xref: /openbmc/qemu/linux-user/elfload.c (revision 07664ca68b6fd1be1b5574e6a5e360057fd54322)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
85 
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
90 
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA        ELFDATA2MSB
93 #else
94 #define ELF_DATA        ELFDATA2LSB
95 #endif
96 
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong      target_elf_greg_t;
99 #define tswapreg(ptr)   tswap64(ptr)
100 #else
101 typedef abi_ulong       target_elf_greg_t;
102 #define tswapreg(ptr)   tswapal(ptr)
103 #endif
104 
105 #ifdef USE_UID16
106 typedef abi_ushort      target_uid_t;
107 typedef abi_ushort      target_gid_t;
108 #else
109 typedef abi_uint        target_uid_t;
110 typedef abi_uint        target_gid_t;
111 #endif
112 typedef abi_int         target_pid_t;
113 
114 #ifdef TARGET_I386
115 
116 #define ELF_PLATFORM get_elf_platform()
117 
118 static const char *get_elf_platform(void)
119 {
120     static char elf_platform[] = "i386";
121     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122     if (family > 6)
123         family = 6;
124     if (family >= 3)
125         elf_platform[1] = '0' + family;
126     return elf_platform;
127 }
128 
129 #define ELF_HWCAP get_elf_hwcap()
130 
131 static uint32_t get_elf_hwcap(void)
132 {
133     X86CPU *cpu = X86_CPU(thread_cpu);
134 
135     return cpu->env.features[FEAT_1_EDX];
136 }
137 
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
140 
141 #define ELF_CLASS      ELFCLASS64
142 #define ELF_ARCH       EM_X86_64
143 
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145 {
146     regs->rax = 0;
147     regs->rsp = infop->start_stack;
148     regs->rip = infop->entry;
149 }
150 
151 #define ELF_NREG    27
152 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
153 
154 /*
155  * Note that ELF_NREG should be 29 as there should be place for
156  * TRAPNO and ERR "registers" as well but linux doesn't dump
157  * those.
158  *
159  * See linux kernel: arch/x86/include/asm/elf.h
160  */
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
162 {
163     (*regs)[0] = env->regs[15];
164     (*regs)[1] = env->regs[14];
165     (*regs)[2] = env->regs[13];
166     (*regs)[3] = env->regs[12];
167     (*regs)[4] = env->regs[R_EBP];
168     (*regs)[5] = env->regs[R_EBX];
169     (*regs)[6] = env->regs[11];
170     (*regs)[7] = env->regs[10];
171     (*regs)[8] = env->regs[9];
172     (*regs)[9] = env->regs[8];
173     (*regs)[10] = env->regs[R_EAX];
174     (*regs)[11] = env->regs[R_ECX];
175     (*regs)[12] = env->regs[R_EDX];
176     (*regs)[13] = env->regs[R_ESI];
177     (*regs)[14] = env->regs[R_EDI];
178     (*regs)[15] = env->regs[R_EAX]; /* XXX */
179     (*regs)[16] = env->eip;
180     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181     (*regs)[18] = env->eflags;
182     (*regs)[19] = env->regs[R_ESP];
183     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190 }
191 
192 #else
193 
194 #define ELF_START_MMAP 0x80000000
195 
196 /*
197  * This is used to ensure we don't load something for the wrong architecture.
198  */
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200 
201 /*
202  * These are used to set parameters in the core dumps.
203  */
204 #define ELF_CLASS       ELFCLASS32
205 #define ELF_ARCH        EM_386
206 
207 static inline void init_thread(struct target_pt_regs *regs,
208                                struct image_info *infop)
209 {
210     regs->esp = infop->start_stack;
211     regs->eip = infop->entry;
212 
213     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214        starts %edx contains a pointer to a function which might be
215        registered using `atexit'.  This provides a mean for the
216        dynamic linker to call DT_FINI functions for shared libraries
217        that have been loaded before the code runs.
218 
219        A value of 0 tells we have no such handler.  */
220     regs->edx = 0;
221 }
222 
223 #define ELF_NREG    17
224 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
225 
226 /*
227  * Note that ELF_NREG should be 19 as there should be place for
228  * TRAPNO and ERR "registers" as well but linux doesn't dump
229  * those.
230  *
231  * See linux kernel: arch/x86/include/asm/elf.h
232  */
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
234 {
235     (*regs)[0] = env->regs[R_EBX];
236     (*regs)[1] = env->regs[R_ECX];
237     (*regs)[2] = env->regs[R_EDX];
238     (*regs)[3] = env->regs[R_ESI];
239     (*regs)[4] = env->regs[R_EDI];
240     (*regs)[5] = env->regs[R_EBP];
241     (*regs)[6] = env->regs[R_EAX];
242     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246     (*regs)[11] = env->regs[R_EAX]; /* XXX */
247     (*regs)[12] = env->eip;
248     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249     (*regs)[14] = env->eflags;
250     (*regs)[15] = env->regs[R_ESP];
251     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252 }
253 #endif
254 
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE       4096
257 
258 #endif
259 
260 #ifdef TARGET_ARM
261 
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
264 
265 #define ELF_START_MMAP 0x80000000
266 
267 #define ELF_ARCH        EM_ARM
268 #define ELF_CLASS       ELFCLASS32
269 
270 static inline void init_thread(struct target_pt_regs *regs,
271                                struct image_info *infop)
272 {
273     abi_long stack = infop->start_stack;
274     memset(regs, 0, sizeof(*regs));
275 
276     regs->uregs[16] = ARM_CPU_MODE_USR;
277     if (infop->entry & 1) {
278         regs->uregs[16] |= CPSR_T;
279     }
280     regs->uregs[15] = infop->entry & 0xfffffffe;
281     regs->uregs[13] = infop->start_stack;
282     /* FIXME - what to for failure of get_user()? */
283     get_user_ual(regs->uregs[2], stack + 8); /* envp */
284     get_user_ual(regs->uregs[1], stack + 4); /* envp */
285     /* XXX: it seems that r0 is zeroed after ! */
286     regs->uregs[0] = 0;
287     /* For uClinux PIC binaries.  */
288     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289     regs->uregs[10] = infop->start_data;
290 }
291 
292 #define ELF_NREG    18
293 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
294 
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
296 {
297     (*regs)[0] = tswapreg(env->regs[0]);
298     (*regs)[1] = tswapreg(env->regs[1]);
299     (*regs)[2] = tswapreg(env->regs[2]);
300     (*regs)[3] = tswapreg(env->regs[3]);
301     (*regs)[4] = tswapreg(env->regs[4]);
302     (*regs)[5] = tswapreg(env->regs[5]);
303     (*regs)[6] = tswapreg(env->regs[6]);
304     (*regs)[7] = tswapreg(env->regs[7]);
305     (*regs)[8] = tswapreg(env->regs[8]);
306     (*regs)[9] = tswapreg(env->regs[9]);
307     (*regs)[10] = tswapreg(env->regs[10]);
308     (*regs)[11] = tswapreg(env->regs[11]);
309     (*regs)[12] = tswapreg(env->regs[12]);
310     (*regs)[13] = tswapreg(env->regs[13]);
311     (*regs)[14] = tswapreg(env->regs[14]);
312     (*regs)[15] = tswapreg(env->regs[15]);
313 
314     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
316 }
317 
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE       4096
320 
321 enum
322 {
323     ARM_HWCAP_ARM_SWP       = 1 << 0,
324     ARM_HWCAP_ARM_HALF      = 1 << 1,
325     ARM_HWCAP_ARM_THUMB     = 1 << 2,
326     ARM_HWCAP_ARM_26BIT     = 1 << 3,
327     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328     ARM_HWCAP_ARM_FPA       = 1 << 5,
329     ARM_HWCAP_ARM_VFP       = 1 << 6,
330     ARM_HWCAP_ARM_EDSP      = 1 << 7,
331     ARM_HWCAP_ARM_JAVA      = 1 << 8,
332     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
333     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
334     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
335     ARM_HWCAP_ARM_NEON      = 1 << 12,
336     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
337     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
338     ARM_HWCAP_ARM_TLS       = 1 << 15,
339     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
340     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
341     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
342     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
343     ARM_HWCAP_ARM_LPAE      = 1 << 20,
344     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
345 };
346 
347 enum {
348     ARM_HWCAP2_ARM_AES      = 1 << 0,
349     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
350     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
351     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
352     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
353 };
354 
355 /* The commpage only exists for 32 bit kernels */
356 
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359  * Return 0 if the proposed guest space isn't suitable, but another
360  * address space should be tried.
361  * Return -1 if there is no way the proposed guest space can be
362  * valid regardless of the base.
363  * The guest code may leave a page mapped and populate it if the
364  * address is suitable.
365  */
366 static int validate_guest_space(unsigned long guest_base,
367                                 unsigned long guest_size)
368 {
369     unsigned long real_start, test_page_addr;
370 
371     /* We need to check that we can force a fault on access to the
372      * commpage at 0xffff0fxx
373      */
374     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
375 
376     /* If the commpage lies within the already allocated guest space,
377      * then there is no way we can allocate it.
378      */
379     if (test_page_addr >= guest_base
380         && test_page_addr < (guest_base + guest_size)) {
381         return -1;
382     }
383 
384     /* Note it needs to be writeable to let us initialise it */
385     real_start = (unsigned long)
386                  mmap((void *)test_page_addr, qemu_host_page_size,
387                      PROT_READ | PROT_WRITE,
388                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
389 
390     /* If we can't map it then try another address */
391     if (real_start == -1ul) {
392         return 0;
393     }
394 
395     if (real_start != test_page_addr) {
396         /* OS didn't put the page where we asked - unmap and reject */
397         munmap((void *)real_start, qemu_host_page_size);
398         return 0;
399     }
400 
401     /* Leave the page mapped
402      * Populate it (mmap should have left it all 0'd)
403      */
404 
405     /* Kernel helper versions */
406     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
407 
408     /* Now it's populated make it RO */
409     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410         perror("Protecting guest commpage");
411         exit(-1);
412     }
413 
414     return 1; /* All good */
415 }
416 
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
419 
420 static uint32_t get_elf_hwcap(void)
421 {
422     ARMCPU *cpu = ARM_CPU(thread_cpu);
423     uint32_t hwcaps = 0;
424 
425     hwcaps |= ARM_HWCAP_ARM_SWP;
426     hwcaps |= ARM_HWCAP_ARM_HALF;
427     hwcaps |= ARM_HWCAP_ARM_THUMB;
428     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
429 
430     /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447      * to our VFP_FP16 feature bit.
