1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/path.h" 11 #include "qemu/queue.h" 12 #include "qemu/guest-random.h" 13 #include "qemu/units.h" 14 15 #ifdef _ARCH_PPC64 16 #undef ARCH_DLINFO 17 #undef ELF_PLATFORM 18 #undef ELF_HWCAP 19 #undef ELF_HWCAP2 20 #undef ELF_CLASS 21 #undef ELF_DATA 22 #undef ELF_ARCH 23 #endif 24 25 #define ELF_OSABI ELFOSABI_SYSV 26 27 /* from personality.h */ 28 29 /* 30 * Flags for bug emulation. 31 * 32 * These occupy the top three bytes. 33 */ 34 enum { 35 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 36 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 37 descriptors (signal handling) */ 38 MMAP_PAGE_ZERO = 0x0100000, 39 ADDR_COMPAT_LAYOUT = 0x0200000, 40 READ_IMPLIES_EXEC = 0x0400000, 41 ADDR_LIMIT_32BIT = 0x0800000, 42 SHORT_INODE = 0x1000000, 43 WHOLE_SECONDS = 0x2000000, 44 STICKY_TIMEOUTS = 0x4000000, 45 ADDR_LIMIT_3GB = 0x8000000, 46 }; 47 48 /* 49 * Personality types. 50 * 51 * These go in the low byte. Avoid using the top bit, it will 52 * conflict with error returns. 53 */ 54 enum { 55 PER_LINUX = 0x0000, 56 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 57 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 58 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 59 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 60 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 61 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 62 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 64 PER_BSD = 0x0006, 65 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 66 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 67 PER_LINUX32 = 0x0008, 68 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 69 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 70 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 71 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 72 PER_RISCOS = 0x000c, 73 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 74 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 75 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 76 PER_HPUX = 0x0010, 77 PER_MASK = 0x00ff, 78 }; 79 80 /* 81 * Return the base personality without flags. 82 */ 83 #define personality(pers) (pers & PER_MASK) 84 85 int info_is_fdpic(struct image_info *info) 86 { 87 return info->personality == PER_LINUX_FDPIC; 88 } 89 90 /* this flag is uneffective under linux too, should be deleted */ 91 #ifndef MAP_DENYWRITE 92 #define MAP_DENYWRITE 0 93 #endif 94 95 /* should probably go in elf.h */ 96 #ifndef ELIBBAD 97 #define ELIBBAD 80 98 #endif 99 100 #ifdef TARGET_WORDS_BIGENDIAN 101 #define ELF_DATA ELFDATA2MSB 102 #else 103 #define ELF_DATA ELFDATA2LSB 104 #endif 105 106 #ifdef TARGET_ABI_MIPSN32 107 typedef abi_ullong target_elf_greg_t; 108 #define tswapreg(ptr) tswap64(ptr) 109 #else 110 typedef abi_ulong target_elf_greg_t; 111 #define tswapreg(ptr) tswapal(ptr) 112 #endif 113 114 #ifdef USE_UID16 115 typedef abi_ushort target_uid_t; 116 typedef abi_ushort target_gid_t; 117 #else 118 typedef abi_uint target_uid_t; 119 typedef abi_uint target_gid_t; 120 #endif 121 typedef abi_int target_pid_t; 122 123 #ifdef TARGET_I386 124 125 #define ELF_PLATFORM get_elf_platform() 126 127 static const char *get_elf_platform(void) 128 { 129 static char elf_platform[] = "i386"; 130 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 131 if (family > 6) 132 family = 6; 133 if (family >= 3) 134 elf_platform[1] = '0' + family; 135 return elf_platform; 136 } 137 138 #define ELF_HWCAP get_elf_hwcap() 139 140 static uint32_t get_elf_hwcap(void) 141 { 142 X86CPU *cpu = X86_CPU(thread_cpu); 143 144 return cpu->env.features[FEAT_1_EDX]; 145 } 146 147 #ifdef TARGET_X86_64 148 #define ELF_START_MMAP 0x2aaaaab000ULL 149 150 #define ELF_CLASS ELFCLASS64 151 #define ELF_ARCH EM_X86_64 152 153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 154 { 155 regs->rax = 0; 156 regs->rsp = infop->start_stack; 157 regs->rip = infop->entry; 158 } 159 160 #define ELF_NREG 27 161 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 162 163 /* 164 * Note that ELF_NREG should be 29 as there should be place for 165 * TRAPNO and ERR "registers" as well but linux doesn't dump 166 * those. 167 * 168 * See linux kernel: arch/x86/include/asm/elf.h 169 */ 170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 171 { 172 (*regs)[0] = env->regs[15]; 173 (*regs)[1] = env->regs[14]; 174 (*regs)[2] = env->regs[13]; 175 (*regs)[3] = env->regs[12]; 176 (*regs)[4] = env->regs[R_EBP]; 177 (*regs)[5] = env->regs[R_EBX]; 178 (*regs)[6] = env->regs[11]; 179 (*regs)[7] = env->regs[10]; 180 (*regs)[8] = env->regs[9]; 181 (*regs)[9] = env->regs[8]; 182 (*regs)[10] = env->regs[R_EAX]; 183 (*regs)[11] = env->regs[R_ECX]; 184 (*regs)[12] = env->regs[R_EDX]; 185 (*regs)[13] = env->regs[R_ESI]; 186 (*regs)[14] = env->regs[R_EDI]; 187 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 188 (*regs)[16] = env->eip; 189 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 190 (*regs)[18] = env->eflags; 191 (*regs)[19] = env->regs[R_ESP]; 192 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 193 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 194 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 195 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 196 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 197 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 198 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 199 } 200 201 #else 202 203 #define ELF_START_MMAP 0x80000000 204 205 /* 206 * This is used to ensure we don't load something for the wrong architecture. 207 */ 208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 209 210 /* 211 * These are used to set parameters in the core dumps. 212 */ 213 #define ELF_CLASS ELFCLASS32 214 #define ELF_ARCH EM_386 215 216 static inline void init_thread(struct target_pt_regs *regs, 217 struct image_info *infop) 218 { 219 regs->esp = infop->start_stack; 220 regs->eip = infop->entry; 221 222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 223 starts %edx contains a pointer to a function which might be 224 registered using `atexit'. This provides a mean for the 225 dynamic linker to call DT_FINI functions for shared libraries 226 that have been loaded before the code runs. 227 228 A value of 0 tells we have no such handler. */ 229 regs->edx = 0; 230 } 231 232 #define ELF_NREG 17 233 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 234 235 /* 236 * Note that ELF_NREG should be 19 as there should be place for 237 * TRAPNO and ERR "registers" as well but linux doesn't dump 238 * those. 239 * 240 * See linux kernel: arch/x86/include/asm/elf.h 241 */ 242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 243 { 244 (*regs)[0] = env->regs[R_EBX]; 245 (*regs)[1] = env->regs[R_ECX]; 246 (*regs)[2] = env->regs[R_EDX]; 247 (*regs)[3] = env->regs[R_ESI]; 248 (*regs)[4] = env->regs[R_EDI]; 249 (*regs)[5] = env->regs[R_EBP]; 250 (*regs)[6] = env->regs[R_EAX]; 251 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 252 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 253 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 254 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 255 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 256 (*regs)[12] = env->eip; 257 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 258 (*regs)[14] = env->eflags; 259 (*regs)[15] = env->regs[R_ESP]; 260 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 261 } 262 #endif 263 264 #define USE_ELF_CORE_DUMP 265 #define ELF_EXEC_PAGESIZE 4096 266 267 #endif 268 269 #ifdef TARGET_ARM 270 271 #ifndef TARGET_AARCH64 272 /* 32 bit ARM definitions */ 273 274 #define ELF_START_MMAP 0x80000000 275 276 #define ELF_ARCH EM_ARM 277 #define ELF_CLASS ELFCLASS32 278 279 static inline void init_thread(struct target_pt_regs *regs, 280 struct image_info *infop) 281 { 282 abi_long stack = infop->start_stack; 283 memset(regs, 0, sizeof(*regs)); 284 285 regs->uregs[16] = ARM_CPU_MODE_USR; 286 if (infop->entry & 1) { 287 regs->uregs[16] |= CPSR_T; 288 } 289 regs->uregs[15] = infop->entry & 0xfffffffe; 290 regs->uregs[13] = infop->start_stack; 291 /* FIXME - what to for failure of get_user()? */ 292 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 293 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 294 /* XXX: it seems that r0 is zeroed after ! */ 295 regs->uregs[0] = 0; 296 /* For uClinux PIC binaries. */ 297 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 298 regs->uregs[10] = infop->start_data; 299 300 /* Support ARM FDPIC. */ 301 if (info_is_fdpic(infop)) { 302 /* As described in the ABI document, r7 points to the loadmap info 303 * prepared by the kernel. If an interpreter is needed, r8 points 304 * to the interpreter loadmap and r9 points to the interpreter 305 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 306 * r9 points to the main program PT_DYNAMIC info. 307 */ 308 regs->uregs[7] = infop->loadmap_addr; 309 if (infop->interpreter_loadmap_addr) { 310 /* Executable is dynamically loaded. */ 311 regs->uregs[8] = infop->interpreter_loadmap_addr; 312 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 313 } else { 314 regs->uregs[8] = 0; 315 regs->uregs[9] = infop->pt_dynamic_addr; 316 } 317 } 318 } 319 320 #define ELF_NREG 18 321 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 322 323 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 324 { 325 (*regs)[0] = tswapreg(env->regs[0]); 326 (*regs)[1] = tswapreg(env->regs[1]); 327 (*regs)[2] = tswapreg(env->regs[2]); 328 (*regs)[3] = tswapreg(env->regs[3]); 329 (*regs)[4] = tswapreg(env->regs[4]); 330 (*regs)[5] = tswapreg(env->regs[5]); 331 (*regs)[6] = tswapreg(env->regs[6]); 332 (*regs)[7] = tswapreg(env->regs[7]); 333 (*regs)[8] = tswapreg(env->regs[8]); 334 (*regs)[9] = tswapreg(env->regs[9]); 335 (*regs)[10] = tswapreg(env->regs[10]); 336 (*regs)[11] = tswapreg(env->regs[11]); 337 (*regs)[12] = tswapreg(env->regs[12]); 338 (*regs)[13] = tswapreg(env->regs[13]); 339 (*regs)[14] = tswapreg(env->regs[14]); 340 (*regs)[15] = tswapreg(env->regs[15]); 341 342 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 343 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 344 } 345 346 #define USE_ELF_CORE_DUMP 347 #define ELF_EXEC_PAGESIZE 4096 348 349 enum 350 { 351 ARM_HWCAP_ARM_SWP = 1 << 0, 352 ARM_HWCAP_ARM_HALF = 1 << 1, 353 ARM_HWCAP_ARM_THUMB = 1 << 2, 354 ARM_HWCAP_ARM_26BIT = 1 << 3, 355 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 356 ARM_HWCAP_ARM_FPA = 1 << 5, 357 ARM_HWCAP_ARM_VFP = 1 << 6, 358 ARM_HWCAP_ARM_EDSP = 1 << 7, 359 ARM_HWCAP_ARM_JAVA = 1 << 8, 360 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 361 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 362 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 363 ARM_HWCAP_ARM_NEON = 1 << 12, 364 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 365 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 366 ARM_HWCAP_ARM_TLS = 1 << 15, 367 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 368 ARM_HWCAP_ARM_IDIVA = 1 << 17, 369 ARM_HWCAP_ARM_IDIVT = 1 << 18, 370 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 371 ARM_HWCAP_ARM_LPAE = 1 << 20, 372 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 373 }; 374 375 enum { 376 ARM_HWCAP2_ARM_AES = 1 << 0, 377 ARM_HWCAP2_ARM_PMULL = 1 << 1, 378 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 379 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 380 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 381 }; 382 383 /* The commpage only exists for 32 bit kernels */ 384 385 /* Return 1 if the proposed guest space is suitable for the guest. 386 * Return 0 if the proposed guest space isn't suitable, but another 387 * address space should be tried. 388 * Return -1 if there is no way the proposed guest space can be 389 * valid regardless of the base. 390 * The guest code may leave a page mapped and populate it if the 391 * address is suitable. 392 */ 393 static int init_guest_commpage(unsigned long guest_base, 394 unsigned long guest_size) 395 { 396 unsigned long real_start, test_page_addr; 397 398 /* We need to check that we can force a fault on access to the 399 * commpage at 0xffff0fxx 400 */ 401 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 402 403 /* If the commpage lies within the already allocated guest space, 404 * then there is no way we can allocate it. 405 * 406 * You may be thinking that that this check is redundant because 407 * we already validated the guest size against MAX_RESERVED_VA; 408 * but if qemu_host_page_mask is unusually large, then 409 * test_page_addr may be lower. 