1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 int info_is_fdpic(struct image_info *info) 82 { 83 return info->personality == PER_LINUX_FDPIC; 84 } 85 86 /* this flag is uneffective under linux too, should be deleted */ 87 #ifndef MAP_DENYWRITE 88 #define MAP_DENYWRITE 0 89 #endif 90 91 /* should probably go in elf.h */ 92 #ifndef ELIBBAD 93 #define ELIBBAD 80 94 #endif 95 96 #ifdef TARGET_WORDS_BIGENDIAN 97 #define ELF_DATA ELFDATA2MSB 98 #else 99 #define ELF_DATA ELFDATA2LSB 100 #endif 101 102 #ifdef TARGET_ABI_MIPSN32 103 typedef abi_ullong target_elf_greg_t; 104 #define tswapreg(ptr) tswap64(ptr) 105 #else 106 typedef abi_ulong target_elf_greg_t; 107 #define tswapreg(ptr) tswapal(ptr) 108 #endif 109 110 #ifdef USE_UID16 111 typedef abi_ushort target_uid_t; 112 typedef abi_ushort target_gid_t; 113 #else 114 typedef abi_uint target_uid_t; 115 typedef abi_uint target_gid_t; 116 #endif 117 typedef abi_int target_pid_t; 118 119 #ifdef TARGET_I386 120 121 #define ELF_PLATFORM get_elf_platform() 122 123 static const char *get_elf_platform(void) 124 { 125 static char elf_platform[] = "i386"; 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 127 if (family > 6) 128 family = 6; 129 if (family >= 3) 130 elf_platform[1] = '0' + family; 131 return elf_platform; 132 } 133 134 #define ELF_HWCAP get_elf_hwcap() 135 136 static uint32_t get_elf_hwcap(void) 137 { 138 X86CPU *cpu = X86_CPU(thread_cpu); 139 140 return cpu->env.features[FEAT_1_EDX]; 141 } 142 143 #ifdef TARGET_X86_64 144 #define ELF_START_MMAP 0x2aaaaab000ULL 145 146 #define ELF_CLASS ELFCLASS64 147 #define ELF_ARCH EM_X86_64 148 149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 150 { 151 regs->rax = 0; 152 regs->rsp = infop->start_stack; 153 regs->rip = infop->entry; 154 } 155 156 #define ELF_NREG 27 157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 158 159 /* 160 * Note that ELF_NREG should be 29 as there should be place for 161 * TRAPNO and ERR "registers" as well but linux doesn't dump 162 * those. 163 * 164 * See linux kernel: arch/x86/include/asm/elf.h 165 */ 166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 167 { 168 (*regs)[0] = env->regs[15]; 169 (*regs)[1] = env->regs[14]; 170 (*regs)[2] = env->regs[13]; 171 (*regs)[3] = env->regs[12]; 172 (*regs)[4] = env->regs[R_EBP]; 173 (*regs)[5] = env->regs[R_EBX]; 174 (*regs)[6] = env->regs[11]; 175 (*regs)[7] = env->regs[10]; 176 (*regs)[8] = env->regs[9]; 177 (*regs)[9] = env->regs[8]; 178 (*regs)[10] = env->regs[R_EAX]; 179 (*regs)[11] = env->regs[R_ECX]; 180 (*regs)[12] = env->regs[R_EDX]; 181 (*regs)[13] = env->regs[R_ESI]; 182 (*regs)[14] = env->regs[R_EDI]; 183 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 184 (*regs)[16] = env->eip; 185 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 186 (*regs)[18] = env->eflags; 187 (*regs)[19] = env->regs[R_ESP]; 188 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 189 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 190 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 191 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 192 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 193 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 194 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 195 } 196 197 #else 198 199 #define ELF_START_MMAP 0x80000000 200 201 /* 202 * This is used to ensure we don't load something for the wrong architecture. 203 */ 204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 205 206 /* 207 * These are used to set parameters in the core dumps. 208 */ 209 #define ELF_CLASS ELFCLASS32 210 #define ELF_ARCH EM_386 211 212 static inline void init_thread(struct target_pt_regs *regs, 213 struct image_info *infop) 214 { 215 regs->esp = infop->start_stack; 216 regs->eip = infop->entry; 217 218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 219 starts %edx contains a pointer to a function which might be 220 registered using `atexit'. This provides a mean for the 221 dynamic linker to call DT_FINI functions for shared libraries 222 that have been loaded before the code runs. 223 224 A value of 0 tells we have no such handler. */ 225 regs->edx = 0; 226 } 227 228 #define ELF_NREG 17 229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 230 231 /* 232 * Note that ELF_NREG should be 19 as there should be place for 233 * TRAPNO and ERR "registers" as well but linux doesn't dump 234 * those. 235 * 236 * See linux kernel: arch/x86/include/asm/elf.h 237 */ 238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 239 { 240 (*regs)[0] = env->regs[R_EBX]; 241 (*regs)[1] = env->regs[R_ECX]; 242 (*regs)[2] = env->regs[R_EDX]; 243 (*regs)[3] = env->regs[R_ESI]; 244 (*regs)[4] = env->regs[R_EDI]; 245 (*regs)[5] = env->regs[R_EBP]; 246 (*regs)[6] = env->regs[R_EAX]; 247 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 248 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 249 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 250 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 251 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 252 (*regs)[12] = env->eip; 253 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 254 (*regs)[14] = env->eflags; 255 (*regs)[15] = env->regs[R_ESP]; 256 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 257 } 258 #endif 259 260 #define USE_ELF_CORE_DUMP 261 #define ELF_EXEC_PAGESIZE 4096 262 263 #endif 264 265 #ifdef TARGET_ARM 266 267 #ifndef TARGET_AARCH64 268 /* 32 bit ARM definitions */ 269 270 #define ELF_START_MMAP 0x80000000 271 272 #define ELF_ARCH EM_ARM 273 #define ELF_CLASS ELFCLASS32 274 275 static inline void init_thread(struct target_pt_regs *regs, 276 struct image_info *infop) 277 { 278 abi_long stack = infop->start_stack; 279 memset(regs, 0, sizeof(*regs)); 280 281 regs->uregs[16] = ARM_CPU_MODE_USR; 282 if (infop->entry & 1) { 283 regs->uregs[16] |= CPSR_T; 284 } 285 regs->uregs[15] = infop->entry & 0xfffffffe; 286 regs->uregs[13] = infop->start_stack; 287 /* FIXME - what to for failure of get_user()? */ 288 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 289 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 290 /* XXX: it seems that r0 is zeroed after ! */ 291 regs->uregs[0] = 0; 292 /* For uClinux PIC binaries. */ 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 294 regs->uregs[10] = infop->start_data; 295 296 /* Support ARM FDPIC. */ 297 if (info_is_fdpic(infop)) { 298 /* As described in the ABI document, r7 points to the loadmap info 299 * prepared by the kernel. If an interpreter is needed, r8 points 300 * to the interpreter loadmap and r9 points to the interpreter 301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 302 * r9 points to the main program PT_DYNAMIC info. 303 */ 304 regs->uregs[7] = infop->loadmap_addr; 305 if (infop->interpreter_loadmap_addr) { 306 /* Executable is dynamically loaded. */ 307 regs->uregs[8] = infop->interpreter_loadmap_addr; 308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 309 } else { 310 regs->uregs[8] = 0; 311 regs->uregs[9] = infop->pt_dynamic_addr; 312 } 313 } 314 } 315 316 #define ELF_NREG 18 317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 318 319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 320 { 321 (*regs)[0] = tswapreg(env->regs[0]); 322 (*regs)[1] = tswapreg(env->regs[1]); 323 (*regs)[2] = tswapreg(env->regs[2]); 324 (*regs)[3] = tswapreg(env->regs[3]); 325 (*regs)[4] = tswapreg(env->regs[4]); 326 (*regs)[5] = tswapreg(env->regs[5]); 327 (*regs)[6] = tswapreg(env->regs[6]); 328 (*regs)[7] = tswapreg(env->regs[7]); 329 (*regs)[8] = tswapreg(env->regs[8]); 330 (*regs)[9] = tswapreg(env->regs[9]); 331 (*regs)[10] = tswapreg(env->regs[10]); 332 (*regs)[11] = tswapreg(env->regs[11]); 333 (*regs)[12] = tswapreg(env->regs[12]); 334 (*regs)[13] = tswapreg(env->regs[13]); 335 (*regs)[14] = tswapreg(env->regs[14]); 336 (*regs)[15] = tswapreg(env->regs[15]); 337 338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 340 } 341 342 #define USE_ELF_CORE_DUMP 343 #define ELF_EXEC_PAGESIZE 4096 344 345 enum 346 { 347 ARM_HWCAP_ARM_SWP = 1 << 0, 348 ARM_HWCAP_ARM_HALF = 1 << 1, 349 ARM_HWCAP_ARM_THUMB = 1 << 2, 350 ARM_HWCAP_ARM_26BIT = 1 << 3, 351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 352 ARM_HWCAP_ARM_FPA = 1 << 5, 353 ARM_HWCAP_ARM_VFP = 1 << 6, 354 ARM_HWCAP_ARM_EDSP = 1 << 7, 355 ARM_HWCAP_ARM_JAVA = 1 << 8, 356 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 357 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 358 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 359 ARM_HWCAP_ARM_NEON = 1 << 12, 360 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 362 ARM_HWCAP_ARM_TLS = 1 << 15, 363 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 364 ARM_HWCAP_ARM_IDIVA = 1 << 17, 365 ARM_HWCAP_ARM_IDIVT = 1 << 18, 366 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 367 ARM_HWCAP_ARM_LPAE = 1 << 20, 368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 369 }; 370 371 enum { 372 ARM_HWCAP2_ARM_AES = 1 << 0, 373 ARM_HWCAP2_ARM_PMULL = 1 << 1, 374 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 375 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 376 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 377 }; 378 379 /* The commpage only exists for 32 bit kernels */ 380 381 /* Return 1 if the proposed guest space is suitable for the guest. 382 * Return 0 if the proposed guest space isn't suitable, but another 383 * address space should be tried. 384 * Return -1 if there is no way the proposed guest space can be 385 * valid regardless of the base. 386 * The guest code may leave a page mapped and populate it if the 387 * address is suitable. 388 */ 389 static int init_guest_commpage(unsigned long guest_base, 390 unsigned long guest_size) 391 { 392 unsigned long real_start, test_page_addr; 393 394 /* We need to check that we can force a fault on access to the 395 * commpage at 0xffff0fxx 396 */ 397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 398 399 /* If the commpage lies within the already allocated guest space, 400 * then there is no way we can allocate it. 401 * 402 * You may be thinking that that this check is redundant because 403 * we already validated the guest size against MAX_RESERVED_VA; 404 * but if qemu_host_page_mask is unusually large, then 405 * test_page_addr may be lower. 406 */ 407 if (test_page_addr >= guest_base 408 && test_page_addr < (guest_base + guest_size)) { 409 return -1; 410 } 411 412 /* Note it needs to be writeable to let us initialise it */ 413 real_start = (unsigned long) 414 mmap((void *)test_page_addr, qemu_host_page_size, 415 PROT_READ | PROT_WRITE, 416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 417 418 /* If we can't map it then try another address */ 419 if (real_start == -1ul) { 420 return 0; 421 } 422 423 if (real_start != test_page_addr) { 424 /* OS didn't put the page where we asked - unmap and reject */ 425 munmap((void *)real_start, qemu_host_page_size); 426 return 0; 427 } 428 429 /* Leave the page mapped 430 * Populate it (mmap should have left it all 0'd) 431 */ 432 433 /* Kernel helper versions */ 434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 435 436 /* Now it's populated make it RO */ 437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 438 perror("Protecting guest commpage"); 439 exit(-1); 440 } 441 442 return 1; /* All good */ 443 } 444 445 #define ELF_HWCAP get_elf_hwcap() 446 #define ELF_HWCAP2 get_elf_hwcap2() 447 448 static uint32_t get_elf_hwcap(void) 449 { 450 ARMCPU *cpu = ARM_CPU(thread_cpu); 451 uint32_t hwcaps = 0; 452 453 hwcaps |= ARM_HWCAP_ARM_SWP; 454 hwcaps |= ARM_HWCAP_ARM_HALF; 455 hwcaps |= ARM_HWCAP_ARM_THUMB; 456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 457 458 /* probe for the extra features */ 459 #define GET_FEATURE(feat, hwcap) \ 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 461 462 #define GET_FEATURE_ID(feat, hwcap) \ 463 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 464 465 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 466 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 467 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 468 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 469 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 470 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 471 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 472 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 473 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 474 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA); 475 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT); 476 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 477 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 478 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 479 * to our VFP_FP16 feature bit. 480 */ 481 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 482 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 483 484 return hwcaps; 485 } 486 487 static uint32_t get_elf_hwcap2(void) 488 { 489 ARMCPU *cpu = ARM_CPU(thread_cpu); 490 uint32_t hwcaps = 0; 491 492 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 493 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 494 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 495 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 496 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 