448      */
449     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
451 
452     return hwcaps;
453 }
454 
455 static uint32_t get_elf_hwcap2(void)
456 {
457     ARMCPU *cpu = ARM_CPU(thread_cpu);
458     uint32_t hwcaps = 0;
459 
460     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
461     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
462     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
464     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465     return hwcaps;
466 }
467 
468 #undef GET_FEATURE
469 
470 #else
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
473 
474 #define ELF_ARCH        EM_AARCH64
475 #define ELF_CLASS       ELFCLASS64
476 #define ELF_PLATFORM    "aarch64"
477 
478 static inline void init_thread(struct target_pt_regs *regs,
479                                struct image_info *infop)
480 {
481     abi_long stack = infop->start_stack;
482     memset(regs, 0, sizeof(*regs));
483 
484     regs->pc = infop->entry & ~0x3ULL;
485     regs->sp = stack;
486 }
487 
488 #define ELF_NREG    34
489 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
490 
491 static void elf_core_copy_regs(target_elf_gregset_t *regs,
492                                const CPUARMState *env)
493 {
494     int i;
495 
496     for (i = 0; i < 32; i++) {
497         (*regs)[i] = tswapreg(env->xregs[i]);
498     }
499     (*regs)[32] = tswapreg(env->pc);
500     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
501 }
502 
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE       4096
505 
506 enum {
507     ARM_HWCAP_A64_FP            = 1 << 0,
508     ARM_HWCAP_A64_ASIMD         = 1 << 1,
509     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
510     ARM_HWCAP_A64_AES           = 1 << 3,
511     ARM_HWCAP_A64_PMULL         = 1 << 4,
512     ARM_HWCAP_A64_SHA1          = 1 << 5,
513     ARM_HWCAP_A64_SHA2          = 1 << 6,
514     ARM_HWCAP_A64_CRC32         = 1 << 7,
515     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
516     ARM_HWCAP_A64_FPHP          = 1 << 9,
517     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
518     ARM_HWCAP_A64_CPUID         = 1 << 11,
519     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
520     ARM_HWCAP_A64_JSCVT         = 1 << 13,
521     ARM_HWCAP_A64_FCMA          = 1 << 14,
522     ARM_HWCAP_A64_LRCPC         = 1 << 15,
523     ARM_HWCAP_A64_DCPOP         = 1 << 16,
524     ARM_HWCAP_A64_SHA3          = 1 << 17,
525     ARM_HWCAP_A64_SM3           = 1 << 18,
526     ARM_HWCAP_A64_SM4           = 1 << 19,
527     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
528     ARM_HWCAP_A64_SHA512        = 1 << 21,
529     ARM_HWCAP_A64_SVE           = 1 << 22,
530 };
531 
532 #define ELF_HWCAP get_elf_hwcap()
533 
534 static uint32_t get_elf_hwcap(void)
535 {
536     ARMCPU *cpu = ARM_CPU(thread_cpu);
537     uint32_t hwcaps = 0;
538 
539     hwcaps |= ARM_HWCAP_A64_FP;
540     hwcaps |= ARM_HWCAP_A64_ASIMD;
541 
542     /* probe for the extra features */
543 #define GET_FEATURE(feat, hwcap) \
544     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
545     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
546     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
547     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
548     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
549     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
550     GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
551     GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
552     GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
553     GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
554     GET_FEATURE(ARM_FEATURE_V8_FP16,
555                 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
556 #undef GET_FEATURE
557 
558     return hwcaps;
559 }
560 
561 #endif /* not TARGET_AARCH64 */
562 #endif /* TARGET_ARM */
563 
564 #ifdef TARGET_UNICORE32
565 
566 #define ELF_START_MMAP          0x80000000
567 
568 #define ELF_CLASS               ELFCLASS32
569 #define ELF_DATA                ELFDATA2LSB
570 #define ELF_ARCH                EM_UNICORE32
571 
572 static inline void init_thread(struct target_pt_regs *regs,
573         struct image_info *infop)
574 {
575     abi_long stack = infop->start_stack;
576     memset(regs, 0, sizeof(*regs));
577     regs->UC32_REG_asr = 0x10;
578     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
579     regs->UC32_REG_sp = infop->start_stack;
580     /* FIXME - what to for failure of get_user()? */
581     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
582     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
583     /* XXX: it seems that r0 is zeroed after ! */
584     regs->UC32_REG_00 = 0;
585 }
586 
587 #define ELF_NREG    34
588 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
589 
590 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
591 {
592     (*regs)[0] = env->regs[0];
593     (*regs)[1] = env->regs[1];
594     (*regs)[2] = env->regs[2];
595     (*regs)[3] = env->regs[3];
596     (*regs)[4] = env->regs[4];
597     (*regs)[5] = env->regs[5];
598     (*regs)[6] = env->regs[6];
599     (*regs)[7] = env->regs[7];
600     (*regs)[8] = env->regs[8];
601     (*regs)[9] = env->regs[9];
602     (*regs)[10] = env->regs[10];
603     (*regs)[11] = env->regs[11];
604     (*regs)[12] = env->regs[12];
605     (*regs)[13] = env->regs[13];
606     (*regs)[14] = env->regs[14];
607     (*regs)[15] = env->regs[15];
608     (*regs)[16] = env->regs[16];
609     (*regs)[17] = env->regs[17];
610     (*regs)[18] = env->regs[18];
611     (*regs)[19] = env->regs[19];
612     (*regs)[20] = env->regs[20];
613     (*regs)[21] = env->regs[21];
614     (*regs)[22] = env->regs[22];
615     (*regs)[23] = env->regs[23];
616     (*regs)[24] = env->regs[24];
617     (*regs)[25] = env->regs[25];
618     (*regs)[26] = env->regs[26];
619     (*regs)[27] = env->regs[27];
620     (*regs)[28] = env->regs[28];
621     (*regs)[29] = env->regs[29];
622     (*regs)[30] = env->regs[30];
623     (*regs)[31] = env->regs[31];
624 
625     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
626     (*regs)[33] = env->regs[0]; /* XXX */
627 }
628 
629 #define USE_ELF_CORE_DUMP
630 #define ELF_EXEC_PAGESIZE               4096
631 
632 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
633 
634 #endif
635 
636 #ifdef TARGET_SPARC
637 #ifdef TARGET_SPARC64
638 
639 #define ELF_START_MMAP 0x80000000
640 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
641                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
642 #ifndef TARGET_ABI32
643 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
644 #else
645 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
646 #endif
647 
648 #define ELF_CLASS   ELFCLASS64
649 #define ELF_ARCH    EM_SPARCV9
650 
651 #define STACK_BIAS              2047
652 
653 static inline void init_thread(struct target_pt_regs *regs,
654                                struct image_info *infop)
655 {
656 #ifndef TARGET_ABI32
657     regs->tstate = 0;
658 #endif
659     regs->pc = infop->entry;
660     regs->npc = regs->pc + 4;
661     regs->y = 0;
662 #ifdef TARGET_ABI32
663     regs->u_regs[14] = infop->start_stack - 16 * 4;
664 #else
665     if (personality(infop->personality) == PER_LINUX32)
666         regs->u_regs[14] = infop->start_stack - 16 * 4;
667     else
668         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
669 #endif
670 }
671 
672 #else
673 #define ELF_START_MMAP 0x80000000
674 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
675                     | HWCAP_SPARC_MULDIV)
676 
677 #define ELF_CLASS   ELFCLASS32
678 #define ELF_ARCH    EM_SPARC
679 
680 static inline void init_thread(struct target_pt_regs *regs,
681                                struct image_info *infop)
682 {
683     regs->psr = 0;
684     regs->pc = infop->entry;
685     regs->npc = regs->pc + 4;
686     regs->y = 0;
687     regs->u_regs[14] = infop->start_stack - 16 * 4;
688 }
689 
690 #endif
691 #endif
692 
693 #ifdef TARGET_PPC
694 
695 #define ELF_MACHINE    PPC_ELF_MACHINE
696 #define ELF_START_MMAP 0x80000000
697 
698 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
699 
700 #define elf_check_arch(x) ( (x) == EM_PPC64 )
701 
702 #define ELF_CLASS       ELFCLASS64
703 
704 #else
705 
706 #define ELF_CLASS       ELFCLASS32
707 
708 #endif
709 
710 #define ELF_ARCH        EM_PPC
711 
712 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
713    See arch/powerpc/include/asm/cputable.h.  */
714 enum {
715     QEMU_PPC_FEATURE_32 = 0x80000000,
716     QEMU_PPC_FEATURE_64 = 0x40000000,
717     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
718     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
719     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
720     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
721     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
722     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
723     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
724     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
725     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
726     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
727     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
728     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
729     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
730     QEMU_PPC_FEATURE_CELL = 0x00010000,
731     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
732     QEMU_PPC_FEATURE_SMT = 0x00004000,
733     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
734     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
735     QEMU_PPC_FEATURE_PA6T = 0x00000800,
736     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
737     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
738     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
739     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
740     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
741 
742     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
743     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
744 
745     /* Feature definitions in AT_HWCAP2.  */
746     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
747     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
748     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
749     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
750     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
751     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
752 };
753 
754 #define ELF_HWCAP get_elf_hwcap()
755 
756 static uint32_t get_elf_hwcap(void)
757 {
758     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
759     uint32_t features = 0;
760 
761     /* We don't have to be terribly complete here; the high points are
762        Altivec/FP/SPE support.  Anything else is just a bonus.  */
763 #define GET_FEATURE(flag, feature)                                      \
764     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
765 #define GET_FEATURE2(flags, feature) \
766     do { \
767         if ((cpu->env.insns_flags2 & flags) == flags) { \
768             features |= feature; \
769         } \
770     } while (0)
771     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
772     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
773     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
774     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
775     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
776     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
777     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
778     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
779     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
780     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
781     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
782                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
783                   QEMU_PPC_FEATURE_ARCH_2_06);
784 #undef GET_FEATURE
785 #undef GET_FEATURE2
786 
787     return features;
788 }
789 
790 #define ELF_HWCAP2 get_elf_hwcap2()
791 
792 static uint32_t get_elf_hwcap2(void)
793 {
794     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
795     uint32_t features = 0;
796 
797 #define GET_FEATURE(flag, feature)                                      \
798     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
799 #define GET_FEATURE2(flag, feature)                                      \
800     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
801 
802     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
803     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
804     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
805                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
806 
807 #undef GET_FEATURE
808 #undef GET_FEATURE2
809 
810     return features;
811 }
812 
813 /*
814  * The requirements here are:
815  * - keep the final alignment of sp (sp & 0xf)
816  * - make sure the 32-bit value at the first 16 byte aligned position of
817  *   AUXV is greater than 16 for glibc compatibility.
818  *   AT_IGNOREPPC is used for that.