410 */ 411 if (test_page_addr >= guest_base 412 && test_page_addr < (guest_base + guest_size)) { 413 return -1; 414 } 415 416 /* Note it needs to be writeable to let us initialise it */ 417 real_start = (unsigned long) 418 mmap((void *)test_page_addr, qemu_host_page_size, 419 PROT_READ | PROT_WRITE, 420 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 421 422 /* If we can't map it then try another address */ 423 if (real_start == -1ul) { 424 return 0; 425 } 426 427 if (real_start != test_page_addr) { 428 /* OS didn't put the page where we asked - unmap and reject */ 429 munmap((void *)real_start, qemu_host_page_size); 430 return 0; 431 } 432 433 /* Leave the page mapped 434 * Populate it (mmap should have left it all 0'd) 435 */ 436 437 /* Kernel helper versions */ 438 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 439 440 /* Now it's populated make it RO */ 441 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 442 perror("Protecting guest commpage"); 443 exit(-1); 444 } 445 446 return 1; /* All good */ 447 } 448 449 #define ELF_HWCAP get_elf_hwcap() 450 #define ELF_HWCAP2 get_elf_hwcap2() 451 452 static uint32_t get_elf_hwcap(void) 453 { 454 ARMCPU *cpu = ARM_CPU(thread_cpu); 455 uint32_t hwcaps = 0; 456 457 hwcaps |= ARM_HWCAP_ARM_SWP; 458 hwcaps |= ARM_HWCAP_ARM_HALF; 459 hwcaps |= ARM_HWCAP_ARM_THUMB; 460 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 461 462 /* probe for the extra features */ 463 #define GET_FEATURE(feat, hwcap) \ 464 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 465 466 #define GET_FEATURE_ID(feat, hwcap) \ 467 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 468 469 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 470 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 471 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 472 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 473 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 474 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 475 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 476 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 477 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 478 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA); 479 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT); 480 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 481 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 482 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 483 * to our VFP_FP16 feature bit. 484 */ 485 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 486 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 487 488 return hwcaps; 489 } 490 491 static uint32_t get_elf_hwcap2(void) 492 { 493 ARMCPU *cpu = ARM_CPU(thread_cpu); 494 uint32_t hwcaps = 0; 495 496 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 497 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 498 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 499 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 500 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 501 return hwcaps; 502 } 503 504 #undef GET_FEATURE 505 #undef GET_FEATURE_ID 506 507 #define ELF_PLATFORM get_elf_platform() 508 509 static const char *get_elf_platform(void) 510 { 511 CPUARMState *env = thread_cpu->env_ptr; 512 513 #ifdef TARGET_WORDS_BIGENDIAN 514 # define END "b" 515 #else 516 # define END "l" 517 #endif 518 519 if (arm_feature(env, ARM_FEATURE_V8)) { 520 return "v8" END; 521 } else if (arm_feature(env, ARM_FEATURE_V7)) { 522 if (arm_feature(env, ARM_FEATURE_M)) { 523 return "v7m" END; 524 } else { 525 return "v7" END; 526 } 527 } else if (arm_feature(env, ARM_FEATURE_V6)) { 528 return "v6" END; 529 } else if (arm_feature(env, ARM_FEATURE_V5)) { 530 return "v5" END; 531 } else { 532 return "v4" END; 533 } 534 535 #undef END 536 } 537 538 #else 539 /* 64 bit ARM definitions */ 540 #define ELF_START_MMAP 0x80000000 541 542 #define ELF_ARCH EM_AARCH64 543 #define ELF_CLASS ELFCLASS64 544 #ifdef TARGET_WORDS_BIGENDIAN 545 # define ELF_PLATFORM "aarch64_be" 546 #else 547 # define ELF_PLATFORM "aarch64" 548 #endif 549 550 static inline void init_thread(struct target_pt_regs *regs, 551 struct image_info *infop) 552 { 553 abi_long stack = infop->start_stack; 554 memset(regs, 0, sizeof(*regs)); 555 556 regs->pc = infop->entry & ~0x3ULL; 557 regs->sp = stack; 558 } 559 560 #define ELF_NREG 34 561 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 562 563 static void elf_core_copy_regs(target_elf_gregset_t *regs, 564 const CPUARMState *env) 565 { 566 int i; 567 568 for (i = 0; i < 32; i++) { 569 (*regs)[i] = tswapreg(env->xregs[i]); 570 } 571 (*regs)[32] = tswapreg(env->pc); 572 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 573 } 574 575 #define USE_ELF_CORE_DUMP 576 #define ELF_EXEC_PAGESIZE 4096 577 578 enum { 579 ARM_HWCAP_A64_FP = 1 << 0, 580 ARM_HWCAP_A64_ASIMD = 1 << 1, 581 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 582 ARM_HWCAP_A64_AES = 1 << 3, 583 ARM_HWCAP_A64_PMULL = 1 << 4, 584 ARM_HWCAP_A64_SHA1 = 1 << 5, 585 ARM_HWCAP_A64_SHA2 = 1 << 6, 586 ARM_HWCAP_A64_CRC32 = 1 << 7, 587 ARM_HWCAP_A64_ATOMICS = 1 << 8, 588 ARM_HWCAP_A64_FPHP = 1 << 9, 589 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 590 ARM_HWCAP_A64_CPUID = 1 << 11, 591 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 592 ARM_HWCAP_A64_JSCVT = 1 << 13, 593 ARM_HWCAP_A64_FCMA = 1 << 14, 594 ARM_HWCAP_A64_LRCPC = 1 << 15, 595 ARM_HWCAP_A64_DCPOP = 1 << 16, 596 ARM_HWCAP_A64_SHA3 = 1 << 17, 597 ARM_HWCAP_A64_SM3 = 1 << 18, 598 ARM_HWCAP_A64_SM4 = 1 << 19, 599 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 600 ARM_HWCAP_A64_SHA512 = 1 << 21, 601 ARM_HWCAP_A64_SVE = 1 << 22, 602 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 603 ARM_HWCAP_A64_DIT = 1 << 24, 604 ARM_HWCAP_A64_USCAT = 1 << 25, 605 ARM_HWCAP_A64_ILRCPC = 1 << 26, 606 ARM_HWCAP_A64_FLAGM = 1 << 27, 607 ARM_HWCAP_A64_SSBS = 1 << 28, 608 ARM_HWCAP_A64_SB = 1 << 29, 609 ARM_HWCAP_A64_PACA = 1 << 30, 610 ARM_HWCAP_A64_PACG = 1UL << 31, 611 612 ARM_HWCAP2_A64_DCPODP = 1 << 0, 613 ARM_HWCAP2_A64_SVE2 = 1 << 1, 614 ARM_HWCAP2_A64_SVEAES = 1 << 2, 615 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 616 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 617 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 618 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 619 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 620 ARM_HWCAP2_A64_FRINT = 1 << 8, 621 }; 622 623 #define ELF_HWCAP get_elf_hwcap() 624 #define ELF_HWCAP2 get_elf_hwcap2() 625 626 #define GET_FEATURE_ID(feat, hwcap) \ 627 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 628 629 static uint32_t get_elf_hwcap(void) 630 { 631 ARMCPU *cpu = ARM_CPU(thread_cpu); 632 uint32_t hwcaps = 0; 633 634 hwcaps |= ARM_HWCAP_A64_FP; 635 hwcaps |= ARM_HWCAP_A64_ASIMD; 636 hwcaps |= ARM_HWCAP_A64_CPUID; 637 638 /* probe for the extra features */ 639 640 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 641 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 642 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 643 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 644 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 645 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 646 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 647 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 648 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 649 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 650 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 651 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 652 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 653 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 654 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 655 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 656 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 657 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 658 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 659 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 660 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 661 662 return hwcaps; 663 } 664 665 static uint32_t get_elf_hwcap2(void) 666 { 667 ARMCPU *cpu = ARM_CPU(thread_cpu); 668 uint32_t hwcaps = 0; 669 670 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 671 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 672 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 673 674 return hwcaps; 675 } 676 677 #undef GET_FEATURE_ID 678 679 #endif /* not TARGET_AARCH64 */ 680 #endif /* TARGET_ARM */ 681 682 #ifdef TARGET_SPARC 683 #ifdef TARGET_SPARC64 684 685 #define ELF_START_MMAP 0x80000000 686 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 687 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 688 #ifndef TARGET_ABI32 689 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 690 #else 691 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 692 #endif 693 694 #define ELF_CLASS ELFCLASS64 695 #define ELF_ARCH EM_SPARCV9 696 697 #define STACK_BIAS 2047 698 699 static inline void init_thread(struct target_pt_regs *regs, 700 struct image_info *infop) 701 { 702 #ifndef TARGET_ABI32 703 regs->tstate = 0; 704 #endif 705 regs->pc = infop->entry; 706 regs->npc = regs->pc + 4; 707 regs->y = 0; 708 #ifdef TARGET_ABI32 709 regs->u_regs[14] = infop->start_stack - 16 * 4; 710 #else 711 if (personality(infop->personality) == PER_LINUX32) 712 regs->u_regs[14] = infop->start_stack - 16 * 4; 713 else 714 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 715 #endif 716 } 717 718 #else 719 #define ELF_START_MMAP 0x80000000 720 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 721 | HWCAP_SPARC_MULDIV) 722 723 #define ELF_CLASS ELFCLASS32 724 #define ELF_ARCH EM_SPARC 725 726 static inline void init_thread(struct target_pt_regs *regs, 727 struct image_info *infop) 728 { 729 regs->psr = 0; 730 regs->pc = infop->entry; 731 regs->npc = regs->pc + 4; 732 regs->y = 0; 733 regs->u_regs[14] = infop->start_stack - 16 * 4; 734 } 735 736 #endif 737 #endif 738 739 #ifdef TARGET_PPC 740 741 #define ELF_MACHINE PPC_ELF_MACHINE 742 #define ELF_START_MMAP 0x80000000 743 744 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 745 746 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 747 748 #define ELF_CLASS ELFCLASS64 749 750 #else 751 752 #define ELF_CLASS ELFCLASS32 753 754 #endif 755 756 #define ELF_ARCH EM_PPC 757 758 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 759 See arch/powerpc/include/asm/cputable.h. */ 760 enum { 761 QEMU_PPC_FEATURE_32 = 0x80000000, 762 QEMU_PPC_FEATURE_64 = 0x40000000, 763 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 764 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 765 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 766 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 767 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 768 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 769 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 770 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 771 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 772 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 773 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 774 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 775 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 776 QEMU_PPC_FEATURE_CELL = 0x00010000, 777 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 778 QEMU_PPC_FEATURE_SMT = 0x00004000, 779 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 780 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 781 QEMU_PPC_FEATURE_PA6T = 0x00000800, 782 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 783 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 784 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 785 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 786 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 787 788 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 789 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 790 791 /* Feature definitions in AT_HWCAP2. */ 792 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 793 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 794 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 795 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 796 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 797 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 798 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 799 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 800 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 801 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 802 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 803 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 804 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 805 }; 806 807 #define ELF_HWCAP get_elf_hwcap() 808 809 static uint32_t get_elf_hwcap(void) 810 { 811 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 812 uint32_t features = 0; 813 814 /* We don't have to be terribly complete here; the high points are 815 Altivec/FP/SPE support. Anything else is just a bonus. */ 816 #define GET_FEATURE(flag, feature) \ 817 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 818 #define GET_FEATURE2(flags, feature) \ 819 do { \ 820 if ((cpu->env.insns_flags2 & flags) == flags) { \ 821 features |= feature; \ 822 } \ 823 } while (0) 824 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 825 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 826 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 827 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 828 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 829 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 830 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 831 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 832 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 833 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 834 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 835 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 836 QEMU_PPC_FEATURE_ARCH_2_06); 837 #undef GET_FEATURE 838 #undef GET_FEATURE2 839 840 return features; 841 } 842 843 #define ELF_HWCAP2 get_elf_hwcap2() 844 845 static uint32_t get_elf_hwcap2(void) 846 { 847 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 848 uint32_t features = 0; 849 850 #define GET_FEATURE(flag, feature) \ 851 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 852 #define GET_FEATURE2(flag, feature) \ 853 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 854 855 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 856 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 857 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 858 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 859 QEMU_PPC_FEATURE2_VEC_CRYPTO); 860 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 861 QEMU_PPC_FEATURE2_DARN); 862 863 #undef GET_FEATURE 864 #undef GET_FEATURE2 865 866 return features; 867 } 868 869 /* 870 * The requirements here are: 871 * - keep the final alignment of sp (sp & 0xf) 872 * - make sure the 32-bit value at the first 16 byte aligned position of 873 * AUXV is greater than 16 for glibc compatibility. 