497 return hwcaps; 498 } 499 500 #undef GET_FEATURE 501 #undef GET_FEATURE_ID 502 503 #else 504 /* 64 bit ARM definitions */ 505 #define ELF_START_MMAP 0x80000000 506 507 #define ELF_ARCH EM_AARCH64 508 #define ELF_CLASS ELFCLASS64 509 #define ELF_PLATFORM "aarch64" 510 511 static inline void init_thread(struct target_pt_regs *regs, 512 struct image_info *infop) 513 { 514 abi_long stack = infop->start_stack; 515 memset(regs, 0, sizeof(*regs)); 516 517 regs->pc = infop->entry & ~0x3ULL; 518 regs->sp = stack; 519 } 520 521 #define ELF_NREG 34 522 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 523 524 static void elf_core_copy_regs(target_elf_gregset_t *regs, 525 const CPUARMState *env) 526 { 527 int i; 528 529 for (i = 0; i < 32; i++) { 530 (*regs)[i] = tswapreg(env->xregs[i]); 531 } 532 (*regs)[32] = tswapreg(env->pc); 533 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 534 } 535 536 #define USE_ELF_CORE_DUMP 537 #define ELF_EXEC_PAGESIZE 4096 538 539 enum { 540 ARM_HWCAP_A64_FP = 1 << 0, 541 ARM_HWCAP_A64_ASIMD = 1 << 1, 542 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 543 ARM_HWCAP_A64_AES = 1 << 3, 544 ARM_HWCAP_A64_PMULL = 1 << 4, 545 ARM_HWCAP_A64_SHA1 = 1 << 5, 546 ARM_HWCAP_A64_SHA2 = 1 << 6, 547 ARM_HWCAP_A64_CRC32 = 1 << 7, 548 ARM_HWCAP_A64_ATOMICS = 1 << 8, 549 ARM_HWCAP_A64_FPHP = 1 << 9, 550 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 551 ARM_HWCAP_A64_CPUID = 1 << 11, 552 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 553 ARM_HWCAP_A64_JSCVT = 1 << 13, 554 ARM_HWCAP_A64_FCMA = 1 << 14, 555 ARM_HWCAP_A64_LRCPC = 1 << 15, 556 ARM_HWCAP_A64_DCPOP = 1 << 16, 557 ARM_HWCAP_A64_SHA3 = 1 << 17, 558 ARM_HWCAP_A64_SM3 = 1 << 18, 559 ARM_HWCAP_A64_SM4 = 1 << 19, 560 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 561 ARM_HWCAP_A64_SHA512 = 1 << 21, 562 ARM_HWCAP_A64_SVE = 1 << 22, 563 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 564 ARM_HWCAP_A64_DIT = 1 << 24, 565 ARM_HWCAP_A64_USCAT = 1 << 25, 566 ARM_HWCAP_A64_ILRCPC = 1 << 26, 567 ARM_HWCAP_A64_FLAGM = 1 << 27, 568 ARM_HWCAP_A64_SSBS = 1 << 28, 569 ARM_HWCAP_A64_SB = 1 << 29, 570 ARM_HWCAP_A64_PACA = 1 << 30, 571 ARM_HWCAP_A64_PACG = 1UL << 31, 572 }; 573 574 #define ELF_HWCAP get_elf_hwcap() 575 576 static uint32_t get_elf_hwcap(void) 577 { 578 ARMCPU *cpu = ARM_CPU(thread_cpu); 579 uint32_t hwcaps = 0; 580 581 hwcaps |= ARM_HWCAP_A64_FP; 582 hwcaps |= ARM_HWCAP_A64_ASIMD; 583 hwcaps |= ARM_HWCAP_A64_CPUID; 584 585 /* probe for the extra features */ 586 #define GET_FEATURE_ID(feat, hwcap) \ 587 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 588 589 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 590 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 591 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 592 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 593 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 594 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 595 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 596 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 597 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 598 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 599 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 600 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 601 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 602 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 603 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 604 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 605 606 #undef GET_FEATURE_ID 607 608 return hwcaps; 609 } 610 611 #endif /* not TARGET_AARCH64 */ 612 #endif /* TARGET_ARM */ 613 614 #ifdef TARGET_SPARC 615 #ifdef TARGET_SPARC64 616 617 #define ELF_START_MMAP 0x80000000 618 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 619 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 620 #ifndef TARGET_ABI32 621 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 622 #else 623 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 624 #endif 625 626 #define ELF_CLASS ELFCLASS64 627 #define ELF_ARCH EM_SPARCV9 628 629 #define STACK_BIAS 2047 630 631 static inline void init_thread(struct target_pt_regs *regs, 632 struct image_info *infop) 633 { 634 #ifndef TARGET_ABI32 635 regs->tstate = 0; 636 #endif 637 regs->pc = infop->entry; 638 regs->npc = regs->pc + 4; 639 regs->y = 0; 640 #ifdef TARGET_ABI32 641 regs->u_regs[14] = infop->start_stack - 16 * 4; 642 #else 643 if (personality(infop->personality) == PER_LINUX32) 644 regs->u_regs[14] = infop->start_stack - 16 * 4; 645 else 646 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 647 #endif 648 } 649 650 #else 651 #define ELF_START_MMAP 0x80000000 652 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 653 | HWCAP_SPARC_MULDIV) 654 655 #define ELF_CLASS ELFCLASS32 656 #define ELF_ARCH EM_SPARC 657 658 static inline void init_thread(struct target_pt_regs *regs, 659 struct image_info *infop) 660 { 661 regs->psr = 0; 662 regs->pc = infop->entry; 663 regs->npc = regs->pc + 4; 664 regs->y = 0; 665 regs->u_regs[14] = infop->start_stack - 16 * 4; 666 } 667 668 #endif 669 #endif 670 671 #ifdef TARGET_PPC 672 673 #define ELF_MACHINE PPC_ELF_MACHINE 674 #define ELF_START_MMAP 0x80000000 675 676 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 677 678 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 679 680 #define ELF_CLASS ELFCLASS64 681 682 #else 683 684 #define ELF_CLASS ELFCLASS32 685 686 #endif 687 688 #define ELF_ARCH EM_PPC 689 690 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 691 See arch/powerpc/include/asm/cputable.h. */ 692 enum { 693 QEMU_PPC_FEATURE_32 = 0x80000000, 694 QEMU_PPC_FEATURE_64 = 0x40000000, 695 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 696 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 697 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 698 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 699 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 700 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 701 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 702 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 703 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 704 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 705 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 706 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 707 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 708 QEMU_PPC_FEATURE_CELL = 0x00010000, 709 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 710 QEMU_PPC_FEATURE_SMT = 0x00004000, 711 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 712 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 713 QEMU_PPC_FEATURE_PA6T = 0x00000800, 714 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 715 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 716 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 717 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 718 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 719 720 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 721 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 722 723 /* Feature definitions in AT_HWCAP2. */ 724 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 725 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 726 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 727 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 728 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 729 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 730 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 731 }; 732 733 #define ELF_HWCAP get_elf_hwcap() 734 735 static uint32_t get_elf_hwcap(void) 736 { 737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 738 uint32_t features = 0; 739 740 /* We don't have to be terribly complete here; the high points are 741 Altivec/FP/SPE support. Anything else is just a bonus. */ 742 #define GET_FEATURE(flag, feature) \ 743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 744 #define GET_FEATURE2(flags, feature) \ 745 do { \ 746 if ((cpu->env.insns_flags2 & flags) == flags) { \ 747 features |= feature; \ 748 } \ 749 } while (0) 750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 762 QEMU_PPC_FEATURE_ARCH_2_06); 763 #undef GET_FEATURE 764 #undef GET_FEATURE2 765 766 return features; 767 } 768 769 #define ELF_HWCAP2 get_elf_hwcap2() 770 771 static uint32_t get_elf_hwcap2(void) 772 { 773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 774 uint32_t features = 0; 775 776 #define GET_FEATURE(flag, feature) \ 777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 778 #define GET_FEATURE2(flag, feature) \ 779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 780 781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 785 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00); 786 787 #undef GET_FEATURE 788 #undef GET_FEATURE2 789 790 return features; 791 } 792 793 /* 794 * The requirements here are: 795 * - keep the final alignment of sp (sp & 0xf) 796 * - make sure the 32-bit value at the first 16 byte aligned position of 797 * AUXV is greater than 16 for glibc compatibility. 798 * AT_IGNOREPPC is used for that. 799 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 800 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 801 */ 802 #define DLINFO_ARCH_ITEMS 5 803 #define ARCH_DLINFO \ 804 do { \ 805 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 806 /* \ 807 * Handle glibc compatibility: these magic entries must \ 808 * be at the lowest addresses in the final auxv. \ 809 */ \ 810 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 811 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 812 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 813 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 814 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 815 } while (0) 816 817 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 818 { 819 _regs->gpr[1] = infop->start_stack; 820 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 821 if (get_ppc64_abi(infop) < 2) { 822 uint64_t val; 823 get_user_u64(val, infop->entry + 8); 824 _regs->gpr[2] = val + infop->load_bias; 825 get_user_u64(val, infop->entry); 826 infop->entry = val + infop->load_bias; 827 } else { 828 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 829 } 830 #endif 831 _regs->nip = infop->entry; 832 } 833 834 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 835 #define ELF_NREG 48 836 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 837 838 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 839 { 840 int i; 841 target_ulong ccr = 0; 842 843 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 844 (*regs)[i] = tswapreg(env->gpr[i]); 845 } 846 847 (*regs)[32] = tswapreg(env->nip); 848 (*regs)[33] = tswapreg(env->msr); 849 (*regs)[35] = tswapreg(env->ctr); 850 (*regs)[36] = tswapreg(env->lr); 851 (*regs)[37] = tswapreg(env->xer); 852 853 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 854 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 855 } 856 (*regs)[38] = tswapreg(ccr); 857 } 858 859 #define USE_ELF_CORE_DUMP 860 #define ELF_EXEC_PAGESIZE 4096 861 862 #endif 863 864 #ifdef TARGET_MIPS 865 866 #define ELF_START_MMAP 0x80000000 867 868 #ifdef TARGET_MIPS64 869 #define ELF_CLASS ELFCLASS64 870 #else 871 #define ELF_CLASS ELFCLASS32 872 #endif 873 #define ELF_ARCH EM_MIPS 874 875 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 876 877 static inline void init_thread(struct target_pt_regs *regs, 878 struct image_info *infop) 879 { 880 regs->cp0_status = 2 << CP0St_KSU; 881 regs->cp0_epc = infop->entry; 882 regs->regs[29] = infop->start_stack; 883 } 884 885 /* See linux kernel: arch/mips/include/asm/elf.h. */ 886 #define ELF_NREG 45 887 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 888 889 /* See linux kernel: arch/mips/include/asm/reg.h. */ 890 enum { 891 #ifdef TARGET_MIPS64 892 TARGET_EF_R0 = 0, 893 #else 894 TARGET_EF_R0 = 6, 895 #endif 896 TARGET_EF_R26 = TARGET_EF_R0 + 26, 897 TARGET_EF_R27 = TARGET_EF_R0 + 27, 898 TARGET_EF_LO = TARGET_EF_R0 + 32, 899 TARGET_EF_HI = TARGET_EF_R0 + 33, 900 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 901 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 902 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 903 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 904 }; 905 906 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 907 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 908 { 909 int i; 910 911 for (i = 0; i < TARGET_EF_R0; i++) { 912 (*regs)[i] = 0; 913 } 914 (*regs)[TARGET_EF_R0] = 0; 915 916 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 917 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 918 } 919 920 (*regs)[TARGET_EF_R26] = 0; 921 (*regs)[TARGET_EF_R27] = 0; 922 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 923 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 924 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 925 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 926 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 927 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 928 } 929 930 #define USE_ELF_CORE_DUMP 931 #define ELF_EXEC_PAGESIZE 4096 932 933 /* See arch/mips/include/uapi/asm/hwcap.h. */ 934 