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1873                 loadsegs->p_vaddr = phdr[i].p_vaddr;
1874                 loadsegs->p_memsz = phdr[i].p_memsz;
1875                 ++loadsegs;
1876                 break;
1877             }
1878         }
1879     }
1880 #endif
1881 
1882     info->load_bias = load_bias;
1883     info->load_addr = load_addr;
1884     info->entry = ehdr->e_entry + load_bias;
1885     info->start_code = -1;
1886     info->end_code = 0;
1887     info->start_data = -1;
1888     info->end_data = 0;
1889     info->brk = 0;
1890     info->elf_flags = ehdr->e_flags;
1891 
1892     for (i = 0; i < ehdr->e_phnum; i++) {
1893         struct elf_phdr *eppnt = phdr + i;
1894         if (eppnt->p_type == PT_LOAD) {
1895             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1896             int elf_prot = 0;
1897 
1898             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1899             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1900             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1901 
1902             vaddr = load_bias + eppnt->p_vaddr;
1903             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1904             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1905 
1906             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1907                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
1908                                 image_fd, eppnt->p_offset - vaddr_po);
1909             if (error == -1) {
1910                 goto exit_perror;
1911             }
1912 
1913             vaddr_ef = vaddr + eppnt->p_filesz;
1914             vaddr_em = vaddr + eppnt->p_memsz;
1915 
1916             /* If the load segment requests extra zeros (e.g. bss), map it.  */
1917             if (vaddr_ef < vaddr_em) {
1918                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1919             }
1920 
1921             /* Find the full program boundaries.  */
1922             if (elf_prot & PROT_EXEC) {
1923                 if (vaddr < info->start_code) {
1924                     info->start_code = vaddr;
1925                 }
1926                 if (vaddr_ef > info->end_code) {
1927                     info->end_code = vaddr_ef;
1928                 }
1929             }
1930             if (elf_prot & PROT_WRITE) {
1931                 if (vaddr < info->start_data) {
1932                     info->start_data = vaddr;
1933                 }
1934                 if (vaddr_ef > info->end_data) {
1935                     info->end_data = vaddr_ef;
1936                 }
1937                 if (vaddr_em > info->brk) {
1938                     info->brk = vaddr_em;
1939                 }
1940             }
1941         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1942             char *interp_name;
1943 
1944             if (*pinterp_name) {
1945                 errmsg = "Multiple PT_INTERP entries";
1946                 goto exit_errmsg;
1947             }
1948             interp_name = malloc(eppnt->p_filesz);
1949             if (!interp_name) {
1950                 goto exit_perror;
1951             }
1952 
1953             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1954                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1955                        eppnt->p_filesz);
1956             } else {
1957                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1958                                eppnt->p_offset);
1959                 if (retval != eppnt->p_filesz) {
1960                     goto exit_perror;
1961                 }
1962             }
1963             if (interp_name[eppnt->p_filesz - 1] != 0) {
1964                 errmsg = "Invalid PT_INTERP entry";
1965                 goto exit_errmsg;
1966             }
1967             *pinterp_name = interp_name;
1968         }
1969     }
1970 
1971     if (info->end_data == 0) {
1972         info->start_data = info->end_code;
1973         info->end_data = info->end_code;
1974         info->brk = info->end_code;
1975     }
1976 
1977     if (qemu_log_enabled()) {
1978         load_symbols(ehdr, image_fd, load_bias);
1979     }
1980 
1981     close(image_fd);
1982     return;
1983 
1984  exit_read:
1985     if (retval >= 0) {
1986         errmsg = "Incomplete read of file header";
1987         goto exit_errmsg;
1988     }
1989  exit_perror:
1990     errmsg = strerror(errno);
1991  exit_errmsg:
1992     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1993     exit(-1);
1994 }
1995 
1996 static void load_elf_interp(const char *filename, struct image_info *info,
1997                             char bprm_buf[BPRM_BUF_SIZE])
1998 {
1999     int fd, retval;
2000 
2001     fd = open(path(filename), O_RDONLY);
2002     if (fd < 0) {
2003         goto exit_perror;
2004     }
2005 
2006     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2007     if (retval < 0) {
2008         goto exit_perror;
2009     }
2010     if (retval < BPRM_BUF_SIZE) {
2011         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2012     }
2013 
2014     load_elf_image(filename, fd, info, NULL, bprm_buf);
2015     return;
2016 
2017  exit_perror:
2018     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2019     exit(-1);
2020 }
2021 
2022 static int symfind(const void *s0, const void *s1)
2023 {
2024     target_ulong addr = *(target_ulong *)s0;
2025     struct elf_sym *sym = (struct elf_sym *)s1;
2026     int result = 0;
2027     if (addr < sym->st_value) {
2028         result = -1;
2029     } else if (addr >= sym->st_value + sym->st_size) {
2030         result = 1;
2031     }
2032     return result;
2033 }
2034 
2035 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2036 {
2037 #if ELF_CLASS == ELFCLASS32
2038     struct elf_sym *syms = s->disas_symtab.elf32;
2039 #else
2040     struct elf_sym *syms = s->disas_symtab.elf64;
2041 #endif
2042 
2043     // binary search
2044     struct elf_sym *sym;
2045 