874 * AT_IGNOREPPC is used for that. 875 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 876 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 877 */ 878 #define DLINFO_ARCH_ITEMS 5 879 #define ARCH_DLINFO \ 880 do { \ 881 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 882 /* \ 883 * Handle glibc compatibility: these magic entries must \ 884 * be at the lowest addresses in the final auxv. \ 885 */ \ 886 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 887 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 888 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 889 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 890 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 891 } while (0) 892 893 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 894 { 895 _regs->gpr[1] = infop->start_stack; 896 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 897 if (get_ppc64_abi(infop) < 2) { 898 uint64_t val; 899 get_user_u64(val, infop->entry + 8); 900 _regs->gpr[2] = val + infop->load_bias; 901 get_user_u64(val, infop->entry); 902 infop->entry = val + infop->load_bias; 903 } else { 904 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 905 } 906 #endif 907 _regs->nip = infop->entry; 908 } 909 910 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 911 #define ELF_NREG 48 912 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 913 914 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 915 { 916 int i; 917 target_ulong ccr = 0; 918 919 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 920 (*regs)[i] = tswapreg(env->gpr[i]); 921 } 922 923 (*regs)[32] = tswapreg(env->nip); 924 (*regs)[33] = tswapreg(env->msr); 925 (*regs)[35] = tswapreg(env->ctr); 926 (*regs)[36] = tswapreg(env->lr); 927 (*regs)[37] = tswapreg(env->xer); 928 929 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 930 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 931 } 932 (*regs)[38] = tswapreg(ccr); 933 } 934 935 #define USE_ELF_CORE_DUMP 936 #define ELF_EXEC_PAGESIZE 4096 937 938 #endif 939 940 #ifdef TARGET_MIPS 941 942 #define ELF_START_MMAP 0x80000000 943 944 #ifdef TARGET_MIPS64 945 #define ELF_CLASS ELFCLASS64 946 #else 947 #define ELF_CLASS ELFCLASS32 948 #endif 949 #define ELF_ARCH EM_MIPS 950 951 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 952 953 static inline void init_thread(struct target_pt_regs *regs, 954 struct image_info *infop) 955 { 956 regs->cp0_status = 2 << CP0St_KSU; 957 regs->cp0_epc = infop->entry; 958 regs->regs[29] = infop->start_stack; 959 } 960 961 /* See linux kernel: arch/mips/include/asm/elf.h. */ 962 #define ELF_NREG 45 963 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 964 965 /* See linux kernel: arch/mips/include/asm/reg.h. */ 966 enum { 967 #ifdef TARGET_MIPS64 968 TARGET_EF_R0 = 0, 969 #else 970 TARGET_EF_R0 = 6, 971 #endif 972 TARGET_EF_R26 = TARGET_EF_R0 + 26, 973 TARGET_EF_R27 = TARGET_EF_R0 + 27, 974 TARGET_EF_LO = TARGET_EF_R0 + 32, 975 TARGET_EF_HI = TARGET_EF_R0 + 33, 976 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 977 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 978 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 979 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 980 }; 981 982 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 983 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 984 { 985 int i; 986 987 for (i = 0; i < TARGET_EF_R0; i++) { 988 (*regs)[i] = 0; 989 } 990 (*regs)[TARGET_EF_R0] = 0; 991 992 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 993 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 994 } 995 996 (*regs)[TARGET_EF_R26] = 0; 997 (*regs)[TARGET_EF_R27] = 0; 998 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 999 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1000 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1001 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1002 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1003 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1004 } 1005 1006 #define USE_ELF_CORE_DUMP 1007 #define ELF_EXEC_PAGESIZE 4096 1008 1009 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1010 enum { 1011 HWCAP_MIPS_R6 = (1 << 0), 1012 HWCAP_MIPS_MSA = (1 << 1), 1013 }; 1014 1015 #define ELF_HWCAP get_elf_hwcap() 1016 1017 static uint32_t get_elf_hwcap(void) 1018 { 1019 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1020 uint32_t hwcaps = 0; 1021 1022 #define GET_FEATURE(flag, hwcap) \ 1023 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 1024 1025 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 1026 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 1027 1028 #undef GET_FEATURE 1029 1030 return hwcaps; 1031 } 1032 1033 #endif /* TARGET_MIPS */ 1034 1035 #ifdef TARGET_MICROBLAZE 1036 1037 #define ELF_START_MMAP 0x80000000 1038 1039 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1040 1041 #define ELF_CLASS ELFCLASS32 1042 #define ELF_ARCH EM_MICROBLAZE 1043 1044 static inline void init_thread(struct target_pt_regs *regs, 1045 struct image_info *infop) 1046 { 1047 regs->pc = infop->entry; 1048 regs->r1 = infop->start_stack; 1049 1050 } 1051 1052 #define ELF_EXEC_PAGESIZE 4096 1053 1054 #define USE_ELF_CORE_DUMP 1055 #define ELF_NREG 38 1056 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1057 1058 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1059 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1060 { 1061 int i, pos = 0; 1062 1063 for (i = 0; i < 32; i++) { 1064 (*regs)[pos++] = tswapreg(env->regs[i]); 1065 } 1066 1067 for (i = 0; i < 6; i++) { 1068 (*regs)[pos++] = tswapreg(env->sregs[i]); 1069 } 1070 } 1071 1072 #endif /* TARGET_MICROBLAZE */ 1073 1074 #ifdef TARGET_NIOS2 1075 1076 #define ELF_START_MMAP 0x80000000 1077 1078 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1079 1080 #define ELF_CLASS ELFCLASS32 1081 #define ELF_ARCH EM_ALTERA_NIOS2 1082 1083 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1084 { 1085 regs->ea = infop->entry; 1086 regs->sp = infop->start_stack; 1087 regs->estatus = 0x3; 1088 } 1089 1090 #define ELF_EXEC_PAGESIZE 4096 1091 1092 #define USE_ELF_CORE_DUMP 1093 #define ELF_NREG 49 1094 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1095 1096 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1097 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1098 const CPUNios2State *env) 1099 { 1100 int i; 1101 1102 (*regs)[0] = -1; 1103 for (i = 1; i < 8; i++) /* r0-r7 */ 1104 (*regs)[i] = tswapreg(env->regs[i + 7]); 1105 1106 for (i = 8; i < 16; i++) /* r8-r15 */ 1107 (*regs)[i] = tswapreg(env->regs[i - 8]); 1108 1109 for (i = 16; i < 24; i++) /* r16-r23 */ 1110 (*regs)[i] = tswapreg(env->regs[i + 7]); 1111 (*regs)[24] = -1; /* R_ET */ 1112 (*regs)[25] = -1; /* R_BT */ 1113 (*regs)[26] = tswapreg(env->regs[R_GP]); 1114 (*regs)[27] = tswapreg(env->regs[R_SP]); 1115 (*regs)[28] = tswapreg(env->regs[R_FP]); 1116 (*regs)[29] = tswapreg(env->regs[R_EA]); 1117 (*regs)[30] = -1; /* R_SSTATUS */ 1118 (*regs)[31] = tswapreg(env->regs[R_RA]); 1119 1120 (*regs)[32] = tswapreg(env->regs[R_PC]); 1121 1122 (*regs)[33] = -1; /* R_STATUS */ 1123 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1124 1125 for (i = 35; i < 49; i++) /* ... */ 1126 (*regs)[i] = -1; 1127 } 1128 1129 #endif /* TARGET_NIOS2 */ 1130 1131 #ifdef TARGET_OPENRISC 1132 1133 #define ELF_START_MMAP 0x08000000 1134 1135 #define ELF_ARCH EM_OPENRISC 1136 #define ELF_CLASS ELFCLASS32 1137 #define ELF_DATA ELFDATA2MSB 1138 1139 static inline void init_thread(struct target_pt_regs *regs, 1140 struct image_info *infop) 1141 { 1142 regs->pc = infop->entry; 1143 regs->gpr[1] = infop->start_stack; 1144 } 1145 1146 #define USE_ELF_CORE_DUMP 1147 #define ELF_EXEC_PAGESIZE 8192 1148 1149 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1150 #define ELF_NREG 34 /* gprs and pc, sr */ 1151 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1152 1153 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1154 const CPUOpenRISCState *env) 1155 { 1156 int i; 1157 1158 for (i = 0; i < 32; i++) { 1159 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1160 } 1161 (*regs)[32] = tswapreg(env->pc); 1162 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1163 } 1164 #define ELF_HWCAP 0 1165 #define ELF_PLATFORM NULL 1166 1167 #endif /* TARGET_OPENRISC */ 1168 1169 #ifdef TARGET_SH4 1170 1171 #define ELF_START_MMAP 0x80000000 1172 1173 #define ELF_CLASS ELFCLASS32 1174 #define ELF_ARCH EM_SH 1175 1176 static inline void init_thread(struct target_pt_regs *regs, 1177 struct image_info *infop) 1178 { 1179 /* Check other registers XXXXX */ 1180 regs->pc = infop->entry; 1181 regs->regs[15] = infop->start_stack; 1182 } 1183 1184 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1185 #define ELF_NREG 23 1186 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1187 1188 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1189 enum { 1190 TARGET_REG_PC = 16, 1191 TARGET_REG_PR = 17, 1192 TARGET_REG_SR = 18, 1193 TARGET_REG_GBR = 19, 1194 TARGET_REG_MACH = 20, 1195 TARGET_REG_MACL = 21, 1196 TARGET_REG_SYSCALL = 22 1197 }; 1198 1199 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1200 const CPUSH4State *env) 1201 { 1202 int i; 1203 1204 for (i = 0; i < 16; i++) { 1205 (*regs)[i] = tswapreg(env->gregs[i]); 1206 } 1207 1208 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1209 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1210 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1211 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1212 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1213 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1214 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1215 } 1216 1217 #define USE_ELF_CORE_DUMP 1218 #define ELF_EXEC_PAGESIZE 4096 1219 1220 enum { 1221 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1222 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1223 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1224 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1225 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1226 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1227 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1228 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1229 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1230 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1231 }; 1232 1233 #define ELF_HWCAP get_elf_hwcap() 1234 1235 static uint32_t get_elf_hwcap(void) 1236 { 1237 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1238 uint32_t hwcap = 0; 1239 1240 hwcap |= SH_CPU_HAS_FPU; 1241 1242 if (cpu->env.features & SH_FEATURE_SH4A) { 1243 hwcap |= SH_CPU_HAS_LLSC; 1244 } 1245 1246 return hwcap; 1247 } 1248 1249 #endif 1250 1251 #ifdef TARGET_CRIS 1252 1253 #define ELF_START_MMAP 0x80000000 1254 1255 #define ELF_CLASS ELFCLASS32 1256 #define ELF_ARCH EM_CRIS 1257 1258 static inline void init_thread(struct target_pt_regs *regs, 1259 struct image_info *infop) 1260 { 1261 regs->erp = infop->entry; 1262 } 1263 1264 #define ELF_EXEC_PAGESIZE 8192 1265 1266 #endif 1267 1268 #ifdef TARGET_M68K 1269 1270 #define ELF_START_MMAP 0x80000000 1271 1272 #define ELF_CLASS ELFCLASS32 1273 #define ELF_ARCH EM_68K 1274 1275 /* ??? Does this need to do anything? 1276 #define ELF_PLAT_INIT(_r) */ 1277 1278 static inline void init_thread(struct target_pt_regs *regs, 1279 struct image_info *infop) 1280 { 1281 regs->usp = infop->start_stack; 1282 regs->sr = 0; 1283 regs->pc = infop->entry; 1284 } 1285 1286 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1287 #define ELF_NREG 20 1288 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1289 1290 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1291 { 1292 (*regs)[0] = tswapreg(env->dregs[1]); 1293 (*regs)[1] = tswapreg(env->dregs[2]); 1294 (*regs)[2] = tswapreg(env->dregs[3]); 1295 (*regs)[3] = tswapreg(env->dregs[4]); 1296 (*regs)[4] = tswapreg(env->dregs[5]); 1297 (*regs)[5] = tswapreg(env->dregs[6]); 1298 (*regs)[6] = tswapreg(env->dregs[7]); 1299 (*regs)[7] = tswapreg(env->aregs[0]); 1300 (*regs)[8] = tswapreg(env->aregs[1]); 1301 (*regs)[9] = tswapreg(env->aregs[2]); 1302 (*regs)[10] = tswapreg(env->aregs[3]); 1303 (*regs)[11] = tswapreg(env->aregs[4]); 1304 (*regs)[12] = tswapreg(env->aregs[5]); 1305 (*regs)[13] = tswapreg(env->aregs[6]); 1306 (*regs)[14] = tswapreg(env->dregs[0]); 1307 (*regs)[15] = tswapreg(env->aregs[7]); 1308 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1309 (*regs)[17] = tswapreg(env->sr); 1310 (*regs)[18] = tswapreg(env->pc); 1311 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1312 } 1313 1314 #define USE_ELF_CORE_DUMP 1315 #define ELF_EXEC_PAGESIZE 8192 1316 1317 #endif 1318 1319 #ifdef TARGET_ALPHA 1320 1321 #define ELF_START_MMAP (0x30000000000ULL) 1322 1323 #define ELF_CLASS ELFCLASS64 1324 #define ELF_ARCH EM_ALPHA 1325 1326 static inline void init_thread(struct target_pt_regs *regs, 1327 struct image_info *infop) 1328 { 1329 regs->pc = infop->entry; 1330 regs->ps = 8; 1331 regs->usp = infop->start_stack; 1332 } 1333 1334 #define ELF_EXEC_PAGESIZE 8192 1335 1336 #endif /* TARGET_ALPHA */ 1337 1338 #ifdef TARGET_S390X 1339 1340 #define ELF_START_MMAP (0x20000000000ULL) 1341 1342 #define ELF_CLASS ELFCLASS64 1343 #define ELF_DATA ELFDATA2MSB 1344 #define ELF_ARCH EM_S390 1345 1346 #include "elf.h" 1347 1348 #define ELF_HWCAP get_elf_hwcap() 1349 1350 #define GET_FEATURE(_feat, _hwcap) \ 1351 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1352 1353 static uint32_t get_elf_hwcap(void) 1354 { 1355 /* 1356 * Let's assume we always have esan3 and zarch. 1357 * 31-bit processes can use 64-bit registers (high gprs). 