enum { 935 HWCAP_MIPS_R6 = (1 << 0), 936 HWCAP_MIPS_MSA = (1 << 1), 937 }; 938 939 #define ELF_HWCAP get_elf_hwcap() 940 941 static uint32_t get_elf_hwcap(void) 942 { 943 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 944 uint32_t hwcaps = 0; 945 946 #define GET_FEATURE(flag, hwcap) \ 947 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 948 949 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 950 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 951 952 #undef GET_FEATURE 953 954 return hwcaps; 955 } 956 957 #endif /* TARGET_MIPS */ 958 959 #ifdef TARGET_MICROBLAZE 960 961 #define ELF_START_MMAP 0x80000000 962 963 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 964 965 #define ELF_CLASS ELFCLASS32 966 #define ELF_ARCH EM_MICROBLAZE 967 968 static inline void init_thread(struct target_pt_regs *regs, 969 struct image_info *infop) 970 { 971 regs->pc = infop->entry; 972 regs->r1 = infop->start_stack; 973 974 } 975 976 #define ELF_EXEC_PAGESIZE 4096 977 978 #define USE_ELF_CORE_DUMP 979 #define ELF_NREG 38 980 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 981 982 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 983 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 984 { 985 int i, pos = 0; 986 987 for (i = 0; i < 32; i++) { 988 (*regs)[pos++] = tswapreg(env->regs[i]); 989 } 990 991 for (i = 0; i < 6; i++) { 992 (*regs)[pos++] = tswapreg(env->sregs[i]); 993 } 994 } 995 996 #endif /* TARGET_MICROBLAZE */ 997 998 #ifdef TARGET_NIOS2 999 1000 #define ELF_START_MMAP 0x80000000 1001 1002 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1003 1004 #define ELF_CLASS ELFCLASS32 1005 #define ELF_ARCH EM_ALTERA_NIOS2 1006 1007 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1008 { 1009 regs->ea = infop->entry; 1010 regs->sp = infop->start_stack; 1011 regs->estatus = 0x3; 1012 } 1013 1014 #define ELF_EXEC_PAGESIZE 4096 1015 1016 #define USE_ELF_CORE_DUMP 1017 #define ELF_NREG 49 1018 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1019 1020 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1021 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1022 const CPUNios2State *env) 1023 { 1024 int i; 1025 1026 (*regs)[0] = -1; 1027 for (i = 1; i < 8; i++) /* r0-r7 */ 1028 (*regs)[i] = tswapreg(env->regs[i + 7]); 1029 1030 for (i = 8; i < 16; i++) /* r8-r15 */ 1031 (*regs)[i] = tswapreg(env->regs[i - 8]); 1032 1033 for (i = 16; i < 24; i++) /* r16-r23 */ 1034 (*regs)[i] = tswapreg(env->regs[i + 7]); 1035 (*regs)[24] = -1; /* R_ET */ 1036 (*regs)[25] = -1; /* R_BT */ 1037 (*regs)[26] = tswapreg(env->regs[R_GP]); 1038 (*regs)[27] = tswapreg(env->regs[R_SP]); 1039 (*regs)[28] = tswapreg(env->regs[R_FP]); 1040 (*regs)[29] = tswapreg(env->regs[R_EA]); 1041 (*regs)[30] = -1; /* R_SSTATUS */ 1042 (*regs)[31] = tswapreg(env->regs[R_RA]); 1043 1044 (*regs)[32] = tswapreg(env->regs[R_PC]); 1045 1046 (*regs)[33] = -1; /* R_STATUS */ 1047 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1048 1049 for (i = 35; i < 49; i++) /* ... */ 1050 (*regs)[i] = -1; 1051 } 1052 1053 #endif /* TARGET_NIOS2 */ 1054 1055 #ifdef TARGET_OPENRISC 1056 1057 #define ELF_START_MMAP 0x08000000 1058 1059 #define ELF_ARCH EM_OPENRISC 1060 #define ELF_CLASS ELFCLASS32 1061 #define ELF_DATA ELFDATA2MSB 1062 1063 static inline void init_thread(struct target_pt_regs *regs, 1064 struct image_info *infop) 1065 { 1066 regs->pc = infop->entry; 1067 regs->gpr[1] = infop->start_stack; 1068 } 1069 1070 #define USE_ELF_CORE_DUMP 1071 #define ELF_EXEC_PAGESIZE 8192 1072 1073 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1074 #define ELF_NREG 34 /* gprs and pc, sr */ 1075 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1076 1077 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1078 const CPUOpenRISCState *env) 1079 { 1080 int i; 1081 1082 for (i = 0; i < 32; i++) { 1083 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1084 } 1085 (*regs)[32] = tswapreg(env->pc); 1086 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1087 } 1088 #define ELF_HWCAP 0 1089 #define ELF_PLATFORM NULL 1090 1091 #endif /* TARGET_OPENRISC */ 1092 1093 #ifdef TARGET_SH4 1094 1095 #define ELF_START_MMAP 0x80000000 1096 1097 #define ELF_CLASS ELFCLASS32 1098 #define ELF_ARCH EM_SH 1099 1100 static inline void init_thread(struct target_pt_regs *regs, 1101 struct image_info *infop) 1102 { 1103 /* Check other registers XXXXX */ 1104 regs->pc = infop->entry; 1105 regs->regs[15] = infop->start_stack; 1106 } 1107 1108 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1109 #define ELF_NREG 23 1110 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1111 1112 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1113 enum { 1114 TARGET_REG_PC = 16, 1115 TARGET_REG_PR = 17, 1116 TARGET_REG_SR = 18, 1117 TARGET_REG_GBR = 19, 1118 TARGET_REG_MACH = 20, 1119 TARGET_REG_MACL = 21, 1120 TARGET_REG_SYSCALL = 22 1121 }; 1122 1123 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1124 const CPUSH4State *env) 1125 { 1126 int i; 1127 1128 for (i = 0; i < 16; i++) { 1129 (*regs)[i] = tswapreg(env->gregs[i]); 1130 } 1131 1132 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1133 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1134 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1135 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1136 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1137 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1138 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1139 } 1140 1141 #define USE_ELF_CORE_DUMP 1142 #define ELF_EXEC_PAGESIZE 4096 1143 1144 enum { 1145 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1146 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1147 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1148 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1149 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1150 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1151 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1152 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1153 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1154 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1155 }; 1156 1157 #define ELF_HWCAP get_elf_hwcap() 1158 1159 static uint32_t get_elf_hwcap(void) 1160 { 1161 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1162 uint32_t hwcap = 0; 1163 1164 hwcap |= SH_CPU_HAS_FPU; 1165 1166 if (cpu->env.features & SH_FEATURE_SH4A) { 1167 hwcap |= SH_CPU_HAS_LLSC; 1168 } 1169 1170 return hwcap; 1171 } 1172 1173 #endif 1174 1175 #ifdef TARGET_CRIS 1176 1177 #define ELF_START_MMAP 0x80000000 1178 1179 #define ELF_CLASS ELFCLASS32 1180 #define ELF_ARCH EM_CRIS 1181 1182 static inline void init_thread(struct target_pt_regs *regs, 1183 struct image_info *infop) 1184 { 1185 regs->erp = infop->entry; 1186 } 1187 1188 #define ELF_EXEC_PAGESIZE 8192 1189 1190 #endif 1191 1192 #ifdef TARGET_M68K 1193 1194 #define ELF_START_MMAP 0x80000000 1195 1196 #define ELF_CLASS ELFCLASS32 1197 #define ELF_ARCH EM_68K 1198 1199 /* ??? Does this need to do anything? 1200 #define ELF_PLAT_INIT(_r) */ 1201 1202 static inline void init_thread(struct target_pt_regs *regs, 1203 struct image_info *infop) 1204 { 1205 regs->usp = infop->start_stack; 1206 regs->sr = 0; 1207 regs->pc = infop->entry; 1208 } 1209 1210 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1211 #define ELF_NREG 20 1212 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1213 1214 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1215 { 1216 (*regs)[0] = tswapreg(env->dregs[1]); 1217 (*regs)[1] = tswapreg(env->dregs[2]); 1218 (*regs)[2] = tswapreg(env->dregs[3]); 1219 (*regs)[3] = tswapreg(env->dregs[4]); 1220 (*regs)[4] = tswapreg(env->dregs[5]); 1221 (*regs)[5] = tswapreg(env->dregs[6]); 1222 (*regs)[6] = tswapreg(env->dregs[7]); 1223 (*regs)[7] = tswapreg(env->aregs[0]); 1224 (*regs)[8] = tswapreg(env->aregs[1]); 1225 (*regs)[9] = tswapreg(env->aregs[2]); 1226 (*regs)[10] = tswapreg(env->aregs[3]); 1227 (*regs)[11] = tswapreg(env->aregs[4]); 1228 (*regs)[12] = tswapreg(env->aregs[5]); 1229 (*regs)[13] = tswapreg(env->aregs[6]); 1230 (*regs)[14] = tswapreg(env->dregs[0]); 1231 (*regs)[15] = tswapreg(env->aregs[7]); 1232 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1233 (*regs)[17] = tswapreg(env->sr); 1234 (*regs)[18] = tswapreg(env->pc); 1235 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1236 } 1237 1238 #define USE_ELF_CORE_DUMP 1239 #define ELF_EXEC_PAGESIZE 8192 1240 1241 #endif 1242 1243 #ifdef TARGET_ALPHA 1244 1245 #define ELF_START_MMAP (0x30000000000ULL) 1246 1247 #define ELF_CLASS ELFCLASS64 1248 #define ELF_ARCH EM_ALPHA 1249 1250 static inline void init_thread(struct target_pt_regs *regs, 1251 struct image_info *infop) 1252 { 1253 regs->pc = infop->entry; 1254 regs->ps = 8; 1255 regs->usp = infop->start_stack; 1256 } 1257 1258 #define ELF_EXEC_PAGESIZE 8192 1259 1260 #endif /* TARGET_ALPHA */ 1261 1262 #ifdef TARGET_S390X 1263 1264 #define ELF_START_MMAP (0x20000000000ULL) 1265 1266 #define ELF_CLASS ELFCLASS64 1267 #define ELF_DATA ELFDATA2MSB 1268 #define ELF_ARCH EM_S390 1269 1270 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1271 { 1272 regs->psw.addr = infop->entry; 1273 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1274 regs->gprs[15] = infop->start_stack; 1275 } 1276 1277 #endif /* TARGET_S390X */ 1278 1279 #ifdef TARGET_TILEGX 1280 1281 /* 42 bits real used address, a half for user mode */ 1282 #define ELF_START_MMAP (0x00000020000000000ULL) 1283 1284 #define elf_check_arch(x) ((x) == EM_TILEGX) 1285 1286 #define ELF_CLASS ELFCLASS64 1287 #define ELF_DATA ELFDATA2LSB 1288 #define ELF_ARCH EM_TILEGX 1289 1290 static inline void init_thread(struct target_pt_regs *regs, 1291 struct image_info *infop) 1292 { 1293 regs->pc = infop->entry; 1294 regs->sp = infop->start_stack; 1295 1296 } 1297 1298 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1299 1300 #endif /* TARGET_TILEGX */ 1301 1302 #ifdef TARGET_RISCV 1303 1304 #define ELF_START_MMAP 0x80000000 1305 #define ELF_ARCH EM_RISCV 1306 1307 #ifdef TARGET_RISCV32 1308 #define ELF_CLASS ELFCLASS32 1309 #else 1310 #define ELF_CLASS ELFCLASS64 1311 #endif 1312 1313 static inline void init_thread(struct target_pt_regs *regs, 1314 struct image_info *infop) 1315 { 1316 regs->sepc = infop->entry; 1317 regs->sp = infop->start_stack; 1318 } 1319 1320 #define ELF_EXEC_PAGESIZE 4096 1321 1322 #endif /* TARGET_RISCV */ 1323 1324 #ifdef TARGET_HPPA 1325 1326 #define ELF_START_MMAP 0x80000000 1327 #define ELF_CLASS ELFCLASS32 1328 #define ELF_ARCH EM_PARISC 1329 #define ELF_PLATFORM "PARISC" 1330 #define STACK_GROWS_DOWN 0 1331 #define STACK_ALIGNMENT 64 1332 1333 static inline void init_thread(struct target_pt_regs *regs, 1334 struct image_info *infop) 1335 { 1336 regs->iaoq[0] = infop->entry; 1337 regs->iaoq[1] = infop->entry + 4; 1338 regs->gr[23] = 0; 1339 regs->gr[24] = infop->arg_start; 1340 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1341 /* The top-of-stack contains a linkage buffer. */ 1342 regs->gr[30] = infop->start_stack + 64; 1343 regs->gr[31] = infop->entry; 1344 } 1345 1346 #endif /* TARGET_HPPA */ 1347 1348 #ifdef TARGET_XTENSA 1349 1350 #define ELF_START_MMAP 0x20000000 1351 1352 #define ELF_CLASS ELFCLASS32 1353 #define ELF_ARCH EM_XTENSA 1354 1355 static inline void init_thread(struct target_pt_regs *regs, 1356 struct image_info *infop) 1357 { 1358 regs->windowbase = 0; 1359 regs->windowstart = 1; 1360 regs->areg[1] = infop->start_stack; 1361 regs->pc = infop->entry; 1362 } 1363 1364 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1365 #define ELF_NREG 128 1366 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1367 1368 enum { 1369 TARGET_REG_PC, 1370 TARGET_REG_PS, 1371 TARGET_REG_LBEG, 1372 TARGET_REG_LEND, 1373 TARGET_REG_LCOUNT, 1374 TARGET_REG_SAR, 1375 TARGET_REG_WINDOWSTART, 1376 TARGET_REG_WINDOWBASE, 1377 TARGET_REG_THREADPTR, 1378 TARGET_REG_AR0 = 64, 1379 }; 1380 1381 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1382 const CPUXtensaState *env) 1383 { 1384 unsigned i; 1385 1386 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1387 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1388 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1389 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1390 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1391 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1392 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1393 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1394 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1395 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1396 for (i = 0; i < env->config->nareg; ++i) { 1397 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1398 } 1399 } 1400 1401 #define USE_ELF_CORE_DUMP 1402 #define ELF_EXEC_PAGESIZE 4096 1403 1404 #endif /* TARGET_XTENSA */ 1405 1406 #ifndef ELF_PLATFORM 1407 #define ELF_PLATFORM (NULL) 1408 #endif 1409 1410 #ifndef ELF_MACHINE 1411 #define ELF_MACHINE ELF_ARCH 1412 #endif 1413 1414 #ifndef elf_check_arch 1415 #define elf_check_arch(x) ((x) == ELF_ARCH) 1416 #endif 1417 1418 #ifndef ELF_HWCAP 1419 #define ELF_HWCAP 0 1420 #endif 1421 1422 #ifndef STACK_GROWS_DOWN 1423 #define STACK_GROWS_DOWN 1 1424 #endif 1425 1426 #ifndef STACK_ALIGNMENT 1427 #define STACK_ALIGNMENT 