2046     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2047     if (sym != NULL) {
2048         return s->disas_strtab + sym->st_name;
2049     }
2050 
2051     return "";
2052 }
2053 
2054 /* FIXME: This should use elf_ops.h  */
2055 static int symcmp(const void *s0, const void *s1)
2056 {
2057     struct elf_sym *sym0 = (struct elf_sym *)s0;
2058     struct elf_sym *sym1 = (struct elf_sym *)s1;
2059     return (sym0->st_value < sym1->st_value)
2060         ? -1
2061         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2062 }
2063 
2064 /* Best attempt to load symbols from this ELF object. */
2065 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2066 {
2067     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2068     struct elf_shdr *shdr;
2069     char *strings = NULL;
2070     struct syminfo *s = NULL;
2071     struct elf_sym *new_syms, *syms = NULL;
2072 
2073     shnum = hdr->e_shnum;
2074     i = shnum * sizeof(struct elf_shdr);
2075     shdr = (struct elf_shdr *)alloca(i);
2076     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2077         return;
2078     }
2079 
2080     bswap_shdr(shdr, shnum);
2081     for (i = 0; i < shnum; ++i) {
2082         if (shdr[i].sh_type == SHT_SYMTAB) {
2083             sym_idx = i;
2084             str_idx = shdr[i].sh_link;
2085             goto found;
2086         }
2087     }
2088 
2089     /* There will be no symbol table if the file was stripped.  */
2090     return;
2091 
2092  found:
2093     /* Now know where the strtab and symtab are.  Snarf them.  */
2094     s = malloc(sizeof(*s));
2095     if (!s) {
2096         goto give_up;
2097     }
2098 
2099     i = shdr[str_idx].sh_size;
2100     s->disas_strtab = strings = malloc(i);
2101     if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2102         goto give_up;
2103     }
2104 
2105     i = shdr[sym_idx].sh_size;
2106     syms = malloc(i);
2107     if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2108         goto give_up;
2109     }
2110 
2111     nsyms = i / sizeof(struct elf_sym);
2112     for (i = 0; i < nsyms; ) {
2113         bswap_sym(syms + i);
2114         /* Throw away entries which we do not need.  */
2115         if (syms[i].st_shndx == SHN_UNDEF
2116             || syms[i].st_shndx >= SHN_LORESERVE
2117             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2118             if (i < --nsyms) {
2119                 syms[i] = syms[nsyms];
2120             }
2121         } else {
2122 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2123             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2124             syms[i].st_value &= ~(target_ulong)1;
2125 #endif
2126             syms[i].st_value += load_bias;
2127             i++;
2128         }
2129     }
2130 
2131     /* No "useful" symbol.  */
2132     if (nsyms == 0) {
2133         goto give_up;
2134     }
2135 
2136     /* Attempt to free the storage associated with the local symbols
2137        that we threw away.  Whether or not this has any effect on the
2138        memory allocation depends on the malloc implementation and how
2139        many symbols we managed to discard.  */
2140     new_syms = realloc(syms, nsyms * sizeof(*syms));
2141     if (new_syms == NULL) {
2142         goto give_up;
2143     }
2144     syms = new_syms;
2145 
2146     qsort(syms, nsyms, sizeof(*syms), symcmp);
2147 
2148     s->disas_num_syms = nsyms;
2149 #if ELF_CLASS == ELFCLASS32
2150     s->disas_symtab.elf32 = syms;
2151 #else
2152     s->disas_symtab.elf64 = syms;
2153 #endif
2154     s->lookup_symbol = lookup_symbolxx;
2155     s->next = syminfos;
2156     syminfos = s;
2157 
2158     return;
2159 
2160 give_up:
2161     free(s);
2162     free(strings);
2163     free(syms);
2164 }
2165 
2166 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2167 {
2168     struct image_info interp_info;
2169     struct elfhdr elf_ex;
2170     char *elf_interpreter = NULL;
2171 
2172     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2173     info->mmap = 0;
2174     info->rss = 0;
2175 
2176     load_elf_image(bprm->filename, bprm->fd, info,
2177                    &elf_interpreter, bprm->buf);
2178 
2179     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2180        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2181        when we load the interpreter.  */
2182     elf_ex = *(struct elfhdr *)bprm->buf;
2183 
2184     bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2185     bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2186     bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2187     if (!bprm->p) {
2188         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2189         exit(-1);
2190     }
2191 
2192     /* Do this so that we can load the interpreter, if need be.  We will
2193        change some of these later */
2194     bprm->p = setup_arg_pages(bprm->p, bprm, info);
2195 
2196     if (elf_interpreter) {
2197         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2198 
2199         /* If the program interpreter is one of these two, then assume
2200            an iBCS2 image.  Otherwise assume a native linux image.  */
2201 
2202         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2203             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2204             info->personality = PER_SVR4;
2205 
2206             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2207                and some applications "depend" upon this behavior.  Since
2208                we do not have the power to recompile these, we emulate
2209                the SVr4 behavior.  Sigh.  */
2210             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2211                         MAP_FIXED | MAP_PRIVATE, -1, 0);
2212         }
2213     }
2214 
2215     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2216                                 info, (elf_interpreter ? &interp_info : NULL));
2217     info->start_stack = bprm->p;
2218 
2219     /* If we have an interpreter, set that as the program's entry point.