1358 */ 1359 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1360 1361 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1362 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1363 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1364 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1365 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1366 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1367 hwcap |= HWCAP_S390_ETF3EH; 1368 } 1369 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1370 1371 return hwcap; 1372 } 1373 1374 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1375 { 1376 regs->psw.addr = infop->entry; 1377 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1378 regs->gprs[15] = infop->start_stack; 1379 } 1380 1381 #endif /* TARGET_S390X */ 1382 1383 #ifdef TARGET_TILEGX 1384 1385 /* 42 bits real used address, a half for user mode */ 1386 #define ELF_START_MMAP (0x00000020000000000ULL) 1387 1388 #define elf_check_arch(x) ((x) == EM_TILEGX) 1389 1390 #define ELF_CLASS ELFCLASS64 1391 #define ELF_DATA ELFDATA2LSB 1392 #define ELF_ARCH EM_TILEGX 1393 1394 static inline void init_thread(struct target_pt_regs *regs, 1395 struct image_info *infop) 1396 { 1397 regs->pc = infop->entry; 1398 regs->sp = infop->start_stack; 1399 1400 } 1401 1402 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1403 1404 #endif /* TARGET_TILEGX */ 1405 1406 #ifdef TARGET_RISCV 1407 1408 #define ELF_START_MMAP 0x80000000 1409 #define ELF_ARCH EM_RISCV 1410 1411 #ifdef TARGET_RISCV32 1412 #define ELF_CLASS ELFCLASS32 1413 #else 1414 #define ELF_CLASS ELFCLASS64 1415 #endif 1416 1417 static inline void init_thread(struct target_pt_regs *regs, 1418 struct image_info *infop) 1419 { 1420 regs->sepc = infop->entry; 1421 regs->sp = infop->start_stack; 1422 } 1423 1424 #define ELF_EXEC_PAGESIZE 4096 1425 1426 #endif /* TARGET_RISCV */ 1427 1428 #ifdef TARGET_HPPA 1429 1430 #define ELF_START_MMAP 0x80000000 1431 #define ELF_CLASS ELFCLASS32 1432 #define ELF_ARCH EM_PARISC 1433 #define ELF_PLATFORM "PARISC" 1434 #define STACK_GROWS_DOWN 0 1435 #define STACK_ALIGNMENT 64 1436 1437 static inline void init_thread(struct target_pt_regs *regs, 1438 struct image_info *infop) 1439 { 1440 regs->iaoq[0] = infop->entry; 1441 regs->iaoq[1] = infop->entry + 4; 1442 regs->gr[23] = 0; 1443 regs->gr[24] = infop->arg_start; 1444 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1445 /* The top-of-stack contains a linkage buffer. */ 1446 regs->gr[30] = infop->start_stack + 64; 1447 regs->gr[31] = infop->entry; 1448 } 1449 1450 #endif /* TARGET_HPPA */ 1451 1452 #ifdef TARGET_XTENSA 1453 1454 #define ELF_START_MMAP 0x20000000 1455 1456 #define ELF_CLASS ELFCLASS32 1457 #define ELF_ARCH EM_XTENSA 1458 1459 static inline void init_thread(struct target_pt_regs *regs, 1460 struct image_info *infop) 1461 { 1462 regs->windowbase = 0; 1463 regs->windowstart = 1; 1464 regs->areg[1] = infop->start_stack; 1465 regs->pc = infop->entry; 1466 } 1467 1468 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1469 #define ELF_NREG 128 1470 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1471 1472 enum { 1473 TARGET_REG_PC, 1474 TARGET_REG_PS, 1475 TARGET_REG_LBEG, 1476 TARGET_REG_LEND, 1477 TARGET_REG_LCOUNT, 1478 TARGET_REG_SAR, 1479 TARGET_REG_WINDOWSTART, 1480 TARGET_REG_WINDOWBASE, 1481 TARGET_REG_THREADPTR, 1482 TARGET_REG_AR0 = 64, 1483 }; 1484 1485 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1486 const CPUXtensaState *env) 1487 { 1488 unsigned i; 1489 1490 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1491 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1492 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1493 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1494 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1495 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1496 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1497 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1498 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1499 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1500 for (i = 0; i < env->config->nareg; ++i) { 1501 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1502 } 1503 } 1504 1505 #define USE_ELF_CORE_DUMP 1506 #define ELF_EXEC_PAGESIZE 4096 1507 1508 #endif /* TARGET_XTENSA */ 1509 1510 #ifndef ELF_PLATFORM 1511 #define ELF_PLATFORM (NULL) 1512 #endif 1513 1514 #ifndef ELF_MACHINE 1515 #define ELF_MACHINE ELF_ARCH 1516 #endif 1517 1518 #ifndef elf_check_arch 1519 #define elf_check_arch(x) ((x) == ELF_ARCH) 1520 #endif 1521 1522 #ifndef ELF_HWCAP 1523 #define ELF_HWCAP 0 1524 #endif 1525 1526 #ifndef STACK_GROWS_DOWN 1527 #define STACK_GROWS_DOWN 1 1528 #endif 1529 1530 #ifndef STACK_ALIGNMENT 1531 #define STACK_ALIGNMENT 16 1532 #endif 1533 1534 #ifdef TARGET_ABI32 1535 #undef ELF_CLASS 1536 #define ELF_CLASS ELFCLASS32 1537 #undef bswaptls 1538 #define bswaptls(ptr) bswap32s(ptr) 1539 #endif 1540 1541 #include "elf.h" 1542 1543 struct exec 1544 { 1545 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1546 unsigned int a_text; /* length of text, in bytes */ 1547 unsigned int a_data; /* length of data, in bytes */ 1548 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1549 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1550 unsigned int a_entry; /* start address */ 1551 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1552 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1553 }; 1554 1555 1556 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1557 #define OMAGIC 0407 1558 #define NMAGIC 0410 1559 #define ZMAGIC 0413 1560 #define QMAGIC 0314 1561 1562 /* Necessary parameters */ 1563 #define TARGET_ELF_EXEC_PAGESIZE \ 1564 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1565 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1566 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1567 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1568 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1569 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1570 1571 #define DLINFO_ITEMS 15 1572 1573 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1574 { 1575 memcpy(to, from, n); 1576 } 1577 1578 #ifdef BSWAP_NEEDED 1579 static void bswap_ehdr(struct elfhdr *ehdr) 1580 { 1581 bswap16s(&ehdr->e_type); /* Object file type */ 1582 bswap16s(&ehdr->e_machine); /* Architecture */ 1583 bswap32s(&ehdr->e_version); /* Object file version */ 1584 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1585 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1586 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1587 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1588 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1589 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1590 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1591 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1592 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1593 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1594 } 1595 1596 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1597 { 1598 int i; 1599 for (i = 0; i < phnum; ++i, ++phdr) { 1600 bswap32s(&phdr->p_type); /* Segment type */ 1601 bswap32s(&phdr->p_flags); /* Segment flags */ 1602 bswaptls(&phdr->p_offset); /* Segment file offset */ 1603 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1604 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1605 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1606 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1607 bswaptls(&phdr->p_align); /* Segment alignment */ 1608 } 1609 } 1610 1611 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1612 { 1613 int i; 1614 for (i = 0; i < shnum; ++i, ++shdr) { 1615 bswap32s(&shdr->sh_name); 1616 bswap32s(&shdr->sh_type); 1617 bswaptls(&shdr->sh_flags); 1618 bswaptls(&shdr->sh_addr); 1619 bswaptls(&shdr->sh_offset); 1620 bswaptls(&shdr->sh_size); 1621 bswap32s(&shdr->sh_link); 1622 bswap32s(&shdr->sh_info); 1623 bswaptls(&shdr->sh_addralign); 1624 bswaptls(&shdr->sh_entsize); 1625 } 1626 } 1627 1628 static void bswap_sym(struct elf_sym *sym) 1629 { 1630 bswap32s(&sym->st_name); 1631 bswaptls(&sym->st_value); 1632 bswaptls(&sym->st_size); 1633 bswap16s(&sym->st_shndx); 1634 } 1635 1636 #ifdef TARGET_MIPS 1637 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1638 { 1639 bswap16s(&abiflags->version); 1640 bswap32s(&abiflags->ases); 1641 bswap32s(&abiflags->isa_ext); 1642 bswap32s(&abiflags->flags1); 1643 bswap32s(&abiflags->flags2); 1644 } 1645 #endif 1646 #else 1647 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1648 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1649 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1650 static inline void bswap_sym(struct elf_sym *sym) { } 1651 #ifdef TARGET_MIPS 1652 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1653 #endif 1654 #endif 1655 1656 #ifdef USE_ELF_CORE_DUMP 1657 static int elf_core_dump(int, const CPUArchState *); 1658 #endif /* USE_ELF_CORE_DUMP */ 1659 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1660 1661 /* Verify the portions of EHDR within E_IDENT for the target. 1662 This can be performed before bswapping the entire header. */ 1663 static bool elf_check_ident(struct elfhdr *ehdr) 1664 { 1665 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1666 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1667 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1668 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1669 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1670 && ehdr->e_ident[EI_DATA] == ELF_DATA 1671 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1672 } 1673 1674 /* Verify the portions of EHDR outside of E_IDENT for the target. 1675 This has to wait until after bswapping the header. */ 1676 static bool elf_check_ehdr(struct elfhdr *ehdr) 1677 { 1678 return (elf_check_arch(ehdr->e_machine) 1679 && ehdr->e_ehsize == sizeof(struct elfhdr) 1680 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1681 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1682 } 1683 1684 /* 1685 * 'copy_elf_strings()' copies argument/envelope strings from user 1686 * memory to free pages in kernel mem. These are in a format ready 1687 * to be put directly into the top of new user memory. 1688 * 1689 */ 1690 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1691 abi_ulong p, abi_ulong stack_limit) 1692 { 1693 char *tmp; 1694 int len, i; 1695 abi_ulong top = p; 1696 1697 if (!p) { 1698 return 0; /* bullet-proofing */ 1699 } 1700 1701 if (STACK_GROWS_DOWN) { 1702 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1703 for (i = argc - 1; i >= 0; --i) { 1704 tmp = argv[i]; 1705 if (!tmp) { 1706 fprintf(stderr, "VFS: argc is wrong"); 1707 exit(-1); 1708 } 1709 len = strlen(tmp) + 1; 1710 tmp += len; 1711 1712 if (len > (p - stack_limit)) { 1713 return 0; 1714 } 1715 while (len) { 1716 int bytes_to_copy = (len > offset) ? offset : len; 1717 tmp -= bytes_to_copy; 1718 p -= bytes_to_copy; 1719 offset -= bytes_to_copy; 1720 len -= bytes_to_copy; 1721 1722 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1723 1724 if (offset == 0) { 1725 memcpy_to_target(p, scratch, top - p); 1726 top = p; 1727 offset = TARGET_PAGE_SIZE; 1728 } 1729 } 1730 } 1731 if (p != top) { 1732 memcpy_to_target(p, scratch + offset, top - p); 1733 } 1734 } else { 1735 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1736 for (i = 0; i < argc; ++i) { 1737 tmp = argv[i]; 1738 if (!tmp) { 1739 fprintf(stderr, "VFS: argc is wrong"); 1740 exit(-1); 1741 } 1742 len = strlen(tmp) + 1; 1743 if (len > (stack_limit - p)) { 1744 return 0; 1745 } 1746 while (len) { 1747 int bytes_to_copy = (len > remaining) ? remaining : len; 1748 1749 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1750 1751 tmp += bytes_to_copy; 1752 remaining -= bytes_to_copy; 1753 p += bytes_to_copy; 1754 len -= bytes_to_copy; 1755 1756 if (remaining == 0) { 1757 memcpy_to_target(top, scratch, p - top); 1758 top = p; 1759 remaining = TARGET_PAGE_SIZE; 1760 } 1761 } 1762 } 1763 if (p != top) { 1764 memcpy_to_target(top, scratch, p - top); 1765 } 1766 } 1767 1768 return p; 1769 } 1770 1771 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1772 * argument/environment space. Newer kernels (>2.6.33) allow more, 1773 * dependent on stack size, but guarantee at least 32 pages for 1774 * backwards compatibility. 1775 */ 1776 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1777 1778 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1779 struct image_info *info) 1780 { 1781 abi_ulong size, error, guard; 1782 1783 size = guest_stack_size; 1784 if (size < STACK_LOWER_LIMIT) { 1785 size = STACK_LOWER_LIMIT; 1786 } 1787 guard = TARGET_PAGE_SIZE; 1788 if (guard < qemu_real_host_page_size) { 1789 guard = qemu_real_host_page_size; 1790 } 1791 1792 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1793 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1794 if (error == -1) { 1795 perror("mmap stack"); 1796 exit(-1); 1797 } 1798 1799 /* We reserve one extra page at the top of the stack as guard. */ 1800 if (STACK_GROWS_DOWN) { 1801 target_mprotect(error, guard, PROT_NONE); 1802 info->stack_limit = error + guard; 1803 return info->stack_limit + size - sizeof(void *); 1804 } else { 1805 target_mprotect(error + size, guard, PROT_NONE); 1806 info->stack_limit = error + size; 1807 return error; 1808 } 1809 } 1810 1811 /* Map and zero the bss. We need to explicitly zero any fractional pages 1812 after the data section (i.e. bss). */ 1813 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1814 { 1815 uintptr_t host_start, host_map_start, host_end; 1816 1817 last_bss = TARGET_PAGE_ALIGN(last_bss); 1818 1819 /* ??? There is confusion between qemu_real_host_page_size and 1820 qemu_host_page_size here and elsewhere in target_mmap, which 1821 may lead to the end of the data section mapping from the file 1822 not being mapped. At least there was an explicit test and 1823 comment for that here, suggesting that "the file size must 1824 be known". The comment probably pre-dates the introduction 1825 of the fstat system call in target_mmap which does in fact 1826 find out the size. What isn't clear is if the workaround 1827 here is still actually needed. For now, continue with it, 1828 but merge it with the "normal" mmap that would allocate the bss. */ 1829 1830 host_start = (uintptr_t) g2h(elf_bss); 1831 host_end = (uintptr_t) g2h(last_bss); 1832 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1833 1834 if (host_map_start < host_end) { 1835 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1836 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1837 if (p == MAP_FAILED) { 1838 perror("cannot mmap brk"); 1839 exit(-1); 1840 } 1841 } 1842 1843 /* Ensure that the bss page(s) are valid */ 1844 if ((page_get_flags(last_bss-1) & prot) != prot) { 1845 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1846 } 1847 1848 if (host_start < host_map_start) { 1849 memset((void *)host_start, 0, host_map_start - host_start); 1850 } 1851 } 1852 1853 #ifdef TARGET_ARM 1854 static int elf_is_fdpic(struct elfhdr *exec) 1855 { 1856 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1857 } 1858 #else 1859 /* Default implementation, always false. */ 1860 static int elf_is_fdpic(struct elfhdr *exec) 1861 { 1862 return 0; 1863 } 1864 #endif 1865 1866 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1867 { 1868 uint16_t n; 1869 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1870 1871 /* elf32_fdpic_loadseg */ 1872 n = info->nsegs; 1873 while (n--) { 1874 sp -= 12; 1875 put_user_u32(loadsegs[n].addr, sp+0); 1876 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1877 put_user_u32(loadsegs[n].p_memsz, sp+8); 1878 } 1879 1880 /* elf32_fdpic_loadmap */ 1881 sp -= 4; 1882 put_user_u16(0, sp+0); /* version */ 1883 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1884 1885 info->personality = PER_LINUX_FDPIC; 1886 info->loadmap_addr = sp; 1887 1888 return sp; 1889 } 1890 1891 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1892 struct elfhdr *exec, 1893 struct image_info *info, 1894 struct image_info *interp_info) 1895 { 1896 abi_ulong sp; 1897 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1898 int size; 1899 int i; 1900 abi_ulong u_rand_bytes; 1901 uint8_t k_rand_bytes[16]; 1902 abi_ulong u_platform; 1903 const char *k_platform; 1904 const int n = sizeof(elf_addr_t); 1905 1906 sp = p; 1907 1908 /* Needs to be before we load the env/argc/... */ 1909 if (elf_is_fdpic(exec)) { 1910 /* Need 4 byte alignment for these structs */ 1911 sp &= ~3; 1912 sp = loader_build_fdpic_loadmap(info, sp); 1913 info->other_info = interp_info; 1914 if (interp_info) { 1915 interp_info->other_info = info; 1916 sp = loader_build_fdpic_loadmap(interp_info, sp); 1917 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1918 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1919 } else { 1920 info->interpreter_loadmap_addr = 0; 1921 info->interpreter_pt_dynamic_addr = 0; 1922 } 1923 } 1924 1925 u_platform = 0; 1926 k_platform = ELF_PLATFORM; 1927 if (k_platform) { 1928 size_t len = strlen(k_platform) + 1; 1929 if (STACK_GROWS_DOWN) { 1930 sp -= (len + n - 1) & ~(n - 1); 1931 u_platform = sp; 1932 /* FIXME - check return value of memcpy_to_target() for failure */ 1933 memcpy_to_target(sp, k_platform, len); 1934 } else { 1935 memcpy_to_target(sp, k_platform, len); 1936 u_platform = sp; 1937 sp += len + 1; 1938 } 1939 } 1940 1941 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1942 * the argv and envp pointers. 