819  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
820  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
821  */
822 #define DLINFO_ARCH_ITEMS       5
823 #define ARCH_DLINFO                                     \
824     do {                                                \
825         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
826         /*                                              \
827          * Handle glibc compatibility: these magic entries must \
828          * be at the lowest addresses in the final auxv.        \
829          */                                             \
830         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
831         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
832         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
833         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
834         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
835     } while (0)
836 
837 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
838 {
839     _regs->gpr[1] = infop->start_stack;
840 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
841     if (get_ppc64_abi(infop) < 2) {
842         uint64_t val;
843         get_user_u64(val, infop->entry + 8);
844         _regs->gpr[2] = val + infop->load_bias;
845         get_user_u64(val, infop->entry);
846         infop->entry = val + infop->load_bias;
847     } else {
848         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
849     }
850 #endif
851     _regs->nip = infop->entry;
852 }
853 
854 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
855 #define ELF_NREG 48
856 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
857 
858 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
859 {
860     int i;
861     target_ulong ccr = 0;
862 
863     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
864         (*regs)[i] = tswapreg(env->gpr[i]);
865     }
866 
867     (*regs)[32] = tswapreg(env->nip);
868     (*regs)[33] = tswapreg(env->msr);
869     (*regs)[35] = tswapreg(env->ctr);
870     (*regs)[36] = tswapreg(env->lr);
871     (*regs)[37] = tswapreg(env->xer);
872 
873     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
874         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
875     }
876     (*regs)[38] = tswapreg(ccr);
877 }
878 
879 #define USE_ELF_CORE_DUMP
880 #define ELF_EXEC_PAGESIZE       4096
881 
882 #endif
883 
884 #ifdef TARGET_MIPS
885 
886 #define ELF_START_MMAP 0x80000000
887 
888 #ifdef TARGET_MIPS64
889 #define ELF_CLASS   ELFCLASS64
890 #else
891 #define ELF_CLASS   ELFCLASS32
892 #endif
893 #define ELF_ARCH    EM_MIPS
894 
895 static inline void init_thread(struct target_pt_regs *regs,
896                                struct image_info *infop)
897 {
898     regs->cp0_status = 2 << CP0St_KSU;
899     regs->cp0_epc = infop->entry;
900     regs->regs[29] = infop->start_stack;
901 }
902 
903 /* See linux kernel: arch/mips/include/asm/elf.h.  */
904 #define ELF_NREG 45
905 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
906 
907 /* See linux kernel: arch/mips/include/asm/reg.h.  */
908 enum {
909 #ifdef TARGET_MIPS64
910     TARGET_EF_R0 = 0,
911 #else
912     TARGET_EF_R0 = 6,
913 #endif
914     TARGET_EF_R26 = TARGET_EF_R0 + 26,
915     TARGET_EF_R27 = TARGET_EF_R0 + 27,
916     TARGET_EF_LO = TARGET_EF_R0 + 32,
917     TARGET_EF_HI = TARGET_EF_R0 + 33,
918     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
919     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
920     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
921     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
922 };
923 
924 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
925 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
926 {
927     int i;
928 
929     for (i = 0; i < TARGET_EF_R0; i++) {
930         (*regs)[i] = 0;
931     }
932     (*regs)[TARGET_EF_R0] = 0;
933 
934     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
935         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
936     }
937 
938     (*regs)[TARGET_EF_R26] = 0;
939     (*regs)[TARGET_EF_R27] = 0;
940     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
941     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
942     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
943     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
944     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
945     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
946 }
947 
948 #define USE_ELF_CORE_DUMP
949 #define ELF_EXEC_PAGESIZE        4096
950 
951 #endif /* TARGET_MIPS */
952 
953 #ifdef TARGET_MICROBLAZE
954 
955 #define ELF_START_MMAP 0x80000000
956 
957 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
958 
959 #define ELF_CLASS   ELFCLASS32
960 #define ELF_ARCH    EM_MICROBLAZE
961 
962 static inline void init_thread(struct target_pt_regs *regs,
963                                struct image_info *infop)
964 {
965     regs->pc = infop->entry;
966     regs->r1 = infop->start_stack;
967 
968 }
969 
970 #define ELF_EXEC_PAGESIZE        4096
971 
972 #define USE_ELF_CORE_DUMP
973 #define ELF_NREG 38
974 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
975 
976 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
977 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
978 {
979     int i, pos = 0;
980 
981     for (i = 0; i < 32; i++) {
982         (*regs)[pos++] = tswapreg(env->regs[i]);
983     }
984 
985     for (i = 0; i < 6; i++) {
986         (*regs)[pos++] = tswapreg(env->sregs[i]);
987     }
988 }
989 
990 #endif /* TARGET_MICROBLAZE */
991 
992 #ifdef TARGET_NIOS2
993 
994 #define ELF_START_MMAP 0x80000000
995 
996 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
997 
998 #define ELF_CLASS   ELFCLASS32
999 #define ELF_ARCH    EM_ALTERA_NIOS2
1000 
1001 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1002 {
1003     regs->ea = infop->entry;
1004     regs->sp = infop->start_stack;
1005     regs->estatus = 0x3;
1006 }
1007 
1008 #define ELF_EXEC_PAGESIZE        4096
1009 
1010 #define USE_ELF_CORE_DUMP
1011 #define ELF_NREG 49
1012 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1013 
1014 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1015 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1016                                const CPUNios2State *env)
1017 {
1018     int i;
1019 
1020     (*regs)[0] = -1;
1021     for (i = 1; i < 8; i++)    /* r0-r7 */
1022         (*regs)[i] = tswapreg(env->regs[i + 7]);
1023 
1024     for (i = 8; i < 16; i++)   /* r8-r15 */
1025         (*regs)[i] = tswapreg(env->regs[i - 8]);
1026 
1027     for (i = 16; i < 24; i++)  /* r16-r23 */
1028         (*regs)[i] = tswapreg(env->regs[i + 7]);
1029     (*regs)[24] = -1;    /* R_ET */
1030     (*regs)[25] = -1;    /* R_BT */
1031     (*regs)[26] = tswapreg(env->regs[R_GP]);
1032     (*regs)[27] = tswapreg(env->regs[R_SP]);
1033     (*regs)[28] = tswapreg(env->regs[R_FP]);
1034     (*regs)[29] = tswapreg(env->regs[R_EA]);
1035     (*regs)[30] = -1;    /* R_SSTATUS */
1036     (*regs)[31] = tswapreg(env->regs[R_RA]);
1037 
1038     (*regs)[32] = tswapreg(env->regs[R_PC]);
1039 
1040     (*regs)[33] = -1; /* R_STATUS */
1041     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1042 
1043     for (i = 35; i < 49; i++)    /* ... */
1044         (*regs)[i] = -1;
1045 }
1046 
1047 #endif /* TARGET_NIOS2 */
1048 
1049 #ifdef TARGET_OPENRISC
1050 
1051 #define ELF_START_MMAP 0x08000000
1052 
1053 #define ELF_ARCH EM_OPENRISC
1054 #define ELF_CLASS ELFCLASS32
1055 #define ELF_DATA  ELFDATA2MSB
1056 
1057 static inline void init_thread(struct target_pt_regs *regs,
1058                                struct image_info *infop)
1059 {
1060     regs->pc = infop->entry;
1061     regs->gpr[1] = infop->start_stack;
1062 }
1063 
1064 #define USE_ELF_CORE_DUMP
1065 #define ELF_EXEC_PAGESIZE 8192
1066 
1067 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1068 #define ELF_NREG 34 /* gprs and pc, sr */
1069 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1070 
1071 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1072                                const CPUOpenRISCState *env)
1073 {
1074     int i;
1075 
1076     for (i = 0; i < 32; i++) {
1077         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1078     }
1079     (*regs)[32] = tswapreg(env->pc);
1080     (*regs)[33] = tswapreg(cpu_get_sr(env));
1081 }
1082 #define ELF_HWCAP 0
1083 #define ELF_PLATFORM NULL
1084 
1085 #endif /* TARGET_OPENRISC */
1086 
1087 #ifdef TARGET_SH4
1088 
1089 #define ELF_START_MMAP 0x80000000
1090 
1091 #define ELF_CLASS ELFCLASS32
1092 #define ELF_ARCH  EM_SH
1093 
1094 static inline void init_thread(struct target_pt_regs *regs,
1095                                struct image_info *infop)
1096 {
1097     /* Check other registers XXXXX */
1098     regs->pc = infop->entry;
1099     regs->regs[15] = infop->start_stack;
1100 }
1101 
1102 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1103 #define ELF_NREG 23
1104 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1105 
1106 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1107 enum {
1108     TARGET_REG_PC = 16,
1109     TARGET_REG_PR = 17,
1110     TARGET_REG_SR = 18,
1111     TARGET_REG_GBR = 19,
1112     TARGET_REG_MACH = 20,
1113     TARGET_REG_MACL = 21,
1114     TARGET_REG_SYSCALL = 22
1115 };
1116 
1117 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1118                                       const CPUSH4State *env)
1119 {
1120     int i;
1121 
1122     for (i = 0; i < 16; i++) {
1123         (*regs)[i] = tswapreg(env->gregs[i]);
1124     }
1125 
1126     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1127     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1128     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1129     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1130     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1131     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1132     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1133 }
1134 
1135 #define USE_ELF_CORE_DUMP
1136 #define ELF_EXEC_PAGESIZE        4096
1137 
1138 enum {
1139     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1140     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1141     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1142     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1143     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1144     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1145     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1146     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1147     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1148     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1149 };
1150 
1151 #define ELF_HWCAP get_elf_hwcap()
1152 
1153 static uint32_t get_elf_hwcap(void)
1154 {
1155     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1156     uint32_t hwcap = 0;
1157 
1158     hwcap |= SH_CPU_HAS_FPU;
1159 
1160     if (cpu->env.features & SH_FEATURE_SH4A) {
1161         hwcap |= SH_CPU_HAS_LLSC;
1162     }
1163 
1164     return hwcap;
1165 }
1166 
1167 #endif
1168 
1169 #ifdef TARGET_CRIS
1170 
1171 #define ELF_START_MMAP 0x80000000
1172 
1173 #define ELF_CLASS ELFCLASS32
1174 #define ELF_ARCH  EM_CRIS
1175 
1176 static inline void init_thread(struct target_pt_regs *regs,
1177                                struct image_info *infop)
1178 {
1179     regs->erp = infop->entry;
1180 }
1181 
1182 #define ELF_EXEC_PAGESIZE        8192
1183 
1184 #endif
1185 
1186 #ifdef TARGET_M68K
1187 
1188 #define ELF_START_MMAP 0x80000000
1189 
1190 #define ELF_CLASS       ELFCLASS32
1191 #define ELF_ARCH        EM_68K
1192 
1193 /* ??? Does this need to do anything?
1194    #define ELF_PLAT_INIT(_r) */
1195 
1196 static inline void init_thread(struct target_pt_regs *regs,
1197                                struct image_info *infop)
1198 {
1199     regs->usp = infop->start_stack;
1200     regs->sr = 0;
1201     regs->pc = infop->entry;
1202 }
1203 
1204 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1205 #define ELF_NREG 20
1206 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1207 
1208 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1209 {
1210     (*regs)[0] = tswapreg(env->dregs[1]);
1211     (*regs)[1] = tswapreg(env->dregs[2]);
1212     (*regs)[2] = tswapreg(env->dregs[3]);
1213     (*regs)[3] = tswapreg(env->dregs[4]);
1214     (*regs)[4] = tswapreg(env->dregs[5]);
1215     (*regs)[5] = tswapreg(env->dregs[6]);
1216     (*regs)[6] = tswapreg(env->dregs[7]);
1217     (*regs)[7] = tswapreg(env->aregs[0]);
1218     (*regs)[8] = tswapreg(env->aregs[1]);
1219     (*regs)[9] = tswapreg(env->aregs[2]);
1220     (*regs)[10] = tswapreg(env->aregs[3]);
1221     (*regs)[11] = tswapreg(env->aregs[4]);
1222     (*regs)[12] = tswapreg(env->aregs[5]);
1223     (*regs)[13] = tswapreg(env->aregs[6]);
1224     (*regs)[14] = tswapreg(env->dregs[0]);
1225     (*regs)[15] = tswapreg(env->aregs[7]);
1226     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1227     (*regs)[17] = tswapreg(env->sr);
1228     (*regs)[18] = tswapreg(env->pc);
1229     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1230 }
1231 
1232 #define USE_ELF_CORE_DUMP
1233 #define ELF_EXEC_PAGESIZE       8192
1234 
1235 #endif
1236 
1237 #ifdef TARGET_ALPHA
1238 
1239 #define ELF_START_MMAP (0x30000000000ULL)
1240 
1241 #define ELF_CLASS      ELFCLASS64
1242 #define ELF_ARCH       EM_ALPHA
1243 
1244 static inline void init_thread(struct target_pt_regs *regs,
1245                                struct image_info *infop)
1246 {
1247     regs->pc = infop->entry;
1248     regs->ps = 8;
1249     regs->usp = infop->start_stack;
1250 }
1251 
1252 #define ELF_EXEC_PAGESIZE        8192
1253 
1254 #endif /* TARGET_ALPHA */
1255 
1256 #ifdef TARGET_S390X
1257 
1258 #define ELF_START_MMAP (0x20000000000ULL)
1259 
1260 #define ELF_CLASS	ELFCLASS64
1261 #define ELF_DATA	ELFDATA2MSB
1262 #define ELF_ARCH	EM_S390
1263 
1264 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1265 {
1266     regs->psw.addr = infop->entry;
1267     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1268     regs->gprs[15] = infop->start_stack;
1269 }
1270 
1271 #endif /* TARGET_S390X */
1272 
1273 #ifdef TARGET_TILEGX
1274 
1275 /* 42 bits real used address, a half for user mode */
1276 #define ELF_START_MMAP (0x00000020000000000ULL)
1277 
1278 #define elf_check_arch(x) ((x) == EM_TILEGX)
1279 
1280 #define ELF_CLASS   ELFCLASS64
1281 #define ELF_DATA    ELFDATA2LSB
1282 #define ELF_ARCH    EM_TILEGX
1283 
1284 static inline void init_thread(struct target_pt_regs *regs,
1285                                struct image_info *infop)
1286 {
1287     regs->pc = infop->entry;
1288     regs->sp = infop->start_stack;
1289 
1290 }
1291 
1292 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1293 
1294 #endif /* TARGET_TILEGX */
1295 
1296 #ifdef TARGET_HPPA
1297 
1298 #define ELF_START_MMAP  0x80000000
1299 #define ELF_CLASS       ELFCLASS32
1300 #define ELF_ARCH        EM_PARISC
1301 #define ELF_PLATFORM    "PARISC"
1302 #define STACK_GROWS_DOWN 0
1303 #define STACK_ALIGNMENT  64
1304 
1305 static inline void init_thread(struct target_pt_regs *regs,
1306                                struct image_info *infop)
1307 {
1308     regs->iaoq[0] = infop->entry;
1309     regs->iaoq[1] = infop->entry + 4;
1310     regs->gr[23] = 0;
1311     regs->gr[24] = infop->arg_start;
1312     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1313     /* The top-of-stack contains a linkage buffer.  */
1314     regs->gr[30] = infop->start_stack + 64;
1315     regs->gr[31] = infop->entry;
1316 }
1317 
1318 #endif /* TARGET_HPPA */
1319 
1320 #ifndef ELF_PLATFORM
1321 #define ELF_PLATFORM (NULL)
1322 #endif
1323 
1324 #ifndef ELF_MACHINE
1325 #define ELF_MACHINE ELF_ARCH
1326 #endif
1327 
1328 #ifndef elf_check_arch
1329 #define elf_check_arch(x) ((x) == ELF_ARCH)
1330 #endif
1331 
1332 #ifndef ELF_HWCAP
1333 #define ELF_HWCAP 0
1334 #endif
1335 
1336 #ifndef STACK_GROWS_DOWN
1337 #define STACK_GROWS_DOWN 1
1338 #endif
1339 
1340 #ifndef STACK_ALIGNMENT
1341 #define STACK_ALIGNMENT 16
1342 #endif
1343 
1344 #ifdef TARGET_ABI32
1345 #undef ELF_CLASS
1346 #define ELF_CLASS ELFCLASS32
1347 #undef bswaptls
1348 #define bswaptls(ptr) bswap32s(ptr)
1349 #endif
1350 
1351 #include "elf.h"
1352 
1353 struct exec
1354 {
1355     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1356     unsigned int a_text;   /* length of text, in bytes */
1357     unsigned int a_data;   /* length of data, in bytes */
1358     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1359     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1360     unsigned int a_entry;  /* start address */
1361     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1362     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1363 };
1364 
1365 
1366 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1367 #define OMAGIC 0407
1368 #define NMAGIC 0410
1369 #define ZMAGIC 0413
1370 #define QMAGIC 0314
1371 
1372 /* Necessary parameters */
1373 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1374 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1375                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1376 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1377 
1378 #define DLINFO_ITEMS 15
1379 
1380 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1381 {
1382     memcpy(to, from, n);
1383 }
1384 
1385 #ifdef BSWAP_NEEDED
1386 static void bswap_ehdr(struct elfhdr *ehdr)
1387 {
1388     bswap16s(&ehdr->e_type);            /* Object file type */
1389     bswap16s(&ehdr->e_machine);         /* Architecture */
1390     bswap32s(&ehdr->e_version);         /* Object file version */
1391     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1392     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1393     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1394     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1395     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1396     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1397     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1398     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1399     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1400     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1401 }
1402 
1403 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1404 {
1405     int i;
1406     for (i = 0; i < phnum; ++i, ++phdr) {
1407         bswap32s(&phdr->p_type);        /* Segment type */
1408         bswap32s(&phdr->p_flags);       /* Segment flags */
1409         bswaptls(&phdr->p_offset);      /* Segment file offset */
1410         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1411         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1412         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1413         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1414         bswaptls(&phdr->p_align);       /* Segment alignment */
1415     }
1416 }
1417 
1418 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1419 {
1420     int i;
1421     for (i = 0; i < shnum; ++i, ++shdr) {
1422         bswap32s(&shdr->sh_name);
1423         bswap32s(&shdr->sh_type);
1424         bswaptls(&shdr->sh_flags);
1425         bswaptls(&shdr->sh_addr);
1426         bswaptls(&shdr->sh_offset);
1427         bswaptls(&shdr->sh_size);
1428         bswap32s(&shdr->sh_link);
1429         bswap32s(&shdr->sh_info);
1430         bswaptls(&shdr->sh_addralign);
1431         bswaptls(&shdr->sh_entsize);
1432     }
1433 }
1434 
1435 static void bswap_sym(struct elf_sym *sym)
1436 {
1437     bswap32s(&sym->st_name);
1438     bswaptls(&sym->st_value);
1439     bswaptls(&sym->st_size);
1440     bswap16s(&sym->st_shndx);
1441 }
1442 #else
1443 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1444 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1445 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1446 static inline void bswap_sym(struct elf_sym *sym) { }
1447 #endif
1448 
1449 #ifdef USE_ELF_CORE_DUMP
1450 static int elf_core_dump(int, const CPUArchState *);
1451 #endif /* USE_ELF_CORE_DUMP */
1452 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1453 
1454 /* Verify the portions of EHDR within E_IDENT for the target.