2220        Copy the load_bias as well, to help PPC64 interpret the entry
2221        point as a function descriptor.  Do this after creating elf tables
2222        so that we copy the original program entry point into the AUXV.  */
2223     if (elf_interpreter) {
2224         info->load_bias = interp_info.load_bias;
2225         info->entry = interp_info.entry;
2226         free(elf_interpreter);
2227     }
2228 
2229 #ifdef USE_ELF_CORE_DUMP
2230     bprm->core_dump = &elf_core_dump;
2231 #endif
2232 
2233     return 0;
2234 }
2235 
2236 #ifdef USE_ELF_CORE_DUMP
2237 /*
2238  * Definitions to generate Intel SVR4-like core files.
2239  * These mostly have the same names as the SVR4 types with "target_elf_"
2240  * tacked on the front to prevent clashes with linux definitions,
2241  * and the typedef forms have been avoided.  This is mostly like
2242  * the SVR4 structure, but more Linuxy, with things that Linux does
2243  * not support and which gdb doesn't really use excluded.
2244  *
2245  * Fields we don't dump (their contents is zero) in linux-user qemu
2246  * are marked with XXX.
2247  *
2248  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2249  *
2250  * Porting ELF coredump for target is (quite) simple process.  First you
2251  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2252  * the target resides):
2253  *
2254  * #define USE_ELF_CORE_DUMP
2255  *
2256  * Next you define type of register set used for dumping.  ELF specification
2257  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2258  *
2259  * typedef <target_regtype> target_elf_greg_t;
2260  * #define ELF_NREG <number of registers>
2261  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2262  *
2263  * Last step is to implement target specific function that copies registers
2264  * from given cpu into just specified register set.  Prototype is:
2265  *
2266  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2267  *                                const CPUArchState *env);
2268  *
2269  * Parameters:
2270  *     regs - copy register values into here (allocated and zeroed by caller)
2271  *     env - copy registers from here
2272  *
2273  * Example for ARM target is provided in this file.
2274  */
2275 
2276 /* An ELF note in memory */
2277 struct memelfnote {
2278     const char *name;
2279     size_t     namesz;
2280     size_t     namesz_rounded;
2281     int        type;
2282     size_t     datasz;
2283     size_t     datasz_rounded;
2284     void       *data;
2285     size_t     notesz;
2286 };
2287 
2288 struct target_elf_siginfo {
2289     abi_int    si_signo; /* signal number */
2290     abi_int    si_code;  /* extra code */
2291     abi_int    si_errno; /* errno */
2292 };
2293 
2294 struct target_elf_prstatus {
2295     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2296     abi_short          pr_cursig;    /* Current signal */
2297     abi_ulong          pr_sigpend;   /* XXX */
2298     abi_ulong          pr_sighold;   /* XXX */
2299     target_pid_t       pr_pid;
2300     target_pid_t       pr_ppid;
2301     target_pid_t       pr_pgrp;
2302     target_pid_t       pr_sid;
2303     struct target_timeval pr_utime;  /* XXX User time */
2304     struct target_timeval pr_stime;  /* XXX System time */
2305     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2306     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2307     target_elf_gregset_t      pr_reg;       /* GP registers */
2308     abi_int            pr_fpvalid;   /* XXX */
2309 };
2310 
2311 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2312 
2313 struct target_elf_prpsinfo {
2314     char         pr_state;       /* numeric process state */
2315     char         pr_sname;       /* char for pr_state */
2316     char         pr_zomb;        /* zombie */
2317     char         pr_nice;        /* nice val */
2318     abi_ulong    pr_flag;        /* flags */
2319     target_uid_t pr_uid;
2320     target_gid_t pr_gid;
2321     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2322     /* Lots missing */
2323     char    pr_fname[16];           /* filename of executable */
2324     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2325 };
2326 
2327 /* Here is the structure in which status of each thread is captured. */
2328 struct elf_thread_status {
2329     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2330     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2331 #if 0
2332     elf_fpregset_t fpu;             /* NT_PRFPREG */
2333     struct task_struct *thread;
2334     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2335 #endif
2336     struct memelfnote notes[1];
2337     int num_notes;
2338 };
2339 
2340 struct elf_note_info {
2341     struct memelfnote   *notes;
2342     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2343     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2344 
2345     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2346 #if 0
2347     /*
2348      * Current version of ELF coredump doesn't support
2349      * dumping fp regs etc.