1943 */ 1944 if (STACK_GROWS_DOWN) { 1945 sp = QEMU_ALIGN_DOWN(sp, 16); 1946 } else { 1947 sp = QEMU_ALIGN_UP(sp, 16); 1948 } 1949 1950 /* 1951 * Generate 16 random bytes for userspace PRNG seeding. 1952 */ 1953 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 1954 if (STACK_GROWS_DOWN) { 1955 sp -= 16; 1956 u_rand_bytes = sp; 1957 /* FIXME - check return value of memcpy_to_target() for failure */ 1958 memcpy_to_target(sp, k_rand_bytes, 16); 1959 } else { 1960 memcpy_to_target(sp, k_rand_bytes, 16); 1961 u_rand_bytes = sp; 1962 sp += 16; 1963 } 1964 1965 size = (DLINFO_ITEMS + 1) * 2; 1966 if (k_platform) 1967 size += 2; 1968 #ifdef DLINFO_ARCH_ITEMS 1969 size += DLINFO_ARCH_ITEMS * 2; 1970 #endif 1971 #ifdef ELF_HWCAP2 1972 size += 2; 1973 #endif 1974 info->auxv_len = size * n; 1975 1976 size += envc + argc + 2; 1977 size += 1; /* argc itself */ 1978 size *= n; 1979 1980 /* Allocate space and finalize stack alignment for entry now. */ 1981 if (STACK_GROWS_DOWN) { 1982 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1983 sp = u_argc; 1984 } else { 1985 u_argc = sp; 1986 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1987 } 1988 1989 u_argv = u_argc + n; 1990 u_envp = u_argv + (argc + 1) * n; 1991 u_auxv = u_envp + (envc + 1) * n; 1992 info->saved_auxv = u_auxv; 1993 info->arg_start = u_argv; 1994 info->arg_end = u_argv + argc * n; 1995 1996 /* This is correct because Linux defines 1997 * elf_addr_t as Elf32_Off / Elf64_Off 1998 */ 1999 #define NEW_AUX_ENT(id, val) do { \ 2000 put_user_ual(id, u_auxv); u_auxv += n; \ 2001 put_user_ual(val, u_auxv); u_auxv += n; \ 2002 } while(0) 2003 2004 #ifdef ARCH_DLINFO 2005 /* 2006 * ARCH_DLINFO must come first so platform specific code can enforce 2007 * special alignment requirements on the AUXV if necessary (eg. PPC). 2008 */ 2009 ARCH_DLINFO; 2010 #endif 2011 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2012 * on info->auxv_len will trigger. 2013 */ 2014 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2015 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2016 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2017 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2018 /* Target doesn't support host page size alignment */ 2019 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2020 } else { 2021 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2022 qemu_host_page_size))); 2023 } 2024 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2025 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2026 NEW_AUX_ENT(AT_ENTRY, info->entry); 2027 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2028 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2029 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2030 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2031 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2032 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2033 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2034 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2035 2036 #ifdef ELF_HWCAP2 2037 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2038 #endif 2039 2040 if (u_platform) { 2041 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2042 } 2043 NEW_AUX_ENT (AT_NULL, 0); 2044 #undef NEW_AUX_ENT 2045 2046 /* Check that our initial calculation of the auxv length matches how much 2047 * we actually put into it. 2048 */ 2049 assert(info->auxv_len == u_auxv - info->saved_auxv); 2050 2051 put_user_ual(argc, u_argc); 2052 2053 p = info->arg_strings; 2054 for (i = 0; i < argc; ++i) { 2055 put_user_ual(p, u_argv); 2056 u_argv += n; 2057 p += target_strlen(p) + 1; 2058 } 2059 put_user_ual(0, u_argv); 2060 2061 p = info->env_strings; 2062 for (i = 0; i < envc; ++i) { 2063 put_user_ual(p, u_envp); 2064 u_envp += n; 2065 p += target_strlen(p) + 1; 2066 } 2067 put_user_ual(0, u_envp); 2068 2069 return sp; 2070 } 2071 2072 unsigned long init_guest_space(unsigned long host_start, 2073 unsigned long host_size, 2074 unsigned long guest_start, 2075 bool fixed) 2076 { 2077 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2078 unsigned long align = MAX(SHMLBA, qemu_host_page_size); 2079 unsigned long current_start, aligned_start; 2080 int flags; 2081 2082 assert(host_start || host_size); 2083 2084 /* If just a starting address is given, then just verify that 2085 * address. */ 2086 if (host_start && !host_size) { 2087 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2088 if (init_guest_commpage(host_start, host_size) != 1) { 2089 return (unsigned long)-1; 2090 } 2091 #endif 2092 return host_start; 2093 } 2094 2095 /* Setup the initial flags and start address. */ 2096 current_start = host_start & -align; 2097 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2098 if (fixed) { 2099 flags |= MAP_FIXED; 2100 } 2101 2102 /* Otherwise, a non-zero size region of memory needs to be mapped 2103 * and validated. */ 2104 2105 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2106 /* On 32-bit ARM, we need to map not just the usable memory, but 2107 * also the commpage. Try to find a suitable place by allocating 2108 * a big chunk for all of it. If host_start, then the naive 2109 * strategy probably does good enough. 2110 */ 2111 if (!host_start) { 2112 unsigned long guest_full_size, host_full_size, real_start; 2113 2114 guest_full_size = 2115 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 2116 host_full_size = guest_full_size - guest_start; 2117 real_start = (unsigned long) 2118 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 2119 if (real_start == (unsigned long)-1) { 2120 if (host_size < host_full_size - qemu_host_page_size) { 2121 /* We failed to map a continous segment, but we're 2122 * allowed to have a gap between the usable memory and 2123 * the commpage where other things can be mapped. 2124 * This sparseness gives us more flexibility to find 2125 * an address range. 2126 */ 2127 goto naive; 2128 } 2129 return (unsigned long)-1; 2130 } 2131 munmap((void *)real_start, host_full_size); 2132 if (real_start & (align - 1)) { 2133 /* The same thing again, but with extra 2134 * so that we can shift around alignment. 2135 */ 2136 unsigned long real_size = host_full_size + qemu_host_page_size; 2137 real_start = (unsigned long) 2138 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 2139 if (real_start == (unsigned long)-1) { 2140 if (host_size < host_full_size - qemu_host_page_size) { 2141 goto naive; 2142 } 2143 return (unsigned long)-1; 2144 } 2145 munmap((void *)real_start, real_size); 2146 real_start = ROUND_UP(real_start, align); 2147 } 2148 current_start = real_start; 2149 } 2150 naive: 2151 #endif 2152 2153 while (1) { 2154 unsigned long real_start, real_size, aligned_size; 2155 aligned_size = real_size = host_size; 2156 2157 /* Do not use mmap_find_vma here because that is limited to the 2158 * guest address space. We are going to make the 2159 * guest address space fit whatever we're given. 2160 */ 2161 real_start = (unsigned long) 2162 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2163 if (real_start == (unsigned long)-1) { 2164 return (unsigned long)-1; 2165 } 2166 2167 /* Check to see if the address is valid. */ 2168 if (host_start && real_start != current_start) { 2169 goto try_again; 2170 } 2171 2172 /* Ensure the address is properly aligned. */ 2173 if (real_start & (align - 1)) { 2174 /* Ideally, we adjust like 2175 * 2176 * pages: [ ][ ][ ][ ][ ] 2177 * old: [ real ] 2178 * [ aligned ] 2179 * new: [ real ] 2180 * [ aligned ] 2181 * 2182 * But if there is something else mapped right after it, 2183 * then obviously it won't have room to grow, and the 2184 * kernel will put the new larger real someplace else with 2185 * unknown alignment (if we made it to here, then 2186 * fixed=false). Which is why we grow real by a full page 2187 * size, instead of by part of one; so that even if we get 2188 * moved, we can still guarantee alignment. But this does 2189 * mean that there is a padding of < 1 page both before 2190 * and after the aligned range; the "after" could could 2191 * cause problems for ARM emulation where it could butt in 2192 * to where we need to put the commpage. 2193 */ 2194 munmap((void *)real_start, host_size); 2195 real_size = aligned_size + align; 2196 real_start = (unsigned long) 2197 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2198 if (real_start == (unsigned long)-1) { 2199 return (unsigned long)-1; 2200 } 2201 aligned_start = ROUND_UP(real_start, align); 2202 } else { 2203 aligned_start = real_start; 2204 } 2205 2206 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2207 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2208 int valid = init_guest_commpage(aligned_start - guest_start, 2209 aligned_size + guest_start); 2210 if (valid == -1) { 2211 munmap((void *)real_start, real_size); 2212 return (unsigned long)-1; 2213 } else if (valid == 0) { 2214 goto try_again; 2215 } 2216 #endif 2217 2218 /* If nothing has said `return -1` or `goto try_again` yet, 2219 * then the address we have is good. 2220 */ 2221 break; 2222 2223 try_again: 2224 /* That address didn't work. Unmap and try a different one. 2225 * The address the host picked because is typically right at 2226 * the top of the host address space and leaves the guest with 2227 * no usable address space. Resort to a linear search. We 2228 * already compensated for mmap_min_addr, so this should not 2229 * happen often. Probably means we got unlucky and host 2230 * address space randomization put a shared library somewhere 2231 * inconvenient. 2232 * 2233 * This is probably a good strategy if host_start, but is 2234 * probably a bad strategy if not, which means we got here 2235 * because of trouble with ARM commpage setup. 2236 */ 2237 munmap((void *)real_start, real_size); 2238 current_start += align; 2239 if (host_start == current_start) { 2240 /* Theoretically possible if host doesn't have any suitably 2241 * aligned areas. Normally the first mmap will fail. 2242 */ 2243 return (unsigned long)-1; 2244 } 2245 } 2246 2247 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2248 2249 return aligned_start; 2250 } 2251 2252 static void probe_guest_base(const char *image_name, 2253 abi_ulong loaddr, abi_ulong hiaddr) 2254 { 2255 /* Probe for a suitable guest base address, if the user has not set 2256 * it explicitly, and set guest_base appropriately. 2257 * In case of error we will print a suitable message and exit. 2258 */ 2259 const char *errmsg; 2260 if (!have_guest_base && !reserved_va) { 2261 unsigned long host_start, real_start, host_size; 2262 2263 /* Round addresses to page boundaries. */ 2264 loaddr &= qemu_host_page_mask; 2265 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2266 2267 if (loaddr < mmap_min_addr) { 2268 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2269 } else { 2270 host_start = loaddr; 2271 if (host_start != loaddr) { 2272 errmsg = "Address overflow loading ELF binary"; 2273 goto exit_errmsg; 2274 } 2275 } 2276 host_size = hiaddr - loaddr; 2277 2278 /* Setup the initial guest memory space with ranges gleaned from 2279 * the ELF image that is being loaded. 2280 */ 2281 real_start = init_guest_space(host_start, host_size, loaddr, false); 2282 if (real_start == (unsigned long)-1) { 2283 errmsg = "Unable to find space for application"; 2284 goto exit_errmsg; 2285 } 2286 guest_base = real_start - loaddr; 2287 2288 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2289 TARGET_ABI_FMT_lx " to 0x%lx\n", 2290 loaddr, real_start); 2291 } 2292 return; 2293 2294 exit_errmsg: 2295 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2296 exit(-1); 2297 } 2298 2299 2300 /* Load an ELF image into the address space. 2301 2302 IMAGE_NAME is the filename of the image, to use in error messages. 2303 IMAGE_FD is the open file descriptor for the image. 2304 2305 BPRM_BUF is a copy of the beginning of the file; this of course 2306 contains the elf file header at offset 0. It is assumed that this 2307 buffer is sufficiently aligned to present no problems to the host 2308 in accessing data at aligned offsets within the buffer. 