1455    This can be performed before bswapping the entire header.  */
1456 static bool elf_check_ident(struct elfhdr *ehdr)
1457 {
1458     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1459             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1460             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1461             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1462             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1463             && ehdr->e_ident[EI_DATA] == ELF_DATA
1464             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1465 }
1466 
1467 /* Verify the portions of EHDR outside of E_IDENT for the target.
1468    This has to wait until after bswapping the header.  */
1469 static bool elf_check_ehdr(struct elfhdr *ehdr)
1470 {
1471     return (elf_check_arch(ehdr->e_machine)
1472             && ehdr->e_ehsize == sizeof(struct elfhdr)
1473             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1474             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1475 }
1476 
1477 /*
1478  * 'copy_elf_strings()' copies argument/envelope strings from user
1479  * memory to free pages in kernel mem. These are in a format ready
1480  * to be put directly into the top of new user memory.
1481  *
1482  */
1483 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1484                                   abi_ulong p, abi_ulong stack_limit)
1485 {
1486     char *tmp;
1487     int len, i;
1488     abi_ulong top = p;
1489 
1490     if (!p) {
1491         return 0;       /* bullet-proofing */
1492     }
1493 
1494     if (STACK_GROWS_DOWN) {
1495         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1496         for (i = argc - 1; i >= 0; --i) {
1497             tmp = argv[i];
1498             if (!tmp) {
1499                 fprintf(stderr, "VFS: argc is wrong");
1500                 exit(-1);
1501             }
1502             len = strlen(tmp) + 1;
1503             tmp += len;
1504 
1505             if (len > (p - stack_limit)) {
1506                 return 0;
1507             }
1508             while (len) {
1509                 int bytes_to_copy = (len > offset) ? offset : len;
1510                 tmp -= bytes_to_copy;
1511                 p -= bytes_to_copy;
1512                 offset -= bytes_to_copy;
1513                 len -= bytes_to_copy;
1514 
1515                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1516 
1517                 if (offset == 0) {
1518                     memcpy_to_target(p, scratch, top - p);
1519                     top = p;
1520                     offset = TARGET_PAGE_SIZE;
1521                 }
1522             }
1523         }
1524         if (p != top) {
1525             memcpy_to_target(p, scratch + offset, top - p);
1526         }
1527     } else {
1528         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1529         for (i = 0; i < argc; ++i) {
1530             tmp = argv[i];
1531             if (!tmp) {
1532                 fprintf(stderr, "VFS: argc is wrong");
1533                 exit(-1);
1534             }
1535             len = strlen(tmp) + 1;
1536             if (len > (stack_limit - p)) {
1537                 return 0;
1538             }
1539             while (len) {
1540                 int bytes_to_copy = (len > remaining) ? remaining : len;
1541 
1542                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1543 
1544                 tmp += bytes_to_copy;
1545                 remaining -= bytes_to_copy;
1546                 p += bytes_to_copy;
1547                 len -= bytes_to_copy;
1548 
1549                 if (remaining == 0) {
1550                     memcpy_to_target(top, scratch, p - top);
1551                     top = p;
1552                     remaining = TARGET_PAGE_SIZE;
1553                 }
1554             }
1555         }
1556         if (p != top) {
1557             memcpy_to_target(top, scratch, p - top);
1558         }
1559     }
1560 
1561     return p;
1562 }
1563 
1564 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1565  * argument/environment space. Newer kernels (>2.6.33) allow more,
1566  * dependent on stack size, but guarantee at least 32 pages for
1567  * backwards compatibility.
1568  */
1569 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1570 
1571 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1572                                  struct image_info *info)
1573 {
1574     abi_ulong size, error, guard;
1575 
1576     size = guest_stack_size;
1577     if (size < STACK_LOWER_LIMIT) {
1578         size = STACK_LOWER_LIMIT;
1579     }
1580     guard = TARGET_PAGE_SIZE;
1581     if (guard < qemu_real_host_page_size) {
1582         guard = qemu_real_host_page_size;
1583     }
1584 
1585     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1586                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1587     if (error == -1) {
1588         perror("mmap stack");
1589         exit(-1);
1590     }
1591 
1592     /* We reserve one extra page at the top of the stack as guard.  */
1593     if (STACK_GROWS_DOWN) {
1594         target_mprotect(error, guard, PROT_NONE);
1595         info->stack_limit = error + guard;
1596         return info->stack_limit + size - sizeof(void *);
1597     } else {
1598         target_mprotect(error + size, guard, PROT_NONE);
1599         info->stack_limit = error + size;
1600         return error;
1601     }
1602 }
1603 
1604 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1605    after the data section (i.e. bss).  */
1606 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1607 {
1608     uintptr_t host_start, host_map_start, host_end;
1609 
1610     last_bss = TARGET_PAGE_ALIGN(last_bss);
1611 
1612     /* ??? There is confusion between qemu_real_host_page_size and
1613        qemu_host_page_size here and elsewhere in target_mmap, which
1614        may lead to the end of the data section mapping from the file
1615        not being mapped.  At least there was an explicit test and
1616        comment for that here, suggesting that "the file size must
1617        be known".  The comment probably pre-dates the introduction
1618        of the fstat system call in target_mmap which does in fact
1619        find out the size.  What isn't clear is if the workaround
1620        here is still actually needed.  For now, continue with it,
1621        but merge it with the "normal" mmap that would allocate the bss.  */
1622 
1623     host_start = (uintptr_t) g2h(elf_bss);
1624     host_end = (uintptr_t) g2h(last_bss);
1625     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1626 
1627     if (host_map_start < host_end) {
1628         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1629                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1630         if (p == MAP_FAILED) {
1631             perror("cannot mmap brk");
1632             exit(-1);
1633         }
1634     }
1635 
1636     /* Ensure that the bss page(s) are valid */
1637     if ((page_get_flags(last_bss-1) & prot) != prot) {
1638         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1639     }
1640 
1641     if (host_start < host_map_start) {
1642         memset((void *)host_start, 0, host_map_start - host_start);
1643     }
1644 }
1645 
1646 #ifdef CONFIG_USE_FDPIC
1647 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1648 {
1649     uint16_t n;
1650     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1651 
1652     /* elf32_fdpic_loadseg */
1653     n = info->nsegs;
1654     while (n--) {
1655         sp -= 12;
1656         put_user_u32(loadsegs[n].addr, sp+0);
1657         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1658         put_user_u32(loadsegs[n].p_memsz, sp+8);
1659     }
1660 
1661     /* elf32_fdpic_loadmap */
1662     sp -= 4;
1663     put_user_u16(0, sp+0); /* version */
1664     put_user_u16(info->nsegs, sp+2); /* nsegs */
1665 
1666     info->personality = PER_LINUX_FDPIC;
1667     info->loadmap_addr = sp;
1668 
1669     return sp;
1670 }
1671 #endif
1672 
1673 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1674                                    struct elfhdr *exec,
1675                                    struct image_info *info,
1676                                    struct image_info *interp_info)
1677 {
1678     abi_ulong sp;
1679     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1680     int size;
1681     int i;
1682     abi_ulong u_rand_bytes;
1683     uint8_t k_rand_bytes[16];
1684     abi_ulong u_platform;
1685     const char *k_platform;
1686     const int n = sizeof(elf_addr_t);
1687 
1688     sp = p;
1689 
1690 #ifdef CONFIG_USE_FDPIC
1691     /* Needs to be before we load the env/argc/... */
1692     if (elf_is_fdpic(exec)) {
1693         /* Need 4 byte alignment for these structs */
1694         sp &= ~3;
1695         sp = loader_build_fdpic_loadmap(info, sp);
1696         info->other_info = interp_info;
1697         if (interp_info) {
1698             interp_info->other_info = info;
1699             sp = loader_build_fdpic_loadmap(interp_info, sp);
1700         }
1701     }
1702 #endif
1703 
1704     u_platform = 0;
1705     k_platform = ELF_PLATFORM;
1706     if (k_platform) {
1707         size_t len = strlen(k_platform) + 1;
1708         if (STACK_GROWS_DOWN) {
1709             sp -= (len + n - 1) & ~(n - 1);
1710             u_platform = sp;
1711             /* FIXME - check return value of memcpy_to_target() for failure */
1712             memcpy_to_target(sp, k_platform, len);
1713         } else {
1714             memcpy_to_target(sp, k_platform, len);
1715             u_platform = sp;
1716             sp += len + 1;
1717         }
1718     }
1719 
1720     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1721      * the argv and envp pointers.
1722      */
1723     if (STACK_GROWS_DOWN) {
1724         sp = QEMU_ALIGN_DOWN(sp, 16);
1725     } else {
1726         sp = QEMU_ALIGN_UP(sp, 16);
1727     }
1728 
1729     /*
1730      * Generate 16 random bytes for userspace PRNG seeding (not
1731      * cryptically secure but it's not the aim of QEMU).