2350      */
2351     elf_fpregset_t *fpu;
2352     elf_fpxregset_t *xfpu;
2353     int thread_status_size;
2354 #endif
2355     int notes_size;
2356     int numnote;
2357 };
2358 
2359 struct vm_area_struct {
2360     target_ulong   vma_start;  /* start vaddr of memory region */
2361     target_ulong   vma_end;    /* end vaddr of memory region */
2362     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2363     QTAILQ_ENTRY(vm_area_struct) vma_link;
2364 };
2365 
2366 struct mm_struct {
2367     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2368     int mm_count;           /* number of mappings */
2369 };
2370 
2371 static struct mm_struct *vma_init(void);
2372 static void vma_delete(struct mm_struct *);
2373 static int vma_add_mapping(struct mm_struct *, target_ulong,
2374                            target_ulong, abi_ulong);
2375 static int vma_get_mapping_count(const struct mm_struct *);
2376 static struct vm_area_struct *vma_first(const struct mm_struct *);
2377 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2378 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2379 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2380                       unsigned long flags);
2381 
2382 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2383 static void fill_note(struct memelfnote *, const char *, int,
2384                       unsigned int, void *);
2385 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2386 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2387 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2388 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2389 static size_t note_size(const struct memelfnote *);
2390 static void free_note_info(struct elf_note_info *);
2391 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2392 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2393 static int core_dump_filename(const TaskState *, char *, size_t);
2394 
2395 static int dump_write(int, const void *, size_t);
2396 static int write_note(struct memelfnote *, int);
2397 static int write_note_info(struct elf_note_info *, int);
2398 
2399 #ifdef BSWAP_NEEDED
2400 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2401 {
2402     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2403     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2404     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2405     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2406     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2407     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2408     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2409     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2410     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2411     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2412     /* cpu times are not filled, so we skip them */
2413     /* regs should be in correct format already */
2414     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2415 }
2416 
2417 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2418 {
2419     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2420     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2421     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2422     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2423     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2424     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2425     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2426 }
2427 
2428 static void bswap_note(struct elf_note *en)
2429 {
2430     bswap32s(&en->n_namesz);
2431     bswap32s(&en->n_descsz);
2432     bswap32s(&en->n_type);
2433 }
2434 #else
2435 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2436 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2437 static inline void bswap_note(struct elf_note *en) { }
2438 #endif /* BSWAP_NEEDED */
2439 
2440 /*
2441  * Minimal support for linux memory regions.  These are needed
2442  * when we are finding out what memory exactly belongs to
2443  * emulated process.  No locks needed here, as long as
2444  * thread that received the signal is stopped.
2445  */
2446 
2447 static struct mm_struct *vma_init(void)
2448 {
2449     struct mm_struct *mm;
2450 
2451     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2452         return (NULL);
2453 
2454     mm->mm_count = 0;
2455     QTAILQ_INIT(&mm->mm_mmap);
2456 
2457     return (mm);
2458 }
2459 
2460 static void vma_delete(struct mm_struct *mm)
2461 {
2462     struct vm_area_struct *vma;
2463 
2464     while ((vma = vma_first(mm)) != NULL) {
2465         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2466         g_free(vma);
2467     }
2468     g_free(mm);
2469 }
2470 
2471 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2472                            target_ulong end, abi_ulong flags)
2473 {
2474     struct vm_area_struct *vma;
2475 
2476     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2477         return (-1);
2478 
2479     vma->vma_start = start;
2480     vma->vma_end = end;
2481     vma->vma_flags = flags;
2482 
2483     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2484     mm->mm_count++;
2485 
2486     return (0);
2487 }
2488 
2489 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2490 {
2491     return (QTAILQ_FIRST(&mm->mm_mmap));
2492 }
2493 
2494 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2495 {
2496     return (QTAILQ_NEXT(vma, vma_link));
2497 }
2498 
2499 static int vma_get_mapping_count(const struct mm_struct *mm)
2500 {
2501     return (mm->mm_count);
2502 }
2503 
2504 /*
2505  * Calculate file (dump) size of given memory region.