2309 2310 On return: INFO values will be filled in, as necessary or available. */ 2311 2312 static void load_elf_image(const char *image_name, int image_fd, 2313 struct image_info *info, char **pinterp_name, 2314 char bprm_buf[BPRM_BUF_SIZE]) 2315 { 2316 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2317 struct elf_phdr *phdr; 2318 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2319 int i, retval; 2320 const char *errmsg; 2321 2322 /* First of all, some simple consistency checks */ 2323 errmsg = "Invalid ELF image for this architecture"; 2324 if (!elf_check_ident(ehdr)) { 2325 goto exit_errmsg; 2326 } 2327 bswap_ehdr(ehdr); 2328 if (!elf_check_ehdr(ehdr)) { 2329 goto exit_errmsg; 2330 } 2331 2332 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2333 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2334 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2335 } else { 2336 phdr = (struct elf_phdr *) alloca(i); 2337 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2338 if (retval != i) { 2339 goto exit_read; 2340 } 2341 } 2342 bswap_phdr(phdr, ehdr->e_phnum); 2343 2344 info->nsegs = 0; 2345 info->pt_dynamic_addr = 0; 2346 2347 mmap_lock(); 2348 2349 /* Find the maximum size of the image and allocate an appropriate 2350 amount of memory to handle that. */ 2351 loaddr = -1, hiaddr = 0; 2352 info->alignment = 0; 2353 for (i = 0; i < ehdr->e_phnum; ++i) { 2354 if (phdr[i].p_type == PT_LOAD) { 2355 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2356 if (a < loaddr) { 2357 loaddr = a; 2358 } 2359 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2360 if (a > hiaddr) { 2361 hiaddr = a; 2362 } 2363 ++info->nsegs; 2364 info->alignment |= phdr[i].p_align; 2365 } 2366 } 2367 2368 if (pinterp_name != NULL) { 2369 /* 2370 * This is the main executable. 2371 * 2372 * Reserve extra space for brk. 2373 * We hold on to this space while placing the interpreter 2374 * and the stack, lest they be placed immediately after 2375 * the data segment and block allocation from the brk. 2376 * 2377 * 16MB is chosen as "large enough" without being so large 2378 * as to allow the result to not fit with a 32-bit guest on 2379 * a 32-bit host. 2380 */ 2381 info->reserve_brk = 16 * MiB; 2382 hiaddr += info->reserve_brk; 2383 2384 if (ehdr->e_type == ET_EXEC) { 2385 /* 2386 * Make sure that the low address does not conflict with 2387 * MMAP_MIN_ADDR or the QEMU application itself. 2388 */ 2389 probe_guest_base(image_name, loaddr, hiaddr); 2390 } 2391 } 2392 2393 /* 2394 * Reserve address space for all of this. 2395 * 2396 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2397 * exactly the address range that is required. 2398 * 2399 * Otherwise this is ET_DYN, and we are searching for a location 2400 * that can hold the memory space required. If the image is 2401 * pre-linked, LOADDR will be non-zero, and the kernel should 2402 * honor that address if it happens to be free. 2403 * 2404 * In both cases, we will overwrite pages in this range with mappings 2405 * from the executable. 2406 */ 2407 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2408 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2409 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2410 -1, 0); 2411 if (load_addr == -1) { 2412 goto exit_perror; 2413 } 2414 load_bias = load_addr - loaddr; 2415 2416 if (elf_is_fdpic(ehdr)) { 2417 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2418 g_malloc(sizeof(*loadsegs) * info->nsegs); 2419 2420 for (i = 0; i < ehdr->e_phnum; ++i) { 2421 switch (phdr[i].p_type) { 2422 case PT_DYNAMIC: 2423 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2424 break; 2425 case PT_LOAD: 2426 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2427 loadsegs->p_vaddr = phdr[i].p_vaddr; 2428 loadsegs->p_memsz = phdr[i].p_memsz; 2429 ++loadsegs; 2430 break; 2431 } 2432 } 2433 } 2434 2435 info->load_bias = load_bias; 2436 info->code_offset = load_bias; 2437 info->data_offset = load_bias; 2438 info->load_addr = load_addr; 2439 info->entry = ehdr->e_entry + load_bias; 2440 info->start_code = -1; 2441 info->end_code = 0; 2442 info->start_data = -1; 2443 info->end_data = 0; 2444 info->brk = 0; 2445 info->elf_flags = ehdr->e_flags; 2446 2447 for (i = 0; i < ehdr->e_phnum; i++) { 2448 struct elf_phdr *eppnt = phdr + i; 2449 if (eppnt->p_type == PT_LOAD) { 2450 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2451 int elf_prot = 0; 2452 2453 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2454 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2455 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2456 2457 vaddr = load_bias + eppnt->p_vaddr; 2458 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2459 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2460 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2461 2462 /* 2463 * Some segments may be completely empty without any backing file 2464 * segment, in that case just let zero_bss allocate an empty buffer 2465 * for it. 2466 */ 2467 if (eppnt->p_filesz != 0) { 2468 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2469 MAP_PRIVATE | MAP_FIXED, 2470 image_fd, eppnt->p_offset - vaddr_po); 2471 2472 if (error == -1) { 2473 goto exit_perror; 2474 } 2475 } 2476 2477 vaddr_ef = vaddr + eppnt->p_filesz; 2478 vaddr_em = vaddr + eppnt->p_memsz; 2479 2480 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2481 if (vaddr_ef < vaddr_em) { 2482 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2483 } 2484 2485 /* Find the full program boundaries. */ 2486 if (elf_prot & PROT_EXEC) { 2487 if (vaddr < info->start_code) { 2488 info->start_code = vaddr; 2489 } 2490 if (vaddr_ef > info->end_code) { 2491 info->end_code = vaddr_ef; 2492 } 2493 } 2494 if (elf_prot & PROT_WRITE) { 2495 if (vaddr < info->start_data) { 2496 info->start_data = vaddr; 2497 } 2498 if (vaddr_ef > info->end_data) { 2499 info->end_data = vaddr_ef; 2500 } 2501 if (vaddr_em > info->brk) { 2502 info->brk = vaddr_em; 2503 } 2504 } 2505 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2506 char *interp_name; 2507 2508 if (*pinterp_name) { 2509 errmsg = "Multiple PT_INTERP entries"; 2510 goto exit_errmsg; 2511 } 2512 interp_name = malloc(eppnt->p_filesz); 2513 if (!interp_name) { 2514 goto exit_perror; 2515 } 2516 2517 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2518 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2519 eppnt->p_filesz); 2520 } else { 2521 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2522 eppnt->p_offset); 2523 if (retval != eppnt->p_filesz) { 2524 goto exit_perror; 2525 } 2526 } 2527 if (interp_name[eppnt->p_filesz - 1] != 0) { 2528 errmsg = "Invalid PT_INTERP entry"; 2529 goto exit_errmsg; 2530 } 2531 *pinterp_name = interp_name; 2532 #ifdef TARGET_MIPS 2533 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2534 Mips_elf_abiflags_v0 abiflags; 2535 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2536 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2537 goto exit_errmsg; 2538 } 2539 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2540 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2541 sizeof(Mips_elf_abiflags_v0)); 2542 } else { 2543 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2544 eppnt->p_offset); 2545 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2546 goto exit_perror; 2547 } 2548 } 2549 bswap_mips_abiflags(&abiflags); 2550 info->fp_abi = abiflags.fp_abi; 2551 #endif 2552 } 2553 } 2554 2555 if (info->end_data == 0) { 2556 info->start_data = info->end_code; 2557 info->end_data = info->end_code; 2558 info->brk = info->end_code; 2559 } 2560 2561 if (qemu_log_enabled()) { 2562 load_symbols(ehdr, image_fd, load_bias); 2563 } 2564 2565 mmap_unlock(); 2566 2567 close(image_fd); 2568 return; 2569 2570 exit_read: 2571 if (retval >= 0) { 2572 errmsg = "Incomplete read of file header"; 2573 goto exit_errmsg; 2574 } 2575 exit_perror: 2576 errmsg = strerror(errno); 2577 exit_errmsg: 2578 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2579 exit(-1); 2580 } 2581 2582 static void load_elf_interp(const char *filename, struct image_info *info, 2583 char bprm_buf[BPRM_BUF_SIZE]) 2584 { 2585 int fd, retval; 2586 2587 fd = open(path(filename), O_RDONLY); 2588 if (fd < 0) { 2589 goto exit_perror; 2590 } 2591 2592 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2593 if (retval < 0) { 2594 goto exit_perror; 2595 } 2596 if (retval < BPRM_BUF_SIZE) { 2597 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2598 } 2599 2600 load_elf_image(filename, fd, info, NULL, bprm_buf); 2601 return; 2602 2603 exit_perror: 2604 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2605 exit(-1); 2606 } 2607 2608 static int symfind(const void *s0, const void *s1) 2609 { 2610 target_ulong addr = *(target_ulong *)s0; 2611 struct elf_sym *sym = (struct elf_sym *)s1; 2612 int result = 0; 2613 if (addr < sym->st_value) { 2614 result = -1; 2615 } else if (addr >= sym->st_value + sym->st_size) { 2616 result = 1; 2617 } 2618 return result; 2619 } 2620 2621 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2622 { 2623 #if ELF_CLASS == ELFCLASS32 2624 struct elf_sym *syms = s->disas_symtab.elf32; 2625 #else 2626 struct elf_sym *syms = s->disas_symtab.elf64; 2627 #endif 2628 2629 // binary search 2630 struct elf_sym *sym; 2631 2632 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2633 if (sym != NULL) { 2634 return s->disas_strtab + sym->st_name; 2635 } 2636 2637 return ""; 2638 } 2639 2640 /* FIXME: This should use elf_ops.h */ 2641 static int symcmp(const void *s0, const void *s1) 2642 { 2643 struct elf_sym *sym0 = (struct elf_sym *)s0; 2644 struct elf_sym *sym1 = (struct elf_sym *)s1; 2645 return (sym0->st_value < sym1->st_value) 2646 ? -1 2647 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2648 } 2649 2650 /* Best attempt to load symbols from this ELF object. */ 2651 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2652 { 2653 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2654 uint64_t segsz; 2655 struct elf_shdr *shdr; 2656 char *strings = NULL; 2657 struct syminfo *s = NULL; 2658 struct elf_sym *new_syms, *syms = NULL; 2659 2660 shnum = hdr->e_shnum; 2661 i = shnum * sizeof(struct elf_shdr); 2662 shdr = (struct elf_shdr *)alloca(i); 2663 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2664 return; 2665 } 2666 2667 bswap_shdr(shdr, shnum); 2668 for (i = 0; i < shnum; ++i) { 2669 if (shdr[i].sh_type == SHT_SYMTAB) { 2670 sym_idx = i; 2671 str_idx = shdr[i].sh_link; 2672 goto found; 2673 } 2674 } 2675 2676 /* There will be no symbol table if the file was stripped. */ 2677 return; 2678 2679 found: 2680 /* Now know where the strtab and symtab are. Snarf them. */ 2681 s = g_try_new(struct syminfo, 1); 2682 if (!s) { 2683 goto give_up; 2684 } 2685 2686 segsz = shdr[str_idx].sh_size; 2687 s->disas_strtab = strings = g_try_malloc(segsz); 2688 if (!strings || 2689 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2690 goto give_up; 2691 } 2692 2693 segsz = shdr[sym_idx].sh_size; 2694 syms = g_try_malloc(segsz); 2695 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2696 goto give_up; 2697 } 2698 2699 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2700 /* Implausibly large symbol table: give up rather than ploughing 2701 * on with the number of symbols calculation overflowing 2702 */ 2703 goto give_up; 2704 } 2705 nsyms = segsz / sizeof(struct elf_sym); 2706 for (i = 0; i < nsyms; ) { 2707 bswap_sym(syms + i); 2708 /* Throw away entries which we do not need. */ 2709 if (syms[i].st_shndx == SHN_UNDEF 2710 || syms[i].st_shndx >= SHN_LORESERVE 2711 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2712 if (i < --nsyms) { 2713 syms[i] = syms[nsyms]; 2714 } 2715 } else { 2716 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2717 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2718 syms[i].st_value &= ~(target_ulong)1; 2719 #endif 2720 syms[i].st_value += load_bias; 2721 i++; 2722 } 2723 } 2724 2725 /* No "useful" symbol. */ 2726 if (nsyms == 0) { 2727 goto give_up; 2728 } 2729 2730 /* Attempt to free the storage associated with the local symbols 2731 that we threw away. Whether or not this has any effect on the 2732 memory allocation depends on the malloc implementation and how 2733 many symbols we managed to discard. */ 2734 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2735 if (new_syms == NULL) { 2736 goto give_up; 2737 } 2738 syms = new_syms; 2739 2740 qsort(syms, nsyms, sizeof(*syms), symcmp); 2741 2742 s->disas_num_syms = nsyms; 2743 #if ELF_CLASS == ELFCLASS32 2744 s->disas_symtab.elf32 = syms; 2745 #else 2746 s->disas_symtab.elf64 = syms; 2747 #endif 2748 s->lookup_symbol = lookup_symbolxx; 2749 s->next = syminfos; 2750 syminfos = s; 2751 2752 return; 2753 2754 give_up: 2755 g_free(s); 2756 g_free(strings); 2757 g_free(syms); 2758 } 2759 2760 uint32_t get_elf_eflags(int fd) 2761 { 2762 struct elfhdr ehdr; 2763 off_t offset; 2764 int ret; 2765 2766 /* Read ELF header */ 2767 offset = lseek(fd, 0, SEEK_SET); 2768 if (offset == (off_t) -1) { 2769 return 0; 2770 } 2771 ret = read(fd, &ehdr, sizeof(ehdr)); 2772 if (ret < sizeof(ehdr)) { 2773 return 0; 2774 } 2775 offset = lseek(fd, offset, SEEK_SET); 2776 if (offset == (off_t) -1) { 2777 return 0; 2778 } 2779 2780 /* Check ELF signature */ 2781 if (!elf_check_ident(&ehdr)) { 2782 return 0; 2783 } 2784 2785 /* check header */ 2786 bswap_ehdr(&ehdr); 2787 if (!elf_check_ehdr(&ehdr)) { 2788 return 0; 2789 } 2790 2791 /* return architecture id */ 2792 return ehdr.e_flags; 2793 } 2794 2795 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2796 { 2797 struct image_info interp_info; 2798 struct elfhdr elf_ex; 2799 char *elf_interpreter = NULL; 2800 char *scratch; 2801 2802 memset(&interp_info, 0, sizeof(interp_info)); 2803 #ifdef TARGET_MIPS 2804 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 2805 #endif 2806 2807 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2808 2809 load_elf_image(bprm->filename, bprm->fd, info, 2810 &elf_interpreter, bprm->buf); 2811 2812 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2813 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2814 when we load the interpreter. */ 2815 elf_ex = *(struct elfhdr *)bprm->buf; 2816 2817 /* Do this so that we can load the interpreter, if need be. We will 2818 change some of these later */ 2819 bprm->p = setup_arg_pages(bprm, info); 2820 2821 scratch = g_new0(char, TARGET_PAGE_SIZE); 2822 if (STACK_GROWS_DOWN) { 2823 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2824 bprm->p, info->stack_limit); 2825 info->file_string = bprm->p; 2826 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2827 bprm->p, info->stack_limit); 2828 info->env_strings = bprm->p; 2829 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2830 bprm->p, info->stack_limit); 2831 info->arg_strings = bprm->p; 2832 } else { 2833 info->arg_strings = bprm->p; 2834 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2835 bprm->p, info->stack_limit); 2836 info->env_strings = bprm->p; 2837 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2838 bprm->p, info->stack_limit); 2839 info->file_string = bprm->p; 2840 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2841 bprm->p, info->stack_limit); 2842 } 2843 2844 g_free(scratch); 2845 2846 if (!bprm->p) { 2847 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2848 exit(-1); 2849 } 2850 2851 if (elf_interpreter) { 2852 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2853 2854 /* If the program interpreter is one of these two, then assume 2855 an iBCS2 image. Otherwise assume a native linux image. */ 2856 2857 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2858 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2859 info->personality = PER_SVR4; 2860 2861 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2862 and some applications "depend" upon this behavior. Since 2863 we do not have the power to recompile these, we emulate 2864 the SVr4 behavior. Sigh. */ 2865 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2866 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2867 } 2868 #ifdef TARGET_MIPS 2869 info->interp_fp_abi = interp_info.fp_abi; 2870 #endif 2871 } 2872 2873 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2874 info, (elf_interpreter ? &interp_info : NULL)); 2875 info->start_stack = bprm->p; 2876 2877 /* If we have an interpreter, set that as the program's entry point. 