1732      */
1733     for (i = 0; i < 16; i++) {
1734         k_rand_bytes[i] = rand();
1735     }
1736     if (STACK_GROWS_DOWN) {
1737         sp -= 16;
1738         u_rand_bytes = sp;
1739         /* FIXME - check return value of memcpy_to_target() for failure */
1740         memcpy_to_target(sp, k_rand_bytes, 16);
1741     } else {
1742         memcpy_to_target(sp, k_rand_bytes, 16);
1743         u_rand_bytes = sp;
1744         sp += 16;
1745     }
1746 
1747     size = (DLINFO_ITEMS + 1) * 2;
1748     if (k_platform)
1749         size += 2;
1750 #ifdef DLINFO_ARCH_ITEMS
1751     size += DLINFO_ARCH_ITEMS * 2;
1752 #endif
1753 #ifdef ELF_HWCAP2
1754     size += 2;
1755 #endif
1756     info->auxv_len = size * n;
1757 
1758     size += envc + argc + 2;
1759     size += 1;  /* argc itself */
1760     size *= n;
1761 
1762     /* Allocate space and finalize stack alignment for entry now.  */
1763     if (STACK_GROWS_DOWN) {
1764         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1765         sp = u_argc;
1766     } else {
1767         u_argc = sp;
1768         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1769     }
1770 
1771     u_argv = u_argc + n;
1772     u_envp = u_argv + (argc + 1) * n;
1773     u_auxv = u_envp + (envc + 1) * n;
1774     info->saved_auxv = u_auxv;
1775     info->arg_start = u_argv;
1776     info->arg_end = u_argv + argc * n;
1777 
1778     /* This is correct because Linux defines
1779      * elf_addr_t as Elf32_Off / Elf64_Off
1780      */
1781 #define NEW_AUX_ENT(id, val) do {               \
1782         put_user_ual(id, u_auxv);  u_auxv += n; \
1783         put_user_ual(val, u_auxv); u_auxv += n; \
1784     } while(0)
1785 
1786 #ifdef ARCH_DLINFO
1787     /*
1788      * ARCH_DLINFO must come first so platform specific code can enforce
1789      * special alignment requirements on the AUXV if necessary (eg. PPC).
1790      */
1791     ARCH_DLINFO;
1792 #endif
1793     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1794      * on info->auxv_len will trigger.
1795      */
1796     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1797     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1798     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1799     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1800     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1801     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1802     NEW_AUX_ENT(AT_ENTRY, info->entry);
1803     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1804     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1805     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1806     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1807     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1808     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1809     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1810     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1811 
1812 #ifdef ELF_HWCAP2
1813     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1814 #endif
1815 
1816     if (u_platform) {
1817         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1818     }
1819     NEW_AUX_ENT (AT_NULL, 0);
1820 #undef NEW_AUX_ENT
1821 
1822     /* Check that our initial calculation of the auxv length matches how much
1823      * we actually put into it.
1824      */
1825     assert(info->auxv_len == u_auxv - info->saved_auxv);
1826 
1827     put_user_ual(argc, u_argc);
1828 
1829     p = info->arg_strings;
1830     for (i = 0; i < argc; ++i) {
1831         put_user_ual(p, u_argv);
1832         u_argv += n;
1833         p += target_strlen(p) + 1;
1834     }
1835     put_user_ual(0, u_argv);
1836 
1837     p = info->env_strings;
1838     for (i = 0; i < envc; ++i) {
1839         put_user_ual(p, u_envp);
1840         u_envp += n;
1841         p += target_strlen(p) + 1;
1842     }
1843     put_user_ual(0, u_envp);
1844 
1845     return sp;
1846 }
1847 
1848 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1849 /* If the guest doesn't have a validation function just agree */
1850 static int validate_guest_space(unsigned long guest_base,
1851                                 unsigned long guest_size)
1852 {
1853     return 1;
1854 }
1855 #endif
1856 
1857 unsigned long init_guest_space(unsigned long host_start,
1858                                unsigned long host_size,
1859                                unsigned long guest_start,
1860                                bool fixed)
1861 {
1862     unsigned long current_start, real_start;
1863     int flags;
1864 
1865     assert(host_start || host_size);
1866 
1867     /* If just a starting address is given, then just verify that
1868      * address.  */
1869     if (host_start && !host_size) {
1870         if (validate_guest_space(host_start, host_size) == 1) {
1871             return host_start;
1872         } else {
1873             return (unsigned long)-1;
1874         }
1875     }
1876 
1877     /* Setup the initial flags and start address.  */
1878     current_start = host_start & qemu_host_page_mask;
1879     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1880     if (fixed) {
1881         flags |= MAP_FIXED;
1882     }
1883 
1884     /* Otherwise, a non-zero size region of memory needs to be mapped
1885      * and validated.  */
1886     while (1) {
1887         unsigned long real_size = host_size;
1888 
1889         /* Do not use mmap_find_vma here because that is limited to the
1890          * guest address space.  We are going to make the
1891          * guest address space fit whatever we're given.
1892          */
1893         real_start = (unsigned long)
1894             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1895         if (real_start == (unsigned long)-1) {
1896             return (unsigned long)-1;
1897         }
1898 
1899         /* Ensure the address is properly aligned.  */
1900         if (real_start & ~qemu_host_page_mask) {
1901             munmap((void *)real_start, host_size);
1902             real_size = host_size + qemu_host_page_size;
1903             real_start = (unsigned long)
1904                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1905             if (real_start == (unsigned long)-1) {
1906                 return (unsigned long)-1;
1907             }
1908             real_start = HOST_PAGE_ALIGN(real_start);
1909         }
1910 
1911         /* Check to see if the address is valid.  */
1912         if (!host_start || real_start == current_start) {
1913             int valid = validate_guest_space(real_start - guest_start,
1914                                              real_size);
1915             if (valid == 1) {
1916                 break;
1917             } else if (valid == -1) {
1918                 return (unsigned long)-1;
1919             }
1920             /* valid == 0, so try again. */
1921         }
1922 
1923         /* That address didn't work.  Unmap and try a different one.
1924          * The address the host picked because is typically right at
1925          * the top of the host address space and leaves the guest with
1926          * no usable address space.  Resort to a linear search.  We
1927          * already compensated for mmap_min_addr, so this should not
1928          * happen often.  Probably means we got unlucky and host
1929          * address space randomization put a shared library somewhere
1930          * inconvenient.
1931          */
1932         munmap((void *)real_start, host_size);
1933         current_start += qemu_host_page_size;
1934         if (host_start == current_start) {
1935             /* Theoretically possible if host doesn't have any suitably
1936              * aligned areas.  Normally the first mmap will fail.
1937              */
1938             return (unsigned long)-1;
1939         }
1940     }
1941 
1942     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1943 
1944     return real_start;
1945 }
1946 
1947 static void probe_guest_base(const char *image_name,
1948                              abi_ulong loaddr, abi_ulong hiaddr)
1949 {
1950     /* Probe for a suitable guest base address, if the user has not set
1951      * it explicitly, and set guest_base appropriately.
1952      * In case of error we will print a suitable message and exit.
1953      */
1954     const char *errmsg;
1955     if (!have_guest_base && !reserved_va) {
1956         unsigned long host_start, real_start, host_size;
1957 
1958         /* Round addresses to page boundaries.  */
1959         loaddr &= qemu_host_page_mask;
1960         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1961 
1962         if (loaddr < mmap_min_addr) {
1963             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1964         } else {
1965             host_start = loaddr;
1966             if (host_start != loaddr) {
1967                 errmsg = "Address overflow loading ELF binary";
1968                 goto exit_errmsg;
1969             }
1970         }
1971         host_size = hiaddr - loaddr;
1972 
1973         /* Setup the initial guest memory space with ranges gleaned from
1974          * the ELF image that is being loaded.
1975          */
1976         real_start = init_guest_space(host_start, host_size, loaddr, false);
1977         if (real_start == (unsigned long)-1) {
1978             errmsg = "Unable to find space for application";
1979             goto exit_errmsg;
1980         }
1981         guest_base = real_start - loaddr;
1982 
1983         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1984                       TARGET_ABI_FMT_lx " to 0x%lx\n",
1985                       loaddr, real_start);
1986     }
1987     return;
1988 
1989 exit_errmsg:
1990     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1991     exit(-1);
1992 }
1993 
1994 
1995 /* Load an ELF image into the address space.
1996 
1997    IMAGE_NAME is the filename of the image, to use in error messages.
1998    IMAGE_FD is the open file descriptor for the image.
1999 
2000    BPRM_BUF is a copy of the beginning of the file; this of course
2001    contains the elf file header at offset 0.  It is assumed that this
2002    buffer is sufficiently aligned to present no problems to the host
2003    in accessing data at aligned offsets within the buffer.
2004 
2005    On return: INFO values will be filled in, as necessary or available.  */
2006 
2007 static void load_elf_image(const char *image_name, int image_fd,
2008                            struct image_info *info, char **pinterp_name,
2009                            char bprm_buf[BPRM_BUF_SIZE])
2010 {
2011     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2012     struct elf_phdr *phdr;
2013     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2014     int i, retval;
2015     const char *errmsg;
2016 
2017     /* First of all, some simple consistency checks */
2018     errmsg = "Invalid ELF image for this architecture";
2019     if (!elf_check_ident(ehdr)) {
2020         goto exit_errmsg;
2021     }
2022     bswap_ehdr(ehdr);
2023     if (!elf_check_ehdr(ehdr)) {
2024         goto exit_errmsg;
2025     }
2026 
2027     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2028     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2029         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2030     } else {
2031         phdr = (struct elf_phdr *) alloca(i);
2032         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2033         if (retval != i) {
2034             goto exit_read;
2035         }
2036     }
2037     bswap_phdr(phdr, ehdr->e_phnum);
2038 
2039 #ifdef CONFIG_USE_FDPIC
2040     info->nsegs = 0;
2041     info->pt_dynamic_addr = 0;
2042 #endif
2043 
2044     mmap_lock();
2045 
2046     /* Find the maximum size of the image and allocate an appropriate
2047        amount of memory to handle that.  */
2048     loaddr = -1, hiaddr = 0;
2049     for (i = 0; i < ehdr->e_phnum; ++i) {
2050         if (phdr[i].p_type == PT_LOAD) {
2051             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2052             if (a < loaddr) {
2053                 loaddr = a;
2054             }
2055             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2056             if (a > hiaddr) {
2057                 hiaddr = a;
2058             }
2059 #ifdef CONFIG_USE_FDPIC
2060             ++info->nsegs;
2061 #endif
2062         }
2063     }
2064 
2065     load_addr = loaddr;
2066     if (ehdr->e_type == ET_DYN) {
2067         /* The image indicates that it can be loaded anywhere.  Find a
2068            location that can hold the memory space required.  If the
2069            image is pre-linked, LOADDR will be non-zero.  Since we do
2070            not supply MAP_FIXED here we'll use that address if and
2071            only if it remains available.  */
2072         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2073                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2074                                 -1, 0);
2075         if (load_addr == -1) {
2076             goto exit_perror;
2077         }
2078     } else if (pinterp_name != NULL) {
2079         /* This is the main executable.  Make sure that the low
2080            address does not conflict with MMAP_MIN_ADDR or the
2081            QEMU application itself.  */
2082         probe_guest_base(image_name, loaddr, hiaddr);
2083     }
2084     load_bias = load_addr - loaddr;
2085 
2086 #ifdef CONFIG_USE_FDPIC
2087     {
2088         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2089             g_malloc(sizeof(*loadsegs) * info->nsegs);
2090 
2091         for (i = 0; i < ehdr->e_phnum; ++i) {
2092             switch (phdr[i].p_type) {
2093             case PT_DYNAMIC:
2094                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2095                 break;
2096             case PT_LOAD:
2097                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2098                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2099                 loadsegs->p_memsz = phdr[i].p_memsz;
2100                 ++loadsegs;
2101                 break;
2102             }
2103         }
2104     }
2105 #endif
2106 
2107     info->load_bias = load_bias;
2108     info->load_addr = load_addr;
2109     info->entry = ehdr->e_entry + load_bias;
2110     info->start_code = -1;
2111     info->end_code = 0;
2112     info->start_data = -1;
2113     info->end_data = 0;
2114     info->brk = 0;
2115     info->elf_flags = ehdr->e_flags;
2116 
2117     for (i = 0; i < ehdr->e_phnum; i++) {
2118         struct elf_phdr *eppnt = phdr + i;