16 1428 #endif 1429 1430 #ifdef TARGET_ABI32 1431 #undef ELF_CLASS 1432 #define ELF_CLASS ELFCLASS32 1433 #undef bswaptls 1434 #define bswaptls(ptr) bswap32s(ptr) 1435 #endif 1436 1437 #include "elf.h" 1438 1439 struct exec 1440 { 1441 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1442 unsigned int a_text; /* length of text, in bytes */ 1443 unsigned int a_data; /* length of data, in bytes */ 1444 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1445 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1446 unsigned int a_entry; /* start address */ 1447 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1448 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1449 }; 1450 1451 1452 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1453 #define OMAGIC 0407 1454 #define NMAGIC 0410 1455 #define ZMAGIC 0413 1456 #define QMAGIC 0314 1457 1458 /* Necessary parameters */ 1459 #define TARGET_ELF_EXEC_PAGESIZE \ 1460 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1461 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1462 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1463 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1464 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1465 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1466 1467 #define DLINFO_ITEMS 15 1468 1469 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1470 { 1471 memcpy(to, from, n); 1472 } 1473 1474 #ifdef BSWAP_NEEDED 1475 static void bswap_ehdr(struct elfhdr *ehdr) 1476 { 1477 bswap16s(&ehdr->e_type); /* Object file type */ 1478 bswap16s(&ehdr->e_machine); /* Architecture */ 1479 bswap32s(&ehdr->e_version); /* Object file version */ 1480 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1481 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1482 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1483 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1484 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1485 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1486 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1487 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1488 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1489 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1490 } 1491 1492 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1493 { 1494 int i; 1495 for (i = 0; i < phnum; ++i, ++phdr) { 1496 bswap32s(&phdr->p_type); /* Segment type */ 1497 bswap32s(&phdr->p_flags); /* Segment flags */ 1498 bswaptls(&phdr->p_offset); /* Segment file offset */ 1499 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1500 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1501 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1502 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1503 bswaptls(&phdr->p_align); /* Segment alignment */ 1504 } 1505 } 1506 1507 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1508 { 1509 int i; 1510 for (i = 0; i < shnum; ++i, ++shdr) { 1511 bswap32s(&shdr->sh_name); 1512 bswap32s(&shdr->sh_type); 1513 bswaptls(&shdr->sh_flags); 1514 bswaptls(&shdr->sh_addr); 1515 bswaptls(&shdr->sh_offset); 1516 bswaptls(&shdr->sh_size); 1517 bswap32s(&shdr->sh_link); 1518 bswap32s(&shdr->sh_info); 1519 bswaptls(&shdr->sh_addralign); 1520 bswaptls(&shdr->sh_entsize); 1521 } 1522 } 1523 1524 static void bswap_sym(struct elf_sym *sym) 1525 { 1526 bswap32s(&sym->st_name); 1527 bswaptls(&sym->st_value); 1528 bswaptls(&sym->st_size); 1529 bswap16s(&sym->st_shndx); 1530 } 1531 1532 #ifdef TARGET_MIPS 1533 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1534 { 1535 bswap16s(&abiflags->version); 1536 bswap32s(&abiflags->ases); 1537 bswap32s(&abiflags->isa_ext); 1538 bswap32s(&abiflags->flags1); 1539 bswap32s(&abiflags->flags2); 1540 } 1541 #endif 1542 #else 1543 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1544 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1545 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1546 static inline void bswap_sym(struct elf_sym *sym) { } 1547 #ifdef TARGET_MIPS 1548 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1549 #endif 1550 #endif 1551 1552 #ifdef USE_ELF_CORE_DUMP 1553 static int elf_core_dump(int, const CPUArchState *); 1554 #endif /* USE_ELF_CORE_DUMP */ 1555 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1556 1557 /* Verify the portions of EHDR within E_IDENT for the target. 1558 This can be performed before bswapping the entire header. */ 1559 static bool elf_check_ident(struct elfhdr *ehdr) 1560 { 1561 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1562 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1563 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1564 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1565 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1566 && ehdr->e_ident[EI_DATA] == ELF_DATA 1567 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1568 } 1569 1570 /* Verify the portions of EHDR outside of E_IDENT for the target. 1571 This has to wait until after bswapping the header. */ 1572 static bool elf_check_ehdr(struct elfhdr *ehdr) 1573 { 1574 return (elf_check_arch(ehdr->e_machine) 1575 && ehdr->e_ehsize == sizeof(struct elfhdr) 1576 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1577 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1578 } 1579 1580 /* 1581 * 'copy_elf_strings()' copies argument/envelope strings from user 1582 * memory to free pages in kernel mem. These are in a format ready 1583 * to be put directly into the top of new user memory. 1584 * 1585 */ 1586 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1587 abi_ulong p, abi_ulong stack_limit) 1588 { 1589 char *tmp; 1590 int len, i; 1591 abi_ulong top = p; 1592 1593 if (!p) { 1594 return 0; /* bullet-proofing */ 1595 } 1596 1597 if (STACK_GROWS_DOWN) { 1598 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1599 for (i = argc - 1; i >= 0; --i) { 1600 tmp = argv[i]; 1601 if (!tmp) { 1602 fprintf(stderr, "VFS: argc is wrong"); 1603 exit(-1); 1604 } 1605 len = strlen(tmp) + 1; 1606 tmp += len; 1607 1608 if (len > (p - stack_limit)) { 1609 return 0; 1610 } 1611 while (len) { 1612 int bytes_to_copy = (len > offset) ? offset : len; 1613 tmp -= bytes_to_copy; 1614 p -= bytes_to_copy; 1615 offset -= bytes_to_copy; 1616 len -= bytes_to_copy; 1617 1618 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1619 1620 if (offset == 0) { 1621 memcpy_to_target(p, scratch, top - p); 1622 top = p; 1623 offset = TARGET_PAGE_SIZE; 1624 } 1625 } 1626 } 1627 if (p != top) { 1628 memcpy_to_target(p, scratch + offset, top - p); 1629 } 1630 } else { 1631 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1632 for (i = 0; i < argc; ++i) { 1633 tmp = argv[i]; 1634 if (!tmp) { 1635 fprintf(stderr, "VFS: argc is wrong"); 1636 exit(-1); 1637 } 1638 len = strlen(tmp) + 1; 1639 if (len > (stack_limit - p)) { 1640 return 0; 1641 } 1642 while (len) { 1643 int bytes_to_copy = (len > remaining) ? remaining : len; 1644 1645 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1646 1647 tmp += bytes_to_copy; 1648 remaining -= bytes_to_copy; 1649 p += bytes_to_copy; 1650 len -= bytes_to_copy; 1651 1652 if (remaining == 0) { 1653 memcpy_to_target(top, scratch, p - top); 1654 top = p; 1655 remaining = TARGET_PAGE_SIZE; 1656 } 1657 } 1658 } 1659 if (p != top) { 1660 memcpy_to_target(top, scratch, p - top); 1661 } 1662 } 1663 1664 return p; 1665 } 1666 1667 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1668 * argument/environment space. Newer kernels (>2.6.33) allow more, 1669 * dependent on stack size, but guarantee at least 32 pages for 1670 * backwards compatibility. 1671 */ 1672 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1673 1674 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1675 struct image_info *info) 1676 { 1677 abi_ulong size, error, guard; 1678 1679 size = guest_stack_size; 1680 if (size < STACK_LOWER_LIMIT) { 1681 size = STACK_LOWER_LIMIT; 1682 } 1683 guard = TARGET_PAGE_SIZE; 1684 if (guard < qemu_real_host_page_size) { 1685 guard = qemu_real_host_page_size; 1686 } 1687 1688 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1689 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1690 if (error == -1) { 1691 perror("mmap stack"); 1692 exit(-1); 1693 } 1694 1695 /* We reserve one extra page at the top of the stack as guard. */ 1696 if (STACK_GROWS_DOWN) { 1697 target_mprotect(error, guard, PROT_NONE); 1698 info->stack_limit = error + guard; 1699 return info->stack_limit + size - sizeof(void *); 1700 } else { 1701 target_mprotect(error + size, guard, PROT_NONE); 1702 info->stack_limit = error + size; 1703 return error; 1704 } 1705 } 1706 1707 /* Map and zero the bss. We need to explicitly zero any fractional pages 1708 after the data section (i.e. bss). */ 1709 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1710 { 1711 uintptr_t host_start, host_map_start, host_end; 1712 1713 last_bss = TARGET_PAGE_ALIGN(last_bss); 1714 1715 /* ??? There is confusion between qemu_real_host_page_size and 1716 qemu_host_page_size here and elsewhere in target_mmap, which 1717 may lead to the end of the data section mapping from the file 1718 not being mapped. At least there was an explicit test and 1719 comment for that here, suggesting that "the file size must 1720 be known". The comment probably pre-dates the introduction 1721 of the fstat system call in target_mmap which does in fact 1722 find out the size. What isn't clear is if the workaround 1723 here is still actually needed. For now, continue with it, 1724 but merge it with the "normal" mmap that would allocate the bss. */ 1725 1726 host_start = (uintptr_t) g2h(elf_bss); 1727 host_end = (uintptr_t) g2h(last_bss); 1728 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1729 1730 if (host_map_start < host_end) { 1731 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1732 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1733 if (p == MAP_FAILED) { 1734 perror("cannot mmap brk"); 1735 exit(-1); 1736 } 1737 } 1738 1739 /* Ensure that the bss page(s) are valid */ 1740 if ((page_get_flags(last_bss-1) & prot) != prot) { 1741 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1742 } 1743 1744 if (host_start < host_map_start) { 1745 memset((void *)host_start, 0, host_map_start - host_start); 1746 } 1747 } 1748 1749 #ifdef TARGET_ARM 1750 static int elf_is_fdpic(struct elfhdr *exec) 1751 { 1752 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1753 } 1754 #else 1755 /* Default implementation, always false. */ 1756 static int elf_is_fdpic(struct elfhdr *exec) 1757 { 1758 return 0; 1759 } 1760 #endif 1761 1762 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1763 { 1764 uint16_t n; 1765 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1766 1767 /* elf32_fdpic_loadseg */ 1768 n = info->nsegs; 1769 while (n--) { 1770 sp -= 12; 1771 put_user_u32(loadsegs[n].addr, sp+0); 1772 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1773 put_user_u32(loadsegs[n].p_memsz, sp+8); 1774 } 1775 1776 /* elf32_fdpic_loadmap */ 1777 sp -= 4; 1778 put_user_u16(0, sp+0); /* version */ 1779 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1780 1781 info->personality = PER_LINUX_FDPIC; 1782 info->loadmap_addr = sp; 1783 1784 return sp; 1785 } 1786 1787 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1788 struct elfhdr *exec, 1789 struct image_info *info, 1790 struct image_info *interp_info) 1791 { 1792 abi_ulong sp; 1793 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1794 int size; 1795 int i; 1796 abi_ulong u_rand_bytes; 1797 uint8_t k_rand_bytes[16]; 1798 abi_ulong u_platform; 1799 const char *k_platform; 1800 const int n = sizeof(elf_addr_t); 1801 1802 sp = p; 1803 1804 /* Needs to be before we load the env/argc/... */ 1805 if (elf_is_fdpic(exec)) { 1806 /* Need 4 byte alignment for these structs */ 1807 sp &= ~3; 1808 sp = loader_build_fdpic_loadmap(info, sp); 1809 info->other_info = interp_info; 1810 if (interp_info) { 1811 interp_info->other_info = info; 1812 sp = loader_build_fdpic_loadmap(interp_info, sp); 1813 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1814 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1815 } else { 1816 info->interpreter_loadmap_addr = 0; 1817 info->interpreter_pt_dynamic_addr = 0; 1818 } 1819 } 1820 1821 u_platform = 0; 1822 k_platform = ELF_PLATFORM; 1823 if (k_platform) { 1824 size_t len = strlen(k_platform) + 1; 1825 if (STACK_GROWS_DOWN) { 1826 sp -= (len + n - 1) & ~(n - 1); 1827 u_platform = sp; 1828 /* FIXME - check return value of memcpy_to_target() for failure */ 1829 memcpy_to_target(sp, k_platform, len); 1830 } else { 1831 memcpy_to_target(sp, k_platform, len); 1832 u_platform = sp; 1833 sp += len + 1; 1834 } 1835 } 1836 1837 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1838 * the argv and envp pointers. 1839 */ 1840 if (STACK_GROWS_DOWN) { 1841 sp = QEMU_ALIGN_DOWN(sp, 16); 1842 } else { 1843 sp = QEMU_ALIGN_UP(sp, 16); 1844 } 1845 1846 /* 1847 * Generate 16 random bytes for userspace PRNG seeding (not 1848 * cryptically secure but it's not the aim of QEMU). 