2878 Copy the load_bias as well, to help PPC64 interpret the entry 2879 point as a function descriptor. Do this after creating elf tables 2880 so that we copy the original program entry point into the AUXV. */ 2881 if (elf_interpreter) { 2882 info->load_bias = interp_info.load_bias; 2883 info->entry = interp_info.entry; 2884 free(elf_interpreter); 2885 } 2886 2887 #ifdef USE_ELF_CORE_DUMP 2888 bprm->core_dump = &elf_core_dump; 2889 #endif 2890 2891 /* 2892 * If we reserved extra space for brk, release it now. 2893 * The implementation of do_brk in syscalls.c expects to be able 2894 * to mmap pages in this space. 2895 */ 2896 if (info->reserve_brk) { 2897 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 2898 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 2899 target_munmap(start_brk, end_brk - start_brk); 2900 } 2901 2902 return 0; 2903 } 2904 2905 #ifdef USE_ELF_CORE_DUMP 2906 /* 2907 * Definitions to generate Intel SVR4-like core files. 2908 * These mostly have the same names as the SVR4 types with "target_elf_" 2909 * tacked on the front to prevent clashes with linux definitions, 2910 * and the typedef forms have been avoided. This is mostly like 2911 * the SVR4 structure, but more Linuxy, with things that Linux does 2912 * not support and which gdb doesn't really use excluded. 2913 * 2914 * Fields we don't dump (their contents is zero) in linux-user qemu 2915 * are marked with XXX. 2916 * 2917 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2918 * 2919 * Porting ELF coredump for target is (quite) simple process. First you 2920 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2921 * the target resides): 2922 * 2923 * #define USE_ELF_CORE_DUMP 2924 * 2925 * Next you define type of register set used for dumping. ELF specification 2926 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2927 * 2928 * typedef <target_regtype> target_elf_greg_t; 2929 * #define ELF_NREG <number of registers> 2930 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2931 * 2932 * Last step is to implement target specific function that copies registers 2933 * from given cpu into just specified register set. Prototype is: 2934 * 2935 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2936 * const CPUArchState *env); 2937 * 2938 * Parameters: 2939 * regs - copy register values into here (allocated and zeroed by caller) 2940 * env - copy registers from here 2941 * 2942 * Example for ARM target is provided in this file. 2943 */ 2944 2945 /* An ELF note in memory */ 2946 struct memelfnote { 2947 const char *name; 2948 size_t namesz; 2949 size_t namesz_rounded; 2950 int type; 2951 size_t datasz; 2952 size_t datasz_rounded; 2953 void *data; 2954 size_t notesz; 2955 }; 2956 2957 struct target_elf_siginfo { 2958 abi_int si_signo; /* signal number */ 2959 abi_int si_code; /* extra code */ 2960 abi_int si_errno; /* errno */ 2961 }; 2962 2963 struct target_elf_prstatus { 2964 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2965 abi_short pr_cursig; /* Current signal */ 2966 abi_ulong pr_sigpend; /* XXX */ 2967 abi_ulong pr_sighold; /* XXX */ 2968 target_pid_t pr_pid; 2969 target_pid_t pr_ppid; 2970 target_pid_t pr_pgrp; 2971 target_pid_t pr_sid; 2972 struct target_timeval pr_utime; /* XXX User time */ 2973 struct target_timeval pr_stime; /* XXX System time */ 2974 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2975 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2976 target_elf_gregset_t pr_reg; /* GP registers */ 2977 abi_int pr_fpvalid; /* XXX */ 2978 }; 2979 2980 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2981 2982 struct target_elf_prpsinfo { 2983 char pr_state; /* numeric process state */ 2984 char pr_sname; /* char for pr_state */ 2985 char pr_zomb; /* zombie */ 2986 char pr_nice; /* nice val */ 2987 abi_ulong pr_flag; /* flags */ 2988 target_uid_t pr_uid; 2989 target_gid_t pr_gid; 2990 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2991 /* Lots missing */ 2992 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 2993 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2994 }; 2995 2996 /* Here is the structure in which status of each thread is captured. */ 2997 struct elf_thread_status { 2998 QTAILQ_ENTRY(elf_thread_status) ets_link; 2999 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3000 #if 0 3001 elf_fpregset_t fpu; /* NT_PRFPREG */ 3002 struct task_struct *thread; 3003 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3004 #endif 3005 struct memelfnote notes[1]; 3006 int num_notes; 3007 }; 3008 3009 struct elf_note_info { 3010 struct memelfnote *notes; 3011 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3012 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3013 3014 QTAILQ_HEAD(, elf_thread_status) thread_list; 3015 #if 0 3016 /* 3017 * Current version of ELF coredump doesn't support 3018 * dumping fp regs etc. 3019 */ 3020 elf_fpregset_t *fpu; 3021 elf_fpxregset_t *xfpu; 3022 int thread_status_size; 3023 #endif 3024 int notes_size; 3025 int numnote; 3026 }; 3027 3028 struct vm_area_struct { 3029 target_ulong vma_start; /* start vaddr of memory region */ 3030 target_ulong vma_end; /* end vaddr of memory region */ 3031 abi_ulong vma_flags; /* protection etc. flags for the region */ 3032 QTAILQ_ENTRY(vm_area_struct) vma_link; 3033 }; 3034 3035 struct mm_struct { 3036 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3037 int mm_count; /* number of mappings */ 3038 }; 3039 3040 static struct mm_struct *vma_init(void); 3041 static void vma_delete(struct mm_struct *); 3042 static int vma_add_mapping(struct mm_struct *, target_ulong, 3043 target_ulong, abi_ulong); 3044 static int vma_get_mapping_count(const struct mm_struct *); 3045 static struct vm_area_struct *vma_first(const struct mm_struct *); 3046 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3047 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3048 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3049 unsigned long flags); 3050 3051 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3052 static void fill_note(struct memelfnote *, const char *, int, 3053 unsigned int, void *); 3054 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3055 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3056 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3057 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3058 static size_t note_size(const struct memelfnote *); 3059 static void free_note_info(struct elf_note_info *); 3060 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3061 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3062 static int core_dump_filename(const TaskState *, char *, size_t); 3063 3064 static int dump_write(int, const void *, size_t); 3065 static int write_note(struct memelfnote *, int); 3066 static int write_note_info(struct elf_note_info *, int); 3067 3068 #ifdef BSWAP_NEEDED 3069 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3070 { 3071 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3072 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3073 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3074 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3075 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3076 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3077 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3078 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3079 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3080 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3081 /* cpu times are not filled, so we skip them */ 3082 /* regs should be in correct format already */ 3083 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3084 } 3085 3086 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3087 { 3088 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3089 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3090 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3091 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3092 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3093 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3094 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3095 } 3096 3097 static void bswap_note(struct elf_note *en) 3098 { 3099 bswap32s(&en->n_namesz); 3100 bswap32s(&en->n_descsz); 3101 bswap32s(&en->n_type); 3102 } 3103 #else 3104 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3105 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3106 static inline void bswap_note(struct elf_note *en) { } 3107 #endif /* BSWAP_NEEDED */ 3108 3109 /* 3110 * Minimal support for linux memory regions. These are needed 3111 * when we are finding out what memory exactly belongs to 3112 * emulated process. No locks needed here, as long as 3113 * thread that received the signal is stopped. 3114 */ 3115 3116 static struct mm_struct *vma_init(void) 3117 { 3118 struct mm_struct *mm; 3119 3120 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3121 return (NULL); 3122 3123 mm->mm_count = 0; 3124 QTAILQ_INIT(&mm->mm_mmap); 3125 3126 return (mm); 3127 } 3128 3129 static void vma_delete(struct mm_struct *mm) 3130 { 3131 struct vm_area_struct *vma; 3132 3133 while ((vma = vma_first(mm)) != NULL) { 3134 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3135 g_free(vma); 3136 } 3137 g_free(mm); 3138 } 3139 3140 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3141 target_ulong end, abi_ulong flags) 3142 { 3143 struct vm_area_struct *vma; 3144 3145 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3146 return (-1); 3147 3148 vma->vma_start = start; 3149 vma->vma_end = end; 3150 vma->vma_flags = flags; 3151 3152 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3153 mm->mm_count++; 3154 3155 return (0); 3156 } 3157 3158 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3159 { 3160 return (QTAILQ_FIRST(&mm->mm_mmap)); 3161 } 3162 3163 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3164 { 3165 return (QTAILQ_NEXT(vma, vma_link)); 3166 } 3167 3168 static int vma_get_mapping_count(const struct mm_struct *mm) 3169 { 3170 return (mm->mm_count); 3171 } 3172 3173 /* 3174 * Calculate file (dump) size of given memory region. 3175 */ 3176 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3177 { 3178 /* if we cannot even read the first page, skip it */ 3179 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3180 return (0); 3181 3182 /* 3183 * Usually we don't dump executable pages as they contain 3184 * non-writable code that debugger can read directly from 3185 * target library etc. However, thread stacks are marked 3186 * also executable so we read in first page of given region 3187 * and check whether it contains elf header. If there is 3188 * no elf header, we dump it. 3189 */ 3190 if (vma->vma_flags & PROT_EXEC) { 3191 char page[TARGET_PAGE_SIZE]; 3192 3193 copy_from_user(page, vma->vma_start, sizeof (page)); 3194 if ((page[EI_MAG0] == ELFMAG0) && 3195 (page[EI_MAG1] == ELFMAG1) && 3196 (page[EI_MAG2] == ELFMAG2) && 3197 (page[EI_MAG3] == ELFMAG3)) { 3198 /* 3199 * Mappings are possibly from ELF binary. Don't dump 3200 * them. 3201 */ 3202 return (0); 3203 } 3204 } 3205 3206 return (vma->vma_end - vma->vma_start); 3207 } 3208 3209 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3210 unsigned long flags) 3211 { 3212 struct mm_struct *mm = (struct mm_struct *)priv; 3213 3214 vma_add_mapping(mm, start, end, flags); 3215 return (0); 3216 } 3217 3218 static void fill_note(struct memelfnote *note, const char *name, int type, 3219 unsigned int sz, void *data) 3220 { 3221 unsigned int namesz; 3222 3223 namesz = strlen(name) + 1; 3224 note->name = name; 3225 note->namesz = namesz; 3226 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3227 note->type = type; 3228 note->datasz = sz; 3229 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3230 3231 note->data = data; 3232 3233 /* 3234 * We calculate rounded up note size here as specified by 3235 * ELF document. 