2506  */
2507 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2508 {
2509     /* if we cannot even read the first page, skip it */
2510     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2511         return (0);
2512 
2513     /*
2514      * Usually we don't dump executable pages as they contain
2515      * non-writable code that debugger can read directly from
2516      * target library etc.  However, thread stacks are marked
2517      * also executable so we read in first page of given region
2518      * and check whether it contains elf header.  If there is
2519      * no elf header, we dump it.
2520      */
2521     if (vma->vma_flags & PROT_EXEC) {
2522         char page[TARGET_PAGE_SIZE];
2523 
2524         copy_from_user(page, vma->vma_start, sizeof (page));
2525         if ((page[EI_MAG0] == ELFMAG0) &&
2526             (page[EI_MAG1] == ELFMAG1) &&
2527             (page[EI_MAG2] == ELFMAG2) &&
2528             (page[EI_MAG3] == ELFMAG3)) {
2529             /*
2530              * Mappings are possibly from ELF binary.  Don't dump
2531              * them.
2532              */
2533             return (0);
2534         }
2535     }
2536 
2537     return (vma->vma_end - vma->vma_start);
2538 }
2539 
2540 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2541                       unsigned long flags)
2542 {
2543     struct mm_struct *mm = (struct mm_struct *)priv;
2544 
2545     vma_add_mapping(mm, start, end, flags);
2546     return (0);
2547 }
2548 
2549 static void fill_note(struct memelfnote *note, const char *name, int type,
2550                       unsigned int sz, void *data)
2551 {
2552     unsigned int namesz;
2553 
2554     namesz = strlen(name) + 1;
2555     note->name = name;
2556     note->namesz = namesz;
2557     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2558     note->type = type;
2559     note->datasz = sz;
2560     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2561 
2562     note->data = data;
2563 
2564     /*
2565      * We calculate rounded up note size here as specified by
2566      * ELF document.
2567      */
2568     note->notesz = sizeof (struct elf_note) +
2569         note->namesz_rounded + note->datasz_rounded;
2570 }
2571 
2572 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2573                             uint32_t flags)
2574 {
2575     (void) memset(elf, 0, sizeof(*elf));
2576 
2577     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2578     elf->e_ident[EI_CLASS] = ELF_CLASS;
2579     elf->e_ident[EI_DATA] = ELF_DATA;
2580     elf->e_ident[EI_VERSION] = EV_CURRENT;
2581     elf->e_ident[EI_OSABI] = ELF_OSABI;
2582 
2583     elf->e_type = ET_CORE;
2584     elf->e_machine = machine;
2585     elf->e_version = EV_CURRENT;
2586     elf->e_phoff = sizeof(struct elfhdr);
2587     elf->e_flags = flags;
2588     elf->e_ehsize = sizeof(struct elfhdr);
2589     elf->e_phentsize = sizeof(struct elf_phdr);
2590     elf->e_phnum = segs;
2591 
2592     bswap_ehdr(elf);
2593 }
2594 
2595 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2596 {
2597     phdr->p_type = PT_NOTE;
2598     phdr->p_offset = offset;
2599     phdr->p_vaddr = 0;
2600     phdr->p_paddr = 0;
2601     phdr->p_filesz = sz;
2602     phdr->p_memsz = 0;
2603     phdr->p_flags = 0;
2604     phdr->p_align = 0;
2605 
2606     bswap_phdr(phdr, 1);
2607 }
2608 
2609 static size_t note_size(const struct memelfnote *note)
2610 {
2611     return (note->notesz);
2612 }
2613 
2614 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2615                           const TaskState *ts, int signr)
2616 {
2617     (void) memset(prstatus, 0, sizeof (*prstatus));
2618     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2619     prstatus->pr_pid = ts->ts_tid;
2620     prstatus->pr_ppid = getppid();
2621     prstatus->pr_pgrp = getpgrp();
2622     prstatus->pr_sid = getsid(0);
2623 
2624     bswap_prstatus(prstatus);
2625 }
2626 
2627 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2628 {
2629     char *base_filename;
2630     unsigned int i, len;
2631 
2632     (void) memset(psinfo, 0, sizeof (*psinfo));
2633 
2634     len = ts->info->arg_end - ts->info->arg_start;
2635     if (len >= ELF_PRARGSZ)
2636         len = ELF_PRARGSZ - 1;
2637     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2638         return -EFAULT;
2639     for (i = 0; i < len; i++)
2640         if (psinfo->pr_psargs[i] == 0)
2641             psinfo->pr_psargs[i] = ' ';
2642     psinfo->pr_psargs[len] = 0;
2643 
2644     psinfo->pr_pid = getpid();
2645     psinfo->pr_ppid = getppid();
2646     psinfo->pr_pgrp = getpgrp();
2647     psinfo->pr_sid = getsid(0);
2648     psinfo->pr_uid = getuid();
2649     psinfo->pr_gid = getgid();
2650 
2651     base_filename = g_path_get_basename(ts->bprm->filename);
2652     /*
2653      * Using strncpy here is fine: at max-length,
2654      * this field is not NUL-terminated.