2119         if (eppnt->p_type == PT_LOAD) {
2120             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2121             int elf_prot = 0;
2122 
2123             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2124             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2125             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2126 
2127             vaddr = load_bias + eppnt->p_vaddr;
2128             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2129             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2130 
2131             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2132                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2133                                 image_fd, eppnt->p_offset - vaddr_po);
2134             if (error == -1) {
2135                 goto exit_perror;
2136             }
2137 
2138             vaddr_ef = vaddr + eppnt->p_filesz;
2139             vaddr_em = vaddr + eppnt->p_memsz;
2140 
2141             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2142             if (vaddr_ef < vaddr_em) {
2143                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2144             }
2145 
2146             /* Find the full program boundaries.  */
2147             if (elf_prot & PROT_EXEC) {
2148                 if (vaddr < info->start_code) {
2149                     info->start_code = vaddr;
2150                 }
2151                 if (vaddr_ef > info->end_code) {
2152                     info->end_code = vaddr_ef;
2153                 }
2154             }
2155             if (elf_prot & PROT_WRITE) {
2156                 if (vaddr < info->start_data) {
2157                     info->start_data = vaddr;
2158                 }
2159                 if (vaddr_ef > info->end_data) {
2160                     info->end_data = vaddr_ef;
2161                 }
2162                 if (vaddr_em > info->brk) {
2163                     info->brk = vaddr_em;
2164                 }
2165             }
2166         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2167             char *interp_name;
2168 
2169             if (*pinterp_name) {
2170                 errmsg = "Multiple PT_INTERP entries";
2171                 goto exit_errmsg;
2172             }
2173             interp_name = malloc(eppnt->p_filesz);
2174             if (!interp_name) {
2175                 goto exit_perror;
2176             }
2177 
2178             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2179                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2180                        eppnt->p_filesz);
2181             } else {
2182                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2183                                eppnt->p_offset);
2184                 if (retval != eppnt->p_filesz) {
2185                     goto exit_perror;
2186                 }
2187             }
2188             if (interp_name[eppnt->p_filesz - 1] != 0) {
2189                 errmsg = "Invalid PT_INTERP entry";
2190                 goto exit_errmsg;
2191             }
2192             *pinterp_name = interp_name;
2193         }
2194     }
2195 
2196     if (info->end_data == 0) {
2197         info->start_data = info->end_code;
2198         info->end_data = info->end_code;
2199         info->brk = info->end_code;
2200     }
2201 
2202     if (qemu_log_enabled()) {
2203         load_symbols(ehdr, image_fd, load_bias);
2204     }
2205 
2206     mmap_unlock();
2207 
2208     close(image_fd);
2209     return;
2210 
2211  exit_read:
2212     if (retval >= 0) {
2213         errmsg = "Incomplete read of file header";
2214         goto exit_errmsg;
2215     }
2216  exit_perror:
2217     errmsg = strerror(errno);
2218  exit_errmsg:
2219     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2220     exit(-1);
2221 }
2222 
2223 static void load_elf_interp(const char *filename, struct image_info *info,
2224                             char bprm_buf[BPRM_BUF_SIZE])
2225 {
2226     int fd, retval;
2227 
2228     fd = open(path(filename), O_RDONLY);
2229     if (fd < 0) {
2230         goto exit_perror;
2231     }
2232 
2233     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2234     if (retval < 0) {
2235         goto exit_perror;
2236     }
2237     if (retval < BPRM_BUF_SIZE) {
2238         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2239     }
2240 
2241     load_elf_image(filename, fd, info, NULL, bprm_buf);
2242     return;
2243 
2244  exit_perror:
2245     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2246     exit(-1);
2247 }
2248 
2249 static int symfind(const void *s0, const void *s1)
2250 {
2251     target_ulong addr = *(target_ulong *)s0;
2252     struct elf_sym *sym = (struct elf_sym *)s1;
2253     int result = 0;
2254     if (addr < sym->st_value) {
2255         result = -1;
2256     } else if (addr >= sym->st_value + sym->st_size) {
2257         result = 1;
2258     }
2259     return result;
2260 }
2261 
2262 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2263 {
2264 #if ELF_CLASS == ELFCLASS32
2265     struct elf_sym *syms = s->disas_symtab.elf32;
2266 #else
2267     struct elf_sym *syms = s->disas_symtab.elf64;
2268 #endif
2269 
2270     // binary search
2271     struct elf_sym *sym;
2272 
2273     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2274     if (sym != NULL) {
2275         return s->disas_strtab + sym->st_name;
2276     }
2277 
2278     return "";
2279 }
2280 
2281 /* FIXME: This should use elf_ops.h  */
2282 static int symcmp(const void *s0, const void *s1)
2283 {
2284     struct elf_sym *sym0 = (struct elf_sym *)s0;
2285     struct elf_sym *sym1 = (struct elf_sym *)s1;
2286     return (sym0->st_value < sym1->st_value)
2287         ? -1
2288         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2289 }
2290 
2291 /* Best attempt to load symbols from this ELF object. */
2292 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2293 {
2294     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2295     uint64_t segsz;
2296     struct elf_shdr *shdr;
2297     char *strings = NULL;
2298     struct syminfo *s = NULL;
2299     struct elf_sym *new_syms, *syms = NULL;
2300 
2301     shnum = hdr->e_shnum;
2302     i = shnum * sizeof(struct elf_shdr);
2303     shdr = (struct elf_shdr *)alloca(i);
2304     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2305         return;
2306     }
2307 
2308     bswap_shdr(shdr, shnum);
2309     for (i = 0; i < shnum; ++i) {
2310         if (shdr[i].sh_type == SHT_SYMTAB) {
2311             sym_idx = i;
2312             str_idx = shdr[i].sh_link;
2313             goto found;
2314         }
2315     }
2316 
2317     /* There will be no symbol table if the file was stripped.  */
2318     return;
2319 
2320  found:
2321     /* Now know where the strtab and symtab are.  Snarf them.  */
2322     s = g_try_new(struct syminfo, 1);
2323     if (!s) {
2324         goto give_up;
2325     }
2326 
2327     segsz = shdr[str_idx].sh_size;
2328     s->disas_strtab = strings = g_try_malloc(segsz);
2329     if (!strings ||
2330         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2331         goto give_up;
2332     }
2333 
2334     segsz = shdr[sym_idx].sh_size;
2335     syms = g_try_malloc(segsz);
2336     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2337         goto give_up;
2338     }
2339 
2340     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2341         /* Implausibly large symbol table: give up rather than ploughing
2342          * on with the number of symbols calculation overflowing
2343          */
2344         goto give_up;
2345     }
2346     nsyms = segsz / sizeof(struct elf_sym);
2347     for (i = 0; i < nsyms; ) {
2348         bswap_sym(syms + i);
2349         /* Throw away entries which we do not need.  */
2350         if (syms[i].st_shndx == SHN_UNDEF
2351             || syms[i].st_shndx >= SHN_LORESERVE
2352             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2353             if (i < --nsyms) {
2354                 syms[i] = syms[nsyms];
2355             }
2356         } else {
2357 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2358             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2359             syms[i].st_value &= ~(target_ulong)1;
2360 #endif
2361             syms[i].st_value += load_bias;
2362             i++;
2363         }
2364     }
2365 
2366     /* No "useful" symbol.  */
2367     if (nsyms == 0) {
2368         goto give_up;
2369     }
2370 
2371     /* Attempt to free the storage associated with the local symbols
2372        that we threw away.  Whether or not this has any effect on the
2373        memory allocation depends on the malloc implementation and how
2374        many symbols we managed to discard.  */
2375     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2376     if (new_syms == NULL) {
2377         goto give_up;
2378     }
2379     syms = new_syms;
2380 
2381     qsort(syms, nsyms, sizeof(*syms), symcmp);
2382 
2383     s->disas_num_syms = nsyms;
2384 #if ELF_CLASS == ELFCLASS32
2385     s->disas_symtab.elf32 = syms;
2386 #else
2387     s->disas_symtab.elf64 = syms;
2388 #endif
2389     s->lookup_symbol = lookup_symbolxx;
2390     s->next = syminfos;
2391     syminfos = s;
2392 
2393     return;
2394 
2395 give_up:
2396     g_free(s);
2397     g_free(strings);
2398     g_free(syms);
2399 }
2400 
2401 uint32_t get_elf_eflags(int fd)
2402 {
2403     struct elfhdr ehdr;
2404     off_t offset;
2405     int ret;
2406 
2407     /* Read ELF header */
2408     offset = lseek(fd, 0, SEEK_SET);
2409     if (offset == (off_t) -1) {
2410         return 0;
2411     }
2412     ret = read(fd, &ehdr, sizeof(ehdr));
2413     if (ret < sizeof(ehdr)) {
2414         return 0;
2415     }
2416     offset = lseek(fd, offset, SEEK_SET);
2417     if (offset == (off_t) -1) {
2418         return 0;
2419     }
2420 
2421     /* Check ELF signature */
2422     if (!elf_check_ident(&ehdr)) {
2423         return 0;
2424     }
2425 
2426     /* check header */
2427     bswap_ehdr(&ehdr);
2428     if (!elf_check_ehdr(&ehdr)) {
2429         return 0;
2430     }
2431 
2432     /* return architecture id */
2433     return ehdr.e_flags;
2434 }
2435 
2436 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2437 {
2438     struct image_info interp_info;
2439     struct elfhdr elf_ex;
2440     char *elf_interpreter = NULL;
2441     char *scratch;
2442 
2443     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2444 
2445     load_elf_image(bprm->filename, bprm->fd, info,
2446                    &elf_interpreter, bprm->buf);
2447 
2448     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2449        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2450        when we load the interpreter.  */
2451     elf_ex = *(struct elfhdr *)bprm->buf;
2452 
2453     /* Do this so that we can load the interpreter, if need be.  We will
2454        change some of these later */
2455     bprm->p = setup_arg_pages(bprm, info);
2456 
2457     scratch = g_new0(char, TARGET_PAGE_SIZE);
2458     if (STACK_GROWS_DOWN) {
2459         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2460                                    bprm->p, info->stack_limit);
2461         info->file_string = bprm->p;
2462         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2463                                    bprm->p, info->stack_limit);
2464         info->env_strings = bprm->p;
2465         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2466                                    bprm->p, info->stack_limit);
2467         info->arg_strings = bprm->p;
2468     } else {
2469         info->arg_strings = bprm->p;
2470         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2471                                    bprm->p, info->stack_limit);
2472         info->env_strings = bprm->p;
2473         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2474                                    bprm->p, info->stack_limit);
2475         info->file_string = bprm->p;
2476         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2477                                    bprm->p, info->stack_limit);
2478     }
2479 
2480     g_free(scratch);
2481 
2482     if (!bprm->p) {
2483         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2484         exit(-1);
2485     }
2486 
2487     if (elf_interpreter) {
2488         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2489 
2490         /* If the program interpreter is one of these two, then assume
2491            an iBCS2 image.  Otherwise assume a native linux image.  */
2492 
2493         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2494             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2495             info->personality = PER_SVR4;
2496 
2497             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2498                and some applications "depend" upon this behavior.  Since
2499                we do not have the power to recompile these, we emulate
2500                the SVr4 behavior.  Sigh.  */
2501             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2502                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2503         }
2504     }
2505 
2506     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2507                                 info, (elf_interpreter ? &interp_info : NULL));
2508     info->start_stack = bprm->p;
2509 
2510     /* If we have an interpreter, set that as the program's entry point.
2511        Copy the load_bias as well, to help PPC64 interpret the entry
2512        point as a function descriptor.  Do this after creating elf tables
2513        so that we copy the original program entry point into the AUXV.  */
2514     if (elf_interpreter) {
2515         info->load_bias = interp_info.load_bias;
2516         info->entry = interp_info.entry;
2517         free(elf_interpreter);
2518     }
2519 
2520 #ifdef USE_ELF_CORE_DUMP
2521     bprm->core_dump = &elf_core_dump;
2522 #endif
2523 
2524     return 0;
2525 }
2526 
2527 #ifdef USE_ELF_CORE_DUMP
2528 /*
2529  * Definitions to generate Intel SVR4-like core files.
2530  * These mostly have the same names as the SVR4 types with "target_elf_"
2531  * tacked on the front to prevent clashes with linux definitions,
2532  * and the typedef forms have been avoided.  This is mostly like
2533  * the SVR4 structure, but more Linuxy, with things that Linux does
2534  * not support and which gdb doesn't really use excluded.
2535  *
2536  * Fields we don't dump (their contents is zero) in linux-user qemu
2537  * are marked with XXX.