3236 */ 3237 note->notesz = sizeof (struct elf_note) + 3238 note->namesz_rounded + note->datasz_rounded; 3239 } 3240 3241 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3242 uint32_t flags) 3243 { 3244 (void) memset(elf, 0, sizeof(*elf)); 3245 3246 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3247 elf->e_ident[EI_CLASS] = ELF_CLASS; 3248 elf->e_ident[EI_DATA] = ELF_DATA; 3249 elf->e_ident[EI_VERSION] = EV_CURRENT; 3250 elf->e_ident[EI_OSABI] = ELF_OSABI; 3251 3252 elf->e_type = ET_CORE; 3253 elf->e_machine = machine; 3254 elf->e_version = EV_CURRENT; 3255 elf->e_phoff = sizeof(struct elfhdr); 3256 elf->e_flags = flags; 3257 elf->e_ehsize = sizeof(struct elfhdr); 3258 elf->e_phentsize = sizeof(struct elf_phdr); 3259 elf->e_phnum = segs; 3260 3261 bswap_ehdr(elf); 3262 } 3263 3264 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3265 { 3266 phdr->p_type = PT_NOTE; 3267 phdr->p_offset = offset; 3268 phdr->p_vaddr = 0; 3269 phdr->p_paddr = 0; 3270 phdr->p_filesz = sz; 3271 phdr->p_memsz = 0; 3272 phdr->p_flags = 0; 3273 phdr->p_align = 0; 3274 3275 bswap_phdr(phdr, 1); 3276 } 3277 3278 static size_t note_size(const struct memelfnote *note) 3279 { 3280 return (note->notesz); 3281 } 3282 3283 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3284 const TaskState *ts, int signr) 3285 { 3286 (void) memset(prstatus, 0, sizeof (*prstatus)); 3287 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3288 prstatus->pr_pid = ts->ts_tid; 3289 prstatus->pr_ppid = getppid(); 3290 prstatus->pr_pgrp = getpgrp(); 3291 prstatus->pr_sid = getsid(0); 3292 3293 bswap_prstatus(prstatus); 3294 } 3295 3296 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3297 { 3298 char *base_filename; 3299 unsigned int i, len; 3300 3301 (void) memset(psinfo, 0, sizeof (*psinfo)); 3302 3303 len = ts->info->arg_end - ts->info->arg_start; 3304 if (len >= ELF_PRARGSZ) 3305 len = ELF_PRARGSZ - 1; 3306 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3307 return -EFAULT; 3308 for (i = 0; i < len; i++) 3309 if (psinfo->pr_psargs[i] == 0) 3310 psinfo->pr_psargs[i] = ' '; 3311 psinfo->pr_psargs[len] = 0; 3312 3313 psinfo->pr_pid = getpid(); 3314 psinfo->pr_ppid = getppid(); 3315 psinfo->pr_pgrp = getpgrp(); 3316 psinfo->pr_sid = getsid(0); 3317 psinfo->pr_uid = getuid(); 3318 psinfo->pr_gid = getgid(); 3319 3320 base_filename = g_path_get_basename(ts->bprm->filename); 3321 /* 3322 * Using strncpy here is fine: at max-length, 3323 * this field is not NUL-terminated. 3324 */ 3325 (void) strncpy(psinfo->pr_fname, base_filename, 3326 sizeof(psinfo->pr_fname)); 3327 3328 g_free(base_filename); 3329 bswap_psinfo(psinfo); 3330 return (0); 3331 } 3332 3333 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3334 { 3335 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3336 elf_addr_t orig_auxv = auxv; 3337 void *ptr; 3338 int len = ts->info->auxv_len; 3339 3340 /* 3341 * Auxiliary vector is stored in target process stack. It contains 3342 * {type, value} pairs that we need to dump into note. This is not 3343 * strictly necessary but we do it here for sake of completeness. 3344 */ 3345 3346 /* read in whole auxv vector and copy it to memelfnote */ 3347 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3348 if (ptr != NULL) { 3349 fill_note(note, "CORE", NT_AUXV, len, ptr); 3350 unlock_user(ptr, auxv, len); 3351 } 3352 } 3353 3354 /* 3355 * Constructs name of coredump file. We have following convention 3356 * for the name: 3357 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3358 * 3359 * Returns 0 in case of success, -1 otherwise (errno is set). 3360 */ 3361 static int core_dump_filename(const TaskState *ts, char *buf, 3362 size_t bufsize) 3363 { 3364 char timestamp[64]; 3365 char *base_filename = NULL; 3366 struct timeval tv; 3367 struct tm tm; 3368 3369 assert(bufsize >= PATH_MAX); 3370 3371 if (gettimeofday(&tv, NULL) < 0) { 3372 (void) fprintf(stderr, "unable to get current timestamp: %s", 3373 strerror(errno)); 3374 return (-1); 3375 } 3376 3377 base_filename = g_path_get_basename(ts->bprm->filename); 3378 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3379 localtime_r(&tv.tv_sec, &tm)); 3380 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3381 base_filename, timestamp, (int)getpid()); 3382 g_free(base_filename); 3383 3384 return (0); 3385 } 3386 3387 static int dump_write(int fd, const void *ptr, size_t size) 3388 { 3389 const char *bufp = (const char *)ptr; 3390 ssize_t bytes_written, bytes_left; 3391 struct rlimit dumpsize; 3392 off_t pos; 3393 3394 bytes_written = 0; 3395 getrlimit(RLIMIT_CORE, &dumpsize); 3396 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3397 if (errno == ESPIPE) { /* not a seekable stream */ 3398 bytes_left = size; 3399 } else { 3400 return pos; 3401 } 3402 } else { 3403 if (dumpsize.rlim_cur <= pos) { 3404 return -1; 3405 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3406 bytes_left = size; 3407 } else { 3408 size_t limit_left=dumpsize.rlim_cur - pos; 3409 bytes_left = limit_left >= size ? size : limit_left ; 3410 } 3411 } 3412 3413 /* 3414 * In normal conditions, single write(2) should do but 3415 * in case of socket etc. this mechanism is more portable. 3416 */ 3417 do { 3418 bytes_written = write(fd, bufp, bytes_left); 3419 if (bytes_written < 0) { 3420 if (errno == EINTR) 3421 continue; 3422 return (-1); 3423 } else if (bytes_written == 0) { /* eof */ 3424 return (-1); 3425 } 3426 bufp += bytes_written; 3427 bytes_left -= bytes_written; 3428 } while (bytes_left > 0); 3429 3430 return (0); 3431 } 3432 3433 static int write_note(struct memelfnote *men, int fd) 3434 { 3435 struct elf_note en; 3436 3437 en.n_namesz = men->namesz; 3438 en.n_type = men->type; 3439 en.n_descsz = men->datasz; 3440 3441 bswap_note(&en); 3442 3443 if (dump_write(fd, &en, sizeof(en)) != 0) 3444 return (-1); 3445 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3446 return (-1); 3447 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3448 return (-1); 3449 3450 return (0); 3451 } 3452 3453 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3454 { 3455 CPUState *cpu = env_cpu((CPUArchState *)env); 3456 TaskState *ts = (TaskState *)cpu->opaque; 3457 struct elf_thread_status *ets; 3458 3459 ets = g_malloc0(sizeof (*ets)); 3460 ets->num_notes = 1; /* only prstatus is dumped */ 3461 fill_prstatus(&ets->prstatus, ts, 0); 3462 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3463 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3464 &ets->prstatus); 3465 3466 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3467 3468 info->notes_size += note_size(&ets->notes[0]); 3469 } 3470 3471 static void init_note_info(struct elf_note_info *info) 3472 { 3473 /* Initialize the elf_note_info structure so that it is at 3474 * least safe to call free_note_info() on it. Must be 3475 * called before calling fill_note_info(). 3476 */ 3477 memset(info, 0, sizeof (*info)); 3478 QTAILQ_INIT(&info->thread_list); 3479 } 3480 3481 static int fill_note_info(struct elf_note_info *info, 3482 long signr, const CPUArchState *env) 3483 { 3484 #define NUMNOTES 3 3485 CPUState *cpu = env_cpu((CPUArchState *)env); 3486 TaskState *ts = (TaskState *)cpu->opaque; 3487 int i; 3488 3489 info->notes = g_new0(struct memelfnote, NUMNOTES); 3490 if (info->notes == NULL) 3491 return (-ENOMEM); 3492 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3493 if (info->prstatus == NULL) 3494 return (-ENOMEM); 3495 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3496 if (info->prstatus == NULL) 3497 return (-ENOMEM); 3498 3499 /* 3500 * First fill in status (and registers) of current thread 3501 * including process info & aux vector. 3502 */ 3503 fill_prstatus(info->prstatus, ts, signr); 3504 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3505 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3506 sizeof (*info->prstatus), info->prstatus); 3507 fill_psinfo(info->psinfo, ts); 3508 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3509 sizeof (*info->psinfo), info->psinfo); 3510 fill_auxv_note(&info->notes[2], ts); 3511 info->numnote = 3; 3512 3513 info->notes_size = 0; 3514 for (i = 0; i < info->numnote; i++) 3515 info->notes_size += note_size(&info->notes[i]); 3516 3517 /* read and fill status of all threads */ 3518 cpu_list_lock(); 3519 CPU_FOREACH(cpu) { 3520 if (cpu == thread_cpu) { 3521 continue; 3522 } 3523 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3524 } 3525 cpu_list_unlock(); 3526 3527 return (0); 3528 } 3529 3530 static void free_note_info(struct elf_note_info *info) 3531 { 3532 struct elf_thread_status *ets; 3533 3534 while (!QTAILQ_EMPTY(&info->thread_list)) { 3535 ets = QTAILQ_FIRST(&info->thread_list); 3536 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3537 g_free(ets); 3538 } 3539 3540 g_free(info->prstatus); 3541 g_free(info->psinfo); 3542 g_free(info->notes); 3543 } 3544 3545 static int write_note_info(struct elf_note_info *info, int fd) 3546 { 3547 struct elf_thread_status *ets; 3548 int i, error = 0; 3549 3550 /* write prstatus, psinfo and auxv for current thread */ 3551 for (i = 0; i < info->numnote; i++) 3552 if ((error = write_note(&info->notes[i], fd)) != 0) 3553 return (error); 3554 3555 /* write prstatus for each thread */ 3556 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3557 if ((error = write_note(&ets->notes[0], fd)) != 0) 3558 return (error); 3559 } 3560 3561 return (0); 3562 } 3563 3564 /* 3565 * Write out ELF coredump. 3566 * 3567 * See documentation of ELF object file format in: 3568 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3569 * 3570 * Coredump format in linux is following: 3571 * 3572 * 0 +----------------------+ \ 3573 * | ELF header | ET_CORE | 3574 * +----------------------+ | 3575 * | ELF program headers | |--- headers 3576 * | - NOTE section | | 3577 * | - PT_LOAD sections | | 3578 * +----------------------+ / 3579 * | NOTEs: | 3580 * | - NT_PRSTATUS | 3581 * | - NT_PRSINFO | 3582 * | - NT_AUXV | 3583 * +----------------------+ <-- aligned to target page 3584 * | Process memory dump | 3585 * : : 3586 * . . 3587 * : : 3588 * | | 3589 * +----------------------+ 3590 * 3591 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3592 * NT_PRSINFO -> struct elf_prpsinfo 3593 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3594 * 3595 * Format follows System V format as close as possible. Current 3596 * version limitations are as follows: 3597 * - no floating point registers are dumped 3598 * 3599 * Function returns 0 in case of success, negative errno otherwise. 3600 * 3601 * TODO: make this work also during runtime: it should be 3602 * possible to force coredump from running process and then 3603 * continue processing. For example qemu could set up SIGUSR2 3604 * handler (provided that target process haven't registered 3605 * handler for that) that does the dump when signal is received. 3606 */ 3607 static int elf_core_dump(int signr, const CPUArchState *env) 3608 { 3609 const CPUState *cpu = env_cpu((CPUArchState *)env); 3610 const TaskState *ts = (const TaskState *)cpu->opaque; 3611 struct vm_area_struct *vma = NULL; 3612 char corefile[PATH_MAX]; 3613 struct elf_note_info info; 3614 struct elfhdr elf; 3615 struct elf_phdr phdr; 3616 struct rlimit dumpsize; 3617 struct mm_struct *mm = NULL; 3618 off_t offset = 0, data_offset = 0; 3619 int segs = 0; 3620 int fd = -1; 3621 3622 init_note_info(&info); 3623 3624 errno = 0; 3625 getrlimit(RLIMIT_CORE, &dumpsize); 3626 if (dumpsize.rlim_cur == 0) 3627 return 0; 3628 3629 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3630 return (-errno); 3631 3632 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3633 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3634 return (-errno); 3635 3636 /* 3637 * Walk through target process memory mappings and 3638 * set up structure containing this information. After 3639 * this point vma_xxx functions can be used. 3640 */ 3641 if ((mm = vma_init()) == NULL) 3642 goto out; 3643 3644 walk_memory_regions(mm, vma_walker); 3645 segs = vma_get_mapping_count(mm); 3646 3647 /* 3648 * Construct valid coredump ELF header. We also 3649 * add one more segment for notes. 3650 */ 3651 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3652 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3653 goto out; 3654 3655 /* fill in the in-memory version of notes */ 3656 if (fill_note_info(&info, signr, env) < 0) 3657 goto out; 3658 3659 offset += sizeof (elf); /* elf header */ 3660 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3661 3662 /* write out notes program header */ 3663 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3664 3665 offset += info.notes_size; 3666 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3667 goto out; 3668 3669 /* 3670 * ELF specification wants data to start at page boundary so 3671 * we align it here. 3672 */ 3673 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3674 3675 /* 3676 * Write program headers for memory regions mapped in 3677 * the target process. 3678 */ 3679 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3680 (void) memset(&phdr, 0, sizeof (phdr)); 3681 3682 phdr.p_type = PT_LOAD; 3683 phdr.p_offset = offset; 3684 phdr.p_vaddr = vma->vma_start; 3685 phdr.p_paddr = 0; 3686 phdr.p_filesz = vma_dump_size(vma); 3687 offset += phdr.p_filesz; 3688 phdr.p_memsz = vma->vma_end - vma->vma_start; 3689 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3690 if (vma->vma_flags & PROT_WRITE) 3691 phdr.p_flags |= PF_W; 3692 if (vma->vma_flags & PROT_EXEC) 3693 phdr.p_flags |= PF_X; 3694 phdr.p_align = ELF_EXEC_PAGESIZE; 3695 3696 bswap_phdr(&phdr, 1); 3697 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3698 goto out; 3699 } 3700 } 3701 3702 /* 3703 * Next we write notes just after program headers. No 3704 * alignment needed here. 3705 */ 3706 if (write_note_info(&info, fd) < 0) 3707 goto out; 3708 3709 /* align data to page boundary */ 3710 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3711 goto out; 3712 3713 /* 3714 * Finally we can dump process memory into corefile as well. 3715 */ 3716 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3717 abi_ulong addr; 3718 abi_ulong end; 3719 3720 end = vma->vma_start + vma_dump_size(vma); 3721 3722 for (addr = vma->vma_start; addr < end; 3723 addr += TARGET_PAGE_SIZE) { 3724 char page[TARGET_PAGE_SIZE]; 3725 int error; 3726 3727 /* 3728 * Read in page from target process memory and 3729 * write it to coredump file. 3730 */ 3731 error = copy_from_user(page, addr, sizeof (page)); 3732 if (error != 0) { 3733 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3734 addr); 3735 errno = -error; 3736 goto out; 3737 } 3738 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3739 goto out; 3740 } 3741 } 3742 3743 out: 3744 free_note_info(&info); 3745 if (mm != NULL) 3746 vma_delete(mm); 3747 (void) close(fd); 3748 3749 if (errno != 0) 3750 return (-errno); 3751 return (0); 3752 } 3753 #endif /* USE_ELF_CORE_DUMP */ 3754 3755 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3756 { 3757 init_thread(regs, infop); 3758 } 3759