2655      */
2656     (void) strncpy(psinfo->pr_fname, base_filename,
2657                    sizeof(psinfo->pr_fname));
2658 
2659     g_free(base_filename);
2660     bswap_psinfo(psinfo);
2661     return (0);
2662 }
2663 
2664 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2665 {
2666     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2667     elf_addr_t orig_auxv = auxv;
2668     void *ptr;
2669     int len = ts->info->auxv_len;
2670 
2671     /*
2672      * Auxiliary vector is stored in target process stack.  It contains
2673      * {type, value} pairs that we need to dump into note.  This is not
2674      * strictly necessary but we do it here for sake of completeness.
2675      */
2676 
2677     /* read in whole auxv vector and copy it to memelfnote */
2678     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2679     if (ptr != NULL) {
2680         fill_note(note, "CORE", NT_AUXV, len, ptr);
2681         unlock_user(ptr, auxv, len);
2682     }
2683 }
2684 
2685 /*
2686  * Constructs name of coredump file.  We have following convention
2687  * for the name:
2688  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2689  *
2690  * Returns 0 in case of success, -1 otherwise (errno is set).
2691  */
2692 static int core_dump_filename(const TaskState *ts, char *buf,
2693                               size_t bufsize)
2694 {
2695     char timestamp[64];
2696     char *filename = NULL;
2697     char *base_filename = NULL;
2698     struct timeval tv;
2699     struct tm tm;
2700 
2701     assert(bufsize >= PATH_MAX);
2702 
2703     if (gettimeofday(&tv, NULL) < 0) {
2704         (void) fprintf(stderr, "unable to get current timestamp: %s",
2705                        strerror(errno));
2706         return (-1);
2707     }
2708 
2709     filename = strdup(ts->bprm->filename);
2710     base_filename = strdup(basename(filename));
2711     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2712                     localtime_r(&tv.tv_sec, &tm));
2713     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2714                     base_filename, timestamp, (int)getpid());
2715     free(base_filename);
2716     free(filename);
2717 
2718     return (0);
2719 }
2720 
2721 static int dump_write(int fd, const void *ptr, size_t size)
2722 {
2723     const char *bufp = (const char *)ptr;
2724     ssize_t bytes_written, bytes_left;
2725     struct rlimit dumpsize;
2726     off_t pos;
2727 
2728     bytes_written = 0;
2729     getrlimit(RLIMIT_CORE, &dumpsize);
2730     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2731         if (errno == ESPIPE) { /* not a seekable stream */
2732             bytes_left = size;
2733         } else {
2734             return pos;
2735         }
2736     } else {
2737         if (dumpsize.rlim_cur <= pos) {
2738             return -1;
2739         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2740             bytes_left = size;
2741         } else {
2742             size_t limit_left=dumpsize.rlim_cur - pos;
2743             bytes_left = limit_left >= size ? size : limit_left ;
2744         }
2745     }
2746 
2747     /*
2748      * In normal conditions, single write(2) should do but
2749      * in case of socket etc. this mechanism is more portable.
2750      */
2751     do {
2752         bytes_written = write(fd, bufp, bytes_left);
2753         if (bytes_written < 0) {
2754             if (errno == EINTR)
2755                 continue;
2756             return (-1);
2757         } else if (bytes_written == 0) { /* eof */
2758             return (-1);
2759         }
2760         bufp += bytes_written;
2761         bytes_left -= bytes_written;
2762     } while (bytes_left > 0);
2763 
2764     return (0);
2765 }
2766 
2767 static int write_note(struct memelfnote *men, int fd)
2768 {
2769     struct elf_note en;
2770 
2771     en.n_namesz = men->namesz;
2772     en.n_type = men->type;
2773     en.n_descsz = men->datasz;
2774 
2775     bswap_note(&en);
2776 
2777     if (dump_write(fd, &en, sizeof(en)) != 0)
2778         return (-1);
2779     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2780         return (-1);
2781     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2782         return (-1);
2783 
2784     return (0);
2785 }
2786 
2787 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2788 {
2789     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2790     TaskState *ts = (TaskState *)cpu->opaque;
2791     struct elf_thread_status *ets;
2792 
2793     ets = g_malloc0(sizeof (*ets));
2794     ets->num_notes = 1; /* only prstatus is dumped */
2795     fill_prstatus(&ets->prstatus, ts, 0);
2796     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2797     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2798               &ets->prstatus);
2799 
2800     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2801 
2802     info->notes_size += note_size(&ets->notes[0]);
2803 }
2804 
2805 static void init_note_info(struct elf_note_info *info)
2806 {
2807     /* Initialize the elf_note_info structure so that it is at
2808      * least safe to call free_note_info() on it. Must be
2809      * called before calling fill_note_info().