2538  *
2539  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2540  *
2541  * Porting ELF coredump for target is (quite) simple process.  First you
2542  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2543  * the target resides):
2544  *
2545  * #define USE_ELF_CORE_DUMP
2546  *
2547  * Next you define type of register set used for dumping.  ELF specification
2548  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2549  *
2550  * typedef <target_regtype> target_elf_greg_t;
2551  * #define ELF_NREG <number of registers>
2552  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2553  *
2554  * Last step is to implement target specific function that copies registers
2555  * from given cpu into just specified register set.  Prototype is:
2556  *
2557  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2558  *                                const CPUArchState *env);
2559  *
2560  * Parameters:
2561  *     regs - copy register values into here (allocated and zeroed by caller)
2562  *     env - copy registers from here
2563  *
2564  * Example for ARM target is provided in this file.
2565  */
2566 
2567 /* An ELF note in memory */
2568 struct memelfnote {
2569     const char *name;
2570     size_t     namesz;
2571     size_t     namesz_rounded;
2572     int        type;
2573     size_t     datasz;
2574     size_t     datasz_rounded;
2575     void       *data;
2576     size_t     notesz;
2577 };
2578 
2579 struct target_elf_siginfo {
2580     abi_int    si_signo; /* signal number */
2581     abi_int    si_code;  /* extra code */
2582     abi_int    si_errno; /* errno */
2583 };
2584 
2585 struct target_elf_prstatus {
2586     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2587     abi_short          pr_cursig;    /* Current signal */
2588     abi_ulong          pr_sigpend;   /* XXX */
2589     abi_ulong          pr_sighold;   /* XXX */
2590     target_pid_t       pr_pid;
2591     target_pid_t       pr_ppid;
2592     target_pid_t       pr_pgrp;
2593     target_pid_t       pr_sid;
2594     struct target_timeval pr_utime;  /* XXX User time */
2595     struct target_timeval pr_stime;  /* XXX System time */
2596     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2597     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2598     target_elf_gregset_t      pr_reg;       /* GP registers */
2599     abi_int            pr_fpvalid;   /* XXX */
2600 };
2601 
2602 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2603 
2604 struct target_elf_prpsinfo {
2605     char         pr_state;       /* numeric process state */
2606     char         pr_sname;       /* char for pr_state */
2607     char         pr_zomb;        /* zombie */
2608     char         pr_nice;        /* nice val */
2609     abi_ulong    pr_flag;        /* flags */
2610     target_uid_t pr_uid;
2611     target_gid_t pr_gid;
2612     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2613     /* Lots missing */
2614     char    pr_fname[16];           /* filename of executable */
2615     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2616 };
2617 
2618 /* Here is the structure in which status of each thread is captured. */
2619 struct elf_thread_status {
2620     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2621     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2622 #if 0
2623     elf_fpregset_t fpu;             /* NT_PRFPREG */
2624     struct task_struct *thread;
2625     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2626 #endif
2627     struct memelfnote notes[1];
2628     int num_notes;
2629 };
2630 
2631 struct elf_note_info {
2632     struct memelfnote   *notes;
2633     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2634     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2635 
2636     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2637 #if 0
2638     /*
2639      * Current version of ELF coredump doesn't support
2640      * dumping fp regs etc.
2641      */
2642     elf_fpregset_t *fpu;
2643     elf_fpxregset_t *xfpu;
2644     int thread_status_size;
2645 #endif
2646     int notes_size;
2647     int numnote;
2648 };
2649 
2650 struct vm_area_struct {
2651     target_ulong   vma_start;  /* start vaddr of memory region */
2652     target_ulong   vma_end;    /* end vaddr of memory region */
2653     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2654     QTAILQ_ENTRY(vm_area_struct) vma_link;
2655 };
2656 
2657 struct mm_struct {
2658     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2659     int mm_count;           /* number of mappings */
2660 };
2661 
2662 static struct mm_struct *vma_init(void);
2663 static void vma_delete(struct mm_struct *);
2664 static int vma_add_mapping(struct mm_struct *, target_ulong,
2665                            target_ulong, abi_ulong);
2666 static int vma_get_mapping_count(const struct mm_struct *);
2667 static struct vm_area_struct *vma_first(const struct mm_struct *);
2668 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2669 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2670 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2671                       unsigned long flags);
2672 
2673 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2674 static void fill_note(struct memelfnote *, const char *, int,
2675                       unsigned int, void *);
2676 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2677 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2678 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2679 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2680 static size_t note_size(const struct memelfnote *);
2681 static void free_note_info(struct elf_note_info *);
2682 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2683 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2684 static int core_dump_filename(const TaskState *, char *, size_t);
2685 
2686 static int dump_write(int, const void *, size_t);
2687 static int write_note(struct memelfnote *, int);
2688 static int write_note_info(struct elf_note_info *, int);
2689 
2690 #ifdef BSWAP_NEEDED
2691 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2692 {
2693     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2694     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2695     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2696     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2697     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2698     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2699     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2700     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2701     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2702     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2703     /* cpu times are not filled, so we skip them */
2704     /* regs should be in correct format already */
2705     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2706 }
2707 
2708 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2709 {
2710     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2711     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2712     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2713     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2714     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2715     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2716     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2717 }
2718 
2719 static void bswap_note(struct elf_note *en)
2720 {
2721     bswap32s(&en->n_namesz);
2722     bswap32s(&en->n_descsz);
2723     bswap32s(&en->n_type);
2724 }
2725 #else
2726 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2727 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2728 static inline void bswap_note(struct elf_note *en) { }
2729 #endif /* BSWAP_NEEDED */
2730 
2731 /*
2732  * Minimal support for linux memory regions.  These are needed
2733  * when we are finding out what memory exactly belongs to
2734  * emulated process.  No locks needed here, as long as
2735  * thread that received the signal is stopped.
2736  */
2737 
2738 static struct mm_struct *vma_init(void)
2739 {
2740     struct mm_struct *mm;
2741 
2742     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2743         return (NULL);
2744 
2745     mm->mm_count = 0;
2746     QTAILQ_INIT(&mm->mm_mmap);
2747 
2748     return (mm);
2749 }
2750 
2751 static void vma_delete(struct mm_struct *mm)
2752 {
2753     struct vm_area_struct *vma;
2754 
2755     while ((vma = vma_first(mm)) != NULL) {
2756         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2757         g_free(vma);
2758     }
2759     g_free(mm);
2760 }
2761 
2762 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2763                            target_ulong end, abi_ulong flags)
2764 {
2765     struct vm_area_struct *vma;
2766 
2767     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2768         return (-1);
2769 
2770     vma->vma_start = start;
2771     vma->vma_end = end;
2772     vma->vma_flags = flags;
2773 
2774     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2775     mm->mm_count++;
2776 
2777     return (0);
2778 }
2779 
2780 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2781 {
2782     return (QTAILQ_FIRST(&mm->mm_mmap));
2783 }
2784 
2785 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2786 {
2787     return (QTAILQ_NEXT(vma, vma_link));
2788 }
2789 
2790 static int vma_get_mapping_count(const struct mm_struct *mm)
2791 {
2792     return (mm->mm_count);
2793 }
2794 
2795 /*
2796  * Calculate file (dump) size of given memory region.
2797  */
2798 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2799 {
2800     /* if we cannot even read the first page, skip it */
2801     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2802         return (0);
2803 
2804     /*
2805      * Usually we don't dump executable pages as they contain
2806      * non-writable code that debugger can read directly from
2807      * target library etc.  However, thread stacks are marked
2808      * also executable so we read in first page of given region
2809      * and check whether it contains elf header.  If there is
2810      * no elf header, we dump it.
2811      */
2812     if (vma->vma_flags & PROT_EXEC) {
2813         char page[TARGET_PAGE_SIZE];
2814 
2815         copy_from_user(page, vma->vma_start, sizeof (page));
2816         if ((page[EI_MAG0] == ELFMAG0) &&
2817             (page[EI_MAG1] == ELFMAG1) &&
2818             (page[EI_MAG2] == ELFMAG2) &&
2819             (page[EI_MAG3] == ELFMAG3)) {
2820             /*
2821              * Mappings are possibly from ELF binary.  Don't dump
2822              * them.
2823              */
2824             return (0);
2825         }
2826     }
2827 
2828     return (vma->vma_end - vma->vma_start);
2829 }
2830 
2831 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2832                       unsigned long flags)
2833 {
2834     struct mm_struct *mm = (struct mm_struct *)priv;
2835 
2836     vma_add_mapping(mm, start, end, flags);
2837     return (0);
2838 }
2839 
2840 static void fill_note(struct memelfnote *note, const char *name, int type,
2841                       unsigned int sz, void *data)
2842 {
2843     unsigned int namesz;
2844 
2845     namesz = strlen(name) + 1;
2846     note->name = name;
2847     note->namesz = namesz;
2848     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2849     note->type = type;
2850     note->datasz = sz;
2851     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2852 
2853     note->data = data;
2854 
2855     /*
2856      * We calculate rounded up note size here as specified by
2857      * ELF document.
2858      */
2859     note->notesz = sizeof (struct elf_note) +
2860         note->namesz_rounded + note->datasz_rounded;
2861 }
2862 
2863 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2864                             uint32_t flags)
2865 {
2866     (void) memset(elf, 0, sizeof(*elf));
2867 
2868     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2869     elf->e_ident[EI_CLASS] = ELF_CLASS;
2870     elf->e_ident[EI_DATA] = ELF_DATA;
2871     elf->e_ident[EI_VERSION] = EV_CURRENT;
2872     elf->e_ident[EI_OSABI] = ELF_OSABI;
2873 
2874     elf->e_type = ET_CORE;
2875     elf->e_machine = machine;
2876     elf->e_version = EV_CURRENT;
2877     elf->e_phoff = sizeof(struct elfhdr);
2878     elf->e_flags = flags;
2879     elf->e_ehsize = sizeof(struct elfhdr);
2880     elf->e_phentsize = sizeof(struct elf_phdr);
2881     elf->e_phnum = segs;
2882 
2883     bswap_ehdr(elf);
2884 }
2885 
2886 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2887 {
2888     phdr->p_type = PT_NOTE;
2889     phdr->p_offset = offset;
2890     phdr->p_vaddr = 0;
2891     phdr->p_paddr = 0;
2892     phdr->p_filesz = sz;
2893     phdr->p_memsz = 0;
2894     phdr->p_flags = 0;
2895     phdr->p_align = 0;
2896 
2897     bswap_phdr(phdr, 1);
2898 }
2899 
2900 static size_t note_size(const struct memelfnote *note)
2901 {
2902     return (note->notesz);
2903 }
2904 
2905 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2906                           const TaskState *ts, int signr)
2907 {
2908     (void) memset(prstatus, 0, sizeof (*prstatus));
2909     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2910     prstatus->pr_pid = ts->ts_tid;
2911     prstatus->pr_ppid = getppid();
2912     prstatus->pr_pgrp = getpgrp();
2913     prstatus->pr_sid = getsid(0);
2914 
2915     bswap_prstatus(prstatus);
2916 }
2917 
2918 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2919 {
2920     char *base_filename;
2921     unsigned int i, len;
2922 
2923     (void) memset(psinfo, 0, sizeof (*psinfo));
2924 
2925     len = ts->info->arg_end - ts->info->arg_start;
2926     if (len >= ELF_PRARGSZ)
2927         len = ELF_PRARGSZ - 1;
2928     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2929         return -EFAULT;
2930     for (i = 0; i < len; i++)
2931         if (psinfo->pr_psargs[i] == 0)
2932             psinfo->pr_psargs[i] = ' ';
2933     psinfo->pr_psargs[len] = 0;
2934 
2935     psinfo->pr_pid = getpid();
2936     psinfo->pr_ppid = getppid();
2937     psinfo->pr_pgrp = getpgrp();
2938     psinfo->pr_sid = getsid(0);
2939     psinfo->pr_uid = getuid();
2940     psinfo->pr_gid = getgid();
2941 
2942     base_filename = g_path_get_basename(ts->bprm->filename);
2943     /*
2944      * Using strncpy here is fine: at max-length,
2945      * this field is not NUL-terminated.
2946      */
2947     (void) strncpy(psinfo->pr_fname, base_filename,
2948                    sizeof(psinfo->pr_fname));
2949 
2950     g_free(base_filename);
2951     bswap_psinfo(psinfo);
2952     return (0);
2953 }
2954 
2955 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2956 {
2957     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2958     elf_addr_t orig_auxv = auxv;
2959     void *ptr;
2960     int len = ts->info->auxv_len;
2961 
2962     /*
2963      * Auxiliary vector is stored in target process stack.  It contains
2964      * {type, value} pairs that we need to dump into note.  This is not
2965      * strictly necessary but we do it here for sake of completeness.