1849 */ 1850 for (i = 0; i < 16; i++) { 1851 k_rand_bytes[i] = rand(); 1852 } 1853 if (STACK_GROWS_DOWN) { 1854 sp -= 16; 1855 u_rand_bytes = sp; 1856 /* FIXME - check return value of memcpy_to_target() for failure */ 1857 memcpy_to_target(sp, k_rand_bytes, 16); 1858 } else { 1859 memcpy_to_target(sp, k_rand_bytes, 16); 1860 u_rand_bytes = sp; 1861 sp += 16; 1862 } 1863 1864 size = (DLINFO_ITEMS + 1) * 2; 1865 if (k_platform) 1866 size += 2; 1867 #ifdef DLINFO_ARCH_ITEMS 1868 size += DLINFO_ARCH_ITEMS * 2; 1869 #endif 1870 #ifdef ELF_HWCAP2 1871 size += 2; 1872 #endif 1873 info->auxv_len = size * n; 1874 1875 size += envc + argc + 2; 1876 size += 1; /* argc itself */ 1877 size *= n; 1878 1879 /* Allocate space and finalize stack alignment for entry now. */ 1880 if (STACK_GROWS_DOWN) { 1881 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1882 sp = u_argc; 1883 } else { 1884 u_argc = sp; 1885 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1886 } 1887 1888 u_argv = u_argc + n; 1889 u_envp = u_argv + (argc + 1) * n; 1890 u_auxv = u_envp + (envc + 1) * n; 1891 info->saved_auxv = u_auxv; 1892 info->arg_start = u_argv; 1893 info->arg_end = u_argv + argc * n; 1894 1895 /* This is correct because Linux defines 1896 * elf_addr_t as Elf32_Off / Elf64_Off 1897 */ 1898 #define NEW_AUX_ENT(id, val) do { \ 1899 put_user_ual(id, u_auxv); u_auxv += n; \ 1900 put_user_ual(val, u_auxv); u_auxv += n; \ 1901 } while(0) 1902 1903 #ifdef ARCH_DLINFO 1904 /* 1905 * ARCH_DLINFO must come first so platform specific code can enforce 1906 * special alignment requirements on the AUXV if necessary (eg. PPC). 1907 */ 1908 ARCH_DLINFO; 1909 #endif 1910 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1911 * on info->auxv_len will trigger. 1912 */ 1913 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1914 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1915 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1916 if ((info->alignment & ~qemu_host_page_mask) != 0) { 1917 /* Target doesn't support host page size alignment */ 1918 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1919 } else { 1920 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 1921 qemu_host_page_size))); 1922 } 1923 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1924 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1925 NEW_AUX_ENT(AT_ENTRY, info->entry); 1926 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1927 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1928 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1929 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1930 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1931 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1932 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1933 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 1934 1935 #ifdef ELF_HWCAP2 1936 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1937 #endif 1938 1939 if (u_platform) { 1940 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1941 } 1942 NEW_AUX_ENT (AT_NULL, 0); 1943 #undef NEW_AUX_ENT 1944 1945 /* Check that our initial calculation of the auxv length matches how much 1946 * we actually put into it. 1947 */ 1948 assert(info->auxv_len == u_auxv - info->saved_auxv); 1949 1950 put_user_ual(argc, u_argc); 1951 1952 p = info->arg_strings; 1953 for (i = 0; i < argc; ++i) { 1954 put_user_ual(p, u_argv); 1955 u_argv += n; 1956 p += target_strlen(p) + 1; 1957 } 1958 put_user_ual(0, u_argv); 1959 1960 p = info->env_strings; 1961 for (i = 0; i < envc; ++i) { 1962 put_user_ual(p, u_envp); 1963 u_envp += n; 1964 p += target_strlen(p) + 1; 1965 } 1966 put_user_ual(0, u_envp); 1967 1968 return sp; 1969 } 1970 1971 unsigned long init_guest_space(unsigned long host_start, 1972 unsigned long host_size, 1973 unsigned long guest_start, 1974 bool fixed) 1975 { 1976 unsigned long current_start, aligned_start; 1977 int flags; 1978 1979 assert(host_start || host_size); 1980 1981 /* If just a starting address is given, then just verify that 1982 * address. */ 1983 if (host_start && !host_size) { 1984 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1985 if (init_guest_commpage(host_start, host_size) != 1) { 1986 return (unsigned long)-1; 1987 } 1988 #endif 1989 return host_start; 1990 } 1991 1992 /* Setup the initial flags and start address. */ 1993 current_start = host_start & qemu_host_page_mask; 1994 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1995 if (fixed) { 1996 flags |= MAP_FIXED; 1997 } 1998 1999 /* Otherwise, a non-zero size region of memory needs to be mapped 2000 * and validated. */ 2001 2002 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2003 /* On 32-bit ARM, we need to map not just the usable memory, but 2004 * also the commpage. Try to find a suitable place by allocating 2005 * a big chunk for all of it. If host_start, then the naive 2006 * strategy probably does good enough. 2007 */ 2008 if (!host_start) { 2009 unsigned long guest_full_size, host_full_size, real_start; 2010 2011 guest_full_size = 2012 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 2013 host_full_size = guest_full_size - guest_start; 2014 real_start = (unsigned long) 2015 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 2016 if (real_start == (unsigned long)-1) { 2017 if (host_size < host_full_size - qemu_host_page_size) { 2018 /* We failed to map a continous segment, but we're 2019 * allowed to have a gap between the usable memory and 2020 * the commpage where other things can be mapped. 2021 * This sparseness gives us more flexibility to find 2022 * an address range. 2023 */ 2024 goto naive; 2025 } 2026 return (unsigned long)-1; 2027 } 2028 munmap((void *)real_start, host_full_size); 2029 if (real_start & ~qemu_host_page_mask) { 2030 /* The same thing again, but with an extra qemu_host_page_size 2031 * so that we can shift around alignment. 2032 */ 2033 unsigned long real_size = host_full_size + qemu_host_page_size; 2034 real_start = (unsigned long) 2035 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 2036 if (real_start == (unsigned long)-1) { 2037 if (host_size < host_full_size - qemu_host_page_size) { 2038 goto naive; 2039 } 2040 return (unsigned long)-1; 2041 } 2042 munmap((void *)real_start, real_size); 2043 real_start = HOST_PAGE_ALIGN(real_start); 2044 } 2045 current_start = real_start; 2046 } 2047 naive: 2048 #endif 2049 2050 while (1) { 2051 unsigned long real_start, real_size, aligned_size; 2052 aligned_size = real_size = host_size; 2053 2054 /* Do not use mmap_find_vma here because that is limited to the 2055 * guest address space. We are going to make the 2056 * guest address space fit whatever we're given. 2057 */ 2058 real_start = (unsigned long) 2059 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2060 if (real_start == (unsigned long)-1) { 2061 return (unsigned long)-1; 2062 } 2063 2064 /* Check to see if the address is valid. */ 2065 if (host_start && real_start != current_start) { 2066 goto try_again; 2067 } 2068 2069 /* Ensure the address is properly aligned. */ 2070 if (real_start & ~qemu_host_page_mask) { 2071 /* Ideally, we adjust like 2072 * 2073 * pages: [ ][ ][ ][ ][ ] 2074 * old: [ real ] 2075 * [ aligned ] 2076 * new: [ real ] 2077 * [ aligned ] 2078 * 2079 * But if there is something else mapped right after it, 2080 * then obviously it won't have room to grow, and the 2081 * kernel will put the new larger real someplace else with 2082 * unknown alignment (if we made it to here, then 2083 * fixed=false). Which is why we grow real by a full page 2084 * size, instead of by part of one; so that even if we get 2085 * moved, we can still guarantee alignment. But this does 2086 * mean that there is a padding of < 1 page both before 2087 * and after the aligned range; the "after" could could 2088 * cause problems for ARM emulation where it could butt in 2089 * to where we need to put the commpage. 2090 */ 2091 munmap((void *)real_start, host_size); 2092 real_size = aligned_size + qemu_host_page_size; 2093 real_start = (unsigned long) 2094 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2095 if (real_start == (unsigned long)-1) { 2096 return (unsigned long)-1; 2097 } 2098 aligned_start = HOST_PAGE_ALIGN(real_start); 2099 } else { 2100 aligned_start = real_start; 2101 } 2102 2103 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2104 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2105 int valid = init_guest_commpage(aligned_start - guest_start, 2106 aligned_size + guest_start); 2107 if (valid == -1) { 2108 munmap((void *)real_start, real_size); 2109 return (unsigned long)-1; 2110 } else if (valid == 0) { 2111 goto try_again; 2112 } 2113 #endif 2114 2115 /* If nothing has said `return -1` or `goto try_again` yet, 2116 * then the address we have is good. 2117 */ 2118 break; 2119 2120 try_again: 2121 /* That address didn't work. Unmap and try a different one. 2122 * The address the host picked because is typically right at 2123 * the top of the host address space and leaves the guest with 2124 * no usable address space. Resort to a linear search. We 2125 * already compensated for mmap_min_addr, so this should not 2126 * happen often. Probably means we got unlucky and host 2127 * address space randomization put a shared library somewhere 2128 * inconvenient. 2129 * 2130 * This is probably a good strategy if host_start, but is 2131 * probably a bad strategy if not, which means we got here 2132 * because of trouble with ARM commpage setup. 2133 */ 2134 munmap((void *)real_start, real_size); 2135 current_start += qemu_host_page_size; 2136 if (host_start == current_start) { 2137 /* Theoretically possible if host doesn't have any suitably 2138 * aligned areas. Normally the first mmap will fail. 2139 */ 2140 return (unsigned long)-1; 2141 } 2142 } 2143 2144 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2145 2146 return aligned_start; 2147 } 2148 2149 static void probe_guest_base(const char *image_name, 2150 abi_ulong loaddr, abi_ulong hiaddr) 2151 { 2152 /* Probe for a suitable guest base address, if the user has not set 2153 * it explicitly, and set guest_base appropriately. 2154 * In case of error we will print a suitable message and exit. 2155 */ 2156 const char *errmsg; 2157 if (!have_guest_base && !reserved_va) { 2158 unsigned long host_start, real_start, host_size; 2159 2160 /* Round addresses to page boundaries. */ 2161 loaddr &= qemu_host_page_mask; 2162 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2163 2164 if (loaddr < mmap_min_addr) { 2165 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2166 } else { 2167 host_start = loaddr; 2168 if (host_start != loaddr) { 2169 errmsg = "Address overflow loading ELF binary"; 2170 goto exit_errmsg; 2171 } 2172 } 2173 host_size = hiaddr - loaddr; 2174 2175 /* Setup the initial guest memory space with ranges gleaned from 2176 * the ELF image that is being loaded. 2177 */ 2178 real_start = init_guest_space(host_start, host_size, loaddr, false); 2179 if (real_start == (unsigned long)-1) { 2180 errmsg = "Unable to find space for application"; 2181 goto exit_errmsg; 2182 } 2183 guest_base = real_start - loaddr; 2184 2185 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2186 TARGET_ABI_FMT_lx " to 0x%lx\n", 2187 loaddr, real_start); 2188 } 2189 return; 2190 2191 exit_errmsg: 2192 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2193 exit(-1); 2194 } 2195 2196 2197 /* Load an ELF image into the address space. 2198 2199 IMAGE_NAME is the filename of the image, to use in error messages. 2200 IMAGE_FD is the open file descriptor for the image. 2201 2202 BPRM_BUF is a copy of the beginning of the file; this of course 2203 contains the elf file header at offset 0. It is assumed that this 2204 buffer is sufficiently aligned to present no problems to the host 2205 in accessing data at aligned offsets within the buffer. 