2810      */
2811     memset(info, 0, sizeof (*info));
2812     QTAILQ_INIT(&info->thread_list);
2813 }
2814 
2815 static int fill_note_info(struct elf_note_info *info,
2816                           long signr, const CPUArchState *env)
2817 {
2818 #define NUMNOTES 3
2819     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2820     TaskState *ts = (TaskState *)cpu->opaque;
2821     int i;
2822 
2823     info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2824     if (info->notes == NULL)
2825         return (-ENOMEM);
2826     info->prstatus = g_malloc0(sizeof (*info->prstatus));
2827     if (info->prstatus == NULL)
2828         return (-ENOMEM);
2829     info->psinfo = g_malloc0(sizeof (*info->psinfo));
2830     if (info->prstatus == NULL)
2831         return (-ENOMEM);
2832 
2833     /*
2834      * First fill in status (and registers) of current thread
2835      * including process info & aux vector.
2836      */
2837     fill_prstatus(info->prstatus, ts, signr);
2838     elf_core_copy_regs(&info->prstatus->pr_reg, env);
2839     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2840               sizeof (*info->prstatus), info->prstatus);
2841     fill_psinfo(info->psinfo, ts);
2842     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2843               sizeof (*info->psinfo), info->psinfo);
2844     fill_auxv_note(&info->notes[2], ts);
2845     info->numnote = 3;
2846 
2847     info->notes_size = 0;
2848     for (i = 0; i < info->numnote; i++)
2849         info->notes_size += note_size(&info->notes[i]);
2850 
2851     /* read and fill status of all threads */
2852     cpu_list_lock();
2853     CPU_FOREACH(cpu) {
2854         if (cpu == thread_cpu) {
2855             continue;
2856         }
2857         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2858     }
2859     cpu_list_unlock();
2860 
2861     return (0);
2862 }
2863 
2864 static void free_note_info(struct elf_note_info *info)
2865 {
2866     struct elf_thread_status *ets;
2867 
2868     while (!QTAILQ_EMPTY(&info->thread_list)) {
2869         ets = QTAILQ_FIRST(&info->thread_list);
2870         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2871         g_free(ets);
2872     }
2873 
2874     g_free(info->prstatus);
2875     g_free(info->psinfo);
2876     g_free(info->notes);
2877 }
2878 
2879 static int write_note_info(struct elf_note_info *info, int fd)
2880 {
2881     struct elf_thread_status *ets;
2882     int i, error = 0;
2883 
2884     /* write prstatus, psinfo and auxv for current thread */
2885     for (i = 0; i < info->numnote; i++)
2886         if ((error = write_note(&info->notes[i], fd)) != 0)
2887             return (error);
2888 
2889     /* write prstatus for each thread */
2890     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
2891         if ((error = write_note(&ets->notes[0], fd)) != 0)
2892             return (error);
2893     }
2894 
2895     return (0);
2896 }
2897 
2898 /*
2899  * Write out ELF coredump.
2900  *
2901  * See documentation of ELF object file format in:
2902  * http://www.caldera.com/developers/devspecs/gabi41.pdf
2903  *
2904  * Coredump format in linux is following:
2905  *
2906  * 0   +----------------------+         \
2907  *     | ELF header           | ET_CORE  |
2908  *     +----------------------+          |
2909  *     | ELF program headers  |          |--- headers
2910  *     | - NOTE section       |          |
2911  *     | - PT_LOAD sections   |          |
2912  *     +----------------------+         /
2913  *     | NOTEs:               |
2914  *     | - NT_PRSTATUS        |
2915  *     | - NT_PRSINFO         |
2916  *     | - NT_AUXV            |
2917  *     +----------------------+ <-- aligned to target page
2918  *     | Process memory dump  |
2919  *     :                      :
2920  *     .                      .
2921  *     :                      :
2922  *     |                      |
2923  *     +----------------------+
2924  *
2925  * NT_PRSTATUS -> struct elf_prstatus (per thread)
2926  * NT_PRSINFO  -> struct elf_prpsinfo
2927  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2928  *
2929  * Format follows System V format as close as possible.  Current
2930  * version limitations are as follows:
2931  *     - no floating point registers are dumped
2932  *
2933  * Function returns 0 in case of success, negative errno otherwise.