2966      */
2967 
2968     /* read in whole auxv vector and copy it to memelfnote */
2969     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2970     if (ptr != NULL) {
2971         fill_note(note, "CORE", NT_AUXV, len, ptr);
2972         unlock_user(ptr, auxv, len);
2973     }
2974 }
2975 
2976 /*
2977  * Constructs name of coredump file.  We have following convention
2978  * for the name:
2979  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2980  *
2981  * Returns 0 in case of success, -1 otherwise (errno is set).
2982  */
2983 static int core_dump_filename(const TaskState *ts, char *buf,
2984                               size_t bufsize)
2985 {
2986     char timestamp[64];
2987     char *base_filename = NULL;
2988     struct timeval tv;
2989     struct tm tm;
2990 
2991     assert(bufsize >= PATH_MAX);
2992 
2993     if (gettimeofday(&tv, NULL) < 0) {
2994         (void) fprintf(stderr, "unable to get current timestamp: %s",
2995                        strerror(errno));
2996         return (-1);
2997     }
2998 
2999     base_filename = g_path_get_basename(ts->bprm->filename);
3000     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3001                     localtime_r(&tv.tv_sec, &tm));
3002     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3003                     base_filename, timestamp, (int)getpid());
3004     g_free(base_filename);
3005 
3006     return (0);
3007 }
3008 
3009 static int dump_write(int fd, const void *ptr, size_t size)
3010 {
3011     const char *bufp = (const char *)ptr;
3012     ssize_t bytes_written, bytes_left;
3013     struct rlimit dumpsize;
3014     off_t pos;
3015 
3016     bytes_written = 0;
3017     getrlimit(RLIMIT_CORE, &dumpsize);
3018     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3019         if (errno == ESPIPE) { /* not a seekable stream */
3020             bytes_left = size;
3021         } else {
3022             return pos;
3023         }
3024     } else {
3025         if (dumpsize.rlim_cur <= pos) {
3026             return -1;
3027         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3028             bytes_left = size;
3029         } else {
3030             size_t limit_left=dumpsize.rlim_cur - pos;
3031             bytes_left = limit_left >= size ? size : limit_left ;
3032         }
3033     }
3034 
3035     /*
3036      * In normal conditions, single write(2) should do but
3037      * in case of socket etc. this mechanism is more portable.
3038      */
3039     do {
3040         bytes_written = write(fd, bufp, bytes_left);
3041         if (bytes_written < 0) {
3042             if (errno == EINTR)
3043                 continue;
3044             return (-1);
3045         } else if (bytes_written == 0) { /* eof */
3046             return (-1);
3047         }
3048         bufp += bytes_written;
3049         bytes_left -= bytes_written;
3050     } while (bytes_left > 0);
3051 
3052     return (0);
3053 }
3054 
3055 static int write_note(struct memelfnote *men, int fd)
3056 {
3057     struct elf_note en;
3058 
3059     en.n_namesz = men->namesz;
3060     en.n_type = men->type;
3061     en.n_descsz = men->datasz;
3062 
3063     bswap_note(&en);
3064 
3065     if (dump_write(fd, &en, sizeof(en)) != 0)
3066         return (-1);
3067     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3068         return (-1);
3069     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3070         return (-1);
3071 
3072     return (0);
3073 }
3074 
3075 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3076 {
3077     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3078     TaskState *ts = (TaskState *)cpu->opaque;
3079     struct elf_thread_status *ets;
3080 
3081     ets = g_malloc0(sizeof (*ets));
3082     ets->num_notes = 1; /* only prstatus is dumped */
3083     fill_prstatus(&ets->prstatus, ts, 0);
3084     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3085     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3086               &ets->prstatus);
3087 
3088     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3089 
3090     info->notes_size += note_size(&ets->notes[0]);
3091 }
3092 
3093 static void init_note_info(struct elf_note_info *info)
3094 {
3095     /* Initialize the elf_note_info structure so that it is at
3096      * least safe to call free_note_info() on it. Must be
3097      * called before calling fill_note_info().
3098      */
3099     memset(info, 0, sizeof (*info));
3100     QTAILQ_INIT(&info->thread_list);
3101 }
3102 
3103 static int fill_note_info(struct elf_note_info *info,
3104                           long signr, const CPUArchState *env)
3105 {
3106 #define NUMNOTES 3
3107     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3108     TaskState *ts = (TaskState *)cpu->opaque;
3109     int i;
3110 
3111     info->notes = g_new0(struct memelfnote, NUMNOTES);
3112     if (info->notes == NULL)
3113         return (-ENOMEM);
3114     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3115     if (info->prstatus == NULL)
3116         return (-ENOMEM);
3117     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3118     if (info->prstatus == NULL)
3119         return (-ENOMEM);
3120 
3121     /*
3122      * First fill in status (and registers) of current thread
3123      * including process info & aux vector.
3124      */
3125     fill_prstatus(info->prstatus, ts, signr);
3126     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3127     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3128               sizeof (*info->prstatus), info->prstatus);
3129     fill_psinfo(info->psinfo, ts);
3130     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3131               sizeof (*info->psinfo), info->psinfo);
3132     fill_auxv_note(&info->notes[2], ts);
3133     info->numnote = 3;
3134 
3135     info->notes_size = 0;
3136     for (i = 0; i < info->numnote; i++)
3137         info->notes_size += note_size(&info->notes[i]);
3138 
3139     /* read and fill status of all threads */
3140     cpu_list_lock();
3141     CPU_FOREACH(cpu) {
3142         if (cpu == thread_cpu) {
3143             continue;
3144         }
3145         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3146     }
3147     cpu_list_unlock();
3148 
3149     return (0);
3150 }
3151 
3152 static void free_note_info(struct elf_note_info *info)
3153 {
3154     struct elf_thread_status *ets;
3155 
3156     while (!QTAILQ_EMPTY(&info->thread_list)) {
3157         ets = QTAILQ_FIRST(&info->thread_list);
3158         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3159         g_free(ets);
3160     }
3161 
3162     g_free(info->prstatus);
3163     g_free(info->psinfo);
3164     g_free(info->notes);
3165 }
3166 
3167 static int write_note_info(struct elf_note_info *info, int fd)
3168 {
3169     struct elf_thread_status *ets;
3170     int i, error = 0;
3171 
3172     /* write prstatus, psinfo and auxv for current thread */
3173     for (i = 0; i < info->numnote; i++)
3174         if ((error = write_note(&info->notes[i], fd)) != 0)
3175             return (error);
3176 
3177     /* write prstatus for each thread */
3178     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3179         if ((error = write_note(&ets->notes[0], fd)) != 0)
3180             return (error);
3181     }
3182 
3183     return (0);
3184 }
3185 
3186 /*
3187  * Write out ELF coredump.
3188  *
3189  * See documentation of ELF object file format in:
3190  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3191  *
3192  * Coredump format in linux is following:
3193  *
3194  * 0   +----------------------+         \
3195  *     | ELF header           | ET_CORE  |
3196  *     +----------------------+          |
3197  *     | ELF program headers  |          |--- headers
3198  *     | - NOTE section       |          |
3199  *     | - PT_LOAD sections   |          |
3200  *     +----------------------+         /
3201  *     | NOTEs:               |
3202  *     | - NT_PRSTATUS        |
3203  *     | - NT_PRSINFO         |
3204  *     | - NT_AUXV            |
3205  *     +----------------------+ <-- aligned to target page
3206  *     | Process memory dump  |
3207  *     :                      :
3208  *     .                      .
3209  *     :                      :
3210  *     |                      |
3211  *     +----------------------+
3212  *
3213  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3214  * NT_PRSINFO  -> struct elf_prpsinfo
3215  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3216  *
3217  * Format follows System V format as close as possible.  Current
3218  * version limitations are as follows:
3219  *     - no floating point registers are dumped
3220  *
3221  * Function returns 0 in case of success, negative errno otherwise.
3222  *
3223  * TODO: make this work also during runtime: it should be
3224  * possible to force coredump from running process and then
3225  * continue processing.  For example qemu could set up SIGUSR2
3226  * handler (provided that target process haven't registered
3227  * handler for that) that does the dump when signal is received.
3228  */
3229 static int elf_core_dump(int signr, const CPUArchState *env)
3230 {
3231     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3232     const TaskState *ts = (const TaskState *)cpu->opaque;
3233     struct vm_area_struct *vma = NULL;
3234     char corefile[PATH_MAX];
3235     struct elf_note_info info;
3236     struct elfhdr elf;
3237     struct elf_phdr phdr;
3238     struct rlimit dumpsize;
3239     struct mm_struct *mm = NULL;
3240     off_t offset = 0, data_offset = 0;
3241     int segs = 0;
3242     int fd = -1;
3243 
3244     init_note_info(&info);
3245 
3246     errno = 0;
3247     getrlimit(RLIMIT_CORE, &dumpsize);
3248     if (dumpsize.rlim_cur == 0)
3249         return 0;
3250 
3251     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3252         return (-errno);
3253 
3254     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3255                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3256         return (-errno);
3257 
3258     /*
3259      * Walk through target process memory mappings and
3260      * set up structure containing this information.  After
3261      * this point vma_xxx functions can be used.
3262      */
3263     if ((mm = vma_init()) == NULL)
3264         goto out;
3265 
3266     walk_memory_regions(mm, vma_walker);
3267     segs = vma_get_mapping_count(mm);
3268 
3269     /*
3270      * Construct valid coredump ELF header.  We also
3271      * add one more segment for notes.
3272      */
3273     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3274     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3275         goto out;
3276 
3277     /* fill in the in-memory version of notes */
3278     if (fill_note_info(&info, signr, env) < 0)
3279         goto out;
3280 
3281     offset += sizeof (elf);                             /* elf header */
3282     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3283 
3284     /* write out notes program header */
3285     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3286 
3287     offset += info.notes_size;
3288     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3289         goto out;
3290 
3291     /*
3292      * ELF specification wants data to start at page boundary so
3293      * we align it here.
3294      */
3295     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3296 
3297     /*
3298      * Write program headers for memory regions mapped in
3299      * the target process.
3300      */
3301     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3302         (void) memset(&phdr, 0, sizeof (phdr));
3303 
3304         phdr.p_type = PT_LOAD;
3305         phdr.p_offset = offset;
3306         phdr.p_vaddr = vma->vma_start;
3307         phdr.p_paddr = 0;
3308         phdr.p_filesz = vma_dump_size(vma);
3309         offset += phdr.p_filesz;
3310         phdr.p_memsz = vma->vma_end - vma->vma_start;
3311         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3312         if (vma->vma_flags & PROT_WRITE)
3313             phdr.p_flags |= PF_W;
3314         if (vma->vma_flags & PROT_EXEC)
3315             phdr.p_flags |= PF_X;
3316         phdr.p_align = ELF_EXEC_PAGESIZE;
3317 
3318         bswap_phdr(&phdr, 1);
3319         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3320             goto out;
3321         }
3322     }
3323 
3324     /*
3325      * Next we write notes just after program headers.  No
3326      * alignment needed here.
3327      */
3328     if (write_note_info(&info, fd) < 0)
3329         goto out;
3330 
3331     /* align data to page boundary */
3332     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3333         goto out;
3334 
3335     /*
3336      * Finally we can dump process memory into corefile as well.
3337      */
3338     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3339         abi_ulong addr;
3340         abi_ulong end;
3341 
3342         end = vma->vma_start + vma_dump_size(vma);
3343 
3344         for (addr = vma->vma_start; addr < end;
3345              addr += TARGET_PAGE_SIZE) {
3346             char page[TARGET_PAGE_SIZE];
3347             int error;
3348 
3349             /*
3350              *  Read in page from target process memory and
3351              *  write it to coredump file.
3352              */
3353             error = copy_from_user(page, addr, sizeof (page));
3354             if (error != 0) {
3355                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3356                                addr);
3357                 errno = -error;
3358                 goto out;
3359             }
3360             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3361                 goto out;
3362         }
3363     }
3364 
3365  out:
3366     free_note_info(&info);
3367     if (mm != NULL)
3368         vma_delete(mm);
3369     (void) close(fd);
3370 
3371     if (errno != 0)
3372         return (-errno);
3373     return (0);
3374 }
3375 #endif /* USE_ELF_CORE_DUMP */
3376 
3377 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3378 {
3379     init_thread(regs, infop);
3380 }
3381