2206 2207 On return: INFO values will be filled in, as necessary or available. */ 2208 2209 static void load_elf_image(const char *image_name, int image_fd, 2210 struct image_info *info, char **pinterp_name, 2211 char bprm_buf[BPRM_BUF_SIZE]) 2212 { 2213 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2214 struct elf_phdr *phdr; 2215 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2216 int i, retval; 2217 const char *errmsg; 2218 2219 /* First of all, some simple consistency checks */ 2220 errmsg = "Invalid ELF image for this architecture"; 2221 if (!elf_check_ident(ehdr)) { 2222 goto exit_errmsg; 2223 } 2224 bswap_ehdr(ehdr); 2225 if (!elf_check_ehdr(ehdr)) { 2226 goto exit_errmsg; 2227 } 2228 2229 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2230 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2231 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2232 } else { 2233 phdr = (struct elf_phdr *) alloca(i); 2234 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2235 if (retval != i) { 2236 goto exit_read; 2237 } 2238 } 2239 bswap_phdr(phdr, ehdr->e_phnum); 2240 2241 info->nsegs = 0; 2242 info->pt_dynamic_addr = 0; 2243 2244 mmap_lock(); 2245 2246 /* Find the maximum size of the image and allocate an appropriate 2247 amount of memory to handle that. */ 2248 loaddr = -1, hiaddr = 0; 2249 info->alignment = 0; 2250 for (i = 0; i < ehdr->e_phnum; ++i) { 2251 if (phdr[i].p_type == PT_LOAD) { 2252 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2253 if (a < loaddr) { 2254 loaddr = a; 2255 } 2256 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2257 if (a > hiaddr) { 2258 hiaddr = a; 2259 } 2260 ++info->nsegs; 2261 info->alignment |= phdr[i].p_align; 2262 } 2263 } 2264 2265 load_addr = loaddr; 2266 if (ehdr->e_type == ET_DYN) { 2267 /* The image indicates that it can be loaded anywhere. Find a 2268 location that can hold the memory space required. If the 2269 image is pre-linked, LOADDR will be non-zero. Since we do 2270 not supply MAP_FIXED here we'll use that address if and 2271 only if it remains available. */ 2272 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2273 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2274 -1, 0); 2275 if (load_addr == -1) { 2276 goto exit_perror; 2277 } 2278 } else if (pinterp_name != NULL) { 2279 /* This is the main executable. Make sure that the low 2280 address does not conflict with MMAP_MIN_ADDR or the 2281 QEMU application itself. */ 2282 probe_guest_base(image_name, loaddr, hiaddr); 2283 } 2284 load_bias = load_addr - loaddr; 2285 2286 if (elf_is_fdpic(ehdr)) { 2287 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2288 g_malloc(sizeof(*loadsegs) * info->nsegs); 2289 2290 for (i = 0; i < ehdr->e_phnum; ++i) { 2291 switch (phdr[i].p_type) { 2292 case PT_DYNAMIC: 2293 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2294 break; 2295 case PT_LOAD: 2296 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2297 loadsegs->p_vaddr = phdr[i].p_vaddr; 2298 loadsegs->p_memsz = phdr[i].p_memsz; 2299 ++loadsegs; 2300 break; 2301 } 2302 } 2303 } 2304 2305 info->load_bias = load_bias; 2306 info->load_addr = load_addr; 2307 info->entry = ehdr->e_entry + load_bias; 2308 info->start_code = -1; 2309 info->end_code = 0; 2310 info->start_data = -1; 2311 info->end_data = 0; 2312 info->brk = 0; 2313 info->elf_flags = ehdr->e_flags; 2314 2315 for (i = 0; i < ehdr->e_phnum; i++) { 2316 struct elf_phdr *eppnt = phdr + i; 2317 if (eppnt->p_type == PT_LOAD) { 2318 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2319 int elf_prot = 0; 2320 2321 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2322 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2323 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2324 2325 vaddr = load_bias + eppnt->p_vaddr; 2326 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2327 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2328 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2329 2330 error = target_mmap(vaddr_ps, vaddr_len, 2331 elf_prot, MAP_PRIVATE | MAP_FIXED, 2332 image_fd, eppnt->p_offset - vaddr_po); 2333 if (error == -1) { 2334 goto exit_perror; 2335 } 2336 2337 vaddr_ef = vaddr + eppnt->p_filesz; 2338 vaddr_em = vaddr + eppnt->p_memsz; 2339 2340 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2341 if (vaddr_ef < vaddr_em) { 2342 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2343 } 2344 2345 /* Find the full program boundaries. */ 2346 if (elf_prot & PROT_EXEC) { 2347 if (vaddr < info->start_code) { 2348 info->start_code = vaddr; 2349 } 2350 if (vaddr_ef > info->end_code) { 2351 info->end_code = vaddr_ef; 2352 } 2353 } 2354 if (elf_prot & PROT_WRITE) { 2355 if (vaddr < info->start_data) { 2356 info->start_data = vaddr; 2357 } 2358 if (vaddr_ef > info->end_data) { 2359 info->end_data = vaddr_ef; 2360 } 2361 if (vaddr_em > info->brk) { 2362 info->brk = vaddr_em; 2363 } 2364 } 2365 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2366 char *interp_name; 2367 2368 if (*pinterp_name) { 2369 errmsg = "Multiple PT_INTERP entries"; 2370 goto exit_errmsg; 2371 } 2372 interp_name = malloc(eppnt->p_filesz); 2373 if (!interp_name) { 2374 goto exit_perror; 2375 } 2376 2377 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2378 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2379 eppnt->p_filesz); 2380 } else { 2381 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2382 eppnt->p_offset); 2383 if (retval != eppnt->p_filesz) { 2384 goto exit_perror; 2385 } 2386 } 2387 if (interp_name[eppnt->p_filesz - 1] != 0) { 2388 errmsg = "Invalid PT_INTERP entry"; 2389 goto exit_errmsg; 2390 } 2391 *pinterp_name = interp_name; 2392 #ifdef TARGET_MIPS 2393 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2394 Mips_elf_abiflags_v0 abiflags; 2395 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2396 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2397 goto exit_errmsg; 2398 } 2399 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2400 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2401 sizeof(Mips_elf_abiflags_v0)); 2402 } else { 2403 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2404 eppnt->p_offset); 2405 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2406 goto exit_perror; 2407 } 2408 } 2409 bswap_mips_abiflags(&abiflags); 2410 info->fp_abi = abiflags.fp_abi; 2411 #endif 2412 } 2413 } 2414 2415 if (info->end_data == 0) { 2416 info->start_data = info->end_code; 2417 info->end_data = info->end_code; 2418 info->brk = info->end_code; 2419 } 2420 2421 if (qemu_log_enabled()) { 2422 load_symbols(ehdr, image_fd, load_bias); 2423 } 2424 2425 mmap_unlock(); 2426 2427 close(image_fd); 2428 return; 2429 2430 exit_read: 2431 if (retval >= 0) { 2432 errmsg = "Incomplete read of file header"; 2433 goto exit_errmsg; 2434 } 2435 exit_perror: 2436 errmsg = strerror(errno); 2437 exit_errmsg: 2438 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2439 exit(-1); 2440 } 2441 2442 static void load_elf_interp(const char *filename, struct image_info *info, 2443 char bprm_buf[BPRM_BUF_SIZE]) 2444 { 2445 int fd, retval; 2446 2447 fd = open(path(filename), O_RDONLY); 2448 if (fd < 0) { 2449 goto exit_perror; 2450 } 2451 2452 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2453 if (retval < 0) { 2454 goto exit_perror; 2455 } 2456 if (retval < BPRM_BUF_SIZE) { 2457 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2458 } 2459 2460 load_elf_image(filename, fd, info, NULL, bprm_buf); 2461 return; 2462 2463 exit_perror: 2464 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2465 exit(-1); 2466 } 2467 2468 static int symfind(const void *s0, const void *s1) 2469 { 2470 target_ulong addr = *(target_ulong *)s0; 2471 struct elf_sym *sym = (struct elf_sym *)s1; 2472 int result = 0; 2473 if (addr < sym->st_value) { 2474 result = -1; 2475 } else if (addr >= sym->st_value + sym->st_size) { 2476 result = 1; 2477 } 2478 return result; 2479 } 2480 2481 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2482 { 2483 #if ELF_CLASS == ELFCLASS32 2484 struct elf_sym *syms = s->disas_symtab.elf32; 2485 #else 2486 struct elf_sym *syms = s->disas_symtab.elf64; 2487 #endif 2488 2489 // binary search 2490 struct elf_sym *sym; 2491 2492 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2493 if (sym != NULL) { 2494 return s->disas_strtab + sym->st_name; 2495 } 2496 2497 return ""; 2498 } 2499 2500 /* FIXME: This should use elf_ops.h */ 2501 static int symcmp(const void *s0, const void *s1) 2502 { 2503 struct elf_sym *sym0 = (struct elf_sym *)s0; 2504 struct elf_sym *sym1 = (struct elf_sym *)s1; 2505 return (sym0->st_value < sym1->st_value) 2506 ? -1 2507 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2508 } 2509 2510 /* Best attempt to load symbols from this ELF object. */ 2511 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2512 { 2513 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2514 uint64_t segsz; 2515 struct elf_shdr *shdr; 2516 char *strings = NULL; 2517 struct syminfo *s = NULL; 2518 struct elf_sym *new_syms, *syms = NULL; 2519 2520 shnum = hdr->e_shnum; 2521 i = shnum * sizeof(struct elf_shdr); 2522 shdr = (struct elf_shdr *)alloca(i); 2523 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2524 return; 2525 } 2526 2527 bswap_shdr(shdr, shnum); 2528 for (i = 0; i < shnum; ++i) { 2529 if (shdr[i].sh_type == SHT_SYMTAB) { 2530 sym_idx = i; 2531 str_idx = shdr[i].sh_link; 2532 goto found; 2533 } 2534 } 2535 2536 /* There will be no symbol table if the file was stripped. */ 2537 return; 2538 2539 found: 2540 /* Now know where the strtab and symtab are. Snarf them. */ 2541 s = g_try_new(struct syminfo, 1); 2542 if (!s) { 2543 goto give_up; 2544 } 2545 2546 segsz = shdr[str_idx].sh_size; 2547 s->disas_strtab = strings = g_try_malloc(segsz); 2548 if (!strings || 2549 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2550 goto give_up; 2551 } 2552 2553 segsz = shdr[sym_idx].sh_size; 2554 syms = g_try_malloc(segsz); 2555 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2556 goto give_up; 2557 } 2558 2559 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2560 /* Implausibly large symbol table: give up rather than ploughing 2561 * on with the number of symbols calculation overflowing 2562 */ 2563 goto give_up; 2564 } 2565 nsyms = segsz / sizeof(struct elf_sym); 2566 for (i = 0; i < nsyms; ) { 2567 bswap_sym(syms + i); 2568 /* Throw away entries which we do not need. */ 2569 if (syms[i].st_shndx == SHN_UNDEF 2570 || syms[i].st_shndx >= SHN_LORESERVE 2571 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2572 if (i < --nsyms) { 2573 syms[i] = syms[nsyms]; 2574 } 2575 } else { 2576 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2577 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2578 syms[i].st_value &= ~(target_ulong)1; 2579 #endif 2580 syms[i].st_value += load_bias; 2581 i++; 2582 } 2583 } 2584 2585 /* No "useful" symbol. */ 2586 if (nsyms == 0) { 2587 goto give_up; 2588 } 2589 2590 /* Attempt to free the storage associated with the local symbols 2591 that we threw away. Whether or not this has any effect on the 2592 memory allocation depends on the malloc implementation and how 2593 many symbols we managed to discard. */ 2594 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2595 if (new_syms == NULL) { 2596 goto give_up; 2597 } 2598 syms = new_syms; 2599 2600 qsort(syms, nsyms, sizeof(*syms), symcmp); 2601 2602 s->disas_num_syms = nsyms; 2603 #if ELF_CLASS == ELFCLASS32 2604 s->disas_symtab.elf32 = syms; 2605 #else 2606 s->disas_symtab.elf64 = syms; 2607 #endif 2608 s->lookup_symbol = lookup_symbolxx; 2609 s->next = syminfos; 2610 syminfos = s; 2611 2612 return; 2613 2614 give_up: 2615 g_free(s); 2616 g_free(strings); 2617 g_free(syms); 2618 } 2619 2620 uint32_t get_elf_eflags(int fd) 2621 { 2622 struct elfhdr ehdr; 2623 off_t offset; 2624 int ret; 2625 2626 /* Read ELF header */ 2627 offset = lseek(fd, 0, SEEK_SET); 2628 if (offset == (off_t) -1) { 2629 return 0; 2630 } 2631 ret = read(fd, &ehdr, sizeof(ehdr)); 2632 if (ret < sizeof(ehdr)) { 2633 return 0; 2634 } 2635 offset = lseek(fd, offset, SEEK_SET); 2636 if (offset == (off_t) -1) { 2637 return 0; 2638 } 2639 2640 /* Check ELF signature */ 2641 if (!elf_check_ident(&ehdr)) { 2642 return 0; 2643 } 2644 2645 /* check header */ 2646 bswap_ehdr(&ehdr); 2647 if (!elf_check_ehdr(&ehdr)) { 2648 return 0; 2649 } 2650 2651 /* return architecture id */ 2652 return ehdr.e_flags; 2653 } 2654 2655 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2656 { 2657 struct image_info interp_info; 2658 struct elfhdr elf_ex; 2659 char *elf_interpreter = NULL; 2660 char *scratch; 2661 2662 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2663 2664 load_elf_image(bprm->filename, bprm->fd, info, 2665 &elf_interpreter, bprm->buf); 2666 2667 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2668 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2669 when we load the interpreter. */ 2670 elf_ex = *(struct elfhdr *)bprm->buf; 2671 2672 /* Do this so that we can load the interpreter, if need be. We will 2673 change some of these later */ 2674 bprm->p = setup_arg_pages(bprm, info); 2675 2676 scratch = g_new0(char, TARGET_PAGE_SIZE); 2677 if (STACK_GROWS_DOWN) { 2678 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2679 bprm->p, info->stack_limit); 2680 info->file_string = bprm->p; 2681 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2682 bprm->p, info->stack_limit); 2683 info->env_strings = bprm->p; 2684 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2685 bprm->p, info->stack_limit); 2686 info->arg_strings = bprm->p; 2687 } else { 2688 info->arg_strings = bprm->p; 2689 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2690 bprm->p, info->stack_limit); 2691 info->env_strings = bprm->p; 2692 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2693 bprm->p, info->stack_limit); 2694 info->file_string = bprm->p; 2695 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2696 bprm->p, info->stack_limit); 2697 } 2698 2699 g_free(scratch); 2700 2701 if (!bprm->p) { 2702 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2703 exit(-1); 2704 } 2705 2706 if (elf_interpreter) { 2707 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2708 2709 /* If the program interpreter is one of these two, then assume 2710 an iBCS2 image. Otherwise assume a native linux image. */ 2711 2712 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2713 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2714 info->personality = PER_SVR4; 2715 2716 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2717 and some applications "depend" upon this behavior. Since 2718 we do not have the power to recompile these, we emulate 2719 the SVr4 behavior. Sigh. */ 2720 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2721 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2722 } 2723 #ifdef TARGET_MIPS 2724 info->interp_fp_abi = interp_info.fp_abi; 2725 #endif 2726 } 2727 2728 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2729 info, (elf_interpreter ? &interp_info : NULL)); 2730 info->start_stack = bprm->p; 2731 2732 /* If we have an interpreter, set that as the program's entry point. 