2934  *
2935  * TODO: make this work also during runtime: it should be
2936  * possible to force coredump from running process and then
2937  * continue processing.  For example qemu could set up SIGUSR2
2938  * handler (provided that target process haven't registered
2939  * handler for that) that does the dump when signal is received.
2940  */
2941 static int elf_core_dump(int signr, const CPUArchState *env)
2942 {
2943     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2944     const TaskState *ts = (const TaskState *)cpu->opaque;
2945     struct vm_area_struct *vma = NULL;
2946     char corefile[PATH_MAX];
2947     struct elf_note_info info;
2948     struct elfhdr elf;
2949     struct elf_phdr phdr;
2950     struct rlimit dumpsize;
2951     struct mm_struct *mm = NULL;
2952     off_t offset = 0, data_offset = 0;
2953     int segs = 0;
2954     int fd = -1;
2955 
2956     init_note_info(&info);
2957 
2958     errno = 0;
2959     getrlimit(RLIMIT_CORE, &dumpsize);
2960     if (dumpsize.rlim_cur == 0)
2961         return 0;
2962 
2963     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2964         return (-errno);
2965 
2966     if ((fd = open(corefile, O_WRONLY | O_CREAT,
2967                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2968         return (-errno);
2969 
2970     /*
2971      * Walk through target process memory mappings and
2972      * set up structure containing this information.  After
2973      * this point vma_xxx functions can be used.
2974      */
2975     if ((mm = vma_init()) == NULL)
2976         goto out;
2977 
2978     walk_memory_regions(mm, vma_walker);
2979     segs = vma_get_mapping_count(mm);
2980 
2981     /*
2982      * Construct valid coredump ELF header.  We also
2983      * add one more segment for notes.
2984      */
2985     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2986     if (dump_write(fd, &elf, sizeof (elf)) != 0)
2987         goto out;
2988 
2989     /* fill in in-memory version of notes */
2990     if (fill_note_info(&info, signr, env) < 0)
2991         goto out;
2992 
2993     offset += sizeof (elf);                             /* elf header */
2994     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
2995 
2996     /* write out notes program header */
2997     fill_elf_note_phdr(&phdr, info.notes_size, offset);
2998 
2999     offset += info.notes_size;
3000     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3001         goto out;
3002 
3003     /*
3004      * ELF specification wants data to start at page boundary so
3005      * we align it here.
3006      */
3007     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3008 
3009     /*
3010      * Write program headers for memory regions mapped in
3011      * the target process.
3012      */
3013     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3014         (void) memset(&phdr, 0, sizeof (phdr));
3015 
3016         phdr.p_type = PT_LOAD;
3017         phdr.p_offset = offset;
3018         phdr.p_vaddr = vma->vma_start;
3019         phdr.p_paddr = 0;
3020         phdr.p_filesz = vma_dump_size(vma);
3021         offset += phdr.p_filesz;
3022         phdr.p_memsz = vma->vma_end - vma->vma_start;
3023         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3024         if (vma->vma_flags & PROT_WRITE)
3025             phdr.p_flags |= PF_W;
3026         if (vma->vma_flags & PROT_EXEC)
3027             phdr.p_flags |= PF_X;
3028         phdr.p_align = ELF_EXEC_PAGESIZE;
3029 
3030         bswap_phdr(&phdr, 1);
3031         dump_write(fd, &phdr, sizeof (phdr));
3032     }
3033 
3034     /*
3035      * Next we write notes just after program headers.  No
3036      * alignment needed here.
3037      */
3038     if (write_note_info(&info, fd) < 0)
3039         goto out;
3040 
3041     /* align data to page boundary */
3042     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3043         goto out;
3044 
3045     /*
3046      * Finally we can dump process memory into corefile as well.
3047      */
3048     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3049         abi_ulong addr;
3050         abi_ulong end;
3051 
3052         end = vma->vma_start + vma_dump_size(vma);
3053 
3054         for (addr = vma->vma_start; addr < end;
3055              addr += TARGET_PAGE_SIZE) {
3056             char page[TARGET_PAGE_SIZE];
3057             int error;
3058 
3059             /*
3060              *  Read in page from target process memory and
3061              *  write it to coredump file.
3062              */
3063             error = copy_from_user(page, addr, sizeof (page));
3064             if (error != 0) {
3065                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3066                                addr);
3067                 errno = -error;
3068                 goto out;
3069             }
3070             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3071                 goto out;
3072         }
3073     }
3074 
3075  out:
3076     free_note_info(&info);
3077     if (mm != NULL)
3078         vma_delete(mm);
3079     (void) close(fd);
3080 
3081     if (errno != 0)
3082         return (-errno);
3083     return (0);
3084 }
3085 #endif /* USE_ELF_CORE_DUMP */
3086 
3087 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3088 {
3089     init_thread(regs, infop);
3090 }
3091