2733 Copy the load_bias as well, to help PPC64 interpret the entry 2734 point as a function descriptor. Do this after creating elf tables 2735 so that we copy the original program entry point into the AUXV. */ 2736 if (elf_interpreter) { 2737 info->load_bias = interp_info.load_bias; 2738 info->entry = interp_info.entry; 2739 free(elf_interpreter); 2740 } 2741 2742 #ifdef USE_ELF_CORE_DUMP 2743 bprm->core_dump = &elf_core_dump; 2744 #endif 2745 2746 return 0; 2747 } 2748 2749 #ifdef USE_ELF_CORE_DUMP 2750 /* 2751 * Definitions to generate Intel SVR4-like core files. 2752 * These mostly have the same names as the SVR4 types with "target_elf_" 2753 * tacked on the front to prevent clashes with linux definitions, 2754 * and the typedef forms have been avoided. This is mostly like 2755 * the SVR4 structure, but more Linuxy, with things that Linux does 2756 * not support and which gdb doesn't really use excluded. 2757 * 2758 * Fields we don't dump (their contents is zero) in linux-user qemu 2759 * are marked with XXX. 2760 * 2761 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2762 * 2763 * Porting ELF coredump for target is (quite) simple process. First you 2764 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2765 * the target resides): 2766 * 2767 * #define USE_ELF_CORE_DUMP 2768 * 2769 * Next you define type of register set used for dumping. ELF specification 2770 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2771 * 2772 * typedef <target_regtype> target_elf_greg_t; 2773 * #define ELF_NREG <number of registers> 2774 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2775 * 2776 * Last step is to implement target specific function that copies registers 2777 * from given cpu into just specified register set. Prototype is: 2778 * 2779 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2780 * const CPUArchState *env); 2781 * 2782 * Parameters: 2783 * regs - copy register values into here (allocated and zeroed by caller) 2784 * env - copy registers from here 2785 * 2786 * Example for ARM target is provided in this file. 2787 */ 2788 2789 /* An ELF note in memory */ 2790 struct memelfnote { 2791 const char *name; 2792 size_t namesz; 2793 size_t namesz_rounded; 2794 int type; 2795 size_t datasz; 2796 size_t datasz_rounded; 2797 void *data; 2798 size_t notesz; 2799 }; 2800 2801 struct target_elf_siginfo { 2802 abi_int si_signo; /* signal number */ 2803 abi_int si_code; /* extra code */ 2804 abi_int si_errno; /* errno */ 2805 }; 2806 2807 struct target_elf_prstatus { 2808 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2809 abi_short pr_cursig; /* Current signal */ 2810 abi_ulong pr_sigpend; /* XXX */ 2811 abi_ulong pr_sighold; /* XXX */ 2812 target_pid_t pr_pid; 2813 target_pid_t pr_ppid; 2814 target_pid_t pr_pgrp; 2815 target_pid_t pr_sid; 2816 struct target_timeval pr_utime; /* XXX User time */ 2817 struct target_timeval pr_stime; /* XXX System time */ 2818 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2819 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2820 target_elf_gregset_t pr_reg; /* GP registers */ 2821 abi_int pr_fpvalid; /* XXX */ 2822 }; 2823 2824 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2825 2826 struct target_elf_prpsinfo { 2827 char pr_state; /* numeric process state */ 2828 char pr_sname; /* char for pr_state */ 2829 char pr_zomb; /* zombie */ 2830 char pr_nice; /* nice val */ 2831 abi_ulong pr_flag; /* flags */ 2832 target_uid_t pr_uid; 2833 target_gid_t pr_gid; 2834 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2835 /* Lots missing */ 2836 char pr_fname[16]; /* filename of executable */ 2837 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2838 }; 2839 2840 /* Here is the structure in which status of each thread is captured. */ 2841 struct elf_thread_status { 2842 QTAILQ_ENTRY(elf_thread_status) ets_link; 2843 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2844 #if 0 2845 elf_fpregset_t fpu; /* NT_PRFPREG */ 2846 struct task_struct *thread; 2847 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2848 #endif 2849 struct memelfnote notes[1]; 2850 int num_notes; 2851 }; 2852 2853 struct elf_note_info { 2854 struct memelfnote *notes; 2855 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2856 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2857 2858 QTAILQ_HEAD(, elf_thread_status) thread_list; 2859 #if 0 2860 /* 2861 * Current version of ELF coredump doesn't support 2862 * dumping fp regs etc. 2863 */ 2864 elf_fpregset_t *fpu; 2865 elf_fpxregset_t *xfpu; 2866 int thread_status_size; 2867 #endif 2868 int notes_size; 2869 int numnote; 2870 }; 2871 2872 struct vm_area_struct { 2873 target_ulong vma_start; /* start vaddr of memory region */ 2874 target_ulong vma_end; /* end vaddr of memory region */ 2875 abi_ulong vma_flags; /* protection etc. flags for the region */ 2876 QTAILQ_ENTRY(vm_area_struct) vma_link; 2877 }; 2878 2879 struct mm_struct { 2880 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2881 int mm_count; /* number of mappings */ 2882 }; 2883 2884 static struct mm_struct *vma_init(void); 2885 static void vma_delete(struct mm_struct *); 2886 static int vma_add_mapping(struct mm_struct *, target_ulong, 2887 target_ulong, abi_ulong); 2888 static int vma_get_mapping_count(const struct mm_struct *); 2889 static struct vm_area_struct *vma_first(const struct mm_struct *); 2890 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2891 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2892 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2893 unsigned long flags); 2894 2895 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2896 static void fill_note(struct memelfnote *, const char *, int, 2897 unsigned int, void *); 2898 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2899 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2900 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2901 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2902 static size_t note_size(const struct memelfnote *); 2903 static void free_note_info(struct elf_note_info *); 2904 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2905 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2906 static int core_dump_filename(const TaskState *, char *, size_t); 2907 2908 static int dump_write(int, const void *, size_t); 2909 static int write_note(struct memelfnote *, int); 2910 static int write_note_info(struct elf_note_info *, int); 2911 2912 #ifdef BSWAP_NEEDED 2913 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2914 { 2915 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2916 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2917 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2918 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2919 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2920 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2921 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2922 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2923 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2924 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2925 /* cpu times are not filled, so we skip them */ 2926 /* regs should be in correct format already */ 2927 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2928 } 2929 2930 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2931 { 2932 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2933 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2934 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2935 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2936 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2937 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2938 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2939 } 2940 2941 static void bswap_note(struct elf_note *en) 2942 { 2943 bswap32s(&en->n_namesz); 2944 bswap32s(&en->n_descsz); 2945 bswap32s(&en->n_type); 2946 } 2947 #else 2948 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2949 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2950 static inline void bswap_note(struct elf_note *en) { } 2951 #endif /* BSWAP_NEEDED */ 2952 2953 /* 2954 * Minimal support for linux memory regions. These are needed 2955 * when we are finding out what memory exactly belongs to 2956 * emulated process. No locks needed here, as long as 2957 * thread that received the signal is stopped. 2958 */ 2959 2960 static struct mm_struct *vma_init(void) 2961 { 2962 struct mm_struct *mm; 2963 2964 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2965 return (NULL); 2966 2967 mm->mm_count = 0; 2968 QTAILQ_INIT(&mm->mm_mmap); 2969 2970 return (mm); 2971 } 2972 2973 static void vma_delete(struct mm_struct *mm) 2974 { 2975 struct vm_area_struct *vma; 2976 2977 while ((vma = vma_first(mm)) != NULL) { 2978 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2979 g_free(vma); 2980 } 2981 g_free(mm); 2982 } 2983 2984 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2985 target_ulong end, abi_ulong flags) 2986 { 2987 struct vm_area_struct *vma; 2988 2989 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2990 return (-1); 2991 2992 vma->vma_start = start; 2993 vma->vma_end = end; 2994 vma->vma_flags = flags; 2995 2996 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2997 mm->mm_count++; 2998 2999 return (0); 3000 } 3001 3002 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3003 { 3004 return (QTAILQ_FIRST(&mm->mm_mmap)); 3005 } 3006 3007 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3008 { 3009 return (QTAILQ_NEXT(vma, vma_link)); 3010 } 3011 3012 static int vma_get_mapping_count(const struct mm_struct *mm) 3013 { 3014 return (mm->mm_count); 3015 } 3016 3017 /* 3018 * Calculate file (dump) size of given memory region. 3019 */ 3020 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3021 { 3022 /* if we cannot even read the first page, skip it */ 3023 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3024 return (0); 3025 3026 /* 3027 * Usually we don't dump executable pages as they contain 3028 * non-writable code that debugger can read directly from 3029 * target library etc. However, thread stacks are marked 3030 * also executable so we read in first page of given region 3031 * and check whether it contains elf header. If there is 3032 * no elf header, we dump it. 3033 */ 3034 if (vma->vma_flags & PROT_EXEC) { 3035 char page[TARGET_PAGE_SIZE]; 3036 3037 copy_from_user(page, vma->vma_start, sizeof (page)); 3038 if ((page[EI_MAG0] == ELFMAG0) && 3039 (page[EI_MAG1] == ELFMAG1) && 3040 (page[EI_MAG2] == ELFMAG2) && 3041 (page[EI_MAG3] == ELFMAG3)) { 3042 /* 3043 * Mappings are possibly from ELF binary. Don't dump 3044 * them. 3045 */ 3046 return (0); 3047 } 3048 } 3049 3050 return (vma->vma_end - vma->vma_start); 3051 } 3052 3053 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3054 unsigned long flags) 3055 { 3056 struct mm_struct *mm = (struct mm_struct *)priv; 3057 3058 vma_add_mapping(mm, start, end, flags); 3059 return (0); 3060 } 3061 3062 static void fill_note(struct memelfnote *note, const char *name, int type, 3063 unsigned int sz, void *data) 3064 { 3065 unsigned int namesz; 3066 3067 namesz = strlen(name) + 1; 3068 note->name = name; 3069 note->namesz = namesz; 3070 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3071 note->type = type; 3072 note->datasz = sz; 3073 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3074 3075 note->data = data; 3076 3077 /* 3078 * We calculate rounded up note size here as specified by 3079 * ELF document. 3080 */ 3081 note->notesz = sizeof (struct elf_note) + 3082 note->namesz_rounded + note->datasz_rounded; 3083 } 3084 3085 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3086 uint32_t flags) 3087 { 3088 (void) memset(elf, 0, sizeof(*elf)); 3089 3090 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3091 elf->e_ident[EI_CLASS] = ELF_CLASS; 3092 elf->e_ident[EI_DATA] = ELF_DATA; 3093 elf->e_ident[EI_VERSION] = EV_CURRENT; 3094 elf->e_ident[EI_OSABI] = ELF_OSABI; 3095 3096 elf->e_type = ET_CORE; 3097 elf->e_machine = machine; 3098 elf->e_version = EV_CURRENT; 3099 elf->e_phoff = sizeof(struct elfhdr); 3100 elf->e_flags = flags; 3101 elf->e_ehsize = sizeof(struct elfhdr); 3102 elf->e_phentsize = sizeof(struct elf_phdr); 3103 elf->e_phnum = segs; 3104 3105 bswap_ehdr(elf); 3106 } 3107 3108 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3109 { 3110 phdr->p_type = PT_NOTE; 3111 phdr->p_offset = offset; 3112 phdr->p_vaddr = 0; 3113 phdr->p_paddr = 0; 3114 phdr->p_filesz = sz; 3115 phdr->p_memsz = 0; 3116 phdr->p_flags = 0; 3117 phdr->p_align = 0; 3118 3119 bswap_phdr(phdr, 1); 3120 } 3121 3122 static size_t note_size(const struct memelfnote *note) 3123 { 3124 return (note->notesz); 3125 } 3126 3127 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3128 const TaskState *ts, int signr) 3129 { 3130 (void) memset(prstatus, 0, sizeof (*prstatus)); 3131 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3132 prstatus->pr_pid = ts->ts_tid; 3133 prstatus->pr_ppid = getppid(); 3134 prstatus->pr_pgrp = getpgrp(); 3135 prstatus->pr_sid = getsid(0); 3136 3137 bswap_prstatus(prstatus); 3138 } 3139 3140 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3141 { 3142 char *base_filename; 3143 unsigned int i, len; 3144 3145 (void) memset(psinfo, 0, sizeof (*psinfo)); 3146 3147 len = ts->info->arg_end - ts->info->arg_start; 3148 if (len >= ELF_PRARGSZ) 3149 len = ELF_PRARGSZ - 1; 3150 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3151 return -EFAULT; 3152 for (i = 0; i < len; i++) 3153 if (psinfo->pr_psargs[i] == 0) 3154 psinfo->pr_psargs[i] = ' '; 3155 psinfo->pr_psargs[len] = 0; 3156 3157 psinfo->pr_pid = getpid(); 3158 psinfo->pr_ppid = getppid(); 3159 psinfo->pr_pgrp = getpgrp(); 3160 psinfo->pr_sid = getsid(0); 3161 psinfo->pr_uid = getuid(); 3162 psinfo->pr_gid = getgid(); 3163 3164 base_filename = g_path_get_basename(ts->bprm->filename); 3165 /* 3166 * Using strncpy here is fine: at max-length, 3167 * this field is not NUL-terminated. 3168 */ 3169 (void) strncpy(psinfo->pr_fname, base_filename, 3170 sizeof(psinfo->pr_fname)); 3171 3172 g_free(base_filename); 3173 bswap_psinfo(psinfo); 3174 return (0); 3175 } 3176 3177 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3178 { 3179 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3180 elf_addr_t orig_auxv = auxv; 3181 void *ptr; 3182 int len = ts->info->auxv_len; 3183 3184 /* 3185 * Auxiliary vector is stored in target process stack. It contains 3186 * {type, value} pairs that we need to dump into note. This is not 3187 * strictly necessary but we do it here for sake of completeness. 3188 */ 3189 3190 /* read in whole auxv vector and copy it to memelfnote */ 3191 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3192 if (ptr != NULL) { 3193 fill_note(note, "CORE", NT_AUXV, len, ptr); 3194 unlock_user(ptr, auxv, len); 3195 } 3196 } 3197 3198 /* 3199 * Constructs name of coredump file. We have following convention 3200 * for the name: 3201 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3202 * 3203 * Returns 0 in case of success, -1 otherwise (errno is set). 3204 */ 3205 static int core_dump_filename(const TaskState *ts, char *buf, 3206 size_t bufsize) 3207 { 3208 char timestamp[64]; 3209 char *base_filename = NULL; 3210 struct timeval tv; 3211 struct tm tm; 3212 3213 assert(bufsize >= PATH_MAX); 3214 3215 if (gettimeofday(&tv, NULL) < 0) { 3216 (void) fprintf(stderr, "unable to get current timestamp: %s", 3217 strerror(errno)); 3218 return (-1); 3219 } 3220 3221 base_filename = g_path_get_basename(ts->bprm->filename); 3222 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3223 localtime_r(&tv.tv_sec, &tm)); 3224 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3225 base_filename, timestamp, (int)getpid()); 3226 g_free(base_filename); 3227 3228 return (0); 3229 } 3230 3231 static int dump_write(int fd, const void *ptr, size_t size) 3232 { 3233 const char *bufp = (const char *)ptr; 3234 ssize_t bytes_written, bytes_left; 3235 struct rlimit dumpsize; 3236 off_t pos; 3237 3238 bytes_written = 0; 3239 getrlimit(RLIMIT_CORE, &dumpsize); 3240 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3241 if (errno == ESPIPE) { /* not a seekable stream */ 3242 bytes_left = size; 3243 } else { 3244 return pos; 3245 } 3246 } else { 3247 if (dumpsize.rlim_cur <= pos) { 3248 return -1; 3249 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3250 bytes_left = size; 3251 } else { 3252 size_t limit_left=dumpsize.rlim_cur - pos; 3253 bytes_left = limit_left >= size ? size : limit_left ; 3254 } 3255 } 3256 3257 /* 3258 * In normal conditions, single write(2) should do but 3259 * in case of socket etc. this mechanism is more portable. 3260 */ 3261 do { 3262 bytes_written = write(fd, bufp, bytes_left); 3263 if (bytes_written < 0) { 3264 if (errno == EINTR) 3265 continue; 3266 return (-1); 3267 } else if (bytes_written == 0) { /* eof */ 3268 return (-1); 3269 } 3270 bufp += bytes_written; 3271 bytes_left -= bytes_written; 3272 } while (bytes_left > 0); 3273 3274 return (0); 3275 } 3276 3277 static int write_note(struct memelfnote *men, int fd) 3278 { 3279 struct elf_note en; 3280 3281 en.n_namesz = men->namesz; 3282 en.n_type = men->type; 3283 en.n_descsz = men->datasz; 3284 3285 bswap_note(&en); 3286 3287 if (dump_write(fd, &en, sizeof(en)) != 0) 3288 return (-1); 3289 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3290 return (-1); 3291 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3292 return (-1); 3293 3294 return (0); 3295 } 3296 3297 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3298 { 3299 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3300 TaskState *ts = (TaskState *)cpu->opaque; 3301 struct elf_thread_status *ets; 3302 3303 ets = g_malloc0(sizeof (*ets)); 3304 ets->num_notes = 1; /* only prstatus is dumped */ 3305 fill_prstatus(&ets->prstatus, ts, 0); 3306 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3307 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3308 &ets->prstatus); 3309 3310 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3311 3312 info->notes_size += note_size(&ets->notes[0]); 3313 } 3314 3315 static void init_note_info(struct elf_note_info *info) 3316 { 3317 /* Initialize the elf_note_info structure so that it is at 3318 * least safe to call free_note_info() on it. Must be 3319 * called before calling fill_note_info(). 3320 */ 3321 memset(info, 0, sizeof (*info)); 3322 QTAILQ_INIT(&info->thread_list); 3323 } 3324 3325 static int fill_note_info(struct elf_note_info *info, 3326 long signr, const CPUArchState *env) 3327 { 3328 #define NUMNOTES 3 3329 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3330 TaskState *ts = (TaskState *)cpu->opaque; 3331 int i; 3332 3333 info->notes = g_new0(struct memelfnote, NUMNOTES); 3334 if (info->notes == NULL) 3335 return (-ENOMEM); 3336 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3337 if (info->prstatus == NULL) 3338 return (-ENOMEM); 3339 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3340 if (info->prstatus == NULL) 3341 return (-ENOMEM); 3342 3343 /* 3344 * First fill in status (and registers) of current thread 3345 * including process info & aux vector. 3346 */ 3347 fill_prstatus(info->prstatus, ts, signr); 3348 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3349 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3350 sizeof (*info->prstatus), info->prstatus); 3351 fill_psinfo(info->psinfo, ts); 3352 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3353 sizeof (*info->psinfo), info->psinfo); 3354 fill_auxv_note(&info->notes[2], ts); 3355 info->numnote = 3; 3356 3357 info->notes_size = 0; 3358 for (i = 0; i < info->numnote; i++) 3359 info->notes_size += note_size(&info->notes[i]); 3360 3361 /* read and fill status of all threads */ 3362 cpu_list_lock(); 3363 CPU_FOREACH(cpu) { 3364 if (cpu == thread_cpu) { 3365 continue; 3366 } 3367 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3368 } 3369 cpu_list_unlock(); 3370 3371 return (0); 3372 } 3373 3374 static void free_note_info(struct elf_note_info *info) 3375 { 3376 struct elf_thread_status *ets; 3377 3378 while (!QTAILQ_EMPTY(&info->thread_list)) { 3379 ets = QTAILQ_FIRST(&info->thread_list); 3380 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3381 g_free(ets); 3382 } 3383 3384 g_free(info->prstatus); 3385 g_free(info->psinfo); 3386 g_free(info->notes); 3387 } 3388 3389 static int write_note_info(struct elf_note_info *info, int fd) 3390 { 3391 struct elf_thread_status *ets; 3392 int i, error = 0; 3393 3394 /* write prstatus, psinfo and auxv for current thread */ 3395 for (i = 0; i < info->numnote; i++) 3396 if ((error = write_note(&info->notes[i], fd)) != 0) 3397 return (error); 3398 3399 /* write prstatus for each thread */ 3400 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3401 if ((error = write_note(&ets->notes[0], fd)) != 0) 3402 return (error); 3403 } 3404 3405 return (0); 3406 } 3407 3408 /* 3409 * Write out ELF coredump. 3410 * 3411 * See documentation of ELF object file format in: 3412 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3413 * 3414 * Coredump format in linux is following: 3415 * 3416 * 0 +----------------------+ \ 3417 * | ELF header | ET_CORE | 3418 * +----------------------+ | 3419 * | ELF program headers | |--- headers 3420 * | - NOTE section | | 3421 * | - PT_LOAD sections | | 3422 * +----------------------+ / 3423 * | NOTEs: | 3424 * | - NT_PRSTATUS | 3425 * | - NT_PRSINFO | 3426 * | - NT_AUXV | 3427 * +----------------------+ <-- aligned to target page 3428 * | Process memory dump | 3429 * : : 3430 * . . 3431 * : : 3432 * | | 3433 * +----------------------+ 3434 * 3435 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3436 * NT_PRSINFO -> struct elf_prpsinfo 3437 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3438 * 3439 * Format follows System V format as close as possible. Current 3440 * version limitations are as follows: 3441 * - no floating point registers are dumped 3442 * 3443 * Function returns 0 in case of success, negative errno otherwise. 3444 * 3445 * TODO: make this work also during runtime: it should be 3446 * possible to force coredump from running process and then 3447 * continue processing. For example qemu could set up SIGUSR2 3448 * handler (provided that target process haven't registered 3449 * handler for that) that does the dump when signal is received. 3450 */ 3451 static int elf_core_dump(int signr, const CPUArchState *env) 3452 { 3453 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3454 const TaskState *ts = (const TaskState *)cpu->opaque; 3455 struct vm_area_struct *vma = NULL; 3456 char corefile[PATH_MAX]; 3457 struct elf_note_info info; 3458 struct elfhdr elf; 3459 struct elf_phdr phdr; 3460 struct rlimit dumpsize; 3461 struct mm_struct *mm = NULL; 3462 off_t offset = 0, data_offset = 0; 3463 int segs = 0; 3464 int fd = -1; 3465 3466 init_note_info(&info); 3467 3468 errno = 0; 3469 getrlimit(RLIMIT_CORE, &dumpsize); 3470 if (dumpsize.rlim_cur == 0) 3471 return 0; 3472 3473 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3474 return (-errno); 3475 3476 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3477 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3478 return (-errno); 3479 3480 /* 3481 * Walk through target process memory mappings and 3482 * set up structure containing this information. After 3483 * this point vma_xxx functions can be used. 3484 */ 3485 if ((mm = vma_init()) == NULL) 3486 goto out; 3487 3488 walk_memory_regions(mm, vma_walker); 3489 segs = vma_get_mapping_count(mm); 3490 3491 /* 3492 * Construct valid coredump ELF header. We also 3493 * add one more segment for notes. 3494 */ 3495 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3496 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3497 goto out; 3498 3499 /* fill in the in-memory version of notes */ 3500 if (fill_note_info(&info, signr, env) < 0) 3501 goto out; 3502 3503 offset += sizeof (elf); /* elf header */ 3504 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3505 3506 /* write out notes program header */ 3507 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3508 3509 offset += info.notes_size; 3510 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3511 goto out; 3512 3513 /* 3514 * ELF specification wants data to start at page boundary so 3515 * we align it here. 3516 */ 3517 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3518 3519 /* 3520 * Write program headers for memory regions mapped in 3521 * the target process. 3522 */ 3523 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3524 (void) memset(&phdr, 0, sizeof (phdr)); 3525 3526 phdr.p_type = PT_LOAD; 3527 phdr.p_offset = offset; 3528 phdr.p_vaddr = vma->vma_start; 3529 phdr.p_paddr = 0; 3530 phdr.p_filesz = vma_dump_size(vma); 3531 offset += phdr.p_filesz; 3532 phdr.p_memsz = vma->vma_end - vma->vma_start; 3533 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3534 if (vma->vma_flags & PROT_WRITE) 3535 phdr.p_flags |= PF_W; 3536 if (vma->vma_flags & PROT_EXEC) 3537 phdr.p_flags |= PF_X; 3538 phdr.p_align = ELF_EXEC_PAGESIZE; 3539 3540 bswap_phdr(&phdr, 1); 3541 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3542 goto out; 3543 } 3544 } 3545 3546 /* 3547 * Next we write notes just after program headers. No 3548 * alignment needed here. 3549 */ 3550 if (write_note_info(&info, fd) < 0) 3551 goto out; 3552 3553 /* align data to page boundary */ 3554 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3555 goto out; 3556 3557 /* 3558 * Finally we can dump process memory into corefile as well. 3559 */ 3560 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3561 abi_ulong addr; 3562 abi_ulong end; 3563 3564 end = vma->vma_start + vma_dump_size(vma); 3565 3566 for (addr = vma->vma_start; addr < end; 3567 addr += TARGET_PAGE_SIZE) { 3568 char page[TARGET_PAGE_SIZE]; 3569 int error; 3570 3571 /* 3572 * Read in page from target process memory and 3573 * write it to coredump file. 3574 */ 3575 error = copy_from_user(page, addr, sizeof (page)); 3576 if (error != 0) { 3577 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3578 addr); 3579 errno = -error; 3580 goto out; 3581 } 3582 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3583 goto out; 3584 } 3585 } 3586 3587 out: 3588 free_note_info(&info); 3589 if (mm != NULL) 3590 vma_delete(mm); 3591 (void) close(fd); 3592 3593 if (errno != 0) 3594 return (-errno); 3595 return (0); 3596 } 3597 #endif /* USE_ELF_CORE_DUMP */ 3598 3599 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3600 { 3601 init_thread(regs, infop); 3602 } 3603